*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25/*
26SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37/* For sparc64-cross-sparc32. */
38#define _SYSCALL32
39#include "sysdep.h"
40#include "bfd.h"
41#include "bfdlink.h"
42#include "libbfd.h"
43#define ARCH_SIZE 0
44#include "elf-bfd.h"
45#include "libiberty.h"
46#include "safe-ctype.h"
47
48static int elf_sort_sections (const void *, const void *);
49static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
50static bfd_boolean prep_headers (bfd *);
51static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
52static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
53static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
54 file_ptr offset);
55
56/* Swap version information in and out. The version information is
57 currently size independent. If that ever changes, this code will
58 need to move into elfcode.h. */
59
60/* Swap in a Verdef structure. */
61
62void
63_bfd_elf_swap_verdef_in (bfd *abfd,
64 const Elf_External_Verdef *src,
65 Elf_Internal_Verdef *dst)
66{
67 dst->vd_version = H_GET_16 (abfd, src->vd_version);
68 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
69 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
70 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
71 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
72 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
73 dst->vd_next = H_GET_32 (abfd, src->vd_next);
74}
75
76/* Swap out a Verdef structure. */
77
78void
79_bfd_elf_swap_verdef_out (bfd *abfd,
80 const Elf_Internal_Verdef *src,
81 Elf_External_Verdef *dst)
82{
83 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
84 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
85 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
86 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
87 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
88 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
89 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
90}
91
92/* Swap in a Verdaux structure. */
93
94void
95_bfd_elf_swap_verdaux_in (bfd *abfd,
96 const Elf_External_Verdaux *src,
97 Elf_Internal_Verdaux *dst)
98{
99 dst->vda_name = H_GET_32 (abfd, src->vda_name);
100 dst->vda_next = H_GET_32 (abfd, src->vda_next);
101}
102
103/* Swap out a Verdaux structure. */
104
105void
106_bfd_elf_swap_verdaux_out (bfd *abfd,
107 const Elf_Internal_Verdaux *src,
108 Elf_External_Verdaux *dst)
109{
110 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
111 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
112}
113
114/* Swap in a Verneed structure. */
115
116void
117_bfd_elf_swap_verneed_in (bfd *abfd,
118 const Elf_External_Verneed *src,
119 Elf_Internal_Verneed *dst)
120{
121 dst->vn_version = H_GET_16 (abfd, src->vn_version);
122 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
123 dst->vn_file = H_GET_32 (abfd, src->vn_file);
124 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
125 dst->vn_next = H_GET_32 (abfd, src->vn_next);
126}
127
128/* Swap out a Verneed structure. */
129
130void
131_bfd_elf_swap_verneed_out (bfd *abfd,
132 const Elf_Internal_Verneed *src,
133 Elf_External_Verneed *dst)
134{
135 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
136 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
137 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
138 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
139 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
140}
141
142/* Swap in a Vernaux structure. */
143
144void
145_bfd_elf_swap_vernaux_in (bfd *abfd,
146 const Elf_External_Vernaux *src,
147 Elf_Internal_Vernaux *dst)
148{
149 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
150 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
151 dst->vna_other = H_GET_16 (abfd, src->vna_other);
152 dst->vna_name = H_GET_32 (abfd, src->vna_name);
153 dst->vna_next = H_GET_32 (abfd, src->vna_next);
154}
155
156/* Swap out a Vernaux structure. */
157
158void
159_bfd_elf_swap_vernaux_out (bfd *abfd,
160 const Elf_Internal_Vernaux *src,
161 Elf_External_Vernaux *dst)
162{
163 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
164 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
165 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
166 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
167 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
168}
169
170/* Swap in a Versym structure. */
171
172void
173_bfd_elf_swap_versym_in (bfd *abfd,
174 const Elf_External_Versym *src,
175 Elf_Internal_Versym *dst)
176{
177 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
178}
179
180/* Swap out a Versym structure. */
181
182void
183_bfd_elf_swap_versym_out (bfd *abfd,
184 const Elf_Internal_Versym *src,
185 Elf_External_Versym *dst)
186{
187 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
188}
189
190/* Standard ELF hash function. Do not change this function; you will
191 cause invalid hash tables to be generated. */
192
193unsigned long
194bfd_elf_hash (const char *namearg)
195{
196 const unsigned char *name = (const unsigned char *) namearg;
197 unsigned long h = 0;
198 unsigned long g;
199 int ch;
200
201 while ((ch = *name++) != '\0')
202 {
203 h = (h << 4) + ch;
204 if ((g = (h & 0xf0000000)) != 0)
205 {
206 h ^= g >> 24;
207 /* The ELF ABI says `h &= ~g', but this is equivalent in
208 this case and on some machines one insn instead of two. */
209 h ^= g;
210 }
211 }
212 return h & 0xffffffff;
213}
214
215/* DT_GNU_HASH hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
217
218unsigned long
219bfd_elf_gnu_hash (const char *namearg)
220{
221 const unsigned char *name = (const unsigned char *) namearg;
222 unsigned long h = 5381;
223 unsigned char ch;
224
225 while ((ch = *name++) != '\0')
226 h = (h << 5) + h + ch;
227 return h & 0xffffffff;
228}
229
230/* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
232bfd_boolean
233bfd_elf_allocate_object (bfd *abfd,
234 size_t object_size,
235 enum elf_target_id object_id)
236{
237 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
238 abfd->tdata.any = bfd_zalloc (abfd, object_size);
239 if (abfd->tdata.any == NULL)
240 return FALSE;
241
242 elf_object_id (abfd) = object_id;
243 elf_program_header_size (abfd) = (bfd_size_type) -1;
244 return TRUE;
245}
246
247
248bfd_boolean
249bfd_elf_make_generic_object (bfd *abfd)
250{
251 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
252 GENERIC_ELF_DATA);
253}
254
255bfd_boolean
256bfd_elf_mkcorefile (bfd *abfd)
257{
258 /* I think this can be done just like an object file. */
259 return bfd_elf_make_generic_object (abfd);
260}
261
262static char *
263bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
264{
265 Elf_Internal_Shdr **i_shdrp;
266 bfd_byte *shstrtab = NULL;
267 file_ptr offset;
268 bfd_size_type shstrtabsize;
269
270 i_shdrp = elf_elfsections (abfd);
271 if (i_shdrp == 0
272 || shindex >= elf_numsections (abfd)
273 || i_shdrp[shindex] == 0)
274 return NULL;
275
276 shstrtab = i_shdrp[shindex]->contents;
277 if (shstrtab == NULL)
278 {
279 /* No cached one, attempt to read, and cache what we read. */
280 offset = i_shdrp[shindex]->sh_offset;
281 shstrtabsize = i_shdrp[shindex]->sh_size;
282
283 /* Allocate and clear an extra byte at the end, to prevent crashes
284 in case the string table is not terminated. */
285 if (shstrtabsize + 1 <= 1
286 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
287 || bfd_seek (abfd, offset, SEEK_SET) != 0)
288 shstrtab = NULL;
289 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
290 {
291 if (bfd_get_error () != bfd_error_system_call)
292 bfd_set_error (bfd_error_file_truncated);
293 shstrtab = NULL;
294 /* Once we've failed to read it, make sure we don't keep
295 trying. Otherwise, we'll keep allocating space for
296 the string table over and over. */
297 i_shdrp[shindex]->sh_size = 0;
298 }
299 else
300 shstrtab[shstrtabsize] = '\0';
301 i_shdrp[shindex]->contents = shstrtab;
302 }
303 return (char *) shstrtab;
304}
305
306char *
307bfd_elf_string_from_elf_section (bfd *abfd,
308 unsigned int shindex,
309 unsigned int strindex)
310{
311 Elf_Internal_Shdr *hdr;
312
313 if (strindex == 0)
314 return "";
315
316 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
317 return NULL;
318
319 hdr = elf_elfsections (abfd)[shindex];
320
321 if (hdr->contents == NULL
322 && bfd_elf_get_str_section (abfd, shindex) == NULL)
323 return NULL;
324
325 if (strindex >= hdr->sh_size)
326 {
327 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
328 (*_bfd_error_handler)
329 (_("%B: invalid string offset %u >= %lu for section `%s'"),
330 abfd, strindex, (unsigned long) hdr->sh_size,
331 (shindex == shstrndx && strindex == hdr->sh_name
332 ? ".shstrtab"
333 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
334 return NULL;
335 }
336
337 return ((char *) hdr->contents) + strindex;
338}
339
340/* Read and convert symbols to internal format.
341 SYMCOUNT specifies the number of symbols to read, starting from
342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343 are non-NULL, they are used to store the internal symbols, external
344 symbols, and symbol section index extensions, respectively.
345 Returns a pointer to the internal symbol buffer (malloced if necessary)
346 or NULL if there were no symbols or some kind of problem. */
347
348Elf_Internal_Sym *
349bfd_elf_get_elf_syms (bfd *ibfd,
350 Elf_Internal_Shdr *symtab_hdr,
351 size_t symcount,
352 size_t symoffset,
353 Elf_Internal_Sym *intsym_buf,
354 void *extsym_buf,
355 Elf_External_Sym_Shndx *extshndx_buf)
356{
357 Elf_Internal_Shdr *shndx_hdr;
358 void *alloc_ext;
359 const bfd_byte *esym;
360 Elf_External_Sym_Shndx *alloc_extshndx;
361 Elf_External_Sym_Shndx *shndx;
362 Elf_Internal_Sym *alloc_intsym;
363 Elf_Internal_Sym *isym;
364 Elf_Internal_Sym *isymend;
365 const struct elf_backend_data *bed;
366 size_t extsym_size;
367 bfd_size_type amt;
368 file_ptr pos;
369
370 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
371 abort ();
372
373 if (symcount == 0)
374 return intsym_buf;
375
376 /* Normal syms might have section extension entries. */
377 shndx_hdr = NULL;
378 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
379 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
380
381 /* Read the symbols. */
382 alloc_ext = NULL;
383 alloc_extshndx = NULL;
384 alloc_intsym = NULL;
385 bed = get_elf_backend_data (ibfd);
386 extsym_size = bed->s->sizeof_sym;
387 amt = symcount * extsym_size;
388 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
389 if (extsym_buf == NULL)
390 {
391 alloc_ext = bfd_malloc2 (symcount, extsym_size);
392 extsym_buf = alloc_ext;
393 }
394 if (extsym_buf == NULL
395 || bfd_seek (ibfd, pos, SEEK_SET) != 0
396 || bfd_bread (extsym_buf, amt, ibfd) != amt)
397 {
398 intsym_buf = NULL;
399 goto out;
400 }
401
402 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
403 extshndx_buf = NULL;
404 else
405 {
406 amt = symcount * sizeof (Elf_External_Sym_Shndx);
407 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
408 if (extshndx_buf == NULL)
409 {
410 alloc_extshndx = (Elf_External_Sym_Shndx *)
411 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
412 extshndx_buf = alloc_extshndx;
413 }
414 if (extshndx_buf == NULL
415 || bfd_seek (ibfd, pos, SEEK_SET) != 0
416 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
417 {
418 intsym_buf = NULL;
419 goto out;
420 }
421 }
422
423 if (intsym_buf == NULL)
424 {
425 alloc_intsym = (Elf_Internal_Sym *)
426 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
427 intsym_buf = alloc_intsym;
428 if (intsym_buf == NULL)
429 goto out;
430 }
431
432 /* Convert the symbols to internal form. */
433 isymend = intsym_buf + symcount;
434 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
435 shndx = extshndx_buf;
436 isym < isymend;
437 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
438 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
439 {
440 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
441 (*_bfd_error_handler) (_("%B symbol number %lu references "
442 "nonexistent SHT_SYMTAB_SHNDX section"),
443 ibfd, (unsigned long) symoffset);
444 if (alloc_intsym != NULL)
445 free (alloc_intsym);
446 intsym_buf = NULL;
447 goto out;
448 }
449
450 out:
451 if (alloc_ext != NULL)
452 free (alloc_ext);
453 if (alloc_extshndx != NULL)
454 free (alloc_extshndx);
455
456 return intsym_buf;
457}
458
459/* Look up a symbol name. */
460const char *
461bfd_elf_sym_name (bfd *abfd,
462 Elf_Internal_Shdr *symtab_hdr,
463 Elf_Internal_Sym *isym,
464 asection *sym_sec)
465{
466 const char *name;
467 unsigned int iname = isym->st_name;
468 unsigned int shindex = symtab_hdr->sh_link;
469
470 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
471 /* Check for a bogus st_shndx to avoid crashing. */
472 && isym->st_shndx < elf_numsections (abfd))
473 {
474 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
475 shindex = elf_elfheader (abfd)->e_shstrndx;
476 }
477
478 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
479 if (name == NULL)
480 name = "(null)";
481 else if (sym_sec && *name == '\0')
482 name = bfd_section_name (abfd, sym_sec);
483
484 return name;
485}
486
487/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
488 sections. The first element is the flags, the rest are section
489 pointers. */
490
491typedef union elf_internal_group {
492 Elf_Internal_Shdr *shdr;
493 unsigned int flags;
494} Elf_Internal_Group;
495
496/* Return the name of the group signature symbol. Why isn't the
497 signature just a string? */
498
499static const char *
500group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
501{
502 Elf_Internal_Shdr *hdr;
503 unsigned char esym[sizeof (Elf64_External_Sym)];
504 Elf_External_Sym_Shndx eshndx;
505 Elf_Internal_Sym isym;
506
507 /* First we need to ensure the symbol table is available. Make sure
508 that it is a symbol table section. */
509 if (ghdr->sh_link >= elf_numsections (abfd))
510 return NULL;
511 hdr = elf_elfsections (abfd) [ghdr->sh_link];
512 if (hdr->sh_type != SHT_SYMTAB
513 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
514 return NULL;
515
516 /* Go read the symbol. */
517 hdr = &elf_tdata (abfd)->symtab_hdr;
518 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
519 &isym, esym, &eshndx) == NULL)
520 return NULL;
521
522 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
523}
524
525/* Set next_in_group list pointer, and group name for NEWSECT. */
526
527static bfd_boolean
528setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
529{
530 unsigned int num_group = elf_tdata (abfd)->num_group;
531
532 /* If num_group is zero, read in all SHT_GROUP sections. The count
533 is set to -1 if there are no SHT_GROUP sections. */
534 if (num_group == 0)
535 {
536 unsigned int i, shnum;
537
538 /* First count the number of groups. If we have a SHT_GROUP
539 section with just a flag word (ie. sh_size is 4), ignore it. */
540 shnum = elf_numsections (abfd);
541 num_group = 0;
542
543#define IS_VALID_GROUP_SECTION_HEADER(shdr) \
544 ( (shdr)->sh_type == SHT_GROUP \
545 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
546 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
547 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
548
549 for (i = 0; i < shnum; i++)
550 {
551 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
552
553 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
554 num_group += 1;
555 }
556
557 if (num_group == 0)
558 {
559 num_group = (unsigned) -1;
560 elf_tdata (abfd)->num_group = num_group;
561 }
562 else
563 {
564 /* We keep a list of elf section headers for group sections,
565 so we can find them quickly. */
566 bfd_size_type amt;
567
568 elf_tdata (abfd)->num_group = num_group;
569 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
570 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
571 if (elf_tdata (abfd)->group_sect_ptr == NULL)
572 return FALSE;
573
574 num_group = 0;
575 for (i = 0; i < shnum; i++)
576 {
577 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
578
579 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
580 {
581 unsigned char *src;
582 Elf_Internal_Group *dest;
583
584 /* Add to list of sections. */
585 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
586 num_group += 1;
587
588 /* Read the raw contents. */
589 BFD_ASSERT (sizeof (*dest) >= 4);
590 amt = shdr->sh_size * sizeof (*dest) / 4;
591 shdr->contents = (unsigned char *)
592 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
593 /* PR binutils/4110: Handle corrupt group headers. */
594 if (shdr->contents == NULL)
595 {
596 _bfd_error_handler
597 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
598 bfd_set_error (bfd_error_bad_value);
599 return FALSE;
600 }
601
602 memset (shdr->contents, 0, amt);
603
604 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
605 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
606 != shdr->sh_size))
607 return FALSE;
608
609 /* Translate raw contents, a flag word followed by an
610 array of elf section indices all in target byte order,
611 to the flag word followed by an array of elf section
612 pointers. */
613 src = shdr->contents + shdr->sh_size;
614 dest = (Elf_Internal_Group *) (shdr->contents + amt);
615 while (1)
616 {
617 unsigned int idx;
618
619 src -= 4;
620 --dest;
621 idx = H_GET_32 (abfd, src);
622 if (src == shdr->contents)
623 {
624 dest->flags = idx;
625 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
626 shdr->bfd_section->flags
627 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
628 break;
629 }
630 if (idx >= shnum)
631 {
632 ((*_bfd_error_handler)
633 (_("%B: invalid SHT_GROUP entry"), abfd));
634 idx = 0;
635 }
636 dest->shdr = elf_elfsections (abfd)[idx];
637 }
638 }
639 }
640 }
641 }
642
643 if (num_group != (unsigned) -1)
644 {
645 unsigned int i;
646
647 for (i = 0; i < num_group; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
650 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
651 unsigned int n_elt = shdr->sh_size / 4;
652
653 /* Look through this group's sections to see if current
654 section is a member. */
655 while (--n_elt != 0)
656 if ((++idx)->shdr == hdr)
657 {
658 asection *s = NULL;
659
660 /* We are a member of this group. Go looking through
661 other members to see if any others are linked via
662 next_in_group. */
663 idx = (Elf_Internal_Group *) shdr->contents;
664 n_elt = shdr->sh_size / 4;
665 while (--n_elt != 0)
666 if ((s = (++idx)->shdr->bfd_section) != NULL
667 && elf_next_in_group (s) != NULL)
668 break;
669 if (n_elt != 0)
670 {
671 /* Snarf the group name from other member, and
672 insert current section in circular list. */
673 elf_group_name (newsect) = elf_group_name (s);
674 elf_next_in_group (newsect) = elf_next_in_group (s);
675 elf_next_in_group (s) = newsect;
676 }
677 else
678 {
679 const char *gname;
680
681 gname = group_signature (abfd, shdr);
682 if (gname == NULL)
683 return FALSE;
684 elf_group_name (newsect) = gname;
685
686 /* Start a circular list with one element. */
687 elf_next_in_group (newsect) = newsect;
688 }
689
690 /* If the group section has been created, point to the
691 new member. */
692 if (shdr->bfd_section != NULL)
693 elf_next_in_group (shdr->bfd_section) = newsect;
694
695 i = num_group - 1;
696 break;
697 }
698 }
699 }
700
701 if (elf_group_name (newsect) == NULL)
702 {
703 (*_bfd_error_handler) (_("%B: no group info for section %A"),
704 abfd, newsect);
705 }
706 return TRUE;
707}
708
709bfd_boolean
710_bfd_elf_setup_sections (bfd *abfd)
711{
712 unsigned int i;
713 unsigned int num_group = elf_tdata (abfd)->num_group;
714 bfd_boolean result = TRUE;
715 asection *s;
716
717 /* Process SHF_LINK_ORDER. */
718 for (s = abfd->sections; s != NULL; s = s->next)
719 {
720 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
721 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
722 {
723 unsigned int elfsec = this_hdr->sh_link;
724 /* FIXME: The old Intel compiler and old strip/objcopy may
725 not set the sh_link or sh_info fields. Hence we could
726 get the situation where elfsec is 0. */
727 if (elfsec == 0)
728 {
729 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
730 if (bed->link_order_error_handler)
731 bed->link_order_error_handler
732 (_("%B: warning: sh_link not set for section `%A'"),
733 abfd, s);
734 }
735 else
736 {
737 asection *linksec = NULL;
738
739 if (elfsec < elf_numsections (abfd))
740 {
741 this_hdr = elf_elfsections (abfd)[elfsec];
742 linksec = this_hdr->bfd_section;
743 }
744
745 /* PR 1991, 2008:
746 Some strip/objcopy may leave an incorrect value in
747 sh_link. We don't want to proceed. */
748 if (linksec == NULL)
749 {
750 (*_bfd_error_handler)
751 (_("%B: sh_link [%d] in section `%A' is incorrect"),
752 s->owner, s, elfsec);
753 result = FALSE;
754 }
755
756 elf_linked_to_section (s) = linksec;
757 }
758 }
759 }
760
761 /* Process section groups. */
762 if (num_group == (unsigned) -1)
763 return result;
764
765 for (i = 0; i < num_group; i++)
766 {
767 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
768 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
769 unsigned int n_elt = shdr->sh_size / 4;
770
771 while (--n_elt != 0)
772 if ((++idx)->shdr->bfd_section)
773 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
774 else if (idx->shdr->sh_type == SHT_RELA
775 || idx->shdr->sh_type == SHT_REL)
776 /* We won't include relocation sections in section groups in
777 output object files. We adjust the group section size here
778 so that relocatable link will work correctly when
779 relocation sections are in section group in input object
780 files. */
781 shdr->bfd_section->size -= 4;
782 else
783 {
784 /* There are some unknown sections in the group. */
785 (*_bfd_error_handler)
786 (_("%B: unknown [%d] section `%s' in group [%s]"),
787 abfd,
788 (unsigned int) idx->shdr->sh_type,
789 bfd_elf_string_from_elf_section (abfd,
790 (elf_elfheader (abfd)
791 ->e_shstrndx),
792 idx->shdr->sh_name),
793 shdr->bfd_section->name);
794 result = FALSE;
795 }
796 }
797 return result;
798}
799
800bfd_boolean
801bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
802{
803 return elf_next_in_group (sec) != NULL;
804}
805
806/* Make a BFD section from an ELF section. We store a pointer to the
807 BFD section in the bfd_section field of the header. */
808
809bfd_boolean
810_bfd_elf_make_section_from_shdr (bfd *abfd,
811 Elf_Internal_Shdr *hdr,
812 const char *name,
813 int shindex)
814{
815 asection *newsect;
816 flagword flags;
817 const struct elf_backend_data *bed;
818
819 if (hdr->bfd_section != NULL)
820 {
821 BFD_ASSERT (strcmp (name,
822 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
823 return TRUE;
824 }
825
826 newsect = bfd_make_section_anyway (abfd, name);
827 if (newsect == NULL)
828 return FALSE;
829
830 hdr->bfd_section = newsect;
831 elf_section_data (newsect)->this_hdr = *hdr;
832 elf_section_data (newsect)->this_idx = shindex;
833
834 /* Always use the real type/flags. */
835 elf_section_type (newsect) = hdr->sh_type;
836 elf_section_flags (newsect) = hdr->sh_flags;
837
838 newsect->filepos = hdr->sh_offset;
839
840 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
841 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
842 || ! bfd_set_section_alignment (abfd, newsect,
843 bfd_log2 (hdr->sh_addralign)))
844 return FALSE;
845
846 flags = SEC_NO_FLAGS;
847 if (hdr->sh_type != SHT_NOBITS)
848 flags |= SEC_HAS_CONTENTS;
849 if (hdr->sh_type == SHT_GROUP)
850 flags |= SEC_GROUP | SEC_EXCLUDE;
851 if ((hdr->sh_flags & SHF_ALLOC) != 0)
852 {
853 flags |= SEC_ALLOC;
854 if (hdr->sh_type != SHT_NOBITS)
855 flags |= SEC_LOAD;
856 }
857 if ((hdr->sh_flags & SHF_WRITE) == 0)
858 flags |= SEC_READONLY;
859 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
860 flags |= SEC_CODE;
861 else if ((flags & SEC_LOAD) != 0)
862 flags |= SEC_DATA;
863 if ((hdr->sh_flags & SHF_MERGE) != 0)
864 {
865 flags |= SEC_MERGE;
866 newsect->entsize = hdr->sh_entsize;
867 if ((hdr->sh_flags & SHF_STRINGS) != 0)
868 flags |= SEC_STRINGS;
869 }
870 if (hdr->sh_flags & SHF_GROUP)
871 if (!setup_group (abfd, hdr, newsect))
872 return FALSE;
873 if ((hdr->sh_flags & SHF_TLS) != 0)
874 flags |= SEC_THREAD_LOCAL;
875
876 if ((flags & SEC_ALLOC) == 0)
877 {
878 /* The debugging sections appear to be recognized only by name,
879 not any sort of flag. Their SEC_ALLOC bits are cleared. */
880 static const struct
881 {
882 const char *name;
883 int len;
884 } debug_sections [] =
885 {
886 { STRING_COMMA_LEN ("debug") }, /* 'd' */
887 { NULL, 0 }, /* 'e' */
888 { NULL, 0 }, /* 'f' */
889 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
890 { NULL, 0 }, /* 'h' */
891 { NULL, 0 }, /* 'i' */
892 { NULL, 0 }, /* 'j' */
893 { NULL, 0 }, /* 'k' */
894 { STRING_COMMA_LEN ("line") }, /* 'l' */
895 { NULL, 0 }, /* 'm' */
896 { NULL, 0 }, /* 'n' */
897 { NULL, 0 }, /* 'o' */
898 { NULL, 0 }, /* 'p' */
899 { NULL, 0 }, /* 'q' */
900 { NULL, 0 }, /* 'r' */
901 { STRING_COMMA_LEN ("stab") }, /* 's' */
902 { NULL, 0 }, /* 't' */
903 { NULL, 0 }, /* 'u' */
904 { NULL, 0 }, /* 'v' */
905 { NULL, 0 }, /* 'w' */
906 { NULL, 0 }, /* 'x' */
907 { NULL, 0 }, /* 'y' */
908 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
909 };
910
911 if (name [0] == '.')
912 {
913 int i = name [1] - 'd';
914 if (i >= 0
915 && i < (int) ARRAY_SIZE (debug_sections)
916 && debug_sections [i].name != NULL
917 && strncmp (&name [1], debug_sections [i].name,
918 debug_sections [i].len) == 0)
919 flags |= SEC_DEBUGGING;
920 }
921 }
922
923 /* As a GNU extension, if the name begins with .gnu.linkonce, we
924 only link a single copy of the section. This is used to support
925 g++. g++ will emit each template expansion in its own section.
926 The symbols will be defined as weak, so that multiple definitions
927 are permitted. The GNU linker extension is to actually discard
928 all but one of the sections. */
929 if (CONST_STRNEQ (name, ".gnu.linkonce")
930 && elf_next_in_group (newsect) == NULL)
931 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
932
933 bed = get_elf_backend_data (abfd);
934 if (bed->elf_backend_section_flags)
935 if (! bed->elf_backend_section_flags (&flags, hdr))
936 return FALSE;
937
938 if (! bfd_set_section_flags (abfd, newsect, flags))
939 return FALSE;
940
941 /* We do not parse the PT_NOTE segments as we are interested even in the
942 separate debug info files which may have the segments offsets corrupted.
943 PT_NOTEs from the core files are currently not parsed using BFD. */
944 if (hdr->sh_type == SHT_NOTE)
945 {
946 bfd_byte *contents;
947
948 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
949 return FALSE;
950
951 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
952 free (contents);
953 }
954
955 if ((flags & SEC_ALLOC) != 0)
956 {
957 Elf_Internal_Phdr *phdr;
958 unsigned int i, nload;
959
960 /* Some ELF linkers produce binaries with all the program header
961 p_paddr fields zero. If we have such a binary with more than
962 one PT_LOAD header, then leave the section lma equal to vma
963 so that we don't create sections with overlapping lma. */
964 phdr = elf_tdata (abfd)->phdr;
965 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
966 if (phdr->p_paddr != 0)
967 break;
968 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
969 ++nload;
970 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
971 return TRUE;
972
973 phdr = elf_tdata (abfd)->phdr;
974 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
975 {
976 if (phdr->p_type == PT_LOAD
977 && ELF_IS_SECTION_IN_SEGMENT (hdr, phdr))
978 {
979 if ((flags & SEC_LOAD) == 0)
980 newsect->lma = (phdr->p_paddr
981 + hdr->sh_addr - phdr->p_vaddr);
982 else
983 /* We used to use the same adjustment for SEC_LOAD
984 sections, but that doesn't work if the segment
985 is packed with code from multiple VMAs.
986 Instead we calculate the section LMA based on
987 the segment LMA. It is assumed that the
988 segment will contain sections with contiguous
989 LMAs, even if the VMAs are not. */
990 newsect->lma = (phdr->p_paddr
991 + hdr->sh_offset - phdr->p_offset);
992
993 /* With contiguous segments, we can't tell from file
994 offsets whether a section with zero size should
995 be placed at the end of one segment or the
996 beginning of the next. Decide based on vaddr. */
997 if (hdr->sh_addr >= phdr->p_vaddr
998 && (hdr->sh_addr + hdr->sh_size
999 <= phdr->p_vaddr + phdr->p_memsz))
1000 break;
1001 }
1002 }
1003 }
1004
1005 return TRUE;
1006}
1007
1008const char *const bfd_elf_section_type_names[] = {
1009 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1010 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1011 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1012};
1013
1014/* ELF relocs are against symbols. If we are producing relocatable
1015 output, and the reloc is against an external symbol, and nothing
1016 has given us any additional addend, the resulting reloc will also
1017 be against the same symbol. In such a case, we don't want to
1018 change anything about the way the reloc is handled, since it will
1019 all be done at final link time. Rather than put special case code
1020 into bfd_perform_relocation, all the reloc types use this howto
1021 function. It just short circuits the reloc if producing
1022 relocatable output against an external symbol. */
1023
1024bfd_reloc_status_type
1025bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1026 arelent *reloc_entry,
1027 asymbol *symbol,
1028 void *data ATTRIBUTE_UNUSED,
1029 asection *input_section,
1030 bfd *output_bfd,
1031 char **error_message ATTRIBUTE_UNUSED)
1032{
1033 if (output_bfd != NULL
1034 && (symbol->flags & BSF_SECTION_SYM) == 0
1035 && (! reloc_entry->howto->partial_inplace
1036 || reloc_entry->addend == 0))
1037 {
1038 reloc_entry->address += input_section->output_offset;
1039 return bfd_reloc_ok;
1040 }
1041
1042 return bfd_reloc_continue;
1043}
1044\f
1045/* Copy the program header and other data from one object module to
1046 another. */
1047
1048bfd_boolean
1049_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1050{
1051 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1052 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1053 return TRUE;
1054
1055 BFD_ASSERT (!elf_flags_init (obfd)
1056 || (elf_elfheader (obfd)->e_flags
1057 == elf_elfheader (ibfd)->e_flags));
1058
1059 elf_gp (obfd) = elf_gp (ibfd);
1060 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1061 elf_flags_init (obfd) = TRUE;
1062
1063 /* Copy object attributes. */
1064 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1065
1066 return TRUE;
1067}
1068
1069static const char *
1070get_segment_type (unsigned int p_type)
1071{
1072 const char *pt;
1073 switch (p_type)
1074 {
1075 case PT_NULL: pt = "NULL"; break;
1076 case PT_LOAD: pt = "LOAD"; break;
1077 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1078 case PT_INTERP: pt = "INTERP"; break;
1079 case PT_NOTE: pt = "NOTE"; break;
1080 case PT_SHLIB: pt = "SHLIB"; break;
1081 case PT_PHDR: pt = "PHDR"; break;
1082 case PT_TLS: pt = "TLS"; break;
1083 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1084 case PT_GNU_STACK: pt = "STACK"; break;
1085 case PT_GNU_RELRO: pt = "RELRO"; break;
1086 default: pt = NULL; break;
1087 }
1088 return pt;
1089}
1090
1091/* Print out the program headers. */
1092
1093bfd_boolean
1094_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1095{
1096 FILE *f = (FILE *) farg;
1097 Elf_Internal_Phdr *p;
1098 asection *s;
1099 bfd_byte *dynbuf = NULL;
1100
1101 p = elf_tdata (abfd)->phdr;
1102 if (p != NULL)
1103 {
1104 unsigned int i, c;
1105
1106 fprintf (f, _("\nProgram Header:\n"));
1107 c = elf_elfheader (abfd)->e_phnum;
1108 for (i = 0; i < c; i++, p++)
1109 {
1110 const char *pt = get_segment_type (p->p_type);
1111 char buf[20];
1112
1113 if (pt == NULL)
1114 {
1115 sprintf (buf, "0x%lx", p->p_type);
1116 pt = buf;
1117 }
1118 fprintf (f, "%8s off 0x", pt);
1119 bfd_fprintf_vma (abfd, f, p->p_offset);
1120 fprintf (f, " vaddr 0x");
1121 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1122 fprintf (f, " paddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_paddr);
1124 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1125 fprintf (f, " filesz 0x");
1126 bfd_fprintf_vma (abfd, f, p->p_filesz);
1127 fprintf (f, " memsz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_memsz);
1129 fprintf (f, " flags %c%c%c",
1130 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1131 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1132 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1133 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1134 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1135 fprintf (f, "\n");
1136 }
1137 }
1138
1139 s = bfd_get_section_by_name (abfd, ".dynamic");
1140 if (s != NULL)
1141 {
1142 unsigned int elfsec;
1143 unsigned long shlink;
1144 bfd_byte *extdyn, *extdynend;
1145 size_t extdynsize;
1146 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1147
1148 fprintf (f, _("\nDynamic Section:\n"));
1149
1150 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1151 goto error_return;
1152
1153 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1154 if (elfsec == SHN_BAD)
1155 goto error_return;
1156 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1157
1158 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1159 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1160
1161 extdyn = dynbuf;
1162 extdynend = extdyn + s->size;
1163 for (; extdyn < extdynend; extdyn += extdynsize)
1164 {
1165 Elf_Internal_Dyn dyn;
1166 const char *name = "";
1167 char ab[20];
1168 bfd_boolean stringp;
1169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1170
1171 (*swap_dyn_in) (abfd, extdyn, &dyn);
1172
1173 if (dyn.d_tag == DT_NULL)
1174 break;
1175
1176 stringp = FALSE;
1177 switch (dyn.d_tag)
1178 {
1179 default:
1180 if (bed->elf_backend_get_target_dtag)
1181 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1182
1183 if (!strcmp (name, ""))
1184 {
1185 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1186 name = ab;
1187 }
1188 break;
1189
1190 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1191 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1192 case DT_PLTGOT: name = "PLTGOT"; break;
1193 case DT_HASH: name = "HASH"; break;
1194 case DT_STRTAB: name = "STRTAB"; break;
1195 case DT_SYMTAB: name = "SYMTAB"; break;
1196 case DT_RELA: name = "RELA"; break;
1197 case DT_RELASZ: name = "RELASZ"; break;
1198 case DT_RELAENT: name = "RELAENT"; break;
1199 case DT_STRSZ: name = "STRSZ"; break;
1200 case DT_SYMENT: name = "SYMENT"; break;
1201 case DT_INIT: name = "INIT"; break;
1202 case DT_FINI: name = "FINI"; break;
1203 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1204 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1205 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1206 case DT_REL: name = "REL"; break;
1207 case DT_RELSZ: name = "RELSZ"; break;
1208 case DT_RELENT: name = "RELENT"; break;
1209 case DT_PLTREL: name = "PLTREL"; break;
1210 case DT_DEBUG: name = "DEBUG"; break;
1211 case DT_TEXTREL: name = "TEXTREL"; break;
1212 case DT_JMPREL: name = "JMPREL"; break;
1213 case DT_BIND_NOW: name = "BIND_NOW"; break;
1214 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1215 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1216 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1217 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1218 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1219 case DT_FLAGS: name = "FLAGS"; break;
1220 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1221 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1222 case DT_CHECKSUM: name = "CHECKSUM"; break;
1223 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1224 case DT_MOVEENT: name = "MOVEENT"; break;
1225 case DT_MOVESZ: name = "MOVESZ"; break;
1226 case DT_FEATURE: name = "FEATURE"; break;
1227 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1228 case DT_SYMINSZ: name = "SYMINSZ"; break;
1229 case DT_SYMINENT: name = "SYMINENT"; break;
1230 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1231 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1232 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1233 case DT_PLTPAD: name = "PLTPAD"; break;
1234 case DT_MOVETAB: name = "MOVETAB"; break;
1235 case DT_SYMINFO: name = "SYMINFO"; break;
1236 case DT_RELACOUNT: name = "RELACOUNT"; break;
1237 case DT_RELCOUNT: name = "RELCOUNT"; break;
1238 case DT_FLAGS_1: name = "FLAGS_1"; break;
1239 case DT_VERSYM: name = "VERSYM"; break;
1240 case DT_VERDEF: name = "VERDEF"; break;
1241 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1242 case DT_VERNEED: name = "VERNEED"; break;
1243 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1244 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1245 case DT_USED: name = "USED"; break;
1246 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1247 case DT_GNU_HASH: name = "GNU_HASH"; break;
1248 }
1249
1250 fprintf (f, " %-20s ", name);
1251 if (! stringp)
1252 {
1253 fprintf (f, "0x");
1254 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1255 }
1256 else
1257 {
1258 const char *string;
1259 unsigned int tagv = dyn.d_un.d_val;
1260
1261 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1262 if (string == NULL)
1263 goto error_return;
1264 fprintf (f, "%s", string);
1265 }
1266 fprintf (f, "\n");
1267 }
1268
1269 free (dynbuf);
1270 dynbuf = NULL;
1271 }
1272
1273 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1274 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1275 {
1276 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1277 return FALSE;
1278 }
1279
1280 if (elf_dynverdef (abfd) != 0)
1281 {
1282 Elf_Internal_Verdef *t;
1283
1284 fprintf (f, _("\nVersion definitions:\n"));
1285 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1286 {
1287 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1288 t->vd_flags, t->vd_hash,
1289 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1290 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1291 {
1292 Elf_Internal_Verdaux *a;
1293
1294 fprintf (f, "\t");
1295 for (a = t->vd_auxptr->vda_nextptr;
1296 a != NULL;
1297 a = a->vda_nextptr)
1298 fprintf (f, "%s ",
1299 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1300 fprintf (f, "\n");
1301 }
1302 }
1303 }
1304
1305 if (elf_dynverref (abfd) != 0)
1306 {
1307 Elf_Internal_Verneed *t;
1308
1309 fprintf (f, _("\nVersion References:\n"));
1310 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1311 {
1312 Elf_Internal_Vernaux *a;
1313
1314 fprintf (f, _(" required from %s:\n"),
1315 t->vn_filename ? t->vn_filename : "<corrupt>");
1316 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1317 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1318 a->vna_flags, a->vna_other,
1319 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1320 }
1321 }
1322
1323 return TRUE;
1324
1325 error_return:
1326 if (dynbuf != NULL)
1327 free (dynbuf);
1328 return FALSE;
1329}
1330
1331/* Display ELF-specific fields of a symbol. */
1332
1333void
1334bfd_elf_print_symbol (bfd *abfd,
1335 void *filep,
1336 asymbol *symbol,
1337 bfd_print_symbol_type how)
1338{
1339 FILE *file = (FILE *) filep;
1340 switch (how)
1341 {
1342 case bfd_print_symbol_name:
1343 fprintf (file, "%s", symbol->name);
1344 break;
1345 case bfd_print_symbol_more:
1346 fprintf (file, "elf ");
1347 bfd_fprintf_vma (abfd, file, symbol->value);
1348 fprintf (file, " %lx", (unsigned long) symbol->flags);
1349 break;
1350 case bfd_print_symbol_all:
1351 {
1352 const char *section_name;
1353 const char *name = NULL;
1354 const struct elf_backend_data *bed;
1355 unsigned char st_other;
1356 bfd_vma val;
1357
1358 section_name = symbol->section ? symbol->section->name : "(*none*)";
1359
1360 bed = get_elf_backend_data (abfd);
1361 if (bed->elf_backend_print_symbol_all)
1362 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1363
1364 if (name == NULL)
1365 {
1366 name = symbol->name;
1367 bfd_print_symbol_vandf (abfd, file, symbol);
1368 }
1369
1370 fprintf (file, " %s\t", section_name);
1371 /* Print the "other" value for a symbol. For common symbols,
1372 we've already printed the size; now print the alignment.
1373 For other symbols, we have no specified alignment, and
1374 we've printed the address; now print the size. */
1375 if (symbol->section && bfd_is_com_section (symbol->section))
1376 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1377 else
1378 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1379 bfd_fprintf_vma (abfd, file, val);
1380
1381 /* If we have version information, print it. */
1382 if (elf_tdata (abfd)->dynversym_section != 0
1383 && (elf_tdata (abfd)->dynverdef_section != 0
1384 || elf_tdata (abfd)->dynverref_section != 0))
1385 {
1386 unsigned int vernum;
1387 const char *version_string;
1388
1389 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1390
1391 if (vernum == 0)
1392 version_string = "";
1393 else if (vernum == 1)
1394 version_string = "Base";
1395 else if (vernum <= elf_tdata (abfd)->cverdefs)
1396 version_string =
1397 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1398 else
1399 {
1400 Elf_Internal_Verneed *t;
1401
1402 version_string = "";
1403 for (t = elf_tdata (abfd)->verref;
1404 t != NULL;
1405 t = t->vn_nextref)
1406 {
1407 Elf_Internal_Vernaux *a;
1408
1409 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1410 {
1411 if (a->vna_other == vernum)
1412 {
1413 version_string = a->vna_nodename;
1414 break;
1415 }
1416 }
1417 }
1418 }
1419
1420 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1421 fprintf (file, " %-11s", version_string);
1422 else
1423 {
1424 int i;
1425
1426 fprintf (file, " (%s)", version_string);
1427 for (i = 10 - strlen (version_string); i > 0; --i)
1428 putc (' ', file);
1429 }
1430 }
1431
1432 /* If the st_other field is not zero, print it. */
1433 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1434
1435 switch (st_other)
1436 {
1437 case 0: break;
1438 case STV_INTERNAL: fprintf (file, " .internal"); break;
1439 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1440 case STV_PROTECTED: fprintf (file, " .protected"); break;
1441 default:
1442 /* Some other non-defined flags are also present, so print
1443 everything hex. */
1444 fprintf (file, " 0x%02x", (unsigned int) st_other);
1445 }
1446
1447 fprintf (file, " %s", name);
1448 }
1449 break;
1450 }
1451}
1452
1453/* Allocate an ELF string table--force the first byte to be zero. */
1454
1455struct bfd_strtab_hash *
1456_bfd_elf_stringtab_init (void)
1457{
1458 struct bfd_strtab_hash *ret;
1459
1460 ret = _bfd_stringtab_init ();
1461 if (ret != NULL)
1462 {
1463 bfd_size_type loc;
1464
1465 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1466 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1467 if (loc == (bfd_size_type) -1)
1468 {
1469 _bfd_stringtab_free (ret);
1470 ret = NULL;
1471 }
1472 }
1473 return ret;
1474}
1475\f
1476/* ELF .o/exec file reading */
1477
1478/* Create a new bfd section from an ELF section header. */
1479
1480bfd_boolean
1481bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1482{
1483 Elf_Internal_Shdr *hdr;
1484 Elf_Internal_Ehdr *ehdr;
1485 const struct elf_backend_data *bed;
1486 const char *name;
1487
1488 if (shindex >= elf_numsections (abfd))
1489 return FALSE;
1490
1491 hdr = elf_elfsections (abfd)[shindex];
1492 ehdr = elf_elfheader (abfd);
1493 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1494 hdr->sh_name);
1495 if (name == NULL)
1496 return FALSE;
1497
1498 bed = get_elf_backend_data (abfd);
1499 switch (hdr->sh_type)
1500 {
1501 case SHT_NULL:
1502 /* Inactive section. Throw it away. */
1503 return TRUE;
1504
1505 case SHT_PROGBITS: /* Normal section with contents. */
1506 case SHT_NOBITS: /* .bss section. */
1507 case SHT_HASH: /* .hash section. */
1508 case SHT_NOTE: /* .note section. */
1509 case SHT_INIT_ARRAY: /* .init_array section. */
1510 case SHT_FINI_ARRAY: /* .fini_array section. */
1511 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1512 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1513 case SHT_GNU_HASH: /* .gnu.hash section. */
1514 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1515
1516 case SHT_DYNAMIC: /* Dynamic linking information. */
1517 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1518 return FALSE;
1519 if (hdr->sh_link > elf_numsections (abfd))
1520 {
1521 /* PR 10478: Accept Solaris binaries with a sh_link
1522 field set to SHN_BEFORE or SHN_AFTER. */
1523 switch (bfd_get_arch (abfd))
1524 {
1525 case bfd_arch_i386:
1526 case bfd_arch_sparc:
1527 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1528 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1529 break;
1530 /* Otherwise fall through. */
1531 default:
1532 return FALSE;
1533 }
1534 }
1535 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1536 return FALSE;
1537 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1538 {
1539 Elf_Internal_Shdr *dynsymhdr;
1540
1541 /* The shared libraries distributed with hpux11 have a bogus
1542 sh_link field for the ".dynamic" section. Find the
1543 string table for the ".dynsym" section instead. */
1544 if (elf_dynsymtab (abfd) != 0)
1545 {
1546 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1547 hdr->sh_link = dynsymhdr->sh_link;
1548 }
1549 else
1550 {
1551 unsigned int i, num_sec;
1552
1553 num_sec = elf_numsections (abfd);
1554 for (i = 1; i < num_sec; i++)
1555 {
1556 dynsymhdr = elf_elfsections (abfd)[i];
1557 if (dynsymhdr->sh_type == SHT_DYNSYM)
1558 {
1559 hdr->sh_link = dynsymhdr->sh_link;
1560 break;
1561 }
1562 }
1563 }
1564 }
1565 break;
1566
1567 case SHT_SYMTAB: /* A symbol table */
1568 if (elf_onesymtab (abfd) == shindex)
1569 return TRUE;
1570
1571 if (hdr->sh_entsize != bed->s->sizeof_sym)
1572 return FALSE;
1573 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1574 return FALSE;
1575 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1576 elf_onesymtab (abfd) = shindex;
1577 elf_tdata (abfd)->symtab_hdr = *hdr;
1578 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1579 abfd->flags |= HAS_SYMS;
1580
1581 /* Sometimes a shared object will map in the symbol table. If
1582 SHF_ALLOC is set, and this is a shared object, then we also
1583 treat this section as a BFD section. We can not base the
1584 decision purely on SHF_ALLOC, because that flag is sometimes
1585 set in a relocatable object file, which would confuse the
1586 linker. */
1587 if ((hdr->sh_flags & SHF_ALLOC) != 0
1588 && (abfd->flags & DYNAMIC) != 0
1589 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1590 shindex))
1591 return FALSE;
1592
1593 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1594 can't read symbols without that section loaded as well. It
1595 is most likely specified by the next section header. */
1596 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1597 {
1598 unsigned int i, num_sec;
1599
1600 num_sec = elf_numsections (abfd);
1601 for (i = shindex + 1; i < num_sec; i++)
1602 {
1603 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1604 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1605 && hdr2->sh_link == shindex)
1606 break;
1607 }
1608 if (i == num_sec)
1609 for (i = 1; i < shindex; i++)
1610 {
1611 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1612 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1613 && hdr2->sh_link == shindex)
1614 break;
1615 }
1616 if (i != shindex)
1617 return bfd_section_from_shdr (abfd, i);
1618 }
1619 return TRUE;
1620
1621 case SHT_DYNSYM: /* A dynamic symbol table */
1622 if (elf_dynsymtab (abfd) == shindex)
1623 return TRUE;
1624
1625 if (hdr->sh_entsize != bed->s->sizeof_sym)
1626 return FALSE;
1627 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1628 elf_dynsymtab (abfd) = shindex;
1629 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1630 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1631 abfd->flags |= HAS_SYMS;
1632
1633 /* Besides being a symbol table, we also treat this as a regular
1634 section, so that objcopy can handle it. */
1635 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1636
1637 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1638 if (elf_symtab_shndx (abfd) == shindex)
1639 return TRUE;
1640
1641 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1642 elf_symtab_shndx (abfd) = shindex;
1643 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1644 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1645 return TRUE;
1646
1647 case SHT_STRTAB: /* A string table */
1648 if (hdr->bfd_section != NULL)
1649 return TRUE;
1650 if (ehdr->e_shstrndx == shindex)
1651 {
1652 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1654 return TRUE;
1655 }
1656 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1657 {
1658 symtab_strtab:
1659 elf_tdata (abfd)->strtab_hdr = *hdr;
1660 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1661 return TRUE;
1662 }
1663 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1664 {
1665 dynsymtab_strtab:
1666 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1667 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1668 elf_elfsections (abfd)[shindex] = hdr;
1669 /* We also treat this as a regular section, so that objcopy
1670 can handle it. */
1671 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1672 shindex);
1673 }
1674
1675 /* If the string table isn't one of the above, then treat it as a
1676 regular section. We need to scan all the headers to be sure,
1677 just in case this strtab section appeared before the above. */
1678 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1679 {
1680 unsigned int i, num_sec;
1681
1682 num_sec = elf_numsections (abfd);
1683 for (i = 1; i < num_sec; i++)
1684 {
1685 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1686 if (hdr2->sh_link == shindex)
1687 {
1688 /* Prevent endless recursion on broken objects. */
1689 if (i == shindex)
1690 return FALSE;
1691 if (! bfd_section_from_shdr (abfd, i))
1692 return FALSE;
1693 if (elf_onesymtab (abfd) == i)
1694 goto symtab_strtab;
1695 if (elf_dynsymtab (abfd) == i)
1696 goto dynsymtab_strtab;
1697 }
1698 }
1699 }
1700 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1701
1702 case SHT_REL:
1703 case SHT_RELA:
1704 /* *These* do a lot of work -- but build no sections! */
1705 {
1706 asection *target_sect;
1707 Elf_Internal_Shdr *hdr2;
1708 unsigned int num_sec = elf_numsections (abfd);
1709
1710 if (hdr->sh_entsize
1711 != (bfd_size_type) (hdr->sh_type == SHT_REL
1712 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1713 return FALSE;
1714
1715 /* Check for a bogus link to avoid crashing. */
1716 if (hdr->sh_link >= num_sec)
1717 {
1718 ((*_bfd_error_handler)
1719 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1720 abfd, hdr->sh_link, name, shindex));
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1722 shindex);
1723 }
1724
1725 /* For some incomprehensible reason Oracle distributes
1726 libraries for Solaris in which some of the objects have
1727 bogus sh_link fields. It would be nice if we could just
1728 reject them, but, unfortunately, some people need to use
1729 them. We scan through the section headers; if we find only
1730 one suitable symbol table, we clobber the sh_link to point
1731 to it. I hope this doesn't break anything.
1732
1733 Don't do it on executable nor shared library. */
1734 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1735 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1736 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1737 {
1738 unsigned int scan;
1739 int found;
1740
1741 found = 0;
1742 for (scan = 1; scan < num_sec; scan++)
1743 {
1744 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1745 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1746 {
1747 if (found != 0)
1748 {
1749 found = 0;
1750 break;
1751 }
1752 found = scan;
1753 }
1754 }
1755 if (found != 0)
1756 hdr->sh_link = found;
1757 }
1758
1759 /* Get the symbol table. */
1760 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1761 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1762 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1763 return FALSE;
1764
1765 /* If this reloc section does not use the main symbol table we
1766 don't treat it as a reloc section. BFD can't adequately
1767 represent such a section, so at least for now, we don't
1768 try. We just present it as a normal section. We also
1769 can't use it as a reloc section if it points to the null
1770 section, an invalid section, another reloc section, or its
1771 sh_link points to the null section. */
1772 if (hdr->sh_link != elf_onesymtab (abfd)
1773 || hdr->sh_link == SHN_UNDEF
1774 || hdr->sh_info == SHN_UNDEF
1775 || hdr->sh_info >= num_sec
1776 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1777 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1778 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1779 shindex);
1780
1781 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1782 return FALSE;
1783 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1784 if (target_sect == NULL)
1785 return FALSE;
1786
1787 if ((target_sect->flags & SEC_RELOC) == 0
1788 || target_sect->reloc_count == 0)
1789 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1790 else
1791 {
1792 bfd_size_type amt;
1793 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1794 amt = sizeof (*hdr2);
1795 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1796 if (hdr2 == NULL)
1797 return FALSE;
1798 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1799 }
1800 *hdr2 = *hdr;
1801 elf_elfsections (abfd)[shindex] = hdr2;
1802 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1803 target_sect->flags |= SEC_RELOC;
1804 target_sect->relocation = NULL;
1805 target_sect->rel_filepos = hdr->sh_offset;
1806 /* In the section to which the relocations apply, mark whether
1807 its relocations are of the REL or RELA variety. */
1808 if (hdr->sh_size != 0)
1809 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1810 abfd->flags |= HAS_RELOC;
1811 return TRUE;
1812 }
1813
1814 case SHT_GNU_verdef:
1815 elf_dynverdef (abfd) = shindex;
1816 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1817 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1818
1819 case SHT_GNU_versym:
1820 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1821 return FALSE;
1822 elf_dynversym (abfd) = shindex;
1823 elf_tdata (abfd)->dynversym_hdr = *hdr;
1824 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1825
1826 case SHT_GNU_verneed:
1827 elf_dynverref (abfd) = shindex;
1828 elf_tdata (abfd)->dynverref_hdr = *hdr;
1829 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1830
1831 case SHT_SHLIB:
1832 return TRUE;
1833
1834 case SHT_GROUP:
1835 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1836 return FALSE;
1837 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1838 return FALSE;
1839 if (hdr->contents != NULL)
1840 {
1841 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1842 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1843 asection *s;
1844
1845 if (idx->flags & GRP_COMDAT)
1846 hdr->bfd_section->flags
1847 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1848
1849 /* We try to keep the same section order as it comes in. */
1850 idx += n_elt;
1851 while (--n_elt != 0)
1852 {
1853 --idx;
1854
1855 if (idx->shdr != NULL
1856 && (s = idx->shdr->bfd_section) != NULL
1857 && elf_next_in_group (s) != NULL)
1858 {
1859 elf_next_in_group (hdr->bfd_section) = s;
1860 break;
1861 }
1862 }
1863 }
1864 break;
1865
1866 default:
1867 /* Possibly an attributes section. */
1868 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1869 || hdr->sh_type == bed->obj_attrs_section_type)
1870 {
1871 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1872 return FALSE;
1873 _bfd_elf_parse_attributes (abfd, hdr);
1874 return TRUE;
1875 }
1876
1877 /* Check for any processor-specific section types. */
1878 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1879 return TRUE;
1880
1881 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1882 {
1883 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1884 /* FIXME: How to properly handle allocated section reserved
1885 for applications? */
1886 (*_bfd_error_handler)
1887 (_("%B: don't know how to handle allocated, application "
1888 "specific section `%s' [0x%8x]"),
1889 abfd, name, hdr->sh_type);
1890 else
1891 /* Allow sections reserved for applications. */
1892 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1893 shindex);
1894 }
1895 else if (hdr->sh_type >= SHT_LOPROC
1896 && hdr->sh_type <= SHT_HIPROC)
1897 /* FIXME: We should handle this section. */
1898 (*_bfd_error_handler)
1899 (_("%B: don't know how to handle processor specific section "
1900 "`%s' [0x%8x]"),
1901 abfd, name, hdr->sh_type);
1902 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1903 {
1904 /* Unrecognised OS-specific sections. */
1905 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1906 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1907 required to correctly process the section and the file should
1908 be rejected with an error message. */
1909 (*_bfd_error_handler)
1910 (_("%B: don't know how to handle OS specific section "
1911 "`%s' [0x%8x]"),
1912 abfd, name, hdr->sh_type);
1913 else
1914 /* Otherwise it should be processed. */
1915 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1916 }
1917 else
1918 /* FIXME: We should handle this section. */
1919 (*_bfd_error_handler)
1920 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1921 abfd, name, hdr->sh_type);
1922
1923 return FALSE;
1924 }
1925
1926 return TRUE;
1927}
1928
1929/* Return the local symbol specified by ABFD, R_SYMNDX. */
1930
1931Elf_Internal_Sym *
1932bfd_sym_from_r_symndx (struct sym_cache *cache,
1933 bfd *abfd,
1934 unsigned long r_symndx)
1935{
1936 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1937
1938 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1939 {
1940 Elf_Internal_Shdr *symtab_hdr;
1941 unsigned char esym[sizeof (Elf64_External_Sym)];
1942 Elf_External_Sym_Shndx eshndx;
1943
1944 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1945 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1946 &cache->sym[ent], esym, &eshndx) == NULL)
1947 return NULL;
1948
1949 if (cache->abfd != abfd)
1950 {
1951 memset (cache->indx, -1, sizeof (cache->indx));
1952 cache->abfd = abfd;
1953 }
1954 cache->indx[ent] = r_symndx;
1955 }
1956
1957 return &cache->sym[ent];
1958}
1959
1960/* Given an ELF section number, retrieve the corresponding BFD
1961 section. */
1962
1963asection *
1964bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
1965{
1966 if (sec_index >= elf_numsections (abfd))
1967 return NULL;
1968 return elf_elfsections (abfd)[sec_index]->bfd_section;
1969}
1970
1971static const struct bfd_elf_special_section special_sections_b[] =
1972{
1973 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1974 { NULL, 0, 0, 0, 0 }
1975};
1976
1977static const struct bfd_elf_special_section special_sections_c[] =
1978{
1979 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1980 { NULL, 0, 0, 0, 0 }
1981};
1982
1983static const struct bfd_elf_special_section special_sections_d[] =
1984{
1985 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1986 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1987 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1988 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1989 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1990 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1991 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1992 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1993 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
1994 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
1995 { NULL, 0, 0, 0, 0 }
1996};
1997
1998static const struct bfd_elf_special_section special_sections_f[] =
1999{
2000 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2001 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2002 { NULL, 0, 0, 0, 0 }
2003};
2004
2005static const struct bfd_elf_special_section special_sections_g[] =
2006{
2007 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2008 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2009 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2010 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2011 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2012 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2013 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2014 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2015 { NULL, 0, 0, 0, 0 }
2016};
2017
2018static const struct bfd_elf_special_section special_sections_h[] =
2019{
2020 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2021 { NULL, 0, 0, 0, 0 }
2022};
2023
2024static const struct bfd_elf_special_section special_sections_i[] =
2025{
2026 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2027 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2028 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2029 { NULL, 0, 0, 0, 0 }
2030};
2031
2032static const struct bfd_elf_special_section special_sections_l[] =
2033{
2034 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2035 { NULL, 0, 0, 0, 0 }
2036};
2037
2038static const struct bfd_elf_special_section special_sections_n[] =
2039{
2040 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2041 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2042 { NULL, 0, 0, 0, 0 }
2043};
2044
2045static const struct bfd_elf_special_section special_sections_p[] =
2046{
2047 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2048 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2049 { NULL, 0, 0, 0, 0 }
2050};
2051
2052static const struct bfd_elf_special_section special_sections_r[] =
2053{
2054 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2055 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2056 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2057 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2058 { NULL, 0, 0, 0, 0 }
2059};
2060
2061static const struct bfd_elf_special_section special_sections_s[] =
2062{
2063 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2064 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2065 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2066 /* See struct bfd_elf_special_section declaration for the semantics of
2067 this special case where .prefix_length != strlen (.prefix). */
2068 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2069 { NULL, 0, 0, 0, 0 }
2070};
2071
2072static const struct bfd_elf_special_section special_sections_t[] =
2073{
2074 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2075 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2076 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2077 { NULL, 0, 0, 0, 0 }
2078};
2079
2080static const struct bfd_elf_special_section special_sections_z[] =
2081{
2082 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2086 { NULL, 0, 0, 0, 0 }
2087};
2088
2089static const struct bfd_elf_special_section *special_sections[] =
2090{
2091 special_sections_b, /* 'b' */
2092 special_sections_c, /* 'c' */
2093 special_sections_d, /* 'd' */
2094 NULL, /* 'e' */
2095 special_sections_f, /* 'f' */
2096 special_sections_g, /* 'g' */
2097 special_sections_h, /* 'h' */
2098 special_sections_i, /* 'i' */
2099 NULL, /* 'j' */
2100 NULL, /* 'k' */
2101 special_sections_l, /* 'l' */
2102 NULL, /* 'm' */
2103 special_sections_n, /* 'n' */
2104 NULL, /* 'o' */
2105 special_sections_p, /* 'p' */
2106 NULL, /* 'q' */
2107 special_sections_r, /* 'r' */
2108 special_sections_s, /* 's' */
2109 special_sections_t, /* 't' */
2110 NULL, /* 'u' */
2111 NULL, /* 'v' */
2112 NULL, /* 'w' */
2113 NULL, /* 'x' */
2114 NULL, /* 'y' */
2115 special_sections_z /* 'z' */
2116};
2117
2118const struct bfd_elf_special_section *
2119_bfd_elf_get_special_section (const char *name,
2120 const struct bfd_elf_special_section *spec,
2121 unsigned int rela)
2122{
2123 int i;
2124 int len;
2125
2126 len = strlen (name);
2127
2128 for (i = 0; spec[i].prefix != NULL; i++)
2129 {
2130 int suffix_len;
2131 int prefix_len = spec[i].prefix_length;
2132
2133 if (len < prefix_len)
2134 continue;
2135 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2136 continue;
2137
2138 suffix_len = spec[i].suffix_length;
2139 if (suffix_len <= 0)
2140 {
2141 if (name[prefix_len] != 0)
2142 {
2143 if (suffix_len == 0)
2144 continue;
2145 if (name[prefix_len] != '.'
2146 && (suffix_len == -2
2147 || (rela && spec[i].type == SHT_REL)))
2148 continue;
2149 }
2150 }
2151 else
2152 {
2153 if (len < prefix_len + suffix_len)
2154 continue;
2155 if (memcmp (name + len - suffix_len,
2156 spec[i].prefix + prefix_len,
2157 suffix_len) != 0)
2158 continue;
2159 }
2160 return &spec[i];
2161 }
2162
2163 return NULL;
2164}
2165
2166const struct bfd_elf_special_section *
2167_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2168{
2169 int i;
2170 const struct bfd_elf_special_section *spec;
2171 const struct elf_backend_data *bed;
2172
2173 /* See if this is one of the special sections. */
2174 if (sec->name == NULL)
2175 return NULL;
2176
2177 bed = get_elf_backend_data (abfd);
2178 spec = bed->special_sections;
2179 if (spec)
2180 {
2181 spec = _bfd_elf_get_special_section (sec->name,
2182 bed->special_sections,
2183 sec->use_rela_p);
2184 if (spec != NULL)
2185 return spec;
2186 }
2187
2188 if (sec->name[0] != '.')
2189 return NULL;
2190
2191 i = sec->name[1] - 'b';
2192 if (i < 0 || i > 'z' - 'b')
2193 return NULL;
2194
2195 spec = special_sections[i];
2196
2197 if (spec == NULL)
2198 return NULL;
2199
2200 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2201}
2202
2203bfd_boolean
2204_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2205{
2206 struct bfd_elf_section_data *sdata;
2207 const struct elf_backend_data *bed;
2208 const struct bfd_elf_special_section *ssect;
2209
2210 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2211 if (sdata == NULL)
2212 {
2213 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2214 sizeof (*sdata));
2215 if (sdata == NULL)
2216 return FALSE;
2217 sec->used_by_bfd = sdata;
2218 }
2219
2220 /* Indicate whether or not this section should use RELA relocations. */
2221 bed = get_elf_backend_data (abfd);
2222 sec->use_rela_p = bed->default_use_rela_p;
2223
2224 /* When we read a file, we don't need to set ELF section type and
2225 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2226 anyway. We will set ELF section type and flags for all linker
2227 created sections. If user specifies BFD section flags, we will
2228 set ELF section type and flags based on BFD section flags in
2229 elf_fake_sections. */
2230 if ((!sec->flags && abfd->direction != read_direction)
2231 || (sec->flags & SEC_LINKER_CREATED) != 0)
2232 {
2233 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2234 if (ssect != NULL)
2235 {
2236 elf_section_type (sec) = ssect->type;
2237 elf_section_flags (sec) = ssect->attr;
2238 }
2239 }
2240
2241 return _bfd_generic_new_section_hook (abfd, sec);
2242}
2243
2244/* Create a new bfd section from an ELF program header.
2245
2246 Since program segments have no names, we generate a synthetic name
2247 of the form segment<NUM>, where NUM is generally the index in the
2248 program header table. For segments that are split (see below) we
2249 generate the names segment<NUM>a and segment<NUM>b.
2250
2251 Note that some program segments may have a file size that is different than
2252 (less than) the memory size. All this means is that at execution the
2253 system must allocate the amount of memory specified by the memory size,
2254 but only initialize it with the first "file size" bytes read from the
2255 file. This would occur for example, with program segments consisting
2256 of combined data+bss.
2257
2258 To handle the above situation, this routine generates TWO bfd sections
2259 for the single program segment. The first has the length specified by
2260 the file size of the segment, and the second has the length specified
2261 by the difference between the two sizes. In effect, the segment is split
2262 into its initialized and uninitialized parts.
2263
2264 */
2265
2266bfd_boolean
2267_bfd_elf_make_section_from_phdr (bfd *abfd,
2268 Elf_Internal_Phdr *hdr,
2269 int hdr_index,
2270 const char *type_name)
2271{
2272 asection *newsect;
2273 char *name;
2274 char namebuf[64];
2275 size_t len;
2276 int split;
2277
2278 split = ((hdr->p_memsz > 0)
2279 && (hdr->p_filesz > 0)
2280 && (hdr->p_memsz > hdr->p_filesz));
2281
2282 if (hdr->p_filesz > 0)
2283 {
2284 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2285 len = strlen (namebuf) + 1;
2286 name = (char *) bfd_alloc (abfd, len);
2287 if (!name)
2288 return FALSE;
2289 memcpy (name, namebuf, len);
2290 newsect = bfd_make_section (abfd, name);
2291 if (newsect == NULL)
2292 return FALSE;
2293 newsect->vma = hdr->p_vaddr;
2294 newsect->lma = hdr->p_paddr;
2295 newsect->size = hdr->p_filesz;
2296 newsect->filepos = hdr->p_offset;
2297 newsect->flags |= SEC_HAS_CONTENTS;
2298 newsect->alignment_power = bfd_log2 (hdr->p_align);
2299 if (hdr->p_type == PT_LOAD)
2300 {
2301 newsect->flags |= SEC_ALLOC;
2302 newsect->flags |= SEC_LOAD;
2303 if (hdr->p_flags & PF_X)
2304 {
2305 /* FIXME: all we known is that it has execute PERMISSION,
2306 may be data. */
2307 newsect->flags |= SEC_CODE;
2308 }
2309 }
2310 if (!(hdr->p_flags & PF_W))
2311 {
2312 newsect->flags |= SEC_READONLY;
2313 }
2314 }
2315
2316 if (hdr->p_memsz > hdr->p_filesz)
2317 {
2318 bfd_vma align;
2319
2320 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2321 len = strlen (namebuf) + 1;
2322 name = (char *) bfd_alloc (abfd, len);
2323 if (!name)
2324 return FALSE;
2325 memcpy (name, namebuf, len);
2326 newsect = bfd_make_section (abfd, name);
2327 if (newsect == NULL)
2328 return FALSE;
2329 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2330 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2331 newsect->size = hdr->p_memsz - hdr->p_filesz;
2332 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2333 align = newsect->vma & -newsect->vma;
2334 if (align == 0 || align > hdr->p_align)
2335 align = hdr->p_align;
2336 newsect->alignment_power = bfd_log2 (align);
2337 if (hdr->p_type == PT_LOAD)
2338 {
2339 /* Hack for gdb. Segments that have not been modified do
2340 not have their contents written to a core file, on the
2341 assumption that a debugger can find the contents in the
2342 executable. We flag this case by setting the fake
2343 section size to zero. Note that "real" bss sections will
2344 always have their contents dumped to the core file. */
2345 if (bfd_get_format (abfd) == bfd_core)
2346 newsect->size = 0;
2347 newsect->flags |= SEC_ALLOC;
2348 if (hdr->p_flags & PF_X)
2349 newsect->flags |= SEC_CODE;
2350 }
2351 if (!(hdr->p_flags & PF_W))
2352 newsect->flags |= SEC_READONLY;
2353 }
2354
2355 return TRUE;
2356}
2357
2358bfd_boolean
2359bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2360{
2361 const struct elf_backend_data *bed;
2362
2363 switch (hdr->p_type)
2364 {
2365 case PT_NULL:
2366 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2367
2368 case PT_LOAD:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2370
2371 case PT_DYNAMIC:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2373
2374 case PT_INTERP:
2375 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2376
2377 case PT_NOTE:
2378 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2379 return FALSE;
2380 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2381 return FALSE;
2382 return TRUE;
2383
2384 case PT_SHLIB:
2385 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2386
2387 case PT_PHDR:
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2389
2390 case PT_GNU_EH_FRAME:
2391 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2392 "eh_frame_hdr");
2393
2394 case PT_GNU_STACK:
2395 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2396
2397 case PT_GNU_RELRO:
2398 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2399
2400 default:
2401 /* Check for any processor-specific program segment types. */
2402 bed = get_elf_backend_data (abfd);
2403 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2404 }
2405}
2406
2407/* Initialize REL_HDR, the section-header for new section, containing
2408 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2409 relocations; otherwise, we use REL relocations. */
2410
2411bfd_boolean
2412_bfd_elf_init_reloc_shdr (bfd *abfd,
2413 Elf_Internal_Shdr *rel_hdr,
2414 asection *asect,
2415 bfd_boolean use_rela_p)
2416{
2417 char *name;
2418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2419 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2420
2421 name = (char *) bfd_alloc (abfd, amt);
2422 if (name == NULL)
2423 return FALSE;
2424 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2425 rel_hdr->sh_name =
2426 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2427 FALSE);
2428 if (rel_hdr->sh_name == (unsigned int) -1)
2429 return FALSE;
2430 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2431 rel_hdr->sh_entsize = (use_rela_p
2432 ? bed->s->sizeof_rela
2433 : bed->s->sizeof_rel);
2434 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2435 rel_hdr->sh_flags = 0;
2436 rel_hdr->sh_addr = 0;
2437 rel_hdr->sh_size = 0;
2438 rel_hdr->sh_offset = 0;
2439
2440 return TRUE;
2441}
2442
2443/* Return the default section type based on the passed in section flags. */
2444
2445int
2446bfd_elf_get_default_section_type (flagword flags)
2447{
2448 if ((flags & SEC_ALLOC) != 0
2449 && ((flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0
2450 || (flags & SEC_NEVER_LOAD) != 0))
2451 return SHT_NOBITS;
2452 return SHT_PROGBITS;
2453}
2454
2455/* Set up an ELF internal section header for a section. */
2456
2457static void
2458elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2459{
2460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2461 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2462 Elf_Internal_Shdr *this_hdr;
2463 unsigned int sh_type;
2464
2465 if (*failedptr)
2466 {
2467 /* We already failed; just get out of the bfd_map_over_sections
2468 loop. */
2469 return;
2470 }
2471
2472 this_hdr = &elf_section_data (asect)->this_hdr;
2473
2474 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2475 asect->name, FALSE);
2476 if (this_hdr->sh_name == (unsigned int) -1)
2477 {
2478 *failedptr = TRUE;
2479 return;
2480 }
2481
2482 /* Don't clear sh_flags. Assembler may set additional bits. */
2483
2484 if ((asect->flags & SEC_ALLOC) != 0
2485 || asect->user_set_vma)
2486 this_hdr->sh_addr = asect->vma;
2487 else
2488 this_hdr->sh_addr = 0;
2489
2490 this_hdr->sh_offset = 0;
2491 this_hdr->sh_size = asect->size;
2492 this_hdr->sh_link = 0;
2493 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2494 /* The sh_entsize and sh_info fields may have been set already by
2495 copy_private_section_data. */
2496
2497 this_hdr->bfd_section = asect;
2498 this_hdr->contents = NULL;
2499
2500 /* If the section type is unspecified, we set it based on
2501 asect->flags. */
2502 if ((asect->flags & SEC_GROUP) != 0)
2503 sh_type = SHT_GROUP;
2504 else
2505 sh_type = bfd_elf_get_default_section_type (asect->flags);
2506
2507 if (this_hdr->sh_type == SHT_NULL)
2508 this_hdr->sh_type = sh_type;
2509 else if (this_hdr->sh_type == SHT_NOBITS
2510 && sh_type == SHT_PROGBITS
2511 && (asect->flags & SEC_ALLOC) != 0)
2512 {
2513 /* Warn if we are changing a NOBITS section to PROGBITS, but
2514 allow the link to proceed. This can happen when users link
2515 non-bss input sections to bss output sections, or emit data
2516 to a bss output section via a linker script. */
2517 (*_bfd_error_handler)
2518 (_("warning: section `%A' type changed to PROGBITS"), asect);
2519 this_hdr->sh_type = sh_type;
2520 }
2521
2522 switch (this_hdr->sh_type)
2523 {
2524 default:
2525 break;
2526
2527 case SHT_STRTAB:
2528 case SHT_INIT_ARRAY:
2529 case SHT_FINI_ARRAY:
2530 case SHT_PREINIT_ARRAY:
2531 case SHT_NOTE:
2532 case SHT_NOBITS:
2533 case SHT_PROGBITS:
2534 break;
2535
2536 case SHT_HASH:
2537 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2538 break;
2539
2540 case SHT_DYNSYM:
2541 this_hdr->sh_entsize = bed->s->sizeof_sym;
2542 break;
2543
2544 case SHT_DYNAMIC:
2545 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2546 break;
2547
2548 case SHT_RELA:
2549 if (get_elf_backend_data (abfd)->may_use_rela_p)
2550 this_hdr->sh_entsize = bed->s->sizeof_rela;
2551 break;
2552
2553 case SHT_REL:
2554 if (get_elf_backend_data (abfd)->may_use_rel_p)
2555 this_hdr->sh_entsize = bed->s->sizeof_rel;
2556 break;
2557
2558 case SHT_GNU_versym:
2559 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2560 break;
2561
2562 case SHT_GNU_verdef:
2563 this_hdr->sh_entsize = 0;
2564 /* objcopy or strip will copy over sh_info, but may not set
2565 cverdefs. The linker will set cverdefs, but sh_info will be
2566 zero. */
2567 if (this_hdr->sh_info == 0)
2568 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2569 else
2570 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2571 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2572 break;
2573
2574 case SHT_GNU_verneed:
2575 this_hdr->sh_entsize = 0;
2576 /* objcopy or strip will copy over sh_info, but may not set
2577 cverrefs. The linker will set cverrefs, but sh_info will be
2578 zero. */
2579 if (this_hdr->sh_info == 0)
2580 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2581 else
2582 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2583 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2584 break;
2585
2586 case SHT_GROUP:
2587 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2588 break;
2589
2590 case SHT_GNU_HASH:
2591 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2592 break;
2593 }
2594
2595 if ((asect->flags & SEC_ALLOC) != 0)
2596 this_hdr->sh_flags |= SHF_ALLOC;
2597 if ((asect->flags & SEC_READONLY) == 0)
2598 this_hdr->sh_flags |= SHF_WRITE;
2599 if ((asect->flags & SEC_CODE) != 0)
2600 this_hdr->sh_flags |= SHF_EXECINSTR;
2601 if ((asect->flags & SEC_MERGE) != 0)
2602 {
2603 this_hdr->sh_flags |= SHF_MERGE;
2604 this_hdr->sh_entsize = asect->entsize;
2605 if ((asect->flags & SEC_STRINGS) != 0)
2606 this_hdr->sh_flags |= SHF_STRINGS;
2607 }
2608 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2609 this_hdr->sh_flags |= SHF_GROUP;
2610 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2611 {
2612 this_hdr->sh_flags |= SHF_TLS;
2613 if (asect->size == 0
2614 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2615 {
2616 struct bfd_link_order *o = asect->map_tail.link_order;
2617
2618 this_hdr->sh_size = 0;
2619 if (o != NULL)
2620 {
2621 this_hdr->sh_size = o->offset + o->size;
2622 if (this_hdr->sh_size != 0)
2623 this_hdr->sh_type = SHT_NOBITS;
2624 }
2625 }
2626 }
2627
2628 /* Check for processor-specific section types. */
2629 sh_type = this_hdr->sh_type;
2630 if (bed->elf_backend_fake_sections
2631 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2632 *failedptr = TRUE;
2633
2634 if (sh_type == SHT_NOBITS && asect->size != 0)
2635 {
2636 /* Don't change the header type from NOBITS if we are being
2637 called for objcopy --only-keep-debug. */
2638 this_hdr->sh_type = sh_type;
2639 }
2640
2641 /* If the section has relocs, set up a section header for the
2642 SHT_REL[A] section. If two relocation sections are required for
2643 this section, it is up to the processor-specific back-end to
2644 create the other. */
2645 if ((asect->flags & SEC_RELOC) != 0
2646 && !_bfd_elf_init_reloc_shdr (abfd,
2647 &elf_section_data (asect)->rel_hdr,
2648 asect,
2649 asect->use_rela_p))
2650 *failedptr = TRUE;
2651}
2652
2653/* Fill in the contents of a SHT_GROUP section. Called from
2654 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2655 when ELF targets use the generic linker, ld. Called for ld -r
2656 from bfd_elf_final_link. */
2657
2658void
2659bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2660{
2661 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2662 asection *elt, *first;
2663 unsigned char *loc;
2664 bfd_boolean gas;
2665
2666 /* Ignore linker created group section. See elfNN_ia64_object_p in
2667 elfxx-ia64.c. */
2668 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2669 || *failedptr)
2670 return;
2671
2672 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2673 {
2674 unsigned long symindx = 0;
2675
2676 /* elf_group_id will have been set up by objcopy and the
2677 generic linker. */
2678 if (elf_group_id (sec) != NULL)
2679 symindx = elf_group_id (sec)->udata.i;
2680
2681 if (symindx == 0)
2682 {
2683 /* If called from the assembler, swap_out_syms will have set up
2684 elf_section_syms. */
2685 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2686 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2687 }
2688 elf_section_data (sec)->this_hdr.sh_info = symindx;
2689 }
2690 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2691 {
2692 /* The ELF backend linker sets sh_info to -2 when the group
2693 signature symbol is global, and thus the index can't be
2694 set until all local symbols are output. */
2695 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2696 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2697 unsigned long symndx = sec_data->this_hdr.sh_info;
2698 unsigned long extsymoff = 0;
2699 struct elf_link_hash_entry *h;
2700
2701 if (!elf_bad_symtab (igroup->owner))
2702 {
2703 Elf_Internal_Shdr *symtab_hdr;
2704
2705 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2706 extsymoff = symtab_hdr->sh_info;
2707 }
2708 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2709 while (h->root.type == bfd_link_hash_indirect
2710 || h->root.type == bfd_link_hash_warning)
2711 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2712
2713 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2714 }
2715
2716 /* The contents won't be allocated for "ld -r" or objcopy. */
2717 gas = TRUE;
2718 if (sec->contents == NULL)
2719 {
2720 gas = FALSE;
2721 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2722
2723 /* Arrange for the section to be written out. */
2724 elf_section_data (sec)->this_hdr.contents = sec->contents;
2725 if (sec->contents == NULL)
2726 {
2727 *failedptr = TRUE;
2728 return;
2729 }
2730 }
2731
2732 loc = sec->contents + sec->size;
2733
2734 /* Get the pointer to the first section in the group that gas
2735 squirreled away here. objcopy arranges for this to be set to the
2736 start of the input section group. */
2737 first = elt = elf_next_in_group (sec);
2738
2739 /* First element is a flag word. Rest of section is elf section
2740 indices for all the sections of the group. Write them backwards
2741 just to keep the group in the same order as given in .section
2742 directives, not that it matters. */
2743 while (elt != NULL)
2744 {
2745 asection *s;
2746 unsigned int idx;
2747
2748 s = elt;
2749 if (! elf_discarded_section (s))
2750 {
2751 loc -= 4;
2752 if (!gas)
2753 s = s->output_section;
2754 idx = 0;
2755 if (s != NULL)
2756 idx = elf_section_data (s)->this_idx;
2757 H_PUT_32 (abfd, idx, loc);
2758 }
2759 elt = elf_next_in_group (elt);
2760 if (elt == first)
2761 break;
2762 }
2763
2764 if ((loc -= 4) != sec->contents)
2765 abort ();
2766
2767 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2768}
2769
2770/* Assign all ELF section numbers. The dummy first section is handled here
2771 too. The link/info pointers for the standard section types are filled
2772 in here too, while we're at it. */
2773
2774static bfd_boolean
2775assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2776{
2777 struct elf_obj_tdata *t = elf_tdata (abfd);
2778 asection *sec;
2779 unsigned int section_number, secn;
2780 Elf_Internal_Shdr **i_shdrp;
2781 struct bfd_elf_section_data *d;
2782 bfd_boolean need_symtab;
2783
2784 section_number = 1;
2785
2786 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2787
2788 /* SHT_GROUP sections are in relocatable files only. */
2789 if (link_info == NULL || link_info->relocatable)
2790 {
2791 /* Put SHT_GROUP sections first. */
2792 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2793 {
2794 d = elf_section_data (sec);
2795
2796 if (d->this_hdr.sh_type == SHT_GROUP)
2797 {
2798 if (sec->flags & SEC_LINKER_CREATED)
2799 {
2800 /* Remove the linker created SHT_GROUP sections. */
2801 bfd_section_list_remove (abfd, sec);
2802 abfd->section_count--;
2803 }
2804 else
2805 d->this_idx = section_number++;
2806 }
2807 }
2808 }
2809
2810 for (sec = abfd->sections; sec; sec = sec->next)
2811 {
2812 d = elf_section_data (sec);
2813
2814 if (d->this_hdr.sh_type != SHT_GROUP)
2815 d->this_idx = section_number++;
2816 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2817 if ((sec->flags & SEC_RELOC) == 0)
2818 d->rel_idx = 0;
2819 else
2820 {
2821 d->rel_idx = section_number++;
2822 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2823 }
2824
2825 if (d->rel_hdr2)
2826 {
2827 d->rel_idx2 = section_number++;
2828 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2829 }
2830 else
2831 d->rel_idx2 = 0;
2832 }
2833
2834 t->shstrtab_section = section_number++;
2835 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2836 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2837
2838 need_symtab = (bfd_get_symcount (abfd) > 0
2839 || (link_info == NULL
2840 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2841 == HAS_RELOC)));
2842 if (need_symtab)
2843 {
2844 t->symtab_section = section_number++;
2845 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2846 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2847 {
2848 t->symtab_shndx_section = section_number++;
2849 t->symtab_shndx_hdr.sh_name
2850 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2851 ".symtab_shndx", FALSE);
2852 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2853 return FALSE;
2854 }
2855 t->strtab_section = section_number++;
2856 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2857 }
2858
2859 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2860 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2861
2862 elf_numsections (abfd) = section_number;
2863 elf_elfheader (abfd)->e_shnum = section_number;
2864
2865 /* Set up the list of section header pointers, in agreement with the
2866 indices. */
2867 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
2868 sizeof (Elf_Internal_Shdr *));
2869 if (i_shdrp == NULL)
2870 return FALSE;
2871
2872 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
2873 sizeof (Elf_Internal_Shdr));
2874 if (i_shdrp[0] == NULL)
2875 {
2876 bfd_release (abfd, i_shdrp);
2877 return FALSE;
2878 }
2879
2880 elf_elfsections (abfd) = i_shdrp;
2881
2882 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2883 if (need_symtab)
2884 {
2885 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2886 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2887 {
2888 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2889 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2890 }
2891 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2892 t->symtab_hdr.sh_link = t->strtab_section;
2893 }
2894
2895 for (sec = abfd->sections; sec; sec = sec->next)
2896 {
2897 asection *s;
2898 const char *name;
2899
2900 d = elf_section_data (sec);
2901
2902 i_shdrp[d->this_idx] = &d->this_hdr;
2903 if (d->rel_idx != 0)
2904 i_shdrp[d->rel_idx] = &d->rel_hdr;
2905 if (d->rel_idx2 != 0)
2906 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2907
2908 /* Fill in the sh_link and sh_info fields while we're at it. */
2909
2910 /* sh_link of a reloc section is the section index of the symbol
2911 table. sh_info is the section index of the section to which
2912 the relocation entries apply. */
2913 if (d->rel_idx != 0)
2914 {
2915 d->rel_hdr.sh_link = t->symtab_section;
2916 d->rel_hdr.sh_info = d->this_idx;
2917 }
2918 if (d->rel_idx2 != 0)
2919 {
2920 d->rel_hdr2->sh_link = t->symtab_section;
2921 d->rel_hdr2->sh_info = d->this_idx;
2922 }
2923
2924 /* We need to set up sh_link for SHF_LINK_ORDER. */
2925 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2926 {
2927 s = elf_linked_to_section (sec);
2928 if (s)
2929 {
2930 /* elf_linked_to_section points to the input section. */
2931 if (link_info != NULL)
2932 {
2933 /* Check discarded linkonce section. */
2934 if (elf_discarded_section (s))
2935 {
2936 asection *kept;
2937 (*_bfd_error_handler)
2938 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2939 abfd, d->this_hdr.bfd_section,
2940 s, s->owner);
2941 /* Point to the kept section if it has the same
2942 size as the discarded one. */
2943 kept = _bfd_elf_check_kept_section (s, link_info);
2944 if (kept == NULL)
2945 {
2946 bfd_set_error (bfd_error_bad_value);
2947 return FALSE;
2948 }
2949 s = kept;
2950 }
2951
2952 s = s->output_section;
2953 BFD_ASSERT (s != NULL);
2954 }
2955 else
2956 {
2957 /* Handle objcopy. */
2958 if (s->output_section == NULL)
2959 {
2960 (*_bfd_error_handler)
2961 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2962 abfd, d->this_hdr.bfd_section, s, s->owner);
2963 bfd_set_error (bfd_error_bad_value);
2964 return FALSE;
2965 }
2966 s = s->output_section;
2967 }
2968 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2969 }
2970 else
2971 {
2972 /* PR 290:
2973 The Intel C compiler generates SHT_IA_64_UNWIND with
2974 SHF_LINK_ORDER. But it doesn't set the sh_link or
2975 sh_info fields. Hence we could get the situation
2976 where s is NULL. */
2977 const struct elf_backend_data *bed
2978 = get_elf_backend_data (abfd);
2979 if (bed->link_order_error_handler)
2980 bed->link_order_error_handler
2981 (_("%B: warning: sh_link not set for section `%A'"),
2982 abfd, sec);
2983 }
2984 }
2985
2986 switch (d->this_hdr.sh_type)
2987 {
2988 case SHT_REL:
2989 case SHT_RELA:
2990 /* A reloc section which we are treating as a normal BFD
2991 section. sh_link is the section index of the symbol
2992 table. sh_info is the section index of the section to
2993 which the relocation entries apply. We assume that an
2994 allocated reloc section uses the dynamic symbol table.
2995 FIXME: How can we be sure? */
2996 s = bfd_get_section_by_name (abfd, ".dynsym");
2997 if (s != NULL)
2998 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2999
3000 /* We look up the section the relocs apply to by name. */
3001 name = sec->name;
3002 if (d->this_hdr.sh_type == SHT_REL)
3003 name += 4;
3004 else
3005 name += 5;
3006 s = bfd_get_section_by_name (abfd, name);
3007 if (s != NULL)
3008 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3009 break;
3010
3011 case SHT_STRTAB:
3012 /* We assume that a section named .stab*str is a stabs
3013 string section. We look for a section with the same name
3014 but without the trailing ``str'', and set its sh_link
3015 field to point to this section. */
3016 if (CONST_STRNEQ (sec->name, ".stab")
3017 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3018 {
3019 size_t len;
3020 char *alc;
3021
3022 len = strlen (sec->name);
3023 alc = (char *) bfd_malloc (len - 2);
3024 if (alc == NULL)
3025 return FALSE;
3026 memcpy (alc, sec->name, len - 3);
3027 alc[len - 3] = '\0';
3028 s = bfd_get_section_by_name (abfd, alc);
3029 free (alc);
3030 if (s != NULL)
3031 {
3032 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3033
3034 /* This is a .stab section. */
3035 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3036 elf_section_data (s)->this_hdr.sh_entsize
3037 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3038 }
3039 }
3040 break;
3041
3042 case SHT_DYNAMIC:
3043 case SHT_DYNSYM:
3044 case SHT_GNU_verneed:
3045 case SHT_GNU_verdef:
3046 /* sh_link is the section header index of the string table
3047 used for the dynamic entries, or the symbol table, or the
3048 version strings. */
3049 s = bfd_get_section_by_name (abfd, ".dynstr");
3050 if (s != NULL)
3051 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3052 break;
3053
3054 case SHT_GNU_LIBLIST:
3055 /* sh_link is the section header index of the prelink library
3056 list used for the dynamic entries, or the symbol table, or
3057 the version strings. */
3058 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3059 ? ".dynstr" : ".gnu.libstr");
3060 if (s != NULL)
3061 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3062 break;
3063
3064 case SHT_HASH:
3065 case SHT_GNU_HASH:
3066 case SHT_GNU_versym:
3067 /* sh_link is the section header index of the symbol table
3068 this hash table or version table is for. */
3069 s = bfd_get_section_by_name (abfd, ".dynsym");
3070 if (s != NULL)
3071 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3072 break;
3073
3074 case SHT_GROUP:
3075 d->this_hdr.sh_link = t->symtab_section;
3076 }
3077 }
3078
3079 for (secn = 1; secn < section_number; ++secn)
3080 if (i_shdrp[secn] == NULL)
3081 i_shdrp[secn] = i_shdrp[0];
3082 else
3083 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3084 i_shdrp[secn]->sh_name);
3085 return TRUE;
3086}
3087
3088/* Map symbol from it's internal number to the external number, moving
3089 all local symbols to be at the head of the list. */
3090
3091static bfd_boolean
3092sym_is_global (bfd *abfd, asymbol *sym)
3093{
3094 /* If the backend has a special mapping, use it. */
3095 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3096 if (bed->elf_backend_sym_is_global)
3097 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3098
3099 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3100 || bfd_is_und_section (bfd_get_section (sym))
3101 || bfd_is_com_section (bfd_get_section (sym)));
3102}
3103
3104/* Don't output section symbols for sections that are not going to be
3105 output. */
3106
3107static bfd_boolean
3108ignore_section_sym (bfd *abfd, asymbol *sym)
3109{
3110 return ((sym->flags & BSF_SECTION_SYM) != 0
3111 && !(sym->section->owner == abfd
3112 || (sym->section->output_section->owner == abfd
3113 && sym->section->output_offset == 0)));
3114}
3115
3116static bfd_boolean
3117elf_map_symbols (bfd *abfd)
3118{
3119 unsigned int symcount = bfd_get_symcount (abfd);
3120 asymbol **syms = bfd_get_outsymbols (abfd);
3121 asymbol **sect_syms;
3122 unsigned int num_locals = 0;
3123 unsigned int num_globals = 0;
3124 unsigned int num_locals2 = 0;
3125 unsigned int num_globals2 = 0;
3126 int max_index = 0;
3127 unsigned int idx;
3128 asection *asect;
3129 asymbol **new_syms;
3130
3131#ifdef DEBUG
3132 fprintf (stderr, "elf_map_symbols\n");
3133 fflush (stderr);
3134#endif
3135
3136 for (asect = abfd->sections; asect; asect = asect->next)
3137 {
3138 if (max_index < asect->index)
3139 max_index = asect->index;
3140 }
3141
3142 max_index++;
3143 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3144 if (sect_syms == NULL)
3145 return FALSE;
3146 elf_section_syms (abfd) = sect_syms;
3147 elf_num_section_syms (abfd) = max_index;
3148
3149 /* Init sect_syms entries for any section symbols we have already
3150 decided to output. */
3151 for (idx = 0; idx < symcount; idx++)
3152 {
3153 asymbol *sym = syms[idx];
3154
3155 if ((sym->flags & BSF_SECTION_SYM) != 0
3156 && sym->value == 0
3157 && !ignore_section_sym (abfd, sym))
3158 {
3159 asection *sec = sym->section;
3160
3161 if (sec->owner != abfd)
3162 sec = sec->output_section;
3163
3164 sect_syms[sec->index] = syms[idx];
3165 }
3166 }
3167
3168 /* Classify all of the symbols. */
3169 for (idx = 0; idx < symcount; idx++)
3170 {
3171 if (ignore_section_sym (abfd, syms[idx]))
3172 continue;
3173 if (!sym_is_global (abfd, syms[idx]))
3174 num_locals++;
3175 else
3176 num_globals++;
3177 }
3178
3179 /* We will be adding a section symbol for each normal BFD section. Most
3180 sections will already have a section symbol in outsymbols, but
3181 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3182 at least in that case. */
3183 for (asect = abfd->sections; asect; asect = asect->next)
3184 {
3185 if (sect_syms[asect->index] == NULL)
3186 {
3187 if (!sym_is_global (abfd, asect->symbol))
3188 num_locals++;
3189 else
3190 num_globals++;
3191 }
3192 }
3193
3194 /* Now sort the symbols so the local symbols are first. */
3195 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3196 sizeof (asymbol *));
3197
3198 if (new_syms == NULL)
3199 return FALSE;
3200
3201 for (idx = 0; idx < symcount; idx++)
3202 {
3203 asymbol *sym = syms[idx];
3204 unsigned int i;
3205
3206 if (ignore_section_sym (abfd, sym))
3207 continue;
3208 if (!sym_is_global (abfd, sym))
3209 i = num_locals2++;
3210 else
3211 i = num_locals + num_globals2++;
3212 new_syms[i] = sym;
3213 sym->udata.i = i + 1;
3214 }
3215 for (asect = abfd->sections; asect; asect = asect->next)
3216 {
3217 if (sect_syms[asect->index] == NULL)
3218 {
3219 asymbol *sym = asect->symbol;
3220 unsigned int i;
3221
3222 sect_syms[asect->index] = sym;
3223 if (!sym_is_global (abfd, sym))
3224 i = num_locals2++;
3225 else
3226 i = num_locals + num_globals2++;
3227 new_syms[i] = sym;
3228 sym->udata.i = i + 1;
3229 }
3230 }
3231
3232 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3233
3234 elf_num_locals (abfd) = num_locals;
3235 elf_num_globals (abfd) = num_globals;
3236 return TRUE;
3237}
3238
3239/* Align to the maximum file alignment that could be required for any
3240 ELF data structure. */
3241
3242static inline file_ptr
3243align_file_position (file_ptr off, int align)
3244{
3245 return (off + align - 1) & ~(align - 1);
3246}
3247
3248/* Assign a file position to a section, optionally aligning to the
3249 required section alignment. */
3250
3251file_ptr
3252_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3253 file_ptr offset,
3254 bfd_boolean align)
3255{
3256 if (align && i_shdrp->sh_addralign > 1)
3257 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3258 i_shdrp->sh_offset = offset;
3259 if (i_shdrp->bfd_section != NULL)
3260 i_shdrp->bfd_section->filepos = offset;
3261 if (i_shdrp->sh_type != SHT_NOBITS)
3262 offset += i_shdrp->sh_size;
3263 return offset;
3264}
3265
3266/* Compute the file positions we are going to put the sections at, and
3267 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3268 is not NULL, this is being called by the ELF backend linker. */
3269
3270bfd_boolean
3271_bfd_elf_compute_section_file_positions (bfd *abfd,
3272 struct bfd_link_info *link_info)
3273{
3274 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3275 bfd_boolean failed;
3276 struct bfd_strtab_hash *strtab = NULL;
3277 Elf_Internal_Shdr *shstrtab_hdr;
3278 bfd_boolean need_symtab;
3279
3280 if (abfd->output_has_begun)
3281 return TRUE;
3282
3283 /* Do any elf backend specific processing first. */
3284 if (bed->elf_backend_begin_write_processing)
3285 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3286
3287 if (! prep_headers (abfd))
3288 return FALSE;
3289
3290 /* Post process the headers if necessary. */
3291 if (bed->elf_backend_post_process_headers)
3292 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3293
3294 failed = FALSE;
3295 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3296 if (failed)
3297 return FALSE;
3298
3299 if (!assign_section_numbers (abfd, link_info))
3300 return FALSE;
3301
3302 /* The backend linker builds symbol table information itself. */
3303 need_symtab = (link_info == NULL
3304 && (bfd_get_symcount (abfd) > 0
3305 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3306 == HAS_RELOC)));
3307 if (need_symtab)
3308 {
3309 /* Non-zero if doing a relocatable link. */
3310 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3311
3312 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3313 return FALSE;
3314 }
3315
3316 if (link_info == NULL)
3317 {
3318 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3319 if (failed)
3320 return FALSE;
3321 }
3322
3323 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3324 /* sh_name was set in prep_headers. */
3325 shstrtab_hdr->sh_type = SHT_STRTAB;
3326 shstrtab_hdr->sh_flags = 0;
3327 shstrtab_hdr->sh_addr = 0;
3328 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3329 shstrtab_hdr->sh_entsize = 0;
3330 shstrtab_hdr->sh_link = 0;
3331 shstrtab_hdr->sh_info = 0;
3332 /* sh_offset is set in assign_file_positions_except_relocs. */
3333 shstrtab_hdr->sh_addralign = 1;
3334
3335 if (!assign_file_positions_except_relocs (abfd, link_info))
3336 return FALSE;
3337
3338 if (need_symtab)
3339 {
3340 file_ptr off;
3341 Elf_Internal_Shdr *hdr;
3342
3343 off = elf_tdata (abfd)->next_file_pos;
3344
3345 hdr = &elf_tdata (abfd)->symtab_hdr;
3346 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3347
3348 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3349 if (hdr->sh_size != 0)
3350 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3351
3352 hdr = &elf_tdata (abfd)->strtab_hdr;
3353 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3354
3355 elf_tdata (abfd)->next_file_pos = off;
3356
3357 /* Now that we know where the .strtab section goes, write it
3358 out. */
3359 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3360 || ! _bfd_stringtab_emit (abfd, strtab))
3361 return FALSE;
3362 _bfd_stringtab_free (strtab);
3363 }
3364
3365 abfd->output_has_begun = TRUE;
3366
3367 return TRUE;
3368}
3369
3370/* Make an initial estimate of the size of the program header. If we
3371 get the number wrong here, we'll redo section placement. */
3372
3373static bfd_size_type
3374get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3375{
3376 size_t segs;
3377 asection *s;
3378 const struct elf_backend_data *bed;
3379
3380 /* Assume we will need exactly two PT_LOAD segments: one for text
3381 and one for data. */
3382 segs = 2;
3383
3384 s = bfd_get_section_by_name (abfd, ".interp");
3385 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3386 {
3387 /* If we have a loadable interpreter section, we need a
3388 PT_INTERP segment. In this case, assume we also need a
3389 PT_PHDR segment, although that may not be true for all
3390 targets. */
3391 segs += 2;
3392 }
3393
3394 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3395 {
3396 /* We need a PT_DYNAMIC segment. */
3397 ++segs;
3398 }
3399
3400 if (info != NULL && info->relro)
3401 {
3402 /* We need a PT_GNU_RELRO segment. */
3403 ++segs;
3404 }
3405
3406 if (elf_tdata (abfd)->eh_frame_hdr)
3407 {
3408 /* We need a PT_GNU_EH_FRAME segment. */
3409 ++segs;
3410 }
3411
3412 if (elf_tdata (abfd)->stack_flags)
3413 {
3414 /* We need a PT_GNU_STACK segment. */
3415 ++segs;
3416 }
3417
3418 for (s = abfd->sections; s != NULL; s = s->next)
3419 {
3420 if ((s->flags & SEC_LOAD) != 0
3421 && CONST_STRNEQ (s->name, ".note"))
3422 {
3423 /* We need a PT_NOTE segment. */
3424 ++segs;
3425 /* Try to create just one PT_NOTE segment
3426 for all adjacent loadable .note* sections.
3427 gABI requires that within a PT_NOTE segment
3428 (and also inside of each SHT_NOTE section)
3429 each note is padded to a multiple of 4 size,
3430 so we check whether the sections are correctly
3431 aligned. */
3432 if (s->alignment_power == 2)
3433 while (s->next != NULL
3434 && s->next->alignment_power == 2
3435 && (s->next->flags & SEC_LOAD) != 0
3436 && CONST_STRNEQ (s->next->name, ".note"))
3437 s = s->next;
3438 }
3439 }
3440
3441 for (s = abfd->sections; s != NULL; s = s->next)
3442 {
3443 if (s->flags & SEC_THREAD_LOCAL)
3444 {
3445 /* We need a PT_TLS segment. */
3446 ++segs;
3447 break;
3448 }
3449 }
3450
3451 /* Let the backend count up any program headers it might need. */
3452 bed = get_elf_backend_data (abfd);
3453 if (bed->elf_backend_additional_program_headers)
3454 {
3455 int a;
3456
3457 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3458 if (a == -1)
3459 abort ();
3460 segs += a;
3461 }
3462
3463 return segs * bed->s->sizeof_phdr;
3464}
3465
3466/* Find the segment that contains the output_section of section. */
3467
3468Elf_Internal_Phdr *
3469_bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3470{
3471 struct elf_segment_map *m;
3472 Elf_Internal_Phdr *p;
3473
3474 for (m = elf_tdata (abfd)->segment_map,
3475 p = elf_tdata (abfd)->phdr;
3476 m != NULL;
3477 m = m->next, p++)
3478 {
3479 int i;
3480
3481 for (i = m->count - 1; i >= 0; i--)
3482 if (m->sections[i] == section)
3483 return p;
3484 }
3485
3486 return NULL;
3487}
3488
3489/* Create a mapping from a set of sections to a program segment. */
3490
3491static struct elf_segment_map *
3492make_mapping (bfd *abfd,
3493 asection **sections,
3494 unsigned int from,
3495 unsigned int to,
3496 bfd_boolean phdr)
3497{
3498 struct elf_segment_map *m;
3499 unsigned int i;
3500 asection **hdrpp;
3501 bfd_size_type amt;
3502
3503 amt = sizeof (struct elf_segment_map);
3504 amt += (to - from - 1) * sizeof (asection *);
3505 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3506 if (m == NULL)
3507 return NULL;
3508 m->next = NULL;
3509 m->p_type = PT_LOAD;
3510 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3511 m->sections[i - from] = *hdrpp;
3512 m->count = to - from;
3513
3514 if (from == 0 && phdr)
3515 {
3516 /* Include the headers in the first PT_LOAD segment. */
3517 m->includes_filehdr = 1;
3518 m->includes_phdrs = 1;
3519 }
3520
3521 return m;
3522}
3523
3524/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3525 on failure. */
3526
3527struct elf_segment_map *
3528_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3529{
3530 struct elf_segment_map *m;
3531
3532 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3533 sizeof (struct elf_segment_map));
3534 if (m == NULL)
3535 return NULL;
3536 m->next = NULL;
3537 m->p_type = PT_DYNAMIC;
3538 m->count = 1;
3539 m->sections[0] = dynsec;
3540
3541 return m;
3542}
3543
3544/* Possibly add or remove segments from the segment map. */
3545
3546static bfd_boolean
3547elf_modify_segment_map (bfd *abfd,
3548 struct bfd_link_info *info,
3549 bfd_boolean remove_empty_load)
3550{
3551 struct elf_segment_map **m;
3552 const struct elf_backend_data *bed;
3553
3554 /* The placement algorithm assumes that non allocated sections are
3555 not in PT_LOAD segments. We ensure this here by removing such
3556 sections from the segment map. We also remove excluded
3557 sections. Finally, any PT_LOAD segment without sections is
3558 removed. */
3559 m = &elf_tdata (abfd)->segment_map;
3560 while (*m)
3561 {
3562 unsigned int i, new_count;
3563
3564 for (new_count = 0, i = 0; i < (*m)->count; i++)
3565 {
3566 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3567 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3568 || (*m)->p_type != PT_LOAD))
3569 {
3570 (*m)->sections[new_count] = (*m)->sections[i];
3571 new_count++;
3572 }
3573 }
3574 (*m)->count = new_count;
3575
3576 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3577 *m = (*m)->next;
3578 else
3579 m = &(*m)->next;
3580 }
3581
3582 bed = get_elf_backend_data (abfd);
3583 if (bed->elf_backend_modify_segment_map != NULL)
3584 {
3585 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3586 return FALSE;
3587 }
3588
3589 return TRUE;
3590}
3591
3592/* Set up a mapping from BFD sections to program segments. */
3593
3594bfd_boolean
3595_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3596{
3597 unsigned int count;
3598 struct elf_segment_map *m;
3599 asection **sections = NULL;
3600 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3601 bfd_boolean no_user_phdrs;
3602
3603 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3604 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3605 {
3606 asection *s;
3607 unsigned int i;
3608 struct elf_segment_map *mfirst;
3609 struct elf_segment_map **pm;
3610 asection *last_hdr;
3611 bfd_vma last_size;
3612 unsigned int phdr_index;
3613 bfd_vma maxpagesize;
3614 asection **hdrpp;
3615 bfd_boolean phdr_in_segment = TRUE;
3616 bfd_boolean writable;
3617 int tls_count = 0;
3618 asection *first_tls = NULL;
3619 asection *dynsec, *eh_frame_hdr;
3620 bfd_size_type amt;
3621
3622 /* Select the allocated sections, and sort them. */
3623
3624 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3625 sizeof (asection *));
3626 if (sections == NULL)
3627 goto error_return;
3628
3629 i = 0;
3630 for (s = abfd->sections; s != NULL; s = s->next)
3631 {
3632 if ((s->flags & SEC_ALLOC) != 0)
3633 {
3634 sections[i] = s;
3635 ++i;
3636 }
3637 }
3638 BFD_ASSERT (i <= bfd_count_sections (abfd));
3639 count = i;
3640
3641 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3642
3643 /* Build the mapping. */
3644
3645 mfirst = NULL;
3646 pm = &mfirst;
3647
3648 /* If we have a .interp section, then create a PT_PHDR segment for
3649 the program headers and a PT_INTERP segment for the .interp
3650 section. */
3651 s = bfd_get_section_by_name (abfd, ".interp");
3652 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3653 {
3654 amt = sizeof (struct elf_segment_map);
3655 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3656 if (m == NULL)
3657 goto error_return;
3658 m->next = NULL;
3659 m->p_type = PT_PHDR;
3660 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3661 m->p_flags = PF_R | PF_X;
3662 m->p_flags_valid = 1;
3663 m->includes_phdrs = 1;
3664
3665 *pm = m;
3666 pm = &m->next;
3667
3668 amt = sizeof (struct elf_segment_map);
3669 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3670 if (m == NULL)
3671 goto error_return;
3672 m->next = NULL;
3673 m->p_type = PT_INTERP;
3674 m->count = 1;
3675 m->sections[0] = s;
3676
3677 *pm = m;
3678 pm = &m->next;
3679 }
3680
3681 /* Look through the sections. We put sections in the same program
3682 segment when the start of the second section can be placed within
3683 a few bytes of the end of the first section. */
3684 last_hdr = NULL;
3685 last_size = 0;
3686 phdr_index = 0;
3687 maxpagesize = bed->maxpagesize;
3688 writable = FALSE;
3689 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3690 if (dynsec != NULL
3691 && (dynsec->flags & SEC_LOAD) == 0)
3692 dynsec = NULL;
3693
3694 /* Deal with -Ttext or something similar such that the first section
3695 is not adjacent to the program headers. This is an
3696 approximation, since at this point we don't know exactly how many
3697 program headers we will need. */
3698 if (count > 0)
3699 {
3700 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3701
3702 if (phdr_size == (bfd_size_type) -1)
3703 phdr_size = get_program_header_size (abfd, info);
3704 if ((abfd->flags & D_PAGED) == 0
3705 || sections[0]->lma < phdr_size
3706 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3707 phdr_in_segment = FALSE;
3708 }
3709
3710 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3711 {
3712 asection *hdr;
3713 bfd_boolean new_segment;
3714
3715 hdr = *hdrpp;
3716
3717 /* See if this section and the last one will fit in the same
3718 segment. */
3719
3720 if (last_hdr == NULL)
3721 {
3722 /* If we don't have a segment yet, then we don't need a new
3723 one (we build the last one after this loop). */
3724 new_segment = FALSE;
3725 }
3726 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3727 {
3728 /* If this section has a different relation between the
3729 virtual address and the load address, then we need a new
3730 segment. */
3731 new_segment = TRUE;
3732 }
3733 /* In the next test we have to be careful when last_hdr->lma is close
3734 to the end of the address space. If the aligned address wraps
3735 around to the start of the address space, then there are no more
3736 pages left in memory and it is OK to assume that the current
3737 section can be included in the current segment. */
3738 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3739 > last_hdr->lma)
3740 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3741 <= hdr->lma))
3742 {
3743 /* If putting this section in this segment would force us to
3744 skip a page in the segment, then we need a new segment. */
3745 new_segment = TRUE;
3746 }
3747 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3748 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3749 {
3750 /* We don't want to put a loadable section after a
3751 nonloadable section in the same segment.
3752 Consider .tbss sections as loadable for this purpose. */
3753 new_segment = TRUE;
3754 }
3755 else if ((abfd->flags & D_PAGED) == 0)
3756 {
3757 /* If the file is not demand paged, which means that we
3758 don't require the sections to be correctly aligned in the
3759 file, then there is no other reason for a new segment. */
3760 new_segment = FALSE;
3761 }
3762 else if (! writable
3763 && (hdr->flags & SEC_READONLY) == 0
3764 && (((last_hdr->lma + last_size - 1)
3765 & ~(maxpagesize - 1))
3766 != (hdr->lma & ~(maxpagesize - 1))))
3767 {
3768 /* We don't want to put a writable section in a read only
3769 segment, unless they are on the same page in memory
3770 anyhow. We already know that the last section does not
3771 bring us past the current section on the page, so the
3772 only case in which the new section is not on the same
3773 page as the previous section is when the previous section
3774 ends precisely on a page boundary. */
3775 new_segment = TRUE;
3776 }
3777 else
3778 {
3779 /* Otherwise, we can use the same segment. */
3780 new_segment = FALSE;
3781 }
3782
3783 /* Allow interested parties a chance to override our decision. */
3784 if (last_hdr != NULL
3785 && info != NULL
3786 && info->callbacks->override_segment_assignment != NULL)
3787 new_segment
3788 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3789 last_hdr,
3790 new_segment);
3791
3792 if (! new_segment)
3793 {
3794 if ((hdr->flags & SEC_READONLY) == 0)
3795 writable = TRUE;
3796 last_hdr = hdr;
3797 /* .tbss sections effectively have zero size. */
3798 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3799 != SEC_THREAD_LOCAL)
3800 last_size = hdr->size;
3801 else
3802 last_size = 0;
3803 continue;
3804 }
3805
3806 /* We need a new program segment. We must create a new program
3807 header holding all the sections from phdr_index until hdr. */
3808
3809 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3810 if (m == NULL)
3811 goto error_return;
3812
3813 *pm = m;
3814 pm = &m->next;
3815
3816 if ((hdr->flags & SEC_READONLY) == 0)
3817 writable = TRUE;
3818 else
3819 writable = FALSE;
3820
3821 last_hdr = hdr;
3822 /* .tbss sections effectively have zero size. */
3823 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3824 last_size = hdr->size;
3825 else
3826 last_size = 0;
3827 phdr_index = i;
3828 phdr_in_segment = FALSE;
3829 }
3830
3831 /* Create a final PT_LOAD program segment. */
3832 if (last_hdr != NULL)
3833 {
3834 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3835 if (m == NULL)
3836 goto error_return;
3837
3838 *pm = m;
3839 pm = &m->next;
3840 }
3841
3842 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3843 if (dynsec != NULL)
3844 {
3845 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3846 if (m == NULL)
3847 goto error_return;
3848 *pm = m;
3849 pm = &m->next;
3850 }
3851
3852 /* For each batch of consecutive loadable .note sections,
3853 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3854 because if we link together nonloadable .note sections and
3855 loadable .note sections, we will generate two .note sections
3856 in the output file. FIXME: Using names for section types is
3857 bogus anyhow. */
3858 for (s = abfd->sections; s != NULL; s = s->next)
3859 {
3860 if ((s->flags & SEC_LOAD) != 0
3861 && CONST_STRNEQ (s->name, ".note"))
3862 {
3863 asection *s2;
3864
3865 count = 1;
3866 amt = sizeof (struct elf_segment_map);
3867 if (s->alignment_power == 2)
3868 for (s2 = s; s2->next != NULL; s2 = s2->next)
3869 {
3870 if (s2->next->alignment_power == 2
3871 && (s2->next->flags & SEC_LOAD) != 0
3872 && CONST_STRNEQ (s2->next->name, ".note")
3873 && align_power (s2->vma + s2->size, 2)
3874 == s2->next->vma)
3875 count++;
3876 else
3877 break;
3878 }
3879 amt += (count - 1) * sizeof (asection *);
3880 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3881 if (m == NULL)
3882 goto error_return;
3883 m->next = NULL;
3884 m->p_type = PT_NOTE;
3885 m->count = count;
3886 while (count > 1)
3887 {
3888 m->sections[m->count - count--] = s;
3889 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3890 s = s->next;
3891 }
3892 m->sections[m->count - 1] = s;
3893 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3894 *pm = m;
3895 pm = &m->next;
3896 }
3897 if (s->flags & SEC_THREAD_LOCAL)
3898 {
3899 if (! tls_count)
3900 first_tls = s;
3901 tls_count++;
3902 }
3903 }
3904
3905 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3906 if (tls_count > 0)
3907 {
3908 amt = sizeof (struct elf_segment_map);
3909 amt += (tls_count - 1) * sizeof (asection *);
3910 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3911 if (m == NULL)
3912 goto error_return;
3913 m->next = NULL;
3914 m->p_type = PT_TLS;
3915 m->count = tls_count;
3916 /* Mandated PF_R. */
3917 m->p_flags = PF_R;
3918 m->p_flags_valid = 1;
3919 for (i = 0; i < (unsigned int) tls_count; ++i)
3920 {
3921 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3922 m->sections[i] = first_tls;
3923 first_tls = first_tls->next;
3924 }
3925
3926 *pm = m;
3927 pm = &m->next;
3928 }
3929
3930 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3931 segment. */
3932 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3933 if (eh_frame_hdr != NULL
3934 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3935 {
3936 amt = sizeof (struct elf_segment_map);
3937 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3938 if (m == NULL)
3939 goto error_return;
3940 m->next = NULL;
3941 m->p_type = PT_GNU_EH_FRAME;
3942 m->count = 1;
3943 m->sections[0] = eh_frame_hdr->output_section;
3944
3945 *pm = m;
3946 pm = &m->next;
3947 }
3948
3949 if (elf_tdata (abfd)->stack_flags)
3950 {
3951 amt = sizeof (struct elf_segment_map);
3952 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3953 if (m == NULL)
3954 goto error_return;
3955 m->next = NULL;
3956 m->p_type = PT_GNU_STACK;
3957 m->p_flags = elf_tdata (abfd)->stack_flags;
3958 m->p_flags_valid = 1;
3959
3960 *pm = m;
3961 pm = &m->next;
3962 }
3963
3964 if (info != NULL && info->relro)
3965 {
3966 for (m = mfirst; m != NULL; m = m->next)
3967 {
3968 if (m->p_type == PT_LOAD)
3969 {
3970 asection *last = m->sections[m->count - 1];
3971 bfd_vma vaddr = m->sections[0]->vma;
3972 bfd_vma filesz = last->vma - vaddr + last->size;
3973
3974 if (vaddr < info->relro_end
3975 && vaddr >= info->relro_start
3976 && (vaddr + filesz) >= info->relro_end)
3977 break;
3978 }
3979 }
3980
3981 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3982 if (m != NULL)
3983 {
3984 amt = sizeof (struct elf_segment_map);
3985 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3986 if (m == NULL)
3987 goto error_return;
3988 m->next = NULL;
3989 m->p_type = PT_GNU_RELRO;
3990 m->p_flags = PF_R;
3991 m->p_flags_valid = 1;
3992
3993 *pm = m;
3994 pm = &m->next;
3995 }
3996 }
3997
3998 free (sections);
3999 elf_tdata (abfd)->segment_map = mfirst;
4000 }
4001
4002 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4003 return FALSE;
4004
4005 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4006 ++count;
4007 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4008
4009 return TRUE;
4010
4011 error_return:
4012 if (sections != NULL)
4013 free (sections);
4014 return FALSE;
4015}
4016
4017/* Sort sections by address. */
4018
4019static int
4020elf_sort_sections (const void *arg1, const void *arg2)
4021{
4022 const asection *sec1 = *(const asection **) arg1;
4023 const asection *sec2 = *(const asection **) arg2;
4024 bfd_size_type size1, size2;
4025
4026 /* Sort by LMA first, since this is the address used to
4027 place the section into a segment. */
4028 if (sec1->lma < sec2->lma)
4029 return -1;
4030 else if (sec1->lma > sec2->lma)
4031 return 1;
4032
4033 /* Then sort by VMA. Normally the LMA and the VMA will be
4034 the same, and this will do nothing. */
4035 if (sec1->vma < sec2->vma)
4036 return -1;
4037 else if (sec1->vma > sec2->vma)
4038 return 1;
4039
4040 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4041
4042#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4043
4044 if (TOEND (sec1))
4045 {
4046 if (TOEND (sec2))
4047 {
4048 /* If the indicies are the same, do not return 0
4049 here, but continue to try the next comparison. */
4050 if (sec1->target_index - sec2->target_index != 0)
4051 return sec1->target_index - sec2->target_index;
4052 }
4053 else
4054 return 1;
4055 }
4056 else if (TOEND (sec2))
4057 return -1;
4058
4059#undef TOEND
4060
4061 /* Sort by size, to put zero sized sections
4062 before others at the same address. */
4063
4064 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4065 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4066
4067 if (size1 < size2)
4068 return -1;
4069 if (size1 > size2)
4070 return 1;
4071
4072 return sec1->target_index - sec2->target_index;
4073}
4074
4075/* Ian Lance Taylor writes:
4076
4077 We shouldn't be using % with a negative signed number. That's just
4078 not good. We have to make sure either that the number is not
4079 negative, or that the number has an unsigned type. When the types
4080 are all the same size they wind up as unsigned. When file_ptr is a
4081 larger signed type, the arithmetic winds up as signed long long,
4082 which is wrong.
4083
4084 What we're trying to say here is something like ``increase OFF by
4085 the least amount that will cause it to be equal to the VMA modulo
4086 the page size.'' */
4087/* In other words, something like:
4088
4089 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4090 off_offset = off % bed->maxpagesize;
4091 if (vma_offset < off_offset)
4092 adjustment = vma_offset + bed->maxpagesize - off_offset;
4093 else
4094 adjustment = vma_offset - off_offset;
4095
4096 which can can be collapsed into the expression below. */
4097
4098static file_ptr
4099vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4100{
4101 return ((vma - off) % maxpagesize);
4102}
4103
4104static void
4105print_segment_map (const struct elf_segment_map *m)
4106{
4107 unsigned int j;
4108 const char *pt = get_segment_type (m->p_type);
4109 char buf[32];
4110
4111 if (pt == NULL)
4112 {
4113 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4114 sprintf (buf, "LOPROC+%7.7x",
4115 (unsigned int) (m->p_type - PT_LOPROC));
4116 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4117 sprintf (buf, "LOOS+%7.7x",
4118 (unsigned int) (m->p_type - PT_LOOS));
4119 else
4120 snprintf (buf, sizeof (buf), "%8.8x",
4121 (unsigned int) m->p_type);
4122 pt = buf;
4123 }
4124 fprintf (stderr, "%s:", pt);
4125 for (j = 0; j < m->count; j++)
4126 fprintf (stderr, " %s", m->sections [j]->name);
4127 putc ('\n',stderr);
4128}
4129
4130static bfd_boolean
4131write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4132{
4133 void *buf;
4134 bfd_boolean ret;
4135
4136 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4137 return FALSE;
4138 buf = bfd_zmalloc (len);
4139 if (buf == NULL)
4140 return FALSE;
4141 ret = bfd_bwrite (buf, len, abfd) == len;
4142 free (buf);
4143 return ret;
4144}
4145
4146/* Assign file positions to the sections based on the mapping from
4147 sections to segments. This function also sets up some fields in
4148 the file header. */
4149
4150static bfd_boolean
4151assign_file_positions_for_load_sections (bfd *abfd,
4152 struct bfd_link_info *link_info)
4153{
4154 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4155 struct elf_segment_map *m;
4156 Elf_Internal_Phdr *phdrs;
4157 Elf_Internal_Phdr *p;
4158 file_ptr off;
4159 bfd_size_type maxpagesize;
4160 unsigned int alloc;
4161 unsigned int i, j;
4162 bfd_vma header_pad = 0;
4163
4164 if (link_info == NULL
4165 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4166 return FALSE;
4167
4168 alloc = 0;
4169 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4170 {
4171 ++alloc;
4172 if (m->header_size)
4173 header_pad = m->header_size;
4174 }
4175
4176 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4177 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4178 elf_elfheader (abfd)->e_phnum = alloc;
4179
4180 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4181 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4182 else
4183 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4184 >= alloc * bed->s->sizeof_phdr);
4185
4186 if (alloc == 0)
4187 {
4188 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4189 return TRUE;
4190 }
4191
4192 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4193 see assign_file_positions_except_relocs, so make sure we have
4194 that amount allocated, with trailing space cleared.
4195 The variable alloc contains the computed need, while elf_tdata
4196 (abfd)->program_header_size contains the size used for the
4197 layout.
4198 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4199 where the layout is forced to according to a larger size in the
4200 last iterations for the testcase ld-elf/header. */
4201 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4202 == 0);
4203 phdrs = (Elf_Internal_Phdr *)
4204 bfd_zalloc2 (abfd,
4205 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4206 sizeof (Elf_Internal_Phdr));
4207 elf_tdata (abfd)->phdr = phdrs;
4208 if (phdrs == NULL)
4209 return FALSE;
4210
4211 maxpagesize = 1;
4212 if ((abfd->flags & D_PAGED) != 0)
4213 maxpagesize = bed->maxpagesize;
4214
4215 off = bed->s->sizeof_ehdr;
4216 off += alloc * bed->s->sizeof_phdr;
4217 if (header_pad < (bfd_vma) off)
4218 header_pad = 0;
4219 else
4220 header_pad -= off;
4221 off += header_pad;
4222
4223 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4224 m != NULL;
4225 m = m->next, p++, j++)
4226 {
4227 asection **secpp;
4228 bfd_vma off_adjust;
4229 bfd_boolean no_contents;
4230
4231 /* If elf_segment_map is not from map_sections_to_segments, the
4232 sections may not be correctly ordered. NOTE: sorting should
4233 not be done to the PT_NOTE section of a corefile, which may
4234 contain several pseudo-sections artificially created by bfd.
4235 Sorting these pseudo-sections breaks things badly. */
4236 if (m->count > 1
4237 && !(elf_elfheader (abfd)->e_type == ET_CORE
4238 && m->p_type == PT_NOTE))
4239 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4240 elf_sort_sections);
4241
4242 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4243 number of sections with contents contributing to both p_filesz
4244 and p_memsz, followed by a number of sections with no contents
4245 that just contribute to p_memsz. In this loop, OFF tracks next
4246 available file offset for PT_LOAD and PT_NOTE segments. */
4247 p->p_type = m->p_type;
4248 p->p_flags = m->p_flags;
4249
4250 if (m->count == 0)
4251 p->p_vaddr = 0;
4252 else
4253 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4254
4255 if (m->p_paddr_valid)
4256 p->p_paddr = m->p_paddr;
4257 else if (m->count == 0)
4258 p->p_paddr = 0;
4259 else
4260 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4261
4262 if (p->p_type == PT_LOAD
4263 && (abfd->flags & D_PAGED) != 0)
4264 {
4265 /* p_align in demand paged PT_LOAD segments effectively stores
4266 the maximum page size. When copying an executable with
4267 objcopy, we set m->p_align from the input file. Use this
4268 value for maxpagesize rather than bed->maxpagesize, which
4269 may be different. Note that we use maxpagesize for PT_TLS
4270 segment alignment later in this function, so we are relying
4271 on at least one PT_LOAD segment appearing before a PT_TLS
4272 segment. */
4273 if (m->p_align_valid)
4274 maxpagesize = m->p_align;
4275
4276 p->p_align = maxpagesize;
4277 }
4278 else if (m->p_align_valid)
4279 p->p_align = m->p_align;
4280 else if (m->count == 0)
4281 p->p_align = 1 << bed->s->log_file_align;
4282 else
4283 p->p_align = 0;
4284
4285 no_contents = FALSE;
4286 off_adjust = 0;
4287 if (p->p_type == PT_LOAD
4288 && m->count > 0)
4289 {
4290 bfd_size_type align;
4291 unsigned int align_power = 0;
4292
4293 if (m->p_align_valid)
4294 align = p->p_align;
4295 else
4296 {
4297 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4298 {
4299 unsigned int secalign;
4300
4301 secalign = bfd_get_section_alignment (abfd, *secpp);
4302 if (secalign > align_power)
4303 align_power = secalign;
4304 }
4305 align = (bfd_size_type) 1 << align_power;
4306 if (align < maxpagesize)
4307 align = maxpagesize;
4308 }
4309
4310 for (i = 0; i < m->count; i++)
4311 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4312 /* If we aren't making room for this section, then
4313 it must be SHT_NOBITS regardless of what we've
4314 set via struct bfd_elf_special_section. */
4315 elf_section_type (m->sections[i]) = SHT_NOBITS;
4316
4317 /* Find out whether this segment contains any loadable
4318 sections. */
4319 no_contents = TRUE;
4320 for (i = 0; i < m->count; i++)
4321 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4322 {
4323 no_contents = FALSE;
4324 break;
4325 }
4326
4327 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4328 off += off_adjust;
4329 if (no_contents)
4330 {
4331 /* We shouldn't need to align the segment on disk since
4332 the segment doesn't need file space, but the gABI
4333 arguably requires the alignment and glibc ld.so
4334 checks it. So to comply with the alignment
4335 requirement but not waste file space, we adjust
4336 p_offset for just this segment. (OFF_ADJUST is
4337 subtracted from OFF later.) This may put p_offset
4338 past the end of file, but that shouldn't matter. */
4339 }
4340 else
4341 off_adjust = 0;
4342 }
4343 /* Make sure the .dynamic section is the first section in the
4344 PT_DYNAMIC segment. */
4345 else if (p->p_type == PT_DYNAMIC
4346 && m->count > 1
4347 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4348 {
4349 _bfd_error_handler
4350 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4351 abfd);
4352 bfd_set_error (bfd_error_bad_value);
4353 return FALSE;
4354 }
4355 /* Set the note section type to SHT_NOTE. */
4356 else if (p->p_type == PT_NOTE)
4357 for (i = 0; i < m->count; i++)
4358 elf_section_type (m->sections[i]) = SHT_NOTE;
4359
4360 p->p_offset = 0;
4361 p->p_filesz = 0;
4362 p->p_memsz = 0;
4363
4364 if (m->includes_filehdr)
4365 {
4366 if (!m->p_flags_valid)
4367 p->p_flags |= PF_R;
4368 p->p_filesz = bed->s->sizeof_ehdr;
4369 p->p_memsz = bed->s->sizeof_ehdr;
4370 if (m->count > 0)
4371 {
4372 BFD_ASSERT (p->p_type == PT_LOAD);
4373
4374 if (p->p_vaddr < (bfd_vma) off)
4375 {
4376 (*_bfd_error_handler)
4377 (_("%B: Not enough room for program headers, try linking with -N"),
4378 abfd);
4379 bfd_set_error (bfd_error_bad_value);
4380 return FALSE;
4381 }
4382
4383 p->p_vaddr -= off;
4384 if (!m->p_paddr_valid)
4385 p->p_paddr -= off;
4386 }
4387 }
4388
4389 if (m->includes_phdrs)
4390 {
4391 if (!m->p_flags_valid)
4392 p->p_flags |= PF_R;
4393
4394 if (!m->includes_filehdr)
4395 {
4396 p->p_offset = bed->s->sizeof_ehdr;
4397
4398 if (m->count > 0)
4399 {
4400 BFD_ASSERT (p->p_type == PT_LOAD);
4401 p->p_vaddr -= off - p->p_offset;
4402 if (!m->p_paddr_valid)
4403 p->p_paddr -= off - p->p_offset;
4404 }
4405 }
4406
4407 p->p_filesz += alloc * bed->s->sizeof_phdr;
4408 p->p_memsz += alloc * bed->s->sizeof_phdr;
4409 if (m->count)
4410 {
4411 p->p_filesz += header_pad;
4412 p->p_memsz += header_pad;
4413 }
4414 }
4415
4416 if (p->p_type == PT_LOAD
4417 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4418 {
4419 if (!m->includes_filehdr && !m->includes_phdrs)
4420 p->p_offset = off;
4421 else
4422 {
4423 file_ptr adjust;
4424
4425 adjust = off - (p->p_offset + p->p_filesz);
4426 if (!no_contents)
4427 p->p_filesz += adjust;
4428 p->p_memsz += adjust;
4429 }
4430 }
4431
4432 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4433 maps. Set filepos for sections in PT_LOAD segments, and in
4434 core files, for sections in PT_NOTE segments.
4435 assign_file_positions_for_non_load_sections will set filepos
4436 for other sections and update p_filesz for other segments. */
4437 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4438 {
4439 asection *sec;
4440 bfd_size_type align;
4441 Elf_Internal_Shdr *this_hdr;
4442
4443 sec = *secpp;
4444 this_hdr = &elf_section_data (sec)->this_hdr;
4445 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4446
4447 if ((p->p_type == PT_LOAD
4448 || p->p_type == PT_TLS)
4449 && (this_hdr->sh_type != SHT_NOBITS
4450 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4451 && ((this_hdr->sh_flags & SHF_TLS) == 0
4452 || p->p_type == PT_TLS))))
4453 {
4454 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4455
4456 if (adjust < 0)
4457 {
4458 (*_bfd_error_handler)
4459 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4460 abfd, sec, (unsigned long) sec->vma);
4461 adjust = 0;
4462 }
4463 p->p_memsz += adjust;
4464
4465 if (p->p_paddr + p->p_memsz != sec->lma)
4466 {
4467 /* This behavior is a compromise--ld has long
4468 silently changed the lma of sections when
4469 lma - vma is not equal for every section in a
4470 pheader--but only in the internal elf structures.
4471 Silently changing the lma is probably a bug, but
4472 changing it would have subtle and unknown
4473 consequences for existing scripts.
4474
4475 Instead modify the bfd data structure to reflect
4476 what happened. This at least fixes the values
4477 for the lma in the mapfile. */
4478 sec->lma = p->p_paddr + p->p_memsz;
4479 }
4480
4481 if (this_hdr->sh_type != SHT_NOBITS)
4482 {
4483 if (p->p_filesz + adjust < p->p_memsz)
4484 {
4485 /* We have a PROGBITS section following NOBITS ones.
4486 Allocate file space for the NOBITS section(s) and
4487 zero it. */
4488 adjust = p->p_memsz - p->p_filesz;
4489 if (!write_zeros (abfd, off, adjust))
4490 return FALSE;
4491 }
4492 off += adjust;
4493 p->p_filesz += adjust;
4494 }
4495 }
4496
4497 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4498 {
4499 /* The section at i == 0 is the one that actually contains
4500 everything. */
4501 if (i == 0)
4502 {
4503 this_hdr->sh_offset = sec->filepos = off;
4504 off += this_hdr->sh_size;
4505 p->p_filesz = this_hdr->sh_size;
4506 p->p_memsz = 0;
4507 p->p_align = 1;
4508 }
4509 else
4510 {
4511 /* The rest are fake sections that shouldn't be written. */
4512 sec->filepos = 0;
4513 sec->size = 0;
4514 sec->flags = 0;
4515 continue;
4516 }
4517 }
4518 else
4519 {
4520 if (p->p_type == PT_LOAD)
4521 {
4522 this_hdr->sh_offset = sec->filepos = off;
4523 if (this_hdr->sh_type != SHT_NOBITS)
4524 off += this_hdr->sh_size;
4525 }
4526
4527 if (this_hdr->sh_type != SHT_NOBITS)
4528 {
4529 p->p_filesz += this_hdr->sh_size;
4530 /* A load section without SHF_ALLOC is something like
4531 a note section in a PT_NOTE segment. These take
4532 file space but are not loaded into memory. */
4533 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4534 p->p_memsz += this_hdr->sh_size;
4535 }
4536 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4537 {
4538 if (p->p_type == PT_TLS)
4539 p->p_memsz += this_hdr->sh_size;
4540
4541 /* .tbss is special. It doesn't contribute to p_memsz of
4542 normal segments. */
4543 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4544 p->p_memsz += this_hdr->sh_size;
4545 }
4546
4547 if (align > p->p_align
4548 && !m->p_align_valid
4549 && (p->p_type != PT_LOAD
4550 || (abfd->flags & D_PAGED) == 0))
4551 p->p_align = align;
4552 }
4553
4554 if (!m->p_flags_valid)
4555 {
4556 p->p_flags |= PF_R;
4557 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4558 p->p_flags |= PF_X;
4559 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4560 p->p_flags |= PF_W;
4561 }
4562 }
4563 off -= off_adjust;
4564
4565 /* Check that all sections are in a PT_LOAD segment.
4566 Don't check funky gdb generated core files. */
4567 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4568 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4569 {
4570 Elf_Internal_Shdr *this_hdr;
4571 asection *sec;
4572
4573 sec = *secpp;
4574 this_hdr = &(elf_section_data(sec)->this_hdr);
4575 if (this_hdr->sh_size != 0
4576 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4577 {
4578 (*_bfd_error_handler)
4579 (_("%B: section `%A' can't be allocated in segment %d"),
4580 abfd, sec, j);
4581 print_segment_map (m);
4582 bfd_set_error (bfd_error_bad_value);
4583 return FALSE;
4584 }
4585 }
4586 }
4587
4588 elf_tdata (abfd)->next_file_pos = off;
4589 return TRUE;
4590}
4591
4592/* Assign file positions for the other sections. */
4593
4594static bfd_boolean
4595assign_file_positions_for_non_load_sections (bfd *abfd,
4596 struct bfd_link_info *link_info)
4597{
4598 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4599 Elf_Internal_Shdr **i_shdrpp;
4600 Elf_Internal_Shdr **hdrpp;
4601 Elf_Internal_Phdr *phdrs;
4602 Elf_Internal_Phdr *p;
4603 struct elf_segment_map *m;
4604 bfd_vma filehdr_vaddr, filehdr_paddr;
4605 bfd_vma phdrs_vaddr, phdrs_paddr;
4606 file_ptr off;
4607 unsigned int num_sec;
4608 unsigned int i;
4609 unsigned int count;
4610
4611 i_shdrpp = elf_elfsections (abfd);
4612 num_sec = elf_numsections (abfd);
4613 off = elf_tdata (abfd)->next_file_pos;
4614 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4615 {
4616 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4617 Elf_Internal_Shdr *hdr;
4618
4619 hdr = *hdrpp;
4620 if (hdr->bfd_section != NULL
4621 && (hdr->bfd_section->filepos != 0
4622 || (hdr->sh_type == SHT_NOBITS
4623 && hdr->contents == NULL)))
4624 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4625 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4626 {
4627 if (hdr->sh_size != 0)
4628 ((*_bfd_error_handler)
4629 (_("%B: warning: allocated section `%s' not in segment"),
4630 abfd,
4631 (hdr->bfd_section == NULL
4632 ? "*unknown*"
4633 : hdr->bfd_section->name)));
4634 /* We don't need to page align empty sections. */
4635 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4636 off += vma_page_aligned_bias (hdr->sh_addr, off,
4637 bed->maxpagesize);
4638 else
4639 off += vma_page_aligned_bias (hdr->sh_addr, off,
4640 hdr->sh_addralign);
4641 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4642 FALSE);
4643 }
4644 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4645 && hdr->bfd_section == NULL)
4646 || hdr == i_shdrpp[tdata->symtab_section]
4647 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4648 || hdr == i_shdrpp[tdata->strtab_section])
4649 hdr->sh_offset = -1;
4650 else
4651 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4652 }
4653
4654 /* Now that we have set the section file positions, we can set up
4655 the file positions for the non PT_LOAD segments. */
4656 count = 0;
4657 filehdr_vaddr = 0;
4658 filehdr_paddr = 0;
4659 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4660 phdrs_paddr = 0;
4661 phdrs = elf_tdata (abfd)->phdr;
4662 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4663 m != NULL;
4664 m = m->next, p++)
4665 {
4666 ++count;
4667 if (p->p_type != PT_LOAD)
4668 continue;
4669
4670 if (m->includes_filehdr)
4671 {
4672 filehdr_vaddr = p->p_vaddr;
4673 filehdr_paddr = p->p_paddr;
4674 }
4675 if (m->includes_phdrs)
4676 {
4677 phdrs_vaddr = p->p_vaddr;
4678 phdrs_paddr = p->p_paddr;
4679 if (m->includes_filehdr)
4680 {
4681 phdrs_vaddr += bed->s->sizeof_ehdr;
4682 phdrs_paddr += bed->s->sizeof_ehdr;
4683 }
4684 }
4685 }
4686
4687 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4688 m != NULL;
4689 m = m->next, p++)
4690 {
4691 if (p->p_type == PT_GNU_RELRO)
4692 {
4693 const Elf_Internal_Phdr *lp;
4694
4695 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4696
4697 if (link_info != NULL)
4698 {
4699 /* During linking the range of the RELRO segment is passed
4700 in link_info. */
4701 for (lp = phdrs; lp < phdrs + count; ++lp)
4702 {
4703 if (lp->p_type == PT_LOAD
4704 && lp->p_vaddr >= link_info->relro_start
4705 && lp->p_vaddr < link_info->relro_end
4706 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4707 break;
4708 }
4709 }
4710 else
4711 {
4712 /* Otherwise we are copying an executable or shared
4713 library, but we need to use the same linker logic. */
4714 for (lp = phdrs; lp < phdrs + count; ++lp)
4715 {
4716 if (lp->p_type == PT_LOAD
4717 && lp->p_paddr == p->p_paddr)
4718 break;
4719 }
4720 }
4721
4722 if (lp < phdrs + count)
4723 {
4724 p->p_vaddr = lp->p_vaddr;
4725 p->p_paddr = lp->p_paddr;
4726 p->p_offset = lp->p_offset;
4727 if (link_info != NULL)
4728 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4729 else if (m->p_size_valid)
4730 p->p_filesz = m->p_size;
4731 else
4732 abort ();
4733 p->p_memsz = p->p_filesz;
4734 p->p_align = 1;
4735 p->p_flags = (lp->p_flags & ~PF_W);
4736 }
4737 else
4738 {
4739 memset (p, 0, sizeof *p);
4740 p->p_type = PT_NULL;
4741 }
4742 }
4743 else if (m->count != 0)
4744 {
4745 if (p->p_type != PT_LOAD
4746 && (p->p_type != PT_NOTE
4747 || bfd_get_format (abfd) != bfd_core))
4748 {
4749 Elf_Internal_Shdr *hdr;
4750 asection *sect;
4751
4752 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4753
4754 sect = m->sections[m->count - 1];
4755 hdr = &elf_section_data (sect)->this_hdr;
4756 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4757 if (hdr->sh_type != SHT_NOBITS)
4758 p->p_filesz += hdr->sh_size;
4759 p->p_offset = m->sections[0]->filepos;
4760 }
4761 }
4762 else if (m->includes_filehdr)
4763 {
4764 p->p_vaddr = filehdr_vaddr;
4765 if (! m->p_paddr_valid)
4766 p->p_paddr = filehdr_paddr;
4767 }
4768 else if (m->includes_phdrs)
4769 {
4770 p->p_vaddr = phdrs_vaddr;
4771 if (! m->p_paddr_valid)
4772 p->p_paddr = phdrs_paddr;
4773 }
4774 }
4775
4776 elf_tdata (abfd)->next_file_pos = off;
4777
4778 return TRUE;
4779}
4780
4781/* Work out the file positions of all the sections. This is called by
4782 _bfd_elf_compute_section_file_positions. All the section sizes and
4783 VMAs must be known before this is called.
4784
4785 Reloc sections come in two flavours: Those processed specially as
4786 "side-channel" data attached to a section to which they apply, and
4787 those that bfd doesn't process as relocations. The latter sort are
4788 stored in a normal bfd section by bfd_section_from_shdr. We don't
4789 consider the former sort here, unless they form part of the loadable
4790 image. Reloc sections not assigned here will be handled later by
4791 assign_file_positions_for_relocs.
4792
4793 We also don't set the positions of the .symtab and .strtab here. */
4794
4795static bfd_boolean
4796assign_file_positions_except_relocs (bfd *abfd,
4797 struct bfd_link_info *link_info)
4798{
4799 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4800 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4801 file_ptr off;
4802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4803
4804 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4805 && bfd_get_format (abfd) != bfd_core)
4806 {
4807 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4808 unsigned int num_sec = elf_numsections (abfd);
4809 Elf_Internal_Shdr **hdrpp;
4810 unsigned int i;
4811
4812 /* Start after the ELF header. */
4813 off = i_ehdrp->e_ehsize;
4814
4815 /* We are not creating an executable, which means that we are
4816 not creating a program header, and that the actual order of
4817 the sections in the file is unimportant. */
4818 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4819 {
4820 Elf_Internal_Shdr *hdr;
4821
4822 hdr = *hdrpp;
4823 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4824 && hdr->bfd_section == NULL)
4825 || i == tdata->symtab_section
4826 || i == tdata->symtab_shndx_section
4827 || i == tdata->strtab_section)
4828 {
4829 hdr->sh_offset = -1;
4830 }
4831 else
4832 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4833 }
4834 }
4835 else
4836 {
4837 unsigned int alloc;
4838
4839 /* Assign file positions for the loaded sections based on the
4840 assignment of sections to segments. */
4841 if (!assign_file_positions_for_load_sections (abfd, link_info))
4842 return FALSE;
4843
4844 /* And for non-load sections. */
4845 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4846 return FALSE;
4847
4848 if (bed->elf_backend_modify_program_headers != NULL)
4849 {
4850 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4851 return FALSE;
4852 }
4853
4854 /* Write out the program headers. */
4855 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4856 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4857 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4858 return FALSE;
4859
4860 off = tdata->next_file_pos;
4861 }
4862
4863 /* Place the section headers. */
4864 off = align_file_position (off, 1 << bed->s->log_file_align);
4865 i_ehdrp->e_shoff = off;
4866 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4867
4868 tdata->next_file_pos = off;
4869
4870 return TRUE;
4871}
4872
4873static bfd_boolean
4874prep_headers (bfd *abfd)
4875{
4876 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4877 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4878 struct elf_strtab_hash *shstrtab;
4879 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4880
4881 i_ehdrp = elf_elfheader (abfd);
4882
4883 shstrtab = _bfd_elf_strtab_init ();
4884 if (shstrtab == NULL)
4885 return FALSE;
4886
4887 elf_shstrtab (abfd) = shstrtab;
4888
4889 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4890 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4891 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4892 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4893
4894 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4895 i_ehdrp->e_ident[EI_DATA] =
4896 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4897 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4898
4899 if ((abfd->flags & DYNAMIC) != 0)
4900 i_ehdrp->e_type = ET_DYN;
4901 else if ((abfd->flags & EXEC_P) != 0)
4902 i_ehdrp->e_type = ET_EXEC;
4903 else if (bfd_get_format (abfd) == bfd_core)
4904 i_ehdrp->e_type = ET_CORE;
4905 else
4906 i_ehdrp->e_type = ET_REL;
4907
4908 switch (bfd_get_arch (abfd))
4909 {
4910 case bfd_arch_unknown:
4911 i_ehdrp->e_machine = EM_NONE;
4912 break;
4913
4914 /* There used to be a long list of cases here, each one setting
4915 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4916 in the corresponding bfd definition. To avoid duplication,
4917 the switch was removed. Machines that need special handling
4918 can generally do it in elf_backend_final_write_processing(),
4919 unless they need the information earlier than the final write.
4920 Such need can generally be supplied by replacing the tests for
4921 e_machine with the conditions used to determine it. */
4922 default:
4923 i_ehdrp->e_machine = bed->elf_machine_code;
4924 }
4925
4926 i_ehdrp->e_version = bed->s->ev_current;
4927 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4928
4929 /* No program header, for now. */
4930 i_ehdrp->e_phoff = 0;
4931 i_ehdrp->e_phentsize = 0;
4932 i_ehdrp->e_phnum = 0;
4933
4934 /* Each bfd section is section header entry. */
4935 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4936 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4937
4938 /* If we're building an executable, we'll need a program header table. */
4939 if (abfd->flags & EXEC_P)
4940 /* It all happens later. */
4941 ;
4942 else
4943 {
4944 i_ehdrp->e_phentsize = 0;
4945 i_phdrp = 0;
4946 i_ehdrp->e_phoff = 0;
4947 }
4948
4949 elf_tdata (abfd)->symtab_hdr.sh_name =
4950 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4951 elf_tdata (abfd)->strtab_hdr.sh_name =
4952 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4953 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4954 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4955 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4956 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4957 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4958 return FALSE;
4959
4960 return TRUE;
4961}
4962
4963/* Assign file positions for all the reloc sections which are not part
4964 of the loadable file image. */
4965
4966void
4967_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4968{
4969 file_ptr off;
4970 unsigned int i, num_sec;
4971 Elf_Internal_Shdr **shdrpp;
4972
4973 off = elf_tdata (abfd)->next_file_pos;
4974
4975 num_sec = elf_numsections (abfd);
4976 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4977 {
4978 Elf_Internal_Shdr *shdrp;
4979
4980 shdrp = *shdrpp;
4981 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4982 && shdrp->sh_offset == -1)
4983 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4984 }
4985
4986 elf_tdata (abfd)->next_file_pos = off;
4987}
4988
4989bfd_boolean
4990_bfd_elf_write_object_contents (bfd *abfd)
4991{
4992 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4993 Elf_Internal_Ehdr *i_ehdrp;
4994 Elf_Internal_Shdr **i_shdrp;
4995 bfd_boolean failed;
4996 unsigned int count, num_sec;
4997
4998 if (! abfd->output_has_begun
4999 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5000 return FALSE;
5001
5002 i_shdrp = elf_elfsections (abfd);
5003 i_ehdrp = elf_elfheader (abfd);
5004
5005 failed = FALSE;
5006 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5007 if (failed)
5008 return FALSE;
5009
5010 _bfd_elf_assign_file_positions_for_relocs (abfd);
5011
5012 /* After writing the headers, we need to write the sections too... */
5013 num_sec = elf_numsections (abfd);
5014 for (count = 1; count < num_sec; count++)
5015 {
5016 if (bed->elf_backend_section_processing)
5017 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5018 if (i_shdrp[count]->contents)
5019 {
5020 bfd_size_type amt = i_shdrp[count]->sh_size;
5021
5022 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5023 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5024 return FALSE;
5025 }
5026 }
5027
5028 /* Write out the section header names. */
5029 if (elf_shstrtab (abfd) != NULL
5030 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5031 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5032 return FALSE;
5033
5034 if (bed->elf_backend_final_write_processing)
5035 (*bed->elf_backend_final_write_processing) (abfd,
5036 elf_tdata (abfd)->linker);
5037
5038 if (!bed->s->write_shdrs_and_ehdr (abfd))
5039 return FALSE;
5040
5041 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5042 if (elf_tdata (abfd)->after_write_object_contents)
5043 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5044
5045 return TRUE;
5046}
5047
5048bfd_boolean
5049_bfd_elf_write_corefile_contents (bfd *abfd)
5050{
5051 /* Hopefully this can be done just like an object file. */
5052 return _bfd_elf_write_object_contents (abfd);
5053}
5054
5055/* Given a section, search the header to find them. */
5056
5057unsigned int
5058_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5059{
5060 const struct elf_backend_data *bed;
5061 unsigned int sec_index;
5062
5063 if (elf_section_data (asect) != NULL
5064 && elf_section_data (asect)->this_idx != 0)
5065 return elf_section_data (asect)->this_idx;
5066
5067 if (bfd_is_abs_section (asect))
5068 sec_index = SHN_ABS;
5069 else if (bfd_is_com_section (asect))
5070 sec_index = SHN_COMMON;
5071 else if (bfd_is_und_section (asect))
5072 sec_index = SHN_UNDEF;
5073 else
5074 sec_index = SHN_BAD;
5075
5076 bed = get_elf_backend_data (abfd);
5077 if (bed->elf_backend_section_from_bfd_section)
5078 {
5079 int retval = sec_index;
5080
5081 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5082 return retval;
5083 }
5084
5085 if (sec_index == SHN_BAD)
5086 bfd_set_error (bfd_error_nonrepresentable_section);
5087
5088 return sec_index;
5089}
5090
5091/* Given a BFD symbol, return the index in the ELF symbol table, or -1
5092 on error. */
5093
5094int
5095_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5096{
5097 asymbol *asym_ptr = *asym_ptr_ptr;
5098 int idx;
5099 flagword flags = asym_ptr->flags;
5100
5101 /* When gas creates relocations against local labels, it creates its
5102 own symbol for the section, but does put the symbol into the
5103 symbol chain, so udata is 0. When the linker is generating
5104 relocatable output, this section symbol may be for one of the
5105 input sections rather than the output section. */
5106 if (asym_ptr->udata.i == 0
5107 && (flags & BSF_SECTION_SYM)
5108 && asym_ptr->section)
5109 {
5110 asection *sec;
5111 int indx;
5112
5113 sec = asym_ptr->section;
5114 if (sec->owner != abfd && sec->output_section != NULL)
5115 sec = sec->output_section;
5116 if (sec->owner == abfd
5117 && (indx = sec->index) < elf_num_section_syms (abfd)
5118 && elf_section_syms (abfd)[indx] != NULL)
5119 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5120 }
5121
5122 idx = asym_ptr->udata.i;
5123
5124 if (idx == 0)
5125 {
5126 /* This case can occur when using --strip-symbol on a symbol
5127 which is used in a relocation entry. */
5128 (*_bfd_error_handler)
5129 (_("%B: symbol `%s' required but not present"),
5130 abfd, bfd_asymbol_name (asym_ptr));
5131 bfd_set_error (bfd_error_no_symbols);
5132 return -1;
5133 }
5134
5135#if DEBUG & 4
5136 {
5137 fprintf (stderr,
5138 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5139 (long) asym_ptr, asym_ptr->name, idx, flags,
5140 elf_symbol_flags (flags));
5141 fflush (stderr);
5142 }
5143#endif
5144
5145 return idx;
5146}
5147
5148/* Rewrite program header information. */
5149
5150static bfd_boolean
5151rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5152{
5153 Elf_Internal_Ehdr *iehdr;
5154 struct elf_segment_map *map;
5155 struct elf_segment_map *map_first;
5156 struct elf_segment_map **pointer_to_map;
5157 Elf_Internal_Phdr *segment;
5158 asection *section;
5159 unsigned int i;
5160 unsigned int num_segments;
5161 bfd_boolean phdr_included = FALSE;
5162 bfd_boolean p_paddr_valid;
5163 bfd_vma maxpagesize;
5164 struct elf_segment_map *phdr_adjust_seg = NULL;
5165 unsigned int phdr_adjust_num = 0;
5166 const struct elf_backend_data *bed;
5167
5168 bed = get_elf_backend_data (ibfd);
5169 iehdr = elf_elfheader (ibfd);
5170
5171 map_first = NULL;
5172 pointer_to_map = &map_first;
5173
5174 num_segments = elf_elfheader (ibfd)->e_phnum;
5175 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5176
5177 /* Returns the end address of the segment + 1. */
5178#define SEGMENT_END(segment, start) \
5179 (start + (segment->p_memsz > segment->p_filesz \
5180 ? segment->p_memsz : segment->p_filesz))
5181
5182#define SECTION_SIZE(section, segment) \
5183 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5184 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5185 ? section->size : 0)
5186
5187 /* Returns TRUE if the given section is contained within
5188 the given segment. VMA addresses are compared. */
5189#define IS_CONTAINED_BY_VMA(section, segment) \
5190 (section->vma >= segment->p_vaddr \
5191 && (section->vma + SECTION_SIZE (section, segment) \
5192 <= (SEGMENT_END (segment, segment->p_vaddr))))
5193
5194 /* Returns TRUE if the given section is contained within
5195 the given segment. LMA addresses are compared. */
5196#define IS_CONTAINED_BY_LMA(section, segment, base) \
5197 (section->lma >= base \
5198 && (section->lma + SECTION_SIZE (section, segment) \
5199 <= SEGMENT_END (segment, base)))
5200
5201 /* Handle PT_NOTE segment. */
5202#define IS_NOTE(p, s) \
5203 (p->p_type == PT_NOTE \
5204 && elf_section_type (s) == SHT_NOTE \
5205 && (bfd_vma) s->filepos >= p->p_offset \
5206 && ((bfd_vma) s->filepos + s->size \
5207 <= p->p_offset + p->p_filesz))
5208
5209 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5210 etc. */
5211#define IS_COREFILE_NOTE(p, s) \
5212 (IS_NOTE (p, s) \
5213 && bfd_get_format (ibfd) == bfd_core \
5214 && s->vma == 0 \
5215 && s->lma == 0)
5216
5217 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5218 linker, which generates a PT_INTERP section with p_vaddr and
5219 p_memsz set to 0. */
5220#define IS_SOLARIS_PT_INTERP(p, s) \
5221 (p->p_vaddr == 0 \
5222 && p->p_paddr == 0 \
5223 && p->p_memsz == 0 \
5224 && p->p_filesz > 0 \
5225 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5226 && s->size > 0 \
5227 && (bfd_vma) s->filepos >= p->p_offset \
5228 && ((bfd_vma) s->filepos + s->size \
5229 <= p->p_offset + p->p_filesz))
5230
5231 /* Decide if the given section should be included in the given segment.
5232 A section will be included if:
5233 1. It is within the address space of the segment -- we use the LMA
5234 if that is set for the segment and the VMA otherwise,
5235 2. It is an allocated section or a NOTE section in a PT_NOTE
5236 segment.
5237 3. There is an output section associated with it,
5238 4. The section has not already been allocated to a previous segment.
5239 5. PT_GNU_STACK segments do not include any sections.
5240 6. PT_TLS segment includes only SHF_TLS sections.
5241 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5242 8. PT_DYNAMIC should not contain empty sections at the beginning
5243 (with the possible exception of .dynamic). */
5244#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5245 ((((segment->p_paddr \
5246 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5247 : IS_CONTAINED_BY_VMA (section, segment)) \
5248 && (section->flags & SEC_ALLOC) != 0) \
5249 || IS_NOTE (segment, section)) \
5250 && segment->p_type != PT_GNU_STACK \
5251 && (segment->p_type != PT_TLS \
5252 || (section->flags & SEC_THREAD_LOCAL)) \
5253 && (segment->p_type == PT_LOAD \
5254 || segment->p_type == PT_TLS \
5255 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5256 && (segment->p_type != PT_DYNAMIC \
5257 || SECTION_SIZE (section, segment) > 0 \
5258 || (segment->p_paddr \
5259 ? segment->p_paddr != section->lma \
5260 : segment->p_vaddr != section->vma) \
5261 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5262 == 0)) \
5263 && !section->segment_mark)
5264
5265/* If the output section of a section in the input segment is NULL,
5266 it is removed from the corresponding output segment. */
5267#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5268 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5269 && section->output_section != NULL)
5270
5271 /* Returns TRUE iff seg1 starts after the end of seg2. */
5272#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5273 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5274
5275 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5276 their VMA address ranges and their LMA address ranges overlap.
5277 It is possible to have overlapping VMA ranges without overlapping LMA
5278 ranges. RedBoot images for example can have both .data and .bss mapped
5279 to the same VMA range, but with the .data section mapped to a different
5280 LMA. */
5281#define SEGMENT_OVERLAPS(seg1, seg2) \
5282 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5283 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5284 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5285 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5286
5287 /* Initialise the segment mark field. */
5288 for (section = ibfd->sections; section != NULL; section = section->next)
5289 section->segment_mark = FALSE;
5290
5291 /* The Solaris linker creates program headers in which all the
5292 p_paddr fields are zero. When we try to objcopy or strip such a
5293 file, we get confused. Check for this case, and if we find it
5294 don't set the p_paddr_valid fields. */
5295 p_paddr_valid = FALSE;
5296 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5297 i < num_segments;
5298 i++, segment++)
5299 if (segment->p_paddr != 0)
5300 {
5301 p_paddr_valid = TRUE;
5302 break;
5303 }
5304
5305 /* Scan through the segments specified in the program header
5306 of the input BFD. For this first scan we look for overlaps
5307 in the loadable segments. These can be created by weird
5308 parameters to objcopy. Also, fix some solaris weirdness. */
5309 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5310 i < num_segments;
5311 i++, segment++)
5312 {
5313 unsigned int j;
5314 Elf_Internal_Phdr *segment2;
5315
5316 if (segment->p_type == PT_INTERP)
5317 for (section = ibfd->sections; section; section = section->next)
5318 if (IS_SOLARIS_PT_INTERP (segment, section))
5319 {
5320 /* Mininal change so that the normal section to segment
5321 assignment code will work. */
5322 segment->p_vaddr = section->vma;
5323 break;
5324 }
5325
5326 if (segment->p_type != PT_LOAD)
5327 {
5328 /* Remove PT_GNU_RELRO segment. */
5329 if (segment->p_type == PT_GNU_RELRO)
5330 segment->p_type = PT_NULL;
5331 continue;
5332 }
5333
5334 /* Determine if this segment overlaps any previous segments. */
5335 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5336 {
5337 bfd_signed_vma extra_length;
5338
5339 if (segment2->p_type != PT_LOAD
5340 || !SEGMENT_OVERLAPS (segment, segment2))
5341 continue;
5342
5343 /* Merge the two segments together. */
5344 if (segment2->p_vaddr < segment->p_vaddr)
5345 {
5346 /* Extend SEGMENT2 to include SEGMENT and then delete
5347 SEGMENT. */
5348 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5349 - SEGMENT_END (segment2, segment2->p_vaddr));
5350
5351 if (extra_length > 0)
5352 {
5353 segment2->p_memsz += extra_length;
5354 segment2->p_filesz += extra_length;
5355 }
5356
5357 segment->p_type = PT_NULL;
5358
5359 /* Since we have deleted P we must restart the outer loop. */
5360 i = 0;
5361 segment = elf_tdata (ibfd)->phdr;
5362 break;
5363 }
5364 else
5365 {
5366 /* Extend SEGMENT to include SEGMENT2 and then delete
5367 SEGMENT2. */
5368 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5369 - SEGMENT_END (segment, segment->p_vaddr));
5370
5371 if (extra_length > 0)
5372 {
5373 segment->p_memsz += extra_length;
5374 segment->p_filesz += extra_length;
5375 }
5376
5377 segment2->p_type = PT_NULL;
5378 }
5379 }
5380 }
5381
5382 /* The second scan attempts to assign sections to segments. */
5383 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5384 i < num_segments;
5385 i++, segment++)
5386 {
5387 unsigned int section_count;
5388 asection **sections;
5389 asection *output_section;
5390 unsigned int isec;
5391 bfd_vma matching_lma;
5392 bfd_vma suggested_lma;
5393 unsigned int j;
5394 bfd_size_type amt;
5395 asection *first_section;
5396 bfd_boolean first_matching_lma;
5397 bfd_boolean first_suggested_lma;
5398
5399 if (segment->p_type == PT_NULL)
5400 continue;
5401
5402 first_section = NULL;
5403 /* Compute how many sections might be placed into this segment. */
5404 for (section = ibfd->sections, section_count = 0;
5405 section != NULL;
5406 section = section->next)
5407 {
5408 /* Find the first section in the input segment, which may be
5409 removed from the corresponding output segment. */
5410 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5411 {
5412 if (first_section == NULL)
5413 first_section = section;
5414 if (section->output_section != NULL)
5415 ++section_count;
5416 }
5417 }
5418
5419 /* Allocate a segment map big enough to contain
5420 all of the sections we have selected. */
5421 amt = sizeof (struct elf_segment_map);
5422 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5423 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5424 if (map == NULL)
5425 return FALSE;
5426
5427 /* Initialise the fields of the segment map. Default to
5428 using the physical address of the segment in the input BFD. */
5429 map->next = NULL;
5430 map->p_type = segment->p_type;
5431 map->p_flags = segment->p_flags;
5432 map->p_flags_valid = 1;
5433
5434 /* If the first section in the input segment is removed, there is
5435 no need to preserve segment physical address in the corresponding
5436 output segment. */
5437 if (!first_section || first_section->output_section != NULL)
5438 {
5439 map->p_paddr = segment->p_paddr;
5440 map->p_paddr_valid = p_paddr_valid;
5441 }
5442
5443 /* Determine if this segment contains the ELF file header
5444 and if it contains the program headers themselves. */
5445 map->includes_filehdr = (segment->p_offset == 0
5446 && segment->p_filesz >= iehdr->e_ehsize);
5447 map->includes_phdrs = 0;
5448
5449 if (!phdr_included || segment->p_type != PT_LOAD)
5450 {
5451 map->includes_phdrs =
5452 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5453 && (segment->p_offset + segment->p_filesz
5454 >= ((bfd_vma) iehdr->e_phoff
5455 + iehdr->e_phnum * iehdr->e_phentsize)));
5456
5457 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5458 phdr_included = TRUE;
5459 }
5460
5461 if (section_count == 0)
5462 {
5463 /* Special segments, such as the PT_PHDR segment, may contain
5464 no sections, but ordinary, loadable segments should contain
5465 something. They are allowed by the ELF spec however, so only
5466 a warning is produced. */
5467 if (segment->p_type == PT_LOAD)
5468 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5469 " detected, is this intentional ?\n"),
5470 ibfd);
5471
5472 map->count = 0;
5473 *pointer_to_map = map;
5474 pointer_to_map = &map->next;
5475
5476 continue;
5477 }
5478
5479 /* Now scan the sections in the input BFD again and attempt
5480 to add their corresponding output sections to the segment map.
5481 The problem here is how to handle an output section which has
5482 been moved (ie had its LMA changed). There are four possibilities:
5483
5484 1. None of the sections have been moved.
5485 In this case we can continue to use the segment LMA from the
5486 input BFD.
5487
5488 2. All of the sections have been moved by the same amount.
5489 In this case we can change the segment's LMA to match the LMA
5490 of the first section.
5491
5492 3. Some of the sections have been moved, others have not.
5493 In this case those sections which have not been moved can be
5494 placed in the current segment which will have to have its size,
5495 and possibly its LMA changed, and a new segment or segments will
5496 have to be created to contain the other sections.
5497
5498 4. The sections have been moved, but not by the same amount.
5499 In this case we can change the segment's LMA to match the LMA
5500 of the first section and we will have to create a new segment
5501 or segments to contain the other sections.
5502
5503 In order to save time, we allocate an array to hold the section
5504 pointers that we are interested in. As these sections get assigned
5505 to a segment, they are removed from this array. */
5506
5507 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5508 if (sections == NULL)
5509 return FALSE;
5510
5511 /* Step One: Scan for segment vs section LMA conflicts.
5512 Also add the sections to the section array allocated above.
5513 Also add the sections to the current segment. In the common
5514 case, where the sections have not been moved, this means that
5515 we have completely filled the segment, and there is nothing
5516 more to do. */
5517 isec = 0;
5518 matching_lma = 0;
5519 suggested_lma = 0;
5520 first_matching_lma = TRUE;
5521 first_suggested_lma = TRUE;
5522
5523 for (section = ibfd->sections;
5524 section != NULL;
5525 section = section->next)
5526 if (section == first_section)
5527 break;
5528
5529 for (j = 0; section != NULL; section = section->next)
5530 {
5531 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5532 {
5533 output_section = section->output_section;
5534
5535 sections[j++] = section;
5536
5537 /* The Solaris native linker always sets p_paddr to 0.
5538 We try to catch that case here, and set it to the
5539 correct value. Note - some backends require that
5540 p_paddr be left as zero. */
5541 if (!p_paddr_valid
5542 && segment->p_vaddr != 0
5543 && !bed->want_p_paddr_set_to_zero
5544 && isec == 0
5545 && output_section->lma != 0
5546 && output_section->vma == (segment->p_vaddr
5547 + (map->includes_filehdr
5548 ? iehdr->e_ehsize
5549 : 0)
5550 + (map->includes_phdrs
5551 ? (iehdr->e_phnum
5552 * iehdr->e_phentsize)
5553 : 0)))
5554 map->p_paddr = segment->p_vaddr;
5555
5556 /* Match up the physical address of the segment with the
5557 LMA address of the output section. */
5558 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5559 || IS_COREFILE_NOTE (segment, section)
5560 || (bed->want_p_paddr_set_to_zero
5561 && IS_CONTAINED_BY_VMA (output_section, segment)))
5562 {
5563 if (first_matching_lma || output_section->lma < matching_lma)
5564 {
5565 matching_lma = output_section->lma;
5566 first_matching_lma = FALSE;
5567 }
5568
5569 /* We assume that if the section fits within the segment
5570 then it does not overlap any other section within that
5571 segment. */
5572 map->sections[isec++] = output_section;
5573 }
5574 else if (first_suggested_lma)
5575 {
5576 suggested_lma = output_section->lma;
5577 first_suggested_lma = FALSE;
5578 }
5579
5580 if (j == section_count)
5581 break;
5582 }
5583 }
5584
5585 BFD_ASSERT (j == section_count);
5586
5587 /* Step Two: Adjust the physical address of the current segment,
5588 if necessary. */
5589 if (isec == section_count)
5590 {
5591 /* All of the sections fitted within the segment as currently
5592 specified. This is the default case. Add the segment to
5593 the list of built segments and carry on to process the next
5594 program header in the input BFD. */
5595 map->count = section_count;
5596 *pointer_to_map = map;
5597 pointer_to_map = &map->next;
5598
5599 if (p_paddr_valid
5600 && !bed->want_p_paddr_set_to_zero
5601 && matching_lma != map->p_paddr
5602 && !map->includes_filehdr
5603 && !map->includes_phdrs)
5604 /* There is some padding before the first section in the
5605 segment. So, we must account for that in the output
5606 segment's vma. */
5607 map->p_vaddr_offset = matching_lma - map->p_paddr;
5608
5609 free (sections);
5610 continue;
5611 }
5612 else
5613 {
5614 if (!first_matching_lma)
5615 {
5616 /* At least one section fits inside the current segment.
5617 Keep it, but modify its physical address to match the
5618 LMA of the first section that fitted. */
5619 map->p_paddr = matching_lma;
5620 }
5621 else
5622 {
5623 /* None of the sections fitted inside the current segment.
5624 Change the current segment's physical address to match
5625 the LMA of the first section. */
5626 map->p_paddr = suggested_lma;
5627 }
5628
5629 /* Offset the segment physical address from the lma
5630 to allow for space taken up by elf headers. */
5631 if (map->includes_filehdr)
5632 {
5633 if (map->p_paddr >= iehdr->e_ehsize)
5634 map->p_paddr -= iehdr->e_ehsize;
5635 else
5636 {
5637 map->includes_filehdr = FALSE;
5638 map->includes_phdrs = FALSE;
5639 }
5640 }
5641
5642 if (map->includes_phdrs)
5643 {
5644 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5645 {
5646 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5647
5648 /* iehdr->e_phnum is just an estimate of the number
5649 of program headers that we will need. Make a note
5650 here of the number we used and the segment we chose
5651 to hold these headers, so that we can adjust the
5652 offset when we know the correct value. */
5653 phdr_adjust_num = iehdr->e_phnum;
5654 phdr_adjust_seg = map;
5655 }
5656 else
5657 map->includes_phdrs = FALSE;
5658 }
5659 }
5660
5661 /* Step Three: Loop over the sections again, this time assigning
5662 those that fit to the current segment and removing them from the
5663 sections array; but making sure not to leave large gaps. Once all
5664 possible sections have been assigned to the current segment it is
5665 added to the list of built segments and if sections still remain
5666 to be assigned, a new segment is constructed before repeating
5667 the loop. */
5668 isec = 0;
5669 do
5670 {
5671 map->count = 0;
5672 suggested_lma = 0;
5673 first_suggested_lma = TRUE;
5674
5675 /* Fill the current segment with sections that fit. */
5676 for (j = 0; j < section_count; j++)
5677 {
5678 section = sections[j];
5679
5680 if (section == NULL)
5681 continue;
5682
5683 output_section = section->output_section;
5684
5685 BFD_ASSERT (output_section != NULL);
5686
5687 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5688 || IS_COREFILE_NOTE (segment, section))
5689 {
5690 if (map->count == 0)
5691 {
5692 /* If the first section in a segment does not start at
5693 the beginning of the segment, then something is
5694 wrong. */
5695 if (output_section->lma
5696 != (map->p_paddr
5697 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5698 + (map->includes_phdrs
5699 ? iehdr->e_phnum * iehdr->e_phentsize
5700 : 0)))
5701 abort ();
5702 }
5703 else
5704 {
5705 asection *prev_sec;
5706
5707 prev_sec = map->sections[map->count - 1];
5708
5709 /* If the gap between the end of the previous section
5710 and the start of this section is more than
5711 maxpagesize then we need to start a new segment. */
5712 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5713 maxpagesize)
5714 < BFD_ALIGN (output_section->lma, maxpagesize))
5715 || (prev_sec->lma + prev_sec->size
5716 > output_section->lma))
5717 {
5718 if (first_suggested_lma)
5719 {
5720 suggested_lma = output_section->lma;
5721 first_suggested_lma = FALSE;
5722 }
5723
5724 continue;
5725 }
5726 }
5727
5728 map->sections[map->count++] = output_section;
5729 ++isec;
5730 sections[j] = NULL;
5731 section->segment_mark = TRUE;
5732 }
5733 else if (first_suggested_lma)
5734 {
5735 suggested_lma = output_section->lma;
5736 first_suggested_lma = FALSE;
5737 }
5738 }
5739
5740 BFD_ASSERT (map->count > 0);
5741
5742 /* Add the current segment to the list of built segments. */
5743 *pointer_to_map = map;
5744 pointer_to_map = &map->next;
5745
5746 if (isec < section_count)
5747 {
5748 /* We still have not allocated all of the sections to
5749 segments. Create a new segment here, initialise it
5750 and carry on looping. */
5751 amt = sizeof (struct elf_segment_map);
5752 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5753 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5754 if (map == NULL)
5755 {
5756 free (sections);
5757 return FALSE;
5758 }
5759
5760 /* Initialise the fields of the segment map. Set the physical
5761 physical address to the LMA of the first section that has
5762 not yet been assigned. */
5763 map->next = NULL;
5764 map->p_type = segment->p_type;
5765 map->p_flags = segment->p_flags;
5766 map->p_flags_valid = 1;
5767 map->p_paddr = suggested_lma;
5768 map->p_paddr_valid = p_paddr_valid;
5769 map->includes_filehdr = 0;
5770 map->includes_phdrs = 0;
5771 }
5772 }
5773 while (isec < section_count);
5774
5775 free (sections);
5776 }
5777
5778 elf_tdata (obfd)->segment_map = map_first;
5779
5780 /* If we had to estimate the number of program headers that were
5781 going to be needed, then check our estimate now and adjust
5782 the offset if necessary. */
5783 if (phdr_adjust_seg != NULL)
5784 {
5785 unsigned int count;
5786
5787 for (count = 0, map = map_first; map != NULL; map = map->next)
5788 count++;
5789
5790 if (count > phdr_adjust_num)
5791 phdr_adjust_seg->p_paddr
5792 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5793 }
5794
5795#undef SEGMENT_END
5796#undef SECTION_SIZE
5797#undef IS_CONTAINED_BY_VMA
5798#undef IS_CONTAINED_BY_LMA
5799#undef IS_NOTE
5800#undef IS_COREFILE_NOTE
5801#undef IS_SOLARIS_PT_INTERP
5802#undef IS_SECTION_IN_INPUT_SEGMENT
5803#undef INCLUDE_SECTION_IN_SEGMENT
5804#undef SEGMENT_AFTER_SEGMENT
5805#undef SEGMENT_OVERLAPS
5806 return TRUE;
5807}
5808
5809/* Copy ELF program header information. */
5810
5811static bfd_boolean
5812copy_elf_program_header (bfd *ibfd, bfd *obfd)
5813{
5814 Elf_Internal_Ehdr *iehdr;
5815 struct elf_segment_map *map;
5816 struct elf_segment_map *map_first;
5817 struct elf_segment_map **pointer_to_map;
5818 Elf_Internal_Phdr *segment;
5819 unsigned int i;
5820 unsigned int num_segments;
5821 bfd_boolean phdr_included = FALSE;
5822 bfd_boolean p_paddr_valid;
5823
5824 iehdr = elf_elfheader (ibfd);
5825
5826 map_first = NULL;
5827 pointer_to_map = &map_first;
5828
5829 /* If all the segment p_paddr fields are zero, don't set
5830 map->p_paddr_valid. */
5831 p_paddr_valid = FALSE;
5832 num_segments = elf_elfheader (ibfd)->e_phnum;
5833 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5834 i < num_segments;
5835 i++, segment++)
5836 if (segment->p_paddr != 0)
5837 {
5838 p_paddr_valid = TRUE;
5839 break;
5840 }
5841
5842 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5843 i < num_segments;
5844 i++, segment++)
5845 {
5846 asection *section;
5847 unsigned int section_count;
5848 bfd_size_type amt;
5849 Elf_Internal_Shdr *this_hdr;
5850 asection *first_section = NULL;
5851 asection *lowest_section = NULL;
5852
5853 /* Compute how many sections are in this segment. */
5854 for (section = ibfd->sections, section_count = 0;
5855 section != NULL;
5856 section = section->next)
5857 {
5858 this_hdr = &(elf_section_data(section)->this_hdr);
5859 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5860 {
5861 if (!first_section)
5862 first_section = lowest_section = section;
5863 if (section->lma < lowest_section->lma)
5864 lowest_section = section;
5865 section_count++;
5866 }
5867 }
5868
5869 /* Allocate a segment map big enough to contain
5870 all of the sections we have selected. */
5871 amt = sizeof (struct elf_segment_map);
5872 if (section_count != 0)
5873 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5874 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5875 if (map == NULL)
5876 return FALSE;
5877
5878 /* Initialize the fields of the output segment map with the
5879 input segment. */
5880 map->next = NULL;
5881 map->p_type = segment->p_type;
5882 map->p_flags = segment->p_flags;
5883 map->p_flags_valid = 1;
5884 map->p_paddr = segment->p_paddr;
5885 map->p_paddr_valid = p_paddr_valid;
5886 map->p_align = segment->p_align;
5887 map->p_align_valid = 1;
5888 map->p_vaddr_offset = 0;
5889
5890 if (map->p_type == PT_GNU_RELRO)
5891 {
5892 /* The PT_GNU_RELRO segment may contain the first a few
5893 bytes in the .got.plt section even if the whole .got.plt
5894 section isn't in the PT_GNU_RELRO segment. We won't
5895 change the size of the PT_GNU_RELRO segment. */
5896 map->p_size = segment->p_memsz;
5897 map->p_size_valid = 1;
5898 }
5899
5900 /* Determine if this segment contains the ELF file header
5901 and if it contains the program headers themselves. */
5902 map->includes_filehdr = (segment->p_offset == 0
5903 && segment->p_filesz >= iehdr->e_ehsize);
5904
5905 map->includes_phdrs = 0;
5906 if (! phdr_included || segment->p_type != PT_LOAD)
5907 {
5908 map->includes_phdrs =
5909 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5910 && (segment->p_offset + segment->p_filesz
5911 >= ((bfd_vma) iehdr->e_phoff
5912 + iehdr->e_phnum * iehdr->e_phentsize)));
5913
5914 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5915 phdr_included = TRUE;
5916 }
5917
5918 if (map->includes_filehdr && first_section)
5919 /* We need to keep the space used by the headers fixed. */
5920 map->header_size = first_section->vma - segment->p_vaddr;
5921
5922 if (!map->includes_phdrs
5923 && !map->includes_filehdr
5924 && map->p_paddr_valid)
5925 /* There is some other padding before the first section. */
5926 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5927 - segment->p_paddr);
5928
5929 if (section_count != 0)
5930 {
5931 unsigned int isec = 0;
5932
5933 for (section = first_section;
5934 section != NULL;
5935 section = section->next)
5936 {
5937 this_hdr = &(elf_section_data(section)->this_hdr);
5938 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5939 {
5940 map->sections[isec++] = section->output_section;
5941 if (isec == section_count)
5942 break;
5943 }
5944 }
5945 }
5946
5947 map->count = section_count;
5948 *pointer_to_map = map;
5949 pointer_to_map = &map->next;
5950 }
5951
5952 elf_tdata (obfd)->segment_map = map_first;
5953 return TRUE;
5954}
5955
5956/* Copy private BFD data. This copies or rewrites ELF program header
5957 information. */
5958
5959static bfd_boolean
5960copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5961{
5962 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5963 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5964 return TRUE;
5965
5966 if (elf_tdata (ibfd)->phdr == NULL)
5967 return TRUE;
5968
5969 if (ibfd->xvec == obfd->xvec)
5970 {
5971 /* Check to see if any sections in the input BFD
5972 covered by ELF program header have changed. */
5973 Elf_Internal_Phdr *segment;
5974 asection *section, *osec;
5975 unsigned int i, num_segments;
5976 Elf_Internal_Shdr *this_hdr;
5977 const struct elf_backend_data *bed;
5978
5979 bed = get_elf_backend_data (ibfd);
5980
5981 /* Regenerate the segment map if p_paddr is set to 0. */
5982 if (bed->want_p_paddr_set_to_zero)
5983 goto rewrite;
5984
5985 /* Initialize the segment mark field. */
5986 for (section = obfd->sections; section != NULL;
5987 section = section->next)
5988 section->segment_mark = FALSE;
5989
5990 num_segments = elf_elfheader (ibfd)->e_phnum;
5991 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5992 i < num_segments;
5993 i++, segment++)
5994 {
5995 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5996 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5997 which severly confuses things, so always regenerate the segment
5998 map in this case. */
5999 if (segment->p_paddr == 0
6000 && segment->p_memsz == 0
6001 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6002 goto rewrite;
6003
6004 for (section = ibfd->sections;
6005 section != NULL; section = section->next)
6006 {
6007 /* We mark the output section so that we know it comes
6008 from the input BFD. */
6009 osec = section->output_section;
6010 if (osec)
6011 osec->segment_mark = TRUE;
6012
6013 /* Check if this section is covered by the segment. */
6014 this_hdr = &(elf_section_data(section)->this_hdr);
6015 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
6016 {
6017 /* FIXME: Check if its output section is changed or
6018 removed. What else do we need to check? */
6019 if (osec == NULL
6020 || section->flags != osec->flags
6021 || section->lma != osec->lma
6022 || section->vma != osec->vma
6023 || section->size != osec->size
6024 || section->rawsize != osec->rawsize
6025 || section->alignment_power != osec->alignment_power)
6026 goto rewrite;
6027 }
6028 }
6029 }
6030
6031 /* Check to see if any output section do not come from the
6032 input BFD. */
6033 for (section = obfd->sections; section != NULL;
6034 section = section->next)
6035 {
6036 if (section->segment_mark == FALSE)
6037 goto rewrite;
6038 else
6039 section->segment_mark = FALSE;
6040 }
6041
6042 return copy_elf_program_header (ibfd, obfd);
6043 }
6044
6045rewrite:
6046 return rewrite_elf_program_header (ibfd, obfd);
6047}
6048
6049/* Initialize private output section information from input section. */
6050
6051bfd_boolean
6052_bfd_elf_init_private_section_data (bfd *ibfd,
6053 asection *isec,
6054 bfd *obfd,
6055 asection *osec,
6056 struct bfd_link_info *link_info)
6057
6058{
6059 Elf_Internal_Shdr *ihdr, *ohdr;
6060 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6061
6062 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6063 || obfd->xvec->flavour != bfd_target_elf_flavour)
6064 return TRUE;
6065
6066 /* Don't copy the output ELF section type from input if the
6067 output BFD section flags have been set to something different.
6068 elf_fake_sections will set ELF section type based on BFD
6069 section flags. */
6070 if (elf_section_type (osec) == SHT_NULL
6071 && (osec->flags == isec->flags || !osec->flags))
6072 elf_section_type (osec) = elf_section_type (isec);
6073
6074 /* FIXME: Is this correct for all OS/PROC specific flags? */
6075 elf_section_flags (osec) |= (elf_section_flags (isec)
6076 & (SHF_MASKOS | SHF_MASKPROC));
6077
6078 /* Set things up for objcopy and relocatable link. The output
6079 SHT_GROUP section will have its elf_next_in_group pointing back
6080 to the input group members. Ignore linker created group section.
6081 See elfNN_ia64_object_p in elfxx-ia64.c. */
6082 if (need_group)
6083 {
6084 if (elf_sec_group (isec) == NULL
6085 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6086 {
6087 if (elf_section_flags (isec) & SHF_GROUP)
6088 elf_section_flags (osec) |= SHF_GROUP;
6089 elf_next_in_group (osec) = elf_next_in_group (isec);
6090 elf_section_data (osec)->group = elf_section_data (isec)->group;
6091 }
6092 }
6093
6094 ihdr = &elf_section_data (isec)->this_hdr;
6095
6096 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6097 don't use the output section of the linked-to section since it
6098 may be NULL at this point. */
6099 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6100 {
6101 ohdr = &elf_section_data (osec)->this_hdr;
6102 ohdr->sh_flags |= SHF_LINK_ORDER;
6103 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6104 }
6105
6106 osec->use_rela_p = isec->use_rela_p;
6107
6108 return TRUE;
6109}
6110
6111/* Copy private section information. This copies over the entsize
6112 field, and sometimes the info field. */
6113
6114bfd_boolean
6115_bfd_elf_copy_private_section_data (bfd *ibfd,
6116 asection *isec,
6117 bfd *obfd,
6118 asection *osec)
6119{
6120 Elf_Internal_Shdr *ihdr, *ohdr;
6121
6122 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6123 || obfd->xvec->flavour != bfd_target_elf_flavour)
6124 return TRUE;
6125
6126 ihdr = &elf_section_data (isec)->this_hdr;
6127 ohdr = &elf_section_data (osec)->this_hdr;
6128
6129 ohdr->sh_entsize = ihdr->sh_entsize;
6130
6131 if (ihdr->sh_type == SHT_SYMTAB
6132 || ihdr->sh_type == SHT_DYNSYM
6133 || ihdr->sh_type == SHT_GNU_verneed
6134 || ihdr->sh_type == SHT_GNU_verdef)
6135 ohdr->sh_info = ihdr->sh_info;
6136
6137 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6138 NULL);
6139}
6140
6141/* Copy private header information. */
6142
6143bfd_boolean
6144_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6145{
6146 asection *isec;
6147
6148 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6149 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6150 return TRUE;
6151
6152 /* Copy over private BFD data if it has not already been copied.
6153 This must be done here, rather than in the copy_private_bfd_data
6154 entry point, because the latter is called after the section
6155 contents have been set, which means that the program headers have
6156 already been worked out. */
6157 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6158 {
6159 if (! copy_private_bfd_data (ibfd, obfd))
6160 return FALSE;
6161 }
6162
6163 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6164 but this might be wrong if we deleted the group section. */
6165 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6166 if (elf_section_type (isec) == SHT_GROUP
6167 && isec->output_section == NULL)
6168 {
6169 asection *first = elf_next_in_group (isec);
6170 asection *s = first;
6171 while (s != NULL)
6172 {
6173 if (s->output_section != NULL)
6174 {
6175 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6176 elf_group_name (s->output_section) = NULL;
6177 }
6178 s = elf_next_in_group (s);
6179 if (s == first)
6180 break;
6181 }
6182 }
6183
6184 return TRUE;
6185}
6186
6187/* Copy private symbol information. If this symbol is in a section
6188 which we did not map into a BFD section, try to map the section
6189 index correctly. We use special macro definitions for the mapped
6190 section indices; these definitions are interpreted by the
6191 swap_out_syms function. */
6192
6193#define MAP_ONESYMTAB (SHN_HIOS + 1)
6194#define MAP_DYNSYMTAB (SHN_HIOS + 2)
6195#define MAP_STRTAB (SHN_HIOS + 3)
6196#define MAP_SHSTRTAB (SHN_HIOS + 4)
6197#define MAP_SYM_SHNDX (SHN_HIOS + 5)
6198
6199bfd_boolean
6200_bfd_elf_copy_private_symbol_data (bfd *ibfd,
6201 asymbol *isymarg,
6202 bfd *obfd,
6203 asymbol *osymarg)
6204{
6205 elf_symbol_type *isym, *osym;
6206
6207 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6208 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6209 return TRUE;
6210
6211 isym = elf_symbol_from (ibfd, isymarg);
6212 osym = elf_symbol_from (obfd, osymarg);
6213
6214 if (isym != NULL
6215 && isym->internal_elf_sym.st_shndx != 0
6216 && osym != NULL
6217 && bfd_is_abs_section (isym->symbol.section))
6218 {
6219 unsigned int shndx;
6220
6221 shndx = isym->internal_elf_sym.st_shndx;
6222 if (shndx == elf_onesymtab (ibfd))
6223 shndx = MAP_ONESYMTAB;
6224 else if (shndx == elf_dynsymtab (ibfd))
6225 shndx = MAP_DYNSYMTAB;
6226 else if (shndx == elf_tdata (ibfd)->strtab_section)
6227 shndx = MAP_STRTAB;
6228 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6229 shndx = MAP_SHSTRTAB;
6230 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6231 shndx = MAP_SYM_SHNDX;
6232 osym->internal_elf_sym.st_shndx = shndx;
6233 }
6234
6235 return TRUE;
6236}
6237
6238/* Swap out the symbols. */
6239
6240static bfd_boolean
6241swap_out_syms (bfd *abfd,
6242 struct bfd_strtab_hash **sttp,
6243 int relocatable_p)
6244{
6245 const struct elf_backend_data *bed;
6246 int symcount;
6247 asymbol **syms;
6248 struct bfd_strtab_hash *stt;
6249 Elf_Internal_Shdr *symtab_hdr;
6250 Elf_Internal_Shdr *symtab_shndx_hdr;
6251 Elf_Internal_Shdr *symstrtab_hdr;
6252 bfd_byte *outbound_syms;
6253 bfd_byte *outbound_shndx;
6254 int idx;
6255 bfd_size_type amt;
6256 bfd_boolean name_local_sections;
6257
6258 if (!elf_map_symbols (abfd))
6259 return FALSE;
6260
6261 /* Dump out the symtabs. */
6262 stt = _bfd_elf_stringtab_init ();
6263 if (stt == NULL)
6264 return FALSE;
6265
6266 bed = get_elf_backend_data (abfd);
6267 symcount = bfd_get_symcount (abfd);
6268 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6269 symtab_hdr->sh_type = SHT_SYMTAB;
6270 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6271 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6272 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6273 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6274
6275 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6276 symstrtab_hdr->sh_type = SHT_STRTAB;
6277
6278 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6279 bed->s->sizeof_sym);
6280 if (outbound_syms == NULL)
6281 {
6282 _bfd_stringtab_free (stt);
6283 return FALSE;
6284 }
6285 symtab_hdr->contents = outbound_syms;
6286
6287 outbound_shndx = NULL;
6288 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6289 if (symtab_shndx_hdr->sh_name != 0)
6290 {
6291 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6292 outbound_shndx = (bfd_byte *)
6293 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6294 if (outbound_shndx == NULL)
6295 {
6296 _bfd_stringtab_free (stt);
6297 return FALSE;
6298 }
6299
6300 symtab_shndx_hdr->contents = outbound_shndx;
6301 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6302 symtab_shndx_hdr->sh_size = amt;
6303 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6304 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6305 }
6306
6307 /* Now generate the data (for "contents"). */
6308 {
6309 /* Fill in zeroth symbol and swap it out. */
6310 Elf_Internal_Sym sym;
6311 sym.st_name = 0;
6312 sym.st_value = 0;
6313 sym.st_size = 0;
6314 sym.st_info = 0;
6315 sym.st_other = 0;
6316 sym.st_shndx = SHN_UNDEF;
6317 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6318 outbound_syms += bed->s->sizeof_sym;
6319 if (outbound_shndx != NULL)
6320 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6321 }
6322
6323 name_local_sections
6324 = (bed->elf_backend_name_local_section_symbols
6325 && bed->elf_backend_name_local_section_symbols (abfd));
6326
6327 syms = bfd_get_outsymbols (abfd);
6328 for (idx = 0; idx < symcount; idx++)
6329 {
6330 Elf_Internal_Sym sym;
6331 bfd_vma value = syms[idx]->value;
6332 elf_symbol_type *type_ptr;
6333 flagword flags = syms[idx]->flags;
6334 int type;
6335
6336 if (!name_local_sections
6337 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6338 {
6339 /* Local section symbols have no name. */
6340 sym.st_name = 0;
6341 }
6342 else
6343 {
6344 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6345 syms[idx]->name,
6346 TRUE, FALSE);
6347 if (sym.st_name == (unsigned long) -1)
6348 {
6349 _bfd_stringtab_free (stt);
6350 return FALSE;
6351 }
6352 }
6353
6354 type_ptr = elf_symbol_from (abfd, syms[idx]);
6355
6356 if ((flags & BSF_SECTION_SYM) == 0
6357 && bfd_is_com_section (syms[idx]->section))
6358 {
6359 /* ELF common symbols put the alignment into the `value' field,
6360 and the size into the `size' field. This is backwards from
6361 how BFD handles it, so reverse it here. */
6362 sym.st_size = value;
6363 if (type_ptr == NULL
6364 || type_ptr->internal_elf_sym.st_value == 0)
6365 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6366 else
6367 sym.st_value = type_ptr->internal_elf_sym.st_value;
6368 sym.st_shndx = _bfd_elf_section_from_bfd_section
6369 (abfd, syms[idx]->section);
6370 }
6371 else
6372 {
6373 asection *sec = syms[idx]->section;
6374 unsigned int shndx;
6375
6376 if (sec->output_section)
6377 {
6378 value += sec->output_offset;
6379 sec = sec->output_section;
6380 }
6381
6382 /* Don't add in the section vma for relocatable output. */
6383 if (! relocatable_p)
6384 value += sec->vma;
6385 sym.st_value = value;
6386 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6387
6388 if (bfd_is_abs_section (sec)
6389 && type_ptr != NULL
6390 && type_ptr->internal_elf_sym.st_shndx != 0)
6391 {
6392 /* This symbol is in a real ELF section which we did
6393 not create as a BFD section. Undo the mapping done
6394 by copy_private_symbol_data. */
6395 shndx = type_ptr->internal_elf_sym.st_shndx;
6396 switch (shndx)
6397 {
6398 case MAP_ONESYMTAB:
6399 shndx = elf_onesymtab (abfd);
6400 break;
6401 case MAP_DYNSYMTAB:
6402 shndx = elf_dynsymtab (abfd);
6403 break;
6404 case MAP_STRTAB:
6405 shndx = elf_tdata (abfd)->strtab_section;
6406 break;
6407 case MAP_SHSTRTAB:
6408 shndx = elf_tdata (abfd)->shstrtab_section;
6409 break;
6410 case MAP_SYM_SHNDX:
6411 shndx = elf_tdata (abfd)->symtab_shndx_section;
6412 break;
6413 default:
6414 break;
6415 }
6416 }
6417 else
6418 {
6419 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6420
6421 if (shndx == SHN_BAD)
6422 {
6423 asection *sec2;
6424
6425 /* Writing this would be a hell of a lot easier if
6426 we had some decent documentation on bfd, and
6427 knew what to expect of the library, and what to
6428 demand of applications. For example, it
6429 appears that `objcopy' might not set the
6430 section of a symbol to be a section that is
6431 actually in the output file. */
6432 sec2 = bfd_get_section_by_name (abfd, sec->name);
6433 if (sec2 == NULL)
6434 {
6435 _bfd_error_handler (_("\
6436Unable to find equivalent output section for symbol '%s' from section '%s'"),
6437 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6438 sec->name);
6439 bfd_set_error (bfd_error_invalid_operation);
6440 _bfd_stringtab_free (stt);
6441 return FALSE;
6442 }
6443
6444 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6445 BFD_ASSERT (shndx != SHN_BAD);
6446 }
6447 }
6448
6449 sym.st_shndx = shndx;
6450 }
6451
6452 if ((flags & BSF_THREAD_LOCAL) != 0)
6453 type = STT_TLS;
6454 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6455 type = STT_GNU_IFUNC;
6456 else if ((flags & BSF_FUNCTION) != 0)
6457 type = STT_FUNC;
6458 else if ((flags & BSF_OBJECT) != 0)
6459 type = STT_OBJECT;
6460 else if ((flags & BSF_RELC) != 0)
6461 type = STT_RELC;
6462 else if ((flags & BSF_SRELC) != 0)
6463 type = STT_SRELC;
6464 else
6465 type = STT_NOTYPE;
6466
6467 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6468 type = STT_TLS;
6469
6470 /* Processor-specific types. */
6471 if (type_ptr != NULL
6472 && bed->elf_backend_get_symbol_type)
6473 type = ((*bed->elf_backend_get_symbol_type)
6474 (&type_ptr->internal_elf_sym, type));
6475
6476 if (flags & BSF_SECTION_SYM)
6477 {
6478 if (flags & BSF_GLOBAL)
6479 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6480 else
6481 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6482 }
6483 else if (bfd_is_com_section (syms[idx]->section))
6484 {
6485#ifdef USE_STT_COMMON
6486 if (type == STT_OBJECT)
6487 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6488 else
6489#endif
6490 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6491 }
6492 else if (bfd_is_und_section (syms[idx]->section))
6493 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6494 ? STB_WEAK
6495 : STB_GLOBAL),
6496 type);
6497 else if (flags & BSF_FILE)
6498 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6499 else
6500 {
6501 int bind = STB_LOCAL;
6502
6503 if (flags & BSF_LOCAL)
6504 bind = STB_LOCAL;
6505 else if (flags & BSF_GNU_UNIQUE)
6506 bind = STB_GNU_UNIQUE;
6507 else if (flags & BSF_WEAK)
6508 bind = STB_WEAK;
6509 else if (flags & BSF_GLOBAL)
6510 bind = STB_GLOBAL;
6511
6512 sym.st_info = ELF_ST_INFO (bind, type);
6513 }
6514
6515 if (type_ptr != NULL)
6516 sym.st_other = type_ptr->internal_elf_sym.st_other;
6517 else
6518 sym.st_other = 0;
6519
6520 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6521 outbound_syms += bed->s->sizeof_sym;
6522 if (outbound_shndx != NULL)
6523 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6524 }
6525
6526 *sttp = stt;
6527 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6528 symstrtab_hdr->sh_type = SHT_STRTAB;
6529
6530 symstrtab_hdr->sh_flags = 0;
6531 symstrtab_hdr->sh_addr = 0;
6532 symstrtab_hdr->sh_entsize = 0;
6533 symstrtab_hdr->sh_link = 0;
6534 symstrtab_hdr->sh_info = 0;
6535 symstrtab_hdr->sh_addralign = 1;
6536
6537 return TRUE;
6538}
6539
6540/* Return the number of bytes required to hold the symtab vector.
6541
6542 Note that we base it on the count plus 1, since we will null terminate
6543 the vector allocated based on this size. However, the ELF symbol table
6544 always has a dummy entry as symbol #0, so it ends up even. */
6545
6546long
6547_bfd_elf_get_symtab_upper_bound (bfd *abfd)
6548{
6549 long symcount;
6550 long symtab_size;
6551 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6552
6553 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6554 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6555 if (symcount > 0)
6556 symtab_size -= sizeof (asymbol *);
6557
6558 return symtab_size;
6559}
6560
6561long
6562_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6563{
6564 long symcount;
6565 long symtab_size;
6566 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6567
6568 if (elf_dynsymtab (abfd) == 0)
6569 {
6570 bfd_set_error (bfd_error_invalid_operation);
6571 return -1;
6572 }
6573
6574 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6575 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6576 if (symcount > 0)
6577 symtab_size -= sizeof (asymbol *);
6578
6579 return symtab_size;
6580}
6581
6582long
6583_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6584 sec_ptr asect)
6585{
6586 return (asect->reloc_count + 1) * sizeof (arelent *);
6587}
6588
6589/* Canonicalize the relocs. */
6590
6591long
6592_bfd_elf_canonicalize_reloc (bfd *abfd,
6593 sec_ptr section,
6594 arelent **relptr,
6595 asymbol **symbols)
6596{
6597 arelent *tblptr;
6598 unsigned int i;
6599 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6600
6601 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6602 return -1;
6603
6604 tblptr = section->relocation;
6605 for (i = 0; i < section->reloc_count; i++)
6606 *relptr++ = tblptr++;
6607
6608 *relptr = NULL;
6609
6610 return section->reloc_count;
6611}
6612
6613long
6614_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6615{
6616 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6617 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6618
6619 if (symcount >= 0)
6620 bfd_get_symcount (abfd) = symcount;
6621 return symcount;
6622}
6623
6624long
6625_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6626 asymbol **allocation)
6627{
6628 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6629 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6630
6631 if (symcount >= 0)
6632 bfd_get_dynamic_symcount (abfd) = symcount;
6633 return symcount;
6634}
6635
6636/* Return the size required for the dynamic reloc entries. Any loadable
6637 section that was actually installed in the BFD, and has type SHT_REL
6638 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6639 dynamic reloc section. */
6640
6641long
6642_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6643{
6644 long ret;
6645 asection *s;
6646
6647 if (elf_dynsymtab (abfd) == 0)
6648 {
6649 bfd_set_error (bfd_error_invalid_operation);
6650 return -1;
6651 }
6652
6653 ret = sizeof (arelent *);
6654 for (s = abfd->sections; s != NULL; s = s->next)
6655 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6656 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6657 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6658 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6659 * sizeof (arelent *));
6660
6661 return ret;
6662}
6663
6664/* Canonicalize the dynamic relocation entries. Note that we return the
6665 dynamic relocations as a single block, although they are actually
6666 associated with particular sections; the interface, which was
6667 designed for SunOS style shared libraries, expects that there is only
6668 one set of dynamic relocs. Any loadable section that was actually
6669 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6670 dynamic symbol table, is considered to be a dynamic reloc section. */
6671
6672long
6673_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6674 arelent **storage,
6675 asymbol **syms)
6676{
6677 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6678 asection *s;
6679 long ret;
6680
6681 if (elf_dynsymtab (abfd) == 0)
6682 {
6683 bfd_set_error (bfd_error_invalid_operation);
6684 return -1;
6685 }
6686
6687 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6688 ret = 0;
6689 for (s = abfd->sections; s != NULL; s = s->next)
6690 {
6691 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6692 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6693 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6694 {
6695 arelent *p;
6696 long count, i;
6697
6698 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6699 return -1;
6700 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6701 p = s->relocation;
6702 for (i = 0; i < count; i++)
6703 *storage++ = p++;
6704 ret += count;
6705 }
6706 }
6707
6708 *storage = NULL;
6709
6710 return ret;
6711}
6712\f
6713/* Read in the version information. */
6714
6715bfd_boolean
6716_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6717{
6718 bfd_byte *contents = NULL;
6719 unsigned int freeidx = 0;
6720
6721 if (elf_dynverref (abfd) != 0)
6722 {
6723 Elf_Internal_Shdr *hdr;
6724 Elf_External_Verneed *everneed;
6725 Elf_Internal_Verneed *iverneed;
6726 unsigned int i;
6727 bfd_byte *contents_end;
6728
6729 hdr = &elf_tdata (abfd)->dynverref_hdr;
6730
6731 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6732 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6733 if (elf_tdata (abfd)->verref == NULL)
6734 goto error_return;
6735
6736 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6737
6738 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6739 if (contents == NULL)
6740 {
6741error_return_verref:
6742 elf_tdata (abfd)->verref = NULL;
6743 elf_tdata (abfd)->cverrefs = 0;
6744 goto error_return;
6745 }
6746 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6747 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6748 goto error_return_verref;
6749
6750 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6751 goto error_return_verref;
6752
6753 BFD_ASSERT (sizeof (Elf_External_Verneed)
6754 == sizeof (Elf_External_Vernaux));
6755 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6756 everneed = (Elf_External_Verneed *) contents;
6757 iverneed = elf_tdata (abfd)->verref;
6758 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6759 {
6760 Elf_External_Vernaux *evernaux;
6761 Elf_Internal_Vernaux *ivernaux;
6762 unsigned int j;
6763
6764 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6765
6766 iverneed->vn_bfd = abfd;
6767
6768 iverneed->vn_filename =
6769 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6770 iverneed->vn_file);
6771 if (iverneed->vn_filename == NULL)
6772 goto error_return_verref;
6773
6774 if (iverneed->vn_cnt == 0)
6775 iverneed->vn_auxptr = NULL;
6776 else
6777 {
6778 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
6779 bfd_alloc2 (abfd, iverneed->vn_cnt,
6780 sizeof (Elf_Internal_Vernaux));
6781 if (iverneed->vn_auxptr == NULL)
6782 goto error_return_verref;
6783 }
6784
6785 if (iverneed->vn_aux
6786 > (size_t) (contents_end - (bfd_byte *) everneed))
6787 goto error_return_verref;
6788
6789 evernaux = ((Elf_External_Vernaux *)
6790 ((bfd_byte *) everneed + iverneed->vn_aux));
6791 ivernaux = iverneed->vn_auxptr;
6792 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6793 {
6794 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6795
6796 ivernaux->vna_nodename =
6797 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6798 ivernaux->vna_name);
6799 if (ivernaux->vna_nodename == NULL)
6800 goto error_return_verref;
6801
6802 if (j + 1 < iverneed->vn_cnt)
6803 ivernaux->vna_nextptr = ivernaux + 1;
6804 else
6805 ivernaux->vna_nextptr = NULL;
6806
6807 if (ivernaux->vna_next
6808 > (size_t) (contents_end - (bfd_byte *) evernaux))
6809 goto error_return_verref;
6810
6811 evernaux = ((Elf_External_Vernaux *)
6812 ((bfd_byte *) evernaux + ivernaux->vna_next));
6813
6814 if (ivernaux->vna_other > freeidx)
6815 freeidx = ivernaux->vna_other;
6816 }
6817
6818 if (i + 1 < hdr->sh_info)
6819 iverneed->vn_nextref = iverneed + 1;
6820 else
6821 iverneed->vn_nextref = NULL;
6822
6823 if (iverneed->vn_next
6824 > (size_t) (contents_end - (bfd_byte *) everneed))
6825 goto error_return_verref;
6826
6827 everneed = ((Elf_External_Verneed *)
6828 ((bfd_byte *) everneed + iverneed->vn_next));
6829 }
6830
6831 free (contents);
6832 contents = NULL;
6833 }
6834
6835 if (elf_dynverdef (abfd) != 0)
6836 {
6837 Elf_Internal_Shdr *hdr;
6838 Elf_External_Verdef *everdef;
6839 Elf_Internal_Verdef *iverdef;
6840 Elf_Internal_Verdef *iverdefarr;
6841 Elf_Internal_Verdef iverdefmem;
6842 unsigned int i;
6843 unsigned int maxidx;
6844 bfd_byte *contents_end_def, *contents_end_aux;
6845
6846 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6847
6848 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6849 if (contents == NULL)
6850 goto error_return;
6851 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6852 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6853 goto error_return;
6854
6855 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6856 goto error_return;
6857
6858 BFD_ASSERT (sizeof (Elf_External_Verdef)
6859 >= sizeof (Elf_External_Verdaux));
6860 contents_end_def = contents + hdr->sh_size
6861 - sizeof (Elf_External_Verdef);
6862 contents_end_aux = contents + hdr->sh_size
6863 - sizeof (Elf_External_Verdaux);
6864
6865 /* We know the number of entries in the section but not the maximum
6866 index. Therefore we have to run through all entries and find
6867 the maximum. */
6868 everdef = (Elf_External_Verdef *) contents;
6869 maxidx = 0;
6870 for (i = 0; i < hdr->sh_info; ++i)
6871 {
6872 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6873
6874 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6875 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6876
6877 if (iverdefmem.vd_next
6878 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6879 goto error_return;
6880
6881 everdef = ((Elf_External_Verdef *)
6882 ((bfd_byte *) everdef + iverdefmem.vd_next));
6883 }
6884
6885 if (default_imported_symver)
6886 {
6887 if (freeidx > maxidx)
6888 maxidx = ++freeidx;
6889 else
6890 freeidx = ++maxidx;
6891 }
6892 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
6893 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
6894 if (elf_tdata (abfd)->verdef == NULL)
6895 goto error_return;
6896
6897 elf_tdata (abfd)->cverdefs = maxidx;
6898
6899 everdef = (Elf_External_Verdef *) contents;
6900 iverdefarr = elf_tdata (abfd)->verdef;
6901 for (i = 0; i < hdr->sh_info; i++)
6902 {
6903 Elf_External_Verdaux *everdaux;
6904 Elf_Internal_Verdaux *iverdaux;
6905 unsigned int j;
6906
6907 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6908
6909 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6910 {
6911error_return_verdef:
6912 elf_tdata (abfd)->verdef = NULL;
6913 elf_tdata (abfd)->cverdefs = 0;
6914 goto error_return;
6915 }
6916
6917 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6918 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6919
6920 iverdef->vd_bfd = abfd;
6921
6922 if (iverdef->vd_cnt == 0)
6923 iverdef->vd_auxptr = NULL;
6924 else
6925 {
6926 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
6927 bfd_alloc2 (abfd, iverdef->vd_cnt,
6928 sizeof (Elf_Internal_Verdaux));
6929 if (iverdef->vd_auxptr == NULL)
6930 goto error_return_verdef;
6931 }
6932
6933 if (iverdef->vd_aux
6934 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6935 goto error_return_verdef;
6936
6937 everdaux = ((Elf_External_Verdaux *)
6938 ((bfd_byte *) everdef + iverdef->vd_aux));
6939 iverdaux = iverdef->vd_auxptr;
6940 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6941 {
6942 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6943
6944 iverdaux->vda_nodename =
6945 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6946 iverdaux->vda_name);
6947 if (iverdaux->vda_nodename == NULL)
6948 goto error_return_verdef;
6949
6950 if (j + 1 < iverdef->vd_cnt)
6951 iverdaux->vda_nextptr = iverdaux + 1;
6952 else
6953 iverdaux->vda_nextptr = NULL;
6954
6955 if (iverdaux->vda_next
6956 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6957 goto error_return_verdef;
6958
6959 everdaux = ((Elf_External_Verdaux *)
6960 ((bfd_byte *) everdaux + iverdaux->vda_next));
6961 }
6962
6963 if (iverdef->vd_cnt)
6964 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6965
6966 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6967 iverdef->vd_nextdef = iverdef + 1;
6968 else
6969 iverdef->vd_nextdef = NULL;
6970
6971 everdef = ((Elf_External_Verdef *)
6972 ((bfd_byte *) everdef + iverdef->vd_next));
6973 }
6974
6975 free (contents);
6976 contents = NULL;
6977 }
6978 else if (default_imported_symver)
6979 {
6980 if (freeidx < 3)
6981 freeidx = 3;
6982 else
6983 freeidx++;
6984
6985 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
6986 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
6987 if (elf_tdata (abfd)->verdef == NULL)
6988 goto error_return;
6989
6990 elf_tdata (abfd)->cverdefs = freeidx;
6991 }
6992
6993 /* Create a default version based on the soname. */
6994 if (default_imported_symver)
6995 {
6996 Elf_Internal_Verdef *iverdef;
6997 Elf_Internal_Verdaux *iverdaux;
6998
6999 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7000
7001 iverdef->vd_version = VER_DEF_CURRENT;
7002 iverdef->vd_flags = 0;
7003 iverdef->vd_ndx = freeidx;
7004 iverdef->vd_cnt = 1;
7005
7006 iverdef->vd_bfd = abfd;
7007
7008 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7009 if (iverdef->vd_nodename == NULL)
7010 goto error_return_verdef;
7011 iverdef->vd_nextdef = NULL;
7012 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7013 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7014 if (iverdef->vd_auxptr == NULL)
7015 goto error_return_verdef;
7016
7017 iverdaux = iverdef->vd_auxptr;
7018 iverdaux->vda_nodename = iverdef->vd_nodename;
7019 iverdaux->vda_nextptr = NULL;
7020 }
7021
7022 return TRUE;
7023
7024 error_return:
7025 if (contents != NULL)
7026 free (contents);
7027 return FALSE;
7028}
7029\f
7030asymbol *
7031_bfd_elf_make_empty_symbol (bfd *abfd)
7032{
7033 elf_symbol_type *newsym;
7034 bfd_size_type amt = sizeof (elf_symbol_type);
7035
7036 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7037 if (!newsym)
7038 return NULL;
7039 else
7040 {
7041 newsym->symbol.the_bfd = abfd;
7042 return &newsym->symbol;
7043 }
7044}
7045
7046void
7047_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7048 asymbol *symbol,
7049 symbol_info *ret)
7050{
7051 bfd_symbol_info (symbol, ret);
7052}
7053
7054/* Return whether a symbol name implies a local symbol. Most targets
7055 use this function for the is_local_label_name entry point, but some
7056 override it. */
7057
7058bfd_boolean
7059_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7060 const char *name)
7061{
7062 /* Normal local symbols start with ``.L''. */
7063 if (name[0] == '.' && name[1] == 'L')
7064 return TRUE;
7065
7066 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7067 DWARF debugging symbols starting with ``..''. */
7068 if (name[0] == '.' && name[1] == '.')
7069 return TRUE;
7070
7071 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7072 emitting DWARF debugging output. I suspect this is actually a
7073 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7074 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7075 underscore to be emitted on some ELF targets). For ease of use,
7076 we treat such symbols as local. */
7077 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7078 return TRUE;
7079
7080 return FALSE;
7081}
7082
7083alent *
7084_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7085 asymbol *symbol ATTRIBUTE_UNUSED)
7086{
7087 abort ();
7088 return NULL;
7089}
7090
7091bfd_boolean
7092_bfd_elf_set_arch_mach (bfd *abfd,
7093 enum bfd_architecture arch,
7094 unsigned long machine)
7095{
7096 /* If this isn't the right architecture for this backend, and this
7097 isn't the generic backend, fail. */
7098 if (arch != get_elf_backend_data (abfd)->arch
7099 && arch != bfd_arch_unknown
7100 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7101 return FALSE;
7102
7103 return bfd_default_set_arch_mach (abfd, arch, machine);
7104}
7105
7106/* Find the function to a particular section and offset,
7107 for error reporting. */
7108
7109static bfd_boolean
7110elf_find_function (bfd *abfd,
7111 asection *section,
7112 asymbol **symbols,
7113 bfd_vma offset,
7114 const char **filename_ptr,
7115 const char **functionname_ptr)
7116{
7117 const char *filename;
7118 asymbol *func, *file;
7119 bfd_vma low_func;
7120 asymbol **p;
7121 /* ??? Given multiple file symbols, it is impossible to reliably
7122 choose the right file name for global symbols. File symbols are
7123 local symbols, and thus all file symbols must sort before any
7124 global symbols. The ELF spec may be interpreted to say that a
7125 file symbol must sort before other local symbols, but currently
7126 ld -r doesn't do this. So, for ld -r output, it is possible to
7127 make a better choice of file name for local symbols by ignoring
7128 file symbols appearing after a given local symbol. */
7129 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7130 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7131
7132 filename = NULL;
7133 func = NULL;
7134 file = NULL;
7135 low_func = 0;
7136 state = nothing_seen;
7137
7138 for (p = symbols; *p != NULL; p++)
7139 {
7140 elf_symbol_type *q;
7141 unsigned int type;
7142
7143 q = (elf_symbol_type *) *p;
7144
7145 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7146 switch (type)
7147 {
7148 case STT_FILE:
7149 file = &q->symbol;
7150 if (state == symbol_seen)
7151 state = file_after_symbol_seen;
7152 continue;
7153 default:
7154 if (!bed->is_function_type (type))
7155 break;
7156 case STT_NOTYPE:
7157 if (bfd_get_section (&q->symbol) == section
7158 && q->symbol.value >= low_func
7159 && q->symbol.value <= offset)
7160 {
7161 func = (asymbol *) q;
7162 low_func = q->symbol.value;
7163 filename = NULL;
7164 if (file != NULL
7165 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7166 || state != file_after_symbol_seen))
7167 filename = bfd_asymbol_name (file);
7168 }
7169 break;
7170 }
7171 if (state == nothing_seen)
7172 state = symbol_seen;
7173 }
7174
7175 if (func == NULL)
7176 return FALSE;
7177
7178 if (filename_ptr)
7179 *filename_ptr = filename;
7180 if (functionname_ptr)
7181 *functionname_ptr = bfd_asymbol_name (func);
7182
7183 return TRUE;
7184}
7185
7186/* Find the nearest line to a particular section and offset,
7187 for error reporting. */
7188
7189bfd_boolean
7190_bfd_elf_find_nearest_line (bfd *abfd,
7191 asection *section,
7192 asymbol **symbols,
7193 bfd_vma offset,
7194 const char **filename_ptr,
7195 const char **functionname_ptr,
7196 unsigned int *line_ptr)
7197{
7198 bfd_boolean found;
7199
7200 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7201 filename_ptr, functionname_ptr,
7202 line_ptr))
7203 {
7204 if (!*functionname_ptr)
7205 elf_find_function (abfd, section, symbols, offset,
7206 *filename_ptr ? NULL : filename_ptr,
7207 functionname_ptr);
7208
7209 return TRUE;
7210 }
7211
7212 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7213 filename_ptr, functionname_ptr,
7214 line_ptr, 0,
7215 &elf_tdata (abfd)->dwarf2_find_line_info))
7216 {
7217 if (!*functionname_ptr)
7218 elf_find_function (abfd, section, symbols, offset,
7219 *filename_ptr ? NULL : filename_ptr,
7220 functionname_ptr);
7221
7222 return TRUE;
7223 }
7224
7225 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7226 &found, filename_ptr,
7227 functionname_ptr, line_ptr,
7228 &elf_tdata (abfd)->line_info))
7229 return FALSE;
7230 if (found && (*functionname_ptr || *line_ptr))
7231 return TRUE;
7232
7233 if (symbols == NULL)
7234 return FALSE;
7235
7236 if (! elf_find_function (abfd, section, symbols, offset,
7237 filename_ptr, functionname_ptr))
7238 return FALSE;
7239
7240 *line_ptr = 0;
7241 return TRUE;
7242}
7243
7244/* Find the line for a symbol. */
7245
7246bfd_boolean
7247_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7248 const char **filename_ptr, unsigned int *line_ptr)
7249{
7250 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7251 filename_ptr, line_ptr, 0,
7252 &elf_tdata (abfd)->dwarf2_find_line_info);
7253}
7254
7255/* After a call to bfd_find_nearest_line, successive calls to
7256 bfd_find_inliner_info can be used to get source information about
7257 each level of function inlining that terminated at the address
7258 passed to bfd_find_nearest_line. Currently this is only supported
7259 for DWARF2 with appropriate DWARF3 extensions. */
7260
7261bfd_boolean
7262_bfd_elf_find_inliner_info (bfd *abfd,
7263 const char **filename_ptr,
7264 const char **functionname_ptr,
7265 unsigned int *line_ptr)
7266{
7267 bfd_boolean found;
7268 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7269 functionname_ptr, line_ptr,
7270 & elf_tdata (abfd)->dwarf2_find_line_info);
7271 return found;
7272}
7273
7274int
7275_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7276{
7277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7278 int ret = bed->s->sizeof_ehdr;
7279
7280 if (!info->relocatable)
7281 {
7282 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7283
7284 if (phdr_size == (bfd_size_type) -1)
7285 {
7286 struct elf_segment_map *m;
7287
7288 phdr_size = 0;
7289 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7290 phdr_size += bed->s->sizeof_phdr;
7291
7292 if (phdr_size == 0)
7293 phdr_size = get_program_header_size (abfd, info);
7294 }
7295
7296 elf_tdata (abfd)->program_header_size = phdr_size;
7297 ret += phdr_size;
7298 }
7299
7300 return ret;
7301}
7302
7303bfd_boolean
7304_bfd_elf_set_section_contents (bfd *abfd,
7305 sec_ptr section,
7306 const void *location,
7307 file_ptr offset,
7308 bfd_size_type count)
7309{
7310 Elf_Internal_Shdr *hdr;
7311 bfd_signed_vma pos;
7312
7313 if (! abfd->output_has_begun
7314 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7315 return FALSE;
7316
7317 hdr = &elf_section_data (section)->this_hdr;
7318 pos = hdr->sh_offset + offset;
7319 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7320 || bfd_bwrite (location, count, abfd) != count)
7321 return FALSE;
7322
7323 return TRUE;
7324}
7325
7326void
7327_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7328 arelent *cache_ptr ATTRIBUTE_UNUSED,
7329 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7330{
7331 abort ();
7332}
7333
7334/* Try to convert a non-ELF reloc into an ELF one. */
7335
7336bfd_boolean
7337_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7338{
7339 /* Check whether we really have an ELF howto. */
7340
7341 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7342 {
7343 bfd_reloc_code_real_type code;
7344 reloc_howto_type *howto;
7345
7346 /* Alien reloc: Try to determine its type to replace it with an
7347 equivalent ELF reloc. */
7348
7349 if (areloc->howto->pc_relative)
7350 {
7351 switch (areloc->howto->bitsize)
7352 {
7353 case 8:
7354 code = BFD_RELOC_8_PCREL;
7355 break;
7356 case 12:
7357 code = BFD_RELOC_12_PCREL;
7358 break;
7359 case 16:
7360 code = BFD_RELOC_16_PCREL;
7361 break;
7362 case 24:
7363 code = BFD_RELOC_24_PCREL;
7364 break;
7365 case 32:
7366 code = BFD_RELOC_32_PCREL;
7367 break;
7368 case 64:
7369 code = BFD_RELOC_64_PCREL;
7370 break;
7371 default:
7372 goto fail;
7373 }
7374
7375 howto = bfd_reloc_type_lookup (abfd, code);
7376
7377 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7378 {
7379 if (howto->pcrel_offset)
7380 areloc->addend += areloc->address;
7381 else
7382 areloc->addend -= areloc->address; /* addend is unsigned!! */
7383 }
7384 }
7385 else
7386 {
7387 switch (areloc->howto->bitsize)
7388 {
7389 case 8:
7390 code = BFD_RELOC_8;
7391 break;
7392 case 14:
7393 code = BFD_RELOC_14;
7394 break;
7395 case 16:
7396 code = BFD_RELOC_16;
7397 break;
7398 case 26:
7399 code = BFD_RELOC_26;
7400 break;
7401 case 32:
7402 code = BFD_RELOC_32;
7403 break;
7404 case 64:
7405 code = BFD_RELOC_64;
7406 break;
7407 default:
7408 goto fail;
7409 }
7410
7411 howto = bfd_reloc_type_lookup (abfd, code);
7412 }
7413
7414 if (howto)
7415 areloc->howto = howto;
7416 else
7417 goto fail;
7418 }
7419
7420 return TRUE;
7421
7422 fail:
7423 (*_bfd_error_handler)
7424 (_("%B: unsupported relocation type %s"),
7425 abfd, areloc->howto->name);
7426 bfd_set_error (bfd_error_bad_value);
7427 return FALSE;
7428}
7429
7430bfd_boolean
7431_bfd_elf_close_and_cleanup (bfd *abfd)
7432{
7433 if (bfd_get_format (abfd) == bfd_object)
7434 {
7435 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7436 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7437 _bfd_dwarf2_cleanup_debug_info (abfd);
7438 }
7439
7440 return _bfd_generic_close_and_cleanup (abfd);
7441}
7442
7443/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7444 in the relocation's offset. Thus we cannot allow any sort of sanity
7445 range-checking to interfere. There is nothing else to do in processing
7446 this reloc. */
7447
7448bfd_reloc_status_type
7449_bfd_elf_rel_vtable_reloc_fn
7450 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7451 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7452 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7453 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7454{
7455 return bfd_reloc_ok;
7456}
7457\f
7458/* Elf core file support. Much of this only works on native
7459 toolchains, since we rely on knowing the
7460 machine-dependent procfs structure in order to pick
7461 out details about the corefile. */
7462
7463#ifdef HAVE_SYS_PROCFS_H
7464/* Needed for new procfs interface on sparc-solaris. */
7465# define _STRUCTURED_PROC 1
7466# include <sys/procfs.h>
7467#endif
7468
7469/* FIXME: this is kinda wrong, but it's what gdb wants. */
7470
7471static int
7472elfcore_make_pid (bfd *abfd)
7473{
7474 return ((elf_tdata (abfd)->core_lwpid << 16)
7475 + (elf_tdata (abfd)->core_pid));
7476}
7477
7478/* If there isn't a section called NAME, make one, using
7479 data from SECT. Note, this function will generate a
7480 reference to NAME, so you shouldn't deallocate or
7481 overwrite it. */
7482
7483static bfd_boolean
7484elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7485{
7486 asection *sect2;
7487
7488 if (bfd_get_section_by_name (abfd, name) != NULL)
7489 return TRUE;
7490
7491 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7492 if (sect2 == NULL)
7493 return FALSE;
7494
7495 sect2->size = sect->size;
7496 sect2->filepos = sect->filepos;
7497 sect2->alignment_power = sect->alignment_power;
7498 return TRUE;
7499}
7500
7501/* Create a pseudosection containing SIZE bytes at FILEPOS. This
7502 actually creates up to two pseudosections:
7503 - For the single-threaded case, a section named NAME, unless
7504 such a section already exists.
7505 - For the multi-threaded case, a section named "NAME/PID", where
7506 PID is elfcore_make_pid (abfd).
7507 Both pseudosections have identical contents. */
7508bfd_boolean
7509_bfd_elfcore_make_pseudosection (bfd *abfd,
7510 char *name,
7511 size_t size,
7512 ufile_ptr filepos)
7513{
7514 char buf[100];
7515 char *threaded_name;
7516 size_t len;
7517 asection *sect;
7518
7519 /* Build the section name. */
7520
7521 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7522 len = strlen (buf) + 1;
7523 threaded_name = (char *) bfd_alloc (abfd, len);
7524 if (threaded_name == NULL)
7525 return FALSE;
7526 memcpy (threaded_name, buf, len);
7527
7528 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7529 SEC_HAS_CONTENTS);
7530 if (sect == NULL)
7531 return FALSE;
7532 sect->size = size;
7533 sect->filepos = filepos;
7534 sect->alignment_power = 2;
7535
7536 return elfcore_maybe_make_sect (abfd, name, sect);
7537}
7538
7539/* prstatus_t exists on:
7540 solaris 2.5+
7541 linux 2.[01] + glibc
7542 unixware 4.2
7543*/
7544
7545#if defined (HAVE_PRSTATUS_T)
7546
7547static bfd_boolean
7548elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7549{
7550 size_t size;
7551 int offset;
7552
7553 if (note->descsz == sizeof (prstatus_t))
7554 {
7555 prstatus_t prstat;
7556
7557 size = sizeof (prstat.pr_reg);
7558 offset = offsetof (prstatus_t, pr_reg);
7559 memcpy (&prstat, note->descdata, sizeof (prstat));
7560
7561 /* Do not overwrite the core signal if it
7562 has already been set by another thread. */
7563 if (elf_tdata (abfd)->core_signal == 0)
7564 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7565 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7566
7567 /* pr_who exists on:
7568 solaris 2.5+
7569 unixware 4.2
7570 pr_who doesn't exist on:
7571 linux 2.[01]
7572 */
7573#if defined (HAVE_PRSTATUS_T_PR_WHO)
7574 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7575#endif
7576 }
7577#if defined (HAVE_PRSTATUS32_T)
7578 else if (note->descsz == sizeof (prstatus32_t))
7579 {
7580 /* 64-bit host, 32-bit corefile */
7581 prstatus32_t prstat;
7582
7583 size = sizeof (prstat.pr_reg);
7584 offset = offsetof (prstatus32_t, pr_reg);
7585 memcpy (&prstat, note->descdata, sizeof (prstat));
7586
7587 /* Do not overwrite the core signal if it
7588 has already been set by another thread. */
7589 if (elf_tdata (abfd)->core_signal == 0)
7590 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7591 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7592
7593 /* pr_who exists on:
7594 solaris 2.5+
7595 unixware 4.2
7596 pr_who doesn't exist on:
7597 linux 2.[01]
7598 */
7599#if defined (HAVE_PRSTATUS32_T_PR_WHO)
7600 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7601#endif
7602 }
7603#endif /* HAVE_PRSTATUS32_T */
7604 else
7605 {
7606 /* Fail - we don't know how to handle any other
7607 note size (ie. data object type). */
7608 return TRUE;
7609 }
7610
7611 /* Make a ".reg/999" section and a ".reg" section. */
7612 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7613 size, note->descpos + offset);
7614}
7615#endif /* defined (HAVE_PRSTATUS_T) */
7616
7617/* Create a pseudosection containing the exact contents of NOTE. */
7618static bfd_boolean
7619elfcore_make_note_pseudosection (bfd *abfd,
7620 char *name,
7621 Elf_Internal_Note *note)
7622{
7623 return _bfd_elfcore_make_pseudosection (abfd, name,
7624 note->descsz, note->descpos);
7625}
7626
7627/* There isn't a consistent prfpregset_t across platforms,
7628 but it doesn't matter, because we don't have to pick this
7629 data structure apart. */
7630
7631static bfd_boolean
7632elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7633{
7634 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7635}
7636
7637/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7638 type of NT_PRXFPREG. Just include the whole note's contents
7639 literally. */
7640
7641static bfd_boolean
7642elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7643{
7644 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7645}
7646
7647/* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7648 with a note type of NT_X86_XSTATE. Just include the whole note's
7649 contents literally. */
7650
7651static bfd_boolean
7652elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7653{
7654 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7655}
7656
7657static bfd_boolean
7658elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7659{
7660 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7661}
7662
7663static bfd_boolean
7664elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7665{
7666 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7667}
7668
7669static bfd_boolean
7670elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7671{
7672 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7673}
7674
7675static bfd_boolean
7676elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7677{
7678 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7679}
7680
7681static bfd_boolean
7682elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7683{
7684 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7685}
7686
7687static bfd_boolean
7688elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7689{
7690 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7691}
7692
7693static bfd_boolean
7694elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7695{
7696 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7697}
7698
7699static bfd_boolean
7700elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7701{
7702 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7703}
7704
7705#if defined (HAVE_PRPSINFO_T)
7706typedef prpsinfo_t elfcore_psinfo_t;
7707#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7708typedef prpsinfo32_t elfcore_psinfo32_t;
7709#endif
7710#endif
7711
7712#if defined (HAVE_PSINFO_T)
7713typedef psinfo_t elfcore_psinfo_t;
7714#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7715typedef psinfo32_t elfcore_psinfo32_t;
7716#endif
7717#endif
7718
7719/* return a malloc'ed copy of a string at START which is at
7720 most MAX bytes long, possibly without a terminating '\0'.
7721 the copy will always have a terminating '\0'. */
7722
7723char *
7724_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7725{
7726 char *dups;
7727 char *end = (char *) memchr (start, '\0', max);
7728 size_t len;
7729
7730 if (end == NULL)
7731 len = max;
7732 else
7733 len = end - start;
7734
7735 dups = (char *) bfd_alloc (abfd, len + 1);
7736 if (dups == NULL)
7737 return NULL;
7738
7739 memcpy (dups, start, len);
7740 dups[len] = '\0';
7741
7742 return dups;
7743}
7744
7745#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7746static bfd_boolean
7747elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7748{
7749 if (note->descsz == sizeof (elfcore_psinfo_t))
7750 {
7751 elfcore_psinfo_t psinfo;
7752
7753 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7754
7755 elf_tdata (abfd)->core_program
7756 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7757 sizeof (psinfo.pr_fname));
7758
7759 elf_tdata (abfd)->core_command
7760 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7761 sizeof (psinfo.pr_psargs));
7762 }
7763#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7764 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7765 {
7766 /* 64-bit host, 32-bit corefile */
7767 elfcore_psinfo32_t psinfo;
7768
7769 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7770
7771 elf_tdata (abfd)->core_program
7772 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7773 sizeof (psinfo.pr_fname));
7774
7775 elf_tdata (abfd)->core_command
7776 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7777 sizeof (psinfo.pr_psargs));
7778 }
7779#endif
7780
7781 else
7782 {
7783 /* Fail - we don't know how to handle any other
7784 note size (ie. data object type). */
7785 return TRUE;
7786 }
7787
7788 /* Note that for some reason, a spurious space is tacked
7789 onto the end of the args in some (at least one anyway)
7790 implementations, so strip it off if it exists. */
7791
7792 {
7793 char *command = elf_tdata (abfd)->core_command;
7794 int n = strlen (command);
7795
7796 if (0 < n && command[n - 1] == ' ')
7797 command[n - 1] = '\0';
7798 }
7799
7800 return TRUE;
7801}
7802#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7803
7804#if defined (HAVE_PSTATUS_T)
7805static bfd_boolean
7806elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7807{
7808 if (note->descsz == sizeof (pstatus_t)
7809#if defined (HAVE_PXSTATUS_T)
7810 || note->descsz == sizeof (pxstatus_t)
7811#endif
7812 )
7813 {
7814 pstatus_t pstat;
7815
7816 memcpy (&pstat, note->descdata, sizeof (pstat));
7817
7818 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7819 }
7820#if defined (HAVE_PSTATUS32_T)
7821 else if (note->descsz == sizeof (pstatus32_t))
7822 {
7823 /* 64-bit host, 32-bit corefile */
7824 pstatus32_t pstat;
7825
7826 memcpy (&pstat, note->descdata, sizeof (pstat));
7827
7828 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7829 }
7830#endif
7831 /* Could grab some more details from the "representative"
7832 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7833 NT_LWPSTATUS note, presumably. */
7834
7835 return TRUE;
7836}
7837#endif /* defined (HAVE_PSTATUS_T) */
7838
7839#if defined (HAVE_LWPSTATUS_T)
7840static bfd_boolean
7841elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7842{
7843 lwpstatus_t lwpstat;
7844 char buf[100];
7845 char *name;
7846 size_t len;
7847 asection *sect;
7848
7849 if (note->descsz != sizeof (lwpstat)
7850#if defined (HAVE_LWPXSTATUS_T)
7851 && note->descsz != sizeof (lwpxstatus_t)
7852#endif
7853 )
7854 return TRUE;
7855
7856 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7857
7858 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7859 /* Do not overwrite the core signal if it has already been set by
7860 another thread. */
7861 if (elf_tdata (abfd)->core_signal == 0)
7862 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7863
7864 /* Make a ".reg/999" section. */
7865
7866 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7867 len = strlen (buf) + 1;
7868 name = bfd_alloc (abfd, len);
7869 if (name == NULL)
7870 return FALSE;
7871 memcpy (name, buf, len);
7872
7873 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7874 if (sect == NULL)
7875 return FALSE;
7876
7877#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7878 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7879 sect->filepos = note->descpos
7880 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7881#endif
7882
7883#if defined (HAVE_LWPSTATUS_T_PR_REG)
7884 sect->size = sizeof (lwpstat.pr_reg);
7885 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7886#endif
7887
7888 sect->alignment_power = 2;
7889
7890 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7891 return FALSE;
7892
7893 /* Make a ".reg2/999" section */
7894
7895 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7896 len = strlen (buf) + 1;
7897 name = bfd_alloc (abfd, len);
7898 if (name == NULL)
7899 return FALSE;
7900 memcpy (name, buf, len);
7901
7902 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7903 if (sect == NULL)
7904 return FALSE;
7905
7906#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7907 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7908 sect->filepos = note->descpos
7909 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7910#endif
7911
7912#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7913 sect->size = sizeof (lwpstat.pr_fpreg);
7914 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7915#endif
7916
7917 sect->alignment_power = 2;
7918
7919 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7920}
7921#endif /* defined (HAVE_LWPSTATUS_T) */
7922
7923static bfd_boolean
7924elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7925{
7926 char buf[30];
7927 char *name;
7928 size_t len;
7929 asection *sect;
7930 int type;
7931 int is_active_thread;
7932 bfd_vma base_addr;
7933
7934 if (note->descsz < 728)
7935 return TRUE;
7936
7937 if (! CONST_STRNEQ (note->namedata, "win32"))
7938 return TRUE;
7939
7940 type = bfd_get_32 (abfd, note->descdata);
7941
7942 switch (type)
7943 {
7944 case 1 /* NOTE_INFO_PROCESS */:
7945 /* FIXME: need to add ->core_command. */
7946 /* process_info.pid */
7947 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7948 /* process_info.signal */
7949 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7950 break;
7951
7952 case 2 /* NOTE_INFO_THREAD */:
7953 /* Make a ".reg/999" section. */
7954 /* thread_info.tid */
7955 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7956
7957 len = strlen (buf) + 1;
7958 name = (char *) bfd_alloc (abfd, len);
7959 if (name == NULL)
7960 return FALSE;
7961
7962 memcpy (name, buf, len);
7963
7964 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7965 if (sect == NULL)
7966 return FALSE;
7967
7968 /* sizeof (thread_info.thread_context) */
7969 sect->size = 716;
7970 /* offsetof (thread_info.thread_context) */
7971 sect->filepos = note->descpos + 12;
7972 sect->alignment_power = 2;
7973
7974 /* thread_info.is_active_thread */
7975 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7976
7977 if (is_active_thread)
7978 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7979 return FALSE;
7980 break;
7981
7982 case 3 /* NOTE_INFO_MODULE */:
7983 /* Make a ".module/xxxxxxxx" section. */
7984 /* module_info.base_address */
7985 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7986 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
7987
7988 len = strlen (buf) + 1;
7989 name = (char *) bfd_alloc (abfd, len);
7990 if (name == NULL)
7991 return FALSE;
7992
7993 memcpy (name, buf, len);
7994
7995 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7996
7997 if (sect == NULL)
7998 return FALSE;
7999
8000 sect->size = note->descsz;
8001 sect->filepos = note->descpos;
8002 sect->alignment_power = 2;
8003 break;
8004
8005 default:
8006 return TRUE;
8007 }
8008
8009 return TRUE;
8010}
8011
8012static bfd_boolean
8013elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8014{
8015 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8016
8017 switch (note->type)
8018 {
8019 default:
8020 return TRUE;
8021
8022 case NT_PRSTATUS:
8023 if (bed->elf_backend_grok_prstatus)
8024 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8025 return TRUE;
8026#if defined (HAVE_PRSTATUS_T)
8027 return elfcore_grok_prstatus (abfd, note);
8028#else
8029 return TRUE;
8030#endif
8031
8032#if defined (HAVE_PSTATUS_T)
8033 case NT_PSTATUS:
8034 return elfcore_grok_pstatus (abfd, note);
8035#endif
8036
8037#if defined (HAVE_LWPSTATUS_T)
8038 case NT_LWPSTATUS:
8039 return elfcore_grok_lwpstatus (abfd, note);
8040#endif
8041
8042 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8043 return elfcore_grok_prfpreg (abfd, note);
8044
8045 case NT_WIN32PSTATUS:
8046 return elfcore_grok_win32pstatus (abfd, note);
8047
8048 case NT_PRXFPREG: /* Linux SSE extension */
8049 if (note->namesz == 6
8050 && strcmp (note->namedata, "LINUX") == 0)
8051 return elfcore_grok_prxfpreg (abfd, note);
8052 else
8053 return TRUE;
8054
8055 case NT_X86_XSTATE: /* Linux XSAVE extension */
8056 if (note->namesz == 6
8057 && strcmp (note->namedata, "LINUX") == 0)
8058 return elfcore_grok_xstatereg (abfd, note);
8059 else
8060 return TRUE;
8061
8062 case NT_PPC_VMX:
8063 if (note->namesz == 6
8064 && strcmp (note->namedata, "LINUX") == 0)
8065 return elfcore_grok_ppc_vmx (abfd, note);
8066 else
8067 return TRUE;
8068
8069 case NT_PPC_VSX:
8070 if (note->namesz == 6
8071 && strcmp (note->namedata, "LINUX") == 0)
8072 return elfcore_grok_ppc_vsx (abfd, note);
8073 else
8074 return TRUE;
8075
8076 case NT_S390_HIGH_GPRS:
8077 if (note->namesz == 6
8078 && strcmp (note->namedata, "LINUX") == 0)
8079 return elfcore_grok_s390_high_gprs (abfd, note);
8080 else
8081 return TRUE;
8082
8083 case NT_S390_TIMER:
8084 if (note->namesz == 6
8085 && strcmp (note->namedata, "LINUX") == 0)
8086 return elfcore_grok_s390_timer (abfd, note);
8087 else
8088 return TRUE;
8089
8090 case NT_S390_TODCMP:
8091 if (note->namesz == 6
8092 && strcmp (note->namedata, "LINUX") == 0)
8093 return elfcore_grok_s390_todcmp (abfd, note);
8094 else
8095 return TRUE;
8096
8097 case NT_S390_TODPREG:
8098 if (note->namesz == 6
8099 && strcmp (note->namedata, "LINUX") == 0)
8100 return elfcore_grok_s390_todpreg (abfd, note);
8101 else
8102 return TRUE;
8103
8104 case NT_S390_CTRS:
8105 if (note->namesz == 6
8106 && strcmp (note->namedata, "LINUX") == 0)
8107 return elfcore_grok_s390_ctrs (abfd, note);
8108 else
8109 return TRUE;
8110
8111 case NT_S390_PREFIX:
8112 if (note->namesz == 6
8113 && strcmp (note->namedata, "LINUX") == 0)
8114 return elfcore_grok_s390_prefix (abfd, note);
8115 else
8116 return TRUE;
8117
8118 case NT_PRPSINFO:
8119 case NT_PSINFO:
8120 if (bed->elf_backend_grok_psinfo)
8121 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8122 return TRUE;
8123#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8124 return elfcore_grok_psinfo (abfd, note);
8125#else
8126 return TRUE;
8127#endif
8128
8129 case NT_AUXV:
8130 {
8131 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8132 SEC_HAS_CONTENTS);
8133
8134 if (sect == NULL)
8135 return FALSE;
8136 sect->size = note->descsz;
8137 sect->filepos = note->descpos;
8138 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8139
8140 return TRUE;
8141 }
8142 }
8143}
8144
8145static bfd_boolean
8146elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8147{
8148 elf_tdata (abfd)->build_id_size = note->descsz;
8149 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8150 if (elf_tdata (abfd)->build_id == NULL)
8151 return FALSE;
8152
8153 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8154
8155 return TRUE;
8156}
8157
8158static bfd_boolean
8159elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8160{
8161 switch (note->type)
8162 {
8163 default:
8164 return TRUE;
8165
8166 case NT_GNU_BUILD_ID:
8167 return elfobj_grok_gnu_build_id (abfd, note);
8168 }
8169}
8170
8171static bfd_boolean
8172elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8173{
8174 char *cp;
8175
8176 cp = strchr (note->namedata, '@');
8177 if (cp != NULL)
8178 {
8179 *lwpidp = atoi(cp + 1);
8180 return TRUE;
8181 }
8182 return FALSE;
8183}
8184
8185static bfd_boolean
8186elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8187{
8188 /* Signal number at offset 0x08. */
8189 elf_tdata (abfd)->core_signal
8190 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8191
8192 /* Process ID at offset 0x50. */
8193 elf_tdata (abfd)->core_pid
8194 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8195
8196 /* Command name at 0x7c (max 32 bytes, including nul). */
8197 elf_tdata (abfd)->core_command
8198 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8199
8200 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8201 note);
8202}
8203
8204static bfd_boolean
8205elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8206{
8207 int lwp;
8208
8209 if (elfcore_netbsd_get_lwpid (note, &lwp))
8210 elf_tdata (abfd)->core_lwpid = lwp;
8211
8212 if (note->type == NT_NETBSDCORE_PROCINFO)
8213 {
8214 /* NetBSD-specific core "procinfo". Note that we expect to
8215 find this note before any of the others, which is fine,
8216 since the kernel writes this note out first when it
8217 creates a core file. */
8218
8219 return elfcore_grok_netbsd_procinfo (abfd, note);
8220 }
8221
8222 /* As of Jan 2002 there are no other machine-independent notes
8223 defined for NetBSD core files. If the note type is less
8224 than the start of the machine-dependent note types, we don't
8225 understand it. */
8226
8227 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8228 return TRUE;
8229
8230
8231 switch (bfd_get_arch (abfd))
8232 {
8233 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8234 PT_GETFPREGS == mach+2. */
8235
8236 case bfd_arch_alpha:
8237 case bfd_arch_sparc:
8238 switch (note->type)
8239 {
8240 case NT_NETBSDCORE_FIRSTMACH+0:
8241 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8242
8243 case NT_NETBSDCORE_FIRSTMACH+2:
8244 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8245
8246 default:
8247 return TRUE;
8248 }
8249
8250 /* On all other arch's, PT_GETREGS == mach+1 and
8251 PT_GETFPREGS == mach+3. */
8252
8253 default:
8254 switch (note->type)
8255 {
8256 case NT_NETBSDCORE_FIRSTMACH+1:
8257 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8258
8259 case NT_NETBSDCORE_FIRSTMACH+3:
8260 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8261
8262 default:
8263 return TRUE;
8264 }
8265 }
8266 /* NOTREACHED */
8267}
8268
8269static bfd_boolean
8270elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8271{
8272 /* Signal number at offset 0x08. */
8273 elf_tdata (abfd)->core_signal
8274 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8275
8276 /* Process ID at offset 0x20. */
8277 elf_tdata (abfd)->core_pid
8278 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8279
8280 /* Command name at 0x48 (max 32 bytes, including nul). */
8281 elf_tdata (abfd)->core_command
8282 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8283
8284 return TRUE;
8285}
8286
8287static bfd_boolean
8288elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8289{
8290 if (note->type == NT_OPENBSD_PROCINFO)
8291 return elfcore_grok_openbsd_procinfo (abfd, note);
8292
8293 if (note->type == NT_OPENBSD_REGS)
8294 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8295
8296 if (note->type == NT_OPENBSD_FPREGS)
8297 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8298
8299 if (note->type == NT_OPENBSD_XFPREGS)
8300 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8301
8302 if (note->type == NT_OPENBSD_AUXV)
8303 {
8304 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8305 SEC_HAS_CONTENTS);
8306
8307 if (sect == NULL)
8308 return FALSE;
8309 sect->size = note->descsz;
8310 sect->filepos = note->descpos;
8311 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8312
8313 return TRUE;
8314 }
8315
8316 if (note->type == NT_OPENBSD_WCOOKIE)
8317 {
8318 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8319 SEC_HAS_CONTENTS);
8320
8321 if (sect == NULL)
8322 return FALSE;
8323 sect->size = note->descsz;
8324 sect->filepos = note->descpos;
8325 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8326
8327 return TRUE;
8328 }
8329
8330 return TRUE;
8331}
8332
8333static bfd_boolean
8334elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8335{
8336 void *ddata = note->descdata;
8337 char buf[100];
8338 char *name;
8339 asection *sect;
8340 short sig;
8341 unsigned flags;
8342
8343 /* nto_procfs_status 'pid' field is at offset 0. */
8344 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8345
8346 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8347 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8348
8349 /* nto_procfs_status 'flags' field is at offset 8. */
8350 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8351
8352 /* nto_procfs_status 'what' field is at offset 14. */
8353 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8354 {
8355 elf_tdata (abfd)->core_signal = sig;
8356 elf_tdata (abfd)->core_lwpid = *tid;
8357 }
8358
8359 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8360 do not come from signals so we make sure we set the current
8361 thread just in case. */
8362 if (flags & 0x00000080)
8363 elf_tdata (abfd)->core_lwpid = *tid;
8364
8365 /* Make a ".qnx_core_status/%d" section. */
8366 sprintf (buf, ".qnx_core_status/%ld", *tid);
8367
8368 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8369 if (name == NULL)
8370 return FALSE;
8371 strcpy (name, buf);
8372
8373 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8374 if (sect == NULL)
8375 return FALSE;
8376
8377 sect->size = note->descsz;
8378 sect->filepos = note->descpos;
8379 sect->alignment_power = 2;
8380
8381 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8382}
8383
8384static bfd_boolean
8385elfcore_grok_nto_regs (bfd *abfd,
8386 Elf_Internal_Note *note,
8387 long tid,
8388 char *base)
8389{
8390 char buf[100];
8391 char *name;
8392 asection *sect;
8393
8394 /* Make a "(base)/%d" section. */
8395 sprintf (buf, "%s/%ld", base, tid);
8396
8397 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8398 if (name == NULL)
8399 return FALSE;
8400 strcpy (name, buf);
8401
8402 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8403 if (sect == NULL)
8404 return FALSE;
8405
8406 sect->size = note->descsz;
8407 sect->filepos = note->descpos;
8408 sect->alignment_power = 2;
8409
8410 /* This is the current thread. */
8411 if (elf_tdata (abfd)->core_lwpid == tid)
8412 return elfcore_maybe_make_sect (abfd, base, sect);
8413
8414 return TRUE;
8415}
8416
8417#define BFD_QNT_CORE_INFO 7
8418#define BFD_QNT_CORE_STATUS 8
8419#define BFD_QNT_CORE_GREG 9
8420#define BFD_QNT_CORE_FPREG 10
8421
8422static bfd_boolean
8423elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8424{
8425 /* Every GREG section has a STATUS section before it. Store the
8426 tid from the previous call to pass down to the next gregs
8427 function. */
8428 static long tid = 1;
8429
8430 switch (note->type)
8431 {
8432 case BFD_QNT_CORE_INFO:
8433 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8434 case BFD_QNT_CORE_STATUS:
8435 return elfcore_grok_nto_status (abfd, note, &tid);
8436 case BFD_QNT_CORE_GREG:
8437 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8438 case BFD_QNT_CORE_FPREG:
8439 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8440 default:
8441 return TRUE;
8442 }
8443}
8444
8445static bfd_boolean
8446elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8447{
8448 char *name;
8449 asection *sect;
8450 size_t len;
8451
8452 /* Use note name as section name. */
8453 len = note->namesz;
8454 name = (char *) bfd_alloc (abfd, len);
8455 if (name == NULL)
8456 return FALSE;
8457 memcpy (name, note->namedata, len);
8458 name[len - 1] = '\0';
8459
8460 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8461 if (sect == NULL)
8462 return FALSE;
8463
8464 sect->size = note->descsz;
8465 sect->filepos = note->descpos;
8466 sect->alignment_power = 1;
8467
8468 return TRUE;
8469}
8470
8471/* Function: elfcore_write_note
8472
8473 Inputs:
8474 buffer to hold note, and current size of buffer
8475 name of note
8476 type of note
8477 data for note
8478 size of data for note
8479
8480 Writes note to end of buffer. ELF64 notes are written exactly as
8481 for ELF32, despite the current (as of 2006) ELF gabi specifying
8482 that they ought to have 8-byte namesz and descsz field, and have
8483 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8484
8485 Return:
8486 Pointer to realloc'd buffer, *BUFSIZ updated. */
8487
8488char *
8489elfcore_write_note (bfd *abfd,
8490 char *buf,
8491 int *bufsiz,
8492 const char *name,
8493 int type,
8494 const void *input,
8495 int size)
8496{
8497 Elf_External_Note *xnp;
8498 size_t namesz;
8499 size_t newspace;
8500 char *dest;
8501
8502 namesz = 0;
8503 if (name != NULL)
8504 namesz = strlen (name) + 1;
8505
8506 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8507
8508 buf = (char *) realloc (buf, *bufsiz + newspace);
8509 if (buf == NULL)
8510 return buf;
8511 dest = buf + *bufsiz;
8512 *bufsiz += newspace;
8513 xnp = (Elf_External_Note *) dest;
8514 H_PUT_32 (abfd, namesz, xnp->namesz);
8515 H_PUT_32 (abfd, size, xnp->descsz);
8516 H_PUT_32 (abfd, type, xnp->type);
8517 dest = xnp->name;
8518 if (name != NULL)
8519 {
8520 memcpy (dest, name, namesz);
8521 dest += namesz;
8522 while (namesz & 3)
8523 {
8524 *dest++ = '\0';
8525 ++namesz;
8526 }
8527 }
8528 memcpy (dest, input, size);
8529 dest += size;
8530 while (size & 3)
8531 {
8532 *dest++ = '\0';
8533 ++size;
8534 }
8535 return buf;
8536}
8537
8538#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8539char *
8540elfcore_write_prpsinfo (bfd *abfd,
8541 char *buf,
8542 int *bufsiz,
8543 const char *fname,
8544 const char *psargs)
8545{
8546 const char *note_name = "CORE";
8547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8548
8549 if (bed->elf_backend_write_core_note != NULL)
8550 {
8551 char *ret;
8552 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8553 NT_PRPSINFO, fname, psargs);
8554 if (ret != NULL)
8555 return ret;
8556 }
8557
8558#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8559 if (bed->s->elfclass == ELFCLASS32)
8560 {
8561#if defined (HAVE_PSINFO32_T)
8562 psinfo32_t data;
8563 int note_type = NT_PSINFO;
8564#else
8565 prpsinfo32_t data;
8566 int note_type = NT_PRPSINFO;
8567#endif
8568
8569 memset (&data, 0, sizeof (data));
8570 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8571 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8572 return elfcore_write_note (abfd, buf, bufsiz,
8573 note_name, note_type, &data, sizeof (data));
8574 }
8575 else
8576#endif
8577 {
8578#if defined (HAVE_PSINFO_T)
8579 psinfo_t data;
8580 int note_type = NT_PSINFO;
8581#else
8582 prpsinfo_t data;
8583 int note_type = NT_PRPSINFO;
8584#endif
8585
8586 memset (&data, 0, sizeof (data));
8587 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8588 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8589 return elfcore_write_note (abfd, buf, bufsiz,
8590 note_name, note_type, &data, sizeof (data));
8591 }
8592}
8593#endif /* PSINFO_T or PRPSINFO_T */
8594
8595#if defined (HAVE_PRSTATUS_T)
8596char *
8597elfcore_write_prstatus (bfd *abfd,
8598 char *buf,
8599 int *bufsiz,
8600 long pid,
8601 int cursig,
8602 const void *gregs)
8603{
8604 const char *note_name = "CORE";
8605 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8606
8607 if (bed->elf_backend_write_core_note != NULL)
8608 {
8609 char *ret;
8610 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8611 NT_PRSTATUS,
8612 pid, cursig, gregs);
8613 if (ret != NULL)
8614 return ret;
8615 }
8616
8617#if defined (HAVE_PRSTATUS32_T)
8618 if (bed->s->elfclass == ELFCLASS32)
8619 {
8620 prstatus32_t prstat;
8621
8622 memset (&prstat, 0, sizeof (prstat));
8623 prstat.pr_pid = pid;
8624 prstat.pr_cursig = cursig;
8625 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8626 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8627 NT_PRSTATUS, &prstat, sizeof (prstat));
8628 }
8629 else
8630#endif
8631 {
8632 prstatus_t prstat;
8633
8634 memset (&prstat, 0, sizeof (prstat));
8635 prstat.pr_pid = pid;
8636 prstat.pr_cursig = cursig;
8637 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8638 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8639 NT_PRSTATUS, &prstat, sizeof (prstat));
8640 }
8641}
8642#endif /* HAVE_PRSTATUS_T */
8643
8644#if defined (HAVE_LWPSTATUS_T)
8645char *
8646elfcore_write_lwpstatus (bfd *abfd,
8647 char *buf,
8648 int *bufsiz,
8649 long pid,
8650 int cursig,
8651 const void *gregs)
8652{
8653 lwpstatus_t lwpstat;
8654 const char *note_name = "CORE";
8655
8656 memset (&lwpstat, 0, sizeof (lwpstat));
8657 lwpstat.pr_lwpid = pid >> 16;
8658 lwpstat.pr_cursig = cursig;
8659#if defined (HAVE_LWPSTATUS_T_PR_REG)
8660 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8661#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8662#if !defined(gregs)
8663 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8664 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8665#else
8666 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8667 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8668#endif
8669#endif
8670 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8671 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8672}
8673#endif /* HAVE_LWPSTATUS_T */
8674
8675#if defined (HAVE_PSTATUS_T)
8676char *
8677elfcore_write_pstatus (bfd *abfd,
8678 char *buf,
8679 int *bufsiz,
8680 long pid,
8681 int cursig ATTRIBUTE_UNUSED,
8682 const void *gregs ATTRIBUTE_UNUSED)
8683{
8684 const char *note_name = "CORE";
8685#if defined (HAVE_PSTATUS32_T)
8686 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8687
8688 if (bed->s->elfclass == ELFCLASS32)
8689 {
8690 pstatus32_t pstat;
8691
8692 memset (&pstat, 0, sizeof (pstat));
8693 pstat.pr_pid = pid & 0xffff;
8694 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8695 NT_PSTATUS, &pstat, sizeof (pstat));
8696 return buf;
8697 }
8698 else
8699#endif
8700 {
8701 pstatus_t pstat;
8702
8703 memset (&pstat, 0, sizeof (pstat));
8704 pstat.pr_pid = pid & 0xffff;
8705 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8706 NT_PSTATUS, &pstat, sizeof (pstat));
8707 return buf;
8708 }
8709}
8710#endif /* HAVE_PSTATUS_T */
8711
8712char *
8713elfcore_write_prfpreg (bfd *abfd,
8714 char *buf,
8715 int *bufsiz,
8716 const void *fpregs,
8717 int size)
8718{
8719 const char *note_name = "CORE";
8720 return elfcore_write_note (abfd, buf, bufsiz,
8721 note_name, NT_FPREGSET, fpregs, size);
8722}
8723
8724char *
8725elfcore_write_prxfpreg (bfd *abfd,
8726 char *buf,
8727 int *bufsiz,
8728 const void *xfpregs,
8729 int size)
8730{
8731 char *note_name = "LINUX";
8732 return elfcore_write_note (abfd, buf, bufsiz,
8733 note_name, NT_PRXFPREG, xfpregs, size);
8734}
8735
8736char *
8737elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
8738 const void *xfpregs, int size)
8739{
8740 char *note_name = "LINUX";
8741 return elfcore_write_note (abfd, buf, bufsiz,
8742 note_name, NT_X86_XSTATE, xfpregs, size);
8743}
8744
8745char *
8746elfcore_write_ppc_vmx (bfd *abfd,
8747 char *buf,
8748 int *bufsiz,
8749 const void *ppc_vmx,
8750 int size)
8751{
8752 char *note_name = "LINUX";
8753 return elfcore_write_note (abfd, buf, bufsiz,
8754 note_name, NT_PPC_VMX, ppc_vmx, size);
8755}
8756
8757char *
8758elfcore_write_ppc_vsx (bfd *abfd,
8759 char *buf,
8760 int *bufsiz,
8761 const void *ppc_vsx,
8762 int size)
8763{
8764 char *note_name = "LINUX";
8765 return elfcore_write_note (abfd, buf, bufsiz,
8766 note_name, NT_PPC_VSX, ppc_vsx, size);
8767}
8768
8769static char *
8770elfcore_write_s390_high_gprs (bfd *abfd,
8771 char *buf,
8772 int *bufsiz,
8773 const void *s390_high_gprs,
8774 int size)
8775{
8776 char *note_name = "LINUX";
8777 return elfcore_write_note (abfd, buf, bufsiz,
8778 note_name, NT_S390_HIGH_GPRS,
8779 s390_high_gprs, size);
8780}
8781
8782char *
8783elfcore_write_s390_timer (bfd *abfd,
8784 char *buf,
8785 int *bufsiz,
8786 const void *s390_timer,
8787 int size)
8788{
8789 char *note_name = "LINUX";
8790 return elfcore_write_note (abfd, buf, bufsiz,
8791 note_name, NT_S390_TIMER, s390_timer, size);
8792}
8793
8794char *
8795elfcore_write_s390_todcmp (bfd *abfd,
8796 char *buf,
8797 int *bufsiz,
8798 const void *s390_todcmp,
8799 int size)
8800{
8801 char *note_name = "LINUX";
8802 return elfcore_write_note (abfd, buf, bufsiz,
8803 note_name, NT_S390_TODCMP, s390_todcmp, size);
8804}
8805
8806char *
8807elfcore_write_s390_todpreg (bfd *abfd,
8808 char *buf,
8809 int *bufsiz,
8810 const void *s390_todpreg,
8811 int size)
8812{
8813 char *note_name = "LINUX";
8814 return elfcore_write_note (abfd, buf, bufsiz,
8815 note_name, NT_S390_TODPREG, s390_todpreg, size);
8816}
8817
8818char *
8819elfcore_write_s390_ctrs (bfd *abfd,
8820 char *buf,
8821 int *bufsiz,
8822 const void *s390_ctrs,
8823 int size)
8824{
8825 char *note_name = "LINUX";
8826 return elfcore_write_note (abfd, buf, bufsiz,
8827 note_name, NT_S390_CTRS, s390_ctrs, size);
8828}
8829
8830char *
8831elfcore_write_s390_prefix (bfd *abfd,
8832 char *buf,
8833 int *bufsiz,
8834 const void *s390_prefix,
8835 int size)
8836{
8837 char *note_name = "LINUX";
8838 return elfcore_write_note (abfd, buf, bufsiz,
8839 note_name, NT_S390_PREFIX, s390_prefix, size);
8840}
8841
8842char *
8843elfcore_write_register_note (bfd *abfd,
8844 char *buf,
8845 int *bufsiz,
8846 const char *section,
8847 const void *data,
8848 int size)
8849{
8850 if (strcmp (section, ".reg2") == 0)
8851 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8852 if (strcmp (section, ".reg-xfp") == 0)
8853 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8854 if (strcmp (section, ".reg-xstate") == 0)
8855 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
8856 if (strcmp (section, ".reg-ppc-vmx") == 0)
8857 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8858 if (strcmp (section, ".reg-ppc-vsx") == 0)
8859 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8860 if (strcmp (section, ".reg-s390-high-gprs") == 0)
8861 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
8862 if (strcmp (section, ".reg-s390-timer") == 0)
8863 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
8864 if (strcmp (section, ".reg-s390-todcmp") == 0)
8865 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
8866 if (strcmp (section, ".reg-s390-todpreg") == 0)
8867 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
8868 if (strcmp (section, ".reg-s390-ctrs") == 0)
8869 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
8870 if (strcmp (section, ".reg-s390-prefix") == 0)
8871 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
8872 return NULL;
8873}
8874
8875static bfd_boolean
8876elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8877{
8878 char *p;
8879
8880 p = buf;
8881 while (p < buf + size)
8882 {
8883 /* FIXME: bad alignment assumption. */
8884 Elf_External_Note *xnp = (Elf_External_Note *) p;
8885 Elf_Internal_Note in;
8886
8887 if (offsetof (Elf_External_Note, name) > buf - p + size)
8888 return FALSE;
8889
8890 in.type = H_GET_32 (abfd, xnp->type);
8891
8892 in.namesz = H_GET_32 (abfd, xnp->namesz);
8893 in.namedata = xnp->name;
8894 if (in.namesz > buf - in.namedata + size)
8895 return FALSE;
8896
8897 in.descsz = H_GET_32 (abfd, xnp->descsz);
8898 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8899 in.descpos = offset + (in.descdata - buf);
8900 if (in.descsz != 0
8901 && (in.descdata >= buf + size
8902 || in.descsz > buf - in.descdata + size))
8903 return FALSE;
8904
8905 switch (bfd_get_format (abfd))
8906 {
8907 default:
8908 return TRUE;
8909
8910 case bfd_core:
8911 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8912 {
8913 if (! elfcore_grok_netbsd_note (abfd, &in))
8914 return FALSE;
8915 }
8916 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
8917 {
8918 if (! elfcore_grok_openbsd_note (abfd, &in))
8919 return FALSE;
8920 }
8921 else if (CONST_STRNEQ (in.namedata, "QNX"))
8922 {
8923 if (! elfcore_grok_nto_note (abfd, &in))
8924 return FALSE;
8925 }
8926 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8927 {
8928 if (! elfcore_grok_spu_note (abfd, &in))
8929 return FALSE;
8930 }
8931 else
8932 {
8933 if (! elfcore_grok_note (abfd, &in))
8934 return FALSE;
8935 }
8936 break;
8937
8938 case bfd_object:
8939 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8940 {
8941 if (! elfobj_grok_gnu_note (abfd, &in))
8942 return FALSE;
8943 }
8944 break;
8945 }
8946
8947 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8948 }
8949
8950 return TRUE;
8951}
8952
8953static bfd_boolean
8954elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8955{
8956 char *buf;
8957
8958 if (size <= 0)
8959 return TRUE;
8960
8961 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8962 return FALSE;
8963
8964 buf = (char *) bfd_malloc (size);
8965 if (buf == NULL)
8966 return FALSE;
8967
8968 if (bfd_bread (buf, size, abfd) != size
8969 || !elf_parse_notes (abfd, buf, size, offset))
8970 {
8971 free (buf);
8972 return FALSE;
8973 }
8974
8975 free (buf);
8976 return TRUE;
8977}
8978\f
8979/* Providing external access to the ELF program header table. */
8980
8981/* Return an upper bound on the number of bytes required to store a
8982 copy of ABFD's program header table entries. Return -1 if an error
8983 occurs; bfd_get_error will return an appropriate code. */
8984
8985long
8986bfd_get_elf_phdr_upper_bound (bfd *abfd)
8987{
8988 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8989 {
8990 bfd_set_error (bfd_error_wrong_format);
8991 return -1;
8992 }
8993
8994 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8995}
8996
8997/* Copy ABFD's program header table entries to *PHDRS. The entries
8998 will be stored as an array of Elf_Internal_Phdr structures, as
8999 defined in include/elf/internal.h. To find out how large the
9000 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9001
9002 Return the number of program header table entries read, or -1 if an
9003 error occurs; bfd_get_error will return an appropriate code. */
9004
9005int
9006bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9007{
9008 int num_phdrs;
9009
9010 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9011 {
9012 bfd_set_error (bfd_error_wrong_format);
9013 return -1;
9014 }
9015
9016 num_phdrs = elf_elfheader (abfd)->e_phnum;
9017 memcpy (phdrs, elf_tdata (abfd)->phdr,
9018 num_phdrs * sizeof (Elf_Internal_Phdr));
9019
9020 return num_phdrs;
9021}
9022
9023enum elf_reloc_type_class
9024_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9025{
9026 return reloc_class_normal;
9027}
9028
9029/* For RELA architectures, return the relocation value for a
9030 relocation against a local symbol. */
9031
9032bfd_vma
9033_bfd_elf_rela_local_sym (bfd *abfd,
9034 Elf_Internal_Sym *sym,
9035 asection **psec,
9036 Elf_Internal_Rela *rel)
9037{
9038 asection *sec = *psec;
9039 bfd_vma relocation;
9040
9041 relocation = (sec->output_section->vma
9042 + sec->output_offset
9043 + sym->st_value);
9044 if ((sec->flags & SEC_MERGE)
9045 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9046 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9047 {
9048 rel->r_addend =
9049 _bfd_merged_section_offset (abfd, psec,
9050 elf_section_data (sec)->sec_info,
9051 sym->st_value + rel->r_addend);
9052 if (sec != *psec)
9053 {
9054 /* If we have changed the section, and our original section is
9055 marked with SEC_EXCLUDE, it means that the original
9056 SEC_MERGE section has been completely subsumed in some
9057 other SEC_MERGE section. In this case, we need to leave
9058 some info around for --emit-relocs. */
9059 if ((sec->flags & SEC_EXCLUDE) != 0)
9060 sec->kept_section = *psec;
9061 sec = *psec;
9062 }
9063 rel->r_addend -= relocation;
9064 rel->r_addend += sec->output_section->vma + sec->output_offset;
9065 }
9066 return relocation;
9067}
9068
9069bfd_vma
9070_bfd_elf_rel_local_sym (bfd *abfd,
9071 Elf_Internal_Sym *sym,
9072 asection **psec,
9073 bfd_vma addend)
9074{
9075 asection *sec = *psec;
9076
9077 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9078 return sym->st_value + addend;
9079
9080 return _bfd_merged_section_offset (abfd, psec,
9081 elf_section_data (sec)->sec_info,
9082 sym->st_value + addend);
9083}
9084
9085bfd_vma
9086_bfd_elf_section_offset (bfd *abfd,
9087 struct bfd_link_info *info,
9088 asection *sec,
9089 bfd_vma offset)
9090{
9091 switch (sec->sec_info_type)
9092 {
9093 case ELF_INFO_TYPE_STABS:
9094 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9095 offset);
9096 case ELF_INFO_TYPE_EH_FRAME:
9097 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9098 default:
9099 return offset;
9100 }
9101}
9102\f
9103/* Create a new BFD as if by bfd_openr. Rather than opening a file,
9104 reconstruct an ELF file by reading the segments out of remote memory
9105 based on the ELF file header at EHDR_VMA and the ELF program headers it
9106 points to. If not null, *LOADBASEP is filled in with the difference
9107 between the VMAs from which the segments were read, and the VMAs the
9108 file headers (and hence BFD's idea of each section's VMA) put them at.
9109
9110 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9111 remote memory at target address VMA into the local buffer at MYADDR; it
9112 should return zero on success or an `errno' code on failure. TEMPL must
9113 be a BFD for an ELF target with the word size and byte order found in
9114 the remote memory. */
9115
9116bfd *
9117bfd_elf_bfd_from_remote_memory
9118 (bfd *templ,
9119 bfd_vma ehdr_vma,
9120 bfd_vma *loadbasep,
9121 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9122{
9123 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9124 (templ, ehdr_vma, loadbasep, target_read_memory);
9125}
9126\f
9127long
9128_bfd_elf_get_synthetic_symtab (bfd *abfd,
9129 long symcount ATTRIBUTE_UNUSED,
9130 asymbol **syms ATTRIBUTE_UNUSED,
9131 long dynsymcount,
9132 asymbol **dynsyms,
9133 asymbol **ret)
9134{
9135 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9136 asection *relplt;
9137 asymbol *s;
9138 const char *relplt_name;
9139 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9140 arelent *p;
9141 long count, i, n;
9142 size_t size;
9143 Elf_Internal_Shdr *hdr;
9144 char *names;
9145 asection *plt;
9146
9147 *ret = NULL;
9148
9149 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9150 return 0;
9151
9152 if (dynsymcount <= 0)
9153 return 0;
9154
9155 if (!bed->plt_sym_val)
9156 return 0;
9157
9158 relplt_name = bed->relplt_name;
9159 if (relplt_name == NULL)
9160 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9161 relplt = bfd_get_section_by_name (abfd, relplt_name);
9162 if (relplt == NULL)
9163 return 0;
9164
9165 hdr = &elf_section_data (relplt)->this_hdr;
9166 if (hdr->sh_link != elf_dynsymtab (abfd)
9167 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9168 return 0;
9169
9170 plt = bfd_get_section_by_name (abfd, ".plt");
9171 if (plt == NULL)
9172 return 0;
9173
9174 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9175 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9176 return -1;
9177
9178 count = relplt->size / hdr->sh_entsize;
9179 size = count * sizeof (asymbol);
9180 p = relplt->relocation;
9181 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9182 {
9183 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9184 if (p->addend != 0)
9185 {
9186#ifdef BFD64
9187 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9188#else
9189 size += sizeof ("+0x") - 1 + 8;
9190#endif
9191 }
9192 }
9193
9194 s = *ret = (asymbol *) bfd_malloc (size);
9195 if (s == NULL)
9196 return -1;
9197
9198 names = (char *) (s + count);
9199 p = relplt->relocation;
9200 n = 0;
9201 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9202 {
9203 size_t len;
9204 bfd_vma addr;
9205
9206 addr = bed->plt_sym_val (i, plt, p);
9207 if (addr == (bfd_vma) -1)
9208 continue;
9209
9210 *s = **p->sym_ptr_ptr;
9211 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9212 we are defining a symbol, ensure one of them is set. */
9213 if ((s->flags & BSF_LOCAL) == 0)
9214 s->flags |= BSF_GLOBAL;
9215 s->flags |= BSF_SYNTHETIC;
9216 s->section = plt;
9217 s->value = addr - plt->vma;
9218 s->name = names;
9219 s->udata.p = NULL;
9220 len = strlen ((*p->sym_ptr_ptr)->name);
9221 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9222 names += len;
9223 if (p->addend != 0)
9224 {
9225 char buf[30], *a;
9226
9227 memcpy (names, "+0x", sizeof ("+0x") - 1);
9228 names += sizeof ("+0x") - 1;
9229 bfd_sprintf_vma (abfd, buf, p->addend);
9230 for (a = buf; *a == '0'; ++a)
9231 ;
9232 len = strlen (a);
9233 memcpy (names, a, len);
9234 names += len;
9235 }
9236 memcpy (names, "@plt", sizeof ("@plt"));
9237 names += sizeof ("@plt");
9238 ++s, ++n;
9239 }
9240
9241 return n;
9242}
9243
9244/* It is only used by x86-64 so far. */
9245asection _bfd_elf_large_com_section
9246 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9247 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9248
9249void
9250_bfd_elf_set_osabi (bfd * abfd,
9251 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9252{
9253 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9254
9255 i_ehdrp = elf_elfheader (abfd);
9256
9257 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9258
9259 /* To make things simpler for the loader on Linux systems we set the
9260 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9261 the STT_GNU_IFUNC type. */
9262 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9263 && elf_tdata (abfd)->has_ifunc_symbols)
9264 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
9265}
9266
9267
9268/* Return TRUE for ELF symbol types that represent functions.
9269 This is the default version of this function, which is sufficient for
9270 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9271
9272bfd_boolean
9273_bfd_elf_is_function_type (unsigned int type)
9274{
9275 return (type == STT_FUNC
9276 || type == STT_GNU_IFUNC);
9277}
This page took 0.060683 seconds and 4 git commands to generate.