Automatic Copyright Year update after running gdb/copyright.py
[deliverable/binutils-gdb.git] / sim / frv / traps.c
CommitLineData
b34f6357 1/* frv trap support
88b9d363 2 Copyright (C) 1999-2022 Free Software Foundation, Inc.
b34f6357
DB
3 Contributed by Red Hat.
4
5This file is part of the GNU simulators.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
4744ac1b
JB
9the Free Software Foundation; either version 3 of the License, or
10(at your option) any later version.
b34f6357
DB
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
4744ac1b
JB
17You should have received a copy of the GNU General Public License
18along with this program. If not, see <http://www.gnu.org/licenses/>. */
b34f6357 19
6df01ab8
MF
20/* This must come before any other includes. */
21#include "defs.h"
22
b34f6357
DB
23#define WANT_CPU frvbf
24#define WANT_CPU_FRVBF
25
26#include "sim-main.h"
27#include "targ-vals.h"
28#include "cgen-engine.h"
29#include "cgen-par.h"
30#include "sim-fpu.h"
1fef66b0 31#include "sim-signal.h"
ef5058ae 32#include "sim/callback.h"
b34f6357
DB
33
34#include "bfd.h"
35#include "libiberty.h"
36
32a046ab
TT
37#include <stdlib.h>
38
79e59fe6 39CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot;
e930b1f5 40
b34f6357
DB
41/* The semantic code invokes this for invalid (unrecognized) instructions. */
42
43SEM_PC
44sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
45{
46 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
47 return vpc;
48}
49
50/* Process an address exception. */
51
52void
53frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
54 unsigned int map, int nr_bytes, address_word addr,
55 transfer_type transfer, sim_core_signals sig)
56{
57 if (sig == sim_core_unaligned_signal)
58 {
676a64f4
RS
59 if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400
60 || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450)
b34f6357
DB
61 frv_queue_data_access_error_interrupt (current_cpu, addr);
62 else
63 frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
64 }
65
66 frv_term (sd);
67 sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
68}
69
70void
71frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
72{
73 int i;
74 if (current_cpu != NULL)
034685f9 75 CPU_PC_SET (current_cpu, cia);
b34f6357
DB
76
77 /* Invalidate the insn and data caches of all cpus. */
78 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
79 {
80 current_cpu = STATE_CPU (sd, i);
81 frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
82 frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
83 }
84 frv_term (sd);
85}
86\f
87/* Read/write functions for system call interface. */
88
89static int
90syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
91 unsigned long taddr, char *buf, int bytes)
92{
93 SIM_DESC sd = (SIM_DESC) sc->p1;
94 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
95
96 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
97 return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
98}
99
100static int
101syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
102 unsigned long taddr, const char *buf, int bytes)
103{
104 SIM_DESC sd = (SIM_DESC) sc->p1;
105 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
106
107 frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
108 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
109 return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
110}
111
112/* Handle TRA and TIRA insns. */
113void
114frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
115{
116 SIM_DESC sd = CPU_STATE (current_cpu);
117 host_callback *cb = STATE_CALLBACK (sd);
118 USI num = ((base + offset) & 0x7f) + 0x80;
119
b34f6357
DB
120 if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
121 {
122 frv_queue_software_interrupt (current_cpu, num);
123 return;
124 }
125
126 switch (num)
127 {
128 case TRAP_SYSCALL :
129 {
130 CB_SYSCALL s;
131 CB_SYSCALL_INIT (&s);
132 s.func = GET_H_GR (7);
133 s.arg1 = GET_H_GR (8);
134 s.arg2 = GET_H_GR (9);
135 s.arg3 = GET_H_GR (10);
136
137 if (s.func == TARGET_SYS_exit)
138 {
139 sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
140 }
141
142 s.p1 = (PTR) sd;
143 s.p2 = (PTR) current_cpu;
144 s.read_mem = syscall_read_mem;
145 s.write_mem = syscall_write_mem;
146 cb_syscall (cb, &s);
147 SET_H_GR (8, s.result);
148 SET_H_GR (9, s.result2);
149 SET_H_GR (10, s.errcode);
150 break;
151 }
152
153 case TRAP_BREAKPOINT:
154 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
155 break;
156
157 /* Add support for dumping registers, either at fixed traps, or all
158 unknown traps if configured with --enable-sim-trapdump. */
159 default:
160#if !TRAPDUMP
161 frv_queue_software_interrupt (current_cpu, num);
162 return;
163#endif
164
165#ifdef TRAP_REGDUMP1
166 case TRAP_REGDUMP1:
167#endif
168
169#ifdef TRAP_REGDUMP2
170 case TRAP_REGDUMP2:
171#endif
172
173#if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
174 {
175 char buf[256];
176 int i, j;
177
178 buf[0] = 0;
179 if (STATE_TEXT_SECTION (sd)
180 && pc >= STATE_TEXT_START (sd)
181 && pc < STATE_TEXT_END (sd))
182 {
183 const char *pc_filename = (const char *)0;
184 const char *pc_function = (const char *)0;
185 unsigned int pc_linenum = 0;
186
187 if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
188 STATE_TEXT_SECTION (sd),
fc0a2244 189 (struct bfd_symbol **) 0,
b34f6357
DB
190 pc - STATE_TEXT_START (sd),
191 &pc_filename, &pc_function, &pc_linenum)
192 && (pc_function || pc_filename))
193 {
194 char *p = buf+2;
195 buf[0] = ' ';
196 buf[1] = '(';
197 if (pc_function)
198 {
199 strcpy (p, pc_function);
200 p += strlen (p);
201 }
202 else
203 {
204 char *q = (char *) strrchr (pc_filename, '/');
205 strcpy (p, (q) ? q+1 : pc_filename);
206 p += strlen (p);
207 }
208
209 if (pc_linenum)
210 {
211 sprintf (p, " line %d", pc_linenum);
212 p += strlen (p);
213 }
214
215 p[0] = ')';
216 p[1] = '\0';
217 if ((p+1) - buf > sizeof (buf))
218 abort ();
219 }
220 }
221
222 sim_io_printf (sd,
223 "\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n",
224 (unsigned)pc, buf, (unsigned)base, (int)offset);
225
226 for (i = 0; i < 64; i += 8)
227 {
228 long g0 = (long)GET_H_GR (i);
229 long g1 = (long)GET_H_GR (i+1);
230 long g2 = (long)GET_H_GR (i+2);
231 long g3 = (long)GET_H_GR (i+3);
232 long g4 = (long)GET_H_GR (i+4);
233 long g5 = (long)GET_H_GR (i+5);
234 long g6 = (long)GET_H_GR (i+6);
235 long g7 = (long)GET_H_GR (i+7);
236
237 if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
238 sim_io_printf (sd,
239 "\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
240 i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
241 }
242
243 for (i = 0; i < 64; i += 8)
244 {
245 long f0 = (long)GET_H_FR (i);
246 long f1 = (long)GET_H_FR (i+1);
247 long f2 = (long)GET_H_FR (i+2);
248 long f3 = (long)GET_H_FR (i+3);
249 long f4 = (long)GET_H_FR (i+4);
250 long f5 = (long)GET_H_FR (i+5);
251 long f6 = (long)GET_H_FR (i+6);
252 long f7 = (long)GET_H_FR (i+7);
253
254 if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
255 sim_io_printf (sd,
256 "\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
257 i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
258 }
259
260 sim_io_printf (sd,
261 "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
262 (long)GET_H_SPR (272),
263 (long)GET_H_SPR (273),
264 (long)GET_H_SPR (256),
265 (long)GET_H_SPR (263));
266 }
267 break;
268#endif
269 }
270}
271
272/* Handle the MTRAP insn. */
273void
274frv_mtrap (SIM_CPU *current_cpu)
275{
e930b1f5
DB
276 SIM_DESC sd = CPU_STATE (current_cpu);
277
b34f6357
DB
278 /* Check the status of media exceptions in MSR0. */
279 SI msr = GET_MSR (0);
fc12ae42
MF
280 if (GET_MSR_AOVF (msr)
281 || (GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550))
b34f6357
DB
282 frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
283}
284
285/* Handle the BREAK insn. */
286void
287frv_break (SIM_CPU *current_cpu)
288{
b34f6357
DB
289 SIM_DESC sd = CPU_STATE (current_cpu);
290
b34f6357
DB
291 if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
292 {
293 /* Invalidate the insn cache because the debugger will presumably
294 replace the breakpoint insn with the real one. */
247867eb
MF
295 sim_engine_halt (sd, current_cpu, NULL, NULL_CIA, sim_stopped,
296 SIM_SIGTRAP);
b34f6357
DB
297 }
298
299 frv_queue_break_interrupt (current_cpu);
300}
301
302/* Return from trap. */
303USI
304frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
305{
306 USI new_pc;
307 /* if (normal running mode and debug_field==0
308 PC=PCSR
309 PSR.ET=1
310 PSR.S=PSR.PS
311 else if (debug running mode and debug_field==1)
312 PC=(BPCSR)
313 PSR.ET=BPSR.BET
314 PSR.S=BPSR.BS
315 change to normal running mode
316 */
317 int psr_s = GET_H_PSR_S ();
318 int psr_et = GET_H_PSR_ET ();
319
320 /* Check for exceptions in the priority order listed in the FRV Architecture
321 Volume 2. */
322 if (! psr_s)
323 {
324 /* Halt if PSR.ET is not set. See chapter 6 of the LSI. */
325 if (! psr_et)
326 {
327 SIM_DESC sd = CPU_STATE (current_cpu);
328 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
329 }
330
331 /* privileged_instruction interrupt will have already been queued by
332 frv_detect_insn_access_interrupts. */
333 new_pc = pc + 4;
334 }
335 else if (psr_et)
336 {
337 /* Halt if PSR.S is set. See chapter 6 of the LSI. */
338 if (psr_s)
339 {
340 SIM_DESC sd = CPU_STATE (current_cpu);
341 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
342 }
343
344 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
345 new_pc = pc + 4;
346 }
347 else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
348 {
349 USI psr = GET_PSR ();
350 /* Return from normal running state. */
351 new_pc = GET_H_SPR (H_SPR_PCSR);
352 SET_PSR_ET (psr, 1);
353 SET_PSR_S (psr, GET_PSR_PS (psr));
354 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
355 }
356 else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
357 {
358 USI psr = GET_PSR ();
359 /* Return from debug state. */
360 new_pc = GET_H_SPR (H_SPR_BPCSR);
361 SET_PSR_ET (psr, GET_H_BPSR_BET ());
362 SET_PSR_S (psr, GET_H_BPSR_BS ());
363 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
364 CPU_DEBUG_STATE (current_cpu) = 0;
365 }
366 else
367 new_pc = pc + 4;
368
369 return new_pc;
370}
371\f
372/* Functions for handling non-excepting instruction side effects. */
373static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
374{
375 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
376 if (control->spr[H_SPR_NECR].implemented)
377 {
378 int limit;
379 USI necr = GET_NECR ();
380
381 /* See if any NESRs are implemented. First need to check the validity of
382 the NECR. */
383 if (! GET_NECR_VALID (necr))
384 return NO_NESR;
385
386 limit = GET_NECR_NEN (necr);
387 for (++current_index; current_index < limit; ++current_index)
388 {
389 SI nesr = GET_NESR (current_index);
390 if (! GET_NESR_VALID (nesr))
391 return current_index;
392 }
393 }
394 return NO_NESR;
395}
396
397static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
398{
399 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
400 if (control->spr[H_SPR_NECR].implemented)
401 {
402 int limit;
403 USI necr = GET_NECR ();
404
405 /* See if any NESRs are implemented. First need to check the validity of
406 the NECR. */
407 if (! GET_NECR_VALID (necr))
408 return NO_NESR;
409
410 limit = GET_NECR_NEN (necr);
411 for (++current_index; current_index < limit; ++current_index)
412 {
413 SI nesr = GET_NESR (current_index);
414 if (GET_NESR_VALID (nesr))
415 return current_index;
416 }
417 }
418 return NO_NESR;
419}
420
421BI
422frvbf_check_non_excepting_load (
423 SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
424 SI immediate_disp, QI data_size, BI is_float
425)
426{
427 BI rc = 1; /* perform the load. */
428 SIM_DESC sd = CPU_STATE (current_cpu);
429 int daec = 0;
430 int rec = 0;
431 int ec = 0;
432 USI necr;
433 int do_elos;
434 SI NE_flags[2];
435 SI NE_base;
436 SI nesr;
437 SI ne_index;
438 FRV_REGISTER_CONTROL *control;
439
440 SI address = GET_H_GR (base_index);
441 if (disp_index >= 0)
442 address += GET_H_GR (disp_index);
443 else
444 address += immediate_disp;
445
446 /* Check for interrupt factors. */
447 switch (data_size)
448 {
449 case NESR_UQI_SIZE:
450 case NESR_QI_SIZE:
451 break;
452 case NESR_UHI_SIZE:
453 case NESR_HI_SIZE:
454 if (address & 1)
455 ec = 1;
456 break;
457 case NESR_SI_SIZE:
458 if (address & 3)
459 ec = 1;
460 break;
461 case NESR_DI_SIZE:
462 if (address & 7)
463 ec = 1;
464 if (target_index & 1)
465 rec = 1;
466 break;
467 case NESR_XI_SIZE:
468 if (address & 0xf)
469 ec = 1;
470 if (target_index & 3)
471 rec = 1;
472 break;
473 default:
474 {
475 IADDR pc = GET_H_PC ();
476 sim_engine_abort (sd, current_cpu, pc,
477 "check_non_excepting_load: Incorrect data_size\n");
478 break;
479 }
480 }
481
482 control = CPU_REGISTER_CONTROL (current_cpu);
483 if (control->spr[H_SPR_NECR].implemented)
484 {
485 necr = GET_NECR ();
486 do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
487 }
488 else
489 do_elos = 0;
490
491 /* NECR, NESR, NEEAR are only implemented for the full frv machine. */
492 if (do_elos)
493 {
494 ne_index = next_available_nesr (current_cpu, NO_NESR);
495 if (ne_index == NO_NESR)
496 {
497 IADDR pc = GET_H_PC ();
498 sim_engine_abort (sd, current_cpu, pc,
499 "No available NESR register\n");
500 }
501
502 /* Fill in the basic fields of the NESR. */
503 nesr = GET_NESR (ne_index);
504 SET_NESR_VALID (nesr);
505 SET_NESR_EAV (nesr);
506 SET_NESR_DRN (nesr, target_index);
507 SET_NESR_SIZE (nesr, data_size);
508 SET_NESR_NEAN (nesr, ne_index);
509 if (is_float)
510 SET_NESR_FR (nesr);
511 else
512 CLEAR_NESR_FR (nesr);
513
514 /* Set the corresponding NEEAR. */
515 SET_NEEAR (ne_index, address);
516
517 SET_NESR_DAEC (nesr, 0);
518 SET_NESR_REC (nesr, 0);
519 SET_NESR_EC (nesr, 0);
520 }
521
522 /* Set the NE flag corresponding to the target register if an interrupt
523 factor was detected.
524 daec is not checked here yet, but is declared for future reference. */
525 if (is_float)
526 NE_base = H_SPR_FNER0;
527 else
528 NE_base = H_SPR_GNER0;
529
530 GET_NE_FLAGS (NE_flags, NE_base);
531 if (rec)
532 {
533 SET_NE_FLAG (NE_flags, target_index);
534 if (do_elos)
535 SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
536 }
537
538 if (ec)
539 {
540 SET_NE_FLAG (NE_flags, target_index);
541 if (do_elos)
542 SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
543 }
544
545 if (do_elos)
546 SET_NESR (ne_index, nesr);
547
548 /* If no interrupt factor was detected then set the NE flag on the
549 target register if the NE flag on one of the input registers
550 is already set. */
551 if (! rec && ! ec && ! daec)
552 {
553 BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
554 if (disp_index >= 0)
555 ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
556 if (ne_flag)
557 {
558 SET_NE_FLAG (NE_flags, target_index);
559 rc = 0; /* Do not perform the load. */
560 }
561 else
562 CLEAR_NE_FLAG (NE_flags, target_index);
563 }
564
565 SET_NE_FLAGS (NE_base, NE_flags);
566
567 return rc; /* perform the load? */
568}
569
570/* Record state for media exception: media_cr_not_aligned. */
571void
572frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
573{
574 SIM_DESC sd = CPU_STATE (current_cpu);
575
e930b1f5
DB
576 /* On some machines this generates an illegal_instruction interrupt. */
577 switch (STATE_ARCHITECTURE (sd)->mach)
578 {
676a64f4
RS
579 /* Note: there is a discrepancy between V2.2 of the FR400
580 instruction manual and the various FR4xx LSI specs. The former
581 claims that unaligned registers cause an mp_exception while the
582 latter say it's an illegal_instruction. The LSI specs appear
583 to be correct since MTT is fixed at 1. */
e930b1f5 584 case bfd_mach_fr400:
676a64f4 585 case bfd_mach_fr450:
e930b1f5
DB
586 case bfd_mach_fr550:
587 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
588 break;
589 default:
590 frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
591 break;
592 }
b34f6357
DB
593}
594
595/* Record state for media exception: media_acc_not_aligned. */
596void
597frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
598{
599 SIM_DESC sd = CPU_STATE (current_cpu);
600
e930b1f5
DB
601 /* On some machines this generates an illegal_instruction interrupt. */
602 switch (STATE_ARCHITECTURE (sd)->mach)
603 {
676a64f4 604 /* See comment in frvbf_cr_not_aligned(). */
e930b1f5 605 case bfd_mach_fr400:
676a64f4 606 case bfd_mach_fr450:
e930b1f5
DB
607 case bfd_mach_fr550:
608 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
609 break;
610 default:
611 frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
612 break;
613 }
b34f6357
DB
614}
615
616/* Record state for media exception: media_register_not_aligned. */
617void
618frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
619{
620 SIM_DESC sd = CPU_STATE (current_cpu);
621
e930b1f5
DB
622 /* On some machines this generates an illegal_instruction interrupt. */
623 switch (STATE_ARCHITECTURE (sd)->mach)
624 {
676a64f4 625 /* See comment in frvbf_cr_not_aligned(). */
e930b1f5 626 case bfd_mach_fr400:
676a64f4 627 case bfd_mach_fr450:
e930b1f5
DB
628 case bfd_mach_fr550:
629 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
630 break;
631 default:
632 frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
633 break;
634 }
b34f6357
DB
635}
636
637/* Record state for media exception: media_overflow. */
638void
639frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
640{
641 frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
642}
643
644/* Queue a division exception. */
645enum frv_dtt
646frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
647 int target_index, int non_excepting)
648{
649 /* If there was an overflow and it is masked, then record it in
650 ISR.AEXC. */
651 USI isr = GET_ISR ();
652 if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
653 {
654 dtt &= ~FRV_DTT_OVERFLOW;
655 SET_ISR_AEXC (isr);
656 SET_ISR (isr);
657 }
658 if (dtt != FRV_DTT_NO_EXCEPTION)
659 {
660 if (non_excepting)
661 {
662 /* Non excepting instruction, simply set the NE flag for the target
663 register. */
664 SI NE_flags[2];
665 GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
666 SET_NE_FLAG (NE_flags, target_index);
667 SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
668 }
669 else
670 frv_queue_division_exception_interrupt (current_cpu, dtt);
671 }
672 return dtt;
673}
674
675void
676frvbf_check_recovering_store (
677 SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
678)
679{
680 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
681 int reg_ix;
682
683 CPU_RSTR_INVALIDATE(current_cpu) = 0;
684
685 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
686 reg_ix != NO_NESR;
687 reg_ix = next_valid_nesr (current_cpu, reg_ix))
688 {
689 if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
690 {
691 SI nesr = GET_NESR (reg_ix);
692 int nesr_drn = GET_NESR_DRN (nesr);
693 BI nesr_fr = GET_NESR_FR (nesr);
694 SI remain;
695
696 /* Invalidate cache block containing this address.
697 If we need to count cycles, then the cache operation will be
698 initiated from the model profiling functions.
699 See frvbf_model_.... */
700 if (model_insn)
701 {
702 CPU_RSTR_INVALIDATE(current_cpu) = 1;
703 CPU_LOAD_ADDRESS (current_cpu) = address;
704 }
705 else
706 frv_cache_invalidate (cache, address, 1/* flush */);
707
708 /* Copy the stored value to the register indicated by NESR.DRN. */
709 for (remain = size; remain > 0; remain -= 4)
710 {
711 SI value;
712
713 if (is_float)
714 value = GET_H_FR (regno);
715 else
716 value = GET_H_GR (regno);
717
718 switch (size)
719 {
720 case 1:
721 value &= 0xff;
722 break;
723 case 2:
724 value &= 0xffff;
725 break;
726 default:
727 break;
728 }
729
730 if (nesr_fr)
731 sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
732 value);
733 else
734 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
735 value);
736
737 nesr_drn++;
738 regno++;
739 }
740 break; /* Only consider the first matching register. */
741 }
742 } /* loop over active neear registers. */
743}
744
e930b1f5
DB
745SI
746frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
747{
748 /* Only applicable to fr550 */
749 SIM_DESC sd = CPU_STATE (current_cpu);
750 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
f00b50d0 751 return 0;
e930b1f5
DB
752
753 /* On the fr550, media insns in slots 0 and 2 can only access
754 accumulators acc0-acc3. Insns in slots 1 and 3 can only access
755 accumulators acc4-acc7 */
756 switch (frv_current_fm_slot)
757 {
758 case UNIT_FM0:
759 case UNIT_FM2:
760 if (regno <= 3)
761 return 1; /* all is ok */
762 break;
763 case UNIT_FM1:
764 case UNIT_FM3:
765 if (regno >= 4)
766 return 1; /* all is ok */
767 break;
768 }
769
770 /* The specified accumulator is out of range. Queue an illegal_instruction
771 interrupt. */
772 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
773 return 0;
774}
775
776void
777frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
778{
779 /* Only applicable to fr550 */
780 SIM_DESC sd = CPU_STATE (current_cpu);
781 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
782 return;
783
784 /* Adress must be aligned on a word boundary. */
785 if (address & 0x3)
786 frv_queue_data_access_exception_interrupt (current_cpu);
787}
788
b34f6357
DB
789static void
790clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
791{
792 int reg_ix;
793
794 /* Only implemented for full frv. */
795 SIM_DESC sd = CPU_STATE (current_cpu);
796 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
797 return;
798
799 /* Clear the appropriate NESR and NEEAR registers. */
800 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
801 reg_ix != NO_NESR;
802 reg_ix = next_valid_nesr (current_cpu, reg_ix))
803 {
804 SI nesr;
805 /* The register is available, now check if it is active. */
806 nesr = GET_NESR (reg_ix);
807 if (GET_NESR_FR (nesr) == is_float)
808 {
809 if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
810 {
811 SET_NESR (reg_ix, 0);
812 SET_NEEAR (reg_ix, 0);
813 }
814 }
815 }
816}
817
818static void
819clear_ne_flags (
820 SIM_CPU *current_cpu,
821 SI target_index,
822 int hi_available,
823 int lo_available,
824 SI NE_base
825)
826{
827 SI NE_flags[2];
828 int exception;
829
830 GET_NE_FLAGS (NE_flags, NE_base);
831 if (target_index >= 0)
832 CLEAR_NE_FLAG (NE_flags, target_index);
833 else
834 {
835 if (lo_available)
836 NE_flags[1] = 0;
837 if (hi_available)
838 NE_flags[0] = 0;
839 }
840 SET_NE_FLAGS (NE_base, NE_flags);
841}
842
843/* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1
844 means to check for any register available. */
845static void
846which_registers_available (
847 SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
848)
849{
850 if (is_float)
851 frv_fr_registers_available (current_cpu, hi_available, lo_available);
852 else
853 frv_gr_registers_available (current_cpu, hi_available, lo_available);
854}
855
856void
857frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
858{
859 int hi_available;
860 int lo_available;
861 int exception;
862 SI NE_base;
863 USI necr;
864 FRV_REGISTER_CONTROL *control;
865
866 /* Check for availability of the target register(s). */
867 which_registers_available (current_cpu, & hi_available, & lo_available,
868 is_float);
869
870 /* Check to make sure that the target register is available. */
871 if (! frv_check_register_access (current_cpu, target_index,
872 hi_available, lo_available))
873 return;
874
875 /* Determine whether we're working with GR or FR registers. */
876 if (is_float)
877 NE_base = H_SPR_FNER0;
878 else
879 NE_base = H_SPR_GNER0;
880
881 /* Always clear the appropriate NE flags. */
882 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
883 NE_base);
884
885 /* Clear the appropriate NESR and NEEAR registers. */
886 control = CPU_REGISTER_CONTROL (current_cpu);
887 if (control->spr[H_SPR_NECR].implemented)
888 {
889 necr = GET_NECR ();
890 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
891 clear_nesr_neear (current_cpu, target_index, is_float);
892 }
893}
894
895void
896frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
897{
898 SI NE_base;
899 SI NE_flags[2];
900 BI NE_flag;
901 int exception;
902 int hi_available;
903 int lo_available;
904 USI necr;
905 FRV_REGISTER_CONTROL *control;
906
907 /* Check for availability of the target register(s). */
908 which_registers_available (current_cpu, & hi_available, & lo_available,
909 is_float);
910
911 /* Check to make sure that the target register is available. */
912 if (! frv_check_register_access (current_cpu, target_index,
913 hi_available, lo_available))
914 return;
915
916 /* Determine whether we're working with GR or FR registers. */
917 if (is_float)
918 NE_base = H_SPR_FNER0;
919 else
920 NE_base = H_SPR_GNER0;
921
922 /* Determine whether a ne exception is pending. */
923 GET_NE_FLAGS (NE_flags, NE_base);
924 if (target_index >= 0)
925 NE_flag = GET_NE_FLAG (NE_flags, target_index);
926 else
927 {
fc12ae42
MF
928 NE_flag = (hi_available && NE_flags[0] != 0)
929 || (lo_available && NE_flags[1] != 0);
b34f6357
DB
930 }
931
932 /* Always clear the appropriate NE flags. */
933 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
934 NE_base);
935
936 control = CPU_REGISTER_CONTROL (current_cpu);
937 if (control->spr[H_SPR_NECR].implemented)
938 {
939 necr = GET_NECR ();
940 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
941 {
942 /* Clear the appropriate NESR and NEEAR registers. */
943 clear_nesr_neear (current_cpu, target_index, is_float);
944 frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
945 }
946 }
947}
948
949/* Generate the appropriate fp_exception(s) based on the given status code. */
950void
951frvbf_fpu_error (CGEN_FPU* fpu, int status)
952{
953 struct frv_fp_exception_info fp_info = {
954 FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
955 };
956
957 if (status &
958 (sim_fpu_status_invalid_snan |
959 sim_fpu_status_invalid_qnan |
960 sim_fpu_status_invalid_isi |
961 sim_fpu_status_invalid_idi |
962 sim_fpu_status_invalid_zdz |
963 sim_fpu_status_invalid_imz |
964 sim_fpu_status_invalid_cvi |
965 sim_fpu_status_invalid_cmp |
966 sim_fpu_status_invalid_sqrt))
967 fp_info.fsr_mask |= FSR_INVALID_OPERATION;
968
969 if (status & sim_fpu_status_invalid_div0)
970 fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
971
972 if (status & sim_fpu_status_inexact)
973 fp_info.fsr_mask |= FSR_INEXACT;
974
975 if (status & sim_fpu_status_overflow)
976 fp_info.fsr_mask |= FSR_OVERFLOW;
977
978 if (status & sim_fpu_status_underflow)
979 fp_info.fsr_mask |= FSR_UNDERFLOW;
980
981 if (status & sim_fpu_status_denorm)
982 {
983 fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
984 fp_info.ftt = FTT_DENORMAL_INPUT;
985 }
986
987 if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
988 {
989 SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
990 frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
991 }
992}
This page took 0.872657 seconds and 4 git commands to generate.