* cris/traps.c (cris_break_13_handler) <case TARGET_SYS_mmap2>:
[deliverable/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22/* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34/* For sparc64-cross-sparc32. */
35#define _SYSCALL32
36#include "bfd.h"
37#include "sysdep.h"
38#include "bfdlink.h"
39#include "libbfd.h"
40#define ARCH_SIZE 0
41#include "elf-bfd.h"
42#include "libiberty.h"
43
44static int elf_sort_sections (const void *, const void *);
45static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46static bfd_boolean prep_headers (bfd *);
47static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50/* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54/* Swap in a Verdef structure. */
55
56void
57_bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60{
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68}
69
70/* Swap out a Verdef structure. */
71
72void
73_bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76{
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84}
85
86/* Swap in a Verdaux structure. */
87
88void
89_bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92{
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95}
96
97/* Swap out a Verdaux structure. */
98
99void
100_bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103{
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106}
107
108/* Swap in a Verneed structure. */
109
110void
111_bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114{
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120}
121
122/* Swap out a Verneed structure. */
123
124void
125_bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128{
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134}
135
136/* Swap in a Vernaux structure. */
137
138void
139_bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142{
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148}
149
150/* Swap out a Vernaux structure. */
151
152void
153_bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156{
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162}
163
164/* Swap in a Versym structure. */
165
166void
167_bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170{
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172}
173
174/* Swap out a Versym structure. */
175
176void
177_bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180{
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182}
183
184/* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187unsigned long
188bfd_elf_hash (const char *namearg)
189{
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207}
208
209/* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213static bfd_byte *
214elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215{
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229}
230
231bfd_boolean
232bfd_elf_mkobject (bfd *abfd)
233{
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243}
244
245bfd_boolean
246bfd_elf_mkcorefile (bfd *abfd)
247{
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250}
251
252char *
253bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254{
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274}
275
276char *
277bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280{
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305}
306
307/* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313Elf_Internal_Sym *
314bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321{
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404}
405
406/* Look up a symbol name. */
407const char *
408bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym)
411{
412 unsigned int iname = isym->st_name;
413 unsigned int shindex = symtab_hdr->sh_link;
414 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
415 /* Check for a bogus st_shndx to avoid crashing. */
416 && isym->st_shndx < elf_numsections (abfd)
417 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
418 {
419 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
420 shindex = elf_elfheader (abfd)->e_shstrndx;
421 }
422
423 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
424}
425
426/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
427 sections. The first element is the flags, the rest are section
428 pointers. */
429
430typedef union elf_internal_group {
431 Elf_Internal_Shdr *shdr;
432 unsigned int flags;
433} Elf_Internal_Group;
434
435/* Return the name of the group signature symbol. Why isn't the
436 signature just a string? */
437
438static const char *
439group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
440{
441 Elf_Internal_Shdr *hdr;
442 unsigned char esym[sizeof (Elf64_External_Sym)];
443 Elf_External_Sym_Shndx eshndx;
444 Elf_Internal_Sym isym;
445
446 /* First we need to ensure the symbol table is available. */
447 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
448 return NULL;
449
450 /* Go read the symbol. */
451 hdr = &elf_tdata (abfd)->symtab_hdr;
452 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
453 &isym, esym, &eshndx) == NULL)
454 return NULL;
455
456 return bfd_elf_sym_name (abfd, hdr, &isym);
457}
458
459/* Set next_in_group list pointer, and group name for NEWSECT. */
460
461static bfd_boolean
462setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
463{
464 unsigned int num_group = elf_tdata (abfd)->num_group;
465
466 /* If num_group is zero, read in all SHT_GROUP sections. The count
467 is set to -1 if there are no SHT_GROUP sections. */
468 if (num_group == 0)
469 {
470 unsigned int i, shnum;
471
472 /* First count the number of groups. If we have a SHT_GROUP
473 section with just a flag word (ie. sh_size is 4), ignore it. */
474 shnum = elf_numsections (abfd);
475 num_group = 0;
476 for (i = 0; i < shnum; i++)
477 {
478 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
479 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
480 num_group += 1;
481 }
482
483 if (num_group == 0)
484 num_group = (unsigned) -1;
485 elf_tdata (abfd)->num_group = num_group;
486
487 if (num_group > 0)
488 {
489 /* We keep a list of elf section headers for group sections,
490 so we can find them quickly. */
491 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
492 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
493 if (elf_tdata (abfd)->group_sect_ptr == NULL)
494 return FALSE;
495
496 num_group = 0;
497 for (i = 0; i < shnum; i++)
498 {
499 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
500 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
501 {
502 unsigned char *src;
503 Elf_Internal_Group *dest;
504
505 /* Add to list of sections. */
506 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
507 num_group += 1;
508
509 /* Read the raw contents. */
510 BFD_ASSERT (sizeof (*dest) >= 4);
511 amt = shdr->sh_size * sizeof (*dest) / 4;
512 shdr->contents = bfd_alloc (abfd, amt);
513 if (shdr->contents == NULL
514 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
515 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
516 != shdr->sh_size))
517 return FALSE;
518
519 /* Translate raw contents, a flag word followed by an
520 array of elf section indices all in target byte order,
521 to the flag word followed by an array of elf section
522 pointers. */
523 src = shdr->contents + shdr->sh_size;
524 dest = (Elf_Internal_Group *) (shdr->contents + amt);
525 while (1)
526 {
527 unsigned int idx;
528
529 src -= 4;
530 --dest;
531 idx = H_GET_32 (abfd, src);
532 if (src == shdr->contents)
533 {
534 dest->flags = idx;
535 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
536 shdr->bfd_section->flags
537 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
538 break;
539 }
540 if (idx >= shnum)
541 {
542 ((*_bfd_error_handler)
543 (_("%B: invalid SHT_GROUP entry"), abfd));
544 idx = 0;
545 }
546 dest->shdr = elf_elfsections (abfd)[idx];
547 }
548 }
549 }
550 }
551 }
552
553 if (num_group != (unsigned) -1)
554 {
555 unsigned int i;
556
557 for (i = 0; i < num_group; i++)
558 {
559 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
560 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
561 unsigned int n_elt = shdr->sh_size / 4;
562
563 /* Look through this group's sections to see if current
564 section is a member. */
565 while (--n_elt != 0)
566 if ((++idx)->shdr == hdr)
567 {
568 asection *s = NULL;
569
570 /* We are a member of this group. Go looking through
571 other members to see if any others are linked via
572 next_in_group. */
573 idx = (Elf_Internal_Group *) shdr->contents;
574 n_elt = shdr->sh_size / 4;
575 while (--n_elt != 0)
576 if ((s = (++idx)->shdr->bfd_section) != NULL
577 && elf_next_in_group (s) != NULL)
578 break;
579 if (n_elt != 0)
580 {
581 /* Snarf the group name from other member, and
582 insert current section in circular list. */
583 elf_group_name (newsect) = elf_group_name (s);
584 elf_next_in_group (newsect) = elf_next_in_group (s);
585 elf_next_in_group (s) = newsect;
586 }
587 else
588 {
589 const char *gname;
590
591 gname = group_signature (abfd, shdr);
592 if (gname == NULL)
593 return FALSE;
594 elf_group_name (newsect) = gname;
595
596 /* Start a circular list with one element. */
597 elf_next_in_group (newsect) = newsect;
598 }
599
600 /* If the group section has been created, point to the
601 new member. */
602 if (shdr->bfd_section != NULL)
603 elf_next_in_group (shdr->bfd_section) = newsect;
604
605 i = num_group - 1;
606 break;
607 }
608 }
609 }
610
611 if (elf_group_name (newsect) == NULL)
612 {
613 (*_bfd_error_handler) (_("%B: no group info for section %A"),
614 abfd, newsect);
615 }
616 return TRUE;
617}
618
619bfd_boolean
620_bfd_elf_setup_group_pointers (bfd *abfd)
621{
622 unsigned int i;
623 unsigned int num_group = elf_tdata (abfd)->num_group;
624 bfd_boolean result = TRUE;
625
626 if (num_group == (unsigned) -1)
627 return result;
628
629 for (i = 0; i < num_group; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
632 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
633 unsigned int n_elt = shdr->sh_size / 4;
634
635 while (--n_elt != 0)
636 if ((++idx)->shdr->bfd_section)
637 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
638 else if (idx->shdr->sh_type == SHT_RELA
639 || idx->shdr->sh_type == SHT_REL)
640 /* We won't include relocation sections in section groups in
641 output object files. We adjust the group section size here
642 so that relocatable link will work correctly when
643 relocation sections are in section group in input object
644 files. */
645 shdr->bfd_section->size -= 4;
646 else
647 {
648 /* There are some unknown sections in the group. */
649 (*_bfd_error_handler)
650 (_("%B: unknown [%d] section `%s' in group [%s]"),
651 abfd,
652 (unsigned int) idx->shdr->sh_type,
653 bfd_elf_string_from_elf_section (abfd,
654 (elf_elfheader (abfd)
655 ->e_shstrndx),
656 idx->shdr->sh_name),
657 shdr->bfd_section->name);
658 result = FALSE;
659 }
660 }
661 return result;
662}
663
664bfd_boolean
665bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
666{
667 return elf_next_in_group (sec) != NULL;
668}
669
670/* Make a BFD section from an ELF section. We store a pointer to the
671 BFD section in the bfd_section field of the header. */
672
673bfd_boolean
674_bfd_elf_make_section_from_shdr (bfd *abfd,
675 Elf_Internal_Shdr *hdr,
676 const char *name,
677 int shindex)
678{
679 asection *newsect;
680 flagword flags;
681 const struct elf_backend_data *bed;
682
683 if (hdr->bfd_section != NULL)
684 {
685 BFD_ASSERT (strcmp (name,
686 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
687 return TRUE;
688 }
689
690 newsect = bfd_make_section_anyway (abfd, name);
691 if (newsect == NULL)
692 return FALSE;
693
694 hdr->bfd_section = newsect;
695 elf_section_data (newsect)->this_hdr = *hdr;
696 elf_section_data (newsect)->this_idx = shindex;
697
698 /* Always use the real type/flags. */
699 elf_section_type (newsect) = hdr->sh_type;
700 elf_section_flags (newsect) = hdr->sh_flags;
701
702 newsect->filepos = hdr->sh_offset;
703
704 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
705 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
706 || ! bfd_set_section_alignment (abfd, newsect,
707 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
708 return FALSE;
709
710 flags = SEC_NO_FLAGS;
711 if (hdr->sh_type != SHT_NOBITS)
712 flags |= SEC_HAS_CONTENTS;
713 if (hdr->sh_type == SHT_GROUP)
714 flags |= SEC_GROUP | SEC_EXCLUDE;
715 if ((hdr->sh_flags & SHF_ALLOC) != 0)
716 {
717 flags |= SEC_ALLOC;
718 if (hdr->sh_type != SHT_NOBITS)
719 flags |= SEC_LOAD;
720 }
721 if ((hdr->sh_flags & SHF_WRITE) == 0)
722 flags |= SEC_READONLY;
723 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
724 flags |= SEC_CODE;
725 else if ((flags & SEC_LOAD) != 0)
726 flags |= SEC_DATA;
727 if ((hdr->sh_flags & SHF_MERGE) != 0)
728 {
729 flags |= SEC_MERGE;
730 newsect->entsize = hdr->sh_entsize;
731 if ((hdr->sh_flags & SHF_STRINGS) != 0)
732 flags |= SEC_STRINGS;
733 }
734 if (hdr->sh_flags & SHF_GROUP)
735 if (!setup_group (abfd, hdr, newsect))
736 return FALSE;
737 if ((hdr->sh_flags & SHF_TLS) != 0)
738 flags |= SEC_THREAD_LOCAL;
739
740 /* The debugging sections appear to be recognized only by name, not
741 any sort of flag. */
742 {
743 static const char *debug_sec_names [] =
744 {
745 ".debug",
746 ".gnu.linkonce.wi.",
747 ".line",
748 ".stab"
749 };
750 int i;
751
752 for (i = ARRAY_SIZE (debug_sec_names); i--;)
753 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
754 break;
755
756 if (i >= 0)
757 flags |= SEC_DEBUGGING;
758 }
759
760 /* As a GNU extension, if the name begins with .gnu.linkonce, we
761 only link a single copy of the section. This is used to support
762 g++. g++ will emit each template expansion in its own section.
763 The symbols will be defined as weak, so that multiple definitions
764 are permitted. The GNU linker extension is to actually discard
765 all but one of the sections. */
766 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
767 && elf_next_in_group (newsect) == NULL)
768 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
769
770 bed = get_elf_backend_data (abfd);
771 if (bed->elf_backend_section_flags)
772 if (! bed->elf_backend_section_flags (&flags, hdr))
773 return FALSE;
774
775 if (! bfd_set_section_flags (abfd, newsect, flags))
776 return FALSE;
777
778 if ((flags & SEC_ALLOC) != 0)
779 {
780 Elf_Internal_Phdr *phdr;
781 unsigned int i;
782
783 /* Look through the phdrs to see if we need to adjust the lma.
784 If all the p_paddr fields are zero, we ignore them, since
785 some ELF linkers produce such output. */
786 phdr = elf_tdata (abfd)->phdr;
787 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
788 {
789 if (phdr->p_paddr != 0)
790 break;
791 }
792 if (i < elf_elfheader (abfd)->e_phnum)
793 {
794 phdr = elf_tdata (abfd)->phdr;
795 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
796 {
797 /* This section is part of this segment if its file
798 offset plus size lies within the segment's memory
799 span and, if the section is loaded, the extent of the
800 loaded data lies within the extent of the segment.
801
802 Note - we used to check the p_paddr field as well, and
803 refuse to set the LMA if it was 0. This is wrong
804 though, as a perfectly valid initialised segment can
805 have a p_paddr of zero. Some architectures, eg ARM,
806 place special significance on the address 0 and
807 executables need to be able to have a segment which
808 covers this address. */
809 if (phdr->p_type == PT_LOAD
810 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
811 && (hdr->sh_offset + hdr->sh_size
812 <= phdr->p_offset + phdr->p_memsz)
813 && ((flags & SEC_LOAD) == 0
814 || (hdr->sh_offset + hdr->sh_size
815 <= phdr->p_offset + phdr->p_filesz)))
816 {
817 if ((flags & SEC_LOAD) == 0)
818 newsect->lma = (phdr->p_paddr
819 + hdr->sh_addr - phdr->p_vaddr);
820 else
821 /* We used to use the same adjustment for SEC_LOAD
822 sections, but that doesn't work if the segment
823 is packed with code from multiple VMAs.
824 Instead we calculate the section LMA based on
825 the segment LMA. It is assumed that the
826 segment will contain sections with contiguous
827 LMAs, even if the VMAs are not. */
828 newsect->lma = (phdr->p_paddr
829 + hdr->sh_offset - phdr->p_offset);
830
831 /* With contiguous segments, we can't tell from file
832 offsets whether a section with zero size should
833 be placed at the end of one segment or the
834 beginning of the next. Decide based on vaddr. */
835 if (hdr->sh_addr >= phdr->p_vaddr
836 && (hdr->sh_addr + hdr->sh_size
837 <= phdr->p_vaddr + phdr->p_memsz))
838 break;
839 }
840 }
841 }
842 }
843
844 return TRUE;
845}
846
847/*
848INTERNAL_FUNCTION
849 bfd_elf_find_section
850
851SYNOPSIS
852 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
853
854DESCRIPTION
855 Helper functions for GDB to locate the string tables.
856 Since BFD hides string tables from callers, GDB needs to use an
857 internal hook to find them. Sun's .stabstr, in particular,
858 isn't even pointed to by the .stab section, so ordinary
859 mechanisms wouldn't work to find it, even if we had some.
860*/
861
862struct elf_internal_shdr *
863bfd_elf_find_section (bfd *abfd, char *name)
864{
865 Elf_Internal_Shdr **i_shdrp;
866 char *shstrtab;
867 unsigned int max;
868 unsigned int i;
869
870 i_shdrp = elf_elfsections (abfd);
871 if (i_shdrp != NULL)
872 {
873 shstrtab = bfd_elf_get_str_section (abfd,
874 elf_elfheader (abfd)->e_shstrndx);
875 if (shstrtab != NULL)
876 {
877 max = elf_numsections (abfd);
878 for (i = 1; i < max; i++)
879 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
880 return i_shdrp[i];
881 }
882 }
883 return 0;
884}
885
886const char *const bfd_elf_section_type_names[] = {
887 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
888 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
889 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
890};
891
892/* ELF relocs are against symbols. If we are producing relocatable
893 output, and the reloc is against an external symbol, and nothing
894 has given us any additional addend, the resulting reloc will also
895 be against the same symbol. In such a case, we don't want to
896 change anything about the way the reloc is handled, since it will
897 all be done at final link time. Rather than put special case code
898 into bfd_perform_relocation, all the reloc types use this howto
899 function. It just short circuits the reloc if producing
900 relocatable output against an external symbol. */
901
902bfd_reloc_status_type
903bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
904 arelent *reloc_entry,
905 asymbol *symbol,
906 void *data ATTRIBUTE_UNUSED,
907 asection *input_section,
908 bfd *output_bfd,
909 char **error_message ATTRIBUTE_UNUSED)
910{
911 if (output_bfd != NULL
912 && (symbol->flags & BSF_SECTION_SYM) == 0
913 && (! reloc_entry->howto->partial_inplace
914 || reloc_entry->addend == 0))
915 {
916 reloc_entry->address += input_section->output_offset;
917 return bfd_reloc_ok;
918 }
919
920 return bfd_reloc_continue;
921}
922\f
923/* Make sure sec_info_type is cleared if sec_info is cleared too. */
924
925static void
926merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
927 asection *sec)
928{
929 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
930 sec->sec_info_type = ELF_INFO_TYPE_NONE;
931}
932
933/* Finish SHF_MERGE section merging. */
934
935bfd_boolean
936_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
937{
938 bfd *ibfd;
939 asection *sec;
940
941 if (!is_elf_hash_table (info->hash))
942 return FALSE;
943
944 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
945 if ((ibfd->flags & DYNAMIC) == 0)
946 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
947 if ((sec->flags & SEC_MERGE) != 0
948 && !bfd_is_abs_section (sec->output_section))
949 {
950 struct bfd_elf_section_data *secdata;
951
952 secdata = elf_section_data (sec);
953 if (! _bfd_add_merge_section (abfd,
954 &elf_hash_table (info)->merge_info,
955 sec, &secdata->sec_info))
956 return FALSE;
957 else if (secdata->sec_info)
958 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
959 }
960
961 if (elf_hash_table (info)->merge_info != NULL)
962 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
963 merge_sections_remove_hook);
964 return TRUE;
965}
966
967void
968_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
969{
970 sec->output_section = bfd_abs_section_ptr;
971 sec->output_offset = sec->vma;
972 if (!is_elf_hash_table (info->hash))
973 return;
974
975 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
976}
977\f
978/* Copy the program header and other data from one object module to
979 another. */
980
981bfd_boolean
982_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
983{
984 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
985 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
986 return TRUE;
987
988 BFD_ASSERT (!elf_flags_init (obfd)
989 || (elf_elfheader (obfd)->e_flags
990 == elf_elfheader (ibfd)->e_flags));
991
992 elf_gp (obfd) = elf_gp (ibfd);
993 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
994 elf_flags_init (obfd) = TRUE;
995 return TRUE;
996}
997
998/* Print out the program headers. */
999
1000bfd_boolean
1001_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1002{
1003 FILE *f = farg;
1004 Elf_Internal_Phdr *p;
1005 asection *s;
1006 bfd_byte *dynbuf = NULL;
1007
1008 p = elf_tdata (abfd)->phdr;
1009 if (p != NULL)
1010 {
1011 unsigned int i, c;
1012
1013 fprintf (f, _("\nProgram Header:\n"));
1014 c = elf_elfheader (abfd)->e_phnum;
1015 for (i = 0; i < c; i++, p++)
1016 {
1017 const char *pt;
1018 char buf[20];
1019
1020 switch (p->p_type)
1021 {
1022 case PT_NULL: pt = "NULL"; break;
1023 case PT_LOAD: pt = "LOAD"; break;
1024 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1025 case PT_INTERP: pt = "INTERP"; break;
1026 case PT_NOTE: pt = "NOTE"; break;
1027 case PT_SHLIB: pt = "SHLIB"; break;
1028 case PT_PHDR: pt = "PHDR"; break;
1029 case PT_TLS: pt = "TLS"; break;
1030 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1031 case PT_GNU_STACK: pt = "STACK"; break;
1032 case PT_GNU_RELRO: pt = "RELRO"; break;
1033 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1034 }
1035 fprintf (f, "%8s off 0x", pt);
1036 bfd_fprintf_vma (abfd, f, p->p_offset);
1037 fprintf (f, " vaddr 0x");
1038 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1039 fprintf (f, " paddr 0x");
1040 bfd_fprintf_vma (abfd, f, p->p_paddr);
1041 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1042 fprintf (f, " filesz 0x");
1043 bfd_fprintf_vma (abfd, f, p->p_filesz);
1044 fprintf (f, " memsz 0x");
1045 bfd_fprintf_vma (abfd, f, p->p_memsz);
1046 fprintf (f, " flags %c%c%c",
1047 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1048 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1049 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1050 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1051 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1052 fprintf (f, "\n");
1053 }
1054 }
1055
1056 s = bfd_get_section_by_name (abfd, ".dynamic");
1057 if (s != NULL)
1058 {
1059 int elfsec;
1060 unsigned long shlink;
1061 bfd_byte *extdyn, *extdynend;
1062 size_t extdynsize;
1063 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1064
1065 fprintf (f, _("\nDynamic Section:\n"));
1066
1067 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1068 goto error_return;
1069
1070 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1071 if (elfsec == -1)
1072 goto error_return;
1073 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1074
1075 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1076 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1077
1078 extdyn = dynbuf;
1079 extdynend = extdyn + s->size;
1080 for (; extdyn < extdynend; extdyn += extdynsize)
1081 {
1082 Elf_Internal_Dyn dyn;
1083 const char *name;
1084 char ab[20];
1085 bfd_boolean stringp;
1086
1087 (*swap_dyn_in) (abfd, extdyn, &dyn);
1088
1089 if (dyn.d_tag == DT_NULL)
1090 break;
1091
1092 stringp = FALSE;
1093 switch (dyn.d_tag)
1094 {
1095 default:
1096 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1097 name = ab;
1098 break;
1099
1100 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1101 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1102 case DT_PLTGOT: name = "PLTGOT"; break;
1103 case DT_HASH: name = "HASH"; break;
1104 case DT_STRTAB: name = "STRTAB"; break;
1105 case DT_SYMTAB: name = "SYMTAB"; break;
1106 case DT_RELA: name = "RELA"; break;
1107 case DT_RELASZ: name = "RELASZ"; break;
1108 case DT_RELAENT: name = "RELAENT"; break;
1109 case DT_STRSZ: name = "STRSZ"; break;
1110 case DT_SYMENT: name = "SYMENT"; break;
1111 case DT_INIT: name = "INIT"; break;
1112 case DT_FINI: name = "FINI"; break;
1113 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1114 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1115 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1116 case DT_REL: name = "REL"; break;
1117 case DT_RELSZ: name = "RELSZ"; break;
1118 case DT_RELENT: name = "RELENT"; break;
1119 case DT_PLTREL: name = "PLTREL"; break;
1120 case DT_DEBUG: name = "DEBUG"; break;
1121 case DT_TEXTREL: name = "TEXTREL"; break;
1122 case DT_JMPREL: name = "JMPREL"; break;
1123 case DT_BIND_NOW: name = "BIND_NOW"; break;
1124 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1125 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1126 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1127 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1128 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1129 case DT_FLAGS: name = "FLAGS"; break;
1130 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1131 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1132 case DT_CHECKSUM: name = "CHECKSUM"; break;
1133 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1134 case DT_MOVEENT: name = "MOVEENT"; break;
1135 case DT_MOVESZ: name = "MOVESZ"; break;
1136 case DT_FEATURE: name = "FEATURE"; break;
1137 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1138 case DT_SYMINSZ: name = "SYMINSZ"; break;
1139 case DT_SYMINENT: name = "SYMINENT"; break;
1140 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1141 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1142 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1143 case DT_PLTPAD: name = "PLTPAD"; break;
1144 case DT_MOVETAB: name = "MOVETAB"; break;
1145 case DT_SYMINFO: name = "SYMINFO"; break;
1146 case DT_RELACOUNT: name = "RELACOUNT"; break;
1147 case DT_RELCOUNT: name = "RELCOUNT"; break;
1148 case DT_FLAGS_1: name = "FLAGS_1"; break;
1149 case DT_VERSYM: name = "VERSYM"; break;
1150 case DT_VERDEF: name = "VERDEF"; break;
1151 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1152 case DT_VERNEED: name = "VERNEED"; break;
1153 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1154 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1155 case DT_USED: name = "USED"; break;
1156 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1157 }
1158
1159 fprintf (f, " %-11s ", name);
1160 if (! stringp)
1161 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1162 else
1163 {
1164 const char *string;
1165 unsigned int tagv = dyn.d_un.d_val;
1166
1167 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1168 if (string == NULL)
1169 goto error_return;
1170 fprintf (f, "%s", string);
1171 }
1172 fprintf (f, "\n");
1173 }
1174
1175 free (dynbuf);
1176 dynbuf = NULL;
1177 }
1178
1179 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1180 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1181 {
1182 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1183 return FALSE;
1184 }
1185
1186 if (elf_dynverdef (abfd) != 0)
1187 {
1188 Elf_Internal_Verdef *t;
1189
1190 fprintf (f, _("\nVersion definitions:\n"));
1191 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1192 {
1193 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1194 t->vd_flags, t->vd_hash, t->vd_nodename);
1195 if (t->vd_auxptr->vda_nextptr != NULL)
1196 {
1197 Elf_Internal_Verdaux *a;
1198
1199 fprintf (f, "\t");
1200 for (a = t->vd_auxptr->vda_nextptr;
1201 a != NULL;
1202 a = a->vda_nextptr)
1203 fprintf (f, "%s ", a->vda_nodename);
1204 fprintf (f, "\n");
1205 }
1206 }
1207 }
1208
1209 if (elf_dynverref (abfd) != 0)
1210 {
1211 Elf_Internal_Verneed *t;
1212
1213 fprintf (f, _("\nVersion References:\n"));
1214 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1215 {
1216 Elf_Internal_Vernaux *a;
1217
1218 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1219 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1220 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1221 a->vna_flags, a->vna_other, a->vna_nodename);
1222 }
1223 }
1224
1225 return TRUE;
1226
1227 error_return:
1228 if (dynbuf != NULL)
1229 free (dynbuf);
1230 return FALSE;
1231}
1232
1233/* Display ELF-specific fields of a symbol. */
1234
1235void
1236bfd_elf_print_symbol (bfd *abfd,
1237 void *filep,
1238 asymbol *symbol,
1239 bfd_print_symbol_type how)
1240{
1241 FILE *file = filep;
1242 switch (how)
1243 {
1244 case bfd_print_symbol_name:
1245 fprintf (file, "%s", symbol->name);
1246 break;
1247 case bfd_print_symbol_more:
1248 fprintf (file, "elf ");
1249 bfd_fprintf_vma (abfd, file, symbol->value);
1250 fprintf (file, " %lx", (long) symbol->flags);
1251 break;
1252 case bfd_print_symbol_all:
1253 {
1254 const char *section_name;
1255 const char *name = NULL;
1256 const struct elf_backend_data *bed;
1257 unsigned char st_other;
1258 bfd_vma val;
1259
1260 section_name = symbol->section ? symbol->section->name : "(*none*)";
1261
1262 bed = get_elf_backend_data (abfd);
1263 if (bed->elf_backend_print_symbol_all)
1264 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1265
1266 if (name == NULL)
1267 {
1268 name = symbol->name;
1269 bfd_print_symbol_vandf (abfd, file, symbol);
1270 }
1271
1272 fprintf (file, " %s\t", section_name);
1273 /* Print the "other" value for a symbol. For common symbols,
1274 we've already printed the size; now print the alignment.
1275 For other symbols, we have no specified alignment, and
1276 we've printed the address; now print the size. */
1277 if (bfd_is_com_section (symbol->section))
1278 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1279 else
1280 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1281 bfd_fprintf_vma (abfd, file, val);
1282
1283 /* If we have version information, print it. */
1284 if (elf_tdata (abfd)->dynversym_section != 0
1285 && (elf_tdata (abfd)->dynverdef_section != 0
1286 || elf_tdata (abfd)->dynverref_section != 0))
1287 {
1288 unsigned int vernum;
1289 const char *version_string;
1290
1291 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1292
1293 if (vernum == 0)
1294 version_string = "";
1295 else if (vernum == 1)
1296 version_string = "Base";
1297 else if (vernum <= elf_tdata (abfd)->cverdefs)
1298 version_string =
1299 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1300 else
1301 {
1302 Elf_Internal_Verneed *t;
1303
1304 version_string = "";
1305 for (t = elf_tdata (abfd)->verref;
1306 t != NULL;
1307 t = t->vn_nextref)
1308 {
1309 Elf_Internal_Vernaux *a;
1310
1311 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1312 {
1313 if (a->vna_other == vernum)
1314 {
1315 version_string = a->vna_nodename;
1316 break;
1317 }
1318 }
1319 }
1320 }
1321
1322 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1323 fprintf (file, " %-11s", version_string);
1324 else
1325 {
1326 int i;
1327
1328 fprintf (file, " (%s)", version_string);
1329 for (i = 10 - strlen (version_string); i > 0; --i)
1330 putc (' ', file);
1331 }
1332 }
1333
1334 /* If the st_other field is not zero, print it. */
1335 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1336
1337 switch (st_other)
1338 {
1339 case 0: break;
1340 case STV_INTERNAL: fprintf (file, " .internal"); break;
1341 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1342 case STV_PROTECTED: fprintf (file, " .protected"); break;
1343 default:
1344 /* Some other non-defined flags are also present, so print
1345 everything hex. */
1346 fprintf (file, " 0x%02x", (unsigned int) st_other);
1347 }
1348
1349 fprintf (file, " %s", name);
1350 }
1351 break;
1352 }
1353}
1354\f
1355/* Create an entry in an ELF linker hash table. */
1356
1357struct bfd_hash_entry *
1358_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1359 struct bfd_hash_table *table,
1360 const char *string)
1361{
1362 /* Allocate the structure if it has not already been allocated by a
1363 subclass. */
1364 if (entry == NULL)
1365 {
1366 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1367 if (entry == NULL)
1368 return entry;
1369 }
1370
1371 /* Call the allocation method of the superclass. */
1372 entry = _bfd_link_hash_newfunc (entry, table, string);
1373 if (entry != NULL)
1374 {
1375 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1376 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1377
1378 /* Set local fields. */
1379 ret->indx = -1;
1380 ret->dynindx = -1;
1381 ret->got = ret->plt = htab->init_refcount;
1382 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1383 - offsetof (struct elf_link_hash_entry, size)));
1384 /* Assume that we have been called by a non-ELF symbol reader.
1385 This flag is then reset by the code which reads an ELF input
1386 file. This ensures that a symbol created by a non-ELF symbol
1387 reader will have the flag set correctly. */
1388 ret->non_elf = 1;
1389 }
1390
1391 return entry;
1392}
1393
1394/* Copy data from an indirect symbol to its direct symbol, hiding the
1395 old indirect symbol. Also used for copying flags to a weakdef. */
1396
1397void
1398_bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1399 struct elf_link_hash_entry *dir,
1400 struct elf_link_hash_entry *ind)
1401{
1402 bfd_signed_vma tmp;
1403 bfd_signed_vma lowest_valid = bed->can_refcount;
1404
1405 /* Copy down any references that we may have already seen to the
1406 symbol which just became indirect. */
1407
1408 dir->ref_dynamic |= ind->ref_dynamic;
1409 dir->ref_regular |= ind->ref_regular;
1410 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1411 dir->non_got_ref |= ind->non_got_ref;
1412 dir->needs_plt |= ind->needs_plt;
1413 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1414
1415 if (ind->root.type != bfd_link_hash_indirect)
1416 return;
1417
1418 /* Copy over the global and procedure linkage table refcount entries.
1419 These may have been already set up by a check_relocs routine. */
1420 tmp = dir->got.refcount;
1421 if (tmp < lowest_valid)
1422 {
1423 dir->got.refcount = ind->got.refcount;
1424 ind->got.refcount = tmp;
1425 }
1426 else
1427 BFD_ASSERT (ind->got.refcount < lowest_valid);
1428
1429 tmp = dir->plt.refcount;
1430 if (tmp < lowest_valid)
1431 {
1432 dir->plt.refcount = ind->plt.refcount;
1433 ind->plt.refcount = tmp;
1434 }
1435 else
1436 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1437
1438 if (dir->dynindx == -1)
1439 {
1440 dir->dynindx = ind->dynindx;
1441 dir->dynstr_index = ind->dynstr_index;
1442 ind->dynindx = -1;
1443 ind->dynstr_index = 0;
1444 }
1445 else
1446 BFD_ASSERT (ind->dynindx == -1);
1447}
1448
1449void
1450_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1451 struct elf_link_hash_entry *h,
1452 bfd_boolean force_local)
1453{
1454 h->plt = elf_hash_table (info)->init_offset;
1455 h->needs_plt = 0;
1456 if (force_local)
1457 {
1458 h->forced_local = 1;
1459 if (h->dynindx != -1)
1460 {
1461 h->dynindx = -1;
1462 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1463 h->dynstr_index);
1464 }
1465 }
1466}
1467
1468/* Initialize an ELF linker hash table. */
1469
1470bfd_boolean
1471_bfd_elf_link_hash_table_init
1472 (struct elf_link_hash_table *table,
1473 bfd *abfd,
1474 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1475 struct bfd_hash_table *,
1476 const char *))
1477{
1478 bfd_boolean ret;
1479
1480 table->dynamic_sections_created = FALSE;
1481 table->dynobj = NULL;
1482 /* Make sure can_refcount is extended to the width and signedness of
1483 init_refcount before we subtract one from it. */
1484 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1485 table->init_refcount.refcount -= 1;
1486 table->init_offset.offset = -(bfd_vma) 1;
1487 /* The first dynamic symbol is a dummy. */
1488 table->dynsymcount = 1;
1489 table->dynstr = NULL;
1490 table->bucketcount = 0;
1491 table->needed = NULL;
1492 table->hgot = NULL;
1493 table->merge_info = NULL;
1494 memset (&table->stab_info, 0, sizeof (table->stab_info));
1495 memset (&table->eh_info, 0, sizeof (table->eh_info));
1496 table->dynlocal = NULL;
1497 table->runpath = NULL;
1498 table->tls_sec = NULL;
1499 table->tls_size = 0;
1500 table->loaded = NULL;
1501 table->is_relocatable_executable = FALSE;
1502
1503 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1504 table->root.type = bfd_link_elf_hash_table;
1505
1506 return ret;
1507}
1508
1509/* Create an ELF linker hash table. */
1510
1511struct bfd_link_hash_table *
1512_bfd_elf_link_hash_table_create (bfd *abfd)
1513{
1514 struct elf_link_hash_table *ret;
1515 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1516
1517 ret = bfd_malloc (amt);
1518 if (ret == NULL)
1519 return NULL;
1520
1521 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1522 {
1523 free (ret);
1524 return NULL;
1525 }
1526
1527 return &ret->root;
1528}
1529
1530/* This is a hook for the ELF emulation code in the generic linker to
1531 tell the backend linker what file name to use for the DT_NEEDED
1532 entry for a dynamic object. */
1533
1534void
1535bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1536{
1537 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1538 && bfd_get_format (abfd) == bfd_object)
1539 elf_dt_name (abfd) = name;
1540}
1541
1542int
1543bfd_elf_get_dyn_lib_class (bfd *abfd)
1544{
1545 int lib_class;
1546 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1547 && bfd_get_format (abfd) == bfd_object)
1548 lib_class = elf_dyn_lib_class (abfd);
1549 else
1550 lib_class = 0;
1551 return lib_class;
1552}
1553
1554void
1555bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1556{
1557 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1558 && bfd_get_format (abfd) == bfd_object)
1559 elf_dyn_lib_class (abfd) = lib_class;
1560}
1561
1562/* Get the list of DT_NEEDED entries for a link. This is a hook for
1563 the linker ELF emulation code. */
1564
1565struct bfd_link_needed_list *
1566bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1567 struct bfd_link_info *info)
1568{
1569 if (! is_elf_hash_table (info->hash))
1570 return NULL;
1571 return elf_hash_table (info)->needed;
1572}
1573
1574/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1575 hook for the linker ELF emulation code. */
1576
1577struct bfd_link_needed_list *
1578bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1579 struct bfd_link_info *info)
1580{
1581 if (! is_elf_hash_table (info->hash))
1582 return NULL;
1583 return elf_hash_table (info)->runpath;
1584}
1585
1586/* Get the name actually used for a dynamic object for a link. This
1587 is the SONAME entry if there is one. Otherwise, it is the string
1588 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1589
1590const char *
1591bfd_elf_get_dt_soname (bfd *abfd)
1592{
1593 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1594 && bfd_get_format (abfd) == bfd_object)
1595 return elf_dt_name (abfd);
1596 return NULL;
1597}
1598
1599/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1600 the ELF linker emulation code. */
1601
1602bfd_boolean
1603bfd_elf_get_bfd_needed_list (bfd *abfd,
1604 struct bfd_link_needed_list **pneeded)
1605{
1606 asection *s;
1607 bfd_byte *dynbuf = NULL;
1608 int elfsec;
1609 unsigned long shlink;
1610 bfd_byte *extdyn, *extdynend;
1611 size_t extdynsize;
1612 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1613
1614 *pneeded = NULL;
1615
1616 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1617 || bfd_get_format (abfd) != bfd_object)
1618 return TRUE;
1619
1620 s = bfd_get_section_by_name (abfd, ".dynamic");
1621 if (s == NULL || s->size == 0)
1622 return TRUE;
1623
1624 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1625 goto error_return;
1626
1627 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1628 if (elfsec == -1)
1629 goto error_return;
1630
1631 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1632
1633 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1634 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1635
1636 extdyn = dynbuf;
1637 extdynend = extdyn + s->size;
1638 for (; extdyn < extdynend; extdyn += extdynsize)
1639 {
1640 Elf_Internal_Dyn dyn;
1641
1642 (*swap_dyn_in) (abfd, extdyn, &dyn);
1643
1644 if (dyn.d_tag == DT_NULL)
1645 break;
1646
1647 if (dyn.d_tag == DT_NEEDED)
1648 {
1649 const char *string;
1650 struct bfd_link_needed_list *l;
1651 unsigned int tagv = dyn.d_un.d_val;
1652 bfd_size_type amt;
1653
1654 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1655 if (string == NULL)
1656 goto error_return;
1657
1658 amt = sizeof *l;
1659 l = bfd_alloc (abfd, amt);
1660 if (l == NULL)
1661 goto error_return;
1662
1663 l->by = abfd;
1664 l->name = string;
1665 l->next = *pneeded;
1666 *pneeded = l;
1667 }
1668 }
1669
1670 free (dynbuf);
1671
1672 return TRUE;
1673
1674 error_return:
1675 if (dynbuf != NULL)
1676 free (dynbuf);
1677 return FALSE;
1678}
1679\f
1680/* Allocate an ELF string table--force the first byte to be zero. */
1681
1682struct bfd_strtab_hash *
1683_bfd_elf_stringtab_init (void)
1684{
1685 struct bfd_strtab_hash *ret;
1686
1687 ret = _bfd_stringtab_init ();
1688 if (ret != NULL)
1689 {
1690 bfd_size_type loc;
1691
1692 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1693 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1694 if (loc == (bfd_size_type) -1)
1695 {
1696 _bfd_stringtab_free (ret);
1697 ret = NULL;
1698 }
1699 }
1700 return ret;
1701}
1702\f
1703/* ELF .o/exec file reading */
1704
1705/* Create a new bfd section from an ELF section header. */
1706
1707bfd_boolean
1708bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1709{
1710 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1711 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1712 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1713 const char *name;
1714
1715 name = bfd_elf_string_from_elf_section (abfd,
1716 elf_elfheader (abfd)->e_shstrndx,
1717 hdr->sh_name);
1718
1719 switch (hdr->sh_type)
1720 {
1721 case SHT_NULL:
1722 /* Inactive section. Throw it away. */
1723 return TRUE;
1724
1725 case SHT_PROGBITS: /* Normal section with contents. */
1726 case SHT_NOBITS: /* .bss section. */
1727 case SHT_HASH: /* .hash section. */
1728 case SHT_NOTE: /* .note section. */
1729 case SHT_INIT_ARRAY: /* .init_array section. */
1730 case SHT_FINI_ARRAY: /* .fini_array section. */
1731 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1732 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1733 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1734
1735 case SHT_DYNAMIC: /* Dynamic linking information. */
1736 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1737 return FALSE;
1738 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1739 {
1740 Elf_Internal_Shdr *dynsymhdr;
1741
1742 /* The shared libraries distributed with hpux11 have a bogus
1743 sh_link field for the ".dynamic" section. Find the
1744 string table for the ".dynsym" section instead. */
1745 if (elf_dynsymtab (abfd) != 0)
1746 {
1747 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1748 hdr->sh_link = dynsymhdr->sh_link;
1749 }
1750 else
1751 {
1752 unsigned int i, num_sec;
1753
1754 num_sec = elf_numsections (abfd);
1755 for (i = 1; i < num_sec; i++)
1756 {
1757 dynsymhdr = elf_elfsections (abfd)[i];
1758 if (dynsymhdr->sh_type == SHT_DYNSYM)
1759 {
1760 hdr->sh_link = dynsymhdr->sh_link;
1761 break;
1762 }
1763 }
1764 }
1765 }
1766 break;
1767
1768 case SHT_SYMTAB: /* A symbol table */
1769 if (elf_onesymtab (abfd) == shindex)
1770 return TRUE;
1771
1772 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1773 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1774 elf_onesymtab (abfd) = shindex;
1775 elf_tdata (abfd)->symtab_hdr = *hdr;
1776 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1777 abfd->flags |= HAS_SYMS;
1778
1779 /* Sometimes a shared object will map in the symbol table. If
1780 SHF_ALLOC is set, and this is a shared object, then we also
1781 treat this section as a BFD section. We can not base the
1782 decision purely on SHF_ALLOC, because that flag is sometimes
1783 set in a relocatable object file, which would confuse the
1784 linker. */
1785 if ((hdr->sh_flags & SHF_ALLOC) != 0
1786 && (abfd->flags & DYNAMIC) != 0
1787 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1788 shindex))
1789 return FALSE;
1790
1791 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1792 can't read symbols without that section loaded as well. It
1793 is most likely specified by the next section header. */
1794 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1795 {
1796 unsigned int i, num_sec;
1797
1798 num_sec = elf_numsections (abfd);
1799 for (i = shindex + 1; i < num_sec; i++)
1800 {
1801 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1802 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1803 && hdr2->sh_link == shindex)
1804 break;
1805 }
1806 if (i == num_sec)
1807 for (i = 1; i < shindex; i++)
1808 {
1809 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1810 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1811 && hdr2->sh_link == shindex)
1812 break;
1813 }
1814 if (i != shindex)
1815 return bfd_section_from_shdr (abfd, i);
1816 }
1817 return TRUE;
1818
1819 case SHT_DYNSYM: /* A dynamic symbol table */
1820 if (elf_dynsymtab (abfd) == shindex)
1821 return TRUE;
1822
1823 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1824 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1825 elf_dynsymtab (abfd) = shindex;
1826 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1827 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1828 abfd->flags |= HAS_SYMS;
1829
1830 /* Besides being a symbol table, we also treat this as a regular
1831 section, so that objcopy can handle it. */
1832 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1833
1834 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1835 if (elf_symtab_shndx (abfd) == shindex)
1836 return TRUE;
1837
1838 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1839 elf_symtab_shndx (abfd) = shindex;
1840 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1841 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1842 return TRUE;
1843
1844 case SHT_STRTAB: /* A string table */
1845 if (hdr->bfd_section != NULL)
1846 return TRUE;
1847 if (ehdr->e_shstrndx == shindex)
1848 {
1849 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1850 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1851 return TRUE;
1852 }
1853 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1854 {
1855 symtab_strtab:
1856 elf_tdata (abfd)->strtab_hdr = *hdr;
1857 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1858 return TRUE;
1859 }
1860 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1861 {
1862 dynsymtab_strtab:
1863 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1864 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1865 elf_elfsections (abfd)[shindex] = hdr;
1866 /* We also treat this as a regular section, so that objcopy
1867 can handle it. */
1868 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1869 shindex);
1870 }
1871
1872 /* If the string table isn't one of the above, then treat it as a
1873 regular section. We need to scan all the headers to be sure,
1874 just in case this strtab section appeared before the above. */
1875 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1876 {
1877 unsigned int i, num_sec;
1878
1879 num_sec = elf_numsections (abfd);
1880 for (i = 1; i < num_sec; i++)
1881 {
1882 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1883 if (hdr2->sh_link == shindex)
1884 {
1885 if (! bfd_section_from_shdr (abfd, i))
1886 return FALSE;
1887 if (elf_onesymtab (abfd) == i)
1888 goto symtab_strtab;
1889 if (elf_dynsymtab (abfd) == i)
1890 goto dynsymtab_strtab;
1891 }
1892 }
1893 }
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_REL:
1897 case SHT_RELA:
1898 /* *These* do a lot of work -- but build no sections! */
1899 {
1900 asection *target_sect;
1901 Elf_Internal_Shdr *hdr2;
1902 unsigned int num_sec = elf_numsections (abfd);
1903
1904 /* Check for a bogus link to avoid crashing. */
1905 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1906 || hdr->sh_link >= num_sec)
1907 {
1908 ((*_bfd_error_handler)
1909 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1910 abfd, hdr->sh_link, name, shindex));
1911 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1912 shindex);
1913 }
1914
1915 /* For some incomprehensible reason Oracle distributes
1916 libraries for Solaris in which some of the objects have
1917 bogus sh_link fields. It would be nice if we could just
1918 reject them, but, unfortunately, some people need to use
1919 them. We scan through the section headers; if we find only
1920 one suitable symbol table, we clobber the sh_link to point
1921 to it. I hope this doesn't break anything. */
1922 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1923 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1924 {
1925 unsigned int scan;
1926 int found;
1927
1928 found = 0;
1929 for (scan = 1; scan < num_sec; scan++)
1930 {
1931 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1932 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1933 {
1934 if (found != 0)
1935 {
1936 found = 0;
1937 break;
1938 }
1939 found = scan;
1940 }
1941 }
1942 if (found != 0)
1943 hdr->sh_link = found;
1944 }
1945
1946 /* Get the symbol table. */
1947 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1948 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1949 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1950 return FALSE;
1951
1952 /* If this reloc section does not use the main symbol table we
1953 don't treat it as a reloc section. BFD can't adequately
1954 represent such a section, so at least for now, we don't
1955 try. We just present it as a normal section. We also
1956 can't use it as a reloc section if it points to the null
1957 section. */
1958 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1959 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1960 shindex);
1961
1962 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1963 return FALSE;
1964 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1965 if (target_sect == NULL)
1966 return FALSE;
1967
1968 if ((target_sect->flags & SEC_RELOC) == 0
1969 || target_sect->reloc_count == 0)
1970 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1971 else
1972 {
1973 bfd_size_type amt;
1974 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1975 amt = sizeof (*hdr2);
1976 hdr2 = bfd_alloc (abfd, amt);
1977 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1978 }
1979 *hdr2 = *hdr;
1980 elf_elfsections (abfd)[shindex] = hdr2;
1981 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1982 target_sect->flags |= SEC_RELOC;
1983 target_sect->relocation = NULL;
1984 target_sect->rel_filepos = hdr->sh_offset;
1985 /* In the section to which the relocations apply, mark whether
1986 its relocations are of the REL or RELA variety. */
1987 if (hdr->sh_size != 0)
1988 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1989 abfd->flags |= HAS_RELOC;
1990 return TRUE;
1991 }
1992 break;
1993
1994 case SHT_GNU_verdef:
1995 elf_dynverdef (abfd) = shindex;
1996 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1997 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1998 break;
1999
2000 case SHT_GNU_versym:
2001 elf_dynversym (abfd) = shindex;
2002 elf_tdata (abfd)->dynversym_hdr = *hdr;
2003 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2004 break;
2005
2006 case SHT_GNU_verneed:
2007 elf_dynverref (abfd) = shindex;
2008 elf_tdata (abfd)->dynverref_hdr = *hdr;
2009 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2010 break;
2011
2012 case SHT_SHLIB:
2013 return TRUE;
2014
2015 case SHT_GROUP:
2016 /* We need a BFD section for objcopy and relocatable linking,
2017 and it's handy to have the signature available as the section
2018 name. */
2019 name = group_signature (abfd, hdr);
2020 if (name == NULL)
2021 return FALSE;
2022 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2023 return FALSE;
2024 if (hdr->contents != NULL)
2025 {
2026 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2027 unsigned int n_elt = hdr->sh_size / 4;
2028 asection *s;
2029
2030 if (idx->flags & GRP_COMDAT)
2031 hdr->bfd_section->flags
2032 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2033
2034 /* We try to keep the same section order as it comes in. */
2035 idx += n_elt;
2036 while (--n_elt != 0)
2037 if ((s = (--idx)->shdr->bfd_section) != NULL
2038 && elf_next_in_group (s) != NULL)
2039 {
2040 elf_next_in_group (hdr->bfd_section) = s;
2041 break;
2042 }
2043 }
2044 break;
2045
2046 default:
2047 /* Check for any processor-specific section types. */
2048 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2049 shindex);
2050 }
2051
2052 return TRUE;
2053}
2054
2055/* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2056 Return SEC for sections that have no elf section, and NULL on error. */
2057
2058asection *
2059bfd_section_from_r_symndx (bfd *abfd,
2060 struct sym_sec_cache *cache,
2061 asection *sec,
2062 unsigned long r_symndx)
2063{
2064 Elf_Internal_Shdr *symtab_hdr;
2065 unsigned char esym[sizeof (Elf64_External_Sym)];
2066 Elf_External_Sym_Shndx eshndx;
2067 Elf_Internal_Sym isym;
2068 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2069
2070 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2071 return cache->sec[ent];
2072
2073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2074 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2075 &isym, esym, &eshndx) == NULL)
2076 return NULL;
2077
2078 if (cache->abfd != abfd)
2079 {
2080 memset (cache->indx, -1, sizeof (cache->indx));
2081 cache->abfd = abfd;
2082 }
2083 cache->indx[ent] = r_symndx;
2084 cache->sec[ent] = sec;
2085 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2086 || isym.st_shndx > SHN_HIRESERVE)
2087 {
2088 asection *s;
2089 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2090 if (s != NULL)
2091 cache->sec[ent] = s;
2092 }
2093 return cache->sec[ent];
2094}
2095
2096/* Given an ELF section number, retrieve the corresponding BFD
2097 section. */
2098
2099asection *
2100bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2101{
2102 if (index >= elf_numsections (abfd))
2103 return NULL;
2104 return elf_elfsections (abfd)[index]->bfd_section;
2105}
2106
2107static struct bfd_elf_special_section const special_sections[] =
2108{
2109 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2110 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2111 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2112 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2113 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2114 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2115 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2116 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2117 { ".line", 5, 0, SHT_PROGBITS, 0 },
2118 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2119 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2120 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2121 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2122 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2123 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2124 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2125 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2127 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2128 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2129 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2130 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2131 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2132 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2133 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2134 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2135 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2136 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2137 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2138 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2139 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2140 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2141 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2142 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2143 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2144 { ".note", 5, -1, SHT_NOTE, 0 },
2145 { ".rela", 5, -1, SHT_RELA, 0 },
2146 { ".rel", 4, -1, SHT_REL, 0 },
2147 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2148 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2149 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2150 { NULL, 0, 0, 0, 0 }
2151};
2152
2153static const struct bfd_elf_special_section *
2154get_special_section (const char *name,
2155 const struct bfd_elf_special_section *special_sections,
2156 unsigned int rela)
2157{
2158 int i;
2159 int len = strlen (name);
2160
2161 for (i = 0; special_sections[i].prefix != NULL; i++)
2162 {
2163 int suffix_len;
2164 int prefix_len = special_sections[i].prefix_length;
2165
2166 if (len < prefix_len)
2167 continue;
2168 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2169 continue;
2170
2171 suffix_len = special_sections[i].suffix_length;
2172 if (suffix_len <= 0)
2173 {
2174 if (name[prefix_len] != 0)
2175 {
2176 if (suffix_len == 0)
2177 continue;
2178 if (name[prefix_len] != '.'
2179 && (suffix_len == -2
2180 || (rela && special_sections[i].type == SHT_REL)))
2181 continue;
2182 }
2183 }
2184 else
2185 {
2186 if (len < prefix_len + suffix_len)
2187 continue;
2188 if (memcmp (name + len - suffix_len,
2189 special_sections[i].prefix + prefix_len,
2190 suffix_len) != 0)
2191 continue;
2192 }
2193 return &special_sections[i];
2194 }
2195
2196 return NULL;
2197}
2198
2199const struct bfd_elf_special_section *
2200_bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2201{
2202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2203 const struct bfd_elf_special_section *ssect = NULL;
2204
2205 /* See if this is one of the special sections. */
2206 if (name)
2207 {
2208 unsigned int rela = bed->default_use_rela_p;
2209
2210 if (bed->special_sections)
2211 ssect = get_special_section (name, bed->special_sections, rela);
2212
2213 if (! ssect)
2214 ssect = get_special_section (name, special_sections, rela);
2215 }
2216
2217 return ssect;
2218}
2219
2220bfd_boolean
2221_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2222{
2223 struct bfd_elf_section_data *sdata;
2224 const struct bfd_elf_special_section *ssect;
2225
2226 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2227 if (sdata == NULL)
2228 {
2229 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2230 if (sdata == NULL)
2231 return FALSE;
2232 sec->used_by_bfd = sdata;
2233 }
2234
2235 elf_section_type (sec) = SHT_NULL;
2236 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2237 if (ssect != NULL)
2238 {
2239 elf_section_type (sec) = ssect->type;
2240 elf_section_flags (sec) = ssect->attr;
2241 }
2242
2243 /* Indicate whether or not this section should use RELA relocations. */
2244 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2245
2246 return TRUE;
2247}
2248
2249/* Create a new bfd section from an ELF program header.
2250
2251 Since program segments have no names, we generate a synthetic name
2252 of the form segment<NUM>, where NUM is generally the index in the
2253 program header table. For segments that are split (see below) we
2254 generate the names segment<NUM>a and segment<NUM>b.
2255
2256 Note that some program segments may have a file size that is different than
2257 (less than) the memory size. All this means is that at execution the
2258 system must allocate the amount of memory specified by the memory size,
2259 but only initialize it with the first "file size" bytes read from the
2260 file. This would occur for example, with program segments consisting
2261 of combined data+bss.
2262
2263 To handle the above situation, this routine generates TWO bfd sections
2264 for the single program segment. The first has the length specified by
2265 the file size of the segment, and the second has the length specified
2266 by the difference between the two sizes. In effect, the segment is split
2267 into it's initialized and uninitialized parts.
2268
2269 */
2270
2271bfd_boolean
2272_bfd_elf_make_section_from_phdr (bfd *abfd,
2273 Elf_Internal_Phdr *hdr,
2274 int index,
2275 const char *typename)
2276{
2277 asection *newsect;
2278 char *name;
2279 char namebuf[64];
2280 size_t len;
2281 int split;
2282
2283 split = ((hdr->p_memsz > 0)
2284 && (hdr->p_filesz > 0)
2285 && (hdr->p_memsz > hdr->p_filesz));
2286 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2287 len = strlen (namebuf) + 1;
2288 name = bfd_alloc (abfd, len);
2289 if (!name)
2290 return FALSE;
2291 memcpy (name, namebuf, len);
2292 newsect = bfd_make_section (abfd, name);
2293 if (newsect == NULL)
2294 return FALSE;
2295 newsect->vma = hdr->p_vaddr;
2296 newsect->lma = hdr->p_paddr;
2297 newsect->size = hdr->p_filesz;
2298 newsect->filepos = hdr->p_offset;
2299 newsect->flags |= SEC_HAS_CONTENTS;
2300 newsect->alignment_power = bfd_log2 (hdr->p_align);
2301 if (hdr->p_type == PT_LOAD)
2302 {
2303 newsect->flags |= SEC_ALLOC;
2304 newsect->flags |= SEC_LOAD;
2305 if (hdr->p_flags & PF_X)
2306 {
2307 /* FIXME: all we known is that it has execute PERMISSION,
2308 may be data. */
2309 newsect->flags |= SEC_CODE;
2310 }
2311 }
2312 if (!(hdr->p_flags & PF_W))
2313 {
2314 newsect->flags |= SEC_READONLY;
2315 }
2316
2317 if (split)
2318 {
2319 sprintf (namebuf, "%s%db", typename, index);
2320 len = strlen (namebuf) + 1;
2321 name = bfd_alloc (abfd, len);
2322 if (!name)
2323 return FALSE;
2324 memcpy (name, namebuf, len);
2325 newsect = bfd_make_section (abfd, name);
2326 if (newsect == NULL)
2327 return FALSE;
2328 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2329 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2330 newsect->size = hdr->p_memsz - hdr->p_filesz;
2331 if (hdr->p_type == PT_LOAD)
2332 {
2333 newsect->flags |= SEC_ALLOC;
2334 if (hdr->p_flags & PF_X)
2335 newsect->flags |= SEC_CODE;
2336 }
2337 if (!(hdr->p_flags & PF_W))
2338 newsect->flags |= SEC_READONLY;
2339 }
2340
2341 return TRUE;
2342}
2343
2344bfd_boolean
2345bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2346{
2347 const struct elf_backend_data *bed;
2348
2349 switch (hdr->p_type)
2350 {
2351 case PT_NULL:
2352 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2353
2354 case PT_LOAD:
2355 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2356
2357 case PT_DYNAMIC:
2358 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2359
2360 case PT_INTERP:
2361 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2362
2363 case PT_NOTE:
2364 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2365 return FALSE;
2366 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2367 return FALSE;
2368 return TRUE;
2369
2370 case PT_SHLIB:
2371 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2372
2373 case PT_PHDR:
2374 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2375
2376 case PT_GNU_EH_FRAME:
2377 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2378 "eh_frame_hdr");
2379
2380 case PT_GNU_STACK:
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2382
2383 case PT_GNU_RELRO:
2384 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2385
2386 default:
2387 /* Check for any processor-specific program segment types. */
2388 bed = get_elf_backend_data (abfd);
2389 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2390 }
2391}
2392
2393/* Initialize REL_HDR, the section-header for new section, containing
2394 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2395 relocations; otherwise, we use REL relocations. */
2396
2397bfd_boolean
2398_bfd_elf_init_reloc_shdr (bfd *abfd,
2399 Elf_Internal_Shdr *rel_hdr,
2400 asection *asect,
2401 bfd_boolean use_rela_p)
2402{
2403 char *name;
2404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2405 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2406
2407 name = bfd_alloc (abfd, amt);
2408 if (name == NULL)
2409 return FALSE;
2410 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2411 rel_hdr->sh_name =
2412 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2413 FALSE);
2414 if (rel_hdr->sh_name == (unsigned int) -1)
2415 return FALSE;
2416 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2417 rel_hdr->sh_entsize = (use_rela_p
2418 ? bed->s->sizeof_rela
2419 : bed->s->sizeof_rel);
2420 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2421 rel_hdr->sh_flags = 0;
2422 rel_hdr->sh_addr = 0;
2423 rel_hdr->sh_size = 0;
2424 rel_hdr->sh_offset = 0;
2425
2426 return TRUE;
2427}
2428
2429/* Set up an ELF internal section header for a section. */
2430
2431static void
2432elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2433{
2434 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2435 bfd_boolean *failedptr = failedptrarg;
2436 Elf_Internal_Shdr *this_hdr;
2437
2438 if (*failedptr)
2439 {
2440 /* We already failed; just get out of the bfd_map_over_sections
2441 loop. */
2442 return;
2443 }
2444
2445 this_hdr = &elf_section_data (asect)->this_hdr;
2446
2447 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2448 asect->name, FALSE);
2449 if (this_hdr->sh_name == (unsigned int) -1)
2450 {
2451 *failedptr = TRUE;
2452 return;
2453 }
2454
2455 this_hdr->sh_flags = 0;
2456
2457 if ((asect->flags & SEC_ALLOC) != 0
2458 || asect->user_set_vma)
2459 this_hdr->sh_addr = asect->vma;
2460 else
2461 this_hdr->sh_addr = 0;
2462
2463 this_hdr->sh_offset = 0;
2464 this_hdr->sh_size = asect->size;
2465 this_hdr->sh_link = 0;
2466 this_hdr->sh_addralign = 1 << asect->alignment_power;
2467 /* The sh_entsize and sh_info fields may have been set already by
2468 copy_private_section_data. */
2469
2470 this_hdr->bfd_section = asect;
2471 this_hdr->contents = NULL;
2472
2473 /* If the section type is unspecified, we set it based on
2474 asect->flags. */
2475 if (this_hdr->sh_type == SHT_NULL)
2476 {
2477 if ((asect->flags & SEC_GROUP) != 0)
2478 {
2479 /* We also need to mark SHF_GROUP here for relocatable
2480 link. */
2481 struct bfd_link_order *l;
2482 asection *elt;
2483
2484 for (l = asect->link_order_head; l != NULL; l = l->next)
2485 if (l->type == bfd_indirect_link_order
2486 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2487 do
2488 {
2489 /* The name is not important. Anything will do. */
2490 elf_group_name (elt->output_section) = "G";
2491 elf_section_flags (elt->output_section) |= SHF_GROUP;
2492
2493 elt = elf_next_in_group (elt);
2494 /* During a relocatable link, the lists are
2495 circular. */
2496 }
2497 while (elt != elf_next_in_group (l->u.indirect.section));
2498
2499 this_hdr->sh_type = SHT_GROUP;
2500 }
2501 else if ((asect->flags & SEC_ALLOC) != 0
2502 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2503 || (asect->flags & SEC_NEVER_LOAD) != 0))
2504 this_hdr->sh_type = SHT_NOBITS;
2505 else
2506 this_hdr->sh_type = SHT_PROGBITS;
2507 }
2508
2509 switch (this_hdr->sh_type)
2510 {
2511 default:
2512 break;
2513
2514 case SHT_STRTAB:
2515 case SHT_INIT_ARRAY:
2516 case SHT_FINI_ARRAY:
2517 case SHT_PREINIT_ARRAY:
2518 case SHT_NOTE:
2519 case SHT_NOBITS:
2520 case SHT_PROGBITS:
2521 break;
2522
2523 case SHT_HASH:
2524 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2525 break;
2526
2527 case SHT_DYNSYM:
2528 this_hdr->sh_entsize = bed->s->sizeof_sym;
2529 break;
2530
2531 case SHT_DYNAMIC:
2532 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2533 break;
2534
2535 case SHT_RELA:
2536 if (get_elf_backend_data (abfd)->may_use_rela_p)
2537 this_hdr->sh_entsize = bed->s->sizeof_rela;
2538 break;
2539
2540 case SHT_REL:
2541 if (get_elf_backend_data (abfd)->may_use_rel_p)
2542 this_hdr->sh_entsize = bed->s->sizeof_rel;
2543 break;
2544
2545 case SHT_GNU_versym:
2546 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2547 break;
2548
2549 case SHT_GNU_verdef:
2550 this_hdr->sh_entsize = 0;
2551 /* objcopy or strip will copy over sh_info, but may not set
2552 cverdefs. The linker will set cverdefs, but sh_info will be
2553 zero. */
2554 if (this_hdr->sh_info == 0)
2555 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2556 else
2557 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2558 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2559 break;
2560
2561 case SHT_GNU_verneed:
2562 this_hdr->sh_entsize = 0;
2563 /* objcopy or strip will copy over sh_info, but may not set
2564 cverrefs. The linker will set cverrefs, but sh_info will be
2565 zero. */
2566 if (this_hdr->sh_info == 0)
2567 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2568 else
2569 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2570 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2571 break;
2572
2573 case SHT_GROUP:
2574 this_hdr->sh_entsize = 4;
2575 break;
2576 }
2577
2578 if ((asect->flags & SEC_ALLOC) != 0)
2579 this_hdr->sh_flags |= SHF_ALLOC;
2580 if ((asect->flags & SEC_READONLY) == 0)
2581 this_hdr->sh_flags |= SHF_WRITE;
2582 if ((asect->flags & SEC_CODE) != 0)
2583 this_hdr->sh_flags |= SHF_EXECINSTR;
2584 if ((asect->flags & SEC_MERGE) != 0)
2585 {
2586 this_hdr->sh_flags |= SHF_MERGE;
2587 this_hdr->sh_entsize = asect->entsize;
2588 if ((asect->flags & SEC_STRINGS) != 0)
2589 this_hdr->sh_flags |= SHF_STRINGS;
2590 }
2591 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2592 this_hdr->sh_flags |= SHF_GROUP;
2593 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2594 {
2595 this_hdr->sh_flags |= SHF_TLS;
2596 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2597 {
2598 struct bfd_link_order *o;
2599
2600 this_hdr->sh_size = 0;
2601 for (o = asect->link_order_head; o != NULL; o = o->next)
2602 if (this_hdr->sh_size < o->offset + o->size)
2603 this_hdr->sh_size = o->offset + o->size;
2604 if (this_hdr->sh_size)
2605 this_hdr->sh_type = SHT_NOBITS;
2606 }
2607 }
2608
2609 /* Check for processor-specific section types. */
2610 if (bed->elf_backend_fake_sections
2611 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2612 *failedptr = TRUE;
2613
2614 /* If the section has relocs, set up a section header for the
2615 SHT_REL[A] section. If two relocation sections are required for
2616 this section, it is up to the processor-specific back-end to
2617 create the other. */
2618 if ((asect->flags & SEC_RELOC) != 0
2619 && !_bfd_elf_init_reloc_shdr (abfd,
2620 &elf_section_data (asect)->rel_hdr,
2621 asect,
2622 asect->use_rela_p))
2623 *failedptr = TRUE;
2624}
2625
2626/* Fill in the contents of a SHT_GROUP section. */
2627
2628void
2629bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2630{
2631 bfd_boolean *failedptr = failedptrarg;
2632 unsigned long symindx;
2633 asection *elt, *first;
2634 unsigned char *loc;
2635 struct bfd_link_order *l;
2636 bfd_boolean gas;
2637
2638 /* Ignore linker created group section. See elfNN_ia64_object_p in
2639 elfxx-ia64.c. */
2640 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2641 || *failedptr)
2642 return;
2643
2644 symindx = 0;
2645 if (elf_group_id (sec) != NULL)
2646 symindx = elf_group_id (sec)->udata.i;
2647
2648 if (symindx == 0)
2649 {
2650 /* If called from the assembler, swap_out_syms will have set up
2651 elf_section_syms; If called for "ld -r", use target_index. */
2652 if (elf_section_syms (abfd) != NULL)
2653 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2654 else
2655 symindx = sec->target_index;
2656 }
2657 elf_section_data (sec)->this_hdr.sh_info = symindx;
2658
2659 /* The contents won't be allocated for "ld -r" or objcopy. */
2660 gas = TRUE;
2661 if (sec->contents == NULL)
2662 {
2663 gas = FALSE;
2664 sec->contents = bfd_alloc (abfd, sec->size);
2665
2666 /* Arrange for the section to be written out. */
2667 elf_section_data (sec)->this_hdr.contents = sec->contents;
2668 if (sec->contents == NULL)
2669 {
2670 *failedptr = TRUE;
2671 return;
2672 }
2673 }
2674
2675 loc = sec->contents + sec->size;
2676
2677 /* Get the pointer to the first section in the group that gas
2678 squirreled away here. objcopy arranges for this to be set to the
2679 start of the input section group. */
2680 first = elt = elf_next_in_group (sec);
2681
2682 /* First element is a flag word. Rest of section is elf section
2683 indices for all the sections of the group. Write them backwards
2684 just to keep the group in the same order as given in .section
2685 directives, not that it matters. */
2686 while (elt != NULL)
2687 {
2688 asection *s;
2689 unsigned int idx;
2690
2691 loc -= 4;
2692 s = elt;
2693 if (!gas)
2694 s = s->output_section;
2695 idx = 0;
2696 if (s != NULL)
2697 idx = elf_section_data (s)->this_idx;
2698 H_PUT_32 (abfd, idx, loc);
2699 elt = elf_next_in_group (elt);
2700 if (elt == first)
2701 break;
2702 }
2703
2704 /* If this is a relocatable link, then the above did nothing because
2705 SEC is the output section. Look through the input sections
2706 instead. */
2707 for (l = sec->link_order_head; l != NULL; l = l->next)
2708 if (l->type == bfd_indirect_link_order
2709 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2710 do
2711 {
2712 loc -= 4;
2713 H_PUT_32 (abfd,
2714 elf_section_data (elt->output_section)->this_idx, loc);
2715 elt = elf_next_in_group (elt);
2716 /* During a relocatable link, the lists are circular. */
2717 }
2718 while (elt != elf_next_in_group (l->u.indirect.section));
2719
2720 if ((loc -= 4) != sec->contents)
2721 abort ();
2722
2723 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2724}
2725
2726/* Assign all ELF section numbers. The dummy first section is handled here
2727 too. The link/info pointers for the standard section types are filled
2728 in here too, while we're at it. */
2729
2730static bfd_boolean
2731assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2732{
2733 struct elf_obj_tdata *t = elf_tdata (abfd);
2734 asection *sec;
2735 unsigned int section_number, secn;
2736 Elf_Internal_Shdr **i_shdrp;
2737 bfd_size_type amt;
2738 struct bfd_elf_section_data *d;
2739
2740 section_number = 1;
2741
2742 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2743
2744 /* SHT_GROUP sections are in relocatable files only. */
2745 if (link_info == NULL || link_info->relocatable)
2746 {
2747 asection **secp;
2748
2749 /* Put SHT_GROUP sections first. */
2750 secp = &abfd->sections;
2751 while (*secp)
2752 {
2753 d = elf_section_data (*secp);
2754
2755 if (d->this_hdr.sh_type == SHT_GROUP)
2756 {
2757 if ((*secp)->flags & SEC_LINKER_CREATED)
2758 {
2759 /* Remove the linker created SHT_GROUP sections. */
2760 bfd_section_list_remove (abfd, secp);
2761 abfd->section_count--;
2762 continue;
2763 }
2764 else
2765 {
2766 if (section_number == SHN_LORESERVE)
2767 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2768 d->this_idx = section_number++;
2769 }
2770 }
2771
2772 secp = &(*secp)->next;
2773 }
2774 }
2775
2776 for (sec = abfd->sections; sec; sec = sec->next)
2777 {
2778 d = elf_section_data (sec);
2779
2780 if (d->this_hdr.sh_type != SHT_GROUP)
2781 {
2782 if (section_number == SHN_LORESERVE)
2783 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2784 d->this_idx = section_number++;
2785 }
2786 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2787 if ((sec->flags & SEC_RELOC) == 0)
2788 d->rel_idx = 0;
2789 else
2790 {
2791 if (section_number == SHN_LORESERVE)
2792 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2793 d->rel_idx = section_number++;
2794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2795 }
2796
2797 if (d->rel_hdr2)
2798 {
2799 if (section_number == SHN_LORESERVE)
2800 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2801 d->rel_idx2 = section_number++;
2802 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2803 }
2804 else
2805 d->rel_idx2 = 0;
2806 }
2807
2808 if (section_number == SHN_LORESERVE)
2809 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2810 t->shstrtab_section = section_number++;
2811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2812 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2813
2814 if (bfd_get_symcount (abfd) > 0)
2815 {
2816 if (section_number == SHN_LORESERVE)
2817 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2818 t->symtab_section = section_number++;
2819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2820 if (section_number > SHN_LORESERVE - 2)
2821 {
2822 if (section_number == SHN_LORESERVE)
2823 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2824 t->symtab_shndx_section = section_number++;
2825 t->symtab_shndx_hdr.sh_name
2826 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2827 ".symtab_shndx", FALSE);
2828 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2829 return FALSE;
2830 }
2831 if (section_number == SHN_LORESERVE)
2832 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2833 t->strtab_section = section_number++;
2834 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2835 }
2836
2837 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2838 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2839
2840 elf_numsections (abfd) = section_number;
2841 elf_elfheader (abfd)->e_shnum = section_number;
2842 if (section_number > SHN_LORESERVE)
2843 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2844
2845 /* Set up the list of section header pointers, in agreement with the
2846 indices. */
2847 amt = section_number * sizeof (Elf_Internal_Shdr *);
2848 i_shdrp = bfd_zalloc (abfd, amt);
2849 if (i_shdrp == NULL)
2850 return FALSE;
2851
2852 amt = sizeof (Elf_Internal_Shdr);
2853 i_shdrp[0] = bfd_zalloc (abfd, amt);
2854 if (i_shdrp[0] == NULL)
2855 {
2856 bfd_release (abfd, i_shdrp);
2857 return FALSE;
2858 }
2859
2860 elf_elfsections (abfd) = i_shdrp;
2861
2862 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2863 if (bfd_get_symcount (abfd) > 0)
2864 {
2865 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2866 if (elf_numsections (abfd) > SHN_LORESERVE)
2867 {
2868 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2869 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2870 }
2871 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2872 t->symtab_hdr.sh_link = t->strtab_section;
2873 }
2874
2875 for (sec = abfd->sections; sec; sec = sec->next)
2876 {
2877 struct bfd_elf_section_data *d = elf_section_data (sec);
2878 asection *s;
2879 const char *name;
2880
2881 i_shdrp[d->this_idx] = &d->this_hdr;
2882 if (d->rel_idx != 0)
2883 i_shdrp[d->rel_idx] = &d->rel_hdr;
2884 if (d->rel_idx2 != 0)
2885 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2886
2887 /* Fill in the sh_link and sh_info fields while we're at it. */
2888
2889 /* sh_link of a reloc section is the section index of the symbol
2890 table. sh_info is the section index of the section to which
2891 the relocation entries apply. */
2892 if (d->rel_idx != 0)
2893 {
2894 d->rel_hdr.sh_link = t->symtab_section;
2895 d->rel_hdr.sh_info = d->this_idx;
2896 }
2897 if (d->rel_idx2 != 0)
2898 {
2899 d->rel_hdr2->sh_link = t->symtab_section;
2900 d->rel_hdr2->sh_info = d->this_idx;
2901 }
2902
2903 /* We need to set up sh_link for SHF_LINK_ORDER. */
2904 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2905 {
2906 s = elf_linked_to_section (sec);
2907 if (s)
2908 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2909 else
2910 {
2911 struct bfd_link_order *p;
2912
2913 /* Find out what the corresponding section in output
2914 is. */
2915 for (p = sec->link_order_head; p != NULL; p = p->next)
2916 {
2917 s = p->u.indirect.section;
2918 if (p->type == bfd_indirect_link_order
2919 && (bfd_get_flavour (s->owner)
2920 == bfd_target_elf_flavour))
2921 {
2922 Elf_Internal_Shdr ** const elf_shdrp
2923 = elf_elfsections (s->owner);
2924 int elfsec
2925 = _bfd_elf_section_from_bfd_section (s->owner, s);
2926 elfsec = elf_shdrp[elfsec]->sh_link;
2927 /* PR 290:
2928 The Intel C compiler generates SHT_IA_64_UNWIND with
2929 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2930 sh_info fields. Hence we could get the situation
2931 where elfsec is 0. */
2932 if (elfsec == 0)
2933 {
2934 const struct elf_backend_data *bed
2935 = get_elf_backend_data (abfd);
2936 if (bed->link_order_error_handler)
2937 bed->link_order_error_handler
2938 (_("%B: warning: sh_link not set for section `%A'"),
2939 abfd, s);
2940 }
2941 else
2942 {
2943 s = elf_shdrp[elfsec]->bfd_section;
2944 if (elf_discarded_section (s))
2945 {
2946 asection *kept;
2947 (*_bfd_error_handler)
2948 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2949 abfd, d->this_hdr.bfd_section,
2950 s, s->owner);
2951 /* Point to the kept section if it has
2952 the same size as the discarded
2953 one. */
2954 kept = _bfd_elf_check_kept_section (s);
2955 if (kept == NULL)
2956 {
2957 bfd_set_error (bfd_error_bad_value);
2958 return FALSE;
2959 }
2960 s = kept;
2961 }
2962 s = s->output_section;
2963 BFD_ASSERT (s != NULL);
2964 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2965 }
2966 break;
2967 }
2968 }
2969 }
2970 }
2971
2972 switch (d->this_hdr.sh_type)
2973 {
2974 case SHT_REL:
2975 case SHT_RELA:
2976 /* A reloc section which we are treating as a normal BFD
2977 section. sh_link is the section index of the symbol
2978 table. sh_info is the section index of the section to
2979 which the relocation entries apply. We assume that an
2980 allocated reloc section uses the dynamic symbol table.
2981 FIXME: How can we be sure? */
2982 s = bfd_get_section_by_name (abfd, ".dynsym");
2983 if (s != NULL)
2984 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2985
2986 /* We look up the section the relocs apply to by name. */
2987 name = sec->name;
2988 if (d->this_hdr.sh_type == SHT_REL)
2989 name += 4;
2990 else
2991 name += 5;
2992 s = bfd_get_section_by_name (abfd, name);
2993 if (s != NULL)
2994 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2995 break;
2996
2997 case SHT_STRTAB:
2998 /* We assume that a section named .stab*str is a stabs
2999 string section. We look for a section with the same name
3000 but without the trailing ``str'', and set its sh_link
3001 field to point to this section. */
3002 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3003 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3004 {
3005 size_t len;
3006 char *alc;
3007
3008 len = strlen (sec->name);
3009 alc = bfd_malloc (len - 2);
3010 if (alc == NULL)
3011 return FALSE;
3012 memcpy (alc, sec->name, len - 3);
3013 alc[len - 3] = '\0';
3014 s = bfd_get_section_by_name (abfd, alc);
3015 free (alc);
3016 if (s != NULL)
3017 {
3018 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3019
3020 /* This is a .stab section. */
3021 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3022 elf_section_data (s)->this_hdr.sh_entsize
3023 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3024 }
3025 }
3026 break;
3027
3028 case SHT_DYNAMIC:
3029 case SHT_DYNSYM:
3030 case SHT_GNU_verneed:
3031 case SHT_GNU_verdef:
3032 /* sh_link is the section header index of the string table
3033 used for the dynamic entries, or the symbol table, or the
3034 version strings. */
3035 s = bfd_get_section_by_name (abfd, ".dynstr");
3036 if (s != NULL)
3037 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3038 break;
3039
3040 case SHT_GNU_LIBLIST:
3041 /* sh_link is the section header index of the prelink library
3042 list
3043 used for the dynamic entries, or the symbol table, or the
3044 version strings. */
3045 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3046 ? ".dynstr" : ".gnu.libstr");
3047 if (s != NULL)
3048 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3049 break;
3050
3051 case SHT_HASH:
3052 case SHT_GNU_versym:
3053 /* sh_link is the section header index of the symbol table
3054 this hash table or version table is for. */
3055 s = bfd_get_section_by_name (abfd, ".dynsym");
3056 if (s != NULL)
3057 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3058 break;
3059
3060 case SHT_GROUP:
3061 d->this_hdr.sh_link = t->symtab_section;
3062 }
3063 }
3064
3065 for (secn = 1; secn < section_number; ++secn)
3066 if (i_shdrp[secn] == NULL)
3067 i_shdrp[secn] = i_shdrp[0];
3068 else
3069 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3070 i_shdrp[secn]->sh_name);
3071 return TRUE;
3072}
3073
3074/* Map symbol from it's internal number to the external number, moving
3075 all local symbols to be at the head of the list. */
3076
3077static int
3078sym_is_global (bfd *abfd, asymbol *sym)
3079{
3080 /* If the backend has a special mapping, use it. */
3081 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3082 if (bed->elf_backend_sym_is_global)
3083 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3084
3085 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3086 || bfd_is_und_section (bfd_get_section (sym))
3087 || bfd_is_com_section (bfd_get_section (sym)));
3088}
3089
3090static bfd_boolean
3091elf_map_symbols (bfd *abfd)
3092{
3093 unsigned int symcount = bfd_get_symcount (abfd);
3094 asymbol **syms = bfd_get_outsymbols (abfd);
3095 asymbol **sect_syms;
3096 unsigned int num_locals = 0;
3097 unsigned int num_globals = 0;
3098 unsigned int num_locals2 = 0;
3099 unsigned int num_globals2 = 0;
3100 int max_index = 0;
3101 unsigned int idx;
3102 asection *asect;
3103 asymbol **new_syms;
3104 bfd_size_type amt;
3105
3106#ifdef DEBUG
3107 fprintf (stderr, "elf_map_symbols\n");
3108 fflush (stderr);
3109#endif
3110
3111 for (asect = abfd->sections; asect; asect = asect->next)
3112 {
3113 if (max_index < asect->index)
3114 max_index = asect->index;
3115 }
3116
3117 max_index++;
3118 amt = max_index * sizeof (asymbol *);
3119 sect_syms = bfd_zalloc (abfd, amt);
3120 if (sect_syms == NULL)
3121 return FALSE;
3122 elf_section_syms (abfd) = sect_syms;
3123 elf_num_section_syms (abfd) = max_index;
3124
3125 /* Init sect_syms entries for any section symbols we have already
3126 decided to output. */
3127 for (idx = 0; idx < symcount; idx++)
3128 {
3129 asymbol *sym = syms[idx];
3130
3131 if ((sym->flags & BSF_SECTION_SYM) != 0
3132 && sym->value == 0)
3133 {
3134 asection *sec;
3135
3136 sec = sym->section;
3137
3138 if (sec->owner != NULL)
3139 {
3140 if (sec->owner != abfd)
3141 {
3142 if (sec->output_offset != 0)
3143 continue;
3144
3145 sec = sec->output_section;
3146
3147 /* Empty sections in the input files may have had a
3148 section symbol created for them. (See the comment
3149 near the end of _bfd_generic_link_output_symbols in
3150 linker.c). If the linker script discards such
3151 sections then we will reach this point. Since we know
3152 that we cannot avoid this case, we detect it and skip
3153 the abort and the assignment to the sect_syms array.
3154 To reproduce this particular case try running the
3155 linker testsuite test ld-scripts/weak.exp for an ELF
3156 port that uses the generic linker. */
3157 if (sec->owner == NULL)
3158 continue;
3159
3160 BFD_ASSERT (sec->owner == abfd);
3161 }
3162 sect_syms[sec->index] = syms[idx];
3163 }
3164 }
3165 }
3166
3167 /* Classify all of the symbols. */
3168 for (idx = 0; idx < symcount; idx++)
3169 {
3170 if (!sym_is_global (abfd, syms[idx]))
3171 num_locals++;
3172 else
3173 num_globals++;
3174 }
3175
3176 /* We will be adding a section symbol for each BFD section. Most normal
3177 sections will already have a section symbol in outsymbols, but
3178 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3179 at least in that case. */
3180 for (asect = abfd->sections; asect; asect = asect->next)
3181 {
3182 if (sect_syms[asect->index] == NULL)
3183 {
3184 if (!sym_is_global (abfd, asect->symbol))
3185 num_locals++;
3186 else
3187 num_globals++;
3188 }
3189 }
3190
3191 /* Now sort the symbols so the local symbols are first. */
3192 amt = (num_locals + num_globals) * sizeof (asymbol *);
3193 new_syms = bfd_alloc (abfd, amt);
3194
3195 if (new_syms == NULL)
3196 return FALSE;
3197
3198 for (idx = 0; idx < symcount; idx++)
3199 {
3200 asymbol *sym = syms[idx];
3201 unsigned int i;
3202
3203 if (!sym_is_global (abfd, sym))
3204 i = num_locals2++;
3205 else
3206 i = num_locals + num_globals2++;
3207 new_syms[i] = sym;
3208 sym->udata.i = i + 1;
3209 }
3210 for (asect = abfd->sections; asect; asect = asect->next)
3211 {
3212 if (sect_syms[asect->index] == NULL)
3213 {
3214 asymbol *sym = asect->symbol;
3215 unsigned int i;
3216
3217 sect_syms[asect->index] = sym;
3218 if (!sym_is_global (abfd, sym))
3219 i = num_locals2++;
3220 else
3221 i = num_locals + num_globals2++;
3222 new_syms[i] = sym;
3223 sym->udata.i = i + 1;
3224 }
3225 }
3226
3227 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3228
3229 elf_num_locals (abfd) = num_locals;
3230 elf_num_globals (abfd) = num_globals;
3231 return TRUE;
3232}
3233
3234/* Align to the maximum file alignment that could be required for any
3235 ELF data structure. */
3236
3237static inline file_ptr
3238align_file_position (file_ptr off, int align)
3239{
3240 return (off + align - 1) & ~(align - 1);
3241}
3242
3243/* Assign a file position to a section, optionally aligning to the
3244 required section alignment. */
3245
3246file_ptr
3247_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3248 file_ptr offset,
3249 bfd_boolean align)
3250{
3251 if (align)
3252 {
3253 unsigned int al;
3254
3255 al = i_shdrp->sh_addralign;
3256 if (al > 1)
3257 offset = BFD_ALIGN (offset, al);
3258 }
3259 i_shdrp->sh_offset = offset;
3260 if (i_shdrp->bfd_section != NULL)
3261 i_shdrp->bfd_section->filepos = offset;
3262 if (i_shdrp->sh_type != SHT_NOBITS)
3263 offset += i_shdrp->sh_size;
3264 return offset;
3265}
3266
3267/* Compute the file positions we are going to put the sections at, and
3268 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3269 is not NULL, this is being called by the ELF backend linker. */
3270
3271bfd_boolean
3272_bfd_elf_compute_section_file_positions (bfd *abfd,
3273 struct bfd_link_info *link_info)
3274{
3275 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3276 bfd_boolean failed;
3277 struct bfd_strtab_hash *strtab = NULL;
3278 Elf_Internal_Shdr *shstrtab_hdr;
3279
3280 if (abfd->output_has_begun)
3281 return TRUE;
3282
3283 /* Do any elf backend specific processing first. */
3284 if (bed->elf_backend_begin_write_processing)
3285 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3286
3287 if (! prep_headers (abfd))
3288 return FALSE;
3289
3290 /* Post process the headers if necessary. */
3291 if (bed->elf_backend_post_process_headers)
3292 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3293
3294 failed = FALSE;
3295 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3296 if (failed)
3297 return FALSE;
3298
3299 if (!assign_section_numbers (abfd, link_info))
3300 return FALSE;
3301
3302 /* The backend linker builds symbol table information itself. */
3303 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3304 {
3305 /* Non-zero if doing a relocatable link. */
3306 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3307
3308 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3309 return FALSE;
3310 }
3311
3312 if (link_info == NULL)
3313 {
3314 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3315 if (failed)
3316 return FALSE;
3317 }
3318
3319 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3320 /* sh_name was set in prep_headers. */
3321 shstrtab_hdr->sh_type = SHT_STRTAB;
3322 shstrtab_hdr->sh_flags = 0;
3323 shstrtab_hdr->sh_addr = 0;
3324 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3325 shstrtab_hdr->sh_entsize = 0;
3326 shstrtab_hdr->sh_link = 0;
3327 shstrtab_hdr->sh_info = 0;
3328 /* sh_offset is set in assign_file_positions_except_relocs. */
3329 shstrtab_hdr->sh_addralign = 1;
3330
3331 if (!assign_file_positions_except_relocs (abfd, link_info))
3332 return FALSE;
3333
3334 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3335 {
3336 file_ptr off;
3337 Elf_Internal_Shdr *hdr;
3338
3339 off = elf_tdata (abfd)->next_file_pos;
3340
3341 hdr = &elf_tdata (abfd)->symtab_hdr;
3342 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3343
3344 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3345 if (hdr->sh_size != 0)
3346 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3347
3348 hdr = &elf_tdata (abfd)->strtab_hdr;
3349 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3350
3351 elf_tdata (abfd)->next_file_pos = off;
3352
3353 /* Now that we know where the .strtab section goes, write it
3354 out. */
3355 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3356 || ! _bfd_stringtab_emit (abfd, strtab))
3357 return FALSE;
3358 _bfd_stringtab_free (strtab);
3359 }
3360
3361 abfd->output_has_begun = TRUE;
3362
3363 return TRUE;
3364}
3365
3366/* Create a mapping from a set of sections to a program segment. */
3367
3368static struct elf_segment_map *
3369make_mapping (bfd *abfd,
3370 asection **sections,
3371 unsigned int from,
3372 unsigned int to,
3373 bfd_boolean phdr)
3374{
3375 struct elf_segment_map *m;
3376 unsigned int i;
3377 asection **hdrpp;
3378 bfd_size_type amt;
3379
3380 amt = sizeof (struct elf_segment_map);
3381 amt += (to - from - 1) * sizeof (asection *);
3382 m = bfd_zalloc (abfd, amt);
3383 if (m == NULL)
3384 return NULL;
3385 m->next = NULL;
3386 m->p_type = PT_LOAD;
3387 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3388 m->sections[i - from] = *hdrpp;
3389 m->count = to - from;
3390
3391 if (from == 0 && phdr)
3392 {
3393 /* Include the headers in the first PT_LOAD segment. */
3394 m->includes_filehdr = 1;
3395 m->includes_phdrs = 1;
3396 }
3397
3398 return m;
3399}
3400
3401/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3402 on failure. */
3403
3404struct elf_segment_map *
3405_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3406{
3407 struct elf_segment_map *m;
3408
3409 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3410 if (m == NULL)
3411 return NULL;
3412 m->next = NULL;
3413 m->p_type = PT_DYNAMIC;
3414 m->count = 1;
3415 m->sections[0] = dynsec;
3416
3417 return m;
3418}
3419
3420/* Set up a mapping from BFD sections to program segments. */
3421
3422static bfd_boolean
3423map_sections_to_segments (bfd *abfd)
3424{
3425 asection **sections = NULL;
3426 asection *s;
3427 unsigned int i;
3428 unsigned int count;
3429 struct elf_segment_map *mfirst;
3430 struct elf_segment_map **pm;
3431 struct elf_segment_map *m;
3432 asection *last_hdr;
3433 bfd_vma last_size;
3434 unsigned int phdr_index;
3435 bfd_vma maxpagesize;
3436 asection **hdrpp;
3437 bfd_boolean phdr_in_segment = TRUE;
3438 bfd_boolean writable;
3439 int tls_count = 0;
3440 asection *first_tls = NULL;
3441 asection *dynsec, *eh_frame_hdr;
3442 bfd_size_type amt;
3443
3444 if (elf_tdata (abfd)->segment_map != NULL)
3445 return TRUE;
3446
3447 if (bfd_count_sections (abfd) == 0)
3448 return TRUE;
3449
3450 /* Select the allocated sections, and sort them. */
3451
3452 amt = bfd_count_sections (abfd) * sizeof (asection *);
3453 sections = bfd_malloc (amt);
3454 if (sections == NULL)
3455 goto error_return;
3456
3457 i = 0;
3458 for (s = abfd->sections; s != NULL; s = s->next)
3459 {
3460 if ((s->flags & SEC_ALLOC) != 0)
3461 {
3462 sections[i] = s;
3463 ++i;
3464 }
3465 }
3466 BFD_ASSERT (i <= bfd_count_sections (abfd));
3467 count = i;
3468
3469 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3470
3471 /* Build the mapping. */
3472
3473 mfirst = NULL;
3474 pm = &mfirst;
3475
3476 /* If we have a .interp section, then create a PT_PHDR segment for
3477 the program headers and a PT_INTERP segment for the .interp
3478 section. */
3479 s = bfd_get_section_by_name (abfd, ".interp");
3480 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3481 {
3482 amt = sizeof (struct elf_segment_map);
3483 m = bfd_zalloc (abfd, amt);
3484 if (m == NULL)
3485 goto error_return;
3486 m->next = NULL;
3487 m->p_type = PT_PHDR;
3488 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3489 m->p_flags = PF_R | PF_X;
3490 m->p_flags_valid = 1;
3491 m->includes_phdrs = 1;
3492
3493 *pm = m;
3494 pm = &m->next;
3495
3496 amt = sizeof (struct elf_segment_map);
3497 m = bfd_zalloc (abfd, amt);
3498 if (m == NULL)
3499 goto error_return;
3500 m->next = NULL;
3501 m->p_type = PT_INTERP;
3502 m->count = 1;
3503 m->sections[0] = s;
3504
3505 *pm = m;
3506 pm = &m->next;
3507 }
3508
3509 /* Look through the sections. We put sections in the same program
3510 segment when the start of the second section can be placed within
3511 a few bytes of the end of the first section. */
3512 last_hdr = NULL;
3513 last_size = 0;
3514 phdr_index = 0;
3515 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3516 writable = FALSE;
3517 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3518 if (dynsec != NULL
3519 && (dynsec->flags & SEC_LOAD) == 0)
3520 dynsec = NULL;
3521
3522 /* Deal with -Ttext or something similar such that the first section
3523 is not adjacent to the program headers. This is an
3524 approximation, since at this point we don't know exactly how many
3525 program headers we will need. */
3526 if (count > 0)
3527 {
3528 bfd_size_type phdr_size;
3529
3530 phdr_size = elf_tdata (abfd)->program_header_size;
3531 if (phdr_size == 0)
3532 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3533 if ((abfd->flags & D_PAGED) == 0
3534 || sections[0]->lma < phdr_size
3535 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3536 phdr_in_segment = FALSE;
3537 }
3538
3539 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3540 {
3541 asection *hdr;
3542 bfd_boolean new_segment;
3543
3544 hdr = *hdrpp;
3545
3546 /* See if this section and the last one will fit in the same
3547 segment. */
3548
3549 if (last_hdr == NULL)
3550 {
3551 /* If we don't have a segment yet, then we don't need a new
3552 one (we build the last one after this loop). */
3553 new_segment = FALSE;
3554 }
3555 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3556 {
3557 /* If this section has a different relation between the
3558 virtual address and the load address, then we need a new
3559 segment. */
3560 new_segment = TRUE;
3561 }
3562 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3563 < BFD_ALIGN (hdr->lma, maxpagesize))
3564 {
3565 /* If putting this section in this segment would force us to
3566 skip a page in the segment, then we need a new segment. */
3567 new_segment = TRUE;
3568 }
3569 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3570 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3571 {
3572 /* We don't want to put a loadable section after a
3573 nonloadable section in the same segment.
3574 Consider .tbss sections as loadable for this purpose. */
3575 new_segment = TRUE;
3576 }
3577 else if ((abfd->flags & D_PAGED) == 0)
3578 {
3579 /* If the file is not demand paged, which means that we
3580 don't require the sections to be correctly aligned in the
3581 file, then there is no other reason for a new segment. */
3582 new_segment = FALSE;
3583 }
3584 else if (! writable
3585 && (hdr->flags & SEC_READONLY) == 0
3586 && (((last_hdr->lma + last_size - 1)
3587 & ~(maxpagesize - 1))
3588 != (hdr->lma & ~(maxpagesize - 1))))
3589 {
3590 /* We don't want to put a writable section in a read only
3591 segment, unless they are on the same page in memory
3592 anyhow. We already know that the last section does not
3593 bring us past the current section on the page, so the
3594 only case in which the new section is not on the same
3595 page as the previous section is when the previous section
3596 ends precisely on a page boundary. */
3597 new_segment = TRUE;
3598 }
3599 else
3600 {
3601 /* Otherwise, we can use the same segment. */
3602 new_segment = FALSE;
3603 }
3604
3605 if (! new_segment)
3606 {
3607 if ((hdr->flags & SEC_READONLY) == 0)
3608 writable = TRUE;
3609 last_hdr = hdr;
3610 /* .tbss sections effectively have zero size. */
3611 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3612 last_size = hdr->size;
3613 else
3614 last_size = 0;
3615 continue;
3616 }
3617
3618 /* We need a new program segment. We must create a new program
3619 header holding all the sections from phdr_index until hdr. */
3620
3621 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3622 if (m == NULL)
3623 goto error_return;
3624
3625 *pm = m;
3626 pm = &m->next;
3627
3628 if ((hdr->flags & SEC_READONLY) == 0)
3629 writable = TRUE;
3630 else
3631 writable = FALSE;
3632
3633 last_hdr = hdr;
3634 /* .tbss sections effectively have zero size. */
3635 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3636 last_size = hdr->size;
3637 else
3638 last_size = 0;
3639 phdr_index = i;
3640 phdr_in_segment = FALSE;
3641 }
3642
3643 /* Create a final PT_LOAD program segment. */
3644 if (last_hdr != NULL)
3645 {
3646 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3647 if (m == NULL)
3648 goto error_return;
3649
3650 *pm = m;
3651 pm = &m->next;
3652 }
3653
3654 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3655 if (dynsec != NULL)
3656 {
3657 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3658 if (m == NULL)
3659 goto error_return;
3660 *pm = m;
3661 pm = &m->next;
3662 }
3663
3664 /* For each loadable .note section, add a PT_NOTE segment. We don't
3665 use bfd_get_section_by_name, because if we link together
3666 nonloadable .note sections and loadable .note sections, we will
3667 generate two .note sections in the output file. FIXME: Using
3668 names for section types is bogus anyhow. */
3669 for (s = abfd->sections; s != NULL; s = s->next)
3670 {
3671 if ((s->flags & SEC_LOAD) != 0
3672 && strncmp (s->name, ".note", 5) == 0)
3673 {
3674 amt = sizeof (struct elf_segment_map);
3675 m = bfd_zalloc (abfd, amt);
3676 if (m == NULL)
3677 goto error_return;
3678 m->next = NULL;
3679 m->p_type = PT_NOTE;
3680 m->count = 1;
3681 m->sections[0] = s;
3682
3683 *pm = m;
3684 pm = &m->next;
3685 }
3686 if (s->flags & SEC_THREAD_LOCAL)
3687 {
3688 if (! tls_count)
3689 first_tls = s;
3690 tls_count++;
3691 }
3692 }
3693
3694 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3695 if (tls_count > 0)
3696 {
3697 int i;
3698
3699 amt = sizeof (struct elf_segment_map);
3700 amt += (tls_count - 1) * sizeof (asection *);
3701 m = bfd_zalloc (abfd, amt);
3702 if (m == NULL)
3703 goto error_return;
3704 m->next = NULL;
3705 m->p_type = PT_TLS;
3706 m->count = tls_count;
3707 /* Mandated PF_R. */
3708 m->p_flags = PF_R;
3709 m->p_flags_valid = 1;
3710 for (i = 0; i < tls_count; ++i)
3711 {
3712 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3713 m->sections[i] = first_tls;
3714 first_tls = first_tls->next;
3715 }
3716
3717 *pm = m;
3718 pm = &m->next;
3719 }
3720
3721 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3722 segment. */
3723 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3724 if (eh_frame_hdr != NULL
3725 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3726 {
3727 amt = sizeof (struct elf_segment_map);
3728 m = bfd_zalloc (abfd, amt);
3729 if (m == NULL)
3730 goto error_return;
3731 m->next = NULL;
3732 m->p_type = PT_GNU_EH_FRAME;
3733 m->count = 1;
3734 m->sections[0] = eh_frame_hdr->output_section;
3735
3736 *pm = m;
3737 pm = &m->next;
3738 }
3739
3740 if (elf_tdata (abfd)->stack_flags)
3741 {
3742 amt = sizeof (struct elf_segment_map);
3743 m = bfd_zalloc (abfd, amt);
3744 if (m == NULL)
3745 goto error_return;
3746 m->next = NULL;
3747 m->p_type = PT_GNU_STACK;
3748 m->p_flags = elf_tdata (abfd)->stack_flags;
3749 m->p_flags_valid = 1;
3750
3751 *pm = m;
3752 pm = &m->next;
3753 }
3754
3755 if (elf_tdata (abfd)->relro)
3756 {
3757 amt = sizeof (struct elf_segment_map);
3758 m = bfd_zalloc (abfd, amt);
3759 if (m == NULL)
3760 goto error_return;
3761 m->next = NULL;
3762 m->p_type = PT_GNU_RELRO;
3763 m->p_flags = PF_R;
3764 m->p_flags_valid = 1;
3765
3766 *pm = m;
3767 pm = &m->next;
3768 }
3769
3770 free (sections);
3771 sections = NULL;
3772
3773 elf_tdata (abfd)->segment_map = mfirst;
3774 return TRUE;
3775
3776 error_return:
3777 if (sections != NULL)
3778 free (sections);
3779 return FALSE;
3780}
3781
3782/* Sort sections by address. */
3783
3784static int
3785elf_sort_sections (const void *arg1, const void *arg2)
3786{
3787 const asection *sec1 = *(const asection **) arg1;
3788 const asection *sec2 = *(const asection **) arg2;
3789 bfd_size_type size1, size2;
3790
3791 /* Sort by LMA first, since this is the address used to
3792 place the section into a segment. */
3793 if (sec1->lma < sec2->lma)
3794 return -1;
3795 else if (sec1->lma > sec2->lma)
3796 return 1;
3797
3798 /* Then sort by VMA. Normally the LMA and the VMA will be
3799 the same, and this will do nothing. */
3800 if (sec1->vma < sec2->vma)
3801 return -1;
3802 else if (sec1->vma > sec2->vma)
3803 return 1;
3804
3805 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3806
3807#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3808
3809 if (TOEND (sec1))
3810 {
3811 if (TOEND (sec2))
3812 {
3813 /* If the indicies are the same, do not return 0
3814 here, but continue to try the next comparison. */
3815 if (sec1->target_index - sec2->target_index != 0)
3816 return sec1->target_index - sec2->target_index;
3817 }
3818 else
3819 return 1;
3820 }
3821 else if (TOEND (sec2))
3822 return -1;
3823
3824#undef TOEND
3825
3826 /* Sort by size, to put zero sized sections
3827 before others at the same address. */
3828
3829 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3830 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3831
3832 if (size1 < size2)
3833 return -1;
3834 if (size1 > size2)
3835 return 1;
3836
3837 return sec1->target_index - sec2->target_index;
3838}
3839
3840/* Ian Lance Taylor writes:
3841
3842 We shouldn't be using % with a negative signed number. That's just
3843 not good. We have to make sure either that the number is not
3844 negative, or that the number has an unsigned type. When the types
3845 are all the same size they wind up as unsigned. When file_ptr is a
3846 larger signed type, the arithmetic winds up as signed long long,
3847 which is wrong.
3848
3849 What we're trying to say here is something like ``increase OFF by
3850 the least amount that will cause it to be equal to the VMA modulo
3851 the page size.'' */
3852/* In other words, something like:
3853
3854 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3855 off_offset = off % bed->maxpagesize;
3856 if (vma_offset < off_offset)
3857 adjustment = vma_offset + bed->maxpagesize - off_offset;
3858 else
3859 adjustment = vma_offset - off_offset;
3860
3861 which can can be collapsed into the expression below. */
3862
3863static file_ptr
3864vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3865{
3866 return ((vma - off) % maxpagesize);
3867}
3868
3869/* Assign file positions to the sections based on the mapping from
3870 sections to segments. This function also sets up some fields in
3871 the file header, and writes out the program headers. */
3872
3873static bfd_boolean
3874assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3875{
3876 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3877 unsigned int count;
3878 struct elf_segment_map *m;
3879 unsigned int alloc;
3880 Elf_Internal_Phdr *phdrs;
3881 file_ptr off, voff;
3882 bfd_vma filehdr_vaddr, filehdr_paddr;
3883 bfd_vma phdrs_vaddr, phdrs_paddr;
3884 Elf_Internal_Phdr *p;
3885 bfd_size_type amt;
3886
3887 if (elf_tdata (abfd)->segment_map == NULL)
3888 {
3889 if (! map_sections_to_segments (abfd))
3890 return FALSE;
3891 }
3892 else
3893 {
3894 /* The placement algorithm assumes that non allocated sections are
3895 not in PT_LOAD segments. We ensure this here by removing such
3896 sections from the segment map. */
3897 for (m = elf_tdata (abfd)->segment_map;
3898 m != NULL;
3899 m = m->next)
3900 {
3901 unsigned int new_count;
3902 unsigned int i;
3903
3904 if (m->p_type != PT_LOAD)
3905 continue;
3906
3907 new_count = 0;
3908 for (i = 0; i < m->count; i ++)
3909 {
3910 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3911 {
3912 if (i != new_count)
3913 m->sections[new_count] = m->sections[i];
3914
3915 new_count ++;
3916 }
3917 }
3918
3919 if (new_count != m->count)
3920 m->count = new_count;
3921 }
3922 }
3923
3924 if (bed->elf_backend_modify_segment_map)
3925 {
3926 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3927 return FALSE;
3928 }
3929
3930 count = 0;
3931 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3932 ++count;
3933
3934 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3935 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3936 elf_elfheader (abfd)->e_phnum = count;
3937
3938 if (count == 0)
3939 {
3940 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3941 return TRUE;
3942 }
3943
3944 /* If we already counted the number of program segments, make sure
3945 that we allocated enough space. This happens when SIZEOF_HEADERS
3946 is used in a linker script. */
3947 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3948 if (alloc != 0 && count > alloc)
3949 {
3950 ((*_bfd_error_handler)
3951 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3952 abfd, alloc, count));
3953 bfd_set_error (bfd_error_bad_value);
3954 return FALSE;
3955 }
3956
3957 if (alloc == 0)
3958 alloc = count;
3959
3960 amt = alloc * sizeof (Elf_Internal_Phdr);
3961 phdrs = bfd_alloc (abfd, amt);
3962 if (phdrs == NULL)
3963 return FALSE;
3964
3965 off = bed->s->sizeof_ehdr;
3966 off += alloc * bed->s->sizeof_phdr;
3967
3968 filehdr_vaddr = 0;
3969 filehdr_paddr = 0;
3970 phdrs_vaddr = 0;
3971 phdrs_paddr = 0;
3972
3973 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3974 m != NULL;
3975 m = m->next, p++)
3976 {
3977 unsigned int i;
3978 asection **secpp;
3979
3980 /* If elf_segment_map is not from map_sections_to_segments, the
3981 sections may not be correctly ordered. NOTE: sorting should
3982 not be done to the PT_NOTE section of a corefile, which may
3983 contain several pseudo-sections artificially created by bfd.
3984 Sorting these pseudo-sections breaks things badly. */
3985 if (m->count > 1
3986 && !(elf_elfheader (abfd)->e_type == ET_CORE
3987 && m->p_type == PT_NOTE))
3988 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3989 elf_sort_sections);
3990
3991 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3992 number of sections with contents contributing to both p_filesz
3993 and p_memsz, followed by a number of sections with no contents
3994 that just contribute to p_memsz. In this loop, OFF tracks next
3995 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3996 an adjustment we use for segments that have no file contents
3997 but need zero filled memory allocation. */
3998 voff = 0;
3999 p->p_type = m->p_type;
4000 p->p_flags = m->p_flags;
4001
4002 if (p->p_type == PT_LOAD
4003 && m->count > 0)
4004 {
4005 bfd_size_type align;
4006 bfd_vma adjust;
4007
4008 if ((abfd->flags & D_PAGED) != 0)
4009 align = bed->maxpagesize;
4010 else
4011 {
4012 unsigned int align_power = 0;
4013 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4014 {
4015 unsigned int secalign;
4016
4017 secalign = bfd_get_section_alignment (abfd, *secpp);
4018 if (secalign > align_power)
4019 align_power = secalign;
4020 }
4021 align = (bfd_size_type) 1 << align_power;
4022 }
4023
4024 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4025 off += adjust;
4026 if (adjust != 0
4027 && !m->includes_filehdr
4028 && !m->includes_phdrs
4029 && (ufile_ptr) off >= align)
4030 {
4031 /* If the first section isn't loadable, the same holds for
4032 any other sections. Since the segment won't need file
4033 space, we can make p_offset overlap some prior segment.
4034 However, .tbss is special. If a segment starts with
4035 .tbss, we need to look at the next section to decide
4036 whether the segment has any loadable sections. */
4037 i = 0;
4038 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4039 {
4040 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4041 || ++i >= m->count)
4042 {
4043 off -= adjust;
4044 voff = adjust - align;
4045 break;
4046 }
4047 }
4048 }
4049 }
4050 /* Make sure the .dynamic section is the first section in the
4051 PT_DYNAMIC segment. */
4052 else if (p->p_type == PT_DYNAMIC
4053 && m->count > 1
4054 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4055 {
4056 _bfd_error_handler
4057 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4058 abfd);
4059 bfd_set_error (bfd_error_bad_value);
4060 return FALSE;
4061 }
4062
4063 if (m->count == 0)
4064 p->p_vaddr = 0;
4065 else
4066 p->p_vaddr = m->sections[0]->vma;
4067
4068 if (m->p_paddr_valid)
4069 p->p_paddr = m->p_paddr;
4070 else if (m->count == 0)
4071 p->p_paddr = 0;
4072 else
4073 p->p_paddr = m->sections[0]->lma;
4074
4075 if (p->p_type == PT_LOAD
4076 && (abfd->flags & D_PAGED) != 0)
4077 p->p_align = bed->maxpagesize;
4078 else if (m->count == 0)
4079 p->p_align = 1 << bed->s->log_file_align;
4080 else
4081 p->p_align = 0;
4082
4083 p->p_offset = 0;
4084 p->p_filesz = 0;
4085 p->p_memsz = 0;
4086
4087 if (m->includes_filehdr)
4088 {
4089 if (! m->p_flags_valid)
4090 p->p_flags |= PF_R;
4091 p->p_offset = 0;
4092 p->p_filesz = bed->s->sizeof_ehdr;
4093 p->p_memsz = bed->s->sizeof_ehdr;
4094 if (m->count > 0)
4095 {
4096 BFD_ASSERT (p->p_type == PT_LOAD);
4097
4098 if (p->p_vaddr < (bfd_vma) off)
4099 {
4100 (*_bfd_error_handler)
4101 (_("%B: Not enough room for program headers, try linking with -N"),
4102 abfd);
4103 bfd_set_error (bfd_error_bad_value);
4104 return FALSE;
4105 }
4106
4107 p->p_vaddr -= off;
4108 if (! m->p_paddr_valid)
4109 p->p_paddr -= off;
4110 }
4111 if (p->p_type == PT_LOAD)
4112 {
4113 filehdr_vaddr = p->p_vaddr;
4114 filehdr_paddr = p->p_paddr;
4115 }
4116 }
4117
4118 if (m->includes_phdrs)
4119 {
4120 if (! m->p_flags_valid)
4121 p->p_flags |= PF_R;
4122
4123 if (m->includes_filehdr)
4124 {
4125 if (p->p_type == PT_LOAD)
4126 {
4127 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4128 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4129 }
4130 }
4131 else
4132 {
4133 p->p_offset = bed->s->sizeof_ehdr;
4134
4135 if (m->count > 0)
4136 {
4137 BFD_ASSERT (p->p_type == PT_LOAD);
4138 p->p_vaddr -= off - p->p_offset;
4139 if (! m->p_paddr_valid)
4140 p->p_paddr -= off - p->p_offset;
4141 }
4142
4143 if (p->p_type == PT_LOAD)
4144 {
4145 phdrs_vaddr = p->p_vaddr;
4146 phdrs_paddr = p->p_paddr;
4147 }
4148 else
4149 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4150 }
4151
4152 p->p_filesz += alloc * bed->s->sizeof_phdr;
4153 p->p_memsz += alloc * bed->s->sizeof_phdr;
4154 }
4155
4156 if (p->p_type == PT_LOAD
4157 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4158 {
4159 if (! m->includes_filehdr && ! m->includes_phdrs)
4160 p->p_offset = off + voff;
4161 else
4162 {
4163 file_ptr adjust;
4164
4165 adjust = off - (p->p_offset + p->p_filesz);
4166 p->p_filesz += adjust;
4167 p->p_memsz += adjust;
4168 }
4169 }
4170
4171 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4172 {
4173 asection *sec;
4174 flagword flags;
4175 bfd_size_type align;
4176
4177 sec = *secpp;
4178 flags = sec->flags;
4179 align = 1 << bfd_get_section_alignment (abfd, sec);
4180
4181 if (p->p_type == PT_LOAD
4182 || p->p_type == PT_TLS)
4183 {
4184 bfd_signed_vma adjust;
4185
4186 if ((flags & SEC_LOAD) != 0)
4187 {
4188 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4189 if (adjust < 0)
4190 {
4191 (*_bfd_error_handler)
4192 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4193 abfd, sec, (unsigned long) sec->lma);
4194 adjust = 0;
4195 }
4196 off += adjust;
4197 p->p_filesz += adjust;
4198 p->p_memsz += adjust;
4199 }
4200 /* .tbss is special. It doesn't contribute to p_memsz of
4201 normal segments. */
4202 else if ((flags & SEC_THREAD_LOCAL) == 0
4203 || p->p_type == PT_TLS)
4204 {
4205 /* The section VMA must equal the file position
4206 modulo the page size. */
4207 bfd_size_type page = align;
4208 if ((abfd->flags & D_PAGED) != 0)
4209 page = bed->maxpagesize;
4210 adjust = vma_page_aligned_bias (sec->vma,
4211 p->p_vaddr + p->p_memsz,
4212 page);
4213 p->p_memsz += adjust;
4214 }
4215 }
4216
4217 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4218 {
4219 /* The section at i == 0 is the one that actually contains
4220 everything. */
4221 if (i == 0)
4222 {
4223 sec->filepos = off;
4224 off += sec->size;
4225 p->p_filesz = sec->size;
4226 p->p_memsz = 0;
4227 p->p_align = 1;
4228 }
4229 else
4230 {
4231 /* The rest are fake sections that shouldn't be written. */
4232 sec->filepos = 0;
4233 sec->size = 0;
4234 sec->flags = 0;
4235 continue;
4236 }
4237 }
4238 else
4239 {
4240 if (p->p_type == PT_LOAD)
4241 {
4242 sec->filepos = off;
4243 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4244 1997, and the exact reason for it isn't clear. One
4245 plausible explanation is that it is to work around
4246 a problem we have with linker scripts using data
4247 statements in NOLOAD sections. I don't think it
4248 makes a great deal of sense to have such a section
4249 assigned to a PT_LOAD segment, but apparently
4250 people do this. The data statement results in a
4251 bfd_data_link_order being built, and these need
4252 section contents to write into. Eventually, we get
4253 to _bfd_elf_write_object_contents which writes any
4254 section with contents to the output. Make room
4255 here for the write, so that following segments are
4256 not trashed. */
4257 if ((flags & SEC_LOAD) != 0
4258 || (flags & SEC_HAS_CONTENTS) != 0)
4259 off += sec->size;
4260 }
4261
4262 if ((flags & SEC_LOAD) != 0)
4263 {
4264 p->p_filesz += sec->size;
4265 p->p_memsz += sec->size;
4266 }
4267 /* PR ld/594: Sections in note segments which are not loaded
4268 contribute to the file size but not the in-memory size. */
4269 else if (p->p_type == PT_NOTE
4270 && (flags & SEC_HAS_CONTENTS) != 0)
4271 p->p_filesz += sec->size;
4272
4273 /* .tbss is special. It doesn't contribute to p_memsz of
4274 normal segments. */
4275 else if ((flags & SEC_THREAD_LOCAL) == 0
4276 || p->p_type == PT_TLS)
4277 p->p_memsz += sec->size;
4278
4279 if (p->p_type == PT_TLS
4280 && sec->size == 0
4281 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4282 {
4283 struct bfd_link_order *o;
4284 bfd_vma tbss_size = 0;
4285
4286 for (o = sec->link_order_head; o != NULL; o = o->next)
4287 if (tbss_size < o->offset + o->size)
4288 tbss_size = o->offset + o->size;
4289
4290 p->p_memsz += tbss_size;
4291 }
4292
4293 if (align > p->p_align
4294 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4295 p->p_align = align;
4296 }
4297
4298 if (! m->p_flags_valid)
4299 {
4300 p->p_flags |= PF_R;
4301 if ((flags & SEC_CODE) != 0)
4302 p->p_flags |= PF_X;
4303 if ((flags & SEC_READONLY) == 0)
4304 p->p_flags |= PF_W;
4305 }
4306 }
4307 }
4308
4309 /* Now that we have set the section file positions, we can set up
4310 the file positions for the non PT_LOAD segments. */
4311 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4312 m != NULL;
4313 m = m->next, p++)
4314 {
4315 if (p->p_type != PT_LOAD && m->count > 0)
4316 {
4317 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4318 /* If the section has not yet been assigned a file position,
4319 do so now. The ARM BPABI requires that .dynamic section
4320 not be marked SEC_ALLOC because it is not part of any
4321 PT_LOAD segment, so it will not be processed above. */
4322 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4323 {
4324 unsigned int i;
4325 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4326
4327 i = 1;
4328 while (i_shdrpp[i]->bfd_section != m->sections[0])
4329 ++i;
4330 off = (_bfd_elf_assign_file_position_for_section
4331 (i_shdrpp[i], off, TRUE));
4332 p->p_filesz = m->sections[0]->size;
4333 }
4334 p->p_offset = m->sections[0]->filepos;
4335 }
4336 if (m->count == 0)
4337 {
4338 if (m->includes_filehdr)
4339 {
4340 p->p_vaddr = filehdr_vaddr;
4341 if (! m->p_paddr_valid)
4342 p->p_paddr = filehdr_paddr;
4343 }
4344 else if (m->includes_phdrs)
4345 {
4346 p->p_vaddr = phdrs_vaddr;
4347 if (! m->p_paddr_valid)
4348 p->p_paddr = phdrs_paddr;
4349 }
4350 else if (p->p_type == PT_GNU_RELRO)
4351 {
4352 Elf_Internal_Phdr *lp;
4353
4354 for (lp = phdrs; lp < phdrs + count; ++lp)
4355 {
4356 if (lp->p_type == PT_LOAD
4357 && lp->p_vaddr <= link_info->relro_end
4358 && lp->p_vaddr >= link_info->relro_start
4359 && lp->p_vaddr + lp->p_filesz
4360 >= link_info->relro_end)
4361 break;
4362 }
4363
4364 if (lp < phdrs + count
4365 && link_info->relro_end > lp->p_vaddr)
4366 {
4367 p->p_vaddr = lp->p_vaddr;
4368 p->p_paddr = lp->p_paddr;
4369 p->p_offset = lp->p_offset;
4370 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4371 p->p_memsz = p->p_filesz;
4372 p->p_align = 1;
4373 p->p_flags = (lp->p_flags & ~PF_W);
4374 }
4375 else
4376 {
4377 memset (p, 0, sizeof *p);
4378 p->p_type = PT_NULL;
4379 }
4380 }
4381 }
4382 }
4383
4384 /* Clear out any program headers we allocated but did not use. */
4385 for (; count < alloc; count++, p++)
4386 {
4387 memset (p, 0, sizeof *p);
4388 p->p_type = PT_NULL;
4389 }
4390
4391 elf_tdata (abfd)->phdr = phdrs;
4392
4393 elf_tdata (abfd)->next_file_pos = off;
4394
4395 /* Write out the program headers. */
4396 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4397 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4398 return FALSE;
4399
4400 return TRUE;
4401}
4402
4403/* Get the size of the program header.
4404
4405 If this is called by the linker before any of the section VMA's are set, it
4406 can't calculate the correct value for a strange memory layout. This only
4407 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4408 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4409 data segment (exclusive of .interp and .dynamic).
4410
4411 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4412 will be two segments. */
4413
4414static bfd_size_type
4415get_program_header_size (bfd *abfd)
4416{
4417 size_t segs;
4418 asection *s;
4419 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4420
4421 /* We can't return a different result each time we're called. */
4422 if (elf_tdata (abfd)->program_header_size != 0)
4423 return elf_tdata (abfd)->program_header_size;
4424
4425 if (elf_tdata (abfd)->segment_map != NULL)
4426 {
4427 struct elf_segment_map *m;
4428
4429 segs = 0;
4430 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4431 ++segs;
4432 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4433 return elf_tdata (abfd)->program_header_size;
4434 }
4435
4436 /* Assume we will need exactly two PT_LOAD segments: one for text
4437 and one for data. */
4438 segs = 2;
4439
4440 s = bfd_get_section_by_name (abfd, ".interp");
4441 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4442 {
4443 /* If we have a loadable interpreter section, we need a
4444 PT_INTERP segment. In this case, assume we also need a
4445 PT_PHDR segment, although that may not be true for all
4446 targets. */
4447 segs += 2;
4448 }
4449
4450 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4451 {
4452 /* We need a PT_DYNAMIC segment. */
4453 ++segs;
4454 }
4455
4456 if (elf_tdata (abfd)->eh_frame_hdr)
4457 {
4458 /* We need a PT_GNU_EH_FRAME segment. */
4459 ++segs;
4460 }
4461
4462 if (elf_tdata (abfd)->stack_flags)
4463 {
4464 /* We need a PT_GNU_STACK segment. */
4465 ++segs;
4466 }
4467
4468 if (elf_tdata (abfd)->relro)
4469 {
4470 /* We need a PT_GNU_RELRO segment. */
4471 ++segs;
4472 }
4473
4474 for (s = abfd->sections; s != NULL; s = s->next)
4475 {
4476 if ((s->flags & SEC_LOAD) != 0
4477 && strncmp (s->name, ".note", 5) == 0)
4478 {
4479 /* We need a PT_NOTE segment. */
4480 ++segs;
4481 }
4482 }
4483
4484 for (s = abfd->sections; s != NULL; s = s->next)
4485 {
4486 if (s->flags & SEC_THREAD_LOCAL)
4487 {
4488 /* We need a PT_TLS segment. */
4489 ++segs;
4490 break;
4491 }
4492 }
4493
4494 /* Let the backend count up any program headers it might need. */
4495 if (bed->elf_backend_additional_program_headers)
4496 {
4497 int a;
4498
4499 a = (*bed->elf_backend_additional_program_headers) (abfd);
4500 if (a == -1)
4501 abort ();
4502 segs += a;
4503 }
4504
4505 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4506 return elf_tdata (abfd)->program_header_size;
4507}
4508
4509/* Work out the file positions of all the sections. This is called by
4510 _bfd_elf_compute_section_file_positions. All the section sizes and
4511 VMAs must be known before this is called.
4512
4513 Reloc sections come in two flavours: Those processed specially as
4514 "side-channel" data attached to a section to which they apply, and
4515 those that bfd doesn't process as relocations. The latter sort are
4516 stored in a normal bfd section by bfd_section_from_shdr. We don't
4517 consider the former sort here, unless they form part of the loadable
4518 image. Reloc sections not assigned here will be handled later by
4519 assign_file_positions_for_relocs.
4520
4521 We also don't set the positions of the .symtab and .strtab here. */
4522
4523static bfd_boolean
4524assign_file_positions_except_relocs (bfd *abfd,
4525 struct bfd_link_info *link_info)
4526{
4527 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4528 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4529 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4530 unsigned int num_sec = elf_numsections (abfd);
4531 file_ptr off;
4532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4533
4534 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4535 && bfd_get_format (abfd) != bfd_core)
4536 {
4537 Elf_Internal_Shdr **hdrpp;
4538 unsigned int i;
4539
4540 /* Start after the ELF header. */
4541 off = i_ehdrp->e_ehsize;
4542
4543 /* We are not creating an executable, which means that we are
4544 not creating a program header, and that the actual order of
4545 the sections in the file is unimportant. */
4546 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4547 {
4548 Elf_Internal_Shdr *hdr;
4549
4550 hdr = *hdrpp;
4551 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4552 && hdr->bfd_section == NULL)
4553 || i == tdata->symtab_section
4554 || i == tdata->symtab_shndx_section
4555 || i == tdata->strtab_section)
4556 {
4557 hdr->sh_offset = -1;
4558 }
4559 else
4560 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4561
4562 if (i == SHN_LORESERVE - 1)
4563 {
4564 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4565 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4566 }
4567 }
4568 }
4569 else
4570 {
4571 unsigned int i;
4572 Elf_Internal_Shdr **hdrpp;
4573
4574 /* Assign file positions for the loaded sections based on the
4575 assignment of sections to segments. */
4576 if (! assign_file_positions_for_segments (abfd, link_info))
4577 return FALSE;
4578
4579 /* Assign file positions for the other sections. */
4580
4581 off = elf_tdata (abfd)->next_file_pos;
4582 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4583 {
4584 Elf_Internal_Shdr *hdr;
4585
4586 hdr = *hdrpp;
4587 if (hdr->bfd_section != NULL
4588 && hdr->bfd_section->filepos != 0)
4589 hdr->sh_offset = hdr->bfd_section->filepos;
4590 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4591 {
4592 ((*_bfd_error_handler)
4593 (_("%B: warning: allocated section `%s' not in segment"),
4594 abfd,
4595 (hdr->bfd_section == NULL
4596 ? "*unknown*"
4597 : hdr->bfd_section->name)));
4598 if ((abfd->flags & D_PAGED) != 0)
4599 off += vma_page_aligned_bias (hdr->sh_addr, off,
4600 bed->maxpagesize);
4601 else
4602 off += vma_page_aligned_bias (hdr->sh_addr, off,
4603 hdr->sh_addralign);
4604 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4605 FALSE);
4606 }
4607 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4608 && hdr->bfd_section == NULL)
4609 || hdr == i_shdrpp[tdata->symtab_section]
4610 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4611 || hdr == i_shdrpp[tdata->strtab_section])
4612 hdr->sh_offset = -1;
4613 else
4614 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4615
4616 if (i == SHN_LORESERVE - 1)
4617 {
4618 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4619 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4620 }
4621 }
4622 }
4623
4624 /* Place the section headers. */
4625 off = align_file_position (off, 1 << bed->s->log_file_align);
4626 i_ehdrp->e_shoff = off;
4627 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4628
4629 elf_tdata (abfd)->next_file_pos = off;
4630
4631 return TRUE;
4632}
4633
4634static bfd_boolean
4635prep_headers (bfd *abfd)
4636{
4637 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4638 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4639 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4640 struct elf_strtab_hash *shstrtab;
4641 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4642
4643 i_ehdrp = elf_elfheader (abfd);
4644 i_shdrp = elf_elfsections (abfd);
4645
4646 shstrtab = _bfd_elf_strtab_init ();
4647 if (shstrtab == NULL)
4648 return FALSE;
4649
4650 elf_shstrtab (abfd) = shstrtab;
4651
4652 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4653 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4654 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4655 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4656
4657 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4658 i_ehdrp->e_ident[EI_DATA] =
4659 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4660 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4661
4662 if ((abfd->flags & DYNAMIC) != 0)
4663 i_ehdrp->e_type = ET_DYN;
4664 else if ((abfd->flags & EXEC_P) != 0)
4665 i_ehdrp->e_type = ET_EXEC;
4666 else if (bfd_get_format (abfd) == bfd_core)
4667 i_ehdrp->e_type = ET_CORE;
4668 else
4669 i_ehdrp->e_type = ET_REL;
4670
4671 switch (bfd_get_arch (abfd))
4672 {
4673 case bfd_arch_unknown:
4674 i_ehdrp->e_machine = EM_NONE;
4675 break;
4676
4677 /* There used to be a long list of cases here, each one setting
4678 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4679 in the corresponding bfd definition. To avoid duplication,
4680 the switch was removed. Machines that need special handling
4681 can generally do it in elf_backend_final_write_processing(),
4682 unless they need the information earlier than the final write.
4683 Such need can generally be supplied by replacing the tests for
4684 e_machine with the conditions used to determine it. */
4685 default:
4686 i_ehdrp->e_machine = bed->elf_machine_code;
4687 }
4688
4689 i_ehdrp->e_version = bed->s->ev_current;
4690 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4691
4692 /* No program header, for now. */
4693 i_ehdrp->e_phoff = 0;
4694 i_ehdrp->e_phentsize = 0;
4695 i_ehdrp->e_phnum = 0;
4696
4697 /* Each bfd section is section header entry. */
4698 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4699 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4700
4701 /* If we're building an executable, we'll need a program header table. */
4702 if (abfd->flags & EXEC_P)
4703 /* It all happens later. */
4704 ;
4705 else
4706 {
4707 i_ehdrp->e_phentsize = 0;
4708 i_phdrp = 0;
4709 i_ehdrp->e_phoff = 0;
4710 }
4711
4712 elf_tdata (abfd)->symtab_hdr.sh_name =
4713 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4714 elf_tdata (abfd)->strtab_hdr.sh_name =
4715 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4716 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4717 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4718 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4719 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4720 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4721 return FALSE;
4722
4723 return TRUE;
4724}
4725
4726/* Assign file positions for all the reloc sections which are not part
4727 of the loadable file image. */
4728
4729void
4730_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4731{
4732 file_ptr off;
4733 unsigned int i, num_sec;
4734 Elf_Internal_Shdr **shdrpp;
4735
4736 off = elf_tdata (abfd)->next_file_pos;
4737
4738 num_sec = elf_numsections (abfd);
4739 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4740 {
4741 Elf_Internal_Shdr *shdrp;
4742
4743 shdrp = *shdrpp;
4744 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4745 && shdrp->sh_offset == -1)
4746 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4747 }
4748
4749 elf_tdata (abfd)->next_file_pos = off;
4750}
4751
4752bfd_boolean
4753_bfd_elf_write_object_contents (bfd *abfd)
4754{
4755 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4756 Elf_Internal_Ehdr *i_ehdrp;
4757 Elf_Internal_Shdr **i_shdrp;
4758 bfd_boolean failed;
4759 unsigned int count, num_sec;
4760
4761 if (! abfd->output_has_begun
4762 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4763 return FALSE;
4764
4765 i_shdrp = elf_elfsections (abfd);
4766 i_ehdrp = elf_elfheader (abfd);
4767
4768 failed = FALSE;
4769 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4770 if (failed)
4771 return FALSE;
4772
4773 _bfd_elf_assign_file_positions_for_relocs (abfd);
4774
4775 /* After writing the headers, we need to write the sections too... */
4776 num_sec = elf_numsections (abfd);
4777 for (count = 1; count < num_sec; count++)
4778 {
4779 if (bed->elf_backend_section_processing)
4780 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4781 if (i_shdrp[count]->contents)
4782 {
4783 bfd_size_type amt = i_shdrp[count]->sh_size;
4784
4785 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4786 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4787 return FALSE;
4788 }
4789 if (count == SHN_LORESERVE - 1)
4790 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4791 }
4792
4793 /* Write out the section header names. */
4794 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4795 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4796 return FALSE;
4797
4798 if (bed->elf_backend_final_write_processing)
4799 (*bed->elf_backend_final_write_processing) (abfd,
4800 elf_tdata (abfd)->linker);
4801
4802 return bed->s->write_shdrs_and_ehdr (abfd);
4803}
4804
4805bfd_boolean
4806_bfd_elf_write_corefile_contents (bfd *abfd)
4807{
4808 /* Hopefully this can be done just like an object file. */
4809 return _bfd_elf_write_object_contents (abfd);
4810}
4811
4812/* Given a section, search the header to find them. */
4813
4814int
4815_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4816{
4817 const struct elf_backend_data *bed;
4818 int index;
4819
4820 if (elf_section_data (asect) != NULL
4821 && elf_section_data (asect)->this_idx != 0)
4822 return elf_section_data (asect)->this_idx;
4823
4824 if (bfd_is_abs_section (asect))
4825 index = SHN_ABS;
4826 else if (bfd_is_com_section (asect))
4827 index = SHN_COMMON;
4828 else if (bfd_is_und_section (asect))
4829 index = SHN_UNDEF;
4830 else
4831 index = -1;
4832
4833 bed = get_elf_backend_data (abfd);
4834 if (bed->elf_backend_section_from_bfd_section)
4835 {
4836 int retval = index;
4837
4838 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4839 return retval;
4840 }
4841
4842 if (index == -1)
4843 bfd_set_error (bfd_error_nonrepresentable_section);
4844
4845 return index;
4846}
4847
4848/* Given a BFD symbol, return the index in the ELF symbol table, or -1
4849 on error. */
4850
4851int
4852_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4853{
4854 asymbol *asym_ptr = *asym_ptr_ptr;
4855 int idx;
4856 flagword flags = asym_ptr->flags;
4857
4858 /* When gas creates relocations against local labels, it creates its
4859 own symbol for the section, but does put the symbol into the
4860 symbol chain, so udata is 0. When the linker is generating
4861 relocatable output, this section symbol may be for one of the
4862 input sections rather than the output section. */
4863 if (asym_ptr->udata.i == 0
4864 && (flags & BSF_SECTION_SYM)
4865 && asym_ptr->section)
4866 {
4867 int indx;
4868
4869 if (asym_ptr->section->output_section != NULL)
4870 indx = asym_ptr->section->output_section->index;
4871 else
4872 indx = asym_ptr->section->index;
4873 if (indx < elf_num_section_syms (abfd)
4874 && elf_section_syms (abfd)[indx] != NULL)
4875 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4876 }
4877
4878 idx = asym_ptr->udata.i;
4879
4880 if (idx == 0)
4881 {
4882 /* This case can occur when using --strip-symbol on a symbol
4883 which is used in a relocation entry. */
4884 (*_bfd_error_handler)
4885 (_("%B: symbol `%s' required but not present"),
4886 abfd, bfd_asymbol_name (asym_ptr));
4887 bfd_set_error (bfd_error_no_symbols);
4888 return -1;
4889 }
4890
4891#if DEBUG & 4
4892 {
4893 fprintf (stderr,
4894 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4895 (long) asym_ptr, asym_ptr->name, idx, flags,
4896 elf_symbol_flags (flags));
4897 fflush (stderr);
4898 }
4899#endif
4900
4901 return idx;
4902}
4903
4904/* Copy private BFD data. This copies any program header information. */
4905
4906static bfd_boolean
4907copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4908{
4909 Elf_Internal_Ehdr *iehdr;
4910 struct elf_segment_map *map;
4911 struct elf_segment_map *map_first;
4912 struct elf_segment_map **pointer_to_map;
4913 Elf_Internal_Phdr *segment;
4914 asection *section;
4915 unsigned int i;
4916 unsigned int num_segments;
4917 bfd_boolean phdr_included = FALSE;
4918 bfd_vma maxpagesize;
4919 struct elf_segment_map *phdr_adjust_seg = NULL;
4920 unsigned int phdr_adjust_num = 0;
4921 const struct elf_backend_data *bed;
4922
4923 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4924 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4925 return TRUE;
4926
4927 if (elf_tdata (ibfd)->phdr == NULL)
4928 return TRUE;
4929
4930 bed = get_elf_backend_data (ibfd);
4931 iehdr = elf_elfheader (ibfd);
4932
4933 map_first = NULL;
4934 pointer_to_map = &map_first;
4935
4936 num_segments = elf_elfheader (ibfd)->e_phnum;
4937 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4938
4939 /* Returns the end address of the segment + 1. */
4940#define SEGMENT_END(segment, start) \
4941 (start + (segment->p_memsz > segment->p_filesz \
4942 ? segment->p_memsz : segment->p_filesz))
4943
4944#define SECTION_SIZE(section, segment) \
4945 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4946 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4947 ? section->size : 0)
4948
4949 /* Returns TRUE if the given section is contained within
4950 the given segment. VMA addresses are compared. */
4951#define IS_CONTAINED_BY_VMA(section, segment) \
4952 (section->vma >= segment->p_vaddr \
4953 && (section->vma + SECTION_SIZE (section, segment) \
4954 <= (SEGMENT_END (segment, segment->p_vaddr))))
4955
4956 /* Returns TRUE if the given section is contained within
4957 the given segment. LMA addresses are compared. */
4958#define IS_CONTAINED_BY_LMA(section, segment, base) \
4959 (section->lma >= base \
4960 && (section->lma + SECTION_SIZE (section, segment) \
4961 <= SEGMENT_END (segment, base)))
4962
4963 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4964#define IS_COREFILE_NOTE(p, s) \
4965 (p->p_type == PT_NOTE \
4966 && bfd_get_format (ibfd) == bfd_core \
4967 && s->vma == 0 && s->lma == 0 \
4968 && (bfd_vma) s->filepos >= p->p_offset \
4969 && ((bfd_vma) s->filepos + s->size \
4970 <= p->p_offset + p->p_filesz))
4971
4972 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4973 linker, which generates a PT_INTERP section with p_vaddr and
4974 p_memsz set to 0. */
4975#define IS_SOLARIS_PT_INTERP(p, s) \
4976 (p->p_vaddr == 0 \
4977 && p->p_paddr == 0 \
4978 && p->p_memsz == 0 \
4979 && p->p_filesz > 0 \
4980 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4981 && s->size > 0 \
4982 && (bfd_vma) s->filepos >= p->p_offset \
4983 && ((bfd_vma) s->filepos + s->size \
4984 <= p->p_offset + p->p_filesz))
4985
4986 /* Decide if the given section should be included in the given segment.
4987 A section will be included if:
4988 1. It is within the address space of the segment -- we use the LMA
4989 if that is set for the segment and the VMA otherwise,
4990 2. It is an allocated segment,
4991 3. There is an output section associated with it,
4992 4. The section has not already been allocated to a previous segment.
4993 5. PT_GNU_STACK segments do not include any sections.
4994 6. PT_TLS segment includes only SHF_TLS sections.
4995 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
4996 8. PT_DYNAMIC should not contain empty sections at the beginning
4997 (with the possible exception of .dynamic). */
4998#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4999 ((((segment->p_paddr \
5000 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5001 : IS_CONTAINED_BY_VMA (section, segment)) \
5002 && (section->flags & SEC_ALLOC) != 0) \
5003 || IS_COREFILE_NOTE (segment, section)) \
5004 && section->output_section != NULL \
5005 && segment->p_type != PT_GNU_STACK \
5006 && (segment->p_type != PT_TLS \
5007 || (section->flags & SEC_THREAD_LOCAL)) \
5008 && (segment->p_type == PT_LOAD \
5009 || segment->p_type == PT_TLS \
5010 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5011 && (segment->p_type != PT_DYNAMIC \
5012 || SECTION_SIZE (section, segment) > 0 \
5013 || (segment->p_paddr \
5014 ? segment->p_paddr != section->lma \
5015 : segment->p_vaddr != section->vma) \
5016 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5017 == 0)) \
5018 && ! section->segment_mark)
5019
5020 /* Returns TRUE iff seg1 starts after the end of seg2. */
5021#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5022 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5023
5024 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5025 their VMA address ranges and their LMA address ranges overlap.
5026 It is possible to have overlapping VMA ranges without overlapping LMA
5027 ranges. RedBoot images for example can have both .data and .bss mapped
5028 to the same VMA range, but with the .data section mapped to a different
5029 LMA. */
5030#define SEGMENT_OVERLAPS(seg1, seg2) \
5031 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5032 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5033 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5034 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5035
5036 /* Initialise the segment mark field. */
5037 for (section = ibfd->sections; section != NULL; section = section->next)
5038 section->segment_mark = FALSE;
5039
5040 /* Scan through the segments specified in the program header
5041 of the input BFD. For this first scan we look for overlaps
5042 in the loadable segments. These can be created by weird
5043 parameters to objcopy. Also, fix some solaris weirdness. */
5044 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5045 i < num_segments;
5046 i++, segment++)
5047 {
5048 unsigned int j;
5049 Elf_Internal_Phdr *segment2;
5050
5051 if (segment->p_type == PT_INTERP)
5052 for (section = ibfd->sections; section; section = section->next)
5053 if (IS_SOLARIS_PT_INTERP (segment, section))
5054 {
5055 /* Mininal change so that the normal section to segment
5056 assignment code will work. */
5057 segment->p_vaddr = section->vma;
5058 break;
5059 }
5060
5061 if (segment->p_type != PT_LOAD)
5062 continue;
5063
5064 /* Determine if this segment overlaps any previous segments. */
5065 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5066 {
5067 bfd_signed_vma extra_length;
5068
5069 if (segment2->p_type != PT_LOAD
5070 || ! SEGMENT_OVERLAPS (segment, segment2))
5071 continue;
5072
5073 /* Merge the two segments together. */
5074 if (segment2->p_vaddr < segment->p_vaddr)
5075 {
5076 /* Extend SEGMENT2 to include SEGMENT and then delete
5077 SEGMENT. */
5078 extra_length =
5079 SEGMENT_END (segment, segment->p_vaddr)
5080 - SEGMENT_END (segment2, segment2->p_vaddr);
5081
5082 if (extra_length > 0)
5083 {
5084 segment2->p_memsz += extra_length;
5085 segment2->p_filesz += extra_length;
5086 }
5087
5088 segment->p_type = PT_NULL;
5089
5090 /* Since we have deleted P we must restart the outer loop. */
5091 i = 0;
5092 segment = elf_tdata (ibfd)->phdr;
5093 break;
5094 }
5095 else
5096 {
5097 /* Extend SEGMENT to include SEGMENT2 and then delete
5098 SEGMENT2. */
5099 extra_length =
5100 SEGMENT_END (segment2, segment2->p_vaddr)
5101 - SEGMENT_END (segment, segment->p_vaddr);
5102
5103 if (extra_length > 0)
5104 {
5105 segment->p_memsz += extra_length;
5106 segment->p_filesz += extra_length;
5107 }
5108
5109 segment2->p_type = PT_NULL;
5110 }
5111 }
5112 }
5113
5114 /* The second scan attempts to assign sections to segments. */
5115 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5116 i < num_segments;
5117 i ++, segment ++)
5118 {
5119 unsigned int section_count;
5120 asection ** sections;
5121 asection * output_section;
5122 unsigned int isec;
5123 bfd_vma matching_lma;
5124 bfd_vma suggested_lma;
5125 unsigned int j;
5126 bfd_size_type amt;
5127
5128 if (segment->p_type == PT_NULL)
5129 continue;
5130
5131 /* Compute how many sections might be placed into this segment. */
5132 for (section = ibfd->sections, section_count = 0;
5133 section != NULL;
5134 section = section->next)
5135 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5136 ++section_count;
5137
5138 /* Allocate a segment map big enough to contain
5139 all of the sections we have selected. */
5140 amt = sizeof (struct elf_segment_map);
5141 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5142 map = bfd_alloc (obfd, amt);
5143 if (map == NULL)
5144 return FALSE;
5145
5146 /* Initialise the fields of the segment map. Default to
5147 using the physical address of the segment in the input BFD. */
5148 map->next = NULL;
5149 map->p_type = segment->p_type;
5150 map->p_flags = segment->p_flags;
5151 map->p_flags_valid = 1;
5152 map->p_paddr = segment->p_paddr;
5153 map->p_paddr_valid = 1;
5154
5155 /* Determine if this segment contains the ELF file header
5156 and if it contains the program headers themselves. */
5157 map->includes_filehdr = (segment->p_offset == 0
5158 && segment->p_filesz >= iehdr->e_ehsize);
5159
5160 map->includes_phdrs = 0;
5161
5162 if (! phdr_included || segment->p_type != PT_LOAD)
5163 {
5164 map->includes_phdrs =
5165 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5166 && (segment->p_offset + segment->p_filesz
5167 >= ((bfd_vma) iehdr->e_phoff
5168 + iehdr->e_phnum * iehdr->e_phentsize)));
5169
5170 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5171 phdr_included = TRUE;
5172 }
5173
5174 if (section_count == 0)
5175 {
5176 /* Special segments, such as the PT_PHDR segment, may contain
5177 no sections, but ordinary, loadable segments should contain
5178 something. They are allowed by the ELF spec however, so only
5179 a warning is produced. */
5180 if (segment->p_type == PT_LOAD)
5181 (*_bfd_error_handler)
5182 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5183 ibfd);
5184
5185 map->count = 0;
5186 *pointer_to_map = map;
5187 pointer_to_map = &map->next;
5188
5189 continue;
5190 }
5191
5192 /* Now scan the sections in the input BFD again and attempt
5193 to add their corresponding output sections to the segment map.
5194 The problem here is how to handle an output section which has
5195 been moved (ie had its LMA changed). There are four possibilities:
5196
5197 1. None of the sections have been moved.
5198 In this case we can continue to use the segment LMA from the
5199 input BFD.
5200
5201 2. All of the sections have been moved by the same amount.
5202 In this case we can change the segment's LMA to match the LMA
5203 of the first section.
5204
5205 3. Some of the sections have been moved, others have not.
5206 In this case those sections which have not been moved can be
5207 placed in the current segment which will have to have its size,
5208 and possibly its LMA changed, and a new segment or segments will
5209 have to be created to contain the other sections.
5210
5211 4. The sections have been moved, but not by the same amount.
5212 In this case we can change the segment's LMA to match the LMA
5213 of the first section and we will have to create a new segment
5214 or segments to contain the other sections.
5215
5216 In order to save time, we allocate an array to hold the section
5217 pointers that we are interested in. As these sections get assigned
5218 to a segment, they are removed from this array. */
5219
5220 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5221 to work around this long long bug. */
5222 amt = section_count * sizeof (asection *);
5223 sections = bfd_malloc (amt);
5224 if (sections == NULL)
5225 return FALSE;
5226
5227 /* Step One: Scan for segment vs section LMA conflicts.
5228 Also add the sections to the section array allocated above.
5229 Also add the sections to the current segment. In the common
5230 case, where the sections have not been moved, this means that
5231 we have completely filled the segment, and there is nothing
5232 more to do. */
5233 isec = 0;
5234 matching_lma = 0;
5235 suggested_lma = 0;
5236
5237 for (j = 0, section = ibfd->sections;
5238 section != NULL;
5239 section = section->next)
5240 {
5241 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5242 {
5243 output_section = section->output_section;
5244
5245 sections[j ++] = section;
5246
5247 /* The Solaris native linker always sets p_paddr to 0.
5248 We try to catch that case here, and set it to the
5249 correct value. Note - some backends require that
5250 p_paddr be left as zero. */
5251 if (segment->p_paddr == 0
5252 && segment->p_vaddr != 0
5253 && (! bed->want_p_paddr_set_to_zero)
5254 && isec == 0
5255 && output_section->lma != 0
5256 && (output_section->vma == (segment->p_vaddr
5257 + (map->includes_filehdr
5258 ? iehdr->e_ehsize
5259 : 0)
5260 + (map->includes_phdrs
5261 ? (iehdr->e_phnum
5262 * iehdr->e_phentsize)
5263 : 0))))
5264 map->p_paddr = segment->p_vaddr;
5265
5266 /* Match up the physical address of the segment with the
5267 LMA address of the output section. */
5268 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5269 || IS_COREFILE_NOTE (segment, section)
5270 || (bed->want_p_paddr_set_to_zero &&
5271 IS_CONTAINED_BY_VMA (output_section, segment))
5272 )
5273 {
5274 if (matching_lma == 0)
5275 matching_lma = output_section->lma;
5276
5277 /* We assume that if the section fits within the segment
5278 then it does not overlap any other section within that
5279 segment. */
5280 map->sections[isec ++] = output_section;
5281 }
5282 else if (suggested_lma == 0)
5283 suggested_lma = output_section->lma;
5284 }
5285 }
5286
5287 BFD_ASSERT (j == section_count);
5288
5289 /* Step Two: Adjust the physical address of the current segment,
5290 if necessary. */
5291 if (isec == section_count)
5292 {
5293 /* All of the sections fitted within the segment as currently
5294 specified. This is the default case. Add the segment to
5295 the list of built segments and carry on to process the next
5296 program header in the input BFD. */
5297 map->count = section_count;
5298 *pointer_to_map = map;
5299 pointer_to_map = &map->next;
5300
5301 free (sections);
5302 continue;
5303 }
5304 else
5305 {
5306 if (matching_lma != 0)
5307 {
5308 /* At least one section fits inside the current segment.
5309 Keep it, but modify its physical address to match the
5310 LMA of the first section that fitted. */
5311 map->p_paddr = matching_lma;
5312 }
5313 else
5314 {
5315 /* None of the sections fitted inside the current segment.
5316 Change the current segment's physical address to match
5317 the LMA of the first section. */
5318 map->p_paddr = suggested_lma;
5319 }
5320
5321 /* Offset the segment physical address from the lma
5322 to allow for space taken up by elf headers. */
5323 if (map->includes_filehdr)
5324 map->p_paddr -= iehdr->e_ehsize;
5325
5326 if (map->includes_phdrs)
5327 {
5328 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5329
5330 /* iehdr->e_phnum is just an estimate of the number
5331 of program headers that we will need. Make a note
5332 here of the number we used and the segment we chose
5333 to hold these headers, so that we can adjust the
5334 offset when we know the correct value. */
5335 phdr_adjust_num = iehdr->e_phnum;
5336 phdr_adjust_seg = map;
5337 }
5338 }
5339
5340 /* Step Three: Loop over the sections again, this time assigning
5341 those that fit to the current segment and removing them from the
5342 sections array; but making sure not to leave large gaps. Once all
5343 possible sections have been assigned to the current segment it is
5344 added to the list of built segments and if sections still remain
5345 to be assigned, a new segment is constructed before repeating
5346 the loop. */
5347 isec = 0;
5348 do
5349 {
5350 map->count = 0;
5351 suggested_lma = 0;
5352
5353 /* Fill the current segment with sections that fit. */
5354 for (j = 0; j < section_count; j++)
5355 {
5356 section = sections[j];
5357
5358 if (section == NULL)
5359 continue;
5360
5361 output_section = section->output_section;
5362
5363 BFD_ASSERT (output_section != NULL);
5364
5365 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5366 || IS_COREFILE_NOTE (segment, section))
5367 {
5368 if (map->count == 0)
5369 {
5370 /* If the first section in a segment does not start at
5371 the beginning of the segment, then something is
5372 wrong. */
5373 if (output_section->lma !=
5374 (map->p_paddr
5375 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5376 + (map->includes_phdrs
5377 ? iehdr->e_phnum * iehdr->e_phentsize
5378 : 0)))
5379 abort ();
5380 }
5381 else
5382 {
5383 asection * prev_sec;
5384
5385 prev_sec = map->sections[map->count - 1];
5386
5387 /* If the gap between the end of the previous section
5388 and the start of this section is more than
5389 maxpagesize then we need to start a new segment. */
5390 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5391 maxpagesize)
5392 < BFD_ALIGN (output_section->lma, maxpagesize))
5393 || ((prev_sec->lma + prev_sec->size)
5394 > output_section->lma))
5395 {
5396 if (suggested_lma == 0)
5397 suggested_lma = output_section->lma;
5398
5399 continue;
5400 }
5401 }
5402
5403 map->sections[map->count++] = output_section;
5404 ++isec;
5405 sections[j] = NULL;
5406 section->segment_mark = TRUE;
5407 }
5408 else if (suggested_lma == 0)
5409 suggested_lma = output_section->lma;
5410 }
5411
5412 BFD_ASSERT (map->count > 0);
5413
5414 /* Add the current segment to the list of built segments. */
5415 *pointer_to_map = map;
5416 pointer_to_map = &map->next;
5417
5418 if (isec < section_count)
5419 {
5420 /* We still have not allocated all of the sections to
5421 segments. Create a new segment here, initialise it
5422 and carry on looping. */
5423 amt = sizeof (struct elf_segment_map);
5424 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5425 map = bfd_alloc (obfd, amt);
5426 if (map == NULL)
5427 {
5428 free (sections);
5429 return FALSE;
5430 }
5431
5432 /* Initialise the fields of the segment map. Set the physical
5433 physical address to the LMA of the first section that has
5434 not yet been assigned. */
5435 map->next = NULL;
5436 map->p_type = segment->p_type;
5437 map->p_flags = segment->p_flags;
5438 map->p_flags_valid = 1;
5439 map->p_paddr = suggested_lma;
5440 map->p_paddr_valid = 1;
5441 map->includes_filehdr = 0;
5442 map->includes_phdrs = 0;
5443 }
5444 }
5445 while (isec < section_count);
5446
5447 free (sections);
5448 }
5449
5450 /* The Solaris linker creates program headers in which all the
5451 p_paddr fields are zero. When we try to objcopy or strip such a
5452 file, we get confused. Check for this case, and if we find it
5453 reset the p_paddr_valid fields. */
5454 for (map = map_first; map != NULL; map = map->next)
5455 if (map->p_paddr != 0)
5456 break;
5457 if (map == NULL)
5458 for (map = map_first; map != NULL; map = map->next)
5459 map->p_paddr_valid = 0;
5460
5461 elf_tdata (obfd)->segment_map = map_first;
5462
5463 /* If we had to estimate the number of program headers that were
5464 going to be needed, then check our estimate now and adjust
5465 the offset if necessary. */
5466 if (phdr_adjust_seg != NULL)
5467 {
5468 unsigned int count;
5469
5470 for (count = 0, map = map_first; map != NULL; map = map->next)
5471 count++;
5472
5473 if (count > phdr_adjust_num)
5474 phdr_adjust_seg->p_paddr
5475 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5476 }
5477
5478#undef SEGMENT_END
5479#undef SECTION_SIZE
5480#undef IS_CONTAINED_BY_VMA
5481#undef IS_CONTAINED_BY_LMA
5482#undef IS_COREFILE_NOTE
5483#undef IS_SOLARIS_PT_INTERP
5484#undef INCLUDE_SECTION_IN_SEGMENT
5485#undef SEGMENT_AFTER_SEGMENT
5486#undef SEGMENT_OVERLAPS
5487 return TRUE;
5488}
5489
5490/* Copy private section information. This copies over the entsize
5491 field, and sometimes the info field. */
5492
5493bfd_boolean
5494_bfd_elf_copy_private_section_data (bfd *ibfd,
5495 asection *isec,
5496 bfd *obfd,
5497 asection *osec)
5498{
5499 Elf_Internal_Shdr *ihdr, *ohdr;
5500
5501 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5502 || obfd->xvec->flavour != bfd_target_elf_flavour)
5503 return TRUE;
5504
5505 ihdr = &elf_section_data (isec)->this_hdr;
5506 ohdr = &elf_section_data (osec)->this_hdr;
5507
5508 ohdr->sh_entsize = ihdr->sh_entsize;
5509
5510 if (ihdr->sh_type == SHT_SYMTAB
5511 || ihdr->sh_type == SHT_DYNSYM
5512 || ihdr->sh_type == SHT_GNU_verneed
5513 || ihdr->sh_type == SHT_GNU_verdef)
5514 ohdr->sh_info = ihdr->sh_info;
5515
5516 /* Set things up for objcopy. The output SHT_GROUP section will
5517 have its elf_next_in_group pointing back to the input group
5518 members. */
5519 elf_next_in_group (osec) = elf_next_in_group (isec);
5520 elf_group_name (osec) = elf_group_name (isec);
5521
5522 osec->use_rela_p = isec->use_rela_p;
5523
5524 return TRUE;
5525}
5526
5527/* Copy private header information. */
5528
5529bfd_boolean
5530_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5531{
5532 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5533 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5534 return TRUE;
5535
5536 /* Copy over private BFD data if it has not already been copied.
5537 This must be done here, rather than in the copy_private_bfd_data
5538 entry point, because the latter is called after the section
5539 contents have been set, which means that the program headers have
5540 already been worked out. */
5541 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5542 {
5543 if (! copy_private_bfd_data (ibfd, obfd))
5544 return FALSE;
5545 }
5546
5547 return TRUE;
5548}
5549
5550/* Copy private symbol information. If this symbol is in a section
5551 which we did not map into a BFD section, try to map the section
5552 index correctly. We use special macro definitions for the mapped
5553 section indices; these definitions are interpreted by the
5554 swap_out_syms function. */
5555
5556#define MAP_ONESYMTAB (SHN_HIOS + 1)
5557#define MAP_DYNSYMTAB (SHN_HIOS + 2)
5558#define MAP_STRTAB (SHN_HIOS + 3)
5559#define MAP_SHSTRTAB (SHN_HIOS + 4)
5560#define MAP_SYM_SHNDX (SHN_HIOS + 5)
5561
5562bfd_boolean
5563_bfd_elf_copy_private_symbol_data (bfd *ibfd,
5564 asymbol *isymarg,
5565 bfd *obfd,
5566 asymbol *osymarg)
5567{
5568 elf_symbol_type *isym, *osym;
5569
5570 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5571 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5572 return TRUE;
5573
5574 isym = elf_symbol_from (ibfd, isymarg);
5575 osym = elf_symbol_from (obfd, osymarg);
5576
5577 if (isym != NULL
5578 && osym != NULL
5579 && bfd_is_abs_section (isym->symbol.section))
5580 {
5581 unsigned int shndx;
5582
5583 shndx = isym->internal_elf_sym.st_shndx;
5584 if (shndx == elf_onesymtab (ibfd))
5585 shndx = MAP_ONESYMTAB;
5586 else if (shndx == elf_dynsymtab (ibfd))
5587 shndx = MAP_DYNSYMTAB;
5588 else if (shndx == elf_tdata (ibfd)->strtab_section)
5589 shndx = MAP_STRTAB;
5590 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5591 shndx = MAP_SHSTRTAB;
5592 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5593 shndx = MAP_SYM_SHNDX;
5594 osym->internal_elf_sym.st_shndx = shndx;
5595 }
5596
5597 return TRUE;
5598}
5599
5600/* Swap out the symbols. */
5601
5602static bfd_boolean
5603swap_out_syms (bfd *abfd,
5604 struct bfd_strtab_hash **sttp,
5605 int relocatable_p)
5606{
5607 const struct elf_backend_data *bed;
5608 int symcount;
5609 asymbol **syms;
5610 struct bfd_strtab_hash *stt;
5611 Elf_Internal_Shdr *symtab_hdr;
5612 Elf_Internal_Shdr *symtab_shndx_hdr;
5613 Elf_Internal_Shdr *symstrtab_hdr;
5614 bfd_byte *outbound_syms;
5615 bfd_byte *outbound_shndx;
5616 int idx;
5617 bfd_size_type amt;
5618 bfd_boolean name_local_sections;
5619
5620 if (!elf_map_symbols (abfd))
5621 return FALSE;
5622
5623 /* Dump out the symtabs. */
5624 stt = _bfd_elf_stringtab_init ();
5625 if (stt == NULL)
5626 return FALSE;
5627
5628 bed = get_elf_backend_data (abfd);
5629 symcount = bfd_get_symcount (abfd);
5630 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5631 symtab_hdr->sh_type = SHT_SYMTAB;
5632 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5633 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5634 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5635 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5636
5637 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5638 symstrtab_hdr->sh_type = SHT_STRTAB;
5639
5640 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5641 outbound_syms = bfd_alloc (abfd, amt);
5642 if (outbound_syms == NULL)
5643 {
5644 _bfd_stringtab_free (stt);
5645 return FALSE;
5646 }
5647 symtab_hdr->contents = outbound_syms;
5648
5649 outbound_shndx = NULL;
5650 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5651 if (symtab_shndx_hdr->sh_name != 0)
5652 {
5653 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5654 outbound_shndx = bfd_zalloc (abfd, amt);
5655 if (outbound_shndx == NULL)
5656 {
5657 _bfd_stringtab_free (stt);
5658 return FALSE;
5659 }
5660
5661 symtab_shndx_hdr->contents = outbound_shndx;
5662 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5663 symtab_shndx_hdr->sh_size = amt;
5664 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5665 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5666 }
5667
5668 /* Now generate the data (for "contents"). */
5669 {
5670 /* Fill in zeroth symbol and swap it out. */
5671 Elf_Internal_Sym sym;
5672 sym.st_name = 0;
5673 sym.st_value = 0;
5674 sym.st_size = 0;
5675 sym.st_info = 0;
5676 sym.st_other = 0;
5677 sym.st_shndx = SHN_UNDEF;
5678 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5679 outbound_syms += bed->s->sizeof_sym;
5680 if (outbound_shndx != NULL)
5681 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5682 }
5683
5684 name_local_sections
5685 = (bed->elf_backend_name_local_section_symbols
5686 && bed->elf_backend_name_local_section_symbols (abfd));
5687
5688 syms = bfd_get_outsymbols (abfd);
5689 for (idx = 0; idx < symcount; idx++)
5690 {
5691 Elf_Internal_Sym sym;
5692 bfd_vma value = syms[idx]->value;
5693 elf_symbol_type *type_ptr;
5694 flagword flags = syms[idx]->flags;
5695 int type;
5696
5697 if (!name_local_sections
5698 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5699 {
5700 /* Local section symbols have no name. */
5701 sym.st_name = 0;
5702 }
5703 else
5704 {
5705 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5706 syms[idx]->name,
5707 TRUE, FALSE);
5708 if (sym.st_name == (unsigned long) -1)
5709 {
5710 _bfd_stringtab_free (stt);
5711 return FALSE;
5712 }
5713 }
5714
5715 type_ptr = elf_symbol_from (abfd, syms[idx]);
5716
5717 if ((flags & BSF_SECTION_SYM) == 0
5718 && bfd_is_com_section (syms[idx]->section))
5719 {
5720 /* ELF common symbols put the alignment into the `value' field,
5721 and the size into the `size' field. This is backwards from
5722 how BFD handles it, so reverse it here. */
5723 sym.st_size = value;
5724 if (type_ptr == NULL
5725 || type_ptr->internal_elf_sym.st_value == 0)
5726 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5727 else
5728 sym.st_value = type_ptr->internal_elf_sym.st_value;
5729 sym.st_shndx = _bfd_elf_section_from_bfd_section
5730 (abfd, syms[idx]->section);
5731 }
5732 else
5733 {
5734 asection *sec = syms[idx]->section;
5735 int shndx;
5736
5737 if (sec->output_section)
5738 {
5739 value += sec->output_offset;
5740 sec = sec->output_section;
5741 }
5742
5743 /* Don't add in the section vma for relocatable output. */
5744 if (! relocatable_p)
5745 value += sec->vma;
5746 sym.st_value = value;
5747 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5748
5749 if (bfd_is_abs_section (sec)
5750 && type_ptr != NULL
5751 && type_ptr->internal_elf_sym.st_shndx != 0)
5752 {
5753 /* This symbol is in a real ELF section which we did
5754 not create as a BFD section. Undo the mapping done
5755 by copy_private_symbol_data. */
5756 shndx = type_ptr->internal_elf_sym.st_shndx;
5757 switch (shndx)
5758 {
5759 case MAP_ONESYMTAB:
5760 shndx = elf_onesymtab (abfd);
5761 break;
5762 case MAP_DYNSYMTAB:
5763 shndx = elf_dynsymtab (abfd);
5764 break;
5765 case MAP_STRTAB:
5766 shndx = elf_tdata (abfd)->strtab_section;
5767 break;
5768 case MAP_SHSTRTAB:
5769 shndx = elf_tdata (abfd)->shstrtab_section;
5770 break;
5771 case MAP_SYM_SHNDX:
5772 shndx = elf_tdata (abfd)->symtab_shndx_section;
5773 break;
5774 default:
5775 break;
5776 }
5777 }
5778 else
5779 {
5780 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5781
5782 if (shndx == -1)
5783 {
5784 asection *sec2;
5785
5786 /* Writing this would be a hell of a lot easier if
5787 we had some decent documentation on bfd, and
5788 knew what to expect of the library, and what to
5789 demand of applications. For example, it
5790 appears that `objcopy' might not set the
5791 section of a symbol to be a section that is
5792 actually in the output file. */
5793 sec2 = bfd_get_section_by_name (abfd, sec->name);
5794 if (sec2 == NULL)
5795 {
5796 _bfd_error_handler (_("\
5797Unable to find equivalent output section for symbol '%s' from section '%s'"),
5798 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5799 sec->name);
5800 bfd_set_error (bfd_error_invalid_operation);
5801 _bfd_stringtab_free (stt);
5802 return FALSE;
5803 }
5804
5805 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5806 BFD_ASSERT (shndx != -1);
5807 }
5808 }
5809
5810 sym.st_shndx = shndx;
5811 }
5812
5813 if ((flags & BSF_THREAD_LOCAL) != 0)
5814 type = STT_TLS;
5815 else if ((flags & BSF_FUNCTION) != 0)
5816 type = STT_FUNC;
5817 else if ((flags & BSF_OBJECT) != 0)
5818 type = STT_OBJECT;
5819 else
5820 type = STT_NOTYPE;
5821
5822 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5823 type = STT_TLS;
5824
5825 /* Processor-specific types. */
5826 if (type_ptr != NULL
5827 && bed->elf_backend_get_symbol_type)
5828 type = ((*bed->elf_backend_get_symbol_type)
5829 (&type_ptr->internal_elf_sym, type));
5830
5831 if (flags & BSF_SECTION_SYM)
5832 {
5833 if (flags & BSF_GLOBAL)
5834 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5835 else
5836 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5837 }
5838 else if (bfd_is_com_section (syms[idx]->section))
5839 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5840 else if (bfd_is_und_section (syms[idx]->section))
5841 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5842 ? STB_WEAK
5843 : STB_GLOBAL),
5844 type);
5845 else if (flags & BSF_FILE)
5846 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5847 else
5848 {
5849 int bind = STB_LOCAL;
5850
5851 if (flags & BSF_LOCAL)
5852 bind = STB_LOCAL;
5853 else if (flags & BSF_WEAK)
5854 bind = STB_WEAK;
5855 else if (flags & BSF_GLOBAL)
5856 bind = STB_GLOBAL;
5857
5858 sym.st_info = ELF_ST_INFO (bind, type);
5859 }
5860
5861 if (type_ptr != NULL)
5862 sym.st_other = type_ptr->internal_elf_sym.st_other;
5863 else
5864 sym.st_other = 0;
5865
5866 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5867 outbound_syms += bed->s->sizeof_sym;
5868 if (outbound_shndx != NULL)
5869 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5870 }
5871
5872 *sttp = stt;
5873 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5874 symstrtab_hdr->sh_type = SHT_STRTAB;
5875
5876 symstrtab_hdr->sh_flags = 0;
5877 symstrtab_hdr->sh_addr = 0;
5878 symstrtab_hdr->sh_entsize = 0;
5879 symstrtab_hdr->sh_link = 0;
5880 symstrtab_hdr->sh_info = 0;
5881 symstrtab_hdr->sh_addralign = 1;
5882
5883 return TRUE;
5884}
5885
5886/* Return the number of bytes required to hold the symtab vector.
5887
5888 Note that we base it on the count plus 1, since we will null terminate
5889 the vector allocated based on this size. However, the ELF symbol table
5890 always has a dummy entry as symbol #0, so it ends up even. */
5891
5892long
5893_bfd_elf_get_symtab_upper_bound (bfd *abfd)
5894{
5895 long symcount;
5896 long symtab_size;
5897 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5898
5899 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5900 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5901 if (symcount > 0)
5902 symtab_size -= sizeof (asymbol *);
5903
5904 return symtab_size;
5905}
5906
5907long
5908_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5909{
5910 long symcount;
5911 long symtab_size;
5912 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5913
5914 if (elf_dynsymtab (abfd) == 0)
5915 {
5916 bfd_set_error (bfd_error_invalid_operation);
5917 return -1;
5918 }
5919
5920 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5921 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5922 if (symcount > 0)
5923 symtab_size -= sizeof (asymbol *);
5924
5925 return symtab_size;
5926}
5927
5928long
5929_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5930 sec_ptr asect)
5931{
5932 return (asect->reloc_count + 1) * sizeof (arelent *);
5933}
5934
5935/* Canonicalize the relocs. */
5936
5937long
5938_bfd_elf_canonicalize_reloc (bfd *abfd,
5939 sec_ptr section,
5940 arelent **relptr,
5941 asymbol **symbols)
5942{
5943 arelent *tblptr;
5944 unsigned int i;
5945 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5946
5947 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5948 return -1;
5949
5950 tblptr = section->relocation;
5951 for (i = 0; i < section->reloc_count; i++)
5952 *relptr++ = tblptr++;
5953
5954 *relptr = NULL;
5955
5956 return section->reloc_count;
5957}
5958
5959long
5960_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5961{
5962 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5963 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5964
5965 if (symcount >= 0)
5966 bfd_get_symcount (abfd) = symcount;
5967 return symcount;
5968}
5969
5970long
5971_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5972 asymbol **allocation)
5973{
5974 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5975 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5976
5977 if (symcount >= 0)
5978 bfd_get_dynamic_symcount (abfd) = symcount;
5979 return symcount;
5980}
5981
5982/* Return the size required for the dynamic reloc entries. Any loadable
5983 section that was actually installed in the BFD, and has type SHT_REL
5984 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
5985 dynamic reloc section. */
5986
5987long
5988_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5989{
5990 long ret;
5991 asection *s;
5992
5993 if (elf_dynsymtab (abfd) == 0)
5994 {
5995 bfd_set_error (bfd_error_invalid_operation);
5996 return -1;
5997 }
5998
5999 ret = sizeof (arelent *);
6000 for (s = abfd->sections; s != NULL; s = s->next)
6001 if ((s->flags & SEC_LOAD) != 0
6002 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6003 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6004 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6005 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6006 * sizeof (arelent *));
6007
6008 return ret;
6009}
6010
6011/* Canonicalize the dynamic relocation entries. Note that we return the
6012 dynamic relocations as a single block, although they are actually
6013 associated with particular sections; the interface, which was
6014 designed for SunOS style shared libraries, expects that there is only
6015 one set of dynamic relocs. Any loadable section that was actually
6016 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6017 dynamic symbol table, is considered to be a dynamic reloc section. */
6018
6019long
6020_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6021 arelent **storage,
6022 asymbol **syms)
6023{
6024 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6025 asection *s;
6026 long ret;
6027
6028 if (elf_dynsymtab (abfd) == 0)
6029 {
6030 bfd_set_error (bfd_error_invalid_operation);
6031 return -1;
6032 }
6033
6034 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6035 ret = 0;
6036 for (s = abfd->sections; s != NULL; s = s->next)
6037 {
6038 if ((s->flags & SEC_LOAD) != 0
6039 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6040 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6041 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6042 {
6043 arelent *p;
6044 long count, i;
6045
6046 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6047 return -1;
6048 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6049 p = s->relocation;
6050 for (i = 0; i < count; i++)
6051 *storage++ = p++;
6052 ret += count;
6053 }
6054 }
6055
6056 *storage = NULL;
6057
6058 return ret;
6059}
6060\f
6061/* Read in the version information. */
6062
6063bfd_boolean
6064_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6065{
6066 bfd_byte *contents = NULL;
6067 bfd_size_type amt;
6068 unsigned int freeidx = 0;
6069
6070 if (elf_dynverref (abfd) != 0)
6071 {
6072 Elf_Internal_Shdr *hdr;
6073 Elf_External_Verneed *everneed;
6074 Elf_Internal_Verneed *iverneed;
6075 unsigned int i;
6076
6077 hdr = &elf_tdata (abfd)->dynverref_hdr;
6078
6079 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6080 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6081 if (elf_tdata (abfd)->verref == NULL)
6082 goto error_return;
6083
6084 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6085
6086 contents = bfd_malloc (hdr->sh_size);
6087 if (contents == NULL)
6088 goto error_return;
6089 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6090 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6091 goto error_return;
6092
6093 everneed = (Elf_External_Verneed *) contents;
6094 iverneed = elf_tdata (abfd)->verref;
6095 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6096 {
6097 Elf_External_Vernaux *evernaux;
6098 Elf_Internal_Vernaux *ivernaux;
6099 unsigned int j;
6100
6101 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6102
6103 iverneed->vn_bfd = abfd;
6104
6105 iverneed->vn_filename =
6106 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6107 iverneed->vn_file);
6108 if (iverneed->vn_filename == NULL)
6109 goto error_return;
6110
6111 amt = iverneed->vn_cnt;
6112 amt *= sizeof (Elf_Internal_Vernaux);
6113 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6114
6115 evernaux = ((Elf_External_Vernaux *)
6116 ((bfd_byte *) everneed + iverneed->vn_aux));
6117 ivernaux = iverneed->vn_auxptr;
6118 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6119 {
6120 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6121
6122 ivernaux->vna_nodename =
6123 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6124 ivernaux->vna_name);
6125 if (ivernaux->vna_nodename == NULL)
6126 goto error_return;
6127
6128 if (j + 1 < iverneed->vn_cnt)
6129 ivernaux->vna_nextptr = ivernaux + 1;
6130 else
6131 ivernaux->vna_nextptr = NULL;
6132
6133 evernaux = ((Elf_External_Vernaux *)
6134 ((bfd_byte *) evernaux + ivernaux->vna_next));
6135
6136 if (ivernaux->vna_other > freeidx)
6137 freeidx = ivernaux->vna_other;
6138 }
6139
6140 if (i + 1 < hdr->sh_info)
6141 iverneed->vn_nextref = iverneed + 1;
6142 else
6143 iverneed->vn_nextref = NULL;
6144
6145 everneed = ((Elf_External_Verneed *)
6146 ((bfd_byte *) everneed + iverneed->vn_next));
6147 }
6148
6149 free (contents);
6150 contents = NULL;
6151 }
6152
6153 if (elf_dynverdef (abfd) != 0)
6154 {
6155 Elf_Internal_Shdr *hdr;
6156 Elf_External_Verdef *everdef;
6157 Elf_Internal_Verdef *iverdef;
6158 Elf_Internal_Verdef *iverdefarr;
6159 Elf_Internal_Verdef iverdefmem;
6160 unsigned int i;
6161 unsigned int maxidx;
6162
6163 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6164
6165 contents = bfd_malloc (hdr->sh_size);
6166 if (contents == NULL)
6167 goto error_return;
6168 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6169 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6170 goto error_return;
6171
6172 /* We know the number of entries in the section but not the maximum
6173 index. Therefore we have to run through all entries and find
6174 the maximum. */
6175 everdef = (Elf_External_Verdef *) contents;
6176 maxidx = 0;
6177 for (i = 0; i < hdr->sh_info; ++i)
6178 {
6179 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6180
6181 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6182 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6183
6184 everdef = ((Elf_External_Verdef *)
6185 ((bfd_byte *) everdef + iverdefmem.vd_next));
6186 }
6187
6188 if (default_imported_symver)
6189 {
6190 if (freeidx > maxidx)
6191 maxidx = ++freeidx;
6192 else
6193 freeidx = ++maxidx;
6194 }
6195 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6196 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6197 if (elf_tdata (abfd)->verdef == NULL)
6198 goto error_return;
6199
6200 elf_tdata (abfd)->cverdefs = maxidx;
6201
6202 everdef = (Elf_External_Verdef *) contents;
6203 iverdefarr = elf_tdata (abfd)->verdef;
6204 for (i = 0; i < hdr->sh_info; i++)
6205 {
6206 Elf_External_Verdaux *everdaux;
6207 Elf_Internal_Verdaux *iverdaux;
6208 unsigned int j;
6209
6210 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6211
6212 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6213 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6214
6215 iverdef->vd_bfd = abfd;
6216
6217 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6218 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6219 if (iverdef->vd_auxptr == NULL)
6220 goto error_return;
6221
6222 everdaux = ((Elf_External_Verdaux *)
6223 ((bfd_byte *) everdef + iverdef->vd_aux));
6224 iverdaux = iverdef->vd_auxptr;
6225 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6226 {
6227 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6228
6229 iverdaux->vda_nodename =
6230 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6231 iverdaux->vda_name);
6232 if (iverdaux->vda_nodename == NULL)
6233 goto error_return;
6234
6235 if (j + 1 < iverdef->vd_cnt)
6236 iverdaux->vda_nextptr = iverdaux + 1;
6237 else
6238 iverdaux->vda_nextptr = NULL;
6239
6240 everdaux = ((Elf_External_Verdaux *)
6241 ((bfd_byte *) everdaux + iverdaux->vda_next));
6242 }
6243
6244 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6245
6246 if (i + 1 < hdr->sh_info)
6247 iverdef->vd_nextdef = iverdef + 1;
6248 else
6249 iverdef->vd_nextdef = NULL;
6250
6251 everdef = ((Elf_External_Verdef *)
6252 ((bfd_byte *) everdef + iverdef->vd_next));
6253 }
6254
6255 free (contents);
6256 contents = NULL;
6257 }
6258 else if (default_imported_symver)
6259 {
6260 if (freeidx < 3)
6261 freeidx = 3;
6262 else
6263 freeidx++;
6264
6265 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6266 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6267 if (elf_tdata (abfd)->verdef == NULL)
6268 goto error_return;
6269
6270 elf_tdata (abfd)->cverdefs = freeidx;
6271 }
6272
6273 /* Create a default version based on the soname. */
6274 if (default_imported_symver)
6275 {
6276 Elf_Internal_Verdef *iverdef;
6277 Elf_Internal_Verdaux *iverdaux;
6278
6279 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6280
6281 iverdef->vd_version = VER_DEF_CURRENT;
6282 iverdef->vd_flags = 0;
6283 iverdef->vd_ndx = freeidx;
6284 iverdef->vd_cnt = 1;
6285
6286 iverdef->vd_bfd = abfd;
6287
6288 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6289 if (iverdef->vd_nodename == NULL)
6290 goto error_return;
6291 iverdef->vd_nextdef = NULL;
6292 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6293 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6294
6295 iverdaux = iverdef->vd_auxptr;
6296 iverdaux->vda_nodename = iverdef->vd_nodename;
6297 iverdaux->vda_nextptr = NULL;
6298 }
6299
6300 return TRUE;
6301
6302 error_return:
6303 if (contents != NULL)
6304 free (contents);
6305 return FALSE;
6306}
6307\f
6308asymbol *
6309_bfd_elf_make_empty_symbol (bfd *abfd)
6310{
6311 elf_symbol_type *newsym;
6312 bfd_size_type amt = sizeof (elf_symbol_type);
6313
6314 newsym = bfd_zalloc (abfd, amt);
6315 if (!newsym)
6316 return NULL;
6317 else
6318 {
6319 newsym->symbol.the_bfd = abfd;
6320 return &newsym->symbol;
6321 }
6322}
6323
6324void
6325_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6326 asymbol *symbol,
6327 symbol_info *ret)
6328{
6329 bfd_symbol_info (symbol, ret);
6330}
6331
6332/* Return whether a symbol name implies a local symbol. Most targets
6333 use this function for the is_local_label_name entry point, but some
6334 override it. */
6335
6336bfd_boolean
6337_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6338 const char *name)
6339{
6340 /* Normal local symbols start with ``.L''. */
6341 if (name[0] == '.' && name[1] == 'L')
6342 return TRUE;
6343
6344 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6345 DWARF debugging symbols starting with ``..''. */
6346 if (name[0] == '.' && name[1] == '.')
6347 return TRUE;
6348
6349 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6350 emitting DWARF debugging output. I suspect this is actually a
6351 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6352 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6353 underscore to be emitted on some ELF targets). For ease of use,
6354 we treat such symbols as local. */
6355 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6356 return TRUE;
6357
6358 return FALSE;
6359}
6360
6361alent *
6362_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6363 asymbol *symbol ATTRIBUTE_UNUSED)
6364{
6365 abort ();
6366 return NULL;
6367}
6368
6369bfd_boolean
6370_bfd_elf_set_arch_mach (bfd *abfd,
6371 enum bfd_architecture arch,
6372 unsigned long machine)
6373{
6374 /* If this isn't the right architecture for this backend, and this
6375 isn't the generic backend, fail. */
6376 if (arch != get_elf_backend_data (abfd)->arch
6377 && arch != bfd_arch_unknown
6378 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6379 return FALSE;
6380
6381 return bfd_default_set_arch_mach (abfd, arch, machine);
6382}
6383
6384/* Find the function to a particular section and offset,
6385 for error reporting. */
6386
6387static bfd_boolean
6388elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6389 asection *section,
6390 asymbol **symbols,
6391 bfd_vma offset,
6392 const char **filename_ptr,
6393 const char **functionname_ptr)
6394{
6395 const char *filename;
6396 asymbol *func, *file;
6397 bfd_vma low_func;
6398 asymbol **p;
6399 /* ??? Given multiple file symbols, it is impossible to reliably
6400 choose the right file name for global symbols. File symbols are
6401 local symbols, and thus all file symbols must sort before any
6402 global symbols. The ELF spec may be interpreted to say that a
6403 file symbol must sort before other local symbols, but currently
6404 ld -r doesn't do this. So, for ld -r output, it is possible to
6405 make a better choice of file name for local symbols by ignoring
6406 file symbols appearing after a given local symbol. */
6407 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6408
6409 filename = NULL;
6410 func = NULL;
6411 file = NULL;
6412 low_func = 0;
6413 state = nothing_seen;
6414
6415 for (p = symbols; *p != NULL; p++)
6416 {
6417 elf_symbol_type *q;
6418
6419 q = (elf_symbol_type *) *p;
6420
6421 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6422 {
6423 default:
6424 break;
6425 case STT_FILE:
6426 file = &q->symbol;
6427 if (state == symbol_seen)
6428 state = file_after_symbol_seen;
6429 continue;
6430 case STT_SECTION:
6431 continue;
6432 case STT_NOTYPE:
6433 case STT_FUNC:
6434 if (bfd_get_section (&q->symbol) == section
6435 && q->symbol.value >= low_func
6436 && q->symbol.value <= offset)
6437 {
6438 func = (asymbol *) q;
6439 low_func = q->symbol.value;
6440 if (file == NULL)
6441 filename = NULL;
6442 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6443 && state == file_after_symbol_seen)
6444 filename = NULL;
6445 else
6446 filename = bfd_asymbol_name (file);
6447 }
6448 break;
6449 }
6450 if (state == nothing_seen)
6451 state = symbol_seen;
6452 }
6453
6454 if (func == NULL)
6455 return FALSE;
6456
6457 if (filename_ptr)
6458 *filename_ptr = filename;
6459 if (functionname_ptr)
6460 *functionname_ptr = bfd_asymbol_name (func);
6461
6462 return TRUE;
6463}
6464
6465/* Find the nearest line to a particular section and offset,
6466 for error reporting. */
6467
6468bfd_boolean
6469_bfd_elf_find_nearest_line (bfd *abfd,
6470 asection *section,
6471 asymbol **symbols,
6472 bfd_vma offset,
6473 const char **filename_ptr,
6474 const char **functionname_ptr,
6475 unsigned int *line_ptr)
6476{
6477 bfd_boolean found;
6478
6479 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6480 filename_ptr, functionname_ptr,
6481 line_ptr))
6482 {
6483 if (!*functionname_ptr)
6484 elf_find_function (abfd, section, symbols, offset,
6485 *filename_ptr ? NULL : filename_ptr,
6486 functionname_ptr);
6487
6488 return TRUE;
6489 }
6490
6491 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6492 filename_ptr, functionname_ptr,
6493 line_ptr, 0,
6494 &elf_tdata (abfd)->dwarf2_find_line_info))
6495 {
6496 if (!*functionname_ptr)
6497 elf_find_function (abfd, section, symbols, offset,
6498 *filename_ptr ? NULL : filename_ptr,
6499 functionname_ptr);
6500
6501 return TRUE;
6502 }
6503
6504 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6505 &found, filename_ptr,
6506 functionname_ptr, line_ptr,
6507 &elf_tdata (abfd)->line_info))
6508 return FALSE;
6509 if (found && (*functionname_ptr || *line_ptr))
6510 return TRUE;
6511
6512 if (symbols == NULL)
6513 return FALSE;
6514
6515 if (! elf_find_function (abfd, section, symbols, offset,
6516 filename_ptr, functionname_ptr))
6517 return FALSE;
6518
6519 *line_ptr = 0;
6520 return TRUE;
6521}
6522
6523int
6524_bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6525{
6526 int ret;
6527
6528 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6529 if (! reloc)
6530 ret += get_program_header_size (abfd);
6531 return ret;
6532}
6533
6534bfd_boolean
6535_bfd_elf_set_section_contents (bfd *abfd,
6536 sec_ptr section,
6537 const void *location,
6538 file_ptr offset,
6539 bfd_size_type count)
6540{
6541 Elf_Internal_Shdr *hdr;
6542 bfd_signed_vma pos;
6543
6544 if (! abfd->output_has_begun
6545 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6546 return FALSE;
6547
6548 hdr = &elf_section_data (section)->this_hdr;
6549 pos = hdr->sh_offset + offset;
6550 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6551 || bfd_bwrite (location, count, abfd) != count)
6552 return FALSE;
6553
6554 return TRUE;
6555}
6556
6557void
6558_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6559 arelent *cache_ptr ATTRIBUTE_UNUSED,
6560 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6561{
6562 abort ();
6563}
6564
6565/* Try to convert a non-ELF reloc into an ELF one. */
6566
6567bfd_boolean
6568_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6569{
6570 /* Check whether we really have an ELF howto. */
6571
6572 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6573 {
6574 bfd_reloc_code_real_type code;
6575 reloc_howto_type *howto;
6576
6577 /* Alien reloc: Try to determine its type to replace it with an
6578 equivalent ELF reloc. */
6579
6580 if (areloc->howto->pc_relative)
6581 {
6582 switch (areloc->howto->bitsize)
6583 {
6584 case 8:
6585 code = BFD_RELOC_8_PCREL;
6586 break;
6587 case 12:
6588 code = BFD_RELOC_12_PCREL;
6589 break;
6590 case 16:
6591 code = BFD_RELOC_16_PCREL;
6592 break;
6593 case 24:
6594 code = BFD_RELOC_24_PCREL;
6595 break;
6596 case 32:
6597 code = BFD_RELOC_32_PCREL;
6598 break;
6599 case 64:
6600 code = BFD_RELOC_64_PCREL;
6601 break;
6602 default:
6603 goto fail;
6604 }
6605
6606 howto = bfd_reloc_type_lookup (abfd, code);
6607
6608 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6609 {
6610 if (howto->pcrel_offset)
6611 areloc->addend += areloc->address;
6612 else
6613 areloc->addend -= areloc->address; /* addend is unsigned!! */
6614 }
6615 }
6616 else
6617 {
6618 switch (areloc->howto->bitsize)
6619 {
6620 case 8:
6621 code = BFD_RELOC_8;
6622 break;
6623 case 14:
6624 code = BFD_RELOC_14;
6625 break;
6626 case 16:
6627 code = BFD_RELOC_16;
6628 break;
6629 case 26:
6630 code = BFD_RELOC_26;
6631 break;
6632 case 32:
6633 code = BFD_RELOC_32;
6634 break;
6635 case 64:
6636 code = BFD_RELOC_64;
6637 break;
6638 default:
6639 goto fail;
6640 }
6641
6642 howto = bfd_reloc_type_lookup (abfd, code);
6643 }
6644
6645 if (howto)
6646 areloc->howto = howto;
6647 else
6648 goto fail;
6649 }
6650
6651 return TRUE;
6652
6653 fail:
6654 (*_bfd_error_handler)
6655 (_("%B: unsupported relocation type %s"),
6656 abfd, areloc->howto->name);
6657 bfd_set_error (bfd_error_bad_value);
6658 return FALSE;
6659}
6660
6661bfd_boolean
6662_bfd_elf_close_and_cleanup (bfd *abfd)
6663{
6664 if (bfd_get_format (abfd) == bfd_object)
6665 {
6666 if (elf_shstrtab (abfd) != NULL)
6667 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6668 }
6669
6670 return _bfd_generic_close_and_cleanup (abfd);
6671}
6672
6673/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6674 in the relocation's offset. Thus we cannot allow any sort of sanity
6675 range-checking to interfere. There is nothing else to do in processing
6676 this reloc. */
6677
6678bfd_reloc_status_type
6679_bfd_elf_rel_vtable_reloc_fn
6680 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6681 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6682 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6683 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6684{
6685 return bfd_reloc_ok;
6686}
6687\f
6688/* Elf core file support. Much of this only works on native
6689 toolchains, since we rely on knowing the
6690 machine-dependent procfs structure in order to pick
6691 out details about the corefile. */
6692
6693#ifdef HAVE_SYS_PROCFS_H
6694# include <sys/procfs.h>
6695#endif
6696
6697/* FIXME: this is kinda wrong, but it's what gdb wants. */
6698
6699static int
6700elfcore_make_pid (bfd *abfd)
6701{
6702 return ((elf_tdata (abfd)->core_lwpid << 16)
6703 + (elf_tdata (abfd)->core_pid));
6704}
6705
6706/* If there isn't a section called NAME, make one, using
6707 data from SECT. Note, this function will generate a
6708 reference to NAME, so you shouldn't deallocate or
6709 overwrite it. */
6710
6711static bfd_boolean
6712elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6713{
6714 asection *sect2;
6715
6716 if (bfd_get_section_by_name (abfd, name) != NULL)
6717 return TRUE;
6718
6719 sect2 = bfd_make_section (abfd, name);
6720 if (sect2 == NULL)
6721 return FALSE;
6722
6723 sect2->size = sect->size;
6724 sect2->filepos = sect->filepos;
6725 sect2->flags = sect->flags;
6726 sect2->alignment_power = sect->alignment_power;
6727 return TRUE;
6728}
6729
6730/* Create a pseudosection containing SIZE bytes at FILEPOS. This
6731 actually creates up to two pseudosections:
6732 - For the single-threaded case, a section named NAME, unless
6733 such a section already exists.
6734 - For the multi-threaded case, a section named "NAME/PID", where
6735 PID is elfcore_make_pid (abfd).
6736 Both pseudosections have identical contents. */
6737bfd_boolean
6738_bfd_elfcore_make_pseudosection (bfd *abfd,
6739 char *name,
6740 size_t size,
6741 ufile_ptr filepos)
6742{
6743 char buf[100];
6744 char *threaded_name;
6745 size_t len;
6746 asection *sect;
6747
6748 /* Build the section name. */
6749
6750 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6751 len = strlen (buf) + 1;
6752 threaded_name = bfd_alloc (abfd, len);
6753 if (threaded_name == NULL)
6754 return FALSE;
6755 memcpy (threaded_name, buf, len);
6756
6757 sect = bfd_make_section_anyway (abfd, threaded_name);
6758 if (sect == NULL)
6759 return FALSE;
6760 sect->size = size;
6761 sect->filepos = filepos;
6762 sect->flags = SEC_HAS_CONTENTS;
6763 sect->alignment_power = 2;
6764
6765 return elfcore_maybe_make_sect (abfd, name, sect);
6766}
6767
6768/* prstatus_t exists on:
6769 solaris 2.5+
6770 linux 2.[01] + glibc
6771 unixware 4.2
6772*/
6773
6774#if defined (HAVE_PRSTATUS_T)
6775
6776static bfd_boolean
6777elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6778{
6779 size_t size;
6780 int offset;
6781
6782 if (note->descsz == sizeof (prstatus_t))
6783 {
6784 prstatus_t prstat;
6785
6786 size = sizeof (prstat.pr_reg);
6787 offset = offsetof (prstatus_t, pr_reg);
6788 memcpy (&prstat, note->descdata, sizeof (prstat));
6789
6790 /* Do not overwrite the core signal if it
6791 has already been set by another thread. */
6792 if (elf_tdata (abfd)->core_signal == 0)
6793 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6794 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6795
6796 /* pr_who exists on:
6797 solaris 2.5+
6798 unixware 4.2
6799 pr_who doesn't exist on:
6800 linux 2.[01]
6801 */
6802#if defined (HAVE_PRSTATUS_T_PR_WHO)
6803 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6804#endif
6805 }
6806#if defined (HAVE_PRSTATUS32_T)
6807 else if (note->descsz == sizeof (prstatus32_t))
6808 {
6809 /* 64-bit host, 32-bit corefile */
6810 prstatus32_t prstat;
6811
6812 size = sizeof (prstat.pr_reg);
6813 offset = offsetof (prstatus32_t, pr_reg);
6814 memcpy (&prstat, note->descdata, sizeof (prstat));
6815
6816 /* Do not overwrite the core signal if it
6817 has already been set by another thread. */
6818 if (elf_tdata (abfd)->core_signal == 0)
6819 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6820 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6821
6822 /* pr_who exists on:
6823 solaris 2.5+
6824 unixware 4.2
6825 pr_who doesn't exist on:
6826 linux 2.[01]
6827 */
6828#if defined (HAVE_PRSTATUS32_T_PR_WHO)
6829 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6830#endif
6831 }
6832#endif /* HAVE_PRSTATUS32_T */
6833 else
6834 {
6835 /* Fail - we don't know how to handle any other
6836 note size (ie. data object type). */
6837 return TRUE;
6838 }
6839
6840 /* Make a ".reg/999" section and a ".reg" section. */
6841 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6842 size, note->descpos + offset);
6843}
6844#endif /* defined (HAVE_PRSTATUS_T) */
6845
6846/* Create a pseudosection containing the exact contents of NOTE. */
6847static bfd_boolean
6848elfcore_make_note_pseudosection (bfd *abfd,
6849 char *name,
6850 Elf_Internal_Note *note)
6851{
6852 return _bfd_elfcore_make_pseudosection (abfd, name,
6853 note->descsz, note->descpos);
6854}
6855
6856/* There isn't a consistent prfpregset_t across platforms,
6857 but it doesn't matter, because we don't have to pick this
6858 data structure apart. */
6859
6860static bfd_boolean
6861elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6862{
6863 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6864}
6865
6866/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6867 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6868 literally. */
6869
6870static bfd_boolean
6871elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6872{
6873 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6874}
6875
6876#if defined (HAVE_PRPSINFO_T)
6877typedef prpsinfo_t elfcore_psinfo_t;
6878#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6879typedef prpsinfo32_t elfcore_psinfo32_t;
6880#endif
6881#endif
6882
6883#if defined (HAVE_PSINFO_T)
6884typedef psinfo_t elfcore_psinfo_t;
6885#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6886typedef psinfo32_t elfcore_psinfo32_t;
6887#endif
6888#endif
6889
6890/* return a malloc'ed copy of a string at START which is at
6891 most MAX bytes long, possibly without a terminating '\0'.
6892 the copy will always have a terminating '\0'. */
6893
6894char *
6895_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6896{
6897 char *dups;
6898 char *end = memchr (start, '\0', max);
6899 size_t len;
6900
6901 if (end == NULL)
6902 len = max;
6903 else
6904 len = end - start;
6905
6906 dups = bfd_alloc (abfd, len + 1);
6907 if (dups == NULL)
6908 return NULL;
6909
6910 memcpy (dups, start, len);
6911 dups[len] = '\0';
6912
6913 return dups;
6914}
6915
6916#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6917static bfd_boolean
6918elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6919{
6920 if (note->descsz == sizeof (elfcore_psinfo_t))
6921 {
6922 elfcore_psinfo_t psinfo;
6923
6924 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6925
6926 elf_tdata (abfd)->core_program
6927 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6928 sizeof (psinfo.pr_fname));
6929
6930 elf_tdata (abfd)->core_command
6931 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6932 sizeof (psinfo.pr_psargs));
6933 }
6934#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6935 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6936 {
6937 /* 64-bit host, 32-bit corefile */
6938 elfcore_psinfo32_t psinfo;
6939
6940 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6941
6942 elf_tdata (abfd)->core_program
6943 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6944 sizeof (psinfo.pr_fname));
6945
6946 elf_tdata (abfd)->core_command
6947 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6948 sizeof (psinfo.pr_psargs));
6949 }
6950#endif
6951
6952 else
6953 {
6954 /* Fail - we don't know how to handle any other
6955 note size (ie. data object type). */
6956 return TRUE;
6957 }
6958
6959 /* Note that for some reason, a spurious space is tacked
6960 onto the end of the args in some (at least one anyway)
6961 implementations, so strip it off if it exists. */
6962
6963 {
6964 char *command = elf_tdata (abfd)->core_command;
6965 int n = strlen (command);
6966
6967 if (0 < n && command[n - 1] == ' ')
6968 command[n - 1] = '\0';
6969 }
6970
6971 return TRUE;
6972}
6973#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6974
6975#if defined (HAVE_PSTATUS_T)
6976static bfd_boolean
6977elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6978{
6979 if (note->descsz == sizeof (pstatus_t)
6980#if defined (HAVE_PXSTATUS_T)
6981 || note->descsz == sizeof (pxstatus_t)
6982#endif
6983 )
6984 {
6985 pstatus_t pstat;
6986
6987 memcpy (&pstat, note->descdata, sizeof (pstat));
6988
6989 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6990 }
6991#if defined (HAVE_PSTATUS32_T)
6992 else if (note->descsz == sizeof (pstatus32_t))
6993 {
6994 /* 64-bit host, 32-bit corefile */
6995 pstatus32_t pstat;
6996
6997 memcpy (&pstat, note->descdata, sizeof (pstat));
6998
6999 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7000 }
7001#endif
7002 /* Could grab some more details from the "representative"
7003 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7004 NT_LWPSTATUS note, presumably. */
7005
7006 return TRUE;
7007}
7008#endif /* defined (HAVE_PSTATUS_T) */
7009
7010#if defined (HAVE_LWPSTATUS_T)
7011static bfd_boolean
7012elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7013{
7014 lwpstatus_t lwpstat;
7015 char buf[100];
7016 char *name;
7017 size_t len;
7018 asection *sect;
7019
7020 if (note->descsz != sizeof (lwpstat)
7021#if defined (HAVE_LWPXSTATUS_T)
7022 && note->descsz != sizeof (lwpxstatus_t)
7023#endif
7024 )
7025 return TRUE;
7026
7027 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7028
7029 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7030 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7031
7032 /* Make a ".reg/999" section. */
7033
7034 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7035 len = strlen (buf) + 1;
7036 name = bfd_alloc (abfd, len);
7037 if (name == NULL)
7038 return FALSE;
7039 memcpy (name, buf, len);
7040
7041 sect = bfd_make_section_anyway (abfd, name);
7042 if (sect == NULL)
7043 return FALSE;
7044
7045#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7046 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7047 sect->filepos = note->descpos
7048 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7049#endif
7050
7051#if defined (HAVE_LWPSTATUS_T_PR_REG)
7052 sect->size = sizeof (lwpstat.pr_reg);
7053 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7054#endif
7055
7056 sect->flags = SEC_HAS_CONTENTS;
7057 sect->alignment_power = 2;
7058
7059 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7060 return FALSE;
7061
7062 /* Make a ".reg2/999" section */
7063
7064 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7065 len = strlen (buf) + 1;
7066 name = bfd_alloc (abfd, len);
7067 if (name == NULL)
7068 return FALSE;
7069 memcpy (name, buf, len);
7070
7071 sect = bfd_make_section_anyway (abfd, name);
7072 if (sect == NULL)
7073 return FALSE;
7074
7075#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7076 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7077 sect->filepos = note->descpos
7078 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7079#endif
7080
7081#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7082 sect->size = sizeof (lwpstat.pr_fpreg);
7083 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7084#endif
7085
7086 sect->flags = SEC_HAS_CONTENTS;
7087 sect->alignment_power = 2;
7088
7089 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7090}
7091#endif /* defined (HAVE_LWPSTATUS_T) */
7092
7093#if defined (HAVE_WIN32_PSTATUS_T)
7094static bfd_boolean
7095elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7096{
7097 char buf[30];
7098 char *name;
7099 size_t len;
7100 asection *sect;
7101 win32_pstatus_t pstatus;
7102
7103 if (note->descsz < sizeof (pstatus))
7104 return TRUE;
7105
7106 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7107
7108 switch (pstatus.data_type)
7109 {
7110 case NOTE_INFO_PROCESS:
7111 /* FIXME: need to add ->core_command. */
7112 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7113 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7114 break;
7115
7116 case NOTE_INFO_THREAD:
7117 /* Make a ".reg/999" section. */
7118 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7119
7120 len = strlen (buf) + 1;
7121 name = bfd_alloc (abfd, len);
7122 if (name == NULL)
7123 return FALSE;
7124
7125 memcpy (name, buf, len);
7126
7127 sect = bfd_make_section_anyway (abfd, name);
7128 if (sect == NULL)
7129 return FALSE;
7130
7131 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7132 sect->filepos = (note->descpos
7133 + offsetof (struct win32_pstatus,
7134 data.thread_info.thread_context));
7135 sect->flags = SEC_HAS_CONTENTS;
7136 sect->alignment_power = 2;
7137
7138 if (pstatus.data.thread_info.is_active_thread)
7139 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7140 return FALSE;
7141 break;
7142
7143 case NOTE_INFO_MODULE:
7144 /* Make a ".module/xxxxxxxx" section. */
7145 sprintf (buf, ".module/%08lx",
7146 (long) pstatus.data.module_info.base_address);
7147
7148 len = strlen (buf) + 1;
7149 name = bfd_alloc (abfd, len);
7150 if (name == NULL)
7151 return FALSE;
7152
7153 memcpy (name, buf, len);
7154
7155 sect = bfd_make_section_anyway (abfd, name);
7156
7157 if (sect == NULL)
7158 return FALSE;
7159
7160 sect->size = note->descsz;
7161 sect->filepos = note->descpos;
7162 sect->flags = SEC_HAS_CONTENTS;
7163 sect->alignment_power = 2;
7164 break;
7165
7166 default:
7167 return TRUE;
7168 }
7169
7170 return TRUE;
7171}
7172#endif /* HAVE_WIN32_PSTATUS_T */
7173
7174static bfd_boolean
7175elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7176{
7177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7178
7179 switch (note->type)
7180 {
7181 default:
7182 return TRUE;
7183
7184 case NT_PRSTATUS:
7185 if (bed->elf_backend_grok_prstatus)
7186 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7187 return TRUE;
7188#if defined (HAVE_PRSTATUS_T)
7189 return elfcore_grok_prstatus (abfd, note);
7190#else
7191 return TRUE;
7192#endif
7193
7194#if defined (HAVE_PSTATUS_T)
7195 case NT_PSTATUS:
7196 return elfcore_grok_pstatus (abfd, note);
7197#endif
7198
7199#if defined (HAVE_LWPSTATUS_T)
7200 case NT_LWPSTATUS:
7201 return elfcore_grok_lwpstatus (abfd, note);
7202#endif
7203
7204 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7205 return elfcore_grok_prfpreg (abfd, note);
7206
7207#if defined (HAVE_WIN32_PSTATUS_T)
7208 case NT_WIN32PSTATUS:
7209 return elfcore_grok_win32pstatus (abfd, note);
7210#endif
7211
7212 case NT_PRXFPREG: /* Linux SSE extension */
7213 if (note->namesz == 6
7214 && strcmp (note->namedata, "LINUX") == 0)
7215 return elfcore_grok_prxfpreg (abfd, note);
7216 else
7217 return TRUE;
7218
7219 case NT_PRPSINFO:
7220 case NT_PSINFO:
7221 if (bed->elf_backend_grok_psinfo)
7222 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7223 return TRUE;
7224#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7225 return elfcore_grok_psinfo (abfd, note);
7226#else
7227 return TRUE;
7228#endif
7229
7230 case NT_AUXV:
7231 {
7232 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7233
7234 if (sect == NULL)
7235 return FALSE;
7236 sect->size = note->descsz;
7237 sect->filepos = note->descpos;
7238 sect->flags = SEC_HAS_CONTENTS;
7239 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7240
7241 return TRUE;
7242 }
7243 }
7244}
7245
7246static bfd_boolean
7247elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7248{
7249 char *cp;
7250
7251 cp = strchr (note->namedata, '@');
7252 if (cp != NULL)
7253 {
7254 *lwpidp = atoi(cp + 1);
7255 return TRUE;
7256 }
7257 return FALSE;
7258}
7259
7260static bfd_boolean
7261elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7262{
7263
7264 /* Signal number at offset 0x08. */
7265 elf_tdata (abfd)->core_signal
7266 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7267
7268 /* Process ID at offset 0x50. */
7269 elf_tdata (abfd)->core_pid
7270 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7271
7272 /* Command name at 0x7c (max 32 bytes, including nul). */
7273 elf_tdata (abfd)->core_command
7274 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7275
7276 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7277 note);
7278}
7279
7280static bfd_boolean
7281elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7282{
7283 int lwp;
7284
7285 if (elfcore_netbsd_get_lwpid (note, &lwp))
7286 elf_tdata (abfd)->core_lwpid = lwp;
7287
7288 if (note->type == NT_NETBSDCORE_PROCINFO)
7289 {
7290 /* NetBSD-specific core "procinfo". Note that we expect to
7291 find this note before any of the others, which is fine,
7292 since the kernel writes this note out first when it
7293 creates a core file. */
7294
7295 return elfcore_grok_netbsd_procinfo (abfd, note);
7296 }
7297
7298 /* As of Jan 2002 there are no other machine-independent notes
7299 defined for NetBSD core files. If the note type is less
7300 than the start of the machine-dependent note types, we don't
7301 understand it. */
7302
7303 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7304 return TRUE;
7305
7306
7307 switch (bfd_get_arch (abfd))
7308 {
7309 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7310 PT_GETFPREGS == mach+2. */
7311
7312 case bfd_arch_alpha:
7313 case bfd_arch_sparc:
7314 switch (note->type)
7315 {
7316 case NT_NETBSDCORE_FIRSTMACH+0:
7317 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7318
7319 case NT_NETBSDCORE_FIRSTMACH+2:
7320 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7321
7322 default:
7323 return TRUE;
7324 }
7325
7326 /* On all other arch's, PT_GETREGS == mach+1 and
7327 PT_GETFPREGS == mach+3. */
7328
7329 default:
7330 switch (note->type)
7331 {
7332 case NT_NETBSDCORE_FIRSTMACH+1:
7333 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7334
7335 case NT_NETBSDCORE_FIRSTMACH+3:
7336 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7337
7338 default:
7339 return TRUE;
7340 }
7341 }
7342 /* NOTREACHED */
7343}
7344
7345static bfd_boolean
7346elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7347{
7348 void *ddata = note->descdata;
7349 char buf[100];
7350 char *name;
7351 asection *sect;
7352 short sig;
7353 unsigned flags;
7354
7355 /* nto_procfs_status 'pid' field is at offset 0. */
7356 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7357
7358 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7359 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7360
7361 /* nto_procfs_status 'flags' field is at offset 8. */
7362 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7363
7364 /* nto_procfs_status 'what' field is at offset 14. */
7365 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7366 {
7367 elf_tdata (abfd)->core_signal = sig;
7368 elf_tdata (abfd)->core_lwpid = *tid;
7369 }
7370
7371 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7372 do not come from signals so we make sure we set the current
7373 thread just in case. */
7374 if (flags & 0x00000080)
7375 elf_tdata (abfd)->core_lwpid = *tid;
7376
7377 /* Make a ".qnx_core_status/%d" section. */
7378 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7379
7380 name = bfd_alloc (abfd, strlen (buf) + 1);
7381 if (name == NULL)
7382 return FALSE;
7383 strcpy (name, buf);
7384
7385 sect = bfd_make_section_anyway (abfd, name);
7386 if (sect == NULL)
7387 return FALSE;
7388
7389 sect->size = note->descsz;
7390 sect->filepos = note->descpos;
7391 sect->flags = SEC_HAS_CONTENTS;
7392 sect->alignment_power = 2;
7393
7394 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7395}
7396
7397static bfd_boolean
7398elfcore_grok_nto_regs (bfd *abfd,
7399 Elf_Internal_Note *note,
7400 pid_t tid,
7401 char *base)
7402{
7403 char buf[100];
7404 char *name;
7405 asection *sect;
7406
7407 /* Make a "(base)/%d" section. */
7408 sprintf (buf, "%s/%ld", base, (long) tid);
7409
7410 name = bfd_alloc (abfd, strlen (buf) + 1);
7411 if (name == NULL)
7412 return FALSE;
7413 strcpy (name, buf);
7414
7415 sect = bfd_make_section_anyway (abfd, name);
7416 if (sect == NULL)
7417 return FALSE;
7418
7419 sect->size = note->descsz;
7420 sect->filepos = note->descpos;
7421 sect->flags = SEC_HAS_CONTENTS;
7422 sect->alignment_power = 2;
7423
7424 /* This is the current thread. */
7425 if (elf_tdata (abfd)->core_lwpid == tid)
7426 return elfcore_maybe_make_sect (abfd, base, sect);
7427
7428 return TRUE;
7429}
7430
7431#define BFD_QNT_CORE_INFO 7
7432#define BFD_QNT_CORE_STATUS 8
7433#define BFD_QNT_CORE_GREG 9
7434#define BFD_QNT_CORE_FPREG 10
7435
7436static bfd_boolean
7437elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7438{
7439 /* Every GREG section has a STATUS section before it. Store the
7440 tid from the previous call to pass down to the next gregs
7441 function. */
7442 static pid_t tid = 1;
7443
7444 switch (note->type)
7445 {
7446 case BFD_QNT_CORE_INFO:
7447 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7448 case BFD_QNT_CORE_STATUS:
7449 return elfcore_grok_nto_status (abfd, note, &tid);
7450 case BFD_QNT_CORE_GREG:
7451 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7452 case BFD_QNT_CORE_FPREG:
7453 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7454 default:
7455 return TRUE;
7456 }
7457}
7458
7459/* Function: elfcore_write_note
7460
7461 Inputs:
7462 buffer to hold note
7463 name of note
7464 type of note
7465 data for note
7466 size of data for note
7467
7468 Return:
7469 End of buffer containing note. */
7470
7471char *
7472elfcore_write_note (bfd *abfd,
7473 char *buf,
7474 int *bufsiz,
7475 const char *name,
7476 int type,
7477 const void *input,
7478 int size)
7479{
7480 Elf_External_Note *xnp;
7481 size_t namesz;
7482 size_t pad;
7483 size_t newspace;
7484 char *p, *dest;
7485
7486 namesz = 0;
7487 pad = 0;
7488 if (name != NULL)
7489 {
7490 const struct elf_backend_data *bed;
7491
7492 namesz = strlen (name) + 1;
7493 bed = get_elf_backend_data (abfd);
7494 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7495 }
7496
7497 newspace = 12 + namesz + pad + size;
7498
7499 p = realloc (buf, *bufsiz + newspace);
7500 dest = p + *bufsiz;
7501 *bufsiz += newspace;
7502 xnp = (Elf_External_Note *) dest;
7503 H_PUT_32 (abfd, namesz, xnp->namesz);
7504 H_PUT_32 (abfd, size, xnp->descsz);
7505 H_PUT_32 (abfd, type, xnp->type);
7506 dest = xnp->name;
7507 if (name != NULL)
7508 {
7509 memcpy (dest, name, namesz);
7510 dest += namesz;
7511 while (pad != 0)
7512 {
7513 *dest++ = '\0';
7514 --pad;
7515 }
7516 }
7517 memcpy (dest, input, size);
7518 return p;
7519}
7520
7521#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7522char *
7523elfcore_write_prpsinfo (bfd *abfd,
7524 char *buf,
7525 int *bufsiz,
7526 const char *fname,
7527 const char *psargs)
7528{
7529 int note_type;
7530 char *note_name = "CORE";
7531
7532#if defined (HAVE_PSINFO_T)
7533 psinfo_t data;
7534 note_type = NT_PSINFO;
7535#else
7536 prpsinfo_t data;
7537 note_type = NT_PRPSINFO;
7538#endif
7539
7540 memset (&data, 0, sizeof (data));
7541 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7542 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7543 return elfcore_write_note (abfd, buf, bufsiz,
7544 note_name, note_type, &data, sizeof (data));
7545}
7546#endif /* PSINFO_T or PRPSINFO_T */
7547
7548#if defined (HAVE_PRSTATUS_T)
7549char *
7550elfcore_write_prstatus (bfd *abfd,
7551 char *buf,
7552 int *bufsiz,
7553 long pid,
7554 int cursig,
7555 const void *gregs)
7556{
7557 prstatus_t prstat;
7558 char *note_name = "CORE";
7559
7560 memset (&prstat, 0, sizeof (prstat));
7561 prstat.pr_pid = pid;
7562 prstat.pr_cursig = cursig;
7563 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7564 return elfcore_write_note (abfd, buf, bufsiz,
7565 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7566}
7567#endif /* HAVE_PRSTATUS_T */
7568
7569#if defined (HAVE_LWPSTATUS_T)
7570char *
7571elfcore_write_lwpstatus (bfd *abfd,
7572 char *buf,
7573 int *bufsiz,
7574 long pid,
7575 int cursig,
7576 const void *gregs)
7577{
7578 lwpstatus_t lwpstat;
7579 char *note_name = "CORE";
7580
7581 memset (&lwpstat, 0, sizeof (lwpstat));
7582 lwpstat.pr_lwpid = pid >> 16;
7583 lwpstat.pr_cursig = cursig;
7584#if defined (HAVE_LWPSTATUS_T_PR_REG)
7585 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7586#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7587#if !defined(gregs)
7588 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7589 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7590#else
7591 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7592 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7593#endif
7594#endif
7595 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7596 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7597}
7598#endif /* HAVE_LWPSTATUS_T */
7599
7600#if defined (HAVE_PSTATUS_T)
7601char *
7602elfcore_write_pstatus (bfd *abfd,
7603 char *buf,
7604 int *bufsiz,
7605 long pid,
7606 int cursig,
7607 const void *gregs)
7608{
7609 pstatus_t pstat;
7610 char *note_name = "CORE";
7611
7612 memset (&pstat, 0, sizeof (pstat));
7613 pstat.pr_pid = pid & 0xffff;
7614 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7615 NT_PSTATUS, &pstat, sizeof (pstat));
7616 return buf;
7617}
7618#endif /* HAVE_PSTATUS_T */
7619
7620char *
7621elfcore_write_prfpreg (bfd *abfd,
7622 char *buf,
7623 int *bufsiz,
7624 const void *fpregs,
7625 int size)
7626{
7627 char *note_name = "CORE";
7628 return elfcore_write_note (abfd, buf, bufsiz,
7629 note_name, NT_FPREGSET, fpregs, size);
7630}
7631
7632char *
7633elfcore_write_prxfpreg (bfd *abfd,
7634 char *buf,
7635 int *bufsiz,
7636 const void *xfpregs,
7637 int size)
7638{
7639 char *note_name = "LINUX";
7640 return elfcore_write_note (abfd, buf, bufsiz,
7641 note_name, NT_PRXFPREG, xfpregs, size);
7642}
7643
7644static bfd_boolean
7645elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7646{
7647 char *buf;
7648 char *p;
7649
7650 if (size <= 0)
7651 return TRUE;
7652
7653 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7654 return FALSE;
7655
7656 buf = bfd_malloc (size);
7657 if (buf == NULL)
7658 return FALSE;
7659
7660 if (bfd_bread (buf, size, abfd) != size)
7661 {
7662 error:
7663 free (buf);
7664 return FALSE;
7665 }
7666
7667 p = buf;
7668 while (p < buf + size)
7669 {
7670 /* FIXME: bad alignment assumption. */
7671 Elf_External_Note *xnp = (Elf_External_Note *) p;
7672 Elf_Internal_Note in;
7673
7674 in.type = H_GET_32 (abfd, xnp->type);
7675
7676 in.namesz = H_GET_32 (abfd, xnp->namesz);
7677 in.namedata = xnp->name;
7678
7679 in.descsz = H_GET_32 (abfd, xnp->descsz);
7680 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7681 in.descpos = offset + (in.descdata - buf);
7682
7683 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7684 {
7685 if (! elfcore_grok_netbsd_note (abfd, &in))
7686 goto error;
7687 }
7688 else if (strncmp (in.namedata, "QNX", 3) == 0)
7689 {
7690 if (! elfcore_grok_nto_note (abfd, &in))
7691 goto error;
7692 }
7693 else
7694 {
7695 if (! elfcore_grok_note (abfd, &in))
7696 goto error;
7697 }
7698
7699 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7700 }
7701
7702 free (buf);
7703 return TRUE;
7704}
7705\f
7706/* Providing external access to the ELF program header table. */
7707
7708/* Return an upper bound on the number of bytes required to store a
7709 copy of ABFD's program header table entries. Return -1 if an error
7710 occurs; bfd_get_error will return an appropriate code. */
7711
7712long
7713bfd_get_elf_phdr_upper_bound (bfd *abfd)
7714{
7715 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7716 {
7717 bfd_set_error (bfd_error_wrong_format);
7718 return -1;
7719 }
7720
7721 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7722}
7723
7724/* Copy ABFD's program header table entries to *PHDRS. The entries
7725 will be stored as an array of Elf_Internal_Phdr structures, as
7726 defined in include/elf/internal.h. To find out how large the
7727 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7728
7729 Return the number of program header table entries read, or -1 if an
7730 error occurs; bfd_get_error will return an appropriate code. */
7731
7732int
7733bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7734{
7735 int num_phdrs;
7736
7737 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7738 {
7739 bfd_set_error (bfd_error_wrong_format);
7740 return -1;
7741 }
7742
7743 num_phdrs = elf_elfheader (abfd)->e_phnum;
7744 memcpy (phdrs, elf_tdata (abfd)->phdr,
7745 num_phdrs * sizeof (Elf_Internal_Phdr));
7746
7747 return num_phdrs;
7748}
7749
7750void
7751_bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7752{
7753#ifdef BFD64
7754 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7755
7756 i_ehdrp = elf_elfheader (abfd);
7757 if (i_ehdrp == NULL)
7758 sprintf_vma (buf, value);
7759 else
7760 {
7761 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7762 {
7763#if BFD_HOST_64BIT_LONG
7764 sprintf (buf, "%016lx", value);
7765#else
7766 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7767 _bfd_int64_low (value));
7768#endif
7769 }
7770 else
7771 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7772 }
7773#else
7774 sprintf_vma (buf, value);
7775#endif
7776}
7777
7778void
7779_bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7780{
7781#ifdef BFD64
7782 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7783
7784 i_ehdrp = elf_elfheader (abfd);
7785 if (i_ehdrp == NULL)
7786 fprintf_vma ((FILE *) stream, value);
7787 else
7788 {
7789 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7790 {
7791#if BFD_HOST_64BIT_LONG
7792 fprintf ((FILE *) stream, "%016lx", value);
7793#else
7794 fprintf ((FILE *) stream, "%08lx%08lx",
7795 _bfd_int64_high (value), _bfd_int64_low (value));
7796#endif
7797 }
7798 else
7799 fprintf ((FILE *) stream, "%08lx",
7800 (unsigned long) (value & 0xffffffff));
7801 }
7802#else
7803 fprintf_vma ((FILE *) stream, value);
7804#endif
7805}
7806
7807enum elf_reloc_type_class
7808_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7809{
7810 return reloc_class_normal;
7811}
7812
7813/* For RELA architectures, return the relocation value for a
7814 relocation against a local symbol. */
7815
7816bfd_vma
7817_bfd_elf_rela_local_sym (bfd *abfd,
7818 Elf_Internal_Sym *sym,
7819 asection **psec,
7820 Elf_Internal_Rela *rel)
7821{
7822 asection *sec = *psec;
7823 bfd_vma relocation;
7824
7825 relocation = (sec->output_section->vma
7826 + sec->output_offset
7827 + sym->st_value);
7828 if ((sec->flags & SEC_MERGE)
7829 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7830 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7831 {
7832 rel->r_addend =
7833 _bfd_merged_section_offset (abfd, psec,
7834 elf_section_data (sec)->sec_info,
7835 sym->st_value + rel->r_addend);
7836 if (sec != *psec)
7837 {
7838 /* If we have changed the section, and our original section is
7839 marked with SEC_EXCLUDE, it means that the original
7840 SEC_MERGE section has been completely subsumed in some
7841 other SEC_MERGE section. In this case, we need to leave
7842 some info around for --emit-relocs. */
7843 if ((sec->flags & SEC_EXCLUDE) != 0)
7844 sec->kept_section = *psec;
7845 sec = *psec;
7846 }
7847 rel->r_addend -= relocation;
7848 rel->r_addend += sec->output_section->vma + sec->output_offset;
7849 }
7850 return relocation;
7851}
7852
7853bfd_vma
7854_bfd_elf_rel_local_sym (bfd *abfd,
7855 Elf_Internal_Sym *sym,
7856 asection **psec,
7857 bfd_vma addend)
7858{
7859 asection *sec = *psec;
7860
7861 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7862 return sym->st_value + addend;
7863
7864 return _bfd_merged_section_offset (abfd, psec,
7865 elf_section_data (sec)->sec_info,
7866 sym->st_value + addend);
7867}
7868
7869bfd_vma
7870_bfd_elf_section_offset (bfd *abfd,
7871 struct bfd_link_info *info,
7872 asection *sec,
7873 bfd_vma offset)
7874{
7875 switch (sec->sec_info_type)
7876 {
7877 case ELF_INFO_TYPE_STABS:
7878 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7879 offset);
7880 case ELF_INFO_TYPE_EH_FRAME:
7881 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7882 default:
7883 return offset;
7884 }
7885}
7886\f
7887/* Create a new BFD as if by bfd_openr. Rather than opening a file,
7888 reconstruct an ELF file by reading the segments out of remote memory
7889 based on the ELF file header at EHDR_VMA and the ELF program headers it
7890 points to. If not null, *LOADBASEP is filled in with the difference
7891 between the VMAs from which the segments were read, and the VMAs the
7892 file headers (and hence BFD's idea of each section's VMA) put them at.
7893
7894 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7895 remote memory at target address VMA into the local buffer at MYADDR; it
7896 should return zero on success or an `errno' code on failure. TEMPL must
7897 be a BFD for an ELF target with the word size and byte order found in
7898 the remote memory. */
7899
7900bfd *
7901bfd_elf_bfd_from_remote_memory
7902 (bfd *templ,
7903 bfd_vma ehdr_vma,
7904 bfd_vma *loadbasep,
7905 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
7906{
7907 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7908 (templ, ehdr_vma, loadbasep, target_read_memory);
7909}
7910\f
7911long
7912_bfd_elf_get_synthetic_symtab (bfd *abfd,
7913 long symcount ATTRIBUTE_UNUSED,
7914 asymbol **syms ATTRIBUTE_UNUSED,
7915 long dynsymcount,
7916 asymbol **dynsyms,
7917 asymbol **ret)
7918{
7919 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7920 asection *relplt;
7921 asymbol *s;
7922 const char *relplt_name;
7923 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7924 arelent *p;
7925 long count, i, n;
7926 size_t size;
7927 Elf_Internal_Shdr *hdr;
7928 char *names;
7929 asection *plt;
7930
7931 *ret = NULL;
7932
7933 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7934 return 0;
7935
7936 if (dynsymcount <= 0)
7937 return 0;
7938
7939 if (!bed->plt_sym_val)
7940 return 0;
7941
7942 relplt_name = bed->relplt_name;
7943 if (relplt_name == NULL)
7944 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7945 relplt = bfd_get_section_by_name (abfd, relplt_name);
7946 if (relplt == NULL)
7947 return 0;
7948
7949 hdr = &elf_section_data (relplt)->this_hdr;
7950 if (hdr->sh_link != elf_dynsymtab (abfd)
7951 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7952 return 0;
7953
7954 plt = bfd_get_section_by_name (abfd, ".plt");
7955 if (plt == NULL)
7956 return 0;
7957
7958 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7959 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7960 return -1;
7961
7962 count = relplt->size / hdr->sh_entsize;
7963 size = count * sizeof (asymbol);
7964 p = relplt->relocation;
7965 for (i = 0; i < count; i++, s++, p++)
7966 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7967
7968 s = *ret = bfd_malloc (size);
7969 if (s == NULL)
7970 return -1;
7971
7972 names = (char *) (s + count);
7973 p = relplt->relocation;
7974 n = 0;
7975 for (i = 0; i < count; i++, s++, p++)
7976 {
7977 size_t len;
7978 bfd_vma addr;
7979
7980 addr = bed->plt_sym_val (i, plt, p);
7981 if (addr == (bfd_vma) -1)
7982 continue;
7983
7984 *s = **p->sym_ptr_ptr;
7985 s->section = plt;
7986 s->value = addr - plt->vma;
7987 s->name = names;
7988 len = strlen ((*p->sym_ptr_ptr)->name);
7989 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7990 names += len;
7991 memcpy (names, "@plt", sizeof ("@plt"));
7992 names += sizeof ("@plt");
7993 ++n;
7994 }
7995
7996 return n;
7997}
7998
7999/* Sort symbol by binding and section. We want to put definitions
8000 sorted by section at the beginning. */
8001
8002static int
8003elf_sort_elf_symbol (const void *arg1, const void *arg2)
8004{
8005 const Elf_Internal_Sym *s1;
8006 const Elf_Internal_Sym *s2;
8007 int shndx;
8008
8009 /* Make sure that undefined symbols are at the end. */
8010 s1 = (const Elf_Internal_Sym *) arg1;
8011 if (s1->st_shndx == SHN_UNDEF)
8012 return 1;
8013 s2 = (const Elf_Internal_Sym *) arg2;
8014 if (s2->st_shndx == SHN_UNDEF)
8015 return -1;
8016
8017 /* Sorted by section index. */
8018 shndx = s1->st_shndx - s2->st_shndx;
8019 if (shndx != 0)
8020 return shndx;
8021
8022 /* Sorted by binding. */
8023 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8024}
8025
8026struct elf_symbol
8027{
8028 Elf_Internal_Sym *sym;
8029 const char *name;
8030};
8031
8032static int
8033elf_sym_name_compare (const void *arg1, const void *arg2)
8034{
8035 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8036 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8037 return strcmp (s1->name, s2->name);
8038}
8039
8040/* Check if 2 sections define the same set of local and global
8041 symbols. */
8042
8043bfd_boolean
8044bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8045{
8046 bfd *bfd1, *bfd2;
8047 const struct elf_backend_data *bed1, *bed2;
8048 Elf_Internal_Shdr *hdr1, *hdr2;
8049 bfd_size_type symcount1, symcount2;
8050 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8051 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8052 Elf_Internal_Sym *isymend;
8053 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8054 bfd_size_type count1, count2, i;
8055 int shndx1, shndx2;
8056 bfd_boolean result;
8057
8058 bfd1 = sec1->owner;
8059 bfd2 = sec2->owner;
8060
8061 /* If both are .gnu.linkonce sections, they have to have the same
8062 section name. */
8063 if (strncmp (sec1->name, ".gnu.linkonce",
8064 sizeof ".gnu.linkonce" - 1) == 0
8065 && strncmp (sec2->name, ".gnu.linkonce",
8066 sizeof ".gnu.linkonce" - 1) == 0)
8067 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8068 sec2->name + sizeof ".gnu.linkonce") == 0;
8069
8070 /* Both sections have to be in ELF. */
8071 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8072 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8073 return FALSE;
8074
8075 if (elf_section_type (sec1) != elf_section_type (sec2))
8076 return FALSE;
8077
8078 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8079 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8080 {
8081 /* If both are members of section groups, they have to have the
8082 same group name. */
8083 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8084 return FALSE;
8085 }
8086
8087 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8088 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8089 if (shndx1 == -1 || shndx2 == -1)
8090 return FALSE;
8091
8092 bed1 = get_elf_backend_data (bfd1);
8093 bed2 = get_elf_backend_data (bfd2);
8094 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8095 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8096 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8097 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8098
8099 if (symcount1 == 0 || symcount2 == 0)
8100 return FALSE;
8101
8102 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8103 NULL, NULL, NULL);
8104 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8105 NULL, NULL, NULL);
8106
8107 result = FALSE;
8108 if (isymbuf1 == NULL || isymbuf2 == NULL)
8109 goto done;
8110
8111 /* Sort symbols by binding and section. Global definitions are at
8112 the beginning. */
8113 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8114 elf_sort_elf_symbol);
8115 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8116 elf_sort_elf_symbol);
8117
8118 /* Count definitions in the section. */
8119 count1 = 0;
8120 for (isym = isymbuf1, isymend = isym + symcount1;
8121 isym < isymend; isym++)
8122 {
8123 if (isym->st_shndx == (unsigned int) shndx1)
8124 {
8125 if (count1 == 0)
8126 isymstart1 = isym;
8127 count1++;
8128 }
8129
8130 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8131 break;
8132 }
8133
8134 count2 = 0;
8135 for (isym = isymbuf2, isymend = isym + symcount2;
8136 isym < isymend; isym++)
8137 {
8138 if (isym->st_shndx == (unsigned int) shndx2)
8139 {
8140 if (count2 == 0)
8141 isymstart2 = isym;
8142 count2++;
8143 }
8144
8145 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8146 break;
8147 }
8148
8149 if (count1 == 0 || count2 == 0 || count1 != count2)
8150 goto done;
8151
8152 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8153 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8154
8155 if (symtable1 == NULL || symtable2 == NULL)
8156 goto done;
8157
8158 symp = symtable1;
8159 for (isym = isymstart1, isymend = isym + count1;
8160 isym < isymend; isym++)
8161 {
8162 symp->sym = isym;
8163 symp->name = bfd_elf_string_from_elf_section (bfd1,
8164 hdr1->sh_link,
8165 isym->st_name);
8166 symp++;
8167 }
8168
8169 symp = symtable2;
8170 for (isym = isymstart2, isymend = isym + count1;
8171 isym < isymend; isym++)
8172 {
8173 symp->sym = isym;
8174 symp->name = bfd_elf_string_from_elf_section (bfd2,
8175 hdr2->sh_link,
8176 isym->st_name);
8177 symp++;
8178 }
8179
8180 /* Sort symbol by name. */
8181 qsort (symtable1, count1, sizeof (struct elf_symbol),
8182 elf_sym_name_compare);
8183 qsort (symtable2, count1, sizeof (struct elf_symbol),
8184 elf_sym_name_compare);
8185
8186 for (i = 0; i < count1; i++)
8187 /* Two symbols must have the same binding, type and name. */
8188 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8189 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8190 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8191 goto done;
8192
8193 result = TRUE;
8194
8195done:
8196 if (symtable1)
8197 free (symtable1);
8198 if (symtable2)
8199 free (symtable2);
8200 if (isymbuf1)
8201 free (isymbuf1);
8202 if (isymbuf2)
8203 free (isymbuf2);
8204
8205 return result;
8206}
This page took 0.051083 seconds and 4 git commands to generate.