zram: use __GFP_MOVABLE for memory allocation
[deliverable/linux.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
2db51dae
NG
23 *
24 * Usage of struct page flags:
25 * PG_private: identifies the first component page
26 * PG_private2: identifies the last component page
48b4800a 27 * PG_owner_priv_1: indentifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
61989a80
NG
36#include <linux/bitops.h>
37#include <linux/errno.h>
38#include <linux/highmem.h>
61989a80
NG
39#include <linux/string.h>
40#include <linux/slab.h>
41#include <asm/tlbflush.h>
42#include <asm/pgtable.h>
43#include <linux/cpumask.h>
44#include <linux/cpu.h>
0cbb613f 45#include <linux/vmalloc.h>
759b26b2 46#include <linux/preempt.h>
0959c63f
SJ
47#include <linux/spinlock.h>
48#include <linux/types.h>
0f050d99 49#include <linux/debugfs.h>
bcf1647d 50#include <linux/zsmalloc.h>
c795779d 51#include <linux/zpool.h>
48b4800a
MK
52#include <linux/mount.h>
53#include <linux/compaction.h>
54#include <linux/pagemap.h>
55
56#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
57
58/*
59 * This must be power of 2 and greater than of equal to sizeof(link_free).
60 * These two conditions ensure that any 'struct link_free' itself doesn't
61 * span more than 1 page which avoids complex case of mapping 2 pages simply
62 * to restore link_free pointer values.
63 */
64#define ZS_ALIGN 8
65
66/*
67 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69 */
70#define ZS_MAX_ZSPAGE_ORDER 2
71#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72
2e40e163
MK
73#define ZS_HANDLE_SIZE (sizeof(unsigned long))
74
0959c63f
SJ
75/*
76 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 77 * as single (unsigned long) handle value.
0959c63f 78 *
bfd093f5 79 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
80 *
81 * This is made more complicated by various memory models and PAE.
82 */
83
84#ifndef MAX_PHYSMEM_BITS
85#ifdef CONFIG_HIGHMEM64G
86#define MAX_PHYSMEM_BITS 36
87#else /* !CONFIG_HIGHMEM64G */
88/*
89 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90 * be PAGE_SHIFT
91 */
92#define MAX_PHYSMEM_BITS BITS_PER_LONG
93#endif
94#endif
95#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
96
97/*
98 * Memory for allocating for handle keeps object position by
99 * encoding <page, obj_idx> and the encoded value has a room
100 * in least bit(ie, look at obj_to_location).
101 * We use the bit to synchronize between object access by
102 * user and migration.
103 */
104#define HANDLE_PIN_BIT 0
105
106/*
107 * Head in allocated object should have OBJ_ALLOCATED_TAG
108 * to identify the object was allocated or not.
109 * It's okay to add the status bit in the least bit because
110 * header keeps handle which is 4byte-aligned address so we
111 * have room for two bit at least.
112 */
113#define OBJ_ALLOCATED_TAG 1
114#define OBJ_TAG_BITS 1
115#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
116#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118#define MAX(a, b) ((a) >= (b) ? (a) : (b))
119/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120#define ZS_MIN_ALLOC_SIZE \
121 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 122/* each chunk includes extra space to keep handle */
7b60a685 123#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
124
125/*
7eb52512 126 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
127 * trader-off here:
128 * - Large number of size classes is potentially wasteful as free page are
129 * spread across these classes
130 * - Small number of size classes causes large internal fragmentation
131 * - Probably its better to use specific size classes (empirically
132 * determined). NOTE: all those class sizes must be set as multiple of
133 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134 *
135 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136 * (reason above)
137 */
3783689a 138#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
0959c63f
SJ
139
140/*
141 * We do not maintain any list for completely empty or full pages
142 */
143enum fullness_group {
0959c63f 144 ZS_EMPTY,
48b4800a
MK
145 ZS_ALMOST_EMPTY,
146 ZS_ALMOST_FULL,
147 ZS_FULL,
148 NR_ZS_FULLNESS,
0959c63f
SJ
149};
150
0f050d99 151enum zs_stat_type {
48b4800a
MK
152 CLASS_EMPTY,
153 CLASS_ALMOST_EMPTY,
154 CLASS_ALMOST_FULL,
155 CLASS_FULL,
0f050d99
GM
156 OBJ_ALLOCATED,
157 OBJ_USED,
48b4800a 158 NR_ZS_STAT_TYPE,
0f050d99
GM
159};
160
0f050d99
GM
161struct zs_size_stat {
162 unsigned long objs[NR_ZS_STAT_TYPE];
163};
164
57244594
SS
165#ifdef CONFIG_ZSMALLOC_STAT
166static struct dentry *zs_stat_root;
0f050d99
GM
167#endif
168
48b4800a
MK
169#ifdef CONFIG_COMPACTION
170static struct vfsmount *zsmalloc_mnt;
171#endif
172
40f9fb8c
MG
173/*
174 * number of size_classes
175 */
176static int zs_size_classes;
177
0959c63f
SJ
178/*
179 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180 * n <= N / f, where
181 * n = number of allocated objects
182 * N = total number of objects zspage can store
6dd9737e 183 * f = fullness_threshold_frac
0959c63f
SJ
184 *
185 * Similarly, we assign zspage to:
186 * ZS_ALMOST_FULL when n > N / f
187 * ZS_EMPTY when n == 0
188 * ZS_FULL when n == N
189 *
190 * (see: fix_fullness_group())
191 */
192static const int fullness_threshold_frac = 4;
193
194struct size_class {
57244594 195 spinlock_t lock;
48b4800a 196 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
197 /*
198 * Size of objects stored in this class. Must be multiple
199 * of ZS_ALIGN.
200 */
201 int size;
1fc6e27d 202 int objs_per_zspage;
7dfa4612
WY
203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 int pages_per_zspage;
48b4800a
MK
205
206 unsigned int index;
207 struct zs_size_stat stats;
0959c63f
SJ
208};
209
48b4800a
MK
210/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211static void SetPageHugeObject(struct page *page)
212{
213 SetPageOwnerPriv1(page);
214}
215
216static void ClearPageHugeObject(struct page *page)
217{
218 ClearPageOwnerPriv1(page);
219}
220
221static int PageHugeObject(struct page *page)
222{
223 return PageOwnerPriv1(page);
224}
225
0959c63f
SJ
226/*
227 * Placed within free objects to form a singly linked list.
3783689a 228 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
229 *
230 * This must be power of 2 and less than or equal to ZS_ALIGN
231 */
232struct link_free {
2e40e163
MK
233 union {
234 /*
bfd093f5 235 * Free object index;
2e40e163
MK
236 * It's valid for non-allocated object
237 */
bfd093f5 238 unsigned long next;
2e40e163
MK
239 /*
240 * Handle of allocated object.
241 */
242 unsigned long handle;
243 };
0959c63f
SJ
244};
245
246struct zs_pool {
6f3526d6 247 const char *name;
0f050d99 248
40f9fb8c 249 struct size_class **size_class;
2e40e163 250 struct kmem_cache *handle_cachep;
3783689a 251 struct kmem_cache *zspage_cachep;
0959c63f 252
13de8933 253 atomic_long_t pages_allocated;
0f050d99 254
7d3f3938 255 struct zs_pool_stats stats;
ab9d306d
SS
256
257 /* Compact classes */
258 struct shrinker shrinker;
259 /*
260 * To signify that register_shrinker() was successful
261 * and unregister_shrinker() will not Oops.
262 */
263 bool shrinker_enabled;
0f050d99
GM
264#ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266#endif
48b4800a
MK
267#ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270#endif
0959c63f 271};
61989a80
NG
272
273/*
274 * A zspage's class index and fullness group
275 * are encoded in its (first)page->mapping
276 */
3783689a
MK
277#define FULLNESS_BITS 2
278#define CLASS_BITS 8
48b4800a
MK
279#define ISOLATED_BITS 3
280#define MAGIC_VAL_BITS 8
4f42047b 281
3783689a
MK
282struct zspage {
283 struct {
284 unsigned int fullness:FULLNESS_BITS;
285 unsigned int class:CLASS_BITS;
48b4800a
MK
286 unsigned int isolated:ISOLATED_BITS;
287 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
288 };
289 unsigned int inuse;
bfd093f5 290 unsigned int freeobj;
3783689a
MK
291 struct page *first_page;
292 struct list_head list; /* fullness list */
48b4800a
MK
293#ifdef CONFIG_COMPACTION
294 rwlock_t lock;
295#endif
3783689a 296};
61989a80 297
f553646a 298struct mapping_area {
1b945aee 299#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
300 struct vm_struct *vm; /* vm area for mapping object that span pages */
301#else
302 char *vm_buf; /* copy buffer for objects that span pages */
303#endif
304 char *vm_addr; /* address of kmap_atomic()'ed pages */
305 enum zs_mapmode vm_mm; /* mapping mode */
306};
307
48b4800a
MK
308#ifdef CONFIG_COMPACTION
309static int zs_register_migration(struct zs_pool *pool);
310static void zs_unregister_migration(struct zs_pool *pool);
311static void migrate_lock_init(struct zspage *zspage);
312static void migrate_read_lock(struct zspage *zspage);
313static void migrate_read_unlock(struct zspage *zspage);
314static void kick_deferred_free(struct zs_pool *pool);
315static void init_deferred_free(struct zs_pool *pool);
316static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
317#else
318static int zsmalloc_mount(void) { return 0; }
319static void zsmalloc_unmount(void) {}
320static int zs_register_migration(struct zs_pool *pool) { return 0; }
321static void zs_unregister_migration(struct zs_pool *pool) {}
322static void migrate_lock_init(struct zspage *zspage) {}
323static void migrate_read_lock(struct zspage *zspage) {}
324static void migrate_read_unlock(struct zspage *zspage) {}
325static void kick_deferred_free(struct zs_pool *pool) {}
326static void init_deferred_free(struct zs_pool *pool) {}
327static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328#endif
329
3783689a 330static int create_cache(struct zs_pool *pool)
2e40e163
MK
331{
332 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333 0, 0, NULL);
3783689a
MK
334 if (!pool->handle_cachep)
335 return 1;
336
337 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338 0, 0, NULL);
339 if (!pool->zspage_cachep) {
340 kmem_cache_destroy(pool->handle_cachep);
341 pool->handle_cachep = NULL;
342 return 1;
343 }
344
345 return 0;
2e40e163
MK
346}
347
3783689a 348static void destroy_cache(struct zs_pool *pool)
2e40e163 349{
cd10add0 350 kmem_cache_destroy(pool->handle_cachep);
3783689a 351 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
352}
353
3783689a 354static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
355{
356 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 357 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
358}
359
3783689a 360static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
361{
362 kmem_cache_free(pool->handle_cachep, (void *)handle);
363}
364
3783689a
MK
365static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366{
48b4800a
MK
367 return kmem_cache_alloc(pool->zspage_cachep,
368 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
3783689a
MK
369};
370
371static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372{
373 kmem_cache_free(pool->zspage_cachep, zspage);
374}
375
2e40e163
MK
376static void record_obj(unsigned long handle, unsigned long obj)
377{
c102f07c
JL
378 /*
379 * lsb of @obj represents handle lock while other bits
380 * represent object value the handle is pointing so
381 * updating shouldn't do store tearing.
382 */
383 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
384}
385
c795779d
DS
386/* zpool driver */
387
388#ifdef CONFIG_ZPOOL
389
6f3526d6 390static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 391 const struct zpool_ops *zpool_ops,
479305fd 392 struct zpool *zpool)
c795779d 393{
d0d8da2d
SS
394 /*
395 * Ignore global gfp flags: zs_malloc() may be invoked from
396 * different contexts and its caller must provide a valid
397 * gfp mask.
398 */
399 return zs_create_pool(name);
c795779d
DS
400}
401
402static void zs_zpool_destroy(void *pool)
403{
404 zs_destroy_pool(pool);
405}
406
407static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
408 unsigned long *handle)
409{
d0d8da2d 410 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
411 return *handle ? 0 : -1;
412}
413static void zs_zpool_free(void *pool, unsigned long handle)
414{
415 zs_free(pool, handle);
416}
417
418static int zs_zpool_shrink(void *pool, unsigned int pages,
419 unsigned int *reclaimed)
420{
421 return -EINVAL;
422}
423
424static void *zs_zpool_map(void *pool, unsigned long handle,
425 enum zpool_mapmode mm)
426{
427 enum zs_mapmode zs_mm;
428
429 switch (mm) {
430 case ZPOOL_MM_RO:
431 zs_mm = ZS_MM_RO;
432 break;
433 case ZPOOL_MM_WO:
434 zs_mm = ZS_MM_WO;
435 break;
436 case ZPOOL_MM_RW: /* fallthru */
437 default:
438 zs_mm = ZS_MM_RW;
439 break;
440 }
441
442 return zs_map_object(pool, handle, zs_mm);
443}
444static void zs_zpool_unmap(void *pool, unsigned long handle)
445{
446 zs_unmap_object(pool, handle);
447}
448
449static u64 zs_zpool_total_size(void *pool)
450{
722cdc17 451 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
452}
453
454static struct zpool_driver zs_zpool_driver = {
455 .type = "zsmalloc",
456 .owner = THIS_MODULE,
457 .create = zs_zpool_create,
458 .destroy = zs_zpool_destroy,
459 .malloc = zs_zpool_malloc,
460 .free = zs_zpool_free,
461 .shrink = zs_zpool_shrink,
462 .map = zs_zpool_map,
463 .unmap = zs_zpool_unmap,
464 .total_size = zs_zpool_total_size,
465};
466
137f8cff 467MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
468#endif /* CONFIG_ZPOOL */
469
248ca1b0
MK
470static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
471{
472 return pages_per_zspage * PAGE_SIZE / size;
473}
474
61989a80
NG
475/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
476static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
477
48b4800a
MK
478static bool is_zspage_isolated(struct zspage *zspage)
479{
480 return zspage->isolated;
481}
482
61989a80
NG
483static int is_first_page(struct page *page)
484{
a27545bf 485 return PagePrivate(page);
61989a80
NG
486}
487
48b4800a 488/* Protected by class->lock */
3783689a 489static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 490{
3783689a 491 return zspage->inuse;
4f42047b
MK
492}
493
3783689a 494static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 495{
3783689a 496 zspage->inuse = val;
4f42047b
MK
497}
498
3783689a 499static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 500{
3783689a 501 zspage->inuse += val;
4f42047b
MK
502}
503
48b4800a 504static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 505{
48b4800a 506 struct page *first_page = zspage->first_page;
3783689a 507
48b4800a
MK
508 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
509 return first_page;
4f42047b
MK
510}
511
48b4800a 512static inline int get_first_obj_offset(struct page *page)
4f42047b 513{
48b4800a
MK
514 return page->units;
515}
3783689a 516
48b4800a
MK
517static inline void set_first_obj_offset(struct page *page, int offset)
518{
519 page->units = offset;
4f42047b
MK
520}
521
bfd093f5 522static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 523{
bfd093f5 524 return zspage->freeobj;
4f42047b
MK
525}
526
bfd093f5 527static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 528{
bfd093f5 529 zspage->freeobj = obj;
4f42047b
MK
530}
531
3783689a 532static void get_zspage_mapping(struct zspage *zspage,
a4209467 533 unsigned int *class_idx,
61989a80
NG
534 enum fullness_group *fullness)
535{
48b4800a
MK
536 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
537
3783689a
MK
538 *fullness = zspage->fullness;
539 *class_idx = zspage->class;
61989a80
NG
540}
541
3783689a 542static void set_zspage_mapping(struct zspage *zspage,
a4209467 543 unsigned int class_idx,
61989a80
NG
544 enum fullness_group fullness)
545{
3783689a
MK
546 zspage->class = class_idx;
547 zspage->fullness = fullness;
61989a80
NG
548}
549
c3e3e88a
NC
550/*
551 * zsmalloc divides the pool into various size classes where each
552 * class maintains a list of zspages where each zspage is divided
553 * into equal sized chunks. Each allocation falls into one of these
554 * classes depending on its size. This function returns index of the
555 * size class which has chunk size big enough to hold the give size.
556 */
61989a80
NG
557static int get_size_class_index(int size)
558{
559 int idx = 0;
560
561 if (likely(size > ZS_MIN_ALLOC_SIZE))
562 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
563 ZS_SIZE_CLASS_DELTA);
564
7b60a685 565 return min(zs_size_classes - 1, idx);
61989a80
NG
566}
567
248ca1b0
MK
568static inline void zs_stat_inc(struct size_class *class,
569 enum zs_stat_type type, unsigned long cnt)
570{
48b4800a 571 class->stats.objs[type] += cnt;
248ca1b0
MK
572}
573
574static inline void zs_stat_dec(struct size_class *class,
575 enum zs_stat_type type, unsigned long cnt)
576{
48b4800a 577 class->stats.objs[type] -= cnt;
248ca1b0
MK
578}
579
580static inline unsigned long zs_stat_get(struct size_class *class,
581 enum zs_stat_type type)
582{
48b4800a 583 return class->stats.objs[type];
248ca1b0
MK
584}
585
57244594
SS
586#ifdef CONFIG_ZSMALLOC_STAT
587
4abaac9b 588static void __init zs_stat_init(void)
248ca1b0 589{
4abaac9b
DS
590 if (!debugfs_initialized()) {
591 pr_warn("debugfs not available, stat dir not created\n");
592 return;
593 }
248ca1b0
MK
594
595 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
596 if (!zs_stat_root)
4abaac9b 597 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
598}
599
600static void __exit zs_stat_exit(void)
601{
602 debugfs_remove_recursive(zs_stat_root);
603}
604
1120ed54
SS
605static unsigned long zs_can_compact(struct size_class *class);
606
248ca1b0
MK
607static int zs_stats_size_show(struct seq_file *s, void *v)
608{
609 int i;
610 struct zs_pool *pool = s->private;
611 struct size_class *class;
612 int objs_per_zspage;
613 unsigned long class_almost_full, class_almost_empty;
1120ed54 614 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
615 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
616 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 617 unsigned long total_freeable = 0;
248ca1b0 618
1120ed54 619 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
620 "class", "size", "almost_full", "almost_empty",
621 "obj_allocated", "obj_used", "pages_used",
1120ed54 622 "pages_per_zspage", "freeable");
248ca1b0
MK
623
624 for (i = 0; i < zs_size_classes; i++) {
625 class = pool->size_class[i];
626
627 if (class->index != i)
628 continue;
629
630 spin_lock(&class->lock);
631 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
632 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
633 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
634 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 635 freeable = zs_can_compact(class);
248ca1b0
MK
636 spin_unlock(&class->lock);
637
638 objs_per_zspage = get_maxobj_per_zspage(class->size,
639 class->pages_per_zspage);
640 pages_used = obj_allocated / objs_per_zspage *
641 class->pages_per_zspage;
642
1120ed54
SS
643 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
644 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
645 i, class->size, class_almost_full, class_almost_empty,
646 obj_allocated, obj_used, pages_used,
1120ed54 647 class->pages_per_zspage, freeable);
248ca1b0
MK
648
649 total_class_almost_full += class_almost_full;
650 total_class_almost_empty += class_almost_empty;
651 total_objs += obj_allocated;
652 total_used_objs += obj_used;
653 total_pages += pages_used;
1120ed54 654 total_freeable += freeable;
248ca1b0
MK
655 }
656
657 seq_puts(s, "\n");
1120ed54 658 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
659 "Total", "", total_class_almost_full,
660 total_class_almost_empty, total_objs,
1120ed54 661 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
662
663 return 0;
664}
665
666static int zs_stats_size_open(struct inode *inode, struct file *file)
667{
668 return single_open(file, zs_stats_size_show, inode->i_private);
669}
670
671static const struct file_operations zs_stat_size_ops = {
672 .open = zs_stats_size_open,
673 .read = seq_read,
674 .llseek = seq_lseek,
675 .release = single_release,
676};
677
d34f6157 678static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
679{
680 struct dentry *entry;
681
4abaac9b
DS
682 if (!zs_stat_root) {
683 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 684 return;
4abaac9b 685 }
248ca1b0
MK
686
687 entry = debugfs_create_dir(name, zs_stat_root);
688 if (!entry) {
689 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 690 return;
248ca1b0
MK
691 }
692 pool->stat_dentry = entry;
693
694 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
695 pool->stat_dentry, pool, &zs_stat_size_ops);
696 if (!entry) {
697 pr_warn("%s: debugfs file entry <%s> creation failed\n",
698 name, "classes");
4abaac9b
DS
699 debugfs_remove_recursive(pool->stat_dentry);
700 pool->stat_dentry = NULL;
248ca1b0 701 }
248ca1b0
MK
702}
703
704static void zs_pool_stat_destroy(struct zs_pool *pool)
705{
706 debugfs_remove_recursive(pool->stat_dentry);
707}
708
709#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 710static void __init zs_stat_init(void)
248ca1b0 711{
248ca1b0
MK
712}
713
714static void __exit zs_stat_exit(void)
715{
716}
717
d34f6157 718static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 719{
248ca1b0
MK
720}
721
722static inline void zs_pool_stat_destroy(struct zs_pool *pool)
723{
724}
248ca1b0
MK
725#endif
726
48b4800a 727
c3e3e88a
NC
728/*
729 * For each size class, zspages are divided into different groups
730 * depending on how "full" they are. This was done so that we could
731 * easily find empty or nearly empty zspages when we try to shrink
732 * the pool (not yet implemented). This function returns fullness
733 * status of the given page.
734 */
1fc6e27d 735static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 736 struct zspage *zspage)
61989a80 737{
1fc6e27d 738 int inuse, objs_per_zspage;
61989a80 739 enum fullness_group fg;
830e4bc5 740
3783689a 741 inuse = get_zspage_inuse(zspage);
1fc6e27d 742 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
743
744 if (inuse == 0)
745 fg = ZS_EMPTY;
1fc6e27d 746 else if (inuse == objs_per_zspage)
61989a80 747 fg = ZS_FULL;
1fc6e27d 748 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
749 fg = ZS_ALMOST_EMPTY;
750 else
751 fg = ZS_ALMOST_FULL;
752
753 return fg;
754}
755
c3e3e88a
NC
756/*
757 * Each size class maintains various freelists and zspages are assigned
758 * to one of these freelists based on the number of live objects they
759 * have. This functions inserts the given zspage into the freelist
760 * identified by <class, fullness_group>.
761 */
251cbb95 762static void insert_zspage(struct size_class *class,
3783689a
MK
763 struct zspage *zspage,
764 enum fullness_group fullness)
61989a80 765{
3783689a 766 struct zspage *head;
61989a80 767
48b4800a 768 zs_stat_inc(class, fullness, 1);
3783689a
MK
769 head = list_first_entry_or_null(&class->fullness_list[fullness],
770 struct zspage, list);
58f17117 771 /*
3783689a
MK
772 * We want to see more ZS_FULL pages and less almost empty/full.
773 * Put pages with higher ->inuse first.
58f17117 774 */
3783689a
MK
775 if (head) {
776 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
777 list_add(&zspage->list, &head->list);
778 return;
779 }
780 }
781 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
782}
783
c3e3e88a
NC
784/*
785 * This function removes the given zspage from the freelist identified
786 * by <class, fullness_group>.
787 */
251cbb95 788static void remove_zspage(struct size_class *class,
3783689a
MK
789 struct zspage *zspage,
790 enum fullness_group fullness)
61989a80 791{
3783689a 792 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 793 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 794
3783689a 795 list_del_init(&zspage->list);
48b4800a 796 zs_stat_dec(class, fullness, 1);
61989a80
NG
797}
798
c3e3e88a
NC
799/*
800 * Each size class maintains zspages in different fullness groups depending
801 * on the number of live objects they contain. When allocating or freeing
802 * objects, the fullness status of the page can change, say, from ALMOST_FULL
803 * to ALMOST_EMPTY when freeing an object. This function checks if such
804 * a status change has occurred for the given page and accordingly moves the
805 * page from the freelist of the old fullness group to that of the new
806 * fullness group.
807 */
c7806261 808static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 809 struct zspage *zspage)
61989a80
NG
810{
811 int class_idx;
61989a80
NG
812 enum fullness_group currfg, newfg;
813
3783689a
MK
814 get_zspage_mapping(zspage, &class_idx, &currfg);
815 newfg = get_fullness_group(class, zspage);
61989a80
NG
816 if (newfg == currfg)
817 goto out;
818
48b4800a
MK
819 if (!is_zspage_isolated(zspage)) {
820 remove_zspage(class, zspage, currfg);
821 insert_zspage(class, zspage, newfg);
822 }
823
3783689a 824 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
825
826out:
827 return newfg;
828}
829
830/*
831 * We have to decide on how many pages to link together
832 * to form a zspage for each size class. This is important
833 * to reduce wastage due to unusable space left at end of
834 * each zspage which is given as:
888fa374
YX
835 * wastage = Zp % class_size
836 * usage = Zp - wastage
61989a80
NG
837 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
838 *
839 * For example, for size class of 3/8 * PAGE_SIZE, we should
840 * link together 3 PAGE_SIZE sized pages to form a zspage
841 * since then we can perfectly fit in 8 such objects.
842 */
2e3b6154 843static int get_pages_per_zspage(int class_size)
61989a80
NG
844{
845 int i, max_usedpc = 0;
846 /* zspage order which gives maximum used size per KB */
847 int max_usedpc_order = 1;
848
84d4faab 849 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
850 int zspage_size;
851 int waste, usedpc;
852
853 zspage_size = i * PAGE_SIZE;
854 waste = zspage_size % class_size;
855 usedpc = (zspage_size - waste) * 100 / zspage_size;
856
857 if (usedpc > max_usedpc) {
858 max_usedpc = usedpc;
859 max_usedpc_order = i;
860 }
861 }
862
863 return max_usedpc_order;
864}
865
3783689a 866static struct zspage *get_zspage(struct page *page)
61989a80 867{
48b4800a
MK
868 struct zspage *zspage = (struct zspage *)page->private;
869
870 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
871 return zspage;
61989a80
NG
872}
873
874static struct page *get_next_page(struct page *page)
875{
48b4800a
MK
876 if (unlikely(PageHugeObject(page)))
877 return NULL;
878
879 return page->freelist;
61989a80
NG
880}
881
bfd093f5
MK
882/**
883 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
884 * @page: page object resides in zspage
885 * @obj_idx: object index
67296874 886 */
bfd093f5
MK
887static void obj_to_location(unsigned long obj, struct page **page,
888 unsigned int *obj_idx)
61989a80 889{
bfd093f5
MK
890 obj >>= OBJ_TAG_BITS;
891 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
892 *obj_idx = (obj & OBJ_INDEX_MASK);
893}
61989a80 894
bfd093f5
MK
895/**
896 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
897 * @page: page object resides in zspage
898 * @obj_idx: object index
899 */
900static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
901{
902 unsigned long obj;
61989a80 903
312fcae2 904 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 905 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 906 obj <<= OBJ_TAG_BITS;
61989a80 907
bfd093f5 908 return obj;
61989a80
NG
909}
910
2e40e163
MK
911static unsigned long handle_to_obj(unsigned long handle)
912{
913 return *(unsigned long *)handle;
914}
915
48b4800a 916static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 917{
48b4800a 918 if (unlikely(PageHugeObject(page))) {
830e4bc5 919 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 920 return page->index;
7b60a685
MK
921 } else
922 return *(unsigned long *)obj;
312fcae2
MK
923}
924
48b4800a
MK
925static inline int testpin_tag(unsigned long handle)
926{
927 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
928}
929
312fcae2
MK
930static inline int trypin_tag(unsigned long handle)
931{
1b8320b6 932 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
933}
934
935static void pin_tag(unsigned long handle)
936{
1b8320b6 937 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
938}
939
940static void unpin_tag(unsigned long handle)
941{
1b8320b6 942 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
943}
944
f4477e90
NG
945static void reset_page(struct page *page)
946{
48b4800a 947 __ClearPageMovable(page);
f4477e90
NG
948 clear_bit(PG_private, &page->flags);
949 clear_bit(PG_private_2, &page->flags);
950 set_page_private(page, 0);
48b4800a
MK
951 page_mapcount_reset(page);
952 ClearPageHugeObject(page);
953 page->freelist = NULL;
954}
955
956/*
957 * To prevent zspage destroy during migration, zspage freeing should
958 * hold locks of all pages in the zspage.
959 */
960void lock_zspage(struct zspage *zspage)
961{
962 struct page *page = get_first_page(zspage);
963
964 do {
965 lock_page(page);
966 } while ((page = get_next_page(page)) != NULL);
967}
968
969int trylock_zspage(struct zspage *zspage)
970{
971 struct page *cursor, *fail;
972
973 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
974 get_next_page(cursor)) {
975 if (!trylock_page(cursor)) {
976 fail = cursor;
977 goto unlock;
978 }
979 }
980
981 return 1;
982unlock:
983 for (cursor = get_first_page(zspage); cursor != fail; cursor =
984 get_next_page(cursor))
985 unlock_page(cursor);
986
987 return 0;
f4477e90
NG
988}
989
48b4800a
MK
990static void __free_zspage(struct zs_pool *pool, struct size_class *class,
991 struct zspage *zspage)
61989a80 992{
3783689a 993 struct page *page, *next;
48b4800a
MK
994 enum fullness_group fg;
995 unsigned int class_idx;
996
997 get_zspage_mapping(zspage, &class_idx, &fg);
998
999 assert_spin_locked(&class->lock);
61989a80 1000
3783689a 1001 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 1002 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 1003
48b4800a 1004 next = page = get_first_page(zspage);
3783689a 1005 do {
48b4800a
MK
1006 VM_BUG_ON_PAGE(!PageLocked(page), page);
1007 next = get_next_page(page);
3783689a 1008 reset_page(page);
48b4800a 1009 unlock_page(page);
3783689a
MK
1010 put_page(page);
1011 page = next;
1012 } while (page != NULL);
61989a80 1013
3783689a 1014 cache_free_zspage(pool, zspage);
48b4800a
MK
1015
1016 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1017 class->size, class->pages_per_zspage));
1018 atomic_long_sub(class->pages_per_zspage,
1019 &pool->pages_allocated);
1020}
1021
1022static void free_zspage(struct zs_pool *pool, struct size_class *class,
1023 struct zspage *zspage)
1024{
1025 VM_BUG_ON(get_zspage_inuse(zspage));
1026 VM_BUG_ON(list_empty(&zspage->list));
1027
1028 if (!trylock_zspage(zspage)) {
1029 kick_deferred_free(pool);
1030 return;
1031 }
1032
1033 remove_zspage(class, zspage, ZS_EMPTY);
1034 __free_zspage(pool, class, zspage);
61989a80
NG
1035}
1036
1037/* Initialize a newly allocated zspage */
3783689a 1038static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1039{
bfd093f5 1040 unsigned int freeobj = 1;
61989a80 1041 unsigned long off = 0;
48b4800a 1042 struct page *page = get_first_page(zspage);
830e4bc5 1043
61989a80
NG
1044 while (page) {
1045 struct page *next_page;
1046 struct link_free *link;
af4ee5e9 1047 void *vaddr;
61989a80 1048
3783689a 1049 set_first_obj_offset(page, off);
61989a80 1050
af4ee5e9
MK
1051 vaddr = kmap_atomic(page);
1052 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1053
1054 while ((off += class->size) < PAGE_SIZE) {
bfd093f5 1055 link->next = freeobj++ << OBJ_ALLOCATED_TAG;
5538c562 1056 link += class->size / sizeof(*link);
61989a80
NG
1057 }
1058
1059 /*
1060 * We now come to the last (full or partial) object on this
1061 * page, which must point to the first object on the next
1062 * page (if present)
1063 */
1064 next_page = get_next_page(page);
bfd093f5
MK
1065 if (next_page) {
1066 link->next = freeobj++ << OBJ_ALLOCATED_TAG;
1067 } else {
1068 /*
1069 * Reset OBJ_ALLOCATED_TAG bit to last link to tell
1070 * whether it's allocated object or not.
1071 */
1072 link->next = -1 << OBJ_ALLOCATED_TAG;
1073 }
af4ee5e9 1074 kunmap_atomic(vaddr);
61989a80 1075 page = next_page;
5538c562 1076 off %= PAGE_SIZE;
61989a80 1077 }
bdb0af7c 1078
bfd093f5 1079 set_freeobj(zspage, 0);
61989a80
NG
1080}
1081
48b4800a
MK
1082static void create_page_chain(struct size_class *class, struct zspage *zspage,
1083 struct page *pages[])
61989a80 1084{
bdb0af7c
MK
1085 int i;
1086 struct page *page;
1087 struct page *prev_page = NULL;
48b4800a 1088 int nr_pages = class->pages_per_zspage;
61989a80
NG
1089
1090 /*
1091 * Allocate individual pages and link them together as:
48b4800a 1092 * 1. all pages are linked together using page->freelist
3783689a 1093 * 2. each sub-page point to zspage using page->private
61989a80 1094 *
3783689a
MK
1095 * we set PG_private to identify the first page (i.e. no other sub-page
1096 * has this flag set) and PG_private_2 to identify the last page.
61989a80 1097 */
bdb0af7c
MK
1098 for (i = 0; i < nr_pages; i++) {
1099 page = pages[i];
3783689a 1100 set_page_private(page, (unsigned long)zspage);
48b4800a 1101 page->freelist = NULL;
bdb0af7c 1102 if (i == 0) {
3783689a 1103 zspage->first_page = page;
a27545bf 1104 SetPagePrivate(page);
48b4800a
MK
1105 if (unlikely(class->objs_per_zspage == 1 &&
1106 class->pages_per_zspage == 1))
1107 SetPageHugeObject(page);
3783689a 1108 } else {
48b4800a 1109 prev_page->freelist = page;
61989a80 1110 }
48b4800a 1111 if (i == nr_pages - 1)
a27545bf 1112 SetPagePrivate2(page);
61989a80
NG
1113 prev_page = page;
1114 }
bdb0af7c 1115}
61989a80 1116
bdb0af7c
MK
1117/*
1118 * Allocate a zspage for the given size class
1119 */
3783689a
MK
1120static struct zspage *alloc_zspage(struct zs_pool *pool,
1121 struct size_class *class,
1122 gfp_t gfp)
bdb0af7c
MK
1123{
1124 int i;
bdb0af7c 1125 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1126 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1127
1128 if (!zspage)
1129 return NULL;
1130
1131 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1132 zspage->magic = ZSPAGE_MAGIC;
1133 migrate_lock_init(zspage);
61989a80 1134
bdb0af7c
MK
1135 for (i = 0; i < class->pages_per_zspage; i++) {
1136 struct page *page;
61989a80 1137
3783689a 1138 page = alloc_page(gfp);
bdb0af7c
MK
1139 if (!page) {
1140 while (--i >= 0)
1141 __free_page(pages[i]);
3783689a 1142 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1143 return NULL;
1144 }
1145 pages[i] = page;
61989a80
NG
1146 }
1147
48b4800a 1148 create_page_chain(class, zspage, pages);
3783689a 1149 init_zspage(class, zspage);
bdb0af7c 1150
3783689a 1151 return zspage;
61989a80
NG
1152}
1153
3783689a 1154static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1155{
1156 int i;
3783689a 1157 struct zspage *zspage;
61989a80 1158
48b4800a 1159 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1160 zspage = list_first_entry_or_null(&class->fullness_list[i],
1161 struct zspage, list);
1162 if (zspage)
61989a80
NG
1163 break;
1164 }
1165
3783689a 1166 return zspage;
61989a80
NG
1167}
1168
1b945aee 1169#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1170static inline int __zs_cpu_up(struct mapping_area *area)
1171{
1172 /*
1173 * Make sure we don't leak memory if a cpu UP notification
1174 * and zs_init() race and both call zs_cpu_up() on the same cpu
1175 */
1176 if (area->vm)
1177 return 0;
1178 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1179 if (!area->vm)
1180 return -ENOMEM;
1181 return 0;
1182}
1183
1184static inline void __zs_cpu_down(struct mapping_area *area)
1185{
1186 if (area->vm)
1187 free_vm_area(area->vm);
1188 area->vm = NULL;
1189}
1190
1191static inline void *__zs_map_object(struct mapping_area *area,
1192 struct page *pages[2], int off, int size)
1193{
f6f8ed47 1194 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1195 area->vm_addr = area->vm->addr;
1196 return area->vm_addr + off;
1197}
1198
1199static inline void __zs_unmap_object(struct mapping_area *area,
1200 struct page *pages[2], int off, int size)
1201{
1202 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1203
d95abbbb 1204 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1205}
1206
1b945aee 1207#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1208
1209static inline int __zs_cpu_up(struct mapping_area *area)
1210{
1211 /*
1212 * Make sure we don't leak memory if a cpu UP notification
1213 * and zs_init() race and both call zs_cpu_up() on the same cpu
1214 */
1215 if (area->vm_buf)
1216 return 0;
40f9fb8c 1217 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1218 if (!area->vm_buf)
1219 return -ENOMEM;
1220 return 0;
1221}
1222
1223static inline void __zs_cpu_down(struct mapping_area *area)
1224{
40f9fb8c 1225 kfree(area->vm_buf);
f553646a
SJ
1226 area->vm_buf = NULL;
1227}
1228
1229static void *__zs_map_object(struct mapping_area *area,
1230 struct page *pages[2], int off, int size)
5f601902 1231{
5f601902
SJ
1232 int sizes[2];
1233 void *addr;
f553646a 1234 char *buf = area->vm_buf;
5f601902 1235
f553646a
SJ
1236 /* disable page faults to match kmap_atomic() return conditions */
1237 pagefault_disable();
1238
1239 /* no read fastpath */
1240 if (area->vm_mm == ZS_MM_WO)
1241 goto out;
5f601902
SJ
1242
1243 sizes[0] = PAGE_SIZE - off;
1244 sizes[1] = size - sizes[0];
1245
5f601902
SJ
1246 /* copy object to per-cpu buffer */
1247 addr = kmap_atomic(pages[0]);
1248 memcpy(buf, addr + off, sizes[0]);
1249 kunmap_atomic(addr);
1250 addr = kmap_atomic(pages[1]);
1251 memcpy(buf + sizes[0], addr, sizes[1]);
1252 kunmap_atomic(addr);
f553646a
SJ
1253out:
1254 return area->vm_buf;
5f601902
SJ
1255}
1256
f553646a
SJ
1257static void __zs_unmap_object(struct mapping_area *area,
1258 struct page *pages[2], int off, int size)
5f601902 1259{
5f601902
SJ
1260 int sizes[2];
1261 void *addr;
2e40e163 1262 char *buf;
5f601902 1263
f553646a
SJ
1264 /* no write fastpath */
1265 if (area->vm_mm == ZS_MM_RO)
1266 goto out;
5f601902 1267
7b60a685 1268 buf = area->vm_buf;
a82cbf07
YX
1269 buf = buf + ZS_HANDLE_SIZE;
1270 size -= ZS_HANDLE_SIZE;
1271 off += ZS_HANDLE_SIZE;
2e40e163 1272
5f601902
SJ
1273 sizes[0] = PAGE_SIZE - off;
1274 sizes[1] = size - sizes[0];
1275
1276 /* copy per-cpu buffer to object */
1277 addr = kmap_atomic(pages[0]);
1278 memcpy(addr + off, buf, sizes[0]);
1279 kunmap_atomic(addr);
1280 addr = kmap_atomic(pages[1]);
1281 memcpy(addr, buf + sizes[0], sizes[1]);
1282 kunmap_atomic(addr);
f553646a
SJ
1283
1284out:
1285 /* enable page faults to match kunmap_atomic() return conditions */
1286 pagefault_enable();
5f601902 1287}
61989a80 1288
1b945aee 1289#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1290
61989a80
NG
1291static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1292 void *pcpu)
1293{
f553646a 1294 int ret, cpu = (long)pcpu;
61989a80
NG
1295 struct mapping_area *area;
1296
1297 switch (action) {
1298 case CPU_UP_PREPARE:
1299 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1300 ret = __zs_cpu_up(area);
1301 if (ret)
1302 return notifier_from_errno(ret);
61989a80
NG
1303 break;
1304 case CPU_DEAD:
1305 case CPU_UP_CANCELED:
1306 area = &per_cpu(zs_map_area, cpu);
f553646a 1307 __zs_cpu_down(area);
61989a80
NG
1308 break;
1309 }
1310
1311 return NOTIFY_OK;
1312}
1313
1314static struct notifier_block zs_cpu_nb = {
1315 .notifier_call = zs_cpu_notifier
1316};
1317
b1b00a5b 1318static int zs_register_cpu_notifier(void)
61989a80 1319{
b1b00a5b 1320 int cpu, uninitialized_var(ret);
61989a80 1321
f0e71fcd
SB
1322 cpu_notifier_register_begin();
1323
1324 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1325 for_each_online_cpu(cpu) {
1326 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1327 if (notifier_to_errno(ret))
1328 break;
61989a80 1329 }
f0e71fcd
SB
1330
1331 cpu_notifier_register_done();
b1b00a5b
SS
1332 return notifier_to_errno(ret);
1333}
f0e71fcd 1334
66cdef66 1335static void zs_unregister_cpu_notifier(void)
40f9fb8c 1336{
66cdef66 1337 int cpu;
40f9fb8c 1338
66cdef66 1339 cpu_notifier_register_begin();
40f9fb8c 1340
66cdef66
GM
1341 for_each_online_cpu(cpu)
1342 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1343 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1344
66cdef66 1345 cpu_notifier_register_done();
b1b00a5b
SS
1346}
1347
66cdef66 1348static void init_zs_size_classes(void)
b1b00a5b 1349{
66cdef66 1350 int nr;
c795779d 1351
66cdef66
GM
1352 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1353 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1354 nr += 1;
40f9fb8c 1355
66cdef66 1356 zs_size_classes = nr;
61989a80
NG
1357}
1358
9eec4cd5
JK
1359static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1360{
1361 if (prev->pages_per_zspage != pages_per_zspage)
1362 return false;
1363
1364 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1365 != get_maxobj_per_zspage(size, pages_per_zspage))
1366 return false;
1367
1368 return true;
1369}
1370
3783689a 1371static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1372{
3783689a 1373 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1374}
1375
66cdef66
GM
1376unsigned long zs_get_total_pages(struct zs_pool *pool)
1377{
1378 return atomic_long_read(&pool->pages_allocated);
1379}
1380EXPORT_SYMBOL_GPL(zs_get_total_pages);
1381
4bbc0bc0 1382/**
66cdef66
GM
1383 * zs_map_object - get address of allocated object from handle.
1384 * @pool: pool from which the object was allocated
1385 * @handle: handle returned from zs_malloc
4bbc0bc0 1386 *
66cdef66
GM
1387 * Before using an object allocated from zs_malloc, it must be mapped using
1388 * this function. When done with the object, it must be unmapped using
1389 * zs_unmap_object.
4bbc0bc0 1390 *
66cdef66
GM
1391 * Only one object can be mapped per cpu at a time. There is no protection
1392 * against nested mappings.
1393 *
1394 * This function returns with preemption and page faults disabled.
4bbc0bc0 1395 */
66cdef66
GM
1396void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1397 enum zs_mapmode mm)
61989a80 1398{
3783689a 1399 struct zspage *zspage;
66cdef66 1400 struct page *page;
bfd093f5
MK
1401 unsigned long obj, off;
1402 unsigned int obj_idx;
61989a80 1403
66cdef66
GM
1404 unsigned int class_idx;
1405 enum fullness_group fg;
1406 struct size_class *class;
1407 struct mapping_area *area;
1408 struct page *pages[2];
2e40e163 1409 void *ret;
61989a80 1410
9eec4cd5 1411 /*
66cdef66
GM
1412 * Because we use per-cpu mapping areas shared among the
1413 * pools/users, we can't allow mapping in interrupt context
1414 * because it can corrupt another users mappings.
9eec4cd5 1415 */
830e4bc5 1416 WARN_ON_ONCE(in_interrupt());
61989a80 1417
312fcae2
MK
1418 /* From now on, migration cannot move the object */
1419 pin_tag(handle);
1420
2e40e163
MK
1421 obj = handle_to_obj(handle);
1422 obj_to_location(obj, &page, &obj_idx);
3783689a 1423 zspage = get_zspage(page);
48b4800a
MK
1424
1425 /* migration cannot move any subpage in this zspage */
1426 migrate_read_lock(zspage);
1427
3783689a 1428 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1429 class = pool->size_class[class_idx];
bfd093f5 1430 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1431
66cdef66
GM
1432 area = &get_cpu_var(zs_map_area);
1433 area->vm_mm = mm;
1434 if (off + class->size <= PAGE_SIZE) {
1435 /* this object is contained entirely within a page */
1436 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1437 ret = area->vm_addr + off;
1438 goto out;
61989a80
NG
1439 }
1440
66cdef66
GM
1441 /* this object spans two pages */
1442 pages[0] = page;
1443 pages[1] = get_next_page(page);
1444 BUG_ON(!pages[1]);
9eec4cd5 1445
2e40e163
MK
1446 ret = __zs_map_object(area, pages, off, class->size);
1447out:
48b4800a 1448 if (likely(!PageHugeObject(page)))
7b60a685
MK
1449 ret += ZS_HANDLE_SIZE;
1450
1451 return ret;
61989a80 1452}
66cdef66 1453EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1454
66cdef66 1455void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1456{
3783689a 1457 struct zspage *zspage;
66cdef66 1458 struct page *page;
bfd093f5
MK
1459 unsigned long obj, off;
1460 unsigned int obj_idx;
61989a80 1461
66cdef66
GM
1462 unsigned int class_idx;
1463 enum fullness_group fg;
1464 struct size_class *class;
1465 struct mapping_area *area;
9eec4cd5 1466
2e40e163
MK
1467 obj = handle_to_obj(handle);
1468 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1469 zspage = get_zspage(page);
1470 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1471 class = pool->size_class[class_idx];
bfd093f5 1472 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1473
66cdef66
GM
1474 area = this_cpu_ptr(&zs_map_area);
1475 if (off + class->size <= PAGE_SIZE)
1476 kunmap_atomic(area->vm_addr);
1477 else {
1478 struct page *pages[2];
40f9fb8c 1479
66cdef66
GM
1480 pages[0] = page;
1481 pages[1] = get_next_page(page);
1482 BUG_ON(!pages[1]);
1483
1484 __zs_unmap_object(area, pages, off, class->size);
1485 }
1486 put_cpu_var(zs_map_area);
48b4800a
MK
1487
1488 migrate_read_unlock(zspage);
312fcae2 1489 unpin_tag(handle);
61989a80 1490}
66cdef66 1491EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1492
251cbb95 1493static unsigned long obj_malloc(struct size_class *class,
3783689a 1494 struct zspage *zspage, unsigned long handle)
c7806261 1495{
bfd093f5 1496 int i, nr_page, offset;
c7806261
MK
1497 unsigned long obj;
1498 struct link_free *link;
1499
1500 struct page *m_page;
bfd093f5 1501 unsigned long m_offset;
c7806261
MK
1502 void *vaddr;
1503
312fcae2 1504 handle |= OBJ_ALLOCATED_TAG;
3783689a 1505 obj = get_freeobj(zspage);
bfd093f5
MK
1506
1507 offset = obj * class->size;
1508 nr_page = offset >> PAGE_SHIFT;
1509 m_offset = offset & ~PAGE_MASK;
1510 m_page = get_first_page(zspage);
1511
1512 for (i = 0; i < nr_page; i++)
1513 m_page = get_next_page(m_page);
c7806261
MK
1514
1515 vaddr = kmap_atomic(m_page);
1516 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
bfd093f5 1517 set_freeobj(zspage, link->next >> OBJ_ALLOCATED_TAG);
48b4800a 1518 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1519 /* record handle in the header of allocated chunk */
1520 link->handle = handle;
1521 else
3783689a
MK
1522 /* record handle to page->index */
1523 zspage->first_page->index = handle;
1524
c7806261 1525 kunmap_atomic(vaddr);
3783689a 1526 mod_zspage_inuse(zspage, 1);
c7806261
MK
1527 zs_stat_inc(class, OBJ_USED, 1);
1528
bfd093f5
MK
1529 obj = location_to_obj(m_page, obj);
1530
c7806261
MK
1531 return obj;
1532}
1533
1534
61989a80
NG
1535/**
1536 * zs_malloc - Allocate block of given size from pool.
1537 * @pool: pool to allocate from
1538 * @size: size of block to allocate
61989a80 1539 *
00a61d86 1540 * On success, handle to the allocated object is returned,
c2344348 1541 * otherwise 0.
61989a80
NG
1542 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1543 */
d0d8da2d 1544unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1545{
2e40e163 1546 unsigned long handle, obj;
61989a80 1547 struct size_class *class;
48b4800a 1548 enum fullness_group newfg;
3783689a 1549 struct zspage *zspage;
61989a80 1550
7b60a685 1551 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1552 return 0;
1553
3783689a 1554 handle = cache_alloc_handle(pool, gfp);
2e40e163 1555 if (!handle)
c2344348 1556 return 0;
61989a80 1557
2e40e163
MK
1558 /* extra space in chunk to keep the handle */
1559 size += ZS_HANDLE_SIZE;
9eec4cd5 1560 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1561
1562 spin_lock(&class->lock);
3783689a 1563 zspage = find_get_zspage(class);
48b4800a
MK
1564 if (likely(zspage)) {
1565 obj = obj_malloc(class, zspage, handle);
1566 /* Now move the zspage to another fullness group, if required */
1567 fix_fullness_group(class, zspage);
1568 record_obj(handle, obj);
61989a80 1569 spin_unlock(&class->lock);
61989a80 1570
48b4800a
MK
1571 return handle;
1572 }
0f050d99 1573
48b4800a
MK
1574 spin_unlock(&class->lock);
1575
1576 zspage = alloc_zspage(pool, class, gfp);
1577 if (!zspage) {
1578 cache_free_handle(pool, handle);
1579 return 0;
61989a80
NG
1580 }
1581
48b4800a 1582 spin_lock(&class->lock);
3783689a 1583 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1584 newfg = get_fullness_group(class, zspage);
1585 insert_zspage(class, zspage, newfg);
1586 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1587 record_obj(handle, obj);
48b4800a
MK
1588 atomic_long_add(class->pages_per_zspage,
1589 &pool->pages_allocated);
1590 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1591 class->size, class->pages_per_zspage));
1592
1593 /* We completely set up zspage so mark them as movable */
1594 SetZsPageMovable(pool, zspage);
61989a80
NG
1595 spin_unlock(&class->lock);
1596
2e40e163 1597 return handle;
61989a80
NG
1598}
1599EXPORT_SYMBOL_GPL(zs_malloc);
1600
1ee47165 1601static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1602{
1603 struct link_free *link;
3783689a
MK
1604 struct zspage *zspage;
1605 struct page *f_page;
bfd093f5
MK
1606 unsigned long f_offset;
1607 unsigned int f_objidx;
af4ee5e9 1608 void *vaddr;
61989a80 1609
312fcae2 1610 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1611 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1612 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1613 zspage = get_zspage(f_page);
61989a80 1614
c7806261 1615 vaddr = kmap_atomic(f_page);
61989a80
NG
1616
1617 /* Insert this object in containing zspage's freelist */
af4ee5e9 1618 link = (struct link_free *)(vaddr + f_offset);
bfd093f5 1619 link->next = get_freeobj(zspage) << OBJ_ALLOCATED_TAG;
af4ee5e9 1620 kunmap_atomic(vaddr);
bfd093f5 1621 set_freeobj(zspage, f_objidx);
3783689a 1622 mod_zspage_inuse(zspage, -1);
0f050d99 1623 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1624}
1625
1626void zs_free(struct zs_pool *pool, unsigned long handle)
1627{
3783689a
MK
1628 struct zspage *zspage;
1629 struct page *f_page;
bfd093f5
MK
1630 unsigned long obj;
1631 unsigned int f_objidx;
c7806261
MK
1632 int class_idx;
1633 struct size_class *class;
1634 enum fullness_group fullness;
48b4800a 1635 bool isolated;
c7806261
MK
1636
1637 if (unlikely(!handle))
1638 return;
1639
312fcae2 1640 pin_tag(handle);
c7806261 1641 obj = handle_to_obj(handle);
c7806261 1642 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1643 zspage = get_zspage(f_page);
c7806261 1644
48b4800a
MK
1645 migrate_read_lock(zspage);
1646
3783689a 1647 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1648 class = pool->size_class[class_idx];
1649
1650 spin_lock(&class->lock);
1ee47165 1651 obj_free(class, obj);
3783689a 1652 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1653 if (fullness != ZS_EMPTY) {
1654 migrate_read_unlock(zspage);
1655 goto out;
312fcae2 1656 }
48b4800a
MK
1657
1658 isolated = is_zspage_isolated(zspage);
1659 migrate_read_unlock(zspage);
1660 /* If zspage is isolated, zs_page_putback will free the zspage */
1661 if (likely(!isolated))
1662 free_zspage(pool, class, zspage);
1663out:
1664
61989a80 1665 spin_unlock(&class->lock);
312fcae2 1666 unpin_tag(handle);
3783689a 1667 cache_free_handle(pool, handle);
312fcae2
MK
1668}
1669EXPORT_SYMBOL_GPL(zs_free);
1670
251cbb95
MK
1671static void zs_object_copy(struct size_class *class, unsigned long dst,
1672 unsigned long src)
312fcae2
MK
1673{
1674 struct page *s_page, *d_page;
bfd093f5 1675 unsigned int s_objidx, d_objidx;
312fcae2
MK
1676 unsigned long s_off, d_off;
1677 void *s_addr, *d_addr;
1678 int s_size, d_size, size;
1679 int written = 0;
1680
1681 s_size = d_size = class->size;
1682
1683 obj_to_location(src, &s_page, &s_objidx);
1684 obj_to_location(dst, &d_page, &d_objidx);
1685
bfd093f5
MK
1686 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1687 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1688
1689 if (s_off + class->size > PAGE_SIZE)
1690 s_size = PAGE_SIZE - s_off;
1691
1692 if (d_off + class->size > PAGE_SIZE)
1693 d_size = PAGE_SIZE - d_off;
1694
1695 s_addr = kmap_atomic(s_page);
1696 d_addr = kmap_atomic(d_page);
1697
1698 while (1) {
1699 size = min(s_size, d_size);
1700 memcpy(d_addr + d_off, s_addr + s_off, size);
1701 written += size;
1702
1703 if (written == class->size)
1704 break;
1705
495819ea
SS
1706 s_off += size;
1707 s_size -= size;
1708 d_off += size;
1709 d_size -= size;
1710
1711 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1712 kunmap_atomic(d_addr);
1713 kunmap_atomic(s_addr);
1714 s_page = get_next_page(s_page);
312fcae2
MK
1715 s_addr = kmap_atomic(s_page);
1716 d_addr = kmap_atomic(d_page);
1717 s_size = class->size - written;
1718 s_off = 0;
312fcae2
MK
1719 }
1720
495819ea 1721 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1722 kunmap_atomic(d_addr);
1723 d_page = get_next_page(d_page);
312fcae2
MK
1724 d_addr = kmap_atomic(d_page);
1725 d_size = class->size - written;
1726 d_off = 0;
312fcae2
MK
1727 }
1728 }
1729
1730 kunmap_atomic(d_addr);
1731 kunmap_atomic(s_addr);
1732}
1733
1734/*
1735 * Find alloced object in zspage from index object and
1736 * return handle.
1737 */
251cbb95
MK
1738static unsigned long find_alloced_obj(struct size_class *class,
1739 struct page *page, int index)
312fcae2
MK
1740{
1741 unsigned long head;
1742 int offset = 0;
1743 unsigned long handle = 0;
1744 void *addr = kmap_atomic(page);
1745
3783689a 1746 offset = get_first_obj_offset(page);
312fcae2
MK
1747 offset += class->size * index;
1748
1749 while (offset < PAGE_SIZE) {
48b4800a 1750 head = obj_to_head(page, addr + offset);
312fcae2
MK
1751 if (head & OBJ_ALLOCATED_TAG) {
1752 handle = head & ~OBJ_ALLOCATED_TAG;
1753 if (trypin_tag(handle))
1754 break;
1755 handle = 0;
1756 }
1757
1758 offset += class->size;
1759 index++;
1760 }
1761
1762 kunmap_atomic(addr);
1763 return handle;
1764}
1765
1766struct zs_compact_control {
3783689a 1767 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1768 struct page *s_page;
1769 /* Destination page for migration which should be a first page
1770 * of zspage. */
1771 struct page *d_page;
1772 /* Starting object index within @s_page which used for live object
1773 * in the subpage. */
1774 int index;
312fcae2
MK
1775};
1776
1777static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1778 struct zs_compact_control *cc)
1779{
1780 unsigned long used_obj, free_obj;
1781 unsigned long handle;
1782 struct page *s_page = cc->s_page;
1783 struct page *d_page = cc->d_page;
1784 unsigned long index = cc->index;
312fcae2
MK
1785 int ret = 0;
1786
1787 while (1) {
251cbb95 1788 handle = find_alloced_obj(class, s_page, index);
312fcae2
MK
1789 if (!handle) {
1790 s_page = get_next_page(s_page);
1791 if (!s_page)
1792 break;
1793 index = 0;
1794 continue;
1795 }
1796
1797 /* Stop if there is no more space */
3783689a 1798 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1799 unpin_tag(handle);
1800 ret = -ENOMEM;
1801 break;
1802 }
1803
1804 used_obj = handle_to_obj(handle);
3783689a 1805 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1806 zs_object_copy(class, free_obj, used_obj);
312fcae2 1807 index++;
c102f07c
JL
1808 /*
1809 * record_obj updates handle's value to free_obj and it will
1810 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1811 * breaks synchronization using pin_tag(e,g, zs_free) so
1812 * let's keep the lock bit.
1813 */
1814 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1815 record_obj(handle, free_obj);
1816 unpin_tag(handle);
1ee47165 1817 obj_free(class, used_obj);
312fcae2
MK
1818 }
1819
1820 /* Remember last position in this iteration */
1821 cc->s_page = s_page;
1822 cc->index = index;
312fcae2
MK
1823
1824 return ret;
1825}
1826
3783689a 1827static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1828{
1829 int i;
3783689a
MK
1830 struct zspage *zspage;
1831 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1832
3783689a
MK
1833 if (!source) {
1834 fg[0] = ZS_ALMOST_FULL;
1835 fg[1] = ZS_ALMOST_EMPTY;
1836 }
1837
1838 for (i = 0; i < 2; i++) {
1839 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1840 struct zspage, list);
1841 if (zspage) {
48b4800a 1842 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1843 remove_zspage(class, zspage, fg[i]);
1844 return zspage;
312fcae2
MK
1845 }
1846 }
1847
3783689a 1848 return zspage;
312fcae2
MK
1849}
1850
860c707d 1851/*
3783689a 1852 * putback_zspage - add @zspage into right class's fullness list
860c707d 1853 * @class: destination class
3783689a 1854 * @zspage: target page
860c707d 1855 *
3783689a 1856 * Return @zspage's fullness_group
860c707d 1857 */
4aa409ca 1858static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1859 struct zspage *zspage)
312fcae2 1860{
312fcae2
MK
1861 enum fullness_group fullness;
1862
48b4800a
MK
1863 VM_BUG_ON(is_zspage_isolated(zspage));
1864
3783689a
MK
1865 fullness = get_fullness_group(class, zspage);
1866 insert_zspage(class, zspage, fullness);
1867 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1868
860c707d 1869 return fullness;
61989a80 1870}
312fcae2 1871
48b4800a
MK
1872#ifdef CONFIG_COMPACTION
1873static struct dentry *zs_mount(struct file_system_type *fs_type,
1874 int flags, const char *dev_name, void *data)
1875{
1876 static const struct dentry_operations ops = {
1877 .d_dname = simple_dname,
1878 };
1879
1880 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1881}
1882
1883static struct file_system_type zsmalloc_fs = {
1884 .name = "zsmalloc",
1885 .mount = zs_mount,
1886 .kill_sb = kill_anon_super,
1887};
1888
1889static int zsmalloc_mount(void)
1890{
1891 int ret = 0;
1892
1893 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1894 if (IS_ERR(zsmalloc_mnt))
1895 ret = PTR_ERR(zsmalloc_mnt);
1896
1897 return ret;
1898}
1899
1900static void zsmalloc_unmount(void)
1901{
1902 kern_unmount(zsmalloc_mnt);
1903}
1904
1905static void migrate_lock_init(struct zspage *zspage)
1906{
1907 rwlock_init(&zspage->lock);
1908}
1909
1910static void migrate_read_lock(struct zspage *zspage)
1911{
1912 read_lock(&zspage->lock);
1913}
1914
1915static void migrate_read_unlock(struct zspage *zspage)
1916{
1917 read_unlock(&zspage->lock);
1918}
1919
1920static void migrate_write_lock(struct zspage *zspage)
1921{
1922 write_lock(&zspage->lock);
1923}
1924
1925static void migrate_write_unlock(struct zspage *zspage)
1926{
1927 write_unlock(&zspage->lock);
1928}
1929
1930/* Number of isolated subpage for *page migration* in this zspage */
1931static void inc_zspage_isolation(struct zspage *zspage)
1932{
1933 zspage->isolated++;
1934}
1935
1936static void dec_zspage_isolation(struct zspage *zspage)
1937{
1938 zspage->isolated--;
1939}
1940
1941static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1942 struct page *newpage, struct page *oldpage)
1943{
1944 struct page *page;
1945 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1946 int idx = 0;
1947
1948 page = get_first_page(zspage);
1949 do {
1950 if (page == oldpage)
1951 pages[idx] = newpage;
1952 else
1953 pages[idx] = page;
1954 idx++;
1955 } while ((page = get_next_page(page)) != NULL);
1956
1957 create_page_chain(class, zspage, pages);
1958 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1959 if (unlikely(PageHugeObject(oldpage)))
1960 newpage->index = oldpage->index;
1961 __SetPageMovable(newpage, page_mapping(oldpage));
1962}
1963
1964bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1965{
1966 struct zs_pool *pool;
1967 struct size_class *class;
1968 int class_idx;
1969 enum fullness_group fullness;
1970 struct zspage *zspage;
1971 struct address_space *mapping;
1972
1973 /*
1974 * Page is locked so zspage couldn't be destroyed. For detail, look at
1975 * lock_zspage in free_zspage.
1976 */
1977 VM_BUG_ON_PAGE(!PageMovable(page), page);
1978 VM_BUG_ON_PAGE(PageIsolated(page), page);
1979
1980 zspage = get_zspage(page);
1981
1982 /*
1983 * Without class lock, fullness could be stale while class_idx is okay
1984 * because class_idx is constant unless page is freed so we should get
1985 * fullness again under class lock.
1986 */
1987 get_zspage_mapping(zspage, &class_idx, &fullness);
1988 mapping = page_mapping(page);
1989 pool = mapping->private_data;
1990 class = pool->size_class[class_idx];
1991
1992 spin_lock(&class->lock);
1993 if (get_zspage_inuse(zspage) == 0) {
1994 spin_unlock(&class->lock);
1995 return false;
1996 }
1997
1998 /* zspage is isolated for object migration */
1999 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2000 spin_unlock(&class->lock);
2001 return false;
2002 }
2003
2004 /*
2005 * If this is first time isolation for the zspage, isolate zspage from
2006 * size_class to prevent further object allocation from the zspage.
2007 */
2008 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2009 get_zspage_mapping(zspage, &class_idx, &fullness);
2010 remove_zspage(class, zspage, fullness);
2011 }
2012
2013 inc_zspage_isolation(zspage);
2014 spin_unlock(&class->lock);
2015
2016 return true;
2017}
2018
2019int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2020 struct page *page, enum migrate_mode mode)
2021{
2022 struct zs_pool *pool;
2023 struct size_class *class;
2024 int class_idx;
2025 enum fullness_group fullness;
2026 struct zspage *zspage;
2027 struct page *dummy;
2028 void *s_addr, *d_addr, *addr;
2029 int offset, pos;
2030 unsigned long handle, head;
2031 unsigned long old_obj, new_obj;
2032 unsigned int obj_idx;
2033 int ret = -EAGAIN;
2034
2035 VM_BUG_ON_PAGE(!PageMovable(page), page);
2036 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2037
2038 zspage = get_zspage(page);
2039
2040 /* Concurrent compactor cannot migrate any subpage in zspage */
2041 migrate_write_lock(zspage);
2042 get_zspage_mapping(zspage, &class_idx, &fullness);
2043 pool = mapping->private_data;
2044 class = pool->size_class[class_idx];
2045 offset = get_first_obj_offset(page);
2046
2047 spin_lock(&class->lock);
2048 if (!get_zspage_inuse(zspage)) {
2049 ret = -EBUSY;
2050 goto unlock_class;
2051 }
2052
2053 pos = offset;
2054 s_addr = kmap_atomic(page);
2055 while (pos < PAGE_SIZE) {
2056 head = obj_to_head(page, s_addr + pos);
2057 if (head & OBJ_ALLOCATED_TAG) {
2058 handle = head & ~OBJ_ALLOCATED_TAG;
2059 if (!trypin_tag(handle))
2060 goto unpin_objects;
2061 }
2062 pos += class->size;
2063 }
2064
2065 /*
2066 * Here, any user cannot access all objects in the zspage so let's move.
2067 */
2068 d_addr = kmap_atomic(newpage);
2069 memcpy(d_addr, s_addr, PAGE_SIZE);
2070 kunmap_atomic(d_addr);
2071
2072 for (addr = s_addr + offset; addr < s_addr + pos;
2073 addr += class->size) {
2074 head = obj_to_head(page, addr);
2075 if (head & OBJ_ALLOCATED_TAG) {
2076 handle = head & ~OBJ_ALLOCATED_TAG;
2077 if (!testpin_tag(handle))
2078 BUG();
2079
2080 old_obj = handle_to_obj(handle);
2081 obj_to_location(old_obj, &dummy, &obj_idx);
2082 new_obj = (unsigned long)location_to_obj(newpage,
2083 obj_idx);
2084 new_obj |= BIT(HANDLE_PIN_BIT);
2085 record_obj(handle, new_obj);
2086 }
2087 }
2088
2089 replace_sub_page(class, zspage, newpage, page);
2090 get_page(newpage);
2091
2092 dec_zspage_isolation(zspage);
2093
2094 /*
2095 * Page migration is done so let's putback isolated zspage to
2096 * the list if @page is final isolated subpage in the zspage.
2097 */
2098 if (!is_zspage_isolated(zspage))
2099 putback_zspage(class, zspage);
2100
2101 reset_page(page);
2102 put_page(page);
2103 page = newpage;
2104
2105 ret = 0;
2106unpin_objects:
2107 for (addr = s_addr + offset; addr < s_addr + pos;
2108 addr += class->size) {
2109 head = obj_to_head(page, addr);
2110 if (head & OBJ_ALLOCATED_TAG) {
2111 handle = head & ~OBJ_ALLOCATED_TAG;
2112 if (!testpin_tag(handle))
2113 BUG();
2114 unpin_tag(handle);
2115 }
2116 }
2117 kunmap_atomic(s_addr);
2118unlock_class:
2119 spin_unlock(&class->lock);
2120 migrate_write_unlock(zspage);
2121
2122 return ret;
2123}
2124
2125void zs_page_putback(struct page *page)
2126{
2127 struct zs_pool *pool;
2128 struct size_class *class;
2129 int class_idx;
2130 enum fullness_group fg;
2131 struct address_space *mapping;
2132 struct zspage *zspage;
2133
2134 VM_BUG_ON_PAGE(!PageMovable(page), page);
2135 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2136
2137 zspage = get_zspage(page);
2138 get_zspage_mapping(zspage, &class_idx, &fg);
2139 mapping = page_mapping(page);
2140 pool = mapping->private_data;
2141 class = pool->size_class[class_idx];
2142
2143 spin_lock(&class->lock);
2144 dec_zspage_isolation(zspage);
2145 if (!is_zspage_isolated(zspage)) {
2146 fg = putback_zspage(class, zspage);
2147 /*
2148 * Due to page_lock, we cannot free zspage immediately
2149 * so let's defer.
2150 */
2151 if (fg == ZS_EMPTY)
2152 schedule_work(&pool->free_work);
2153 }
2154 spin_unlock(&class->lock);
2155}
2156
2157const struct address_space_operations zsmalloc_aops = {
2158 .isolate_page = zs_page_isolate,
2159 .migratepage = zs_page_migrate,
2160 .putback_page = zs_page_putback,
2161};
2162
2163static int zs_register_migration(struct zs_pool *pool)
2164{
2165 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2166 if (IS_ERR(pool->inode)) {
2167 pool->inode = NULL;
2168 return 1;
2169 }
2170
2171 pool->inode->i_mapping->private_data = pool;
2172 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2173 return 0;
2174}
2175
2176static void zs_unregister_migration(struct zs_pool *pool)
2177{
2178 flush_work(&pool->free_work);
2179 if (pool->inode)
2180 iput(pool->inode);
2181}
2182
2183/*
2184 * Caller should hold page_lock of all pages in the zspage
2185 * In here, we cannot use zspage meta data.
2186 */
2187static void async_free_zspage(struct work_struct *work)
2188{
2189 int i;
2190 struct size_class *class;
2191 unsigned int class_idx;
2192 enum fullness_group fullness;
2193 struct zspage *zspage, *tmp;
2194 LIST_HEAD(free_pages);
2195 struct zs_pool *pool = container_of(work, struct zs_pool,
2196 free_work);
2197
2198 for (i = 0; i < zs_size_classes; i++) {
2199 class = pool->size_class[i];
2200 if (class->index != i)
2201 continue;
2202
2203 spin_lock(&class->lock);
2204 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2205 spin_unlock(&class->lock);
2206 }
2207
2208
2209 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2210 list_del(&zspage->list);
2211 lock_zspage(zspage);
2212
2213 get_zspage_mapping(zspage, &class_idx, &fullness);
2214 VM_BUG_ON(fullness != ZS_EMPTY);
2215 class = pool->size_class[class_idx];
2216 spin_lock(&class->lock);
2217 __free_zspage(pool, pool->size_class[class_idx], zspage);
2218 spin_unlock(&class->lock);
2219 }
2220};
2221
2222static void kick_deferred_free(struct zs_pool *pool)
2223{
2224 schedule_work(&pool->free_work);
2225}
2226
2227static void init_deferred_free(struct zs_pool *pool)
2228{
2229 INIT_WORK(&pool->free_work, async_free_zspage);
2230}
2231
2232static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2233{
2234 struct page *page = get_first_page(zspage);
2235
2236 do {
2237 WARN_ON(!trylock_page(page));
2238 __SetPageMovable(page, pool->inode->i_mapping);
2239 unlock_page(page);
2240 } while ((page = get_next_page(page)) != NULL);
2241}
2242#endif
2243
04f05909
SS
2244/*
2245 *
2246 * Based on the number of unused allocated objects calculate
2247 * and return the number of pages that we can free.
04f05909
SS
2248 */
2249static unsigned long zs_can_compact(struct size_class *class)
2250{
2251 unsigned long obj_wasted;
44f43e99
SS
2252 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2253 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2254
44f43e99
SS
2255 if (obj_allocated <= obj_used)
2256 return 0;
04f05909 2257
44f43e99 2258 obj_wasted = obj_allocated - obj_used;
04f05909
SS
2259 obj_wasted /= get_maxobj_per_zspage(class->size,
2260 class->pages_per_zspage);
2261
6cbf16b3 2262 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2263}
2264
7d3f3938 2265static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2266{
312fcae2 2267 struct zs_compact_control cc;
3783689a
MK
2268 struct zspage *src_zspage;
2269 struct zspage *dst_zspage = NULL;
312fcae2 2270
312fcae2 2271 spin_lock(&class->lock);
3783689a 2272 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2273
04f05909
SS
2274 if (!zs_can_compact(class))
2275 break;
2276
312fcae2 2277 cc.index = 0;
48b4800a 2278 cc.s_page = get_first_page(src_zspage);
312fcae2 2279
3783689a 2280 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2281 cc.d_page = get_first_page(dst_zspage);
312fcae2 2282 /*
0dc63d48
SS
2283 * If there is no more space in dst_page, resched
2284 * and see if anyone had allocated another zspage.
312fcae2
MK
2285 */
2286 if (!migrate_zspage(pool, class, &cc))
2287 break;
2288
4aa409ca 2289 putback_zspage(class, dst_zspage);
312fcae2
MK
2290 }
2291
2292 /* Stop if we couldn't find slot */
3783689a 2293 if (dst_zspage == NULL)
312fcae2
MK
2294 break;
2295
4aa409ca
MK
2296 putback_zspage(class, dst_zspage);
2297 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2298 free_zspage(pool, class, src_zspage);
6cbf16b3 2299 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2300 }
312fcae2 2301 spin_unlock(&class->lock);
312fcae2
MK
2302 cond_resched();
2303 spin_lock(&class->lock);
2304 }
2305
3783689a 2306 if (src_zspage)
4aa409ca 2307 putback_zspage(class, src_zspage);
312fcae2 2308
7d3f3938 2309 spin_unlock(&class->lock);
312fcae2
MK
2310}
2311
2312unsigned long zs_compact(struct zs_pool *pool)
2313{
2314 int i;
312fcae2
MK
2315 struct size_class *class;
2316
2317 for (i = zs_size_classes - 1; i >= 0; i--) {
2318 class = pool->size_class[i];
2319 if (!class)
2320 continue;
2321 if (class->index != i)
2322 continue;
7d3f3938 2323 __zs_compact(pool, class);
312fcae2
MK
2324 }
2325
860c707d 2326 return pool->stats.pages_compacted;
312fcae2
MK
2327}
2328EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2329
7d3f3938
SS
2330void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2331{
2332 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2333}
2334EXPORT_SYMBOL_GPL(zs_pool_stats);
2335
ab9d306d
SS
2336static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2337 struct shrink_control *sc)
2338{
2339 unsigned long pages_freed;
2340 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2341 shrinker);
2342
2343 pages_freed = pool->stats.pages_compacted;
2344 /*
2345 * Compact classes and calculate compaction delta.
2346 * Can run concurrently with a manually triggered
2347 * (by user) compaction.
2348 */
2349 pages_freed = zs_compact(pool) - pages_freed;
2350
2351 return pages_freed ? pages_freed : SHRINK_STOP;
2352}
2353
2354static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2355 struct shrink_control *sc)
2356{
2357 int i;
2358 struct size_class *class;
2359 unsigned long pages_to_free = 0;
2360 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2361 shrinker);
2362
ab9d306d
SS
2363 for (i = zs_size_classes - 1; i >= 0; i--) {
2364 class = pool->size_class[i];
2365 if (!class)
2366 continue;
2367 if (class->index != i)
2368 continue;
2369
ab9d306d 2370 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2371 }
2372
2373 return pages_to_free;
2374}
2375
2376static void zs_unregister_shrinker(struct zs_pool *pool)
2377{
2378 if (pool->shrinker_enabled) {
2379 unregister_shrinker(&pool->shrinker);
2380 pool->shrinker_enabled = false;
2381 }
2382}
2383
2384static int zs_register_shrinker(struct zs_pool *pool)
2385{
2386 pool->shrinker.scan_objects = zs_shrinker_scan;
2387 pool->shrinker.count_objects = zs_shrinker_count;
2388 pool->shrinker.batch = 0;
2389 pool->shrinker.seeks = DEFAULT_SEEKS;
2390
2391 return register_shrinker(&pool->shrinker);
2392}
2393
00a61d86 2394/**
66cdef66
GM
2395 * zs_create_pool - Creates an allocation pool to work from.
2396 * @flags: allocation flags used to allocate pool metadata
166cfda7 2397 *
66cdef66
GM
2398 * This function must be called before anything when using
2399 * the zsmalloc allocator.
166cfda7 2400 *
66cdef66
GM
2401 * On success, a pointer to the newly created pool is returned,
2402 * otherwise NULL.
396b7fd6 2403 */
d0d8da2d 2404struct zs_pool *zs_create_pool(const char *name)
61989a80 2405{
66cdef66
GM
2406 int i;
2407 struct zs_pool *pool;
2408 struct size_class *prev_class = NULL;
61989a80 2409
66cdef66
GM
2410 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2411 if (!pool)
2412 return NULL;
61989a80 2413
48b4800a 2414 init_deferred_free(pool);
66cdef66
GM
2415 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2416 GFP_KERNEL);
2417 if (!pool->size_class) {
2418 kfree(pool);
2419 return NULL;
2420 }
61989a80 2421
2e40e163
MK
2422 pool->name = kstrdup(name, GFP_KERNEL);
2423 if (!pool->name)
2424 goto err;
2425
3783689a 2426 if (create_cache(pool))
2e40e163
MK
2427 goto err;
2428
c60369f0 2429 /*
66cdef66
GM
2430 * Iterate reversly, because, size of size_class that we want to use
2431 * for merging should be larger or equal to current size.
c60369f0 2432 */
66cdef66
GM
2433 for (i = zs_size_classes - 1; i >= 0; i--) {
2434 int size;
2435 int pages_per_zspage;
2436 struct size_class *class;
3783689a 2437 int fullness = 0;
c60369f0 2438
66cdef66
GM
2439 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2440 if (size > ZS_MAX_ALLOC_SIZE)
2441 size = ZS_MAX_ALLOC_SIZE;
2442 pages_per_zspage = get_pages_per_zspage(size);
61989a80 2443
66cdef66
GM
2444 /*
2445 * size_class is used for normal zsmalloc operation such
2446 * as alloc/free for that size. Although it is natural that we
2447 * have one size_class for each size, there is a chance that we
2448 * can get more memory utilization if we use one size_class for
2449 * many different sizes whose size_class have same
2450 * characteristics. So, we makes size_class point to
2451 * previous size_class if possible.
2452 */
2453 if (prev_class) {
2454 if (can_merge(prev_class, size, pages_per_zspage)) {
2455 pool->size_class[i] = prev_class;
2456 continue;
2457 }
2458 }
2459
2460 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2461 if (!class)
2462 goto err;
2463
2464 class->size = size;
2465 class->index = i;
2466 class->pages_per_zspage = pages_per_zspage;
1fc6e27d
MK
2467 class->objs_per_zspage = class->pages_per_zspage *
2468 PAGE_SIZE / class->size;
66cdef66
GM
2469 spin_lock_init(&class->lock);
2470 pool->size_class[i] = class;
48b4800a
MK
2471 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2472 fullness++)
3783689a 2473 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2474
2475 prev_class = class;
61989a80
NG
2476 }
2477
d34f6157
DS
2478 /* debug only, don't abort if it fails */
2479 zs_pool_stat_create(pool, name);
0f050d99 2480
48b4800a
MK
2481 if (zs_register_migration(pool))
2482 goto err;
2483
ab9d306d
SS
2484 /*
2485 * Not critical, we still can use the pool
2486 * and user can trigger compaction manually.
2487 */
2488 if (zs_register_shrinker(pool) == 0)
2489 pool->shrinker_enabled = true;
66cdef66
GM
2490 return pool;
2491
2492err:
2493 zs_destroy_pool(pool);
2494 return NULL;
61989a80 2495}
66cdef66 2496EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2497
66cdef66 2498void zs_destroy_pool(struct zs_pool *pool)
61989a80 2499{
66cdef66 2500 int i;
61989a80 2501
ab9d306d 2502 zs_unregister_shrinker(pool);
48b4800a 2503 zs_unregister_migration(pool);
0f050d99
GM
2504 zs_pool_stat_destroy(pool);
2505
66cdef66
GM
2506 for (i = 0; i < zs_size_classes; i++) {
2507 int fg;
2508 struct size_class *class = pool->size_class[i];
61989a80 2509
66cdef66
GM
2510 if (!class)
2511 continue;
61989a80 2512
66cdef66
GM
2513 if (class->index != i)
2514 continue;
61989a80 2515
48b4800a 2516 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2517 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2518 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2519 class->size, fg);
2520 }
2521 }
2522 kfree(class);
2523 }
f553646a 2524
3783689a 2525 destroy_cache(pool);
66cdef66 2526 kfree(pool->size_class);
0f050d99 2527 kfree(pool->name);
66cdef66
GM
2528 kfree(pool);
2529}
2530EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2531
66cdef66
GM
2532static int __init zs_init(void)
2533{
48b4800a
MK
2534 int ret;
2535
2536 ret = zsmalloc_mount();
2537 if (ret)
2538 goto out;
2539
2540 ret = zs_register_cpu_notifier();
66cdef66 2541
0f050d99
GM
2542 if (ret)
2543 goto notifier_fail;
66cdef66
GM
2544
2545 init_zs_size_classes();
2546
2547#ifdef CONFIG_ZPOOL
2548 zpool_register_driver(&zs_zpool_driver);
2549#endif
0f050d99 2550
4abaac9b
DS
2551 zs_stat_init();
2552
66cdef66 2553 return 0;
0f050d99 2554
0f050d99
GM
2555notifier_fail:
2556 zs_unregister_cpu_notifier();
48b4800a
MK
2557 zsmalloc_unmount();
2558out:
0f050d99 2559 return ret;
61989a80 2560}
61989a80 2561
66cdef66 2562static void __exit zs_exit(void)
61989a80 2563{
66cdef66
GM
2564#ifdef CONFIG_ZPOOL
2565 zpool_unregister_driver(&zs_zpool_driver);
2566#endif
48b4800a 2567 zsmalloc_unmount();
66cdef66 2568 zs_unregister_cpu_notifier();
0f050d99
GM
2569
2570 zs_stat_exit();
61989a80 2571}
069f101f
BH
2572
2573module_init(zs_init);
2574module_exit(zs_exit);
2575
2576MODULE_LICENSE("Dual BSD/GPL");
2577MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.492752 seconds and 5 git commands to generate.