opcodes/
[deliverable/binutils-gdb.git] / opcodes / aarch64-dis.c
CommitLineData
a06ea964 1/* aarch64-dis.c -- AArch64 disassembler.
9aff4b7a 2 Copyright 2009-2013 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of the GNU opcodes library.
6
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21#include "sysdep.h"
22#include "bfd_stdint.h"
23#include "dis-asm.h"
24#include "libiberty.h"
25#include "opintl.h"
26#include "aarch64-dis.h"
a06ea964 27#include "elf-bfd.h"
a06ea964
NC
28
29#define ERR_OK 0
30#define ERR_UND -1
31#define ERR_UNP -3
32#define ERR_NYI -5
33
34#define INSNLEN 4
35
36/* Cached mapping symbol state. */
37enum map_type
38{
39 MAP_INSN,
40 MAP_DATA
41};
42
43static enum map_type last_type;
44static int last_mapping_sym = -1;
45static bfd_vma last_mapping_addr = 0;
46
47/* Other options */
48static int no_aliases = 0; /* If set disassemble as most general inst. */
49\f
50
51static void
52set_default_aarch64_dis_options (struct disassemble_info *info ATTRIBUTE_UNUSED)
53{
54}
55
56static void
57parse_aarch64_dis_option (const char *option, unsigned int len ATTRIBUTE_UNUSED)
58{
59 /* Try to match options that are simple flags */
60 if (CONST_STRNEQ (option, "no-aliases"))
61 {
62 no_aliases = 1;
63 return;
64 }
65
66 if (CONST_STRNEQ (option, "aliases"))
67 {
68 no_aliases = 0;
69 return;
70 }
71
72#ifdef DEBUG_AARCH64
73 if (CONST_STRNEQ (option, "debug_dump"))
74 {
75 debug_dump = 1;
76 return;
77 }
78#endif /* DEBUG_AARCH64 */
79
80 /* Invalid option. */
81 fprintf (stderr, _("Unrecognised disassembler option: %s\n"), option);
82}
83
84static void
85parse_aarch64_dis_options (const char *options)
86{
87 const char *option_end;
88
89 if (options == NULL)
90 return;
91
92 while (*options != '\0')
93 {
94 /* Skip empty options. */
95 if (*options == ',')
96 {
97 options++;
98 continue;
99 }
100
101 /* We know that *options is neither NUL or a comma. */
102 option_end = options + 1;
103 while (*option_end != ',' && *option_end != '\0')
104 option_end++;
105
106 parse_aarch64_dis_option (options, option_end - options);
107
108 /* Go on to the next one. If option_end points to a comma, it
109 will be skipped above. */
110 options = option_end;
111 }
112}
113\f
114/* Functions doing the instruction disassembling. */
115
116/* The unnamed arguments consist of the number of fields and information about
117 these fields where the VALUE will be extracted from CODE and returned.
118 MASK can be zero or the base mask of the opcode.
119
120 N.B. the fields are required to be in such an order than the most signficant
121 field for VALUE comes the first, e.g. the <index> in
122 SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
9aff4b7a 123 is encoded in H:L:M in some cases, the fields H:L:M should be passed in
a06ea964
NC
124 the order of H, L, M. */
125
126static inline aarch64_insn
127extract_fields (aarch64_insn code, aarch64_insn mask, ...)
128{
129 uint32_t num;
130 const aarch64_field *field;
131 enum aarch64_field_kind kind;
132 va_list va;
133
134 va_start (va, mask);
135 num = va_arg (va, uint32_t);
136 assert (num <= 5);
137 aarch64_insn value = 0x0;
138 while (num--)
139 {
140 kind = va_arg (va, enum aarch64_field_kind);
141 field = &fields[kind];
142 value <<= field->width;
143 value |= extract_field (kind, code, mask);
144 }
145 return value;
146}
147
148/* Sign-extend bit I of VALUE. */
149static inline int32_t
150sign_extend (aarch64_insn value, unsigned i)
151{
152 uint32_t ret = value;
153
154 assert (i < 32);
155 if ((value >> i) & 0x1)
156 {
157 uint32_t val = (uint32_t)(-1) << i;
158 ret = ret | val;
159 }
160 return (int32_t) ret;
161}
162
163/* N.B. the following inline helpfer functions create a dependency on the
164 order of operand qualifier enumerators. */
165
166/* Given VALUE, return qualifier for a general purpose register. */
167static inline enum aarch64_opnd_qualifier
168get_greg_qualifier_from_value (aarch64_insn value)
169{
170 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_W + value;
171 assert (value <= 0x1
172 && aarch64_get_qualifier_standard_value (qualifier) == value);
173 return qualifier;
174}
175
176/* Given VALUE, return qualifier for a vector register. */
177static inline enum aarch64_opnd_qualifier
178get_vreg_qualifier_from_value (aarch64_insn value)
179{
180 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_V_8B + value;
181
182 assert (value <= 0x8
183 && aarch64_get_qualifier_standard_value (qualifier) == value);
184 return qualifier;
185}
186
187/* Given VALUE, return qualifier for an FP or AdvSIMD scalar register. */
188static inline enum aarch64_opnd_qualifier
189get_sreg_qualifier_from_value (aarch64_insn value)
190{
191 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_S_B + value;
192
193 assert (value <= 0x4
194 && aarch64_get_qualifier_standard_value (qualifier) == value);
195 return qualifier;
196}
197
198/* Given the instruction in *INST which is probably half way through the
199 decoding and our caller wants to know the expected qualifier for operand
200 I. Return such a qualifier if we can establish it; otherwise return
201 AARCH64_OPND_QLF_NIL. */
202
203static aarch64_opnd_qualifier_t
204get_expected_qualifier (const aarch64_inst *inst, int i)
205{
206 aarch64_opnd_qualifier_seq_t qualifiers;
207 /* Should not be called if the qualifier is known. */
208 assert (inst->operands[i].qualifier == AARCH64_OPND_QLF_NIL);
209 if (aarch64_find_best_match (inst, inst->opcode->qualifiers_list,
210 i, qualifiers))
211 return qualifiers[i];
212 else
213 return AARCH64_OPND_QLF_NIL;
214}
215
216/* Operand extractors. */
217
218int
219aarch64_ext_regno (const aarch64_operand *self, aarch64_opnd_info *info,
220 const aarch64_insn code,
221 const aarch64_inst *inst ATTRIBUTE_UNUSED)
222{
223 info->reg.regno = extract_field (self->fields[0], code, 0);
224 return 1;
225}
226
227/* e.g. IC <ic_op>{, <Xt>}. */
228int
229aarch64_ext_regrt_sysins (const aarch64_operand *self, aarch64_opnd_info *info,
230 const aarch64_insn code,
231 const aarch64_inst *inst ATTRIBUTE_UNUSED)
232{
233 info->reg.regno = extract_field (self->fields[0], code, 0);
234 assert (info->idx == 1
235 && (aarch64_get_operand_class (inst->operands[0].type)
236 == AARCH64_OPND_CLASS_SYSTEM));
237 /* This will make the constraint checking happy and more importantly will
238 help the disassembler determine whether this operand is optional or
239 not. */
240 info->present = inst->operands[0].sysins_op->has_xt;
241
242 return 1;
243}
244
245/* e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
246int
247aarch64_ext_reglane (const aarch64_operand *self, aarch64_opnd_info *info,
248 const aarch64_insn code,
249 const aarch64_inst *inst ATTRIBUTE_UNUSED)
250{
251 /* regno */
252 info->reglane.regno = extract_field (self->fields[0], code,
253 inst->opcode->mask);
254
255 /* Index and/or type. */
256 if (inst->opcode->iclass == asisdone
257 || inst->opcode->iclass == asimdins)
258 {
259 if (info->type == AARCH64_OPND_En
260 && inst->opcode->operands[0] == AARCH64_OPND_Ed)
261 {
262 unsigned shift;
263 /* index2 for e.g. INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]. */
264 assert (info->idx == 1); /* Vn */
265 aarch64_insn value = extract_field (FLD_imm4, code, 0);
266 /* Depend on AARCH64_OPND_Ed to determine the qualifier. */
267 info->qualifier = get_expected_qualifier (inst, info->idx);
268 shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
269 info->reglane.index = value >> shift;
270 }
271 else
272 {
273 /* index and type for e.g. DUP <V><d>, <Vn>.<T>[<index>].
274 imm5<3:0> <V>
275 0000 RESERVED
276 xxx1 B
277 xx10 H
278 x100 S
279 1000 D */
280 int pos = -1;
281 aarch64_insn value = extract_field (FLD_imm5, code, 0);
282 while (++pos <= 3 && (value & 0x1) == 0)
283 value >>= 1;
284 if (pos > 3)
285 return 0;
286 info->qualifier = get_sreg_qualifier_from_value (pos);
287 info->reglane.index = (unsigned) (value >> 1);
288 }
289 }
290 else
291 {
292 /* Index only for e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
293 or SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
294
295 /* Need information in other operand(s) to help decoding. */
296 info->qualifier = get_expected_qualifier (inst, info->idx);
297 switch (info->qualifier)
298 {
299 case AARCH64_OPND_QLF_S_H:
300 /* h:l:m */
301 info->reglane.index = extract_fields (code, 0, 3, FLD_H, FLD_L,
302 FLD_M);
303 info->reglane.regno &= 0xf;
304 break;
305 case AARCH64_OPND_QLF_S_S:
306 /* h:l */
307 info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
308 break;
309 case AARCH64_OPND_QLF_S_D:
310 /* H */
311 info->reglane.index = extract_field (FLD_H, code, 0);
312 break;
313 default:
314 return 0;
315 }
316 }
317
318 return 1;
319}
320
321int
322aarch64_ext_reglist (const aarch64_operand *self, aarch64_opnd_info *info,
323 const aarch64_insn code,
324 const aarch64_inst *inst ATTRIBUTE_UNUSED)
325{
326 /* R */
327 info->reglist.first_regno = extract_field (self->fields[0], code, 0);
328 /* len */
329 info->reglist.num_regs = extract_field (FLD_len, code, 0) + 1;
330 return 1;
331}
332
333/* Decode Rt and opcode fields of Vt in AdvSIMD load/store instructions. */
334int
335aarch64_ext_ldst_reglist (const aarch64_operand *self ATTRIBUTE_UNUSED,
336 aarch64_opnd_info *info, const aarch64_insn code,
337 const aarch64_inst *inst)
338{
339 aarch64_insn value;
340 /* Number of elements in each structure to be loaded/stored. */
341 unsigned expected_num = get_opcode_dependent_value (inst->opcode);
342
343 struct
344 {
345 unsigned is_reserved;
346 unsigned num_regs;
347 unsigned num_elements;
348 } data [] =
349 { {0, 4, 4},
350 {1, 4, 4},
351 {0, 4, 1},
352 {0, 4, 2},
353 {0, 3, 3},
354 {1, 3, 3},
355 {0, 3, 1},
356 {0, 1, 1},
357 {0, 2, 2},
358 {1, 2, 2},
359 {0, 2, 1},
360 };
361
362 /* Rt */
363 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
364 /* opcode */
365 value = extract_field (FLD_opcode, code, 0);
366 if (expected_num != data[value].num_elements || data[value].is_reserved)
367 return 0;
368 info->reglist.num_regs = data[value].num_regs;
369
370 return 1;
371}
372
373/* Decode Rt and S fields of Vt in AdvSIMD load single structure to all
374 lanes instructions. */
375int
376aarch64_ext_ldst_reglist_r (const aarch64_operand *self ATTRIBUTE_UNUSED,
377 aarch64_opnd_info *info, const aarch64_insn code,
378 const aarch64_inst *inst)
379{
380 aarch64_insn value;
381
382 /* Rt */
383 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
384 /* S */
385 value = extract_field (FLD_S, code, 0);
386
387 /* Number of registers is equal to the number of elements in
388 each structure to be loaded/stored. */
389 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
390 assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
391
392 /* Except when it is LD1R. */
393 if (info->reglist.num_regs == 1 && value == (aarch64_insn) 1)
394 info->reglist.num_regs = 2;
395
396 return 1;
397}
398
399/* Decode Q, opcode<2:1>, S, size and Rt fields of Vt in AdvSIMD
400 load/store single element instructions. */
401int
402aarch64_ext_ldst_elemlist (const aarch64_operand *self ATTRIBUTE_UNUSED,
403 aarch64_opnd_info *info, const aarch64_insn code,
404 const aarch64_inst *inst ATTRIBUTE_UNUSED)
405{
406 aarch64_field field = {0, 0};
407 aarch64_insn QSsize; /* fields Q:S:size. */
408 aarch64_insn opcodeh2; /* opcode<2:1> */
409
410 /* Rt */
411 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
412
413 /* Decode the index, opcode<2:1> and size. */
414 gen_sub_field (FLD_asisdlso_opcode, 1, 2, &field);
415 opcodeh2 = extract_field_2 (&field, code, 0);
416 QSsize = extract_fields (code, 0, 3, FLD_Q, FLD_S, FLD_vldst_size);
417 switch (opcodeh2)
418 {
419 case 0x0:
420 info->qualifier = AARCH64_OPND_QLF_S_B;
421 /* Index encoded in "Q:S:size". */
422 info->reglist.index = QSsize;
423 break;
424 case 0x1:
425 info->qualifier = AARCH64_OPND_QLF_S_H;
426 /* Index encoded in "Q:S:size<1>". */
427 info->reglist.index = QSsize >> 1;
428 break;
429 case 0x2:
430 if ((QSsize & 0x1) == 0)
431 {
432 info->qualifier = AARCH64_OPND_QLF_S_S;
433 /* Index encoded in "Q:S". */
434 info->reglist.index = QSsize >> 2;
435 }
436 else
437 {
438 info->qualifier = AARCH64_OPND_QLF_S_D;
439 /* Index encoded in "Q". */
440 info->reglist.index = QSsize >> 3;
441 if (extract_field (FLD_S, code, 0))
442 /* UND */
443 return 0;
444 }
445 break;
446 default:
447 return 0;
448 }
449
450 info->reglist.has_index = 1;
451 info->reglist.num_regs = 0;
452 /* Number of registers is equal to the number of elements in
453 each structure to be loaded/stored. */
454 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
455 assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
456
457 return 1;
458}
459
460/* Decode fields immh:immb and/or Q for e.g.
461 SSHR <Vd>.<T>, <Vn>.<T>, #<shift>
462 or SSHR <V><d>, <V><n>, #<shift>. */
463
464int
465aarch64_ext_advsimd_imm_shift (const aarch64_operand *self ATTRIBUTE_UNUSED,
466 aarch64_opnd_info *info, const aarch64_insn code,
467 const aarch64_inst *inst)
468{
469 int pos;
470 aarch64_insn Q, imm, immh;
471 enum aarch64_insn_class iclass = inst->opcode->iclass;
472
473 immh = extract_field (FLD_immh, code, 0);
474 if (immh == 0)
475 return 0;
476 imm = extract_fields (code, 0, 2, FLD_immh, FLD_immb);
477 pos = 4;
478 /* Get highest set bit in immh. */
479 while (--pos >= 0 && (immh & 0x8) == 0)
480 immh <<= 1;
481
482 assert ((iclass == asimdshf || iclass == asisdshf)
483 && (info->type == AARCH64_OPND_IMM_VLSR
484 || info->type == AARCH64_OPND_IMM_VLSL));
485
486 if (iclass == asimdshf)
487 {
488 Q = extract_field (FLD_Q, code, 0);
489 /* immh Q <T>
490 0000 x SEE AdvSIMD modified immediate
491 0001 0 8B
492 0001 1 16B
493 001x 0 4H
494 001x 1 8H
495 01xx 0 2S
496 01xx 1 4S
497 1xxx 0 RESERVED
498 1xxx 1 2D */
499 info->qualifier =
500 get_vreg_qualifier_from_value ((pos << 1) | (int) Q);
501 }
502 else
503 info->qualifier = get_sreg_qualifier_from_value (pos);
504
505 if (info->type == AARCH64_OPND_IMM_VLSR)
506 /* immh <shift>
507 0000 SEE AdvSIMD modified immediate
508 0001 (16-UInt(immh:immb))
509 001x (32-UInt(immh:immb))
510 01xx (64-UInt(immh:immb))
511 1xxx (128-UInt(immh:immb)) */
512 info->imm.value = (16 << pos) - imm;
513 else
514 /* immh:immb
515 immh <shift>
516 0000 SEE AdvSIMD modified immediate
517 0001 (UInt(immh:immb)-8)
518 001x (UInt(immh:immb)-16)
519 01xx (UInt(immh:immb)-32)
520 1xxx (UInt(immh:immb)-64) */
521 info->imm.value = imm - (8 << pos);
522
523 return 1;
524}
525
526/* Decode shift immediate for e.g. sshr (imm). */
527int
528aarch64_ext_shll_imm (const aarch64_operand *self ATTRIBUTE_UNUSED,
529 aarch64_opnd_info *info, const aarch64_insn code,
530 const aarch64_inst *inst ATTRIBUTE_UNUSED)
531{
532 int64_t imm;
533 aarch64_insn val;
534 val = extract_field (FLD_size, code, 0);
535 switch (val)
536 {
537 case 0: imm = 8; break;
538 case 1: imm = 16; break;
539 case 2: imm = 32; break;
540 default: return 0;
541 }
542 info->imm.value = imm;
543 return 1;
544}
545
546/* Decode imm for e.g. BFM <Wd>, <Wn>, #<immr>, #<imms>.
547 value in the field(s) will be extracted as unsigned immediate value. */
548int
549aarch64_ext_imm (const aarch64_operand *self, aarch64_opnd_info *info,
550 const aarch64_insn code,
551 const aarch64_inst *inst ATTRIBUTE_UNUSED)
552{
553 int64_t imm;
554 /* Maximum of two fields to extract. */
555 assert (self->fields[2] == FLD_NIL);
556
557 if (self->fields[1] == FLD_NIL)
558 imm = extract_field (self->fields[0], code, 0);
559 else
560 /* e.g. TBZ b5:b40. */
561 imm = extract_fields (code, 0, 2, self->fields[0], self->fields[1]);
562
563 if (info->type == AARCH64_OPND_FPIMM)
564 info->imm.is_fp = 1;
565
566 if (operand_need_sign_extension (self))
567 imm = sign_extend (imm, get_operand_fields_width (self) - 1);
568
569 if (operand_need_shift_by_two (self))
570 imm <<= 2;
571
572 if (info->type == AARCH64_OPND_ADDR_ADRP)
573 imm <<= 12;
574
575 info->imm.value = imm;
576 return 1;
577}
578
579/* Decode imm and its shifter for e.g. MOVZ <Wd>, #<imm16>{, LSL #<shift>}. */
580int
581aarch64_ext_imm_half (const aarch64_operand *self, aarch64_opnd_info *info,
582 const aarch64_insn code,
583 const aarch64_inst *inst ATTRIBUTE_UNUSED)
584{
585 aarch64_ext_imm (self, info, code, inst);
586 info->shifter.kind = AARCH64_MOD_LSL;
587 info->shifter.amount = extract_field (FLD_hw, code, 0) << 4;
588 return 1;
589}
590
591/* Decode cmode and "a:b:c:d:e:f:g:h" for e.g.
592 MOVI <Vd>.<T>, #<imm8> {, LSL #<amount>}. */
593int
594aarch64_ext_advsimd_imm_modified (const aarch64_operand *self ATTRIBUTE_UNUSED,
595 aarch64_opnd_info *info,
596 const aarch64_insn code,
597 const aarch64_inst *inst ATTRIBUTE_UNUSED)
598{
599 uint64_t imm;
600 enum aarch64_opnd_qualifier opnd0_qualifier = inst->operands[0].qualifier;
601 aarch64_field field = {0, 0};
602
603 assert (info->idx == 1);
604
605 if (info->type == AARCH64_OPND_SIMD_FPIMM)
606 info->imm.is_fp = 1;
607
608 /* a:b:c:d:e:f:g:h */
609 imm = extract_fields (code, 0, 2, FLD_abc, FLD_defgh);
610 if (!info->imm.is_fp && aarch64_get_qualifier_esize (opnd0_qualifier) == 8)
611 {
612 /* Either MOVI <Dd>, #<imm>
613 or MOVI <Vd>.2D, #<imm>.
614 <imm> is a 64-bit immediate
615 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
616 encoded in "a:b:c:d:e:f:g:h". */
617 int i;
618 unsigned abcdefgh = imm;
619 for (imm = 0ull, i = 0; i < 8; i++)
620 if (((abcdefgh >> i) & 0x1) != 0)
621 imm |= 0xffull << (8 * i);
622 }
623 info->imm.value = imm;
624
625 /* cmode */
626 info->qualifier = get_expected_qualifier (inst, info->idx);
627 switch (info->qualifier)
628 {
629 case AARCH64_OPND_QLF_NIL:
630 /* no shift */
631 info->shifter.kind = AARCH64_MOD_NONE;
632 return 1;
633 case AARCH64_OPND_QLF_LSL:
634 /* shift zeros */
635 info->shifter.kind = AARCH64_MOD_LSL;
636 switch (aarch64_get_qualifier_esize (opnd0_qualifier))
637 {
638 case 4: gen_sub_field (FLD_cmode, 1, 2, &field); break; /* per word */
639 case 2: gen_sub_field (FLD_cmode, 1, 1, &field); break; /* per half */
f5555712 640 case 1: gen_sub_field (FLD_cmode, 1, 0, &field); break; /* per byte */
a06ea964
NC
641 default: assert (0); return 0;
642 }
643 /* 00: 0; 01: 8; 10:16; 11:24. */
644 info->shifter.amount = extract_field_2 (&field, code, 0) << 3;
645 break;
646 case AARCH64_OPND_QLF_MSL:
647 /* shift ones */
648 info->shifter.kind = AARCH64_MOD_MSL;
649 gen_sub_field (FLD_cmode, 0, 1, &field); /* per word */
650 info->shifter.amount = extract_field_2 (&field, code, 0) ? 16 : 8;
651 break;
652 default:
653 assert (0);
654 return 0;
655 }
656
657 return 1;
658}
659
660/* Decode scale for e.g. SCVTF <Dd>, <Wn>, #<fbits>. */
661int
662aarch64_ext_fbits (const aarch64_operand *self ATTRIBUTE_UNUSED,
663 aarch64_opnd_info *info, const aarch64_insn code,
664 const aarch64_inst *inst ATTRIBUTE_UNUSED)
665{
666 info->imm.value = 64- extract_field (FLD_scale, code, 0);
667 return 1;
668}
669
670/* Decode arithmetic immediate for e.g.
671 SUBS <Wd>, <Wn|WSP>, #<imm> {, <shift>}. */
672int
673aarch64_ext_aimm (const aarch64_operand *self ATTRIBUTE_UNUSED,
674 aarch64_opnd_info *info, const aarch64_insn code,
675 const aarch64_inst *inst ATTRIBUTE_UNUSED)
676{
677 aarch64_insn value;
678
679 info->shifter.kind = AARCH64_MOD_LSL;
680 /* shift */
681 value = extract_field (FLD_shift, code, 0);
682 if (value >= 2)
683 return 0;
684 info->shifter.amount = value ? 12 : 0;
685 /* imm12 (unsigned) */
686 info->imm.value = extract_field (FLD_imm12, code, 0);
687
688 return 1;
689}
690
691/* Decode logical immediate for e.g. ORR <Wd|WSP>, <Wn>, #<imm>. */
692
693int
694aarch64_ext_limm (const aarch64_operand *self ATTRIBUTE_UNUSED,
695 aarch64_opnd_info *info, const aarch64_insn code,
696 const aarch64_inst *inst ATTRIBUTE_UNUSED)
697{
698 uint64_t imm, mask;
699 uint32_t sf;
700 uint32_t N, R, S;
701 unsigned simd_size;
702 aarch64_insn value;
703
704 value = extract_fields (code, 0, 3, FLD_N, FLD_immr, FLD_imms);
705 assert (inst->operands[0].qualifier == AARCH64_OPND_QLF_W
706 || inst->operands[0].qualifier == AARCH64_OPND_QLF_X);
707 sf = aarch64_get_qualifier_esize (inst->operands[0].qualifier) != 4;
708
709 /* value is N:immr:imms. */
710 S = value & 0x3f;
711 R = (value >> 6) & 0x3f;
712 N = (value >> 12) & 0x1;
713
714 if (sf == 0 && N == 1)
715 return 0;
716
717 /* The immediate value is S+1 bits to 1, left rotated by SIMDsize - R
718 (in other words, right rotated by R), then replicated. */
719 if (N != 0)
720 {
721 simd_size = 64;
722 mask = 0xffffffffffffffffull;
723 }
724 else
725 {
726 switch (S)
727 {
728 case 0x00 ... 0x1f: /* 0xxxxx */ simd_size = 32; break;
729 case 0x20 ... 0x2f: /* 10xxxx */ simd_size = 16; S &= 0xf; break;
730 case 0x30 ... 0x37: /* 110xxx */ simd_size = 8; S &= 0x7; break;
731 case 0x38 ... 0x3b: /* 1110xx */ simd_size = 4; S &= 0x3; break;
732 case 0x3c ... 0x3d: /* 11110x */ simd_size = 2; S &= 0x1; break;
733 default: return 0;
734 }
735 mask = (1ull << simd_size) - 1;
736 /* Top bits are IGNORED. */
737 R &= simd_size - 1;
738 }
739 /* NOTE: if S = simd_size - 1 we get 0xf..f which is rejected. */
740 if (S == simd_size - 1)
741 return 0;
742 /* S+1 consecutive bits to 1. */
743 /* NOTE: S can't be 63 due to detection above. */
744 imm = (1ull << (S + 1)) - 1;
745 /* Rotate to the left by simd_size - R. */
746 if (R != 0)
747 imm = ((imm << (simd_size - R)) & mask) | (imm >> R);
748 /* Replicate the value according to SIMD size. */
749 switch (simd_size)
750 {
751 case 2: imm = (imm << 2) | imm;
752 case 4: imm = (imm << 4) | imm;
753 case 8: imm = (imm << 8) | imm;
754 case 16: imm = (imm << 16) | imm;
755 case 32: imm = (imm << 32) | imm;
756 case 64: break;
757 default: assert (0); return 0;
758 }
759
760 info->imm.value = sf ? imm : imm & 0xffffffff;
761
762 return 1;
763}
764
765/* Decode Ft for e.g. STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]
766 or LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>. */
767int
768aarch64_ext_ft (const aarch64_operand *self ATTRIBUTE_UNUSED,
769 aarch64_opnd_info *info,
770 const aarch64_insn code, const aarch64_inst *inst)
771{
772 aarch64_insn value;
773
774 /* Rt */
775 info->reg.regno = extract_field (FLD_Rt, code, 0);
776
777 /* size */
778 value = extract_field (FLD_ldst_size, code, 0);
779 if (inst->opcode->iclass == ldstpair_indexed
780 || inst->opcode->iclass == ldstnapair_offs
781 || inst->opcode->iclass == ldstpair_off
782 || inst->opcode->iclass == loadlit)
783 {
784 enum aarch64_opnd_qualifier qualifier;
785 switch (value)
786 {
787 case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
788 case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
789 case 2: qualifier = AARCH64_OPND_QLF_S_Q; break;
790 default: return 0;
791 }
792 info->qualifier = qualifier;
793 }
794 else
795 {
796 /* opc1:size */
797 value = extract_fields (code, 0, 2, FLD_opc1, FLD_ldst_size);
798 if (value > 0x4)
799 return 0;
800 info->qualifier = get_sreg_qualifier_from_value (value);
801 }
802
803 return 1;
804}
805
806/* Decode the address operand for e.g. STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]. */
807int
808aarch64_ext_addr_simple (const aarch64_operand *self ATTRIBUTE_UNUSED,
809 aarch64_opnd_info *info,
810 aarch64_insn code,
811 const aarch64_inst *inst ATTRIBUTE_UNUSED)
812{
813 /* Rn */
814 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
815 return 1;
816}
817
818/* Decode the address operand for e.g.
819 STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
820int
821aarch64_ext_addr_regoff (const aarch64_operand *self ATTRIBUTE_UNUSED,
822 aarch64_opnd_info *info,
823 aarch64_insn code, const aarch64_inst *inst)
824{
825 aarch64_insn S, value;
826
827 /* Rn */
828 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
829 /* Rm */
830 info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
831 /* option */
832 value = extract_field (FLD_option, code, 0);
833 info->shifter.kind =
834 aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
835 /* Fix-up the shifter kind; although the table-driven approach is
836 efficient, it is slightly inflexible, thus needing this fix-up. */
837 if (info->shifter.kind == AARCH64_MOD_UXTX)
838 info->shifter.kind = AARCH64_MOD_LSL;
839 /* S */
840 S = extract_field (FLD_S, code, 0);
841 if (S == 0)
842 {
843 info->shifter.amount = 0;
844 info->shifter.amount_present = 0;
845 }
846 else
847 {
848 int size;
849 /* Need information in other operand(s) to help achieve the decoding
850 from 'S' field. */
851 info->qualifier = get_expected_qualifier (inst, info->idx);
852 /* Get the size of the data element that is accessed, which may be
853 different from that of the source register size, e.g. in strb/ldrb. */
854 size = aarch64_get_qualifier_esize (info->qualifier);
855 info->shifter.amount = get_logsz (size);
856 info->shifter.amount_present = 1;
857 }
858
859 return 1;
860}
861
862/* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>], #<simm>. */
863int
864aarch64_ext_addr_simm (const aarch64_operand *self, aarch64_opnd_info *info,
865 aarch64_insn code, const aarch64_inst *inst)
866{
867 aarch64_insn imm;
868 info->qualifier = get_expected_qualifier (inst, info->idx);
869
870 /* Rn */
871 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
872 /* simm (imm9 or imm7) */
873 imm = extract_field (self->fields[0], code, 0);
874 info->addr.offset.imm = sign_extend (imm, fields[self->fields[0]].width - 1);
875 if (self->fields[0] == FLD_imm7)
876 /* scaled immediate in ld/st pair instructions. */
877 info->addr.offset.imm *= aarch64_get_qualifier_esize (info->qualifier);
878 /* qualifier */
879 if (inst->opcode->iclass == ldst_unscaled
880 || inst->opcode->iclass == ldstnapair_offs
881 || inst->opcode->iclass == ldstpair_off
882 || inst->opcode->iclass == ldst_unpriv)
883 info->addr.writeback = 0;
884 else
885 {
886 /* pre/post- index */
887 info->addr.writeback = 1;
888 if (extract_field (self->fields[1], code, 0) == 1)
889 info->addr.preind = 1;
890 else
891 info->addr.postind = 1;
892 }
893
894 return 1;
895}
896
897/* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>{, #<simm>}]. */
898int
899aarch64_ext_addr_uimm12 (const aarch64_operand *self, aarch64_opnd_info *info,
900 aarch64_insn code,
901 const aarch64_inst *inst ATTRIBUTE_UNUSED)
902{
903 int shift;
904 info->qualifier = get_expected_qualifier (inst, info->idx);
905 shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
906 /* Rn */
907 info->addr.base_regno = extract_field (self->fields[0], code, 0);
908 /* uimm12 */
909 info->addr.offset.imm = extract_field (self->fields[1], code, 0) << shift;
910 return 1;
911}
912
913/* Decode the address operand for e.g.
914 LD1 {<Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm|#<amount>>. */
915int
916aarch64_ext_simd_addr_post (const aarch64_operand *self ATTRIBUTE_UNUSED,
917 aarch64_opnd_info *info,
918 aarch64_insn code, const aarch64_inst *inst)
919{
920 /* The opcode dependent area stores the number of elements in
921 each structure to be loaded/stored. */
922 int is_ld1r = get_opcode_dependent_value (inst->opcode) == 1;
923
924 /* Rn */
925 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
926 /* Rm | #<amount> */
927 info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
928 if (info->addr.offset.regno == 31)
929 {
930 if (inst->opcode->operands[0] == AARCH64_OPND_LVt_AL)
931 /* Special handling of loading single structure to all lane. */
932 info->addr.offset.imm = (is_ld1r ? 1
933 : inst->operands[0].reglist.num_regs)
934 * aarch64_get_qualifier_esize (inst->operands[0].qualifier);
935 else
936 info->addr.offset.imm = inst->operands[0].reglist.num_regs
937 * aarch64_get_qualifier_esize (inst->operands[0].qualifier)
938 * aarch64_get_qualifier_nelem (inst->operands[0].qualifier);
939 }
940 else
941 info->addr.offset.is_reg = 1;
942 info->addr.writeback = 1;
943
944 return 1;
945}
946
947/* Decode the condition operand for e.g. CSEL <Xd>, <Xn>, <Xm>, <cond>. */
948int
949aarch64_ext_cond (const aarch64_operand *self ATTRIBUTE_UNUSED,
950 aarch64_opnd_info *info,
951 aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED)
952{
953 aarch64_insn value;
954 /* cond */
955 value = extract_field (FLD_cond, code, 0);
956 info->cond = get_cond_from_value (value);
957 return 1;
958}
959
960/* Decode the system register operand for e.g. MRS <Xt>, <systemreg>. */
961int
962aarch64_ext_sysreg (const aarch64_operand *self ATTRIBUTE_UNUSED,
963 aarch64_opnd_info *info,
964 aarch64_insn code,
965 const aarch64_inst *inst ATTRIBUTE_UNUSED)
966{
967 /* op0:op1:CRn:CRm:op2 */
968 info->sysreg = extract_fields (code, 0, 5, FLD_op0, FLD_op1, FLD_CRn,
969 FLD_CRm, FLD_op2);
970 return 1;
971}
972
973/* Decode the PSTATE field operand for e.g. MSR <pstatefield>, #<imm>. */
974int
975aarch64_ext_pstatefield (const aarch64_operand *self ATTRIBUTE_UNUSED,
976 aarch64_opnd_info *info, aarch64_insn code,
977 const aarch64_inst *inst ATTRIBUTE_UNUSED)
978{
979 int i;
980 /* op1:op2 */
981 info->pstatefield = extract_fields (code, 0, 2, FLD_op1, FLD_op2);
982 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
983 if (aarch64_pstatefields[i].value == (aarch64_insn)info->pstatefield)
984 return 1;
985 /* Reserved value in <pstatefield>. */
986 return 0;
987}
988
989/* Decode the system instruction op operand for e.g. AT <at_op>, <Xt>. */
990int
991aarch64_ext_sysins_op (const aarch64_operand *self ATTRIBUTE_UNUSED,
992 aarch64_opnd_info *info,
993 aarch64_insn code,
994 const aarch64_inst *inst ATTRIBUTE_UNUSED)
995{
996 int i;
997 aarch64_insn value;
998 const aarch64_sys_ins_reg *sysins_ops;
999 /* op0:op1:CRn:CRm:op2 */
1000 value = extract_fields (code, 0, 5,
1001 FLD_op0, FLD_op1, FLD_CRn,
1002 FLD_CRm, FLD_op2);
1003
1004 switch (info->type)
1005 {
1006 case AARCH64_OPND_SYSREG_AT: sysins_ops = aarch64_sys_regs_at; break;
1007 case AARCH64_OPND_SYSREG_DC: sysins_ops = aarch64_sys_regs_dc; break;
1008 case AARCH64_OPND_SYSREG_IC: sysins_ops = aarch64_sys_regs_ic; break;
1009 case AARCH64_OPND_SYSREG_TLBI: sysins_ops = aarch64_sys_regs_tlbi; break;
1010 default: assert (0); return 0;
1011 }
1012
1013 for (i = 0; sysins_ops[i].template != NULL; ++i)
1014 if (sysins_ops[i].value == value)
1015 {
1016 info->sysins_op = sysins_ops + i;
1017 DEBUG_TRACE ("%s found value: %x, has_xt: %d, i: %d.",
1018 info->sysins_op->template,
1019 (unsigned)info->sysins_op->value,
1020 info->sysins_op->has_xt, i);
1021 return 1;
1022 }
1023
1024 return 0;
1025}
1026
1027/* Decode the memory barrier option operand for e.g. DMB <option>|#<imm>. */
1028
1029int
1030aarch64_ext_barrier (const aarch64_operand *self ATTRIBUTE_UNUSED,
1031 aarch64_opnd_info *info,
1032 aarch64_insn code,
1033 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1034{
1035 /* CRm */
1036 info->barrier = aarch64_barrier_options + extract_field (FLD_CRm, code, 0);
1037 return 1;
1038}
1039
1040/* Decode the prefetch operation option operand for e.g.
1041 PRFM <prfop>, [<Xn|SP>{, #<pimm>}]. */
1042
1043int
1044aarch64_ext_prfop (const aarch64_operand *self ATTRIBUTE_UNUSED,
1045 aarch64_opnd_info *info,
1046 aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED)
1047{
1048 /* prfop in Rt */
1049 info->prfop = aarch64_prfops + extract_field (FLD_Rt, code, 0);
1050 return 1;
1051}
1052
1053/* Decode the extended register operand for e.g.
1054 STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
1055int
1056aarch64_ext_reg_extended (const aarch64_operand *self ATTRIBUTE_UNUSED,
1057 aarch64_opnd_info *info,
1058 aarch64_insn code,
1059 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1060{
1061 aarch64_insn value;
1062
1063 /* Rm */
1064 info->reg.regno = extract_field (FLD_Rm, code, 0);
1065 /* option */
1066 value = extract_field (FLD_option, code, 0);
1067 info->shifter.kind =
1068 aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
1069 /* imm3 */
1070 info->shifter.amount = extract_field (FLD_imm3, code, 0);
1071
1072 /* This makes the constraint checking happy. */
1073 info->shifter.operator_present = 1;
1074
1075 /* Assume inst->operands[0].qualifier has been resolved. */
1076 assert (inst->operands[0].qualifier != AARCH64_OPND_QLF_NIL);
1077 info->qualifier = AARCH64_OPND_QLF_W;
1078 if (inst->operands[0].qualifier == AARCH64_OPND_QLF_X
1079 && (info->shifter.kind == AARCH64_MOD_UXTX
1080 || info->shifter.kind == AARCH64_MOD_SXTX))
1081 info->qualifier = AARCH64_OPND_QLF_X;
1082
1083 return 1;
1084}
1085
1086/* Decode the shifted register operand for e.g.
1087 SUBS <Xd>, <Xn>, <Xm> {, <shift> #<amount>}. */
1088int
1089aarch64_ext_reg_shifted (const aarch64_operand *self ATTRIBUTE_UNUSED,
1090 aarch64_opnd_info *info,
1091 aarch64_insn code,
1092 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1093{
1094 aarch64_insn value;
1095
1096 /* Rm */
1097 info->reg.regno = extract_field (FLD_Rm, code, 0);
1098 /* shift */
1099 value = extract_field (FLD_shift, code, 0);
1100 info->shifter.kind =
1101 aarch64_get_operand_modifier_from_value (value, FALSE /* extend_p */);
1102 if (info->shifter.kind == AARCH64_MOD_ROR
1103 && inst->opcode->iclass != log_shift)
1104 /* ROR is not available for the shifted register operand in arithmetic
1105 instructions. */
1106 return 0;
1107 /* imm6 */
1108 info->shifter.amount = extract_field (FLD_imm6, code, 0);
1109
1110 /* This makes the constraint checking happy. */
1111 info->shifter.operator_present = 1;
1112
1113 return 1;
1114}
1115\f
1116/* Bitfields that are commonly used to encode certain operands' information
1117 may be partially used as part of the base opcode in some instructions.
1118 For example, the bit 1 of the field 'size' in
1119 FCVTXN <Vb><d>, <Va><n>
1120 is actually part of the base opcode, while only size<0> is available
1121 for encoding the register type. Another example is the AdvSIMD
1122 instruction ORR (register), in which the field 'size' is also used for
1123 the base opcode, leaving only the field 'Q' available to encode the
1124 vector register arrangement specifier '8B' or '16B'.
1125
1126 This function tries to deduce the qualifier from the value of partially
1127 constrained field(s). Given the VALUE of such a field or fields, the
1128 qualifiers CANDIDATES and the MASK (indicating which bits are valid for
1129 operand encoding), the function returns the matching qualifier or
1130 AARCH64_OPND_QLF_NIL if nothing matches.
1131
1132 N.B. CANDIDATES is a group of possible qualifiers that are valid for
1133 one operand; it has a maximum of AARCH64_MAX_QLF_SEQ_NUM qualifiers and
1134 may end with AARCH64_OPND_QLF_NIL. */
1135
1136static enum aarch64_opnd_qualifier
1137get_qualifier_from_partial_encoding (aarch64_insn value,
1138 const enum aarch64_opnd_qualifier* \
1139 candidates,
1140 aarch64_insn mask)
1141{
1142 int i;
1143 DEBUG_TRACE ("enter with value: %d, mask: %d", (int)value, (int)mask);
1144 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1145 {
1146 aarch64_insn standard_value;
1147 if (candidates[i] == AARCH64_OPND_QLF_NIL)
1148 break;
1149 standard_value = aarch64_get_qualifier_standard_value (candidates[i]);
1150 if ((standard_value & mask) == (value & mask))
1151 return candidates[i];
1152 }
1153 return AARCH64_OPND_QLF_NIL;
1154}
1155
1156/* Given a list of qualifier sequences, return all possible valid qualifiers
1157 for operand IDX in QUALIFIERS.
1158 Assume QUALIFIERS is an array whose length is large enough. */
1159
1160static void
1161get_operand_possible_qualifiers (int idx,
1162 const aarch64_opnd_qualifier_seq_t *list,
1163 enum aarch64_opnd_qualifier *qualifiers)
1164{
1165 int i;
1166 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1167 if ((qualifiers[i] = list[i][idx]) == AARCH64_OPND_QLF_NIL)
1168 break;
1169}
1170
1171/* Decode the size Q field for e.g. SHADD.
1172 We tag one operand with the qualifer according to the code;
1173 whether the qualifier is valid for this opcode or not, it is the
1174 duty of the semantic checking. */
1175
1176static int
1177decode_sizeq (aarch64_inst *inst)
1178{
1179 int idx;
1180 enum aarch64_opnd_qualifier qualifier;
1181 aarch64_insn code;
1182 aarch64_insn value, mask;
1183 enum aarch64_field_kind fld_sz;
1184 enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
1185
1186 if (inst->opcode->iclass == asisdlse
1187 || inst->opcode->iclass == asisdlsep
1188 || inst->opcode->iclass == asisdlso
1189 || inst->opcode->iclass == asisdlsop)
1190 fld_sz = FLD_vldst_size;
1191 else
1192 fld_sz = FLD_size;
1193
1194 code = inst->value;
1195 value = extract_fields (code, inst->opcode->mask, 2, fld_sz, FLD_Q);
1196 /* Obtain the info that which bits of fields Q and size are actually
1197 available for operand encoding. Opcodes like FMAXNM and FMLA have
1198 size[1] unavailable. */
1199 mask = extract_fields (~inst->opcode->mask, 0, 2, fld_sz, FLD_Q);
1200
1201 /* The index of the operand we are going to tag a qualifier and the qualifer
1202 itself are reasoned from the value of the size and Q fields and the
1203 possible valid qualifier lists. */
1204 idx = aarch64_select_operand_for_sizeq_field_coding (inst->opcode);
1205 DEBUG_TRACE ("key idx: %d", idx);
1206
1207 /* For most related instruciton, size:Q are fully available for operand
1208 encoding. */
1209 if (mask == 0x7)
1210 {
1211 inst->operands[idx].qualifier = get_vreg_qualifier_from_value (value);
1212 return 1;
1213 }
1214
1215 get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
1216 candidates);
1217#ifdef DEBUG_AARCH64
1218 if (debug_dump)
1219 {
1220 int i;
1221 for (i = 0; candidates[i] != AARCH64_OPND_QLF_NIL
1222 && i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1223 DEBUG_TRACE ("qualifier %d: %s", i,
1224 aarch64_get_qualifier_name(candidates[i]));
1225 DEBUG_TRACE ("%d, %d", (int)value, (int)mask);
1226 }
1227#endif /* DEBUG_AARCH64 */
1228
1229 qualifier = get_qualifier_from_partial_encoding (value, candidates, mask);
1230
1231 if (qualifier == AARCH64_OPND_QLF_NIL)
1232 return 0;
1233
1234 inst->operands[idx].qualifier = qualifier;
1235 return 1;
1236}
1237
1238/* Decode size[0]:Q, i.e. bit 22 and bit 30, for
1239 e.g. FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
1240
1241static int
1242decode_asimd_fcvt (aarch64_inst *inst)
1243{
1244 aarch64_field field = {0, 0};
1245 aarch64_insn value;
1246 enum aarch64_opnd_qualifier qualifier;
1247
1248 gen_sub_field (FLD_size, 0, 1, &field);
1249 value = extract_field_2 (&field, inst->value, 0);
1250 qualifier = value == 0 ? AARCH64_OPND_QLF_V_4S
1251 : AARCH64_OPND_QLF_V_2D;
1252 switch (inst->opcode->op)
1253 {
1254 case OP_FCVTN:
1255 case OP_FCVTN2:
1256 /* FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
1257 inst->operands[1].qualifier = qualifier;
1258 break;
1259 case OP_FCVTL:
1260 case OP_FCVTL2:
1261 /* FCVTL<Q> <Vd>.<Ta>, <Vn>.<Tb>. */
1262 inst->operands[0].qualifier = qualifier;
1263 break;
1264 default:
1265 assert (0);
1266 return 0;
1267 }
1268
1269 return 1;
1270}
1271
1272/* Decode size[0], i.e. bit 22, for
1273 e.g. FCVTXN <Vb><d>, <Va><n>. */
1274
1275static int
1276decode_asisd_fcvtxn (aarch64_inst *inst)
1277{
1278 aarch64_field field = {0, 0};
1279 gen_sub_field (FLD_size, 0, 1, &field);
1280 if (!extract_field_2 (&field, inst->value, 0))
1281 return 0;
1282 inst->operands[0].qualifier = AARCH64_OPND_QLF_S_S;
1283 return 1;
1284}
1285
1286/* Decode the 'opc' field for e.g. FCVT <Dd>, <Sn>. */
1287static int
1288decode_fcvt (aarch64_inst *inst)
1289{
1290 enum aarch64_opnd_qualifier qualifier;
1291 aarch64_insn value;
1292 const aarch64_field field = {15, 2};
1293
1294 /* opc dstsize */
1295 value = extract_field_2 (&field, inst->value, 0);
1296 switch (value)
1297 {
1298 case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
1299 case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
1300 case 3: qualifier = AARCH64_OPND_QLF_S_H; break;
1301 default: return 0;
1302 }
1303 inst->operands[0].qualifier = qualifier;
1304
1305 return 1;
1306}
1307
1308/* Do miscellaneous decodings that are not common enough to be driven by
1309 flags. */
1310
1311static int
1312do_misc_decoding (aarch64_inst *inst)
1313{
1314 switch (inst->opcode->op)
1315 {
1316 case OP_FCVT:
1317 return decode_fcvt (inst);
1318 case OP_FCVTN:
1319 case OP_FCVTN2:
1320 case OP_FCVTL:
1321 case OP_FCVTL2:
1322 return decode_asimd_fcvt (inst);
1323 case OP_FCVTXN_S:
1324 return decode_asisd_fcvtxn (inst);
1325 default:
1326 return 0;
1327 }
1328}
1329
1330/* Opcodes that have fields shared by multiple operands are usually flagged
1331 with flags. In this function, we detect such flags, decode the related
1332 field(s) and store the information in one of the related operands. The
1333 'one' operand is not any operand but one of the operands that can
1334 accommadate all the information that has been decoded. */
1335
1336static int
1337do_special_decoding (aarch64_inst *inst)
1338{
1339 int idx;
1340 aarch64_insn value;
1341 /* Condition for truly conditional executed instructions, e.g. b.cond. */
1342 if (inst->opcode->flags & F_COND)
1343 {
1344 value = extract_field (FLD_cond2, inst->value, 0);
1345 inst->cond = get_cond_from_value (value);
1346 }
1347 /* 'sf' field. */
1348 if (inst->opcode->flags & F_SF)
1349 {
1350 idx = select_operand_for_sf_field_coding (inst->opcode);
1351 value = extract_field (FLD_sf, inst->value, 0);
1352 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
1353 if ((inst->opcode->flags & F_N)
1354 && extract_field (FLD_N, inst->value, 0) != value)
1355 return 0;
1356 }
1357 /* size:Q fields. */
1358 if (inst->opcode->flags & F_SIZEQ)
1359 return decode_sizeq (inst);
1360
1361 if (inst->opcode->flags & F_FPTYPE)
1362 {
1363 idx = select_operand_for_fptype_field_coding (inst->opcode);
1364 value = extract_field (FLD_type, inst->value, 0);
1365 switch (value)
1366 {
1367 case 0: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_S; break;
1368 case 1: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_D; break;
1369 case 3: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_H; break;
1370 default: return 0;
1371 }
1372 }
1373
1374 if (inst->opcode->flags & F_SSIZE)
1375 {
1376 /* N.B. some opcodes like FCMGT <V><d>, <V><n>, #0 have the size[1] as part
1377 of the base opcode. */
1378 aarch64_insn mask;
1379 enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
1380 idx = select_operand_for_scalar_size_field_coding (inst->opcode);
1381 value = extract_field (FLD_size, inst->value, inst->opcode->mask);
1382 mask = extract_field (FLD_size, ~inst->opcode->mask, 0);
1383 /* For most related instruciton, the 'size' field is fully available for
1384 operand encoding. */
1385 if (mask == 0x3)
1386 inst->operands[idx].qualifier = get_sreg_qualifier_from_value (value);
1387 else
1388 {
1389 get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
1390 candidates);
1391 inst->operands[idx].qualifier
1392 = get_qualifier_from_partial_encoding (value, candidates, mask);
1393 }
1394 }
1395
1396 if (inst->opcode->flags & F_T)
1397 {
1398 /* Num of consecutive '0's on the right side of imm5<3:0>. */
1399 int num = 0;
1400 unsigned val, Q;
1401 assert (aarch64_get_operand_class (inst->opcode->operands[0])
1402 == AARCH64_OPND_CLASS_SIMD_REG);
1403 /* imm5<3:0> q <t>
1404 0000 x reserved
1405 xxx1 0 8b
1406 xxx1 1 16b
1407 xx10 0 4h
1408 xx10 1 8h
1409 x100 0 2s
1410 x100 1 4s
1411 1000 0 reserved
1412 1000 1 2d */
1413 val = extract_field (FLD_imm5, inst->value, 0);
1414 while ((val & 0x1) == 0 && ++num <= 3)
1415 val >>= 1;
1416 if (num > 3)
1417 return 0;
1418 Q = (unsigned) extract_field (FLD_Q, inst->value, inst->opcode->mask);
1419 inst->operands[0].qualifier =
1420 get_vreg_qualifier_from_value ((num << 1) | Q);
1421 }
1422
1423 if (inst->opcode->flags & F_GPRSIZE_IN_Q)
1424 {
1425 /* Use Rt to encode in the case of e.g.
1426 STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]. */
1427 idx = aarch64_operand_index (inst->opcode->operands, AARCH64_OPND_Rt);
1428 if (idx == -1)
1429 {
1430 /* Otherwise use the result operand, which has to be a integer
1431 register. */
1432 assert (aarch64_get_operand_class (inst->opcode->operands[0])
1433 == AARCH64_OPND_CLASS_INT_REG);
1434 idx = 0;
1435 }
1436 assert (idx == 0 || idx == 1);
1437 value = extract_field (FLD_Q, inst->value, 0);
1438 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
1439 }
1440
1441 if (inst->opcode->flags & F_LDS_SIZE)
1442 {
1443 aarch64_field field = {0, 0};
1444 assert (aarch64_get_operand_class (inst->opcode->operands[0])
1445 == AARCH64_OPND_CLASS_INT_REG);
1446 gen_sub_field (FLD_opc, 0, 1, &field);
1447 value = extract_field_2 (&field, inst->value, 0);
1448 inst->operands[0].qualifier
1449 = value ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
1450 }
1451
1452 /* Miscellaneous decoding; done as the last step. */
1453 if (inst->opcode->flags & F_MISC)
1454 return do_misc_decoding (inst);
1455
1456 return 1;
1457}
1458
1459/* Converters converting a real opcode instruction to its alias form. */
1460
1461/* ROR <Wd>, <Ws>, #<shift>
1462 is equivalent to:
1463 EXTR <Wd>, <Ws>, <Ws>, #<shift>. */
1464static int
1465convert_extr_to_ror (aarch64_inst *inst)
1466{
1467 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
1468 {
1469 copy_operand_info (inst, 2, 3);
1470 inst->operands[3].type = AARCH64_OPND_NIL;
1471 return 1;
1472 }
1473 return 0;
1474}
1475
e30181a5
YZ
1476/* UXTL<Q> <Vd>.<Ta>, <Vn>.<Tb>
1477 is equivalent to:
1478 USHLL<Q> <Vd>.<Ta>, <Vn>.<Tb>, #0. */
1479static int
1480convert_shll_to_xtl (aarch64_inst *inst)
1481{
1482 if (inst->operands[2].imm.value == 0)
1483 {
1484 inst->operands[2].type = AARCH64_OPND_NIL;
1485 return 1;
1486 }
1487 return 0;
1488}
1489
a06ea964
NC
1490/* Convert
1491 UBFM <Xd>, <Xn>, #<shift>, #63.
1492 to
1493 LSR <Xd>, <Xn>, #<shift>. */
1494static int
1495convert_bfm_to_sr (aarch64_inst *inst)
1496{
1497 int64_t imms, val;
1498
1499 imms = inst->operands[3].imm.value;
1500 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
1501 if (imms == val)
1502 {
1503 inst->operands[3].type = AARCH64_OPND_NIL;
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
1510/* Convert MOV to ORR. */
1511static int
1512convert_orr_to_mov (aarch64_inst *inst)
1513{
1514 /* MOV <Vd>.<T>, <Vn>.<T>
1515 is equivalent to:
1516 ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>. */
1517 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
1518 {
1519 inst->operands[2].type = AARCH64_OPND_NIL;
1520 return 1;
1521 }
1522 return 0;
1523}
1524
1525/* When <imms> >= <immr>, the instruction written:
1526 SBFX <Xd>, <Xn>, #<lsb>, #<width>
1527 is equivalent to:
1528 SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1). */
1529
1530static int
1531convert_bfm_to_bfx (aarch64_inst *inst)
1532{
1533 int64_t immr, imms;
1534
1535 immr = inst->operands[2].imm.value;
1536 imms = inst->operands[3].imm.value;
1537 if (imms >= immr)
1538 {
1539 int64_t lsb = immr;
1540 inst->operands[2].imm.value = lsb;
1541 inst->operands[3].imm.value = imms + 1 - lsb;
1542 /* The two opcodes have different qualifiers for
1543 the immediate operands; reset to help the checking. */
1544 reset_operand_qualifier (inst, 2);
1545 reset_operand_qualifier (inst, 3);
1546 return 1;
1547 }
1548
1549 return 0;
1550}
1551
1552/* When <imms> < <immr>, the instruction written:
1553 SBFIZ <Xd>, <Xn>, #<lsb>, #<width>
1554 is equivalent to:
1555 SBFM <Xd>, <Xn>, #((64-<lsb>)&0x3f), #(<width>-1). */
1556
1557static int
1558convert_bfm_to_bfi (aarch64_inst *inst)
1559{
1560 int64_t immr, imms, val;
1561
1562 immr = inst->operands[2].imm.value;
1563 imms = inst->operands[3].imm.value;
1564 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
1565 if (imms < immr)
1566 {
1567 inst->operands[2].imm.value = (val - immr) & (val - 1);
1568 inst->operands[3].imm.value = imms + 1;
1569 /* The two opcodes have different qualifiers for
1570 the immediate operands; reset to help the checking. */
1571 reset_operand_qualifier (inst, 2);
1572 reset_operand_qualifier (inst, 3);
1573 return 1;
1574 }
1575
1576 return 0;
1577}
1578
1579/* The instruction written:
1580 LSL <Xd>, <Xn>, #<shift>
1581 is equivalent to:
1582 UBFM <Xd>, <Xn>, #((64-<shift>)&0x3f), #(63-<shift>). */
1583
1584static int
1585convert_ubfm_to_lsl (aarch64_inst *inst)
1586{
1587 int64_t immr = inst->operands[2].imm.value;
1588 int64_t imms = inst->operands[3].imm.value;
1589 int64_t val
1590 = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
1591
1592 if ((immr == 0 && imms == val) || immr == imms + 1)
1593 {
1594 inst->operands[3].type = AARCH64_OPND_NIL;
1595 inst->operands[2].imm.value = val - imms;
1596 return 1;
1597 }
1598
1599 return 0;
1600}
1601
1602/* CINC <Wd>, <Wn>, <cond>
1603 is equivalent to:
1604 CSINC <Wd>, <Wn>, <Wn>, invert(<cond>). */
1605
1606static int
1607convert_from_csel (aarch64_inst *inst)
1608{
1609 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
1610 {
1611 copy_operand_info (inst, 2, 3);
1612 inst->operands[2].cond = get_inverted_cond (inst->operands[3].cond);
1613 inst->operands[3].type = AARCH64_OPND_NIL;
1614 return 1;
1615 }
1616 return 0;
1617}
1618
1619/* CSET <Wd>, <cond>
1620 is equivalent to:
1621 CSINC <Wd>, WZR, WZR, invert(<cond>). */
1622
1623static int
1624convert_csinc_to_cset (aarch64_inst *inst)
1625{
1626 if (inst->operands[1].reg.regno == 0x1f
1627 && inst->operands[2].reg.regno == 0x1f)
1628 {
1629 copy_operand_info (inst, 1, 3);
1630 inst->operands[1].cond = get_inverted_cond (inst->operands[3].cond);
1631 inst->operands[3].type = AARCH64_OPND_NIL;
1632 inst->operands[2].type = AARCH64_OPND_NIL;
1633 return 1;
1634 }
1635 return 0;
1636}
1637
1638/* MOV <Wd>, #<imm>
1639 is equivalent to:
1640 MOVZ <Wd>, #<imm16>, LSL #<shift>.
1641
1642 A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
1643 ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
1644 or where a MOVN has an immediate that could be encoded by MOVZ, or where
1645 MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
1646 machine-instruction mnemonic must be used. */
1647
1648static int
1649convert_movewide_to_mov (aarch64_inst *inst)
1650{
1651 uint64_t value = inst->operands[1].imm.value;
1652 /* MOVZ/MOVN #0 have a shift amount other than LSL #0. */
1653 if (value == 0 && inst->operands[1].shifter.amount != 0)
1654 return 0;
1655 inst->operands[1].type = AARCH64_OPND_IMM_MOV;
1656 inst->operands[1].shifter.kind = AARCH64_MOD_NONE;
1657 value <<= inst->operands[1].shifter.amount;
1658 /* As an alias convertor, it has to be clear that the INST->OPCODE
1659 is the opcode of the real instruction. */
1660 if (inst->opcode->op == OP_MOVN)
1661 {
1662 int is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
1663 value = ~value;
1664 /* A MOVN has an immediate that could be encoded by MOVZ. */
1665 if (aarch64_wide_constant_p (value, is32, NULL) == TRUE)
1666 return 0;
1667 }
1668 inst->operands[1].imm.value = value;
1669 inst->operands[1].shifter.amount = 0;
1670 return 1;
1671}
1672
1673/* MOV <Wd>, #<imm>
1674 is equivalent to:
1675 ORR <Wd>, WZR, #<imm>.
1676
1677 A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
1678 ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
1679 or where a MOVN has an immediate that could be encoded by MOVZ, or where
1680 MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
1681 machine-instruction mnemonic must be used. */
1682
1683static int
1684convert_movebitmask_to_mov (aarch64_inst *inst)
1685{
1686 int is32;
1687 uint64_t value;
1688
1689 /* Should have been assured by the base opcode value. */
1690 assert (inst->operands[1].reg.regno == 0x1f);
1691 copy_operand_info (inst, 1, 2);
1692 is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
1693 inst->operands[1].type = AARCH64_OPND_IMM_MOV;
1694 value = inst->operands[1].imm.value;
1695 /* ORR has an immediate that could be generated by a MOVZ or MOVN
1696 instruction. */
1697 if (inst->operands[0].reg.regno != 0x1f
1698 && (aarch64_wide_constant_p (value, is32, NULL) == TRUE
1699 || aarch64_wide_constant_p (~value, is32, NULL) == TRUE))
1700 return 0;
1701
1702 inst->operands[2].type = AARCH64_OPND_NIL;
1703 return 1;
1704}
1705
1706/* Some alias opcodes are disassembled by being converted from their real-form.
1707 N.B. INST->OPCODE is the real opcode rather than the alias. */
1708
1709static int
1710convert_to_alias (aarch64_inst *inst, const aarch64_opcode *alias)
1711{
1712 switch (alias->op)
1713 {
1714 case OP_ASR_IMM:
1715 case OP_LSR_IMM:
1716 return convert_bfm_to_sr (inst);
1717 case OP_LSL_IMM:
1718 return convert_ubfm_to_lsl (inst);
1719 case OP_CINC:
1720 case OP_CINV:
1721 case OP_CNEG:
1722 return convert_from_csel (inst);
1723 case OP_CSET:
1724 case OP_CSETM:
1725 return convert_csinc_to_cset (inst);
1726 case OP_UBFX:
1727 case OP_BFXIL:
1728 case OP_SBFX:
1729 return convert_bfm_to_bfx (inst);
1730 case OP_SBFIZ:
1731 case OP_BFI:
1732 case OP_UBFIZ:
1733 return convert_bfm_to_bfi (inst);
1734 case OP_MOV_V:
1735 return convert_orr_to_mov (inst);
1736 case OP_MOV_IMM_WIDE:
1737 case OP_MOV_IMM_WIDEN:
1738 return convert_movewide_to_mov (inst);
1739 case OP_MOV_IMM_LOG:
1740 return convert_movebitmask_to_mov (inst);
1741 case OP_ROR_IMM:
1742 return convert_extr_to_ror (inst);
e30181a5
YZ
1743 case OP_SXTL:
1744 case OP_SXTL2:
1745 case OP_UXTL:
1746 case OP_UXTL2:
1747 return convert_shll_to_xtl (inst);
a06ea964
NC
1748 default:
1749 return 0;
1750 }
1751}
1752
1753static int aarch64_opcode_decode (const aarch64_opcode *, const aarch64_insn,
1754 aarch64_inst *, int);
1755
1756/* Given the instruction information in *INST, check if the instruction has
1757 any alias form that can be used to represent *INST. If the answer is yes,
1758 update *INST to be in the form of the determined alias. */
1759
1760/* In the opcode description table, the following flags are used in opcode
1761 entries to help establish the relations between the real and alias opcodes:
1762
1763 F_ALIAS: opcode is an alias
1764 F_HAS_ALIAS: opcode has alias(es)
1765 F_P1
1766 F_P2
1767 F_P3: Disassembly preference priority 1-3 (the larger the
1768 higher). If nothing is specified, it is the priority
1769 0 by default, i.e. the lowest priority.
1770
1771 Although the relation between the machine and the alias instructions are not
1772 explicitly described, it can be easily determined from the base opcode
1773 values, masks and the flags F_ALIAS and F_HAS_ALIAS in their opcode
1774 description entries:
1775
1776 The mask of an alias opcode must be equal to or a super-set (i.e. more
1777 constrained) of that of the aliased opcode; so is the base opcode value.
1778
1779 if (opcode_has_alias (real) && alias_opcode_p (opcode)
1780 && (opcode->mask & real->mask) == real->mask
1781 && (real->mask & opcode->opcode) == (real->mask & real->opcode))
1782 then OPCODE is an alias of, and only of, the REAL instruction
1783
1784 The alias relationship is forced flat-structured to keep related algorithm
1785 simple; an opcode entry cannot be flagged with both F_ALIAS and F_HAS_ALIAS.
1786
1787 During the disassembling, the decoding decision tree (in
1788 opcodes/aarch64-dis-2.c) always returns an machine instruction opcode entry;
1789 if the decoding of such a machine instruction succeeds (and -Mno-aliases is
1790 not specified), the disassembler will check whether there is any alias
1791 instruction exists for this real instruction. If there is, the disassembler
1792 will try to disassemble the 32-bit binary again using the alias's rule, or
1793 try to convert the IR to the form of the alias. In the case of the multiple
1794 aliases, the aliases are tried one by one from the highest priority
1795 (currently the flag F_P3) to the lowest priority (no priority flag), and the
1796 first succeeds first adopted.
1797
1798 You may ask why there is a need for the conversion of IR from one form to
1799 another in handling certain aliases. This is because on one hand it avoids
1800 adding more operand code to handle unusual encoding/decoding; on other
1801 hand, during the disassembling, the conversion is an effective approach to
1802 check the condition of an alias (as an alias may be adopted only if certain
1803 conditions are met).
1804
1805 In order to speed up the alias opcode lookup, aarch64-gen has preprocessed
1806 aarch64_opcode_table and generated aarch64_find_alias_opcode and
1807 aarch64_find_next_alias_opcode (in opcodes/aarch64-dis-2.c) to help. */
1808
1809static void
1810determine_disassembling_preference (struct aarch64_inst *inst)
1811{
1812 const aarch64_opcode *opcode;
1813 const aarch64_opcode *alias;
1814
1815 opcode = inst->opcode;
1816
1817 /* This opcode does not have an alias, so use itself. */
1818 if (opcode_has_alias (opcode) == FALSE)
1819 return;
1820
1821 alias = aarch64_find_alias_opcode (opcode);
1822 assert (alias);
1823
1824#ifdef DEBUG_AARCH64
1825 if (debug_dump)
1826 {
1827 const aarch64_opcode *tmp = alias;
1828 printf ("#### LIST orderd: ");
1829 while (tmp)
1830 {
1831 printf ("%s, ", tmp->name);
1832 tmp = aarch64_find_next_alias_opcode (tmp);
1833 }
1834 printf ("\n");
1835 }
1836#endif /* DEBUG_AARCH64 */
1837
1838 for (; alias; alias = aarch64_find_next_alias_opcode (alias))
1839 {
1840 DEBUG_TRACE ("try %s", alias->name);
1841 assert (alias_opcode_p (alias));
1842
1843 /* An alias can be a pseudo opcode which will never be used in the
1844 disassembly, e.g. BIC logical immediate is such a pseudo opcode
1845 aliasing AND. */
1846 if (pseudo_opcode_p (alias))
1847 {
1848 DEBUG_TRACE ("skip pseudo %s", alias->name);
1849 continue;
1850 }
1851
1852 if ((inst->value & alias->mask) != alias->opcode)
1853 {
1854 DEBUG_TRACE ("skip %s as base opcode not match", alias->name);
1855 continue;
1856 }
1857 /* No need to do any complicated transformation on operands, if the alias
1858 opcode does not have any operand. */
1859 if (aarch64_num_of_operands (alias) == 0 && alias->opcode == inst->value)
1860 {
1861 DEBUG_TRACE ("succeed with 0-operand opcode %s", alias->name);
1862 aarch64_replace_opcode (inst, alias);
1863 return;
1864 }
1865 if (alias->flags & F_CONV)
1866 {
1867 aarch64_inst copy;
1868 memcpy (&copy, inst, sizeof (aarch64_inst));
1869 /* ALIAS is the preference as long as the instruction can be
1870 successfully converted to the form of ALIAS. */
1871 if (convert_to_alias (&copy, alias) == 1)
1872 {
1873 aarch64_replace_opcode (&copy, alias);
1874 assert (aarch64_match_operands_constraint (&copy, NULL));
1875 DEBUG_TRACE ("succeed with %s via conversion", alias->name);
1876 memcpy (inst, &copy, sizeof (aarch64_inst));
1877 return;
1878 }
1879 }
1880 else
1881 {
1882 /* Directly decode the alias opcode. */
1883 aarch64_inst temp;
1884 memset (&temp, '\0', sizeof (aarch64_inst));
1885 if (aarch64_opcode_decode (alias, inst->value, &temp, 1) == 1)
1886 {
1887 DEBUG_TRACE ("succeed with %s via direct decoding", alias->name);
1888 memcpy (inst, &temp, sizeof (aarch64_inst));
1889 return;
1890 }
1891 }
1892 }
1893}
1894
1895/* Decode the CODE according to OPCODE; fill INST. Return 0 if the decoding
1896 fails, which meanes that CODE is not an instruction of OPCODE; otherwise
1897 return 1.
1898
1899 If OPCODE has alias(es) and NOALIASES_P is 0, an alias opcode may be
1900 determined and used to disassemble CODE; this is done just before the
1901 return. */
1902
1903static int
1904aarch64_opcode_decode (const aarch64_opcode *opcode, const aarch64_insn code,
1905 aarch64_inst *inst, int noaliases_p)
1906{
1907 int i;
1908
1909 DEBUG_TRACE ("enter with %s", opcode->name);
1910
1911 assert (opcode && inst);
1912
1913 /* Check the base opcode. */
1914 if ((code & opcode->mask) != (opcode->opcode & opcode->mask))
1915 {
1916 DEBUG_TRACE ("base opcode match FAIL");
1917 goto decode_fail;
1918 }
1919
1920 /* Clear inst. */
1921 memset (inst, '\0', sizeof (aarch64_inst));
1922
1923 inst->opcode = opcode;
1924 inst->value = code;
1925
1926 /* Assign operand codes and indexes. */
1927 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
1928 {
1929 if (opcode->operands[i] == AARCH64_OPND_NIL)
1930 break;
1931 inst->operands[i].type = opcode->operands[i];
1932 inst->operands[i].idx = i;
1933 }
1934
1935 /* Call the opcode decoder indicated by flags. */
1936 if (opcode_has_special_coder (opcode) && do_special_decoding (inst) == 0)
1937 {
1938 DEBUG_TRACE ("opcode flag-based decoder FAIL");
1939 goto decode_fail;
1940 }
1941
1942 /* Call operand decoders. */
1943 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
1944 {
1945 const aarch64_operand *opnd;
1946 enum aarch64_opnd type;
1947 type = opcode->operands[i];
1948 if (type == AARCH64_OPND_NIL)
1949 break;
1950 opnd = &aarch64_operands[type];
1951 if (operand_has_extractor (opnd)
1952 && (! aarch64_extract_operand (opnd, &inst->operands[i], code, inst)))
1953 {
1954 DEBUG_TRACE ("operand decoder FAIL at operand %d", i);
1955 goto decode_fail;
1956 }
1957 }
1958
1959 /* Match the qualifiers. */
1960 if (aarch64_match_operands_constraint (inst, NULL) == 1)
1961 {
1962 /* Arriving here, the CODE has been determined as a valid instruction
1963 of OPCODE and *INST has been filled with information of this OPCODE
1964 instruction. Before the return, check if the instruction has any
1965 alias and should be disassembled in the form of its alias instead.
1966 If the answer is yes, *INST will be updated. */
1967 if (!noaliases_p)
1968 determine_disassembling_preference (inst);
1969 DEBUG_TRACE ("SUCCESS");
1970 return 1;
1971 }
1972 else
1973 {
1974 DEBUG_TRACE ("constraint matching FAIL");
1975 }
1976
1977decode_fail:
1978 return 0;
1979}
1980\f
1981/* This does some user-friendly fix-up to *INST. It is currently focus on
1982 the adjustment of qualifiers to help the printed instruction
1983 recognized/understood more easily. */
1984
1985static void
1986user_friendly_fixup (aarch64_inst *inst)
1987{
1988 switch (inst->opcode->iclass)
1989 {
1990 case testbranch:
1991 /* TBNZ Xn|Wn, #uimm6, label
1992 Test and Branch Not Zero: conditionally jumps to label if bit number
1993 uimm6 in register Xn is not zero. The bit number implies the width of
1994 the register, which may be written and should be disassembled as Wn if
1995 uimm is less than 32. Limited to a branch offset range of +/- 32KiB.
1996 */
1997 if (inst->operands[1].imm.value < 32)
1998 inst->operands[0].qualifier = AARCH64_OPND_QLF_W;
1999 break;
2000 default: break;
2001 }
2002}
2003
2004/* Decode INSN and fill in *INST the instruction information. */
2005
2006static int
2007disas_aarch64_insn (uint64_t pc ATTRIBUTE_UNUSED, uint32_t insn,
2008 aarch64_inst *inst)
2009{
2010 const aarch64_opcode *opcode = aarch64_opcode_lookup (insn);
2011
2012#ifdef DEBUG_AARCH64
2013 if (debug_dump)
2014 {
2015 const aarch64_opcode *tmp = opcode;
2016 printf ("\n");
2017 DEBUG_TRACE ("opcode lookup:");
2018 while (tmp != NULL)
2019 {
2020 aarch64_verbose (" %s", tmp->name);
2021 tmp = aarch64_find_next_opcode (tmp);
2022 }
2023 }
2024#endif /* DEBUG_AARCH64 */
2025
2026 /* A list of opcodes may have been found, as aarch64_opcode_lookup cannot
2027 distinguish some opcodes, e.g. SSHR and MOVI, which almost share the same
2028 opcode field and value, apart from the difference that one of them has an
2029 extra field as part of the opcode, but such a field is used for operand
2030 encoding in other opcode(s) ('immh' in the case of the example). */
2031 while (opcode != NULL)
2032 {
2033 /* But only one opcode can be decoded successfully for, as the
2034 decoding routine will check the constraint carefully. */
2035 if (aarch64_opcode_decode (opcode, insn, inst, no_aliases) == 1)
2036 return ERR_OK;
2037 opcode = aarch64_find_next_opcode (opcode);
2038 }
2039
2040 return ERR_UND;
2041}
2042
2043/* Print operands. */
2044
2045static void
2046print_operands (bfd_vma pc, const aarch64_opcode *opcode,
2047 const aarch64_opnd_info *opnds, struct disassemble_info *info)
2048{
2049 int i, pcrel_p, num_printed;
2050 for (i = 0, num_printed = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2051 {
2052 const size_t size = 128;
2053 char str[size];
2054 /* We regard the opcode operand info more, however we also look into
2055 the inst->operands to support the disassembling of the optional
2056 operand.
2057 The two operand code should be the same in all cases, apart from
2058 when the operand can be optional. */
2059 if (opcode->operands[i] == AARCH64_OPND_NIL
2060 || opnds[i].type == AARCH64_OPND_NIL)
2061 break;
2062
2063 /* Generate the operand string in STR. */
2064 aarch64_print_operand (str, size, pc, opcode, opnds, i, &pcrel_p,
2065 &info->target);
2066
2067 /* Print the delimiter (taking account of omitted operand(s)). */
2068 if (str[0] != '\0')
2069 (*info->fprintf_func) (info->stream, "%s",
2070 num_printed++ == 0 ? "\t" : ", ");
2071
2072 /* Print the operand. */
2073 if (pcrel_p)
2074 (*info->print_address_func) (info->target, info);
2075 else
2076 (*info->fprintf_func) (info->stream, "%s", str);
2077 }
2078}
2079
2080/* Print the instruction mnemonic name. */
2081
2082static void
2083print_mnemonic_name (const aarch64_inst *inst, struct disassemble_info *info)
2084{
2085 if (inst->opcode->flags & F_COND)
2086 {
2087 /* For instructions that are truly conditionally executed, e.g. b.cond,
2088 prepare the full mnemonic name with the corresponding condition
2089 suffix. */
2090 char name[8], *ptr;
2091 size_t len;
2092
2093 ptr = strchr (inst->opcode->name, '.');
2094 assert (ptr && inst->cond);
2095 len = ptr - inst->opcode->name;
2096 assert (len < 8);
2097 strncpy (name, inst->opcode->name, len);
2098 name [len] = '\0';
2099 (*info->fprintf_func) (info->stream, "%s.%s", name, inst->cond->names[0]);
2100 }
2101 else
2102 (*info->fprintf_func) (info->stream, "%s", inst->opcode->name);
2103}
2104
2105/* Print the instruction according to *INST. */
2106
2107static void
2108print_aarch64_insn (bfd_vma pc, const aarch64_inst *inst,
2109 struct disassemble_info *info)
2110{
2111 print_mnemonic_name (inst, info);
2112 print_operands (pc, inst->opcode, inst->operands, info);
2113}
2114
2115/* Entry-point of the instruction disassembler and printer. */
2116
2117static void
2118print_insn_aarch64_word (bfd_vma pc,
2119 uint32_t word,
2120 struct disassemble_info *info)
2121{
2122 static const char *err_msg[6] =
2123 {
2124 [ERR_OK] = "_",
2125 [-ERR_UND] = "undefined",
2126 [-ERR_UNP] = "unpredictable",
2127 [-ERR_NYI] = "NYI"
2128 };
2129
2130 int ret;
2131 aarch64_inst inst;
2132
2133 info->insn_info_valid = 1;
2134 info->branch_delay_insns = 0;
2135 info->data_size = 0;
2136 info->target = 0;
2137 info->target2 = 0;
2138
2139 if (info->flags & INSN_HAS_RELOC)
2140 /* If the instruction has a reloc associated with it, then
2141 the offset field in the instruction will actually be the
2142 addend for the reloc. (If we are using REL type relocs).
2143 In such cases, we can ignore the pc when computing
2144 addresses, since the addend is not currently pc-relative. */
2145 pc = 0;
2146
2147 ret = disas_aarch64_insn (pc, word, &inst);
2148
2149 if (((word >> 21) & 0x3ff) == 1)
2150 {
2151 /* RESERVED for ALES. */
2152 assert (ret != ERR_OK);
2153 ret = ERR_NYI;
2154 }
2155
2156 switch (ret)
2157 {
2158 case ERR_UND:
2159 case ERR_UNP:
2160 case ERR_NYI:
2161 /* Handle undefined instructions. */
2162 info->insn_type = dis_noninsn;
2163 (*info->fprintf_func) (info->stream,".inst\t0x%08x ; %s",
2164 word, err_msg[-ret]);
2165 break;
2166 case ERR_OK:
2167 user_friendly_fixup (&inst);
2168 print_aarch64_insn (pc, &inst, info);
2169 break;
2170 default:
2171 abort ();
2172 }
2173}
2174
2175/* Disallow mapping symbols ($x, $d etc) from
2176 being displayed in symbol relative addresses. */
2177
2178bfd_boolean
2179aarch64_symbol_is_valid (asymbol * sym,
2180 struct disassemble_info * info ATTRIBUTE_UNUSED)
2181{
2182 const char * name;
2183
2184 if (sym == NULL)
2185 return FALSE;
2186
2187 name = bfd_asymbol_name (sym);
2188
2189 return name
2190 && (name[0] != '$'
2191 || (name[1] != 'x' && name[1] != 'd')
2192 || (name[2] != '\0' && name[2] != '.'));
2193}
2194
2195/* Print data bytes on INFO->STREAM. */
2196
2197static void
2198print_insn_data (bfd_vma pc ATTRIBUTE_UNUSED,
2199 uint32_t word,
2200 struct disassemble_info *info)
2201{
2202 switch (info->bytes_per_chunk)
2203 {
2204 case 1:
2205 info->fprintf_func (info->stream, ".byte\t0x%02x", word);
2206 break;
2207 case 2:
2208 info->fprintf_func (info->stream, ".short\t0x%04x", word);
2209 break;
2210 case 4:
2211 info->fprintf_func (info->stream, ".word\t0x%08x", word);
2212 break;
2213 default:
2214 abort ();
2215 }
2216}
2217
2218/* Try to infer the code or data type from a symbol.
2219 Returns nonzero if *MAP_TYPE was set. */
2220
2221static int
2222get_sym_code_type (struct disassemble_info *info, int n,
2223 enum map_type *map_type)
2224{
2225 elf_symbol_type *es;
2226 unsigned int type;
2227 const char *name;
2228
2229 es = *(elf_symbol_type **)(info->symtab + n);
2230 type = ELF_ST_TYPE (es->internal_elf_sym.st_info);
2231
2232 /* If the symbol has function type then use that. */
2233 if (type == STT_FUNC)
2234 {
2235 *map_type = MAP_INSN;
2236 return TRUE;
2237 }
2238
2239 /* Check for mapping symbols. */
2240 name = bfd_asymbol_name(info->symtab[n]);
2241 if (name[0] == '$'
2242 && (name[1] == 'x' || name[1] == 'd')
2243 && (name[2] == '\0' || name[2] == '.'))
2244 {
2245 *map_type = (name[1] == 'x' ? MAP_INSN : MAP_DATA);
2246 return TRUE;
2247 }
2248
2249 return FALSE;
2250}
2251
2252/* Entry-point of the AArch64 disassembler. */
2253
2254int
2255print_insn_aarch64 (bfd_vma pc,
2256 struct disassemble_info *info)
2257{
2258 bfd_byte buffer[INSNLEN];
2259 int status;
2260 void (*printer) (bfd_vma, uint32_t, struct disassemble_info *);
2261 bfd_boolean found = FALSE;
2262 unsigned int size = 4;
2263 unsigned long data;
2264
2265 if (info->disassembler_options)
2266 {
2267 set_default_aarch64_dis_options (info);
2268
2269 parse_aarch64_dis_options (info->disassembler_options);
2270
2271 /* To avoid repeated parsing of these options, we remove them here. */
2272 info->disassembler_options = NULL;
2273 }
2274
2275 /* Aarch64 instructions are always little-endian */
2276 info->endian_code = BFD_ENDIAN_LITTLE;
2277
2278 /* First check the full symtab for a mapping symbol, even if there
2279 are no usable non-mapping symbols for this address. */
2280 if (info->symtab_size != 0
2281 && bfd_asymbol_flavour (*info->symtab) == bfd_target_elf_flavour)
2282 {
2283 enum map_type type = MAP_INSN;
2284 int last_sym = -1;
2285 bfd_vma addr;
2286 int n;
2287
2288 if (pc <= last_mapping_addr)
2289 last_mapping_sym = -1;
2290
2291 /* Start scanning at the start of the function, or wherever
2292 we finished last time. */
2293 n = info->symtab_pos + 1;
2294 if (n < last_mapping_sym)
2295 n = last_mapping_sym;
2296
2297 /* Scan up to the location being disassembled. */
2298 for (; n < info->symtab_size; n++)
2299 {
2300 addr = bfd_asymbol_value (info->symtab[n]);
2301 if (addr > pc)
2302 break;
2303 if ((info->section == NULL
2304 || info->section == info->symtab[n]->section)
2305 && get_sym_code_type (info, n, &type))
2306 {
2307 last_sym = n;
2308 found = TRUE;
2309 }
2310 }
2311
2312 if (!found)
2313 {
2314 n = info->symtab_pos;
2315 if (n < last_mapping_sym)
2316 n = last_mapping_sym;
2317
2318 /* No mapping symbol found at this address. Look backwards
2319 for a preceeding one. */
2320 for (; n >= 0; n--)
2321 {
2322 if (get_sym_code_type (info, n, &type))
2323 {
2324 last_sym = n;
2325 found = TRUE;
2326 break;
2327 }
2328 }
2329 }
2330
2331 last_mapping_sym = last_sym;
2332 last_type = type;
2333
2334 /* Look a little bit ahead to see if we should print out
2335 less than four bytes of data. If there's a symbol,
2336 mapping or otherwise, after two bytes then don't
2337 print more. */
2338 if (last_type == MAP_DATA)
2339 {
2340 size = 4 - (pc & 3);
2341 for (n = last_sym + 1; n < info->symtab_size; n++)
2342 {
2343 addr = bfd_asymbol_value (info->symtab[n]);
2344 if (addr > pc)
2345 {
2346 if (addr - pc < size)
2347 size = addr - pc;
2348 break;
2349 }
2350 }
2351 /* If the next symbol is after three bytes, we need to
2352 print only part of the data, so that we can use either
2353 .byte or .short. */
2354 if (size == 3)
2355 size = (pc & 1) ? 1 : 2;
2356 }
2357 }
2358
2359 if (last_type == MAP_DATA)
2360 {
2361 /* size was set above. */
2362 info->bytes_per_chunk = size;
2363 info->display_endian = info->endian;
2364 printer = print_insn_data;
2365 }
2366 else
2367 {
2368 info->bytes_per_chunk = size = INSNLEN;
2369 info->display_endian = info->endian_code;
2370 printer = print_insn_aarch64_word;
2371 }
2372
2373 status = (*info->read_memory_func) (pc, buffer, size, info);
2374 if (status != 0)
2375 {
2376 (*info->memory_error_func) (status, pc, info);
2377 return -1;
2378 }
2379
2380 data = bfd_get_bits (buffer, size * 8,
2381 info->display_endian == BFD_ENDIAN_BIG);
2382
2383 (*printer) (pc, data, info);
2384
2385 return size;
2386}
2387\f
2388void
2389print_aarch64_disassembler_options (FILE *stream)
2390{
2391 fprintf (stream, _("\n\
2392The following AARCH64 specific disassembler options are supported for use\n\
2393with the -M switch (multiple options should be separated by commas):\n"));
2394
2395 fprintf (stream, _("\n\
2396 no-aliases Don't print instruction aliases.\n"));
2397
2398 fprintf (stream, _("\n\
2399 aliases Do print instruction aliases.\n"));
2400
2401#ifdef DEBUG_AARCH64
2402 fprintf (stream, _("\n\
2403 debug_dump Temp switch for debug trace.\n"));
2404#endif /* DEBUG_AARCH64 */
2405
2406 fprintf (stream, _("\n"));
2407}
This page took 0.152076 seconds and 4 git commands to generate.