KVM: Handle async PF in a guest.
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21#include "irq.h"
22#include "mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "x86.h"
26
27#include <linux/kvm_host.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/swap.h>
34#include <linux/hugetlb.h>
35#include <linux/compiler.h>
36#include <linux/srcu.h>
37#include <linux/slab.h>
38#include <linux/uaccess.h>
39
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
42#include <asm/io.h>
43#include <asm/vmx.h>
44
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52bool tdp_enabled = false;
53
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61};
62
63char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
70};
71
72#undef MMU_DEBUG
73
74#ifdef MMU_DEBUG
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79#else
80
81#define pgprintk(x...) do { } while (0)
82#define rmap_printk(x...) do { } while (0)
83
84#endif
85
86#ifdef MMU_DEBUG
87static int dbg = 0;
88module_param(dbg, bool, 0644);
89#endif
90
91static int oos_shadow = 1;
92module_param(oos_shadow, bool, 0644);
93
94#ifndef MMU_DEBUG
95#define ASSERT(x) do { } while (0)
96#else
97#define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
101 }
102#endif
103
104#define PTE_PREFETCH_NUM 8
105
106#define PT_FIRST_AVAIL_BITS_SHIFT 9
107#define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109#define PT64_LEVEL_BITS 9
110
111#define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114#define PT64_LEVEL_MASK(level) \
115 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
116
117#define PT64_INDEX(address, level)\
118 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
119
120
121#define PT32_LEVEL_BITS 10
122
123#define PT32_LEVEL_SHIFT(level) \
124 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
125
126#define PT32_LEVEL_MASK(level) \
127 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
128#define PT32_LVL_OFFSET_MASK(level) \
129 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT32_LEVEL_BITS))) - 1))
131
132#define PT32_INDEX(address, level)\
133 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134
135
136#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
137#define PT64_DIR_BASE_ADDR_MASK \
138 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
139#define PT64_LVL_ADDR_MASK(level) \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141 * PT64_LEVEL_BITS))) - 1))
142#define PT64_LVL_OFFSET_MASK(level) \
143 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT64_LEVEL_BITS))) - 1))
145
146#define PT32_BASE_ADDR_MASK PAGE_MASK
147#define PT32_DIR_BASE_ADDR_MASK \
148 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149#define PT32_LVL_ADDR_MASK(level) \
150 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
151 * PT32_LEVEL_BITS))) - 1))
152
153#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
154 | PT64_NX_MASK)
155
156#define RMAP_EXT 4
157
158#define ACC_EXEC_MASK 1
159#define ACC_WRITE_MASK PT_WRITABLE_MASK
160#define ACC_USER_MASK PT_USER_MASK
161#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
162
163#include <trace/events/kvm.h>
164
165#define CREATE_TRACE_POINTS
166#include "mmutrace.h"
167
168#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
169
170#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
171
172struct kvm_rmap_desc {
173 u64 *sptes[RMAP_EXT];
174 struct kvm_rmap_desc *more;
175};
176
177struct kvm_shadow_walk_iterator {
178 u64 addr;
179 hpa_t shadow_addr;
180 int level;
181 u64 *sptep;
182 unsigned index;
183};
184
185#define for_each_shadow_entry(_vcpu, _addr, _walker) \
186 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
187 shadow_walk_okay(&(_walker)); \
188 shadow_walk_next(&(_walker)))
189
190typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
191
192static struct kmem_cache *pte_chain_cache;
193static struct kmem_cache *rmap_desc_cache;
194static struct kmem_cache *mmu_page_header_cache;
195static struct percpu_counter kvm_total_used_mmu_pages;
196
197static u64 __read_mostly shadow_trap_nonpresent_pte;
198static u64 __read_mostly shadow_notrap_nonpresent_pte;
199static u64 __read_mostly shadow_base_present_pte;
200static u64 __read_mostly shadow_nx_mask;
201static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
202static u64 __read_mostly shadow_user_mask;
203static u64 __read_mostly shadow_accessed_mask;
204static u64 __read_mostly shadow_dirty_mask;
205
206static inline u64 rsvd_bits(int s, int e)
207{
208 return ((1ULL << (e - s + 1)) - 1) << s;
209}
210
211void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
212{
213 shadow_trap_nonpresent_pte = trap_pte;
214 shadow_notrap_nonpresent_pte = notrap_pte;
215}
216EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
217
218void kvm_mmu_set_base_ptes(u64 base_pte)
219{
220 shadow_base_present_pte = base_pte;
221}
222EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
223
224void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
225 u64 dirty_mask, u64 nx_mask, u64 x_mask)
226{
227 shadow_user_mask = user_mask;
228 shadow_accessed_mask = accessed_mask;
229 shadow_dirty_mask = dirty_mask;
230 shadow_nx_mask = nx_mask;
231 shadow_x_mask = x_mask;
232}
233EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
234
235static bool is_write_protection(struct kvm_vcpu *vcpu)
236{
237 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
238}
239
240static int is_cpuid_PSE36(void)
241{
242 return 1;
243}
244
245static int is_nx(struct kvm_vcpu *vcpu)
246{
247 return vcpu->arch.efer & EFER_NX;
248}
249
250static int is_shadow_present_pte(u64 pte)
251{
252 return pte != shadow_trap_nonpresent_pte
253 && pte != shadow_notrap_nonpresent_pte;
254}
255
256static int is_large_pte(u64 pte)
257{
258 return pte & PT_PAGE_SIZE_MASK;
259}
260
261static int is_writable_pte(unsigned long pte)
262{
263 return pte & PT_WRITABLE_MASK;
264}
265
266static int is_dirty_gpte(unsigned long pte)
267{
268 return pte & PT_DIRTY_MASK;
269}
270
271static int is_rmap_spte(u64 pte)
272{
273 return is_shadow_present_pte(pte);
274}
275
276static int is_last_spte(u64 pte, int level)
277{
278 if (level == PT_PAGE_TABLE_LEVEL)
279 return 1;
280 if (is_large_pte(pte))
281 return 1;
282 return 0;
283}
284
285static pfn_t spte_to_pfn(u64 pte)
286{
287 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288}
289
290static gfn_t pse36_gfn_delta(u32 gpte)
291{
292 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293
294 return (gpte & PT32_DIR_PSE36_MASK) << shift;
295}
296
297static void __set_spte(u64 *sptep, u64 spte)
298{
299 set_64bit(sptep, spte);
300}
301
302static u64 __xchg_spte(u64 *sptep, u64 new_spte)
303{
304#ifdef CONFIG_X86_64
305 return xchg(sptep, new_spte);
306#else
307 u64 old_spte;
308
309 do {
310 old_spte = *sptep;
311 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
312
313 return old_spte;
314#endif
315}
316
317static bool spte_has_volatile_bits(u64 spte)
318{
319 if (!shadow_accessed_mask)
320 return false;
321
322 if (!is_shadow_present_pte(spte))
323 return false;
324
325 if ((spte & shadow_accessed_mask) &&
326 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
327 return false;
328
329 return true;
330}
331
332static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
333{
334 return (old_spte & bit_mask) && !(new_spte & bit_mask);
335}
336
337static void update_spte(u64 *sptep, u64 new_spte)
338{
339 u64 mask, old_spte = *sptep;
340
341 WARN_ON(!is_rmap_spte(new_spte));
342
343 new_spte |= old_spte & shadow_dirty_mask;
344
345 mask = shadow_accessed_mask;
346 if (is_writable_pte(old_spte))
347 mask |= shadow_dirty_mask;
348
349 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
350 __set_spte(sptep, new_spte);
351 else
352 old_spte = __xchg_spte(sptep, new_spte);
353
354 if (!shadow_accessed_mask)
355 return;
356
357 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
358 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
359 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
360 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
361}
362
363static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
364 struct kmem_cache *base_cache, int min)
365{
366 void *obj;
367
368 if (cache->nobjs >= min)
369 return 0;
370 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
371 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
372 if (!obj)
373 return -ENOMEM;
374 cache->objects[cache->nobjs++] = obj;
375 }
376 return 0;
377}
378
379static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
380 struct kmem_cache *cache)
381{
382 while (mc->nobjs)
383 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
384}
385
386static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
387 int min)
388{
389 struct page *page;
390
391 if (cache->nobjs >= min)
392 return 0;
393 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
394 page = alloc_page(GFP_KERNEL);
395 if (!page)
396 return -ENOMEM;
397 cache->objects[cache->nobjs++] = page_address(page);
398 }
399 return 0;
400}
401
402static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
403{
404 while (mc->nobjs)
405 free_page((unsigned long)mc->objects[--mc->nobjs]);
406}
407
408static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
409{
410 int r;
411
412 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
413 pte_chain_cache, 4);
414 if (r)
415 goto out;
416 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
417 rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
418 if (r)
419 goto out;
420 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
421 if (r)
422 goto out;
423 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
424 mmu_page_header_cache, 4);
425out:
426 return r;
427}
428
429static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
430{
431 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
432 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
433 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
434 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
435 mmu_page_header_cache);
436}
437
438static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
439 size_t size)
440{
441 void *p;
442
443 BUG_ON(!mc->nobjs);
444 p = mc->objects[--mc->nobjs];
445 return p;
446}
447
448static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
449{
450 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
451 sizeof(struct kvm_pte_chain));
452}
453
454static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
455{
456 kmem_cache_free(pte_chain_cache, pc);
457}
458
459static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
460{
461 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
462 sizeof(struct kvm_rmap_desc));
463}
464
465static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
466{
467 kmem_cache_free(rmap_desc_cache, rd);
468}
469
470static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
471{
472 if (!sp->role.direct)
473 return sp->gfns[index];
474
475 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
476}
477
478static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
479{
480 if (sp->role.direct)
481 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
482 else
483 sp->gfns[index] = gfn;
484}
485
486/*
487 * Return the pointer to the largepage write count for a given
488 * gfn, handling slots that are not large page aligned.
489 */
490static int *slot_largepage_idx(gfn_t gfn,
491 struct kvm_memory_slot *slot,
492 int level)
493{
494 unsigned long idx;
495
496 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
497 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
498 return &slot->lpage_info[level - 2][idx].write_count;
499}
500
501static void account_shadowed(struct kvm *kvm, gfn_t gfn)
502{
503 struct kvm_memory_slot *slot;
504 int *write_count;
505 int i;
506
507 slot = gfn_to_memslot(kvm, gfn);
508 for (i = PT_DIRECTORY_LEVEL;
509 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
510 write_count = slot_largepage_idx(gfn, slot, i);
511 *write_count += 1;
512 }
513}
514
515static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
516{
517 struct kvm_memory_slot *slot;
518 int *write_count;
519 int i;
520
521 slot = gfn_to_memslot(kvm, gfn);
522 for (i = PT_DIRECTORY_LEVEL;
523 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
524 write_count = slot_largepage_idx(gfn, slot, i);
525 *write_count -= 1;
526 WARN_ON(*write_count < 0);
527 }
528}
529
530static int has_wrprotected_page(struct kvm *kvm,
531 gfn_t gfn,
532 int level)
533{
534 struct kvm_memory_slot *slot;
535 int *largepage_idx;
536
537 slot = gfn_to_memslot(kvm, gfn);
538 if (slot) {
539 largepage_idx = slot_largepage_idx(gfn, slot, level);
540 return *largepage_idx;
541 }
542
543 return 1;
544}
545
546static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
547{
548 unsigned long page_size;
549 int i, ret = 0;
550
551 page_size = kvm_host_page_size(kvm, gfn);
552
553 for (i = PT_PAGE_TABLE_LEVEL;
554 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
555 if (page_size >= KVM_HPAGE_SIZE(i))
556 ret = i;
557 else
558 break;
559 }
560
561 return ret;
562}
563
564static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
565{
566 struct kvm_memory_slot *slot;
567 int host_level, level, max_level;
568
569 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
570 if (slot && slot->dirty_bitmap)
571 return PT_PAGE_TABLE_LEVEL;
572
573 host_level = host_mapping_level(vcpu->kvm, large_gfn);
574
575 if (host_level == PT_PAGE_TABLE_LEVEL)
576 return host_level;
577
578 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
579 kvm_x86_ops->get_lpage_level() : host_level;
580
581 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
582 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
583 break;
584
585 return level - 1;
586}
587
588/*
589 * Take gfn and return the reverse mapping to it.
590 */
591
592static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
593{
594 struct kvm_memory_slot *slot;
595 unsigned long idx;
596
597 slot = gfn_to_memslot(kvm, gfn);
598 if (likely(level == PT_PAGE_TABLE_LEVEL))
599 return &slot->rmap[gfn - slot->base_gfn];
600
601 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
602 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
603
604 return &slot->lpage_info[level - 2][idx].rmap_pde;
605}
606
607/*
608 * Reverse mapping data structures:
609 *
610 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
611 * that points to page_address(page).
612 *
613 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
614 * containing more mappings.
615 *
616 * Returns the number of rmap entries before the spte was added or zero if
617 * the spte was not added.
618 *
619 */
620static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
621{
622 struct kvm_mmu_page *sp;
623 struct kvm_rmap_desc *desc;
624 unsigned long *rmapp;
625 int i, count = 0;
626
627 if (!is_rmap_spte(*spte))
628 return count;
629 sp = page_header(__pa(spte));
630 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
631 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
632 if (!*rmapp) {
633 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
634 *rmapp = (unsigned long)spte;
635 } else if (!(*rmapp & 1)) {
636 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
637 desc = mmu_alloc_rmap_desc(vcpu);
638 desc->sptes[0] = (u64 *)*rmapp;
639 desc->sptes[1] = spte;
640 *rmapp = (unsigned long)desc | 1;
641 ++count;
642 } else {
643 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
644 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
645 while (desc->sptes[RMAP_EXT-1] && desc->more) {
646 desc = desc->more;
647 count += RMAP_EXT;
648 }
649 if (desc->sptes[RMAP_EXT-1]) {
650 desc->more = mmu_alloc_rmap_desc(vcpu);
651 desc = desc->more;
652 }
653 for (i = 0; desc->sptes[i]; ++i)
654 ++count;
655 desc->sptes[i] = spte;
656 }
657 return count;
658}
659
660static void rmap_desc_remove_entry(unsigned long *rmapp,
661 struct kvm_rmap_desc *desc,
662 int i,
663 struct kvm_rmap_desc *prev_desc)
664{
665 int j;
666
667 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
668 ;
669 desc->sptes[i] = desc->sptes[j];
670 desc->sptes[j] = NULL;
671 if (j != 0)
672 return;
673 if (!prev_desc && !desc->more)
674 *rmapp = (unsigned long)desc->sptes[0];
675 else
676 if (prev_desc)
677 prev_desc->more = desc->more;
678 else
679 *rmapp = (unsigned long)desc->more | 1;
680 mmu_free_rmap_desc(desc);
681}
682
683static void rmap_remove(struct kvm *kvm, u64 *spte)
684{
685 struct kvm_rmap_desc *desc;
686 struct kvm_rmap_desc *prev_desc;
687 struct kvm_mmu_page *sp;
688 gfn_t gfn;
689 unsigned long *rmapp;
690 int i;
691
692 sp = page_header(__pa(spte));
693 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
694 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
695 if (!*rmapp) {
696 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
697 BUG();
698 } else if (!(*rmapp & 1)) {
699 rmap_printk("rmap_remove: %p 1->0\n", spte);
700 if ((u64 *)*rmapp != spte) {
701 printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
702 BUG();
703 }
704 *rmapp = 0;
705 } else {
706 rmap_printk("rmap_remove: %p many->many\n", spte);
707 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
708 prev_desc = NULL;
709 while (desc) {
710 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
711 if (desc->sptes[i] == spte) {
712 rmap_desc_remove_entry(rmapp,
713 desc, i,
714 prev_desc);
715 return;
716 }
717 prev_desc = desc;
718 desc = desc->more;
719 }
720 pr_err("rmap_remove: %p many->many\n", spte);
721 BUG();
722 }
723}
724
725static int set_spte_track_bits(u64 *sptep, u64 new_spte)
726{
727 pfn_t pfn;
728 u64 old_spte = *sptep;
729
730 if (!spte_has_volatile_bits(old_spte))
731 __set_spte(sptep, new_spte);
732 else
733 old_spte = __xchg_spte(sptep, new_spte);
734
735 if (!is_rmap_spte(old_spte))
736 return 0;
737
738 pfn = spte_to_pfn(old_spte);
739 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
740 kvm_set_pfn_accessed(pfn);
741 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
742 kvm_set_pfn_dirty(pfn);
743 return 1;
744}
745
746static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
747{
748 if (set_spte_track_bits(sptep, new_spte))
749 rmap_remove(kvm, sptep);
750}
751
752static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
753{
754 struct kvm_rmap_desc *desc;
755 u64 *prev_spte;
756 int i;
757
758 if (!*rmapp)
759 return NULL;
760 else if (!(*rmapp & 1)) {
761 if (!spte)
762 return (u64 *)*rmapp;
763 return NULL;
764 }
765 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
766 prev_spte = NULL;
767 while (desc) {
768 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
769 if (prev_spte == spte)
770 return desc->sptes[i];
771 prev_spte = desc->sptes[i];
772 }
773 desc = desc->more;
774 }
775 return NULL;
776}
777
778static int rmap_write_protect(struct kvm *kvm, u64 gfn)
779{
780 unsigned long *rmapp;
781 u64 *spte;
782 int i, write_protected = 0;
783
784 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
785
786 spte = rmap_next(kvm, rmapp, NULL);
787 while (spte) {
788 BUG_ON(!spte);
789 BUG_ON(!(*spte & PT_PRESENT_MASK));
790 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
791 if (is_writable_pte(*spte)) {
792 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
793 write_protected = 1;
794 }
795 spte = rmap_next(kvm, rmapp, spte);
796 }
797
798 /* check for huge page mappings */
799 for (i = PT_DIRECTORY_LEVEL;
800 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
801 rmapp = gfn_to_rmap(kvm, gfn, i);
802 spte = rmap_next(kvm, rmapp, NULL);
803 while (spte) {
804 BUG_ON(!spte);
805 BUG_ON(!(*spte & PT_PRESENT_MASK));
806 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
807 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
808 if (is_writable_pte(*spte)) {
809 drop_spte(kvm, spte,
810 shadow_trap_nonpresent_pte);
811 --kvm->stat.lpages;
812 spte = NULL;
813 write_protected = 1;
814 }
815 spte = rmap_next(kvm, rmapp, spte);
816 }
817 }
818
819 return write_protected;
820}
821
822static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
823 unsigned long data)
824{
825 u64 *spte;
826 int need_tlb_flush = 0;
827
828 while ((spte = rmap_next(kvm, rmapp, NULL))) {
829 BUG_ON(!(*spte & PT_PRESENT_MASK));
830 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
831 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
832 need_tlb_flush = 1;
833 }
834 return need_tlb_flush;
835}
836
837static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
838 unsigned long data)
839{
840 int need_flush = 0;
841 u64 *spte, new_spte;
842 pte_t *ptep = (pte_t *)data;
843 pfn_t new_pfn;
844
845 WARN_ON(pte_huge(*ptep));
846 new_pfn = pte_pfn(*ptep);
847 spte = rmap_next(kvm, rmapp, NULL);
848 while (spte) {
849 BUG_ON(!is_shadow_present_pte(*spte));
850 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
851 need_flush = 1;
852 if (pte_write(*ptep)) {
853 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
854 spte = rmap_next(kvm, rmapp, NULL);
855 } else {
856 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
857 new_spte |= (u64)new_pfn << PAGE_SHIFT;
858
859 new_spte &= ~PT_WRITABLE_MASK;
860 new_spte &= ~SPTE_HOST_WRITEABLE;
861 new_spte &= ~shadow_accessed_mask;
862 set_spte_track_bits(spte, new_spte);
863 spte = rmap_next(kvm, rmapp, spte);
864 }
865 }
866 if (need_flush)
867 kvm_flush_remote_tlbs(kvm);
868
869 return 0;
870}
871
872static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
873 unsigned long data,
874 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
875 unsigned long data))
876{
877 int i, j;
878 int ret;
879 int retval = 0;
880 struct kvm_memslots *slots;
881
882 slots = kvm_memslots(kvm);
883
884 for (i = 0; i < slots->nmemslots; i++) {
885 struct kvm_memory_slot *memslot = &slots->memslots[i];
886 unsigned long start = memslot->userspace_addr;
887 unsigned long end;
888
889 end = start + (memslot->npages << PAGE_SHIFT);
890 if (hva >= start && hva < end) {
891 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
892
893 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
894
895 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
896 unsigned long idx;
897 int sh;
898
899 sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
900 idx = ((memslot->base_gfn+gfn_offset) >> sh) -
901 (memslot->base_gfn >> sh);
902 ret |= handler(kvm,
903 &memslot->lpage_info[j][idx].rmap_pde,
904 data);
905 }
906 trace_kvm_age_page(hva, memslot, ret);
907 retval |= ret;
908 }
909 }
910
911 return retval;
912}
913
914int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
915{
916 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
917}
918
919void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
920{
921 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
922}
923
924static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
925 unsigned long data)
926{
927 u64 *spte;
928 int young = 0;
929
930 /*
931 * Emulate the accessed bit for EPT, by checking if this page has
932 * an EPT mapping, and clearing it if it does. On the next access,
933 * a new EPT mapping will be established.
934 * This has some overhead, but not as much as the cost of swapping
935 * out actively used pages or breaking up actively used hugepages.
936 */
937 if (!shadow_accessed_mask)
938 return kvm_unmap_rmapp(kvm, rmapp, data);
939
940 spte = rmap_next(kvm, rmapp, NULL);
941 while (spte) {
942 int _young;
943 u64 _spte = *spte;
944 BUG_ON(!(_spte & PT_PRESENT_MASK));
945 _young = _spte & PT_ACCESSED_MASK;
946 if (_young) {
947 young = 1;
948 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
949 }
950 spte = rmap_next(kvm, rmapp, spte);
951 }
952 return young;
953}
954
955#define RMAP_RECYCLE_THRESHOLD 1000
956
957static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
958{
959 unsigned long *rmapp;
960 struct kvm_mmu_page *sp;
961
962 sp = page_header(__pa(spte));
963
964 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
965
966 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
967 kvm_flush_remote_tlbs(vcpu->kvm);
968}
969
970int kvm_age_hva(struct kvm *kvm, unsigned long hva)
971{
972 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
973}
974
975#ifdef MMU_DEBUG
976static int is_empty_shadow_page(u64 *spt)
977{
978 u64 *pos;
979 u64 *end;
980
981 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
982 if (is_shadow_present_pte(*pos)) {
983 printk(KERN_ERR "%s: %p %llx\n", __func__,
984 pos, *pos);
985 return 0;
986 }
987 return 1;
988}
989#endif
990
991/*
992 * This value is the sum of all of the kvm instances's
993 * kvm->arch.n_used_mmu_pages values. We need a global,
994 * aggregate version in order to make the slab shrinker
995 * faster
996 */
997static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
998{
999 kvm->arch.n_used_mmu_pages += nr;
1000 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1001}
1002
1003static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1004{
1005 ASSERT(is_empty_shadow_page(sp->spt));
1006 hlist_del(&sp->hash_link);
1007 list_del(&sp->link);
1008 __free_page(virt_to_page(sp->spt));
1009 if (!sp->role.direct)
1010 __free_page(virt_to_page(sp->gfns));
1011 kmem_cache_free(mmu_page_header_cache, sp);
1012 kvm_mod_used_mmu_pages(kvm, -1);
1013}
1014
1015static unsigned kvm_page_table_hashfn(gfn_t gfn)
1016{
1017 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1018}
1019
1020static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1021 u64 *parent_pte, int direct)
1022{
1023 struct kvm_mmu_page *sp;
1024
1025 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1026 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1027 if (!direct)
1028 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1029 PAGE_SIZE);
1030 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1031 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1032 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1033 sp->multimapped = 0;
1034 sp->parent_pte = parent_pte;
1035 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1036 return sp;
1037}
1038
1039static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1040 struct kvm_mmu_page *sp, u64 *parent_pte)
1041{
1042 struct kvm_pte_chain *pte_chain;
1043 struct hlist_node *node;
1044 int i;
1045
1046 if (!parent_pte)
1047 return;
1048 if (!sp->multimapped) {
1049 u64 *old = sp->parent_pte;
1050
1051 if (!old) {
1052 sp->parent_pte = parent_pte;
1053 return;
1054 }
1055 sp->multimapped = 1;
1056 pte_chain = mmu_alloc_pte_chain(vcpu);
1057 INIT_HLIST_HEAD(&sp->parent_ptes);
1058 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1059 pte_chain->parent_ptes[0] = old;
1060 }
1061 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1062 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1063 continue;
1064 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1065 if (!pte_chain->parent_ptes[i]) {
1066 pte_chain->parent_ptes[i] = parent_pte;
1067 return;
1068 }
1069 }
1070 pte_chain = mmu_alloc_pte_chain(vcpu);
1071 BUG_ON(!pte_chain);
1072 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1073 pte_chain->parent_ptes[0] = parent_pte;
1074}
1075
1076static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1077 u64 *parent_pte)
1078{
1079 struct kvm_pte_chain *pte_chain;
1080 struct hlist_node *node;
1081 int i;
1082
1083 if (!sp->multimapped) {
1084 BUG_ON(sp->parent_pte != parent_pte);
1085 sp->parent_pte = NULL;
1086 return;
1087 }
1088 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1089 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1090 if (!pte_chain->parent_ptes[i])
1091 break;
1092 if (pte_chain->parent_ptes[i] != parent_pte)
1093 continue;
1094 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1095 && pte_chain->parent_ptes[i + 1]) {
1096 pte_chain->parent_ptes[i]
1097 = pte_chain->parent_ptes[i + 1];
1098 ++i;
1099 }
1100 pte_chain->parent_ptes[i] = NULL;
1101 if (i == 0) {
1102 hlist_del(&pte_chain->link);
1103 mmu_free_pte_chain(pte_chain);
1104 if (hlist_empty(&sp->parent_ptes)) {
1105 sp->multimapped = 0;
1106 sp->parent_pte = NULL;
1107 }
1108 }
1109 return;
1110 }
1111 BUG();
1112}
1113
1114static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1115{
1116 struct kvm_pte_chain *pte_chain;
1117 struct hlist_node *node;
1118 struct kvm_mmu_page *parent_sp;
1119 int i;
1120
1121 if (!sp->multimapped && sp->parent_pte) {
1122 parent_sp = page_header(__pa(sp->parent_pte));
1123 fn(parent_sp, sp->parent_pte);
1124 return;
1125 }
1126
1127 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1128 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1129 u64 *spte = pte_chain->parent_ptes[i];
1130
1131 if (!spte)
1132 break;
1133 parent_sp = page_header(__pa(spte));
1134 fn(parent_sp, spte);
1135 }
1136}
1137
1138static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1139static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1140{
1141 mmu_parent_walk(sp, mark_unsync);
1142}
1143
1144static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1145{
1146 unsigned int index;
1147
1148 index = spte - sp->spt;
1149 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1150 return;
1151 if (sp->unsync_children++)
1152 return;
1153 kvm_mmu_mark_parents_unsync(sp);
1154}
1155
1156static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1157 struct kvm_mmu_page *sp)
1158{
1159 int i;
1160
1161 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1162 sp->spt[i] = shadow_trap_nonpresent_pte;
1163}
1164
1165static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1166 struct kvm_mmu_page *sp, bool clear_unsync)
1167{
1168 return 1;
1169}
1170
1171static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1172{
1173}
1174
1175#define KVM_PAGE_ARRAY_NR 16
1176
1177struct kvm_mmu_pages {
1178 struct mmu_page_and_offset {
1179 struct kvm_mmu_page *sp;
1180 unsigned int idx;
1181 } page[KVM_PAGE_ARRAY_NR];
1182 unsigned int nr;
1183};
1184
1185#define for_each_unsync_children(bitmap, idx) \
1186 for (idx = find_first_bit(bitmap, 512); \
1187 idx < 512; \
1188 idx = find_next_bit(bitmap, 512, idx+1))
1189
1190static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1191 int idx)
1192{
1193 int i;
1194
1195 if (sp->unsync)
1196 for (i=0; i < pvec->nr; i++)
1197 if (pvec->page[i].sp == sp)
1198 return 0;
1199
1200 pvec->page[pvec->nr].sp = sp;
1201 pvec->page[pvec->nr].idx = idx;
1202 pvec->nr++;
1203 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1204}
1205
1206static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1207 struct kvm_mmu_pages *pvec)
1208{
1209 int i, ret, nr_unsync_leaf = 0;
1210
1211 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1212 struct kvm_mmu_page *child;
1213 u64 ent = sp->spt[i];
1214
1215 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1216 goto clear_child_bitmap;
1217
1218 child = page_header(ent & PT64_BASE_ADDR_MASK);
1219
1220 if (child->unsync_children) {
1221 if (mmu_pages_add(pvec, child, i))
1222 return -ENOSPC;
1223
1224 ret = __mmu_unsync_walk(child, pvec);
1225 if (!ret)
1226 goto clear_child_bitmap;
1227 else if (ret > 0)
1228 nr_unsync_leaf += ret;
1229 else
1230 return ret;
1231 } else if (child->unsync) {
1232 nr_unsync_leaf++;
1233 if (mmu_pages_add(pvec, child, i))
1234 return -ENOSPC;
1235 } else
1236 goto clear_child_bitmap;
1237
1238 continue;
1239
1240clear_child_bitmap:
1241 __clear_bit(i, sp->unsync_child_bitmap);
1242 sp->unsync_children--;
1243 WARN_ON((int)sp->unsync_children < 0);
1244 }
1245
1246
1247 return nr_unsync_leaf;
1248}
1249
1250static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1251 struct kvm_mmu_pages *pvec)
1252{
1253 if (!sp->unsync_children)
1254 return 0;
1255
1256 mmu_pages_add(pvec, sp, 0);
1257 return __mmu_unsync_walk(sp, pvec);
1258}
1259
1260static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1261{
1262 WARN_ON(!sp->unsync);
1263 trace_kvm_mmu_sync_page(sp);
1264 sp->unsync = 0;
1265 --kvm->stat.mmu_unsync;
1266}
1267
1268static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1269 struct list_head *invalid_list);
1270static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1271 struct list_head *invalid_list);
1272
1273#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1274 hlist_for_each_entry(sp, pos, \
1275 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1276 if ((sp)->gfn != (gfn)) {} else
1277
1278#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1279 hlist_for_each_entry(sp, pos, \
1280 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1281 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1282 (sp)->role.invalid) {} else
1283
1284/* @sp->gfn should be write-protected at the call site */
1285static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1286 struct list_head *invalid_list, bool clear_unsync)
1287{
1288 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1289 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1290 return 1;
1291 }
1292
1293 if (clear_unsync)
1294 kvm_unlink_unsync_page(vcpu->kvm, sp);
1295
1296 if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1297 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1298 return 1;
1299 }
1300
1301 kvm_mmu_flush_tlb(vcpu);
1302 return 0;
1303}
1304
1305static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1306 struct kvm_mmu_page *sp)
1307{
1308 LIST_HEAD(invalid_list);
1309 int ret;
1310
1311 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1312 if (ret)
1313 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1314
1315 return ret;
1316}
1317
1318static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1319 struct list_head *invalid_list)
1320{
1321 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1322}
1323
1324/* @gfn should be write-protected at the call site */
1325static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1326{
1327 struct kvm_mmu_page *s;
1328 struct hlist_node *node;
1329 LIST_HEAD(invalid_list);
1330 bool flush = false;
1331
1332 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1333 if (!s->unsync)
1334 continue;
1335
1336 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1337 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1338 (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1339 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1340 continue;
1341 }
1342 kvm_unlink_unsync_page(vcpu->kvm, s);
1343 flush = true;
1344 }
1345
1346 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1347 if (flush)
1348 kvm_mmu_flush_tlb(vcpu);
1349}
1350
1351struct mmu_page_path {
1352 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1353 unsigned int idx[PT64_ROOT_LEVEL-1];
1354};
1355
1356#define for_each_sp(pvec, sp, parents, i) \
1357 for (i = mmu_pages_next(&pvec, &parents, -1), \
1358 sp = pvec.page[i].sp; \
1359 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1360 i = mmu_pages_next(&pvec, &parents, i))
1361
1362static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1363 struct mmu_page_path *parents,
1364 int i)
1365{
1366 int n;
1367
1368 for (n = i+1; n < pvec->nr; n++) {
1369 struct kvm_mmu_page *sp = pvec->page[n].sp;
1370
1371 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1372 parents->idx[0] = pvec->page[n].idx;
1373 return n;
1374 }
1375
1376 parents->parent[sp->role.level-2] = sp;
1377 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1378 }
1379
1380 return n;
1381}
1382
1383static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1384{
1385 struct kvm_mmu_page *sp;
1386 unsigned int level = 0;
1387
1388 do {
1389 unsigned int idx = parents->idx[level];
1390
1391 sp = parents->parent[level];
1392 if (!sp)
1393 return;
1394
1395 --sp->unsync_children;
1396 WARN_ON((int)sp->unsync_children < 0);
1397 __clear_bit(idx, sp->unsync_child_bitmap);
1398 level++;
1399 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1400}
1401
1402static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1403 struct mmu_page_path *parents,
1404 struct kvm_mmu_pages *pvec)
1405{
1406 parents->parent[parent->role.level-1] = NULL;
1407 pvec->nr = 0;
1408}
1409
1410static void mmu_sync_children(struct kvm_vcpu *vcpu,
1411 struct kvm_mmu_page *parent)
1412{
1413 int i;
1414 struct kvm_mmu_page *sp;
1415 struct mmu_page_path parents;
1416 struct kvm_mmu_pages pages;
1417 LIST_HEAD(invalid_list);
1418
1419 kvm_mmu_pages_init(parent, &parents, &pages);
1420 while (mmu_unsync_walk(parent, &pages)) {
1421 int protected = 0;
1422
1423 for_each_sp(pages, sp, parents, i)
1424 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1425
1426 if (protected)
1427 kvm_flush_remote_tlbs(vcpu->kvm);
1428
1429 for_each_sp(pages, sp, parents, i) {
1430 kvm_sync_page(vcpu, sp, &invalid_list);
1431 mmu_pages_clear_parents(&parents);
1432 }
1433 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1434 cond_resched_lock(&vcpu->kvm->mmu_lock);
1435 kvm_mmu_pages_init(parent, &parents, &pages);
1436 }
1437}
1438
1439static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1440 gfn_t gfn,
1441 gva_t gaddr,
1442 unsigned level,
1443 int direct,
1444 unsigned access,
1445 u64 *parent_pte)
1446{
1447 union kvm_mmu_page_role role;
1448 unsigned quadrant;
1449 struct kvm_mmu_page *sp;
1450 struct hlist_node *node;
1451 bool need_sync = false;
1452
1453 role = vcpu->arch.mmu.base_role;
1454 role.level = level;
1455 role.direct = direct;
1456 if (role.direct)
1457 role.cr4_pae = 0;
1458 role.access = access;
1459 if (!vcpu->arch.mmu.direct_map
1460 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1461 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1462 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1463 role.quadrant = quadrant;
1464 }
1465 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1466 if (!need_sync && sp->unsync)
1467 need_sync = true;
1468
1469 if (sp->role.word != role.word)
1470 continue;
1471
1472 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1473 break;
1474
1475 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1476 if (sp->unsync_children) {
1477 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1478 kvm_mmu_mark_parents_unsync(sp);
1479 } else if (sp->unsync)
1480 kvm_mmu_mark_parents_unsync(sp);
1481
1482 trace_kvm_mmu_get_page(sp, false);
1483 return sp;
1484 }
1485 ++vcpu->kvm->stat.mmu_cache_miss;
1486 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1487 if (!sp)
1488 return sp;
1489 sp->gfn = gfn;
1490 sp->role = role;
1491 hlist_add_head(&sp->hash_link,
1492 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1493 if (!direct) {
1494 if (rmap_write_protect(vcpu->kvm, gfn))
1495 kvm_flush_remote_tlbs(vcpu->kvm);
1496 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1497 kvm_sync_pages(vcpu, gfn);
1498
1499 account_shadowed(vcpu->kvm, gfn);
1500 }
1501 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1502 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1503 else
1504 nonpaging_prefetch_page(vcpu, sp);
1505 trace_kvm_mmu_get_page(sp, true);
1506 return sp;
1507}
1508
1509static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1510 struct kvm_vcpu *vcpu, u64 addr)
1511{
1512 iterator->addr = addr;
1513 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1514 iterator->level = vcpu->arch.mmu.shadow_root_level;
1515
1516 if (iterator->level == PT64_ROOT_LEVEL &&
1517 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1518 !vcpu->arch.mmu.direct_map)
1519 --iterator->level;
1520
1521 if (iterator->level == PT32E_ROOT_LEVEL) {
1522 iterator->shadow_addr
1523 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1524 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1525 --iterator->level;
1526 if (!iterator->shadow_addr)
1527 iterator->level = 0;
1528 }
1529}
1530
1531static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1532{
1533 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1534 return false;
1535
1536 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1537 if (is_large_pte(*iterator->sptep))
1538 return false;
1539
1540 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1541 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1542 return true;
1543}
1544
1545static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1546{
1547 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1548 --iterator->level;
1549}
1550
1551static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1552{
1553 u64 spte;
1554
1555 spte = __pa(sp->spt)
1556 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1557 | PT_WRITABLE_MASK | PT_USER_MASK;
1558 __set_spte(sptep, spte);
1559}
1560
1561static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1562{
1563 if (is_large_pte(*sptep)) {
1564 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1565 kvm_flush_remote_tlbs(vcpu->kvm);
1566 }
1567}
1568
1569static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1570 unsigned direct_access)
1571{
1572 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1573 struct kvm_mmu_page *child;
1574
1575 /*
1576 * For the direct sp, if the guest pte's dirty bit
1577 * changed form clean to dirty, it will corrupt the
1578 * sp's access: allow writable in the read-only sp,
1579 * so we should update the spte at this point to get
1580 * a new sp with the correct access.
1581 */
1582 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1583 if (child->role.access == direct_access)
1584 return;
1585
1586 mmu_page_remove_parent_pte(child, sptep);
1587 __set_spte(sptep, shadow_trap_nonpresent_pte);
1588 kvm_flush_remote_tlbs(vcpu->kvm);
1589 }
1590}
1591
1592static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1593 struct kvm_mmu_page *sp)
1594{
1595 unsigned i;
1596 u64 *pt;
1597 u64 ent;
1598
1599 pt = sp->spt;
1600
1601 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1602 ent = pt[i];
1603
1604 if (is_shadow_present_pte(ent)) {
1605 if (!is_last_spte(ent, sp->role.level)) {
1606 ent &= PT64_BASE_ADDR_MASK;
1607 mmu_page_remove_parent_pte(page_header(ent),
1608 &pt[i]);
1609 } else {
1610 if (is_large_pte(ent))
1611 --kvm->stat.lpages;
1612 drop_spte(kvm, &pt[i],
1613 shadow_trap_nonpresent_pte);
1614 }
1615 }
1616 pt[i] = shadow_trap_nonpresent_pte;
1617 }
1618}
1619
1620static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1621{
1622 mmu_page_remove_parent_pte(sp, parent_pte);
1623}
1624
1625static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1626{
1627 int i;
1628 struct kvm_vcpu *vcpu;
1629
1630 kvm_for_each_vcpu(i, vcpu, kvm)
1631 vcpu->arch.last_pte_updated = NULL;
1632}
1633
1634static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1635{
1636 u64 *parent_pte;
1637
1638 while (sp->multimapped || sp->parent_pte) {
1639 if (!sp->multimapped)
1640 parent_pte = sp->parent_pte;
1641 else {
1642 struct kvm_pte_chain *chain;
1643
1644 chain = container_of(sp->parent_ptes.first,
1645 struct kvm_pte_chain, link);
1646 parent_pte = chain->parent_ptes[0];
1647 }
1648 BUG_ON(!parent_pte);
1649 kvm_mmu_put_page(sp, parent_pte);
1650 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1651 }
1652}
1653
1654static int mmu_zap_unsync_children(struct kvm *kvm,
1655 struct kvm_mmu_page *parent,
1656 struct list_head *invalid_list)
1657{
1658 int i, zapped = 0;
1659 struct mmu_page_path parents;
1660 struct kvm_mmu_pages pages;
1661
1662 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1663 return 0;
1664
1665 kvm_mmu_pages_init(parent, &parents, &pages);
1666 while (mmu_unsync_walk(parent, &pages)) {
1667 struct kvm_mmu_page *sp;
1668
1669 for_each_sp(pages, sp, parents, i) {
1670 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1671 mmu_pages_clear_parents(&parents);
1672 zapped++;
1673 }
1674 kvm_mmu_pages_init(parent, &parents, &pages);
1675 }
1676
1677 return zapped;
1678}
1679
1680static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1681 struct list_head *invalid_list)
1682{
1683 int ret;
1684
1685 trace_kvm_mmu_prepare_zap_page(sp);
1686 ++kvm->stat.mmu_shadow_zapped;
1687 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1688 kvm_mmu_page_unlink_children(kvm, sp);
1689 kvm_mmu_unlink_parents(kvm, sp);
1690 if (!sp->role.invalid && !sp->role.direct)
1691 unaccount_shadowed(kvm, sp->gfn);
1692 if (sp->unsync)
1693 kvm_unlink_unsync_page(kvm, sp);
1694 if (!sp->root_count) {
1695 /* Count self */
1696 ret++;
1697 list_move(&sp->link, invalid_list);
1698 } else {
1699 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1700 kvm_reload_remote_mmus(kvm);
1701 }
1702
1703 sp->role.invalid = 1;
1704 kvm_mmu_reset_last_pte_updated(kvm);
1705 return ret;
1706}
1707
1708static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1709 struct list_head *invalid_list)
1710{
1711 struct kvm_mmu_page *sp;
1712
1713 if (list_empty(invalid_list))
1714 return;
1715
1716 kvm_flush_remote_tlbs(kvm);
1717
1718 do {
1719 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1720 WARN_ON(!sp->role.invalid || sp->root_count);
1721 kvm_mmu_free_page(kvm, sp);
1722 } while (!list_empty(invalid_list));
1723
1724}
1725
1726/*
1727 * Changing the number of mmu pages allocated to the vm
1728 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1729 */
1730void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1731{
1732 LIST_HEAD(invalid_list);
1733 /*
1734 * If we set the number of mmu pages to be smaller be than the
1735 * number of actived pages , we must to free some mmu pages before we
1736 * change the value
1737 */
1738
1739 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1740 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1741 !list_empty(&kvm->arch.active_mmu_pages)) {
1742 struct kvm_mmu_page *page;
1743
1744 page = container_of(kvm->arch.active_mmu_pages.prev,
1745 struct kvm_mmu_page, link);
1746 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1747 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1748 }
1749 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1750 }
1751
1752 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1753}
1754
1755static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1756{
1757 struct kvm_mmu_page *sp;
1758 struct hlist_node *node;
1759 LIST_HEAD(invalid_list);
1760 int r;
1761
1762 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1763 r = 0;
1764
1765 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1766 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1767 sp->role.word);
1768 r = 1;
1769 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1770 }
1771 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1772 return r;
1773}
1774
1775static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1776{
1777 struct kvm_mmu_page *sp;
1778 struct hlist_node *node;
1779 LIST_HEAD(invalid_list);
1780
1781 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1782 pgprintk("%s: zap %llx %x\n",
1783 __func__, gfn, sp->role.word);
1784 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1785 }
1786 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1787}
1788
1789static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1790{
1791 int slot = memslot_id(kvm, gfn);
1792 struct kvm_mmu_page *sp = page_header(__pa(pte));
1793
1794 __set_bit(slot, sp->slot_bitmap);
1795}
1796
1797static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1798{
1799 int i;
1800 u64 *pt = sp->spt;
1801
1802 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1803 return;
1804
1805 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1806 if (pt[i] == shadow_notrap_nonpresent_pte)
1807 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1808 }
1809}
1810
1811/*
1812 * The function is based on mtrr_type_lookup() in
1813 * arch/x86/kernel/cpu/mtrr/generic.c
1814 */
1815static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1816 u64 start, u64 end)
1817{
1818 int i;
1819 u64 base, mask;
1820 u8 prev_match, curr_match;
1821 int num_var_ranges = KVM_NR_VAR_MTRR;
1822
1823 if (!mtrr_state->enabled)
1824 return 0xFF;
1825
1826 /* Make end inclusive end, instead of exclusive */
1827 end--;
1828
1829 /* Look in fixed ranges. Just return the type as per start */
1830 if (mtrr_state->have_fixed && (start < 0x100000)) {
1831 int idx;
1832
1833 if (start < 0x80000) {
1834 idx = 0;
1835 idx += (start >> 16);
1836 return mtrr_state->fixed_ranges[idx];
1837 } else if (start < 0xC0000) {
1838 idx = 1 * 8;
1839 idx += ((start - 0x80000) >> 14);
1840 return mtrr_state->fixed_ranges[idx];
1841 } else if (start < 0x1000000) {
1842 idx = 3 * 8;
1843 idx += ((start - 0xC0000) >> 12);
1844 return mtrr_state->fixed_ranges[idx];
1845 }
1846 }
1847
1848 /*
1849 * Look in variable ranges
1850 * Look of multiple ranges matching this address and pick type
1851 * as per MTRR precedence
1852 */
1853 if (!(mtrr_state->enabled & 2))
1854 return mtrr_state->def_type;
1855
1856 prev_match = 0xFF;
1857 for (i = 0; i < num_var_ranges; ++i) {
1858 unsigned short start_state, end_state;
1859
1860 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1861 continue;
1862
1863 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1864 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1865 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1866 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1867
1868 start_state = ((start & mask) == (base & mask));
1869 end_state = ((end & mask) == (base & mask));
1870 if (start_state != end_state)
1871 return 0xFE;
1872
1873 if ((start & mask) != (base & mask))
1874 continue;
1875
1876 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1877 if (prev_match == 0xFF) {
1878 prev_match = curr_match;
1879 continue;
1880 }
1881
1882 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1883 curr_match == MTRR_TYPE_UNCACHABLE)
1884 return MTRR_TYPE_UNCACHABLE;
1885
1886 if ((prev_match == MTRR_TYPE_WRBACK &&
1887 curr_match == MTRR_TYPE_WRTHROUGH) ||
1888 (prev_match == MTRR_TYPE_WRTHROUGH &&
1889 curr_match == MTRR_TYPE_WRBACK)) {
1890 prev_match = MTRR_TYPE_WRTHROUGH;
1891 curr_match = MTRR_TYPE_WRTHROUGH;
1892 }
1893
1894 if (prev_match != curr_match)
1895 return MTRR_TYPE_UNCACHABLE;
1896 }
1897
1898 if (prev_match != 0xFF)
1899 return prev_match;
1900
1901 return mtrr_state->def_type;
1902}
1903
1904u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1905{
1906 u8 mtrr;
1907
1908 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1909 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1910 if (mtrr == 0xfe || mtrr == 0xff)
1911 mtrr = MTRR_TYPE_WRBACK;
1912 return mtrr;
1913}
1914EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1915
1916static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1917{
1918 trace_kvm_mmu_unsync_page(sp);
1919 ++vcpu->kvm->stat.mmu_unsync;
1920 sp->unsync = 1;
1921
1922 kvm_mmu_mark_parents_unsync(sp);
1923 mmu_convert_notrap(sp);
1924}
1925
1926static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1927{
1928 struct kvm_mmu_page *s;
1929 struct hlist_node *node;
1930
1931 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1932 if (s->unsync)
1933 continue;
1934 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1935 __kvm_unsync_page(vcpu, s);
1936 }
1937}
1938
1939static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1940 bool can_unsync)
1941{
1942 struct kvm_mmu_page *s;
1943 struct hlist_node *node;
1944 bool need_unsync = false;
1945
1946 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1947 if (!can_unsync)
1948 return 1;
1949
1950 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1951 return 1;
1952
1953 if (!need_unsync && !s->unsync) {
1954 if (!oos_shadow)
1955 return 1;
1956 need_unsync = true;
1957 }
1958 }
1959 if (need_unsync)
1960 kvm_unsync_pages(vcpu, gfn);
1961 return 0;
1962}
1963
1964static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1965 unsigned pte_access, int user_fault,
1966 int write_fault, int dirty, int level,
1967 gfn_t gfn, pfn_t pfn, bool speculative,
1968 bool can_unsync, bool reset_host_protection)
1969{
1970 u64 spte;
1971 int ret = 0;
1972
1973 /*
1974 * We don't set the accessed bit, since we sometimes want to see
1975 * whether the guest actually used the pte (in order to detect
1976 * demand paging).
1977 */
1978 spte = shadow_base_present_pte;
1979 if (!speculative)
1980 spte |= shadow_accessed_mask;
1981 if (!dirty)
1982 pte_access &= ~ACC_WRITE_MASK;
1983 if (pte_access & ACC_EXEC_MASK)
1984 spte |= shadow_x_mask;
1985 else
1986 spte |= shadow_nx_mask;
1987 if (pte_access & ACC_USER_MASK)
1988 spte |= shadow_user_mask;
1989 if (level > PT_PAGE_TABLE_LEVEL)
1990 spte |= PT_PAGE_SIZE_MASK;
1991 if (tdp_enabled)
1992 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1993 kvm_is_mmio_pfn(pfn));
1994
1995 if (reset_host_protection)
1996 spte |= SPTE_HOST_WRITEABLE;
1997
1998 spte |= (u64)pfn << PAGE_SHIFT;
1999
2000 if ((pte_access & ACC_WRITE_MASK)
2001 || (!vcpu->arch.mmu.direct_map && write_fault
2002 && !is_write_protection(vcpu) && !user_fault)) {
2003
2004 if (level > PT_PAGE_TABLE_LEVEL &&
2005 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2006 ret = 1;
2007 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2008 goto done;
2009 }
2010
2011 spte |= PT_WRITABLE_MASK;
2012
2013 if (!vcpu->arch.mmu.direct_map
2014 && !(pte_access & ACC_WRITE_MASK))
2015 spte &= ~PT_USER_MASK;
2016
2017 /*
2018 * Optimization: for pte sync, if spte was writable the hash
2019 * lookup is unnecessary (and expensive). Write protection
2020 * is responsibility of mmu_get_page / kvm_sync_page.
2021 * Same reasoning can be applied to dirty page accounting.
2022 */
2023 if (!can_unsync && is_writable_pte(*sptep))
2024 goto set_pte;
2025
2026 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2027 pgprintk("%s: found shadow page for %llx, marking ro\n",
2028 __func__, gfn);
2029 ret = 1;
2030 pte_access &= ~ACC_WRITE_MASK;
2031 if (is_writable_pte(spte))
2032 spte &= ~PT_WRITABLE_MASK;
2033 }
2034 }
2035
2036 if (pte_access & ACC_WRITE_MASK)
2037 mark_page_dirty(vcpu->kvm, gfn);
2038
2039set_pte:
2040 update_spte(sptep, spte);
2041done:
2042 return ret;
2043}
2044
2045static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2046 unsigned pt_access, unsigned pte_access,
2047 int user_fault, int write_fault, int dirty,
2048 int *ptwrite, int level, gfn_t gfn,
2049 pfn_t pfn, bool speculative,
2050 bool reset_host_protection)
2051{
2052 int was_rmapped = 0;
2053 int rmap_count;
2054
2055 pgprintk("%s: spte %llx access %x write_fault %d"
2056 " user_fault %d gfn %llx\n",
2057 __func__, *sptep, pt_access,
2058 write_fault, user_fault, gfn);
2059
2060 if (is_rmap_spte(*sptep)) {
2061 /*
2062 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2063 * the parent of the now unreachable PTE.
2064 */
2065 if (level > PT_PAGE_TABLE_LEVEL &&
2066 !is_large_pte(*sptep)) {
2067 struct kvm_mmu_page *child;
2068 u64 pte = *sptep;
2069
2070 child = page_header(pte & PT64_BASE_ADDR_MASK);
2071 mmu_page_remove_parent_pte(child, sptep);
2072 __set_spte(sptep, shadow_trap_nonpresent_pte);
2073 kvm_flush_remote_tlbs(vcpu->kvm);
2074 } else if (pfn != spte_to_pfn(*sptep)) {
2075 pgprintk("hfn old %llx new %llx\n",
2076 spte_to_pfn(*sptep), pfn);
2077 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2078 kvm_flush_remote_tlbs(vcpu->kvm);
2079 } else
2080 was_rmapped = 1;
2081 }
2082
2083 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2084 dirty, level, gfn, pfn, speculative, true,
2085 reset_host_protection)) {
2086 if (write_fault)
2087 *ptwrite = 1;
2088 kvm_mmu_flush_tlb(vcpu);
2089 }
2090
2091 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2092 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2093 is_large_pte(*sptep)? "2MB" : "4kB",
2094 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2095 *sptep, sptep);
2096 if (!was_rmapped && is_large_pte(*sptep))
2097 ++vcpu->kvm->stat.lpages;
2098
2099 page_header_update_slot(vcpu->kvm, sptep, gfn);
2100 if (!was_rmapped) {
2101 rmap_count = rmap_add(vcpu, sptep, gfn);
2102 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2103 rmap_recycle(vcpu, sptep, gfn);
2104 }
2105 kvm_release_pfn_clean(pfn);
2106 if (speculative) {
2107 vcpu->arch.last_pte_updated = sptep;
2108 vcpu->arch.last_pte_gfn = gfn;
2109 }
2110}
2111
2112static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2113{
2114}
2115
2116static struct kvm_memory_slot *
2117pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2118{
2119 struct kvm_memory_slot *slot;
2120
2121 slot = gfn_to_memslot(vcpu->kvm, gfn);
2122 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2123 (no_dirty_log && slot->dirty_bitmap))
2124 slot = NULL;
2125
2126 return slot;
2127}
2128
2129static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2130 bool no_dirty_log)
2131{
2132 struct kvm_memory_slot *slot;
2133 unsigned long hva;
2134
2135 slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2136 if (!slot) {
2137 get_page(bad_page);
2138 return page_to_pfn(bad_page);
2139 }
2140
2141 hva = gfn_to_hva_memslot(slot, gfn);
2142
2143 return hva_to_pfn_atomic(vcpu->kvm, hva);
2144}
2145
2146static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2147 struct kvm_mmu_page *sp,
2148 u64 *start, u64 *end)
2149{
2150 struct page *pages[PTE_PREFETCH_NUM];
2151 unsigned access = sp->role.access;
2152 int i, ret;
2153 gfn_t gfn;
2154
2155 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2156 if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2157 return -1;
2158
2159 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2160 if (ret <= 0)
2161 return -1;
2162
2163 for (i = 0; i < ret; i++, gfn++, start++)
2164 mmu_set_spte(vcpu, start, ACC_ALL,
2165 access, 0, 0, 1, NULL,
2166 sp->role.level, gfn,
2167 page_to_pfn(pages[i]), true, true);
2168
2169 return 0;
2170}
2171
2172static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2173 struct kvm_mmu_page *sp, u64 *sptep)
2174{
2175 u64 *spte, *start = NULL;
2176 int i;
2177
2178 WARN_ON(!sp->role.direct);
2179
2180 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2181 spte = sp->spt + i;
2182
2183 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2184 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2185 if (!start)
2186 continue;
2187 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2188 break;
2189 start = NULL;
2190 } else if (!start)
2191 start = spte;
2192 }
2193}
2194
2195static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2196{
2197 struct kvm_mmu_page *sp;
2198
2199 /*
2200 * Since it's no accessed bit on EPT, it's no way to
2201 * distinguish between actually accessed translations
2202 * and prefetched, so disable pte prefetch if EPT is
2203 * enabled.
2204 */
2205 if (!shadow_accessed_mask)
2206 return;
2207
2208 sp = page_header(__pa(sptep));
2209 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2210 return;
2211
2212 __direct_pte_prefetch(vcpu, sp, sptep);
2213}
2214
2215static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2216 int level, gfn_t gfn, pfn_t pfn)
2217{
2218 struct kvm_shadow_walk_iterator iterator;
2219 struct kvm_mmu_page *sp;
2220 int pt_write = 0;
2221 gfn_t pseudo_gfn;
2222
2223 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2224 if (iterator.level == level) {
2225 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
2226 0, write, 1, &pt_write,
2227 level, gfn, pfn, false, true);
2228 direct_pte_prefetch(vcpu, iterator.sptep);
2229 ++vcpu->stat.pf_fixed;
2230 break;
2231 }
2232
2233 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2234 u64 base_addr = iterator.addr;
2235
2236 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2237 pseudo_gfn = base_addr >> PAGE_SHIFT;
2238 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2239 iterator.level - 1,
2240 1, ACC_ALL, iterator.sptep);
2241 if (!sp) {
2242 pgprintk("nonpaging_map: ENOMEM\n");
2243 kvm_release_pfn_clean(pfn);
2244 return -ENOMEM;
2245 }
2246
2247 __set_spte(iterator.sptep,
2248 __pa(sp->spt)
2249 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2250 | shadow_user_mask | shadow_x_mask
2251 | shadow_accessed_mask);
2252 }
2253 }
2254 return pt_write;
2255}
2256
2257static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2258{
2259 siginfo_t info;
2260
2261 info.si_signo = SIGBUS;
2262 info.si_errno = 0;
2263 info.si_code = BUS_MCEERR_AR;
2264 info.si_addr = (void __user *)address;
2265 info.si_addr_lsb = PAGE_SHIFT;
2266
2267 send_sig_info(SIGBUS, &info, tsk);
2268}
2269
2270static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2271{
2272 kvm_release_pfn_clean(pfn);
2273 if (is_hwpoison_pfn(pfn)) {
2274 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2275 return 0;
2276 } else if (is_fault_pfn(pfn))
2277 return -EFAULT;
2278
2279 return 1;
2280}
2281
2282static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
2283{
2284 int r;
2285 int level;
2286 pfn_t pfn;
2287 unsigned long mmu_seq;
2288
2289 level = mapping_level(vcpu, gfn);
2290
2291 /*
2292 * This path builds a PAE pagetable - so we can map 2mb pages at
2293 * maximum. Therefore check if the level is larger than that.
2294 */
2295 if (level > PT_DIRECTORY_LEVEL)
2296 level = PT_DIRECTORY_LEVEL;
2297
2298 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2299
2300 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2301 smp_rmb();
2302 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2303
2304 /* mmio */
2305 if (is_error_pfn(pfn))
2306 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2307
2308 spin_lock(&vcpu->kvm->mmu_lock);
2309 if (mmu_notifier_retry(vcpu, mmu_seq))
2310 goto out_unlock;
2311 kvm_mmu_free_some_pages(vcpu);
2312 r = __direct_map(vcpu, v, write, level, gfn, pfn);
2313 spin_unlock(&vcpu->kvm->mmu_lock);
2314
2315
2316 return r;
2317
2318out_unlock:
2319 spin_unlock(&vcpu->kvm->mmu_lock);
2320 kvm_release_pfn_clean(pfn);
2321 return 0;
2322}
2323
2324
2325static void mmu_free_roots(struct kvm_vcpu *vcpu)
2326{
2327 int i;
2328 struct kvm_mmu_page *sp;
2329 LIST_HEAD(invalid_list);
2330
2331 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2332 return;
2333 spin_lock(&vcpu->kvm->mmu_lock);
2334 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2335 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2336 vcpu->arch.mmu.direct_map)) {
2337 hpa_t root = vcpu->arch.mmu.root_hpa;
2338
2339 sp = page_header(root);
2340 --sp->root_count;
2341 if (!sp->root_count && sp->role.invalid) {
2342 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2343 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2344 }
2345 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2346 spin_unlock(&vcpu->kvm->mmu_lock);
2347 return;
2348 }
2349 for (i = 0; i < 4; ++i) {
2350 hpa_t root = vcpu->arch.mmu.pae_root[i];
2351
2352 if (root) {
2353 root &= PT64_BASE_ADDR_MASK;
2354 sp = page_header(root);
2355 --sp->root_count;
2356 if (!sp->root_count && sp->role.invalid)
2357 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2358 &invalid_list);
2359 }
2360 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2361 }
2362 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2363 spin_unlock(&vcpu->kvm->mmu_lock);
2364 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2365}
2366
2367static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2368{
2369 int ret = 0;
2370
2371 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2372 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2373 ret = 1;
2374 }
2375
2376 return ret;
2377}
2378
2379static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2380{
2381 struct kvm_mmu_page *sp;
2382 unsigned i;
2383
2384 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2385 spin_lock(&vcpu->kvm->mmu_lock);
2386 kvm_mmu_free_some_pages(vcpu);
2387 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2388 1, ACC_ALL, NULL);
2389 ++sp->root_count;
2390 spin_unlock(&vcpu->kvm->mmu_lock);
2391 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2392 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2393 for (i = 0; i < 4; ++i) {
2394 hpa_t root = vcpu->arch.mmu.pae_root[i];
2395
2396 ASSERT(!VALID_PAGE(root));
2397 spin_lock(&vcpu->kvm->mmu_lock);
2398 kvm_mmu_free_some_pages(vcpu);
2399 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2400 i << 30,
2401 PT32_ROOT_LEVEL, 1, ACC_ALL,
2402 NULL);
2403 root = __pa(sp->spt);
2404 ++sp->root_count;
2405 spin_unlock(&vcpu->kvm->mmu_lock);
2406 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2407 }
2408 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2409 } else
2410 BUG();
2411
2412 return 0;
2413}
2414
2415static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2416{
2417 struct kvm_mmu_page *sp;
2418 u64 pdptr, pm_mask;
2419 gfn_t root_gfn;
2420 int i;
2421
2422 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2423
2424 if (mmu_check_root(vcpu, root_gfn))
2425 return 1;
2426
2427 /*
2428 * Do we shadow a long mode page table? If so we need to
2429 * write-protect the guests page table root.
2430 */
2431 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2432 hpa_t root = vcpu->arch.mmu.root_hpa;
2433
2434 ASSERT(!VALID_PAGE(root));
2435
2436 spin_lock(&vcpu->kvm->mmu_lock);
2437 kvm_mmu_free_some_pages(vcpu);
2438 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2439 0, ACC_ALL, NULL);
2440 root = __pa(sp->spt);
2441 ++sp->root_count;
2442 spin_unlock(&vcpu->kvm->mmu_lock);
2443 vcpu->arch.mmu.root_hpa = root;
2444 return 0;
2445 }
2446
2447 /*
2448 * We shadow a 32 bit page table. This may be a legacy 2-level
2449 * or a PAE 3-level page table. In either case we need to be aware that
2450 * the shadow page table may be a PAE or a long mode page table.
2451 */
2452 pm_mask = PT_PRESENT_MASK;
2453 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2454 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2455
2456 for (i = 0; i < 4; ++i) {
2457 hpa_t root = vcpu->arch.mmu.pae_root[i];
2458
2459 ASSERT(!VALID_PAGE(root));
2460 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2461 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2462 if (!is_present_gpte(pdptr)) {
2463 vcpu->arch.mmu.pae_root[i] = 0;
2464 continue;
2465 }
2466 root_gfn = pdptr >> PAGE_SHIFT;
2467 if (mmu_check_root(vcpu, root_gfn))
2468 return 1;
2469 }
2470 spin_lock(&vcpu->kvm->mmu_lock);
2471 kvm_mmu_free_some_pages(vcpu);
2472 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2473 PT32_ROOT_LEVEL, 0,
2474 ACC_ALL, NULL);
2475 root = __pa(sp->spt);
2476 ++sp->root_count;
2477 spin_unlock(&vcpu->kvm->mmu_lock);
2478
2479 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2480 }
2481 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2482
2483 /*
2484 * If we shadow a 32 bit page table with a long mode page
2485 * table we enter this path.
2486 */
2487 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2488 if (vcpu->arch.mmu.lm_root == NULL) {
2489 /*
2490 * The additional page necessary for this is only
2491 * allocated on demand.
2492 */
2493
2494 u64 *lm_root;
2495
2496 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2497 if (lm_root == NULL)
2498 return 1;
2499
2500 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2501
2502 vcpu->arch.mmu.lm_root = lm_root;
2503 }
2504
2505 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2506 }
2507
2508 return 0;
2509}
2510
2511static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2512{
2513 if (vcpu->arch.mmu.direct_map)
2514 return mmu_alloc_direct_roots(vcpu);
2515 else
2516 return mmu_alloc_shadow_roots(vcpu);
2517}
2518
2519static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2520{
2521 int i;
2522 struct kvm_mmu_page *sp;
2523
2524 if (vcpu->arch.mmu.direct_map)
2525 return;
2526
2527 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2528 return;
2529
2530 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2531 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2532 hpa_t root = vcpu->arch.mmu.root_hpa;
2533 sp = page_header(root);
2534 mmu_sync_children(vcpu, sp);
2535 return;
2536 }
2537 for (i = 0; i < 4; ++i) {
2538 hpa_t root = vcpu->arch.mmu.pae_root[i];
2539
2540 if (root && VALID_PAGE(root)) {
2541 root &= PT64_BASE_ADDR_MASK;
2542 sp = page_header(root);
2543 mmu_sync_children(vcpu, sp);
2544 }
2545 }
2546 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2547}
2548
2549void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2550{
2551 spin_lock(&vcpu->kvm->mmu_lock);
2552 mmu_sync_roots(vcpu);
2553 spin_unlock(&vcpu->kvm->mmu_lock);
2554}
2555
2556static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2557 u32 access, u32 *error)
2558{
2559 if (error)
2560 *error = 0;
2561 return vaddr;
2562}
2563
2564static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2565 u32 access, u32 *error)
2566{
2567 if (error)
2568 *error = 0;
2569 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2570}
2571
2572static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2573 u32 error_code, bool no_apf)
2574{
2575 gfn_t gfn;
2576 int r;
2577
2578 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2579 r = mmu_topup_memory_caches(vcpu);
2580 if (r)
2581 return r;
2582
2583 ASSERT(vcpu);
2584 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2585
2586 gfn = gva >> PAGE_SHIFT;
2587
2588 return nonpaging_map(vcpu, gva & PAGE_MASK,
2589 error_code & PFERR_WRITE_MASK, gfn);
2590}
2591
2592int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2593{
2594 struct kvm_arch_async_pf arch;
2595 arch.gfn = gfn;
2596
2597 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2598}
2599
2600static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2601{
2602 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2603 kvm_event_needs_reinjection(vcpu)))
2604 return false;
2605
2606 return kvm_x86_ops->interrupt_allowed(vcpu);
2607}
2608
2609static bool try_async_pf(struct kvm_vcpu *vcpu, bool no_apf, gfn_t gfn,
2610 gva_t gva, pfn_t *pfn)
2611{
2612 bool async;
2613
2614 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async);
2615
2616 if (!async)
2617 return false; /* *pfn has correct page already */
2618
2619 put_page(pfn_to_page(*pfn));
2620
2621 if (!no_apf && can_do_async_pf(vcpu)) {
2622 trace_kvm_try_async_get_page(async, *pfn);
2623 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2624 trace_kvm_async_pf_doublefault(gva, gfn);
2625 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2626 return true;
2627 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2628 return true;
2629 }
2630
2631 *pfn = gfn_to_pfn(vcpu->kvm, gfn);
2632
2633 return false;
2634}
2635
2636static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2637 bool no_apf)
2638{
2639 pfn_t pfn;
2640 int r;
2641 int level;
2642 gfn_t gfn = gpa >> PAGE_SHIFT;
2643 unsigned long mmu_seq;
2644
2645 ASSERT(vcpu);
2646 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2647
2648 r = mmu_topup_memory_caches(vcpu);
2649 if (r)
2650 return r;
2651
2652 level = mapping_level(vcpu, gfn);
2653
2654 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2655
2656 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2657 smp_rmb();
2658
2659 if (try_async_pf(vcpu, no_apf, gfn, gpa, &pfn))
2660 return 0;
2661
2662 /* mmio */
2663 if (is_error_pfn(pfn))
2664 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2665 spin_lock(&vcpu->kvm->mmu_lock);
2666 if (mmu_notifier_retry(vcpu, mmu_seq))
2667 goto out_unlock;
2668 kvm_mmu_free_some_pages(vcpu);
2669 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2670 level, gfn, pfn);
2671 spin_unlock(&vcpu->kvm->mmu_lock);
2672
2673 return r;
2674
2675out_unlock:
2676 spin_unlock(&vcpu->kvm->mmu_lock);
2677 kvm_release_pfn_clean(pfn);
2678 return 0;
2679}
2680
2681static void nonpaging_free(struct kvm_vcpu *vcpu)
2682{
2683 mmu_free_roots(vcpu);
2684}
2685
2686static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2687 struct kvm_mmu *context)
2688{
2689 context->new_cr3 = nonpaging_new_cr3;
2690 context->page_fault = nonpaging_page_fault;
2691 context->gva_to_gpa = nonpaging_gva_to_gpa;
2692 context->free = nonpaging_free;
2693 context->prefetch_page = nonpaging_prefetch_page;
2694 context->sync_page = nonpaging_sync_page;
2695 context->invlpg = nonpaging_invlpg;
2696 context->root_level = 0;
2697 context->shadow_root_level = PT32E_ROOT_LEVEL;
2698 context->root_hpa = INVALID_PAGE;
2699 context->direct_map = true;
2700 context->nx = false;
2701 return 0;
2702}
2703
2704void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2705{
2706 ++vcpu->stat.tlb_flush;
2707 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2708}
2709
2710static void paging_new_cr3(struct kvm_vcpu *vcpu)
2711{
2712 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2713 mmu_free_roots(vcpu);
2714}
2715
2716static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2717{
2718 return vcpu->arch.cr3;
2719}
2720
2721static void inject_page_fault(struct kvm_vcpu *vcpu)
2722{
2723 vcpu->arch.mmu.inject_page_fault(vcpu);
2724}
2725
2726static void paging_free(struct kvm_vcpu *vcpu)
2727{
2728 nonpaging_free(vcpu);
2729}
2730
2731static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2732{
2733 int bit7;
2734
2735 bit7 = (gpte >> 7) & 1;
2736 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2737}
2738
2739#define PTTYPE 64
2740#include "paging_tmpl.h"
2741#undef PTTYPE
2742
2743#define PTTYPE 32
2744#include "paging_tmpl.h"
2745#undef PTTYPE
2746
2747static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2748 struct kvm_mmu *context,
2749 int level)
2750{
2751 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2752 u64 exb_bit_rsvd = 0;
2753
2754 if (!context->nx)
2755 exb_bit_rsvd = rsvd_bits(63, 63);
2756 switch (level) {
2757 case PT32_ROOT_LEVEL:
2758 /* no rsvd bits for 2 level 4K page table entries */
2759 context->rsvd_bits_mask[0][1] = 0;
2760 context->rsvd_bits_mask[0][0] = 0;
2761 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2762
2763 if (!is_pse(vcpu)) {
2764 context->rsvd_bits_mask[1][1] = 0;
2765 break;
2766 }
2767
2768 if (is_cpuid_PSE36())
2769 /* 36bits PSE 4MB page */
2770 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2771 else
2772 /* 32 bits PSE 4MB page */
2773 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2774 break;
2775 case PT32E_ROOT_LEVEL:
2776 context->rsvd_bits_mask[0][2] =
2777 rsvd_bits(maxphyaddr, 63) |
2778 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2779 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2780 rsvd_bits(maxphyaddr, 62); /* PDE */
2781 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2782 rsvd_bits(maxphyaddr, 62); /* PTE */
2783 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2784 rsvd_bits(maxphyaddr, 62) |
2785 rsvd_bits(13, 20); /* large page */
2786 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2787 break;
2788 case PT64_ROOT_LEVEL:
2789 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2790 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2791 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2792 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2793 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2794 rsvd_bits(maxphyaddr, 51);
2795 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2796 rsvd_bits(maxphyaddr, 51);
2797 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2798 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2799 rsvd_bits(maxphyaddr, 51) |
2800 rsvd_bits(13, 29);
2801 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2802 rsvd_bits(maxphyaddr, 51) |
2803 rsvd_bits(13, 20); /* large page */
2804 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2805 break;
2806 }
2807}
2808
2809static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2810 struct kvm_mmu *context,
2811 int level)
2812{
2813 context->nx = is_nx(vcpu);
2814
2815 reset_rsvds_bits_mask(vcpu, context, level);
2816
2817 ASSERT(is_pae(vcpu));
2818 context->new_cr3 = paging_new_cr3;
2819 context->page_fault = paging64_page_fault;
2820 context->gva_to_gpa = paging64_gva_to_gpa;
2821 context->prefetch_page = paging64_prefetch_page;
2822 context->sync_page = paging64_sync_page;
2823 context->invlpg = paging64_invlpg;
2824 context->free = paging_free;
2825 context->root_level = level;
2826 context->shadow_root_level = level;
2827 context->root_hpa = INVALID_PAGE;
2828 context->direct_map = false;
2829 return 0;
2830}
2831
2832static int paging64_init_context(struct kvm_vcpu *vcpu,
2833 struct kvm_mmu *context)
2834{
2835 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2836}
2837
2838static int paging32_init_context(struct kvm_vcpu *vcpu,
2839 struct kvm_mmu *context)
2840{
2841 context->nx = false;
2842
2843 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2844
2845 context->new_cr3 = paging_new_cr3;
2846 context->page_fault = paging32_page_fault;
2847 context->gva_to_gpa = paging32_gva_to_gpa;
2848 context->free = paging_free;
2849 context->prefetch_page = paging32_prefetch_page;
2850 context->sync_page = paging32_sync_page;
2851 context->invlpg = paging32_invlpg;
2852 context->root_level = PT32_ROOT_LEVEL;
2853 context->shadow_root_level = PT32E_ROOT_LEVEL;
2854 context->root_hpa = INVALID_PAGE;
2855 context->direct_map = false;
2856 return 0;
2857}
2858
2859static int paging32E_init_context(struct kvm_vcpu *vcpu,
2860 struct kvm_mmu *context)
2861{
2862 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2863}
2864
2865static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2866{
2867 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2868
2869 context->new_cr3 = nonpaging_new_cr3;
2870 context->page_fault = tdp_page_fault;
2871 context->free = nonpaging_free;
2872 context->prefetch_page = nonpaging_prefetch_page;
2873 context->sync_page = nonpaging_sync_page;
2874 context->invlpg = nonpaging_invlpg;
2875 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2876 context->root_hpa = INVALID_PAGE;
2877 context->direct_map = true;
2878 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2879 context->get_cr3 = get_cr3;
2880 context->inject_page_fault = kvm_inject_page_fault;
2881 context->nx = is_nx(vcpu);
2882
2883 if (!is_paging(vcpu)) {
2884 context->nx = false;
2885 context->gva_to_gpa = nonpaging_gva_to_gpa;
2886 context->root_level = 0;
2887 } else if (is_long_mode(vcpu)) {
2888 context->nx = is_nx(vcpu);
2889 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2890 context->gva_to_gpa = paging64_gva_to_gpa;
2891 context->root_level = PT64_ROOT_LEVEL;
2892 } else if (is_pae(vcpu)) {
2893 context->nx = is_nx(vcpu);
2894 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2895 context->gva_to_gpa = paging64_gva_to_gpa;
2896 context->root_level = PT32E_ROOT_LEVEL;
2897 } else {
2898 context->nx = false;
2899 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2900 context->gva_to_gpa = paging32_gva_to_gpa;
2901 context->root_level = PT32_ROOT_LEVEL;
2902 }
2903
2904 return 0;
2905}
2906
2907int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2908{
2909 int r;
2910 ASSERT(vcpu);
2911 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2912
2913 if (!is_paging(vcpu))
2914 r = nonpaging_init_context(vcpu, context);
2915 else if (is_long_mode(vcpu))
2916 r = paging64_init_context(vcpu, context);
2917 else if (is_pae(vcpu))
2918 r = paging32E_init_context(vcpu, context);
2919 else
2920 r = paging32_init_context(vcpu, context);
2921
2922 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2923 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2924
2925 return r;
2926}
2927EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2928
2929static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2930{
2931 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2932
2933 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
2934 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
2935 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2936
2937 return r;
2938}
2939
2940static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2941{
2942 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2943
2944 g_context->get_cr3 = get_cr3;
2945 g_context->inject_page_fault = kvm_inject_page_fault;
2946
2947 /*
2948 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
2949 * translation of l2_gpa to l1_gpa addresses is done using the
2950 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
2951 * functions between mmu and nested_mmu are swapped.
2952 */
2953 if (!is_paging(vcpu)) {
2954 g_context->nx = false;
2955 g_context->root_level = 0;
2956 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
2957 } else if (is_long_mode(vcpu)) {
2958 g_context->nx = is_nx(vcpu);
2959 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
2960 g_context->root_level = PT64_ROOT_LEVEL;
2961 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2962 } else if (is_pae(vcpu)) {
2963 g_context->nx = is_nx(vcpu);
2964 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
2965 g_context->root_level = PT32E_ROOT_LEVEL;
2966 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2967 } else {
2968 g_context->nx = false;
2969 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
2970 g_context->root_level = PT32_ROOT_LEVEL;
2971 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
2972 }
2973
2974 return 0;
2975}
2976
2977static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2978{
2979 vcpu->arch.update_pte.pfn = bad_pfn;
2980
2981 if (mmu_is_nested(vcpu))
2982 return init_kvm_nested_mmu(vcpu);
2983 else if (tdp_enabled)
2984 return init_kvm_tdp_mmu(vcpu);
2985 else
2986 return init_kvm_softmmu(vcpu);
2987}
2988
2989static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2990{
2991 ASSERT(vcpu);
2992 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
2993 /* mmu.free() should set root_hpa = INVALID_PAGE */
2994 vcpu->arch.mmu.free(vcpu);
2995}
2996
2997int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2998{
2999 destroy_kvm_mmu(vcpu);
3000 return init_kvm_mmu(vcpu);
3001}
3002EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3003
3004int kvm_mmu_load(struct kvm_vcpu *vcpu)
3005{
3006 int r;
3007
3008 r = mmu_topup_memory_caches(vcpu);
3009 if (r)
3010 goto out;
3011 r = mmu_alloc_roots(vcpu);
3012 spin_lock(&vcpu->kvm->mmu_lock);
3013 mmu_sync_roots(vcpu);
3014 spin_unlock(&vcpu->kvm->mmu_lock);
3015 if (r)
3016 goto out;
3017 /* set_cr3() should ensure TLB has been flushed */
3018 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3019out:
3020 return r;
3021}
3022EXPORT_SYMBOL_GPL(kvm_mmu_load);
3023
3024void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3025{
3026 mmu_free_roots(vcpu);
3027}
3028EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3029
3030static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
3031 struct kvm_mmu_page *sp,
3032 u64 *spte)
3033{
3034 u64 pte;
3035 struct kvm_mmu_page *child;
3036
3037 pte = *spte;
3038 if (is_shadow_present_pte(pte)) {
3039 if (is_last_spte(pte, sp->role.level))
3040 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
3041 else {
3042 child = page_header(pte & PT64_BASE_ADDR_MASK);
3043 mmu_page_remove_parent_pte(child, spte);
3044 }
3045 }
3046 __set_spte(spte, shadow_trap_nonpresent_pte);
3047 if (is_large_pte(pte))
3048 --vcpu->kvm->stat.lpages;
3049}
3050
3051static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3052 struct kvm_mmu_page *sp,
3053 u64 *spte,
3054 const void *new)
3055{
3056 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3057 ++vcpu->kvm->stat.mmu_pde_zapped;
3058 return;
3059 }
3060
3061 if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
3062 return;
3063
3064 ++vcpu->kvm->stat.mmu_pte_updated;
3065 if (!sp->role.cr4_pae)
3066 paging32_update_pte(vcpu, sp, spte, new);
3067 else
3068 paging64_update_pte(vcpu, sp, spte, new);
3069}
3070
3071static bool need_remote_flush(u64 old, u64 new)
3072{
3073 if (!is_shadow_present_pte(old))
3074 return false;
3075 if (!is_shadow_present_pte(new))
3076 return true;
3077 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3078 return true;
3079 old ^= PT64_NX_MASK;
3080 new ^= PT64_NX_MASK;
3081 return (old & ~new & PT64_PERM_MASK) != 0;
3082}
3083
3084static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3085 bool remote_flush, bool local_flush)
3086{
3087 if (zap_page)
3088 return;
3089
3090 if (remote_flush)
3091 kvm_flush_remote_tlbs(vcpu->kvm);
3092 else if (local_flush)
3093 kvm_mmu_flush_tlb(vcpu);
3094}
3095
3096static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3097{
3098 u64 *spte = vcpu->arch.last_pte_updated;
3099
3100 return !!(spte && (*spte & shadow_accessed_mask));
3101}
3102
3103static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3104 u64 gpte)
3105{
3106 gfn_t gfn;
3107 pfn_t pfn;
3108
3109 if (!is_present_gpte(gpte))
3110 return;
3111 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
3112
3113 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
3114 smp_rmb();
3115 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3116
3117 if (is_error_pfn(pfn)) {
3118 kvm_release_pfn_clean(pfn);
3119 return;
3120 }
3121 vcpu->arch.update_pte.gfn = gfn;
3122 vcpu->arch.update_pte.pfn = pfn;
3123}
3124
3125static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3126{
3127 u64 *spte = vcpu->arch.last_pte_updated;
3128
3129 if (spte
3130 && vcpu->arch.last_pte_gfn == gfn
3131 && shadow_accessed_mask
3132 && !(*spte & shadow_accessed_mask)
3133 && is_shadow_present_pte(*spte))
3134 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3135}
3136
3137void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3138 const u8 *new, int bytes,
3139 bool guest_initiated)
3140{
3141 gfn_t gfn = gpa >> PAGE_SHIFT;
3142 union kvm_mmu_page_role mask = { .word = 0 };
3143 struct kvm_mmu_page *sp;
3144 struct hlist_node *node;
3145 LIST_HEAD(invalid_list);
3146 u64 entry, gentry;
3147 u64 *spte;
3148 unsigned offset = offset_in_page(gpa);
3149 unsigned pte_size;
3150 unsigned page_offset;
3151 unsigned misaligned;
3152 unsigned quadrant;
3153 int level;
3154 int flooded = 0;
3155 int npte;
3156 int r;
3157 int invlpg_counter;
3158 bool remote_flush, local_flush, zap_page;
3159
3160 zap_page = remote_flush = local_flush = false;
3161
3162 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3163
3164 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3165
3166 /*
3167 * Assume that the pte write on a page table of the same type
3168 * as the current vcpu paging mode. This is nearly always true
3169 * (might be false while changing modes). Note it is verified later
3170 * by update_pte().
3171 */
3172 if ((is_pae(vcpu) && bytes == 4) || !new) {
3173 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3174 if (is_pae(vcpu)) {
3175 gpa &= ~(gpa_t)7;
3176 bytes = 8;
3177 }
3178 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3179 if (r)
3180 gentry = 0;
3181 new = (const u8 *)&gentry;
3182 }
3183
3184 switch (bytes) {
3185 case 4:
3186 gentry = *(const u32 *)new;
3187 break;
3188 case 8:
3189 gentry = *(const u64 *)new;
3190 break;
3191 default:
3192 gentry = 0;
3193 break;
3194 }
3195
3196 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3197 spin_lock(&vcpu->kvm->mmu_lock);
3198 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3199 gentry = 0;
3200 kvm_mmu_access_page(vcpu, gfn);
3201 kvm_mmu_free_some_pages(vcpu);
3202 ++vcpu->kvm->stat.mmu_pte_write;
3203 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3204 if (guest_initiated) {
3205 if (gfn == vcpu->arch.last_pt_write_gfn
3206 && !last_updated_pte_accessed(vcpu)) {
3207 ++vcpu->arch.last_pt_write_count;
3208 if (vcpu->arch.last_pt_write_count >= 3)
3209 flooded = 1;
3210 } else {
3211 vcpu->arch.last_pt_write_gfn = gfn;
3212 vcpu->arch.last_pt_write_count = 1;
3213 vcpu->arch.last_pte_updated = NULL;
3214 }
3215 }
3216
3217 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3218 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3219 pte_size = sp->role.cr4_pae ? 8 : 4;
3220 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3221 misaligned |= bytes < 4;
3222 if (misaligned || flooded) {
3223 /*
3224 * Misaligned accesses are too much trouble to fix
3225 * up; also, they usually indicate a page is not used
3226 * as a page table.
3227 *
3228 * If we're seeing too many writes to a page,
3229 * it may no longer be a page table, or we may be
3230 * forking, in which case it is better to unmap the
3231 * page.
3232 */
3233 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3234 gpa, bytes, sp->role.word);
3235 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3236 &invalid_list);
3237 ++vcpu->kvm->stat.mmu_flooded;
3238 continue;
3239 }
3240 page_offset = offset;
3241 level = sp->role.level;
3242 npte = 1;
3243 if (!sp->role.cr4_pae) {
3244 page_offset <<= 1; /* 32->64 */
3245 /*
3246 * A 32-bit pde maps 4MB while the shadow pdes map
3247 * only 2MB. So we need to double the offset again
3248 * and zap two pdes instead of one.
3249 */
3250 if (level == PT32_ROOT_LEVEL) {
3251 page_offset &= ~7; /* kill rounding error */
3252 page_offset <<= 1;
3253 npte = 2;
3254 }
3255 quadrant = page_offset >> PAGE_SHIFT;
3256 page_offset &= ~PAGE_MASK;
3257 if (quadrant != sp->role.quadrant)
3258 continue;
3259 }
3260 local_flush = true;
3261 spte = &sp->spt[page_offset / sizeof(*spte)];
3262 while (npte--) {
3263 entry = *spte;
3264 mmu_pte_write_zap_pte(vcpu, sp, spte);
3265 if (gentry &&
3266 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3267 & mask.word))
3268 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3269 if (!remote_flush && need_remote_flush(entry, *spte))
3270 remote_flush = true;
3271 ++spte;
3272 }
3273 }
3274 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3275 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3276 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3277 spin_unlock(&vcpu->kvm->mmu_lock);
3278 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3279 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3280 vcpu->arch.update_pte.pfn = bad_pfn;
3281 }
3282}
3283
3284int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3285{
3286 gpa_t gpa;
3287 int r;
3288
3289 if (vcpu->arch.mmu.direct_map)
3290 return 0;
3291
3292 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3293
3294 spin_lock(&vcpu->kvm->mmu_lock);
3295 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3296 spin_unlock(&vcpu->kvm->mmu_lock);
3297 return r;
3298}
3299EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3300
3301void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3302{
3303 LIST_HEAD(invalid_list);
3304
3305 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3306 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3307 struct kvm_mmu_page *sp;
3308
3309 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3310 struct kvm_mmu_page, link);
3311 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3312 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3313 ++vcpu->kvm->stat.mmu_recycled;
3314 }
3315}
3316
3317int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
3318{
3319 int r;
3320 enum emulation_result er;
3321
3322 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3323 if (r < 0)
3324 goto out;
3325
3326 if (!r) {
3327 r = 1;
3328 goto out;
3329 }
3330
3331 r = mmu_topup_memory_caches(vcpu);
3332 if (r)
3333 goto out;
3334
3335 er = emulate_instruction(vcpu, cr2, error_code, 0);
3336
3337 switch (er) {
3338 case EMULATE_DONE:
3339 return 1;
3340 case EMULATE_DO_MMIO:
3341 ++vcpu->stat.mmio_exits;
3342 /* fall through */
3343 case EMULATE_FAIL:
3344 return 0;
3345 default:
3346 BUG();
3347 }
3348out:
3349 return r;
3350}
3351EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3352
3353void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3354{
3355 vcpu->arch.mmu.invlpg(vcpu, gva);
3356 kvm_mmu_flush_tlb(vcpu);
3357 ++vcpu->stat.invlpg;
3358}
3359EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3360
3361void kvm_enable_tdp(void)
3362{
3363 tdp_enabled = true;
3364}
3365EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3366
3367void kvm_disable_tdp(void)
3368{
3369 tdp_enabled = false;
3370}
3371EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3372
3373static void free_mmu_pages(struct kvm_vcpu *vcpu)
3374{
3375 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3376 if (vcpu->arch.mmu.lm_root != NULL)
3377 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3378}
3379
3380static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3381{
3382 struct page *page;
3383 int i;
3384
3385 ASSERT(vcpu);
3386
3387 /*
3388 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3389 * Therefore we need to allocate shadow page tables in the first
3390 * 4GB of memory, which happens to fit the DMA32 zone.
3391 */
3392 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3393 if (!page)
3394 return -ENOMEM;
3395
3396 vcpu->arch.mmu.pae_root = page_address(page);
3397 for (i = 0; i < 4; ++i)
3398 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3399
3400 return 0;
3401}
3402
3403int kvm_mmu_create(struct kvm_vcpu *vcpu)
3404{
3405 ASSERT(vcpu);
3406 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3407
3408 return alloc_mmu_pages(vcpu);
3409}
3410
3411int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3412{
3413 ASSERT(vcpu);
3414 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3415
3416 return init_kvm_mmu(vcpu);
3417}
3418
3419void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3420{
3421 struct kvm_mmu_page *sp;
3422
3423 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3424 int i;
3425 u64 *pt;
3426
3427 if (!test_bit(slot, sp->slot_bitmap))
3428 continue;
3429
3430 pt = sp->spt;
3431 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3432 /* avoid RMW */
3433 if (is_writable_pte(pt[i]))
3434 pt[i] &= ~PT_WRITABLE_MASK;
3435 }
3436 kvm_flush_remote_tlbs(kvm);
3437}
3438
3439void kvm_mmu_zap_all(struct kvm *kvm)
3440{
3441 struct kvm_mmu_page *sp, *node;
3442 LIST_HEAD(invalid_list);
3443
3444 spin_lock(&kvm->mmu_lock);
3445restart:
3446 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3447 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3448 goto restart;
3449
3450 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3451 spin_unlock(&kvm->mmu_lock);
3452}
3453
3454static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3455 struct list_head *invalid_list)
3456{
3457 struct kvm_mmu_page *page;
3458
3459 page = container_of(kvm->arch.active_mmu_pages.prev,
3460 struct kvm_mmu_page, link);
3461 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3462}
3463
3464static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3465{
3466 struct kvm *kvm;
3467 struct kvm *kvm_freed = NULL;
3468
3469 if (nr_to_scan == 0)
3470 goto out;
3471
3472 spin_lock(&kvm_lock);
3473
3474 list_for_each_entry(kvm, &vm_list, vm_list) {
3475 int idx, freed_pages;
3476 LIST_HEAD(invalid_list);
3477
3478 idx = srcu_read_lock(&kvm->srcu);
3479 spin_lock(&kvm->mmu_lock);
3480 if (!kvm_freed && nr_to_scan > 0 &&
3481 kvm->arch.n_used_mmu_pages > 0) {
3482 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3483 &invalid_list);
3484 kvm_freed = kvm;
3485 }
3486 nr_to_scan--;
3487
3488 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3489 spin_unlock(&kvm->mmu_lock);
3490 srcu_read_unlock(&kvm->srcu, idx);
3491 }
3492 if (kvm_freed)
3493 list_move_tail(&kvm_freed->vm_list, &vm_list);
3494
3495 spin_unlock(&kvm_lock);
3496
3497out:
3498 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3499}
3500
3501static struct shrinker mmu_shrinker = {
3502 .shrink = mmu_shrink,
3503 .seeks = DEFAULT_SEEKS * 10,
3504};
3505
3506static void mmu_destroy_caches(void)
3507{
3508 if (pte_chain_cache)
3509 kmem_cache_destroy(pte_chain_cache);
3510 if (rmap_desc_cache)
3511 kmem_cache_destroy(rmap_desc_cache);
3512 if (mmu_page_header_cache)
3513 kmem_cache_destroy(mmu_page_header_cache);
3514}
3515
3516void kvm_mmu_module_exit(void)
3517{
3518 mmu_destroy_caches();
3519 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3520 unregister_shrinker(&mmu_shrinker);
3521}
3522
3523int kvm_mmu_module_init(void)
3524{
3525 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3526 sizeof(struct kvm_pte_chain),
3527 0, 0, NULL);
3528 if (!pte_chain_cache)
3529 goto nomem;
3530 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3531 sizeof(struct kvm_rmap_desc),
3532 0, 0, NULL);
3533 if (!rmap_desc_cache)
3534 goto nomem;
3535
3536 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3537 sizeof(struct kvm_mmu_page),
3538 0, 0, NULL);
3539 if (!mmu_page_header_cache)
3540 goto nomem;
3541
3542 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3543 goto nomem;
3544
3545 register_shrinker(&mmu_shrinker);
3546
3547 return 0;
3548
3549nomem:
3550 mmu_destroy_caches();
3551 return -ENOMEM;
3552}
3553
3554/*
3555 * Caculate mmu pages needed for kvm.
3556 */
3557unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3558{
3559 int i;
3560 unsigned int nr_mmu_pages;
3561 unsigned int nr_pages = 0;
3562 struct kvm_memslots *slots;
3563
3564 slots = kvm_memslots(kvm);
3565
3566 for (i = 0; i < slots->nmemslots; i++)
3567 nr_pages += slots->memslots[i].npages;
3568
3569 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3570 nr_mmu_pages = max(nr_mmu_pages,
3571 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3572
3573 return nr_mmu_pages;
3574}
3575
3576static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3577 unsigned len)
3578{
3579 if (len > buffer->len)
3580 return NULL;
3581 return buffer->ptr;
3582}
3583
3584static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3585 unsigned len)
3586{
3587 void *ret;
3588
3589 ret = pv_mmu_peek_buffer(buffer, len);
3590 if (!ret)
3591 return ret;
3592 buffer->ptr += len;
3593 buffer->len -= len;
3594 buffer->processed += len;
3595 return ret;
3596}
3597
3598static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3599 gpa_t addr, gpa_t value)
3600{
3601 int bytes = 8;
3602 int r;
3603
3604 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3605 bytes = 4;
3606
3607 r = mmu_topup_memory_caches(vcpu);
3608 if (r)
3609 return r;
3610
3611 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3612 return -EFAULT;
3613
3614 return 1;
3615}
3616
3617static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3618{
3619 (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3620 return 1;
3621}
3622
3623static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3624{
3625 spin_lock(&vcpu->kvm->mmu_lock);
3626 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3627 spin_unlock(&vcpu->kvm->mmu_lock);
3628 return 1;
3629}
3630
3631static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3632 struct kvm_pv_mmu_op_buffer *buffer)
3633{
3634 struct kvm_mmu_op_header *header;
3635
3636 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3637 if (!header)
3638 return 0;
3639 switch (header->op) {
3640 case KVM_MMU_OP_WRITE_PTE: {
3641 struct kvm_mmu_op_write_pte *wpte;
3642
3643 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3644 if (!wpte)
3645 return 0;
3646 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3647 wpte->pte_val);
3648 }
3649 case KVM_MMU_OP_FLUSH_TLB: {
3650 struct kvm_mmu_op_flush_tlb *ftlb;
3651
3652 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3653 if (!ftlb)
3654 return 0;
3655 return kvm_pv_mmu_flush_tlb(vcpu);
3656 }
3657 case KVM_MMU_OP_RELEASE_PT: {
3658 struct kvm_mmu_op_release_pt *rpt;
3659
3660 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3661 if (!rpt)
3662 return 0;
3663 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3664 }
3665 default: return 0;
3666 }
3667}
3668
3669int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3670 gpa_t addr, unsigned long *ret)
3671{
3672 int r;
3673 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3674
3675 buffer->ptr = buffer->buf;
3676 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3677 buffer->processed = 0;
3678
3679 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3680 if (r)
3681 goto out;
3682
3683 while (buffer->len) {
3684 r = kvm_pv_mmu_op_one(vcpu, buffer);
3685 if (r < 0)
3686 goto out;
3687 if (r == 0)
3688 break;
3689 }
3690
3691 r = 1;
3692out:
3693 *ret = buffer->processed;
3694 return r;
3695}
3696
3697int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3698{
3699 struct kvm_shadow_walk_iterator iterator;
3700 int nr_sptes = 0;
3701
3702 spin_lock(&vcpu->kvm->mmu_lock);
3703 for_each_shadow_entry(vcpu, addr, iterator) {
3704 sptes[iterator.level-1] = *iterator.sptep;
3705 nr_sptes++;
3706 if (!is_shadow_present_pte(*iterator.sptep))
3707 break;
3708 }
3709 spin_unlock(&vcpu->kvm->mmu_lock);
3710
3711 return nr_sptes;
3712}
3713EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3714
3715#ifdef CONFIG_KVM_MMU_AUDIT
3716#include "mmu_audit.c"
3717#else
3718static void mmu_audit_disable(void) { }
3719#endif
3720
3721void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3722{
3723 ASSERT(vcpu);
3724
3725 destroy_kvm_mmu(vcpu);
3726 free_mmu_pages(vcpu);
3727 mmu_free_memory_caches(vcpu);
3728 mmu_audit_disable();
3729}
This page took 0.036088 seconds and 5 git commands to generate.