Correctly compute length of DW_TAG_variant_part union
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31#include "defs.h"
32#include "dwarf2read.h"
33#include "dwarf-index-cache.h"
34#include "dwarf-index-common.h"
35#include "bfd.h"
36#include "elf-bfd.h"
37#include "symtab.h"
38#include "gdbtypes.h"
39#include "objfiles.h"
40#include "dwarf2.h"
41#include "buildsym.h"
42#include "demangle.h"
43#include "gdb-demangle.h"
44#include "filenames.h" /* for DOSish file names */
45#include "macrotab.h"
46#include "language.h"
47#include "complaints.h"
48#include "dwarf2expr.h"
49#include "dwarf2loc.h"
50#include "cp-support.h"
51#include "hashtab.h"
52#include "command.h"
53#include "gdbcmd.h"
54#include "block.h"
55#include "addrmap.h"
56#include "typeprint.h"
57#include "psympriv.h"
58#include "c-lang.h"
59#include "go-lang.h"
60#include "valprint.h"
61#include "gdbcore.h" /* for gnutarget */
62#include "gdb/gdb-index.h"
63#include "gdb_bfd.h"
64#include "f-lang.h"
65#include "source.h"
66#include "build-id.h"
67#include "namespace.h"
68#include "gdbsupport/function-view.h"
69#include "gdbsupport/gdb_optional.h"
70#include "gdbsupport/underlying.h"
71#include "gdbsupport/hash_enum.h"
72#include "filename-seen-cache.h"
73#include "producer.h"
74#include <fcntl.h>
75#include <algorithm>
76#include <unordered_map>
77#include "gdbsupport/selftest.h"
78#include "rust-lang.h"
79#include "gdbsupport/pathstuff.h"
80
81/* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84static unsigned int dwarf_read_debug = 0;
85
86/* When non-zero, dump DIEs after they are read in. */
87static unsigned int dwarf_die_debug = 0;
88
89/* When non-zero, dump line number entries as they are read in. */
90static unsigned int dwarf_line_debug = 0;
91
92/* When true, cross-check physname against demangler. */
93static bool check_physname = false;
94
95/* When true, do not reject deprecated .gdb_index sections. */
96static bool use_deprecated_index_sections = false;
97
98static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
99
100/* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102static int dwarf2_locexpr_index;
103static int dwarf2_loclist_index;
104static int dwarf2_locexpr_block_index;
105static int dwarf2_loclist_block_index;
106
107/* An index into a (C++) symbol name component in a symbol name as
108 recorded in the mapped_index's symbol table. For each C++ symbol
109 in the symbol table, we record one entry for the start of each
110 component in the symbol in a table of name components, and then
111 sort the table, in order to be able to binary search symbol names,
112 ignoring leading namespaces, both completion and regular look up.
113 For example, for symbol "A::B::C", we'll have an entry that points
114 to "A::B::C", another that points to "B::C", and another for "C".
115 Note that function symbols in GDB index have no parameter
116 information, just the function/method names. You can convert a
117 name_component to a "const char *" using the
118 'mapped_index::symbol_name_at(offset_type)' method. */
119
120struct name_component
121{
122 /* Offset in the symbol name where the component starts. Stored as
123 a (32-bit) offset instead of a pointer to save memory and improve
124 locality on 64-bit architectures. */
125 offset_type name_offset;
126
127 /* The symbol's index in the symbol and constant pool tables of a
128 mapped_index. */
129 offset_type idx;
130};
131
132/* Base class containing bits shared by both .gdb_index and
133 .debug_name indexes. */
134
135struct mapped_index_base
136{
137 mapped_index_base () = default;
138 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
139
140 /* The name_component table (a sorted vector). See name_component's
141 description above. */
142 std::vector<name_component> name_components;
143
144 /* How NAME_COMPONENTS is sorted. */
145 enum case_sensitivity name_components_casing;
146
147 /* Return the number of names in the symbol table. */
148 virtual size_t symbol_name_count () const = 0;
149
150 /* Get the name of the symbol at IDX in the symbol table. */
151 virtual const char *symbol_name_at (offset_type idx) const = 0;
152
153 /* Return whether the name at IDX in the symbol table should be
154 ignored. */
155 virtual bool symbol_name_slot_invalid (offset_type idx) const
156 {
157 return false;
158 }
159
160 /* Build the symbol name component sorted vector, if we haven't
161 yet. */
162 void build_name_components ();
163
164 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
165 possible matches for LN_NO_PARAMS in the name component
166 vector. */
167 std::pair<std::vector<name_component>::const_iterator,
168 std::vector<name_component>::const_iterator>
169 find_name_components_bounds (const lookup_name_info &ln_no_params,
170 enum language lang) const;
171
172 /* Prevent deleting/destroying via a base class pointer. */
173protected:
174 ~mapped_index_base() = default;
175};
176
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index final : public mapped_index_base
180{
181 /* A slot/bucket in the symbol table hash. */
182 struct symbol_table_slot
183 {
184 const offset_type name;
185 const offset_type vec;
186 };
187
188 /* Index data format version. */
189 int version = 0;
190
191 /* The address table data. */
192 gdb::array_view<const gdb_byte> address_table;
193
194 /* The symbol table, implemented as a hash table. */
195 gdb::array_view<symbol_table_slot> symbol_table;
196
197 /* A pointer to the constant pool. */
198 const char *constant_pool = nullptr;
199
200 bool symbol_name_slot_invalid (offset_type idx) const override
201 {
202 const auto &bucket = this->symbol_table[idx];
203 return bucket.name == 0 && bucket.vec == 0;
204 }
205
206 /* Convenience method to get at the name of the symbol at IDX in the
207 symbol table. */
208 const char *symbol_name_at (offset_type idx) const override
209 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
210
211 size_t symbol_name_count () const override
212 { return this->symbol_table.size (); }
213};
214
215/* A description of the mapped .debug_names.
216 Uninitialized map has CU_COUNT 0. */
217struct mapped_debug_names final : public mapped_index_base
218{
219 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
220 : dwarf2_per_objfile (dwarf2_per_objfile_)
221 {}
222
223 struct dwarf2_per_objfile *dwarf2_per_objfile;
224 bfd_endian dwarf5_byte_order;
225 bool dwarf5_is_dwarf64;
226 bool augmentation_is_gdb;
227 uint8_t offset_size;
228 uint32_t cu_count = 0;
229 uint32_t tu_count, bucket_count, name_count;
230 const gdb_byte *cu_table_reordered, *tu_table_reordered;
231 const uint32_t *bucket_table_reordered, *hash_table_reordered;
232 const gdb_byte *name_table_string_offs_reordered;
233 const gdb_byte *name_table_entry_offs_reordered;
234 const gdb_byte *entry_pool;
235
236 struct index_val
237 {
238 ULONGEST dwarf_tag;
239 struct attr
240 {
241 /* Attribute name DW_IDX_*. */
242 ULONGEST dw_idx;
243
244 /* Attribute form DW_FORM_*. */
245 ULONGEST form;
246
247 /* Value if FORM is DW_FORM_implicit_const. */
248 LONGEST implicit_const;
249 };
250 std::vector<attr> attr_vec;
251 };
252
253 std::unordered_map<ULONGEST, index_val> abbrev_map;
254
255 const char *namei_to_name (uint32_t namei) const;
256
257 /* Implementation of the mapped_index_base virtual interface, for
258 the name_components cache. */
259
260 const char *symbol_name_at (offset_type idx) const override
261 { return namei_to_name (idx); }
262
263 size_t symbol_name_count () const override
264 { return this->name_count; }
265};
266
267/* See dwarf2read.h. */
268
269dwarf2_per_objfile *
270get_dwarf2_per_objfile (struct objfile *objfile)
271{
272 return dwarf2_objfile_data_key.get (objfile);
273}
274
275/* Default names of the debugging sections. */
276
277/* Note that if the debugging section has been compressed, it might
278 have a name like .zdebug_info. */
279
280static const struct dwarf2_debug_sections dwarf2_elf_names =
281{
282 { ".debug_info", ".zdebug_info" },
283 { ".debug_abbrev", ".zdebug_abbrev" },
284 { ".debug_line", ".zdebug_line" },
285 { ".debug_loc", ".zdebug_loc" },
286 { ".debug_loclists", ".zdebug_loclists" },
287 { ".debug_macinfo", ".zdebug_macinfo" },
288 { ".debug_macro", ".zdebug_macro" },
289 { ".debug_str", ".zdebug_str" },
290 { ".debug_line_str", ".zdebug_line_str" },
291 { ".debug_ranges", ".zdebug_ranges" },
292 { ".debug_rnglists", ".zdebug_rnglists" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
298 { ".debug_names", ".zdebug_names" },
299 { ".debug_aranges", ".zdebug_aranges" },
300 23
301};
302
303/* List of DWO/DWP sections. */
304
305static const struct dwop_section_names
306{
307 struct dwarf2_section_names abbrev_dwo;
308 struct dwarf2_section_names info_dwo;
309 struct dwarf2_section_names line_dwo;
310 struct dwarf2_section_names loc_dwo;
311 struct dwarf2_section_names loclists_dwo;
312 struct dwarf2_section_names macinfo_dwo;
313 struct dwarf2_section_names macro_dwo;
314 struct dwarf2_section_names str_dwo;
315 struct dwarf2_section_names str_offsets_dwo;
316 struct dwarf2_section_names types_dwo;
317 struct dwarf2_section_names cu_index;
318 struct dwarf2_section_names tu_index;
319}
320dwop_section_names =
321{
322 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
323 { ".debug_info.dwo", ".zdebug_info.dwo" },
324 { ".debug_line.dwo", ".zdebug_line.dwo" },
325 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
326 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
327 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
328 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
329 { ".debug_str.dwo", ".zdebug_str.dwo" },
330 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
331 { ".debug_types.dwo", ".zdebug_types.dwo" },
332 { ".debug_cu_index", ".zdebug_cu_index" },
333 { ".debug_tu_index", ".zdebug_tu_index" },
334};
335
336/* local data types */
337
338/* The data in a compilation unit header, after target2host
339 translation, looks like this. */
340struct comp_unit_head
341{
342 unsigned int length;
343 short version;
344 unsigned char addr_size;
345 unsigned char signed_addr_p;
346 sect_offset abbrev_sect_off;
347
348 /* Size of file offsets; either 4 or 8. */
349 unsigned int offset_size;
350
351 /* Size of the length field; either 4 or 12. */
352 unsigned int initial_length_size;
353
354 enum dwarf_unit_type unit_type;
355
356 /* Offset to the first byte of this compilation unit header in the
357 .debug_info section, for resolving relative reference dies. */
358 sect_offset sect_off;
359
360 /* Offset to first die in this cu from the start of the cu.
361 This will be the first byte following the compilation unit header. */
362 cu_offset first_die_cu_offset;
363
364
365 /* 64-bit signature of this unit. For type units, it denotes the signature of
366 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
367 Also used in DWARF 5, to denote the dwo id when the unit type is
368 DW_UT_skeleton or DW_UT_split_compile. */
369 ULONGEST signature;
370
371 /* For types, offset in the type's DIE of the type defined by this TU. */
372 cu_offset type_cu_offset_in_tu;
373};
374
375/* Type used for delaying computation of method physnames.
376 See comments for compute_delayed_physnames. */
377struct delayed_method_info
378{
379 /* The type to which the method is attached, i.e., its parent class. */
380 struct type *type;
381
382 /* The index of the method in the type's function fieldlists. */
383 int fnfield_index;
384
385 /* The index of the method in the fieldlist. */
386 int index;
387
388 /* The name of the DIE. */
389 const char *name;
390
391 /* The DIE associated with this method. */
392 struct die_info *die;
393};
394
395/* Internal state when decoding a particular compilation unit. */
396struct dwarf2_cu
397{
398 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
399 ~dwarf2_cu ();
400
401 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
402
403 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
404 Create the set of symtabs used by this TU, or if this TU is sharing
405 symtabs with another TU and the symtabs have already been created
406 then restore those symtabs in the line header.
407 We don't need the pc/line-number mapping for type units. */
408 void setup_type_unit_groups (struct die_info *die);
409
410 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
411 buildsym_compunit constructor. */
412 struct compunit_symtab *start_symtab (const char *name,
413 const char *comp_dir,
414 CORE_ADDR low_pc);
415
416 /* Reset the builder. */
417 void reset_builder () { m_builder.reset (); }
418
419 /* The header of the compilation unit. */
420 struct comp_unit_head header {};
421
422 /* Base address of this compilation unit. */
423 CORE_ADDR base_address = 0;
424
425 /* Non-zero if base_address has been set. */
426 int base_known = 0;
427
428 /* The language we are debugging. */
429 enum language language = language_unknown;
430 const struct language_defn *language_defn = nullptr;
431
432 const char *producer = nullptr;
433
434private:
435 /* The symtab builder for this CU. This is only non-NULL when full
436 symbols are being read. */
437 std::unique_ptr<buildsym_compunit> m_builder;
438
439public:
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope = nullptr;
450
451 /* Hash table holding all the loaded partial DIEs
452 with partial_die->offset.SECT_OFF as hash. */
453 htab_t partial_dies = nullptr;
454
455 /* Storage for things with the same lifetime as this read-in compilation
456 unit, including partial DIEs. */
457 auto_obstack comp_unit_obstack;
458
459 /* When multiple dwarf2_cu structures are living in memory, this field
460 chains them all together, so that they can be released efficiently.
461 We will probably also want a generation counter so that most-recently-used
462 compilation units are cached... */
463 struct dwarf2_per_cu_data *read_in_chain = nullptr;
464
465 /* Backlink to our per_cu entry. */
466 struct dwarf2_per_cu_data *per_cu;
467
468 /* How many compilation units ago was this CU last referenced? */
469 int last_used = 0;
470
471 /* A hash table of DIE cu_offset for following references with
472 die_info->offset.sect_off as hash. */
473 htab_t die_hash = nullptr;
474
475 /* Full DIEs if read in. */
476 struct die_info *dies = nullptr;
477
478 /* A set of pointers to dwarf2_per_cu_data objects for compilation
479 units referenced by this one. Only set during full symbol processing;
480 partial symbol tables do not have dependencies. */
481 htab_t dependencies = nullptr;
482
483 /* Header data from the line table, during full symbol processing. */
484 struct line_header *line_header = nullptr;
485 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
486 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
487 this is the DW_TAG_compile_unit die for this CU. We'll hold on
488 to the line header as long as this DIE is being processed. See
489 process_die_scope. */
490 die_info *line_header_die_owner = nullptr;
491
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 std::vector<delayed_method_info> method_list;
495
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab = nullptr;
498
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
508 struct dwo_unit *dwo_unit = nullptr;
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 ULONGEST addr_base = 0;
514
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
517 Note this value comes from the Fission stub CU/TU's DIE.
518 Also note that the value is zero in the non-DWO case so this value can
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
525 ULONGEST ranges_base = 0;
526
527 /* When reading debug info generated by older versions of rustc, we
528 have to rewrite some union types to be struct types with a
529 variant part. This rewriting must be done after the CU is fully
530 read in, because otherwise at the point of rewriting some struct
531 type might not have been fully processed. So, we keep a list of
532 all such types here and process them after expansion. */
533 std::vector<struct type *> rust_unions;
534
535 /* Mark used when releasing cached dies. */
536 bool mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 bool has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 bool checked_producer : 1;
549 bool producer_is_gxx_lt_4_6 : 1;
550 bool producer_is_gcc_lt_4_3 : 1;
551 bool producer_is_icc : 1;
552 bool producer_is_icc_lt_14 : 1;
553 bool producer_is_codewarrior : 1;
554
555 /* When true, the file that we're processing is known to have
556 debugging info for C++ namespaces. GCC 3.3.x did not produce
557 this information, but later versions do. */
558
559 bool processing_has_namespace_info : 1;
560
561 struct partial_die_info *find_partial_die (sect_offset sect_off);
562
563 /* If this CU was inherited by another CU (via specification,
564 abstract_origin, etc), this is the ancestor CU. */
565 dwarf2_cu *ancestor;
566
567 /* Get the buildsym_compunit for this CU. */
568 buildsym_compunit *get_builder ()
569 {
570 /* If this CU has a builder associated with it, use that. */
571 if (m_builder != nullptr)
572 return m_builder.get ();
573
574 /* Otherwise, search ancestors for a valid builder. */
575 if (ancestor != nullptr)
576 return ancestor->get_builder ();
577
578 return nullptr;
579 }
580};
581
582/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
583 This includes type_unit_group and quick_file_names. */
584
585struct stmt_list_hash
586{
587 /* The DWO unit this table is from or NULL if there is none. */
588 struct dwo_unit *dwo_unit;
589
590 /* Offset in .debug_line or .debug_line.dwo. */
591 sect_offset line_sect_off;
592};
593
594/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
595 an object of this type. */
596
597struct type_unit_group
598{
599 /* dwarf2read.c's main "handle" on a TU symtab.
600 To simplify things we create an artificial CU that "includes" all the
601 type units using this stmt_list so that the rest of the code still has
602 a "per_cu" handle on the symtab.
603 This PER_CU is recognized by having no section. */
604#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
605 struct dwarf2_per_cu_data per_cu;
606
607 /* The TUs that share this DW_AT_stmt_list entry.
608 This is added to while parsing type units to build partial symtabs,
609 and is deleted afterwards and not used again. */
610 std::vector<signatured_type *> *tus;
611
612 /* The compunit symtab.
613 Type units in a group needn't all be defined in the same source file,
614 so we create an essentially anonymous symtab as the compunit symtab. */
615 struct compunit_symtab *compunit_symtab;
616
617 /* The data used to construct the hash key. */
618 struct stmt_list_hash hash;
619
620 /* The number of symtabs from the line header.
621 The value here must match line_header.num_file_names. */
622 unsigned int num_symtabs;
623
624 /* The symbol tables for this TU (obtained from the files listed in
625 DW_AT_stmt_list).
626 WARNING: The order of entries here must match the order of entries
627 in the line header. After the first TU using this type_unit_group, the
628 line header for the subsequent TUs is recreated from this. This is done
629 because we need to use the same symtabs for each TU using the same
630 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
631 there's no guarantee the line header doesn't have duplicate entries. */
632 struct symtab **symtabs;
633};
634
635/* These sections are what may appear in a (real or virtual) DWO file. */
636
637struct dwo_sections
638{
639 struct dwarf2_section_info abbrev;
640 struct dwarf2_section_info line;
641 struct dwarf2_section_info loc;
642 struct dwarf2_section_info loclists;
643 struct dwarf2_section_info macinfo;
644 struct dwarf2_section_info macro;
645 struct dwarf2_section_info str;
646 struct dwarf2_section_info str_offsets;
647 /* In the case of a virtual DWO file, these two are unused. */
648 struct dwarf2_section_info info;
649 std::vector<dwarf2_section_info> types;
650};
651
652/* CUs/TUs in DWP/DWO files. */
653
654struct dwo_unit
655{
656 /* Backlink to the containing struct dwo_file. */
657 struct dwo_file *dwo_file;
658
659 /* The "id" that distinguishes this CU/TU.
660 .debug_info calls this "dwo_id", .debug_types calls this "signature".
661 Since signatures came first, we stick with it for consistency. */
662 ULONGEST signature;
663
664 /* The section this CU/TU lives in, in the DWO file. */
665 struct dwarf2_section_info *section;
666
667 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
668 sect_offset sect_off;
669 unsigned int length;
670
671 /* For types, offset in the type's DIE of the type defined by this TU. */
672 cu_offset type_offset_in_tu;
673};
674
675/* include/dwarf2.h defines the DWP section codes.
676 It defines a max value but it doesn't define a min value, which we
677 use for error checking, so provide one. */
678
679enum dwp_v2_section_ids
680{
681 DW_SECT_MIN = 1
682};
683
684/* Data for one DWO file.
685
686 This includes virtual DWO files (a virtual DWO file is a DWO file as it
687 appears in a DWP file). DWP files don't really have DWO files per se -
688 comdat folding of types "loses" the DWO file they came from, and from
689 a high level view DWP files appear to contain a mass of random types.
690 However, to maintain consistency with the non-DWP case we pretend DWP
691 files contain virtual DWO files, and we assign each TU with one virtual
692 DWO file (generally based on the line and abbrev section offsets -
693 a heuristic that seems to work in practice). */
694
695struct dwo_file
696{
697 dwo_file () = default;
698 DISABLE_COPY_AND_ASSIGN (dwo_file);
699
700 /* The DW_AT_GNU_dwo_name attribute.
701 For virtual DWO files the name is constructed from the section offsets
702 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
703 from related CU+TUs. */
704 const char *dwo_name = nullptr;
705
706 /* The DW_AT_comp_dir attribute. */
707 const char *comp_dir = nullptr;
708
709 /* The bfd, when the file is open. Otherwise this is NULL.
710 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
711 gdb_bfd_ref_ptr dbfd;
712
713 /* The sections that make up this DWO file.
714 Remember that for virtual DWO files in DWP V2, these are virtual
715 sections (for lack of a better name). */
716 struct dwo_sections sections {};
717
718 /* The CUs in the file.
719 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
720 an extension to handle LLVM's Link Time Optimization output (where
721 multiple source files may be compiled into a single object/dwo pair). */
722 htab_t cus {};
723
724 /* Table of TUs in the file.
725 Each element is a struct dwo_unit. */
726 htab_t tus {};
727};
728
729/* These sections are what may appear in a DWP file. */
730
731struct dwp_sections
732{
733 /* These are used by both DWP version 1 and 2. */
734 struct dwarf2_section_info str;
735 struct dwarf2_section_info cu_index;
736 struct dwarf2_section_info tu_index;
737
738 /* These are only used by DWP version 2 files.
739 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
740 sections are referenced by section number, and are not recorded here.
741 In DWP version 2 there is at most one copy of all these sections, each
742 section being (effectively) comprised of the concatenation of all of the
743 individual sections that exist in the version 1 format.
744 To keep the code simple we treat each of these concatenated pieces as a
745 section itself (a virtual section?). */
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info info;
748 struct dwarf2_section_info line;
749 struct dwarf2_section_info loc;
750 struct dwarf2_section_info macinfo;
751 struct dwarf2_section_info macro;
752 struct dwarf2_section_info str_offsets;
753 struct dwarf2_section_info types;
754};
755
756/* These sections are what may appear in a virtual DWO file in DWP version 1.
757 A virtual DWO file is a DWO file as it appears in a DWP file. */
758
759struct virtual_v1_dwo_sections
760{
761 struct dwarf2_section_info abbrev;
762 struct dwarf2_section_info line;
763 struct dwarf2_section_info loc;
764 struct dwarf2_section_info macinfo;
765 struct dwarf2_section_info macro;
766 struct dwarf2_section_info str_offsets;
767 /* Each DWP hash table entry records one CU or one TU.
768 That is recorded here, and copied to dwo_unit.section. */
769 struct dwarf2_section_info info_or_types;
770};
771
772/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
773 In version 2, the sections of the DWO files are concatenated together
774 and stored in one section of that name. Thus each ELF section contains
775 several "virtual" sections. */
776
777struct virtual_v2_dwo_sections
778{
779 bfd_size_type abbrev_offset;
780 bfd_size_type abbrev_size;
781
782 bfd_size_type line_offset;
783 bfd_size_type line_size;
784
785 bfd_size_type loc_offset;
786 bfd_size_type loc_size;
787
788 bfd_size_type macinfo_offset;
789 bfd_size_type macinfo_size;
790
791 bfd_size_type macro_offset;
792 bfd_size_type macro_size;
793
794 bfd_size_type str_offsets_offset;
795 bfd_size_type str_offsets_size;
796
797 /* Each DWP hash table entry records one CU or one TU.
798 That is recorded here, and copied to dwo_unit.section. */
799 bfd_size_type info_or_types_offset;
800 bfd_size_type info_or_types_size;
801};
802
803/* Contents of DWP hash tables. */
804
805struct dwp_hash_table
806{
807 uint32_t version, nr_columns;
808 uint32_t nr_units, nr_slots;
809 const gdb_byte *hash_table, *unit_table;
810 union
811 {
812 struct
813 {
814 const gdb_byte *indices;
815 } v1;
816 struct
817 {
818 /* This is indexed by column number and gives the id of the section
819 in that column. */
820#define MAX_NR_V2_DWO_SECTIONS \
821 (1 /* .debug_info or .debug_types */ \
822 + 1 /* .debug_abbrev */ \
823 + 1 /* .debug_line */ \
824 + 1 /* .debug_loc */ \
825 + 1 /* .debug_str_offsets */ \
826 + 1 /* .debug_macro or .debug_macinfo */)
827 int section_ids[MAX_NR_V2_DWO_SECTIONS];
828 const gdb_byte *offsets;
829 const gdb_byte *sizes;
830 } v2;
831 } section_pool;
832};
833
834/* Data for one DWP file. */
835
836struct dwp_file
837{
838 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
839 : name (name_),
840 dbfd (std::move (abfd))
841 {
842 }
843
844 /* Name of the file. */
845 const char *name;
846
847 /* File format version. */
848 int version = 0;
849
850 /* The bfd. */
851 gdb_bfd_ref_ptr dbfd;
852
853 /* Section info for this file. */
854 struct dwp_sections sections {};
855
856 /* Table of CUs in the file. */
857 const struct dwp_hash_table *cus = nullptr;
858
859 /* Table of TUs in the file. */
860 const struct dwp_hash_table *tus = nullptr;
861
862 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
863 htab_t loaded_cus {};
864 htab_t loaded_tus {};
865
866 /* Table to map ELF section numbers to their sections.
867 This is only needed for the DWP V1 file format. */
868 unsigned int num_sections = 0;
869 asection **elf_sections = nullptr;
870};
871
872/* Struct used to pass misc. parameters to read_die_and_children, et
873 al. which are used for both .debug_info and .debug_types dies.
874 All parameters here are unchanging for the life of the call. This
875 struct exists to abstract away the constant parameters of die reading. */
876
877struct die_reader_specs
878{
879 /* The bfd of die_section. */
880 bfd* abfd;
881
882 /* The CU of the DIE we are parsing. */
883 struct dwarf2_cu *cu;
884
885 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
886 struct dwo_file *dwo_file;
887
888 /* The section the die comes from.
889 This is either .debug_info or .debug_types, or the .dwo variants. */
890 struct dwarf2_section_info *die_section;
891
892 /* die_section->buffer. */
893 const gdb_byte *buffer;
894
895 /* The end of the buffer. */
896 const gdb_byte *buffer_end;
897
898 /* The value of the DW_AT_comp_dir attribute. */
899 const char *comp_dir;
900
901 /* The abbreviation table to use when reading the DIEs. */
902 struct abbrev_table *abbrev_table;
903};
904
905/* Type of function passed to init_cutu_and_read_dies, et.al. */
906typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
907 const gdb_byte *info_ptr,
908 struct die_info *comp_unit_die,
909 int has_children,
910 void *data);
911
912/* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
913 later. */
914typedef int dir_index;
915
916/* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
917 and later. */
918typedef int file_name_index;
919
920struct file_entry
921{
922 file_entry () = default;
923
924 file_entry (const char *name_, dir_index d_index_,
925 unsigned int mod_time_, unsigned int length_)
926 : name (name_),
927 d_index (d_index_),
928 mod_time (mod_time_),
929 length (length_)
930 {}
931
932 /* Return the include directory at D_INDEX stored in LH. Returns
933 NULL if D_INDEX is out of bounds. */
934 const char *include_dir (const line_header *lh) const;
935
936 /* The file name. Note this is an observing pointer. The memory is
937 owned by debug_line_buffer. */
938 const char *name {};
939
940 /* The directory index (1-based). */
941 dir_index d_index {};
942
943 unsigned int mod_time {};
944
945 unsigned int length {};
946
947 /* True if referenced by the Line Number Program. */
948 bool included_p {};
949
950 /* The associated symbol table, if any. */
951 struct symtab *symtab {};
952};
953
954/* The line number information for a compilation unit (found in the
955 .debug_line section) begins with a "statement program header",
956 which contains the following information. */
957struct line_header
958{
959 line_header ()
960 : offset_in_dwz {}
961 {}
962
963 /* Add an entry to the include directory table. */
964 void add_include_dir (const char *include_dir);
965
966 /* Add an entry to the file name table. */
967 void add_file_name (const char *name, dir_index d_index,
968 unsigned int mod_time, unsigned int length);
969
970 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
971 Returns NULL if INDEX is out of bounds. */
972 const char *include_dir_at (dir_index index) const
973 {
974 int vec_index;
975 if (version >= 5)
976 vec_index = index;
977 else
978 vec_index = index - 1;
979 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
980 return NULL;
981 return m_include_dirs[vec_index];
982 }
983
984 bool is_valid_file_index (int file_index)
985 {
986 if (version >= 5)
987 return 0 <= file_index && file_index < file_names_size ();
988 return 1 <= file_index && file_index <= file_names_size ();
989 }
990
991 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
992 Returns NULL if INDEX is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 int vec_index;
996 if (version >= 5)
997 vec_index = index;
998 else
999 vec_index = index - 1;
1000 if (vec_index < 0 || vec_index >= m_file_names.size ())
1001 return NULL;
1002 return &m_file_names[vec_index];
1003 }
1004
1005 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1006 this method should only be used to iterate through all file entries in an
1007 index-agnostic manner. */
1008 std::vector<file_entry> &file_names ()
1009 { return m_file_names; }
1010
1011 /* Offset of line number information in .debug_line section. */
1012 sect_offset sect_off {};
1013
1014 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1015 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016
1017 unsigned int total_length {};
1018 unsigned short version {};
1019 unsigned int header_length {};
1020 unsigned char minimum_instruction_length {};
1021 unsigned char maximum_ops_per_instruction {};
1022 unsigned char default_is_stmt {};
1023 int line_base {};
1024 unsigned char line_range {};
1025 unsigned char opcode_base {};
1026
1027 /* standard_opcode_lengths[i] is the number of operands for the
1028 standard opcode whose value is i. This means that
1029 standard_opcode_lengths[0] is unused, and the last meaningful
1030 element is standard_opcode_lengths[opcode_base - 1]. */
1031 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1032
1033 int file_names_size ()
1034 { return m_file_names.size(); }
1035
1036 /* The start and end of the statement program following this
1037 header. These point into dwarf2_per_objfile->line_buffer. */
1038 const gdb_byte *statement_program_start {}, *statement_program_end {};
1039
1040 private:
1041 /* The include_directories table. Note these are observing
1042 pointers. The memory is owned by debug_line_buffer. */
1043 std::vector<const char *> m_include_dirs;
1044
1045 /* The file_names table. This is private because the meaning of indexes
1046 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1047 before, and is 0 in DWARF 5 and later). So the client should use
1048 file_name_at method for access. */
1049 std::vector<file_entry> m_file_names;
1050};
1051
1052typedef std::unique_ptr<line_header> line_header_up;
1053
1054const char *
1055file_entry::include_dir (const line_header *lh) const
1056{
1057 return lh->include_dir_at (d_index);
1058}
1059
1060/* When we construct a partial symbol table entry we only
1061 need this much information. */
1062struct partial_die_info : public allocate_on_obstack
1063 {
1064 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1065
1066 /* Disable assign but still keep copy ctor, which is needed
1067 load_partial_dies. */
1068 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1069
1070 /* Adjust the partial die before generating a symbol for it. This
1071 function may set the is_external flag or change the DIE's
1072 name. */
1073 void fixup (struct dwarf2_cu *cu);
1074
1075 /* Read a minimal amount of information into the minimal die
1076 structure. */
1077 const gdb_byte *read (const struct die_reader_specs *reader,
1078 const struct abbrev_info &abbrev,
1079 const gdb_byte *info_ptr);
1080
1081 /* Offset of this DIE. */
1082 const sect_offset sect_off;
1083
1084 /* DWARF-2 tag for this DIE. */
1085 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1086
1087 /* Assorted flags describing the data found in this DIE. */
1088 const unsigned int has_children : 1;
1089
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
1095 unsigned int may_be_inlined : 1;
1096
1097 /* This DIE has been marked DW_AT_main_subprogram. */
1098 unsigned int main_subprogram : 1;
1099
1100 /* Flag set if the SCOPE field of this structure has been
1101 computed. */
1102 unsigned int scope_set : 1;
1103
1104 /* Flag set if the DIE has a byte_size attribute. */
1105 unsigned int has_byte_size : 1;
1106
1107 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1108 unsigned int has_const_value : 1;
1109
1110 /* Flag set if any of the DIE's children are template arguments. */
1111 unsigned int has_template_arguments : 1;
1112
1113 /* Flag set if fixup has been called on this die. */
1114 unsigned int fixup_called : 1;
1115
1116 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1117 unsigned int is_dwz : 1;
1118
1119 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1120 unsigned int spec_is_dwz : 1;
1121
1122 /* The name of this DIE. Normally the value of DW_AT_name, but
1123 sometimes a default name for unnamed DIEs. */
1124 const char *name = nullptr;
1125
1126 /* The linkage name, if present. */
1127 const char *linkage_name = nullptr;
1128
1129 /* The scope to prepend to our children. This is generally
1130 allocated on the comp_unit_obstack, so will disappear
1131 when this compilation unit leaves the cache. */
1132 const char *scope = nullptr;
1133
1134 /* Some data associated with the partial DIE. The tag determines
1135 which field is live. */
1136 union
1137 {
1138 /* The location description associated with this DIE, if any. */
1139 struct dwarf_block *locdesc;
1140 /* The offset of an import, for DW_TAG_imported_unit. */
1141 sect_offset sect_off;
1142 } d {};
1143
1144 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1145 CORE_ADDR lowpc = 0;
1146 CORE_ADDR highpc = 0;
1147
1148 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1149 DW_AT_sibling, if any. */
1150 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1151 could return DW_AT_sibling values to its caller load_partial_dies. */
1152 const gdb_byte *sibling = nullptr;
1153
1154 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1155 DW_AT_specification (or DW_AT_abstract_origin or
1156 DW_AT_extension). */
1157 sect_offset spec_offset {};
1158
1159 /* Pointers to this DIE's parent, first child, and next sibling,
1160 if any. */
1161 struct partial_die_info *die_parent = nullptr;
1162 struct partial_die_info *die_child = nullptr;
1163 struct partial_die_info *die_sibling = nullptr;
1164
1165 friend struct partial_die_info *
1166 dwarf2_cu::find_partial_die (sect_offset sect_off);
1167
1168 private:
1169 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1170 partial_die_info (sect_offset sect_off)
1171 : partial_die_info (sect_off, DW_TAG_padding, 0)
1172 {
1173 }
1174
1175 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1176 int has_children_)
1177 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1178 {
1179 is_external = 0;
1180 is_declaration = 0;
1181 has_type = 0;
1182 has_specification = 0;
1183 has_pc_info = 0;
1184 may_be_inlined = 0;
1185 main_subprogram = 0;
1186 scope_set = 0;
1187 has_byte_size = 0;
1188 has_const_value = 0;
1189 has_template_arguments = 0;
1190 fixup_called = 0;
1191 is_dwz = 0;
1192 spec_is_dwz = 0;
1193 }
1194 };
1195
1196/* This data structure holds the information of an abbrev. */
1197struct abbrev_info
1198 {
1199 unsigned int number; /* number identifying abbrev */
1200 enum dwarf_tag tag; /* dwarf tag */
1201 unsigned short has_children; /* boolean */
1202 unsigned short num_attrs; /* number of attributes */
1203 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1204 struct abbrev_info *next; /* next in chain */
1205 };
1206
1207struct attr_abbrev
1208 {
1209 ENUM_BITFIELD(dwarf_attribute) name : 16;
1210 ENUM_BITFIELD(dwarf_form) form : 16;
1211
1212 /* It is valid only if FORM is DW_FORM_implicit_const. */
1213 LONGEST implicit_const;
1214 };
1215
1216/* Size of abbrev_table.abbrev_hash_table. */
1217#define ABBREV_HASH_SIZE 121
1218
1219/* Top level data structure to contain an abbreviation table. */
1220
1221struct abbrev_table
1222{
1223 explicit abbrev_table (sect_offset off)
1224 : sect_off (off)
1225 {
1226 m_abbrevs =
1227 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1228 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1229 }
1230
1231 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1232
1233 /* Allocate space for a struct abbrev_info object in
1234 ABBREV_TABLE. */
1235 struct abbrev_info *alloc_abbrev ();
1236
1237 /* Add an abbreviation to the table. */
1238 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1239
1240 /* Look up an abbrev in the table.
1241 Returns NULL if the abbrev is not found. */
1242
1243 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1244
1245
1246 /* Where the abbrev table came from.
1247 This is used as a sanity check when the table is used. */
1248 const sect_offset sect_off;
1249
1250 /* Storage for the abbrev table. */
1251 auto_obstack abbrev_obstack;
1252
1253private:
1254
1255 /* Hash table of abbrevs.
1256 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1257 It could be statically allocated, but the previous code didn't so we
1258 don't either. */
1259 struct abbrev_info **m_abbrevs;
1260};
1261
1262typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1263
1264/* Attributes have a name and a value. */
1265struct attribute
1266 {
1267 ENUM_BITFIELD(dwarf_attribute) name : 16;
1268 ENUM_BITFIELD(dwarf_form) form : 15;
1269
1270 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1271 field should be in u.str (existing only for DW_STRING) but it is kept
1272 here for better struct attribute alignment. */
1273 unsigned int string_is_canonical : 1;
1274
1275 union
1276 {
1277 const char *str;
1278 struct dwarf_block *blk;
1279 ULONGEST unsnd;
1280 LONGEST snd;
1281 CORE_ADDR addr;
1282 ULONGEST signature;
1283 }
1284 u;
1285 };
1286
1287/* This data structure holds a complete die structure. */
1288struct die_info
1289 {
1290 /* DWARF-2 tag for this DIE. */
1291 ENUM_BITFIELD(dwarf_tag) tag : 16;
1292
1293 /* Number of attributes */
1294 unsigned char num_attrs;
1295
1296 /* True if we're presently building the full type name for the
1297 type derived from this DIE. */
1298 unsigned char building_fullname : 1;
1299
1300 /* True if this die is in process. PR 16581. */
1301 unsigned char in_process : 1;
1302
1303 /* Abbrev number */
1304 unsigned int abbrev;
1305
1306 /* Offset in .debug_info or .debug_types section. */
1307 sect_offset sect_off;
1308
1309 /* The dies in a compilation unit form an n-ary tree. PARENT
1310 points to this die's parent; CHILD points to the first child of
1311 this node; and all the children of a given node are chained
1312 together via their SIBLING fields. */
1313 struct die_info *child; /* Its first child, if any. */
1314 struct die_info *sibling; /* Its next sibling, if any. */
1315 struct die_info *parent; /* Its parent, if any. */
1316
1317 /* An array of attributes, with NUM_ATTRS elements. There may be
1318 zero, but it's not common and zero-sized arrays are not
1319 sufficiently portable C. */
1320 struct attribute attrs[1];
1321 };
1322
1323/* Get at parts of an attribute structure. */
1324
1325#define DW_STRING(attr) ((attr)->u.str)
1326#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1327#define DW_UNSND(attr) ((attr)->u.unsnd)
1328#define DW_BLOCK(attr) ((attr)->u.blk)
1329#define DW_SND(attr) ((attr)->u.snd)
1330#define DW_ADDR(attr) ((attr)->u.addr)
1331#define DW_SIGNATURE(attr) ((attr)->u.signature)
1332
1333/* Blocks are a bunch of untyped bytes. */
1334struct dwarf_block
1335 {
1336 size_t size;
1337
1338 /* Valid only if SIZE is not zero. */
1339 const gdb_byte *data;
1340 };
1341
1342#ifndef ATTR_ALLOC_CHUNK
1343#define ATTR_ALLOC_CHUNK 4
1344#endif
1345
1346/* Allocate fields for structs, unions and enums in this size. */
1347#ifndef DW_FIELD_ALLOC_CHUNK
1348#define DW_FIELD_ALLOC_CHUNK 4
1349#endif
1350
1351/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1352 but this would require a corresponding change in unpack_field_as_long
1353 and friends. */
1354static int bits_per_byte = 8;
1355
1356/* When reading a variant or variant part, we track a bit more
1357 information about the field, and store it in an object of this
1358 type. */
1359
1360struct variant_field
1361{
1362 /* If we see a DW_TAG_variant, then this will be the discriminant
1363 value. */
1364 ULONGEST discriminant_value;
1365 /* If we see a DW_TAG_variant, then this will be set if this is the
1366 default branch. */
1367 bool default_branch;
1368 /* While reading a DW_TAG_variant_part, this will be set if this
1369 field is the discriminant. */
1370 bool is_discriminant;
1371};
1372
1373struct nextfield
1374{
1375 int accessibility = 0;
1376 int virtuality = 0;
1377 /* Extra information to describe a variant or variant part. */
1378 struct variant_field variant {};
1379 struct field field {};
1380};
1381
1382struct fnfieldlist
1383{
1384 const char *name = nullptr;
1385 std::vector<struct fn_field> fnfields;
1386};
1387
1388/* The routines that read and process dies for a C struct or C++ class
1389 pass lists of data member fields and lists of member function fields
1390 in an instance of a field_info structure, as defined below. */
1391struct field_info
1392 {
1393 /* List of data member and baseclasses fields. */
1394 std::vector<struct nextfield> fields;
1395 std::vector<struct nextfield> baseclasses;
1396
1397 /* Number of fields (including baseclasses). */
1398 int nfields = 0;
1399
1400 /* Set if the accessibility of one of the fields is not public. */
1401 int non_public_fields = 0;
1402
1403 /* Member function fieldlist array, contains name of possibly overloaded
1404 member function, number of overloaded member functions and a pointer
1405 to the head of the member function field chain. */
1406 std::vector<struct fnfieldlist> fnfieldlists;
1407
1408 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1409 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1410 std::vector<struct decl_field> typedef_field_list;
1411
1412 /* Nested types defined by this class and the number of elements in this
1413 list. */
1414 std::vector<struct decl_field> nested_types_list;
1415 };
1416
1417/* One item on the queue of compilation units to read in full symbols
1418 for. */
1419struct dwarf2_queue_item
1420{
1421 struct dwarf2_per_cu_data *per_cu;
1422 enum language pretend_language;
1423 struct dwarf2_queue_item *next;
1424};
1425
1426/* The current queue. */
1427static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1428
1429/* Loaded secondary compilation units are kept in memory until they
1430 have not been referenced for the processing of this many
1431 compilation units. Set this to zero to disable caching. Cache
1432 sizes of up to at least twenty will improve startup time for
1433 typical inter-CU-reference binaries, at an obvious memory cost. */
1434static int dwarf_max_cache_age = 5;
1435static void
1436show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438{
1439 fprintf_filtered (file, _("The upper bound on the age of cached "
1440 "DWARF compilation units is %s.\n"),
1441 value);
1442}
1443\f
1444/* local function prototypes */
1445
1446static const char *get_section_name (const struct dwarf2_section_info *);
1447
1448static const char *get_section_file_name (const struct dwarf2_section_info *);
1449
1450static void dwarf2_find_base_address (struct die_info *die,
1451 struct dwarf2_cu *cu);
1452
1453static struct partial_symtab *create_partial_symtab
1454 (struct dwarf2_per_cu_data *per_cu, const char *name);
1455
1456static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1457 const gdb_byte *info_ptr,
1458 struct die_info *type_unit_die,
1459 int has_children, void *data);
1460
1461static void dwarf2_build_psymtabs_hard
1462 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1463
1464static void scan_partial_symbols (struct partial_die_info *,
1465 CORE_ADDR *, CORE_ADDR *,
1466 int, struct dwarf2_cu *);
1467
1468static void add_partial_symbol (struct partial_die_info *,
1469 struct dwarf2_cu *);
1470
1471static void add_partial_namespace (struct partial_die_info *pdi,
1472 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1473 int set_addrmap, struct dwarf2_cu *cu);
1474
1475static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1476 CORE_ADDR *highpc, int set_addrmap,
1477 struct dwarf2_cu *cu);
1478
1479static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1480 struct dwarf2_cu *cu);
1481
1482static void add_partial_subprogram (struct partial_die_info *pdi,
1483 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1484 int need_pc, struct dwarf2_cu *cu);
1485
1486static void dwarf2_read_symtab (struct partial_symtab *,
1487 struct objfile *);
1488
1489static void psymtab_to_symtab_1 (struct partial_symtab *);
1490
1491static abbrev_table_up abbrev_table_read_table
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1493 sect_offset);
1494
1495static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1496
1497static struct partial_die_info *load_partial_dies
1498 (const struct die_reader_specs *, const gdb_byte *, int);
1499
1500/* A pair of partial_die_info and compilation unit. */
1501struct cu_partial_die_info
1502{
1503 /* The compilation unit of the partial_die_info. */
1504 struct dwarf2_cu *cu;
1505 /* A partial_die_info. */
1506 struct partial_die_info *pdi;
1507
1508 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1509 : cu (cu),
1510 pdi (pdi)
1511 { /* Nothing. */ }
1512
1513private:
1514 cu_partial_die_info () = delete;
1515};
1516
1517static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1518 struct dwarf2_cu *);
1519
1520static const gdb_byte *read_attribute (const struct die_reader_specs *,
1521 struct attribute *, struct attr_abbrev *,
1522 const gdb_byte *);
1523
1524static unsigned int read_1_byte (bfd *, const gdb_byte *);
1525
1526static int read_1_signed_byte (bfd *, const gdb_byte *);
1527
1528static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1529
1530/* Read the next three bytes (little-endian order) as an unsigned integer. */
1531static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1532
1533static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1534
1535static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1536
1537static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1538 unsigned int *);
1539
1540static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1541
1542static LONGEST read_checked_initial_length_and_offset
1543 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1544 unsigned int *, unsigned int *);
1545
1546static LONGEST read_offset (bfd *, const gdb_byte *,
1547 const struct comp_unit_head *,
1548 unsigned int *);
1549
1550static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1551
1552static sect_offset read_abbrev_offset
1553 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1554 struct dwarf2_section_info *, sect_offset);
1555
1556static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1557
1558static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1559
1560static const char *read_indirect_string
1561 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1562 const struct comp_unit_head *, unsigned int *);
1563
1564static const char *read_indirect_line_string
1565 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1566 const struct comp_unit_head *, unsigned int *);
1567
1568static const char *read_indirect_string_at_offset
1569 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1570 LONGEST str_offset);
1571
1572static const char *read_indirect_string_from_dwz
1573 (struct objfile *objfile, struct dwz_file *, LONGEST);
1574
1575static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1576
1577static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1578 const gdb_byte *,
1579 unsigned int *);
1580
1581static const char *read_str_index (const struct die_reader_specs *reader,
1582 ULONGEST str_index);
1583
1584static void set_cu_language (unsigned int, struct dwarf2_cu *);
1585
1586static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1587 struct dwarf2_cu *);
1588
1589static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1590 unsigned int);
1591
1592static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1593 struct dwarf2_cu *cu);
1594
1595static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1596
1597static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1598 struct dwarf2_cu *cu);
1599
1600static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1601
1602static struct die_info *die_specification (struct die_info *die,
1603 struct dwarf2_cu **);
1604
1605static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1606 struct dwarf2_cu *cu);
1607
1608static void dwarf_decode_lines (struct line_header *, const char *,
1609 struct dwarf2_cu *, struct partial_symtab *,
1610 CORE_ADDR, int decode_mapping);
1611
1612static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1613 const char *);
1614
1615static struct symbol *new_symbol (struct die_info *, struct type *,
1616 struct dwarf2_cu *, struct symbol * = NULL);
1617
1618static void dwarf2_const_value (const struct attribute *, struct symbol *,
1619 struct dwarf2_cu *);
1620
1621static void dwarf2_const_value_attr (const struct attribute *attr,
1622 struct type *type,
1623 const char *name,
1624 struct obstack *obstack,
1625 struct dwarf2_cu *cu, LONGEST *value,
1626 const gdb_byte **bytes,
1627 struct dwarf2_locexpr_baton **baton);
1628
1629static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1630
1631static int need_gnat_info (struct dwarf2_cu *);
1632
1633static struct type *die_descriptive_type (struct die_info *,
1634 struct dwarf2_cu *);
1635
1636static void set_descriptive_type (struct type *, struct die_info *,
1637 struct dwarf2_cu *);
1638
1639static struct type *die_containing_type (struct die_info *,
1640 struct dwarf2_cu *);
1641
1642static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1643 struct dwarf2_cu *);
1644
1645static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1646
1647static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1648
1649static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1650
1651static char *typename_concat (struct obstack *obs, const char *prefix,
1652 const char *suffix, int physname,
1653 struct dwarf2_cu *cu);
1654
1655static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1656
1657static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1658
1659static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1660
1661static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1662
1663static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1664
1665static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1666
1667static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1668 struct dwarf2_cu *, struct partial_symtab *);
1669
1670/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1671 values. Keep the items ordered with increasing constraints compliance. */
1672enum pc_bounds_kind
1673{
1674 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1675 PC_BOUNDS_NOT_PRESENT,
1676
1677 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1678 were present but they do not form a valid range of PC addresses. */
1679 PC_BOUNDS_INVALID,
1680
1681 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1682 PC_BOUNDS_RANGES,
1683
1684 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1685 PC_BOUNDS_HIGH_LOW,
1686};
1687
1688static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1689 CORE_ADDR *, CORE_ADDR *,
1690 struct dwarf2_cu *,
1691 struct partial_symtab *);
1692
1693static void get_scope_pc_bounds (struct die_info *,
1694 CORE_ADDR *, CORE_ADDR *,
1695 struct dwarf2_cu *);
1696
1697static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1698 CORE_ADDR, struct dwarf2_cu *);
1699
1700static void dwarf2_add_field (struct field_info *, struct die_info *,
1701 struct dwarf2_cu *);
1702
1703static void dwarf2_attach_fields_to_type (struct field_info *,
1704 struct type *, struct dwarf2_cu *);
1705
1706static void dwarf2_add_member_fn (struct field_info *,
1707 struct die_info *, struct type *,
1708 struct dwarf2_cu *);
1709
1710static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1711 struct type *,
1712 struct dwarf2_cu *);
1713
1714static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1715
1716static void read_common_block (struct die_info *, struct dwarf2_cu *);
1717
1718static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1719
1720static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1721
1722static struct using_direct **using_directives (struct dwarf2_cu *cu);
1723
1724static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1725
1726static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1727
1728static struct type *read_module_type (struct die_info *die,
1729 struct dwarf2_cu *cu);
1730
1731static const char *namespace_name (struct die_info *die,
1732 int *is_anonymous, struct dwarf2_cu *);
1733
1734static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1735
1736static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1737
1738static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1739 struct dwarf2_cu *);
1740
1741static struct die_info *read_die_and_siblings_1
1742 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1743 struct die_info *);
1744
1745static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1746 const gdb_byte *info_ptr,
1747 const gdb_byte **new_info_ptr,
1748 struct die_info *parent);
1749
1750static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1751 struct die_info **, const gdb_byte *,
1752 int *, int);
1753
1754static const gdb_byte *read_full_die (const struct die_reader_specs *,
1755 struct die_info **, const gdb_byte *,
1756 int *);
1757
1758static void process_die (struct die_info *, struct dwarf2_cu *);
1759
1760static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1761 struct obstack *);
1762
1763static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1764
1765static const char *dwarf2_full_name (const char *name,
1766 struct die_info *die,
1767 struct dwarf2_cu *cu);
1768
1769static const char *dwarf2_physname (const char *name, struct die_info *die,
1770 struct dwarf2_cu *cu);
1771
1772static struct die_info *dwarf2_extension (struct die_info *die,
1773 struct dwarf2_cu **);
1774
1775static const char *dwarf_tag_name (unsigned int);
1776
1777static const char *dwarf_attr_name (unsigned int);
1778
1779static const char *dwarf_unit_type_name (int unit_type);
1780
1781static const char *dwarf_form_name (unsigned int);
1782
1783static const char *dwarf_bool_name (unsigned int);
1784
1785static const char *dwarf_type_encoding_name (unsigned int);
1786
1787static struct die_info *sibling_die (struct die_info *);
1788
1789static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1790
1791static void dump_die_for_error (struct die_info *);
1792
1793static void dump_die_1 (struct ui_file *, int level, int max_level,
1794 struct die_info *);
1795
1796/*static*/ void dump_die (struct die_info *, int max_level);
1797
1798static void store_in_ref_table (struct die_info *,
1799 struct dwarf2_cu *);
1800
1801static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1802
1803static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1804
1805static struct die_info *follow_die_ref_or_sig (struct die_info *,
1806 const struct attribute *,
1807 struct dwarf2_cu **);
1808
1809static struct die_info *follow_die_ref (struct die_info *,
1810 const struct attribute *,
1811 struct dwarf2_cu **);
1812
1813static struct die_info *follow_die_sig (struct die_info *,
1814 const struct attribute *,
1815 struct dwarf2_cu **);
1816
1817static struct type *get_signatured_type (struct die_info *, ULONGEST,
1818 struct dwarf2_cu *);
1819
1820static struct type *get_DW_AT_signature_type (struct die_info *,
1821 const struct attribute *,
1822 struct dwarf2_cu *);
1823
1824static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1825
1826static void read_signatured_type (struct signatured_type *);
1827
1828static int attr_to_dynamic_prop (const struct attribute *attr,
1829 struct die_info *die, struct dwarf2_cu *cu,
1830 struct dynamic_prop *prop, struct type *type);
1831
1832/* memory allocation interface */
1833
1834static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1835
1836static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1837
1838static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1839
1840static int attr_form_is_block (const struct attribute *);
1841
1842static int attr_form_is_section_offset (const struct attribute *);
1843
1844static int attr_form_is_constant (const struct attribute *);
1845
1846static int attr_form_is_ref (const struct attribute *);
1847
1848static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1849 struct dwarf2_loclist_baton *baton,
1850 const struct attribute *attr);
1851
1852static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1853 struct symbol *sym,
1854 struct dwarf2_cu *cu,
1855 int is_block);
1856
1857static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1858 const gdb_byte *info_ptr,
1859 struct abbrev_info *abbrev);
1860
1861static hashval_t partial_die_hash (const void *item);
1862
1863static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1864
1865static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1866 (sect_offset sect_off, unsigned int offset_in_dwz,
1867 struct dwarf2_per_objfile *dwarf2_per_objfile);
1868
1869static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1870 struct die_info *comp_unit_die,
1871 enum language pretend_language);
1872
1873static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1876
1877static struct type *set_die_type (struct die_info *, struct type *,
1878 struct dwarf2_cu *);
1879
1880static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881
1882static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1885 enum language);
1886
1887static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1888 enum language);
1889
1890static void process_full_type_unit (struct dwarf2_per_cu_data *,
1891 enum language);
1892
1893static void dwarf2_add_dependence (struct dwarf2_cu *,
1894 struct dwarf2_per_cu_data *);
1895
1896static void dwarf2_mark (struct dwarf2_cu *);
1897
1898static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1899
1900static struct type *get_die_type_at_offset (sect_offset,
1901 struct dwarf2_per_cu_data *);
1902
1903static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1904
1905static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1906 enum language pretend_language);
1907
1908static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1909
1910static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1911static struct type *dwarf2_per_cu_addr_sized_int_type
1912 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1913
1914/* Class, the destructor of which frees all allocated queue entries. This
1915 will only have work to do if an error was thrown while processing the
1916 dwarf. If no error was thrown then the queue entries should have all
1917 been processed, and freed, as we went along. */
1918
1919class dwarf2_queue_guard
1920{
1921public:
1922 dwarf2_queue_guard () = default;
1923
1924 /* Free any entries remaining on the queue. There should only be
1925 entries left if we hit an error while processing the dwarf. */
1926 ~dwarf2_queue_guard ()
1927 {
1928 struct dwarf2_queue_item *item, *last;
1929
1930 item = dwarf2_queue;
1931 while (item)
1932 {
1933 /* Anything still marked queued is likely to be in an
1934 inconsistent state, so discard it. */
1935 if (item->per_cu->queued)
1936 {
1937 if (item->per_cu->cu != NULL)
1938 free_one_cached_comp_unit (item->per_cu);
1939 item->per_cu->queued = 0;
1940 }
1941
1942 last = item;
1943 item = item->next;
1944 xfree (last);
1945 }
1946
1947 dwarf2_queue = dwarf2_queue_tail = NULL;
1948 }
1949};
1950
1951/* The return type of find_file_and_directory. Note, the enclosed
1952 string pointers are only valid while this object is valid. */
1953
1954struct file_and_directory
1955{
1956 /* The filename. This is never NULL. */
1957 const char *name;
1958
1959 /* The compilation directory. NULL if not known. If we needed to
1960 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1961 points directly to the DW_AT_comp_dir string attribute owned by
1962 the obstack that owns the DIE. */
1963 const char *comp_dir;
1964
1965 /* If we needed to build a new string for comp_dir, this is what
1966 owns the storage. */
1967 std::string comp_dir_storage;
1968};
1969
1970static file_and_directory find_file_and_directory (struct die_info *die,
1971 struct dwarf2_cu *cu);
1972
1973static char *file_full_name (int file, struct line_header *lh,
1974 const char *comp_dir);
1975
1976/* Expected enum dwarf_unit_type for read_comp_unit_head. */
1977enum class rcuh_kind { COMPILE, TYPE };
1978
1979static const gdb_byte *read_and_check_comp_unit_head
1980 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1981 struct comp_unit_head *header,
1982 struct dwarf2_section_info *section,
1983 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1984 rcuh_kind section_kind);
1985
1986static void init_cutu_and_read_dies
1987 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1988 int use_existing_cu, int keep, bool skip_partial,
1989 die_reader_func_ftype *die_reader_func, void *data);
1990
1991static void init_cutu_and_read_dies_simple
1992 (struct dwarf2_per_cu_data *this_cu,
1993 die_reader_func_ftype *die_reader_func, void *data);
1994
1995static htab_t allocate_signatured_type_table (struct objfile *objfile);
1996
1997static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1998
1999static struct dwo_unit *lookup_dwo_unit_in_dwp
2000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2001 struct dwp_file *dwp_file, const char *comp_dir,
2002 ULONGEST signature, int is_debug_types);
2003
2004static struct dwp_file *get_dwp_file
2005 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2006
2007static struct dwo_unit *lookup_dwo_comp_unit
2008 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2009
2010static struct dwo_unit *lookup_dwo_type_unit
2011 (struct signatured_type *, const char *, const char *);
2012
2013static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2014
2015/* A unique pointer to a dwo_file. */
2016
2017typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2018
2019static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2020
2021static void check_producer (struct dwarf2_cu *cu);
2022
2023static void free_line_header_voidp (void *arg);
2024\f
2025/* Various complaints about symbol reading that don't abort the process. */
2026
2027static void
2028dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2029{
2030 complaint (_("statement list doesn't fit in .debug_line section"));
2031}
2032
2033static void
2034dwarf2_debug_line_missing_file_complaint (void)
2035{
2036 complaint (_(".debug_line section has line data without a file"));
2037}
2038
2039static void
2040dwarf2_debug_line_missing_end_sequence_complaint (void)
2041{
2042 complaint (_(".debug_line section has line "
2043 "program sequence without an end"));
2044}
2045
2046static void
2047dwarf2_complex_location_expr_complaint (void)
2048{
2049 complaint (_("location expression too complex"));
2050}
2051
2052static void
2053dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2054 int arg3)
2055{
2056 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2057 arg1, arg2, arg3);
2058}
2059
2060static void
2061dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2062{
2063 complaint (_("debug info runs off end of %s section"
2064 " [in module %s]"),
2065 get_section_name (section),
2066 get_section_file_name (section));
2067}
2068
2069static void
2070dwarf2_macro_malformed_definition_complaint (const char *arg1)
2071{
2072 complaint (_("macro debug info contains a "
2073 "malformed macro definition:\n`%s'"),
2074 arg1);
2075}
2076
2077static void
2078dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2079{
2080 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2081 arg1, arg2);
2082}
2083
2084/* Hash function for line_header_hash. */
2085
2086static hashval_t
2087line_header_hash (const struct line_header *ofs)
2088{
2089 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2090}
2091
2092/* Hash function for htab_create_alloc_ex for line_header_hash. */
2093
2094static hashval_t
2095line_header_hash_voidp (const void *item)
2096{
2097 const struct line_header *ofs = (const struct line_header *) item;
2098
2099 return line_header_hash (ofs);
2100}
2101
2102/* Equality function for line_header_hash. */
2103
2104static int
2105line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2106{
2107 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2108 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2109
2110 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2111 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2112}
2113
2114\f
2115
2116/* Read the given attribute value as an address, taking the attribute's
2117 form into account. */
2118
2119static CORE_ADDR
2120attr_value_as_address (struct attribute *attr)
2121{
2122 CORE_ADDR addr;
2123
2124 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2125 && attr->form != DW_FORM_GNU_addr_index)
2126 {
2127 /* Aside from a few clearly defined exceptions, attributes that
2128 contain an address must always be in DW_FORM_addr form.
2129 Unfortunately, some compilers happen to be violating this
2130 requirement by encoding addresses using other forms, such
2131 as DW_FORM_data4 for example. For those broken compilers,
2132 we try to do our best, without any guarantee of success,
2133 to interpret the address correctly. It would also be nice
2134 to generate a complaint, but that would require us to maintain
2135 a list of legitimate cases where a non-address form is allowed,
2136 as well as update callers to pass in at least the CU's DWARF
2137 version. This is more overhead than what we're willing to
2138 expand for a pretty rare case. */
2139 addr = DW_UNSND (attr);
2140 }
2141 else
2142 addr = DW_ADDR (attr);
2143
2144 return addr;
2145}
2146
2147/* See declaration. */
2148
2149dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2150 const dwarf2_debug_sections *names,
2151 bool can_copy_)
2152 : objfile (objfile_),
2153 can_copy (can_copy_)
2154{
2155 if (names == NULL)
2156 names = &dwarf2_elf_names;
2157
2158 bfd *obfd = objfile->obfd;
2159
2160 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2161 locate_sections (obfd, sec, *names);
2162}
2163
2164dwarf2_per_objfile::~dwarf2_per_objfile ()
2165{
2166 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2167 free_cached_comp_units ();
2168
2169 if (quick_file_names_table)
2170 htab_delete (quick_file_names_table);
2171
2172 if (line_header_hash)
2173 htab_delete (line_header_hash);
2174
2175 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2176 per_cu->imported_symtabs_free ();
2177
2178 for (signatured_type *sig_type : all_type_units)
2179 sig_type->per_cu.imported_symtabs_free ();
2180
2181 /* Everything else should be on the objfile obstack. */
2182}
2183
2184/* See declaration. */
2185
2186void
2187dwarf2_per_objfile::free_cached_comp_units ()
2188{
2189 dwarf2_per_cu_data *per_cu = read_in_chain;
2190 dwarf2_per_cu_data **last_chain = &read_in_chain;
2191 while (per_cu != NULL)
2192 {
2193 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2194
2195 delete per_cu->cu;
2196 *last_chain = next_cu;
2197 per_cu = next_cu;
2198 }
2199}
2200
2201/* A helper class that calls free_cached_comp_units on
2202 destruction. */
2203
2204class free_cached_comp_units
2205{
2206public:
2207
2208 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2209 : m_per_objfile (per_objfile)
2210 {
2211 }
2212
2213 ~free_cached_comp_units ()
2214 {
2215 m_per_objfile->free_cached_comp_units ();
2216 }
2217
2218 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2219
2220private:
2221
2222 dwarf2_per_objfile *m_per_objfile;
2223};
2224
2225/* Try to locate the sections we need for DWARF 2 debugging
2226 information and return true if we have enough to do something.
2227 NAMES points to the dwarf2 section names, or is NULL if the standard
2228 ELF names are used. CAN_COPY is true for formats where symbol
2229 interposition is possible and so symbol values must follow copy
2230 relocation rules. */
2231
2232int
2233dwarf2_has_info (struct objfile *objfile,
2234 const struct dwarf2_debug_sections *names,
2235 bool can_copy)
2236{
2237 if (objfile->flags & OBJF_READNEVER)
2238 return 0;
2239
2240 struct dwarf2_per_objfile *dwarf2_per_objfile
2241 = get_dwarf2_per_objfile (objfile);
2242
2243 if (dwarf2_per_objfile == NULL)
2244 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2245 names,
2246 can_copy);
2247
2248 return (!dwarf2_per_objfile->info.is_virtual
2249 && dwarf2_per_objfile->info.s.section != NULL
2250 && !dwarf2_per_objfile->abbrev.is_virtual
2251 && dwarf2_per_objfile->abbrev.s.section != NULL);
2252}
2253
2254/* Return the containing section of virtual section SECTION. */
2255
2256static struct dwarf2_section_info *
2257get_containing_section (const struct dwarf2_section_info *section)
2258{
2259 gdb_assert (section->is_virtual);
2260 return section->s.containing_section;
2261}
2262
2263/* Return the bfd owner of SECTION. */
2264
2265static struct bfd *
2266get_section_bfd_owner (const struct dwarf2_section_info *section)
2267{
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
2273 return section->s.section->owner;
2274}
2275
2276/* Return the bfd section of SECTION.
2277 Returns NULL if the section is not present. */
2278
2279static asection *
2280get_section_bfd_section (const struct dwarf2_section_info *section)
2281{
2282 if (section->is_virtual)
2283 {
2284 section = get_containing_section (section);
2285 gdb_assert (!section->is_virtual);
2286 }
2287 return section->s.section;
2288}
2289
2290/* Return the name of SECTION. */
2291
2292static const char *
2293get_section_name (const struct dwarf2_section_info *section)
2294{
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 gdb_assert (sectp != NULL);
2298 return bfd_section_name (sectp);
2299}
2300
2301/* Return the name of the file SECTION is in. */
2302
2303static const char *
2304get_section_file_name (const struct dwarf2_section_info *section)
2305{
2306 bfd *abfd = get_section_bfd_owner (section);
2307
2308 return bfd_get_filename (abfd);
2309}
2310
2311/* Return the id of SECTION.
2312 Returns 0 if SECTION doesn't exist. */
2313
2314static int
2315get_section_id (const struct dwarf2_section_info *section)
2316{
2317 asection *sectp = get_section_bfd_section (section);
2318
2319 if (sectp == NULL)
2320 return 0;
2321 return sectp->id;
2322}
2323
2324/* Return the flags of SECTION.
2325 SECTION (or containing section if this is a virtual section) must exist. */
2326
2327static int
2328get_section_flags (const struct dwarf2_section_info *section)
2329{
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_flags (sectp);
2334}
2335
2336/* When loading sections, we look either for uncompressed section or for
2337 compressed section names. */
2338
2339static int
2340section_is_p (const char *section_name,
2341 const struct dwarf2_section_names *names)
2342{
2343 if (names->normal != NULL
2344 && strcmp (section_name, names->normal) == 0)
2345 return 1;
2346 if (names->compressed != NULL
2347 && strcmp (section_name, names->compressed) == 0)
2348 return 1;
2349 return 0;
2350}
2351
2352/* See declaration. */
2353
2354void
2355dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2356 const dwarf2_debug_sections &names)
2357{
2358 flagword aflag = bfd_section_flags (sectp);
2359
2360 if ((aflag & SEC_HAS_CONTENTS) == 0)
2361 {
2362 }
2363 else if (elf_section_data (sectp)->this_hdr.sh_size
2364 > bfd_get_file_size (abfd))
2365 {
2366 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2367 warning (_("Discarding section %s which has a section size (%s"
2368 ") larger than the file size [in module %s]"),
2369 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2370 bfd_get_filename (abfd));
2371 }
2372 else if (section_is_p (sectp->name, &names.info))
2373 {
2374 this->info.s.section = sectp;
2375 this->info.size = bfd_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.abbrev))
2378 {
2379 this->abbrev.s.section = sectp;
2380 this->abbrev.size = bfd_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.line))
2383 {
2384 this->line.s.section = sectp;
2385 this->line.size = bfd_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.loc))
2388 {
2389 this->loc.s.section = sectp;
2390 this->loc.size = bfd_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.loclists))
2393 {
2394 this->loclists.s.section = sectp;
2395 this->loclists.size = bfd_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.macinfo))
2398 {
2399 this->macinfo.s.section = sectp;
2400 this->macinfo.size = bfd_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.macro))
2403 {
2404 this->macro.s.section = sectp;
2405 this->macro.size = bfd_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.str))
2408 {
2409 this->str.s.section = sectp;
2410 this->str.size = bfd_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.line_str))
2413 {
2414 this->line_str.s.section = sectp;
2415 this->line_str.size = bfd_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.addr))
2418 {
2419 this->addr.s.section = sectp;
2420 this->addr.size = bfd_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &names.frame))
2423 {
2424 this->frame.s.section = sectp;
2425 this->frame.size = bfd_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.eh_frame))
2428 {
2429 this->eh_frame.s.section = sectp;
2430 this->eh_frame.size = bfd_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.ranges))
2433 {
2434 this->ranges.s.section = sectp;
2435 this->ranges.size = bfd_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &names.rnglists))
2438 {
2439 this->rnglists.s.section = sectp;
2440 this->rnglists.size = bfd_section_size (sectp);
2441 }
2442 else if (section_is_p (sectp->name, &names.types))
2443 {
2444 struct dwarf2_section_info type_section;
2445
2446 memset (&type_section, 0, sizeof (type_section));
2447 type_section.s.section = sectp;
2448 type_section.size = bfd_section_size (sectp);
2449
2450 this->types.push_back (type_section);
2451 }
2452 else if (section_is_p (sectp->name, &names.gdb_index))
2453 {
2454 this->gdb_index.s.section = sectp;
2455 this->gdb_index.size = bfd_section_size (sectp);
2456 }
2457 else if (section_is_p (sectp->name, &names.debug_names))
2458 {
2459 this->debug_names.s.section = sectp;
2460 this->debug_names.size = bfd_section_size (sectp);
2461 }
2462 else if (section_is_p (sectp->name, &names.debug_aranges))
2463 {
2464 this->debug_aranges.s.section = sectp;
2465 this->debug_aranges.size = bfd_section_size (sectp);
2466 }
2467
2468 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2469 && bfd_section_vma (sectp) == 0)
2470 this->has_section_at_zero = true;
2471}
2472
2473/* A helper function that decides whether a section is empty,
2474 or not present. */
2475
2476static int
2477dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2478{
2479 if (section->is_virtual)
2480 return section->size == 0;
2481 return section->s.section == NULL || section->size == 0;
2482}
2483
2484/* See dwarf2read.h. */
2485
2486void
2487dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2488{
2489 asection *sectp;
2490 bfd *abfd;
2491 gdb_byte *buf, *retbuf;
2492
2493 if (info->readin)
2494 return;
2495 info->buffer = NULL;
2496 info->readin = true;
2497
2498 if (dwarf2_section_empty_p (info))
2499 return;
2500
2501 sectp = get_section_bfd_section (info);
2502
2503 /* If this is a virtual section we need to read in the real one first. */
2504 if (info->is_virtual)
2505 {
2506 struct dwarf2_section_info *containing_section =
2507 get_containing_section (info);
2508
2509 gdb_assert (sectp != NULL);
2510 if ((sectp->flags & SEC_RELOC) != 0)
2511 {
2512 error (_("Dwarf Error: DWP format V2 with relocations is not"
2513 " supported in section %s [in module %s]"),
2514 get_section_name (info), get_section_file_name (info));
2515 }
2516 dwarf2_read_section (objfile, containing_section);
2517 /* Other code should have already caught virtual sections that don't
2518 fit. */
2519 gdb_assert (info->virtual_offset + info->size
2520 <= containing_section->size);
2521 /* If the real section is empty or there was a problem reading the
2522 section we shouldn't get here. */
2523 gdb_assert (containing_section->buffer != NULL);
2524 info->buffer = containing_section->buffer + info->virtual_offset;
2525 return;
2526 }
2527
2528 /* If the section has relocations, we must read it ourselves.
2529 Otherwise we attach it to the BFD. */
2530 if ((sectp->flags & SEC_RELOC) == 0)
2531 {
2532 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2533 return;
2534 }
2535
2536 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2537 info->buffer = buf;
2538
2539 /* When debugging .o files, we may need to apply relocations; see
2540 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2541 We never compress sections in .o files, so we only need to
2542 try this when the section is not compressed. */
2543 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2544 if (retbuf != NULL)
2545 {
2546 info->buffer = retbuf;
2547 return;
2548 }
2549
2550 abfd = get_section_bfd_owner (info);
2551 gdb_assert (abfd != NULL);
2552
2553 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2554 || bfd_bread (buf, info->size, abfd) != info->size)
2555 {
2556 error (_("Dwarf Error: Can't read DWARF data"
2557 " in section %s [in module %s]"),
2558 bfd_section_name (sectp), bfd_get_filename (abfd));
2559 }
2560}
2561
2562/* A helper function that returns the size of a section in a safe way.
2563 If you are positive that the section has been read before using the
2564 size, then it is safe to refer to the dwarf2_section_info object's
2565 "size" field directly. In other cases, you must call this
2566 function, because for compressed sections the size field is not set
2567 correctly until the section has been read. */
2568
2569static bfd_size_type
2570dwarf2_section_size (struct objfile *objfile,
2571 struct dwarf2_section_info *info)
2572{
2573 if (!info->readin)
2574 dwarf2_read_section (objfile, info);
2575 return info->size;
2576}
2577
2578/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2579 SECTION_NAME. */
2580
2581void
2582dwarf2_get_section_info (struct objfile *objfile,
2583 enum dwarf2_section_enum sect,
2584 asection **sectp, const gdb_byte **bufp,
2585 bfd_size_type *sizep)
2586{
2587 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2588 struct dwarf2_section_info *info;
2589
2590 /* We may see an objfile without any DWARF, in which case we just
2591 return nothing. */
2592 if (data == NULL)
2593 {
2594 *sectp = NULL;
2595 *bufp = NULL;
2596 *sizep = 0;
2597 return;
2598 }
2599 switch (sect)
2600 {
2601 case DWARF2_DEBUG_FRAME:
2602 info = &data->frame;
2603 break;
2604 case DWARF2_EH_FRAME:
2605 info = &data->eh_frame;
2606 break;
2607 default:
2608 gdb_assert_not_reached ("unexpected section");
2609 }
2610
2611 dwarf2_read_section (objfile, info);
2612
2613 *sectp = get_section_bfd_section (info);
2614 *bufp = info->buffer;
2615 *sizep = info->size;
2616}
2617
2618/* A helper function to find the sections for a .dwz file. */
2619
2620static void
2621locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2622{
2623 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2624
2625 /* Note that we only support the standard ELF names, because .dwz
2626 is ELF-only (at the time of writing). */
2627 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2628 {
2629 dwz_file->abbrev.s.section = sectp;
2630 dwz_file->abbrev.size = bfd_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2633 {
2634 dwz_file->info.s.section = sectp;
2635 dwz_file->info.size = bfd_section_size (sectp);
2636 }
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2638 {
2639 dwz_file->str.s.section = sectp;
2640 dwz_file->str.size = bfd_section_size (sectp);
2641 }
2642 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2643 {
2644 dwz_file->line.s.section = sectp;
2645 dwz_file->line.size = bfd_section_size (sectp);
2646 }
2647 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2648 {
2649 dwz_file->macro.s.section = sectp;
2650 dwz_file->macro.size = bfd_section_size (sectp);
2651 }
2652 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2653 {
2654 dwz_file->gdb_index.s.section = sectp;
2655 dwz_file->gdb_index.size = bfd_section_size (sectp);
2656 }
2657 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2658 {
2659 dwz_file->debug_names.s.section = sectp;
2660 dwz_file->debug_names.size = bfd_section_size (sectp);
2661 }
2662}
2663
2664/* See dwarf2read.h. */
2665
2666struct dwz_file *
2667dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2668{
2669 const char *filename;
2670 bfd_size_type buildid_len_arg;
2671 size_t buildid_len;
2672 bfd_byte *buildid;
2673
2674 if (dwarf2_per_objfile->dwz_file != NULL)
2675 return dwarf2_per_objfile->dwz_file.get ();
2676
2677 bfd_set_error (bfd_error_no_error);
2678 gdb::unique_xmalloc_ptr<char> data
2679 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2680 &buildid_len_arg, &buildid));
2681 if (data == NULL)
2682 {
2683 if (bfd_get_error () == bfd_error_no_error)
2684 return NULL;
2685 error (_("could not read '.gnu_debugaltlink' section: %s"),
2686 bfd_errmsg (bfd_get_error ()));
2687 }
2688
2689 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2690
2691 buildid_len = (size_t) buildid_len_arg;
2692
2693 filename = data.get ();
2694
2695 std::string abs_storage;
2696 if (!IS_ABSOLUTE_PATH (filename))
2697 {
2698 gdb::unique_xmalloc_ptr<char> abs
2699 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2700
2701 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2702 filename = abs_storage.c_str ();
2703 }
2704
2705 /* First try the file name given in the section. If that doesn't
2706 work, try to use the build-id instead. */
2707 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2708 if (dwz_bfd != NULL)
2709 {
2710 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2711 dwz_bfd.reset (nullptr);
2712 }
2713
2714 if (dwz_bfd == NULL)
2715 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2716
2717 if (dwz_bfd == NULL)
2718 error (_("could not find '.gnu_debugaltlink' file for %s"),
2719 objfile_name (dwarf2_per_objfile->objfile));
2720
2721 std::unique_ptr<struct dwz_file> result
2722 (new struct dwz_file (std::move (dwz_bfd)));
2723
2724 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2725 result.get ());
2726
2727 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2728 result->dwz_bfd.get ());
2729 dwarf2_per_objfile->dwz_file = std::move (result);
2730 return dwarf2_per_objfile->dwz_file.get ();
2731}
2732\f
2733/* DWARF quick_symbols_functions support. */
2734
2735/* TUs can share .debug_line entries, and there can be a lot more TUs than
2736 unique line tables, so we maintain a separate table of all .debug_line
2737 derived entries to support the sharing.
2738 All the quick functions need is the list of file names. We discard the
2739 line_header when we're done and don't need to record it here. */
2740struct quick_file_names
2741{
2742 /* The data used to construct the hash key. */
2743 struct stmt_list_hash hash;
2744
2745 /* The number of entries in file_names, real_names. */
2746 unsigned int num_file_names;
2747
2748 /* The file names from the line table, after being run through
2749 file_full_name. */
2750 const char **file_names;
2751
2752 /* The file names from the line table after being run through
2753 gdb_realpath. These are computed lazily. */
2754 const char **real_names;
2755};
2756
2757/* When using the index (and thus not using psymtabs), each CU has an
2758 object of this type. This is used to hold information needed by
2759 the various "quick" methods. */
2760struct dwarf2_per_cu_quick_data
2761{
2762 /* The file table. This can be NULL if there was no file table
2763 or it's currently not read in.
2764 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2765 struct quick_file_names *file_names;
2766
2767 /* The corresponding symbol table. This is NULL if symbols for this
2768 CU have not yet been read. */
2769 struct compunit_symtab *compunit_symtab;
2770
2771 /* A temporary mark bit used when iterating over all CUs in
2772 expand_symtabs_matching. */
2773 unsigned int mark : 1;
2774
2775 /* True if we've tried to read the file table and found there isn't one.
2776 There will be no point in trying to read it again next time. */
2777 unsigned int no_file_data : 1;
2778};
2779
2780/* Utility hash function for a stmt_list_hash. */
2781
2782static hashval_t
2783hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2784{
2785 hashval_t v = 0;
2786
2787 if (stmt_list_hash->dwo_unit != NULL)
2788 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2789 v += to_underlying (stmt_list_hash->line_sect_off);
2790 return v;
2791}
2792
2793/* Utility equality function for a stmt_list_hash. */
2794
2795static int
2796eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2797 const struct stmt_list_hash *rhs)
2798{
2799 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2800 return 0;
2801 if (lhs->dwo_unit != NULL
2802 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2803 return 0;
2804
2805 return lhs->line_sect_off == rhs->line_sect_off;
2806}
2807
2808/* Hash function for a quick_file_names. */
2809
2810static hashval_t
2811hash_file_name_entry (const void *e)
2812{
2813 const struct quick_file_names *file_data
2814 = (const struct quick_file_names *) e;
2815
2816 return hash_stmt_list_entry (&file_data->hash);
2817}
2818
2819/* Equality function for a quick_file_names. */
2820
2821static int
2822eq_file_name_entry (const void *a, const void *b)
2823{
2824 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2825 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2826
2827 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2828}
2829
2830/* Delete function for a quick_file_names. */
2831
2832static void
2833delete_file_name_entry (void *e)
2834{
2835 struct quick_file_names *file_data = (struct quick_file_names *) e;
2836 int i;
2837
2838 for (i = 0; i < file_data->num_file_names; ++i)
2839 {
2840 xfree ((void*) file_data->file_names[i]);
2841 if (file_data->real_names)
2842 xfree ((void*) file_data->real_names[i]);
2843 }
2844
2845 /* The space for the struct itself lives on objfile_obstack,
2846 so we don't free it here. */
2847}
2848
2849/* Create a quick_file_names hash table. */
2850
2851static htab_t
2852create_quick_file_names_table (unsigned int nr_initial_entries)
2853{
2854 return htab_create_alloc (nr_initial_entries,
2855 hash_file_name_entry, eq_file_name_entry,
2856 delete_file_name_entry, xcalloc, xfree);
2857}
2858
2859/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2860 have to be created afterwards. You should call age_cached_comp_units after
2861 processing PER_CU->CU. dw2_setup must have been already called. */
2862
2863static void
2864load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2865{
2866 if (per_cu->is_debug_types)
2867 load_full_type_unit (per_cu);
2868 else
2869 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2870
2871 if (per_cu->cu == NULL)
2872 return; /* Dummy CU. */
2873
2874 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2875}
2876
2877/* Read in the symbols for PER_CU. */
2878
2879static void
2880dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2881{
2882 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2883
2884 /* Skip type_unit_groups, reading the type units they contain
2885 is handled elsewhere. */
2886 if (IS_TYPE_UNIT_GROUP (per_cu))
2887 return;
2888
2889 /* The destructor of dwarf2_queue_guard frees any entries left on
2890 the queue. After this point we're guaranteed to leave this function
2891 with the dwarf queue empty. */
2892 dwarf2_queue_guard q_guard;
2893
2894 if (dwarf2_per_objfile->using_index
2895 ? per_cu->v.quick->compunit_symtab == NULL
2896 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2897 {
2898 queue_comp_unit (per_cu, language_minimal);
2899 load_cu (per_cu, skip_partial);
2900
2901 /* If we just loaded a CU from a DWO, and we're working with an index
2902 that may badly handle TUs, load all the TUs in that DWO as well.
2903 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2904 if (!per_cu->is_debug_types
2905 && per_cu->cu != NULL
2906 && per_cu->cu->dwo_unit != NULL
2907 && dwarf2_per_objfile->index_table != NULL
2908 && dwarf2_per_objfile->index_table->version <= 7
2909 /* DWP files aren't supported yet. */
2910 && get_dwp_file (dwarf2_per_objfile) == NULL)
2911 queue_and_load_all_dwo_tus (per_cu);
2912 }
2913
2914 process_queue (dwarf2_per_objfile);
2915
2916 /* Age the cache, releasing compilation units that have not
2917 been used recently. */
2918 age_cached_comp_units (dwarf2_per_objfile);
2919}
2920
2921/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2922 the objfile from which this CU came. Returns the resulting symbol
2923 table. */
2924
2925static struct compunit_symtab *
2926dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2927{
2928 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2929
2930 gdb_assert (dwarf2_per_objfile->using_index);
2931 if (!per_cu->v.quick->compunit_symtab)
2932 {
2933 free_cached_comp_units freer (dwarf2_per_objfile);
2934 scoped_restore decrementer = increment_reading_symtab ();
2935 dw2_do_instantiate_symtab (per_cu, skip_partial);
2936 process_cu_includes (dwarf2_per_objfile);
2937 }
2938
2939 return per_cu->v.quick->compunit_symtab;
2940}
2941
2942/* See declaration. */
2943
2944dwarf2_per_cu_data *
2945dwarf2_per_objfile::get_cutu (int index)
2946{
2947 if (index >= this->all_comp_units.size ())
2948 {
2949 index -= this->all_comp_units.size ();
2950 gdb_assert (index < this->all_type_units.size ());
2951 return &this->all_type_units[index]->per_cu;
2952 }
2953
2954 return this->all_comp_units[index];
2955}
2956
2957/* See declaration. */
2958
2959dwarf2_per_cu_data *
2960dwarf2_per_objfile::get_cu (int index)
2961{
2962 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2963
2964 return this->all_comp_units[index];
2965}
2966
2967/* See declaration. */
2968
2969signatured_type *
2970dwarf2_per_objfile::get_tu (int index)
2971{
2972 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2973
2974 return this->all_type_units[index];
2975}
2976
2977/* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2978 objfile_obstack, and constructed with the specified field
2979 values. */
2980
2981static dwarf2_per_cu_data *
2982create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2983 struct dwarf2_section_info *section,
2984 int is_dwz,
2985 sect_offset sect_off, ULONGEST length)
2986{
2987 struct objfile *objfile = dwarf2_per_objfile->objfile;
2988 dwarf2_per_cu_data *the_cu
2989 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2990 struct dwarf2_per_cu_data);
2991 the_cu->sect_off = sect_off;
2992 the_cu->length = length;
2993 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2994 the_cu->section = section;
2995 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2996 struct dwarf2_per_cu_quick_data);
2997 the_cu->is_dwz = is_dwz;
2998 return the_cu;
2999}
3000
3001/* A helper for create_cus_from_index that handles a given list of
3002 CUs. */
3003
3004static void
3005create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3006 const gdb_byte *cu_list, offset_type n_elements,
3007 struct dwarf2_section_info *section,
3008 int is_dwz)
3009{
3010 for (offset_type i = 0; i < n_elements; i += 2)
3011 {
3012 gdb_static_assert (sizeof (ULONGEST) >= 8);
3013
3014 sect_offset sect_off
3015 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3016 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3017 cu_list += 2 * 8;
3018
3019 dwarf2_per_cu_data *per_cu
3020 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3021 sect_off, length);
3022 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3023 }
3024}
3025
3026/* Read the CU list from the mapped index, and use it to create all
3027 the CU objects for this objfile. */
3028
3029static void
3030create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3031 const gdb_byte *cu_list, offset_type cu_list_elements,
3032 const gdb_byte *dwz_list, offset_type dwz_elements)
3033{
3034 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3035 dwarf2_per_objfile->all_comp_units.reserve
3036 ((cu_list_elements + dwz_elements) / 2);
3037
3038 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3039 &dwarf2_per_objfile->info, 0);
3040
3041 if (dwz_elements == 0)
3042 return;
3043
3044 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3045 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3046 &dwz->info, 1);
3047}
3048
3049/* Create the signatured type hash table from the index. */
3050
3051static void
3052create_signatured_type_table_from_index
3053 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3054 struct dwarf2_section_info *section,
3055 const gdb_byte *bytes,
3056 offset_type elements)
3057{
3058 struct objfile *objfile = dwarf2_per_objfile->objfile;
3059
3060 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3061 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3062
3063 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3064
3065 for (offset_type i = 0; i < elements; i += 3)
3066 {
3067 struct signatured_type *sig_type;
3068 ULONGEST signature;
3069 void **slot;
3070 cu_offset type_offset_in_tu;
3071
3072 gdb_static_assert (sizeof (ULONGEST) >= 8);
3073 sect_offset sect_off
3074 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3075 type_offset_in_tu
3076 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3077 BFD_ENDIAN_LITTLE);
3078 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3079 bytes += 3 * 8;
3080
3081 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3082 struct signatured_type);
3083 sig_type->signature = signature;
3084 sig_type->type_offset_in_tu = type_offset_in_tu;
3085 sig_type->per_cu.is_debug_types = 1;
3086 sig_type->per_cu.section = section;
3087 sig_type->per_cu.sect_off = sect_off;
3088 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3089 sig_type->per_cu.v.quick
3090 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct dwarf2_per_cu_quick_data);
3092
3093 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3094 *slot = sig_type;
3095
3096 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3097 }
3098
3099 dwarf2_per_objfile->signatured_types = sig_types_hash;
3100}
3101
3102/* Create the signatured type hash table from .debug_names. */
3103
3104static void
3105create_signatured_type_table_from_debug_names
3106 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3107 const mapped_debug_names &map,
3108 struct dwarf2_section_info *section,
3109 struct dwarf2_section_info *abbrev_section)
3110{
3111 struct objfile *objfile = dwarf2_per_objfile->objfile;
3112
3113 dwarf2_read_section (objfile, section);
3114 dwarf2_read_section (objfile, abbrev_section);
3115
3116 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3117 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3118
3119 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3120
3121 for (uint32_t i = 0; i < map.tu_count; ++i)
3122 {
3123 struct signatured_type *sig_type;
3124 void **slot;
3125
3126 sect_offset sect_off
3127 = (sect_offset) (extract_unsigned_integer
3128 (map.tu_table_reordered + i * map.offset_size,
3129 map.offset_size,
3130 map.dwarf5_byte_order));
3131
3132 comp_unit_head cu_header;
3133 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3134 abbrev_section,
3135 section->buffer + to_underlying (sect_off),
3136 rcuh_kind::TYPE);
3137
3138 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3139 struct signatured_type);
3140 sig_type->signature = cu_header.signature;
3141 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3142 sig_type->per_cu.is_debug_types = 1;
3143 sig_type->per_cu.section = section;
3144 sig_type->per_cu.sect_off = sect_off;
3145 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3146 sig_type->per_cu.v.quick
3147 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct dwarf2_per_cu_quick_data);
3149
3150 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3151 *slot = sig_type;
3152
3153 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3154 }
3155
3156 dwarf2_per_objfile->signatured_types = sig_types_hash;
3157}
3158
3159/* Read the address map data from the mapped index, and use it to
3160 populate the objfile's psymtabs_addrmap. */
3161
3162static void
3163create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3164 struct mapped_index *index)
3165{
3166 struct objfile *objfile = dwarf2_per_objfile->objfile;
3167 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3168 const gdb_byte *iter, *end;
3169 struct addrmap *mutable_map;
3170 CORE_ADDR baseaddr;
3171
3172 auto_obstack temp_obstack;
3173
3174 mutable_map = addrmap_create_mutable (&temp_obstack);
3175
3176 iter = index->address_table.data ();
3177 end = iter + index->address_table.size ();
3178
3179 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3180
3181 while (iter < end)
3182 {
3183 ULONGEST hi, lo, cu_index;
3184 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3185 iter += 8;
3186 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3187 iter += 8;
3188 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3189 iter += 4;
3190
3191 if (lo > hi)
3192 {
3193 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3194 hex_string (lo), hex_string (hi));
3195 continue;
3196 }
3197
3198 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3199 {
3200 complaint (_(".gdb_index address table has invalid CU number %u"),
3201 (unsigned) cu_index);
3202 continue;
3203 }
3204
3205 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3206 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3207 addrmap_set_empty (mutable_map, lo, hi - 1,
3208 dwarf2_per_objfile->get_cu (cu_index));
3209 }
3210
3211 objfile->partial_symtabs->psymtabs_addrmap
3212 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3213}
3214
3215/* Read the address map data from DWARF-5 .debug_aranges, and use it to
3216 populate the objfile's psymtabs_addrmap. */
3217
3218static void
3219create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3220 struct dwarf2_section_info *section)
3221{
3222 struct objfile *objfile = dwarf2_per_objfile->objfile;
3223 bfd *abfd = objfile->obfd;
3224 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3225 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3226 SECT_OFF_TEXT (objfile));
3227
3228 auto_obstack temp_obstack;
3229 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3230
3231 std::unordered_map<sect_offset,
3232 dwarf2_per_cu_data *,
3233 gdb::hash_enum<sect_offset>>
3234 debug_info_offset_to_per_cu;
3235 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3236 {
3237 const auto insertpair
3238 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3239 if (!insertpair.second)
3240 {
3241 warning (_("Section .debug_aranges in %s has duplicate "
3242 "debug_info_offset %s, ignoring .debug_aranges."),
3243 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3244 return;
3245 }
3246 }
3247
3248 dwarf2_read_section (objfile, section);
3249
3250 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3251
3252 const gdb_byte *addr = section->buffer;
3253
3254 while (addr < section->buffer + section->size)
3255 {
3256 const gdb_byte *const entry_addr = addr;
3257 unsigned int bytes_read;
3258
3259 const LONGEST entry_length = read_initial_length (abfd, addr,
3260 &bytes_read);
3261 addr += bytes_read;
3262
3263 const gdb_byte *const entry_end = addr + entry_length;
3264 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3265 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3266 if (addr + entry_length > section->buffer + section->size)
3267 {
3268 warning (_("Section .debug_aranges in %s entry at offset %s "
3269 "length %s exceeds section length %s, "
3270 "ignoring .debug_aranges."),
3271 objfile_name (objfile),
3272 plongest (entry_addr - section->buffer),
3273 plongest (bytes_read + entry_length),
3274 pulongest (section->size));
3275 return;
3276 }
3277
3278 /* The version number. */
3279 const uint16_t version = read_2_bytes (abfd, addr);
3280 addr += 2;
3281 if (version != 2)
3282 {
3283 warning (_("Section .debug_aranges in %s entry at offset %s "
3284 "has unsupported version %d, ignoring .debug_aranges."),
3285 objfile_name (objfile),
3286 plongest (entry_addr - section->buffer), version);
3287 return;
3288 }
3289
3290 const uint64_t debug_info_offset
3291 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3292 addr += offset_size;
3293 const auto per_cu_it
3294 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3295 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3296 {
3297 warning (_("Section .debug_aranges in %s entry at offset %s "
3298 "debug_info_offset %s does not exists, "
3299 "ignoring .debug_aranges."),
3300 objfile_name (objfile),
3301 plongest (entry_addr - section->buffer),
3302 pulongest (debug_info_offset));
3303 return;
3304 }
3305 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3306
3307 const uint8_t address_size = *addr++;
3308 if (address_size < 1 || address_size > 8)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %s "
3311 "address_size %u is invalid, ignoring .debug_aranges."),
3312 objfile_name (objfile),
3313 plongest (entry_addr - section->buffer), address_size);
3314 return;
3315 }
3316
3317 const uint8_t segment_selector_size = *addr++;
3318 if (segment_selector_size != 0)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %s "
3321 "segment_selector_size %u is not supported, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile),
3324 plongest (entry_addr - section->buffer),
3325 segment_selector_size);
3326 return;
3327 }
3328
3329 /* Must pad to an alignment boundary that is twice the address
3330 size. It is undocumented by the DWARF standard but GCC does
3331 use it. */
3332 for (size_t padding = ((-(addr - section->buffer))
3333 & (2 * address_size - 1));
3334 padding > 0; padding--)
3335 if (*addr++ != 0)
3336 {
3337 warning (_("Section .debug_aranges in %s entry at offset %s "
3338 "padding is not zero, ignoring .debug_aranges."),
3339 objfile_name (objfile),
3340 plongest (entry_addr - section->buffer));
3341 return;
3342 }
3343
3344 for (;;)
3345 {
3346 if (addr + 2 * address_size > entry_end)
3347 {
3348 warning (_("Section .debug_aranges in %s entry at offset %s "
3349 "address list is not properly terminated, "
3350 "ignoring .debug_aranges."),
3351 objfile_name (objfile),
3352 plongest (entry_addr - section->buffer));
3353 return;
3354 }
3355 ULONGEST start = extract_unsigned_integer (addr, address_size,
3356 dwarf5_byte_order);
3357 addr += address_size;
3358 ULONGEST length = extract_unsigned_integer (addr, address_size,
3359 dwarf5_byte_order);
3360 addr += address_size;
3361 if (start == 0 && length == 0)
3362 break;
3363 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3364 {
3365 /* Symbol was eliminated due to a COMDAT group. */
3366 continue;
3367 }
3368 ULONGEST end = start + length;
3369 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3370 - baseaddr);
3371 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3372 - baseaddr);
3373 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3374 }
3375 }
3376
3377 objfile->partial_symtabs->psymtabs_addrmap
3378 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3379}
3380
3381/* Find a slot in the mapped index INDEX for the object named NAME.
3382 If NAME is found, set *VEC_OUT to point to the CU vector in the
3383 constant pool and return true. If NAME cannot be found, return
3384 false. */
3385
3386static bool
3387find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3388 offset_type **vec_out)
3389{
3390 offset_type hash;
3391 offset_type slot, step;
3392 int (*cmp) (const char *, const char *);
3393
3394 gdb::unique_xmalloc_ptr<char> without_params;
3395 if (current_language->la_language == language_cplus
3396 || current_language->la_language == language_fortran
3397 || current_language->la_language == language_d)
3398 {
3399 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3400 not contain any. */
3401
3402 if (strchr (name, '(') != NULL)
3403 {
3404 without_params = cp_remove_params (name);
3405
3406 if (without_params != NULL)
3407 name = without_params.get ();
3408 }
3409 }
3410
3411 /* Index version 4 did not support case insensitive searches. But the
3412 indices for case insensitive languages are built in lowercase, therefore
3413 simulate our NAME being searched is also lowercased. */
3414 hash = mapped_index_string_hash ((index->version == 4
3415 && case_sensitivity == case_sensitive_off
3416 ? 5 : index->version),
3417 name);
3418
3419 slot = hash & (index->symbol_table.size () - 1);
3420 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3421 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3422
3423 for (;;)
3424 {
3425 const char *str;
3426
3427 const auto &bucket = index->symbol_table[slot];
3428 if (bucket.name == 0 && bucket.vec == 0)
3429 return false;
3430
3431 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3432 if (!cmp (name, str))
3433 {
3434 *vec_out = (offset_type *) (index->constant_pool
3435 + MAYBE_SWAP (bucket.vec));
3436 return true;
3437 }
3438
3439 slot = (slot + step) & (index->symbol_table.size () - 1);
3440 }
3441}
3442
3443/* A helper function that reads the .gdb_index from BUFFER and fills
3444 in MAP. FILENAME is the name of the file containing the data;
3445 it is used for error reporting. DEPRECATED_OK is true if it is
3446 ok to use deprecated sections.
3447
3448 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3449 out parameters that are filled in with information about the CU and
3450 TU lists in the section.
3451
3452 Returns true if all went well, false otherwise. */
3453
3454static bool
3455read_gdb_index_from_buffer (struct objfile *objfile,
3456 const char *filename,
3457 bool deprecated_ok,
3458 gdb::array_view<const gdb_byte> buffer,
3459 struct mapped_index *map,
3460 const gdb_byte **cu_list,
3461 offset_type *cu_list_elements,
3462 const gdb_byte **types_list,
3463 offset_type *types_list_elements)
3464{
3465 const gdb_byte *addr = &buffer[0];
3466
3467 /* Version check. */
3468 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3469 /* Versions earlier than 3 emitted every copy of a psymbol. This
3470 causes the index to behave very poorly for certain requests. Version 3
3471 contained incomplete addrmap. So, it seems better to just ignore such
3472 indices. */
3473 if (version < 4)
3474 {
3475 static int warning_printed = 0;
3476 if (!warning_printed)
3477 {
3478 warning (_("Skipping obsolete .gdb_index section in %s."),
3479 filename);
3480 warning_printed = 1;
3481 }
3482 return 0;
3483 }
3484 /* Index version 4 uses a different hash function than index version
3485 5 and later.
3486
3487 Versions earlier than 6 did not emit psymbols for inlined
3488 functions. Using these files will cause GDB not to be able to
3489 set breakpoints on inlined functions by name, so we ignore these
3490 indices unless the user has done
3491 "set use-deprecated-index-sections on". */
3492 if (version < 6 && !deprecated_ok)
3493 {
3494 static int warning_printed = 0;
3495 if (!warning_printed)
3496 {
3497 warning (_("\
3498Skipping deprecated .gdb_index section in %s.\n\
3499Do \"set use-deprecated-index-sections on\" before the file is read\n\
3500to use the section anyway."),
3501 filename);
3502 warning_printed = 1;
3503 }
3504 return 0;
3505 }
3506 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3507 of the TU (for symbols coming from TUs),
3508 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3509 Plus gold-generated indices can have duplicate entries for global symbols,
3510 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3511 These are just performance bugs, and we can't distinguish gdb-generated
3512 indices from gold-generated ones, so issue no warning here. */
3513
3514 /* Indexes with higher version than the one supported by GDB may be no
3515 longer backward compatible. */
3516 if (version > 8)
3517 return 0;
3518
3519 map->version = version;
3520
3521 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3522
3523 int i = 0;
3524 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3525 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3526 / 8);
3527 ++i;
3528
3529 *types_list = addr + MAYBE_SWAP (metadata[i]);
3530 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3531 - MAYBE_SWAP (metadata[i]))
3532 / 8);
3533 ++i;
3534
3535 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3536 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3537 map->address_table
3538 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3539 ++i;
3540
3541 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3542 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3543 map->symbol_table
3544 = gdb::array_view<mapped_index::symbol_table_slot>
3545 ((mapped_index::symbol_table_slot *) symbol_table,
3546 (mapped_index::symbol_table_slot *) symbol_table_end);
3547
3548 ++i;
3549 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3550
3551 return 1;
3552}
3553
3554/* Callback types for dwarf2_read_gdb_index. */
3555
3556typedef gdb::function_view
3557 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3558 get_gdb_index_contents_ftype;
3559typedef gdb::function_view
3560 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3561 get_gdb_index_contents_dwz_ftype;
3562
3563/* Read .gdb_index. If everything went ok, initialize the "quick"
3564 elements of all the CUs and return 1. Otherwise, return 0. */
3565
3566static int
3567dwarf2_read_gdb_index
3568 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3569 get_gdb_index_contents_ftype get_gdb_index_contents,
3570 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3571{
3572 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3573 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3574 struct dwz_file *dwz;
3575 struct objfile *objfile = dwarf2_per_objfile->objfile;
3576
3577 gdb::array_view<const gdb_byte> main_index_contents
3578 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3579
3580 if (main_index_contents.empty ())
3581 return 0;
3582
3583 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3584 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3585 use_deprecated_index_sections,
3586 main_index_contents, map.get (), &cu_list,
3587 &cu_list_elements, &types_list,
3588 &types_list_elements))
3589 return 0;
3590
3591 /* Don't use the index if it's empty. */
3592 if (map->symbol_table.empty ())
3593 return 0;
3594
3595 /* If there is a .dwz file, read it so we can get its CU list as
3596 well. */
3597 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3598 if (dwz != NULL)
3599 {
3600 struct mapped_index dwz_map;
3601 const gdb_byte *dwz_types_ignore;
3602 offset_type dwz_types_elements_ignore;
3603
3604 gdb::array_view<const gdb_byte> dwz_index_content
3605 = get_gdb_index_contents_dwz (objfile, dwz);
3606
3607 if (dwz_index_content.empty ())
3608 return 0;
3609
3610 if (!read_gdb_index_from_buffer (objfile,
3611 bfd_get_filename (dwz->dwz_bfd.get ()),
3612 1, dwz_index_content, &dwz_map,
3613 &dwz_list, &dwz_list_elements,
3614 &dwz_types_ignore,
3615 &dwz_types_elements_ignore))
3616 {
3617 warning (_("could not read '.gdb_index' section from %s; skipping"),
3618 bfd_get_filename (dwz->dwz_bfd.get ()));
3619 return 0;
3620 }
3621 }
3622
3623 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3624 dwz_list, dwz_list_elements);
3625
3626 if (types_list_elements)
3627 {
3628 /* We can only handle a single .debug_types when we have an
3629 index. */
3630 if (dwarf2_per_objfile->types.size () != 1)
3631 return 0;
3632
3633 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3634
3635 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3636 types_list, types_list_elements);
3637 }
3638
3639 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3640
3641 dwarf2_per_objfile->index_table = std::move (map);
3642 dwarf2_per_objfile->using_index = 1;
3643 dwarf2_per_objfile->quick_file_names_table =
3644 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3645
3646 return 1;
3647}
3648
3649/* die_reader_func for dw2_get_file_names. */
3650
3651static void
3652dw2_get_file_names_reader (const struct die_reader_specs *reader,
3653 const gdb_byte *info_ptr,
3654 struct die_info *comp_unit_die,
3655 int has_children,
3656 void *data)
3657{
3658 struct dwarf2_cu *cu = reader->cu;
3659 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3660 struct dwarf2_per_objfile *dwarf2_per_objfile
3661 = cu->per_cu->dwarf2_per_objfile;
3662 struct objfile *objfile = dwarf2_per_objfile->objfile;
3663 struct dwarf2_per_cu_data *lh_cu;
3664 struct attribute *attr;
3665 void **slot;
3666 struct quick_file_names *qfn;
3667
3668 gdb_assert (! this_cu->is_debug_types);
3669
3670 /* Our callers never want to match partial units -- instead they
3671 will match the enclosing full CU. */
3672 if (comp_unit_die->tag == DW_TAG_partial_unit)
3673 {
3674 this_cu->v.quick->no_file_data = 1;
3675 return;
3676 }
3677
3678 lh_cu = this_cu;
3679 slot = NULL;
3680
3681 line_header_up lh;
3682 sect_offset line_offset {};
3683
3684 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3685 if (attr != nullptr)
3686 {
3687 struct quick_file_names find_entry;
3688
3689 line_offset = (sect_offset) DW_UNSND (attr);
3690
3691 /* We may have already read in this line header (TU line header sharing).
3692 If we have we're done. */
3693 find_entry.hash.dwo_unit = cu->dwo_unit;
3694 find_entry.hash.line_sect_off = line_offset;
3695 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3696 &find_entry, INSERT);
3697 if (*slot != NULL)
3698 {
3699 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3700 return;
3701 }
3702
3703 lh = dwarf_decode_line_header (line_offset, cu);
3704 }
3705 if (lh == NULL)
3706 {
3707 lh_cu->v.quick->no_file_data = 1;
3708 return;
3709 }
3710
3711 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3712 qfn->hash.dwo_unit = cu->dwo_unit;
3713 qfn->hash.line_sect_off = line_offset;
3714 gdb_assert (slot != NULL);
3715 *slot = qfn;
3716
3717 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3718
3719 int offset = 0;
3720 if (strcmp (fnd.name, "<unknown>") != 0)
3721 ++offset;
3722
3723 qfn->num_file_names = offset + lh->file_names_size ();
3724 qfn->file_names =
3725 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3726 if (offset != 0)
3727 qfn->file_names[0] = xstrdup (fnd.name);
3728 for (int i = 0; i < lh->file_names_size (); ++i)
3729 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3730 qfn->real_names = NULL;
3731
3732 lh_cu->v.quick->file_names = qfn;
3733}
3734
3735/* A helper for the "quick" functions which attempts to read the line
3736 table for THIS_CU. */
3737
3738static struct quick_file_names *
3739dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3740{
3741 /* This should never be called for TUs. */
3742 gdb_assert (! this_cu->is_debug_types);
3743 /* Nor type unit groups. */
3744 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3745
3746 if (this_cu->v.quick->file_names != NULL)
3747 return this_cu->v.quick->file_names;
3748 /* If we know there is no line data, no point in looking again. */
3749 if (this_cu->v.quick->no_file_data)
3750 return NULL;
3751
3752 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3753
3754 if (this_cu->v.quick->no_file_data)
3755 return NULL;
3756 return this_cu->v.quick->file_names;
3757}
3758
3759/* A helper for the "quick" functions which computes and caches the
3760 real path for a given file name from the line table. */
3761
3762static const char *
3763dw2_get_real_path (struct objfile *objfile,
3764 struct quick_file_names *qfn, int index)
3765{
3766 if (qfn->real_names == NULL)
3767 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3768 qfn->num_file_names, const char *);
3769
3770 if (qfn->real_names[index] == NULL)
3771 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3772
3773 return qfn->real_names[index];
3774}
3775
3776static struct symtab *
3777dw2_find_last_source_symtab (struct objfile *objfile)
3778{
3779 struct dwarf2_per_objfile *dwarf2_per_objfile
3780 = get_dwarf2_per_objfile (objfile);
3781 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3782 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3783
3784 if (cust == NULL)
3785 return NULL;
3786
3787 return compunit_primary_filetab (cust);
3788}
3789
3790/* Traversal function for dw2_forget_cached_source_info. */
3791
3792static int
3793dw2_free_cached_file_names (void **slot, void *info)
3794{
3795 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3796
3797 if (file_data->real_names)
3798 {
3799 int i;
3800
3801 for (i = 0; i < file_data->num_file_names; ++i)
3802 {
3803 xfree ((void*) file_data->real_names[i]);
3804 file_data->real_names[i] = NULL;
3805 }
3806 }
3807
3808 return 1;
3809}
3810
3811static void
3812dw2_forget_cached_source_info (struct objfile *objfile)
3813{
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3818 dw2_free_cached_file_names, NULL);
3819}
3820
3821/* Helper function for dw2_map_symtabs_matching_filename that expands
3822 the symtabs and calls the iterator. */
3823
3824static int
3825dw2_map_expand_apply (struct objfile *objfile,
3826 struct dwarf2_per_cu_data *per_cu,
3827 const char *name, const char *real_path,
3828 gdb::function_view<bool (symtab *)> callback)
3829{
3830 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3831
3832 /* Don't visit already-expanded CUs. */
3833 if (per_cu->v.quick->compunit_symtab)
3834 return 0;
3835
3836 /* This may expand more than one symtab, and we want to iterate over
3837 all of them. */
3838 dw2_instantiate_symtab (per_cu, false);
3839
3840 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3841 last_made, callback);
3842}
3843
3844/* Implementation of the map_symtabs_matching_filename method. */
3845
3846static bool
3847dw2_map_symtabs_matching_filename
3848 (struct objfile *objfile, const char *name, const char *real_path,
3849 gdb::function_view<bool (symtab *)> callback)
3850{
3851 const char *name_basename = lbasename (name);
3852 struct dwarf2_per_objfile *dwarf2_per_objfile
3853 = get_dwarf2_per_objfile (objfile);
3854
3855 /* The rule is CUs specify all the files, including those used by
3856 any TU, so there's no need to scan TUs here. */
3857
3858 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3859 {
3860 /* We only need to look at symtabs not already expanded. */
3861 if (per_cu->v.quick->compunit_symtab)
3862 continue;
3863
3864 quick_file_names *file_data = dw2_get_file_names (per_cu);
3865 if (file_data == NULL)
3866 continue;
3867
3868 for (int j = 0; j < file_data->num_file_names; ++j)
3869 {
3870 const char *this_name = file_data->file_names[j];
3871 const char *this_real_name;
3872
3873 if (compare_filenames_for_search (this_name, name))
3874 {
3875 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3876 callback))
3877 return true;
3878 continue;
3879 }
3880
3881 /* Before we invoke realpath, which can get expensive when many
3882 files are involved, do a quick comparison of the basenames. */
3883 if (! basenames_may_differ
3884 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3885 continue;
3886
3887 this_real_name = dw2_get_real_path (objfile, file_data, j);
3888 if (compare_filenames_for_search (this_real_name, name))
3889 {
3890 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3891 callback))
3892 return true;
3893 continue;
3894 }
3895
3896 if (real_path != NULL)
3897 {
3898 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3899 gdb_assert (IS_ABSOLUTE_PATH (name));
3900 if (this_real_name != NULL
3901 && FILENAME_CMP (real_path, this_real_name) == 0)
3902 {
3903 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3904 callback))
3905 return true;
3906 continue;
3907 }
3908 }
3909 }
3910 }
3911
3912 return false;
3913}
3914
3915/* Struct used to manage iterating over all CUs looking for a symbol. */
3916
3917struct dw2_symtab_iterator
3918{
3919 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3920 struct dwarf2_per_objfile *dwarf2_per_objfile;
3921 /* If set, only look for symbols that match that block. Valid values are
3922 GLOBAL_BLOCK and STATIC_BLOCK. */
3923 gdb::optional<block_enum> block_index;
3924 /* The kind of symbol we're looking for. */
3925 domain_enum domain;
3926 /* The list of CUs from the index entry of the symbol,
3927 or NULL if not found. */
3928 offset_type *vec;
3929 /* The next element in VEC to look at. */
3930 int next;
3931 /* The number of elements in VEC, or zero if there is no match. */
3932 int length;
3933 /* Have we seen a global version of the symbol?
3934 If so we can ignore all further global instances.
3935 This is to work around gold/15646, inefficient gold-generated
3936 indices. */
3937 int global_seen;
3938};
3939
3940/* Initialize the index symtab iterator ITER. */
3941
3942static void
3943dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3944 struct dwarf2_per_objfile *dwarf2_per_objfile,
3945 gdb::optional<block_enum> block_index,
3946 domain_enum domain,
3947 const char *name)
3948{
3949 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3950 iter->block_index = block_index;
3951 iter->domain = domain;
3952 iter->next = 0;
3953 iter->global_seen = 0;
3954
3955 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3956
3957 /* index is NULL if OBJF_READNOW. */
3958 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3959 iter->length = MAYBE_SWAP (*iter->vec);
3960 else
3961 {
3962 iter->vec = NULL;
3963 iter->length = 0;
3964 }
3965}
3966
3967/* Return the next matching CU or NULL if there are no more. */
3968
3969static struct dwarf2_per_cu_data *
3970dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3971{
3972 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3973
3974 for ( ; iter->next < iter->length; ++iter->next)
3975 {
3976 offset_type cu_index_and_attrs =
3977 MAYBE_SWAP (iter->vec[iter->next + 1]);
3978 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3979 gdb_index_symbol_kind symbol_kind =
3980 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3981 /* Only check the symbol attributes if they're present.
3982 Indices prior to version 7 don't record them,
3983 and indices >= 7 may elide them for certain symbols
3984 (gold does this). */
3985 int attrs_valid =
3986 (dwarf2_per_objfile->index_table->version >= 7
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3988
3989 /* Don't crash on bad data. */
3990 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3991 + dwarf2_per_objfile->all_type_units.size ()))
3992 {
3993 complaint (_(".gdb_index entry has bad CU index"
3994 " [in module %s]"),
3995 objfile_name (dwarf2_per_objfile->objfile));
3996 continue;
3997 }
3998
3999 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4000
4001 /* Skip if already read in. */
4002 if (per_cu->v.quick->compunit_symtab)
4003 continue;
4004
4005 /* Check static vs global. */
4006 if (attrs_valid)
4007 {
4008 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4009
4010 if (iter->block_index.has_value ())
4011 {
4012 bool want_static = *iter->block_index == STATIC_BLOCK;
4013
4014 if (is_static != want_static)
4015 continue;
4016 }
4017
4018 /* Work around gold/15646. */
4019 if (!is_static && iter->global_seen)
4020 continue;
4021 if (!is_static)
4022 iter->global_seen = 1;
4023 }
4024
4025 /* Only check the symbol's kind if it has one. */
4026 if (attrs_valid)
4027 {
4028 switch (iter->domain)
4029 {
4030 case VAR_DOMAIN:
4031 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4032 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4033 /* Some types are also in VAR_DOMAIN. */
4034 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4035 continue;
4036 break;
4037 case STRUCT_DOMAIN:
4038 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4039 continue;
4040 break;
4041 case LABEL_DOMAIN:
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4043 continue;
4044 break;
4045 case MODULE_DOMAIN:
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4047 continue;
4048 break;
4049 default:
4050 break;
4051 }
4052 }
4053
4054 ++iter->next;
4055 return per_cu;
4056 }
4057
4058 return NULL;
4059}
4060
4061static struct compunit_symtab *
4062dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
4063 const char *name, domain_enum domain)
4064{
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4070
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4073
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4075
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4077 {
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4082
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4085 &with_opaque);
4086
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4090
4091 if (sym != NULL
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4093 return stab;
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4096 stab_best = stab;
4097
4098 /* Keep looking through other CUs. */
4099 }
4100
4101 return stab_best;
4102}
4103
4104static void
4105dw2_print_stats (struct objfile *objfile)
4106{
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4111 int count = 0;
4112
4113 for (int i = 0; i < total; ++i)
4114 {
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4116
4117 if (!per_cu->v.quick->compunit_symtab)
4118 ++count;
4119 }
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4122}
4123
4124/* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4128
4129static void
4130dw2_dump (struct objfile *objfile)
4131{
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4134
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4138 {
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4141 }
4142 else
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4145}
4146
4147static void
4148dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4150{
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4153
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4156
4157 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4158
4159 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4160 dw2_instantiate_symtab (per_cu, false);
4161
4162}
4163
4164static void
4165dw2_expand_all_symtabs (struct objfile *objfile)
4166{
4167 struct dwarf2_per_objfile *dwarf2_per_objfile
4168 = get_dwarf2_per_objfile (objfile);
4169 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4170 + dwarf2_per_objfile->all_type_units.size ());
4171
4172 for (int i = 0; i < total_units; ++i)
4173 {
4174 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4175
4176 /* We don't want to directly expand a partial CU, because if we
4177 read it with the wrong language, then assertion failures can
4178 be triggered later on. See PR symtab/23010. So, tell
4179 dw2_instantiate_symtab to skip partial CUs -- any important
4180 partial CU will be read via DW_TAG_imported_unit anyway. */
4181 dw2_instantiate_symtab (per_cu, true);
4182 }
4183}
4184
4185static void
4186dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4187 const char *fullname)
4188{
4189 struct dwarf2_per_objfile *dwarf2_per_objfile
4190 = get_dwarf2_per_objfile (objfile);
4191
4192 /* We don't need to consider type units here.
4193 This is only called for examining code, e.g. expand_line_sal.
4194 There can be an order of magnitude (or more) more type units
4195 than comp units, and we avoid them if we can. */
4196
4197 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4198 {
4199 /* We only need to look at symtabs not already expanded. */
4200 if (per_cu->v.quick->compunit_symtab)
4201 continue;
4202
4203 quick_file_names *file_data = dw2_get_file_names (per_cu);
4204 if (file_data == NULL)
4205 continue;
4206
4207 for (int j = 0; j < file_data->num_file_names; ++j)
4208 {
4209 const char *this_fullname = file_data->file_names[j];
4210
4211 if (filename_cmp (this_fullname, fullname) == 0)
4212 {
4213 dw2_instantiate_symtab (per_cu, false);
4214 break;
4215 }
4216 }
4217 }
4218}
4219
4220static void
4221dw2_map_matching_symbols
4222 (struct objfile *objfile,
4223 const lookup_name_info &name, domain_enum domain,
4224 int global,
4225 gdb::function_view<symbol_found_callback_ftype> callback,
4226 symbol_compare_ftype *ordered_compare)
4227{
4228 /* Currently unimplemented; used for Ada. The function can be called if the
4229 current language is Ada for a non-Ada objfile using GNU index. As Ada
4230 does not look for non-Ada symbols this function should just return. */
4231}
4232
4233/* Starting from a search name, return the string that finds the upper
4234 bound of all strings that start with SEARCH_NAME in a sorted name
4235 list. Returns the empty string to indicate that the upper bound is
4236 the end of the list. */
4237
4238static std::string
4239make_sort_after_prefix_name (const char *search_name)
4240{
4241 /* When looking to complete "func", we find the upper bound of all
4242 symbols that start with "func" by looking for where we'd insert
4243 the closest string that would follow "func" in lexicographical
4244 order. Usually, that's "func"-with-last-character-incremented,
4245 i.e. "fund". Mind non-ASCII characters, though. Usually those
4246 will be UTF-8 multi-byte sequences, but we can't be certain.
4247 Especially mind the 0xff character, which is a valid character in
4248 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4249 rule out compilers allowing it in identifiers. Note that
4250 conveniently, strcmp/strcasecmp are specified to compare
4251 characters interpreted as unsigned char. So what we do is treat
4252 the whole string as a base 256 number composed of a sequence of
4253 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4254 to 0, and carries 1 to the following more-significant position.
4255 If the very first character in SEARCH_NAME ends up incremented
4256 and carries/overflows, then the upper bound is the end of the
4257 list. The string after the empty string is also the empty
4258 string.
4259
4260 Some examples of this operation:
4261
4262 SEARCH_NAME => "+1" RESULT
4263
4264 "abc" => "abd"
4265 "ab\xff" => "ac"
4266 "\xff" "a" "\xff" => "\xff" "b"
4267 "\xff" => ""
4268 "\xff\xff" => ""
4269 "" => ""
4270
4271 Then, with these symbols for example:
4272
4273 func
4274 func1
4275 fund
4276
4277 completing "func" looks for symbols between "func" and
4278 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4279 which finds "func" and "func1", but not "fund".
4280
4281 And with:
4282
4283 funcÿ (Latin1 'ÿ' [0xff])
4284 funcÿ1
4285 fund
4286
4287 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4288 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4289
4290 And with:
4291
4292 ÿÿ (Latin1 'ÿ' [0xff])
4293 ÿÿ1
4294
4295 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4296 the end of the list.
4297 */
4298 std::string after = search_name;
4299 while (!after.empty () && (unsigned char) after.back () == 0xff)
4300 after.pop_back ();
4301 if (!after.empty ())
4302 after.back () = (unsigned char) after.back () + 1;
4303 return after;
4304}
4305
4306/* See declaration. */
4307
4308std::pair<std::vector<name_component>::const_iterator,
4309 std::vector<name_component>::const_iterator>
4310mapped_index_base::find_name_components_bounds
4311 (const lookup_name_info &lookup_name_without_params, language lang) const
4312{
4313 auto *name_cmp
4314 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4315
4316 const char *lang_name
4317 = lookup_name_without_params.language_lookup_name (lang).c_str ();
4318
4319 /* Comparison function object for lower_bound that matches against a
4320 given symbol name. */
4321 auto lookup_compare_lower = [&] (const name_component &elem,
4322 const char *name)
4323 {
4324 const char *elem_qualified = this->symbol_name_at (elem.idx);
4325 const char *elem_name = elem_qualified + elem.name_offset;
4326 return name_cmp (elem_name, name) < 0;
4327 };
4328
4329 /* Comparison function object for upper_bound that matches against a
4330 given symbol name. */
4331 auto lookup_compare_upper = [&] (const char *name,
4332 const name_component &elem)
4333 {
4334 const char *elem_qualified = this->symbol_name_at (elem.idx);
4335 const char *elem_name = elem_qualified + elem.name_offset;
4336 return name_cmp (name, elem_name) < 0;
4337 };
4338
4339 auto begin = this->name_components.begin ();
4340 auto end = this->name_components.end ();
4341
4342 /* Find the lower bound. */
4343 auto lower = [&] ()
4344 {
4345 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4346 return begin;
4347 else
4348 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4349 } ();
4350
4351 /* Find the upper bound. */
4352 auto upper = [&] ()
4353 {
4354 if (lookup_name_without_params.completion_mode ())
4355 {
4356 /* In completion mode, we want UPPER to point past all
4357 symbols names that have the same prefix. I.e., with
4358 these symbols, and completing "func":
4359
4360 function << lower bound
4361 function1
4362 other_function << upper bound
4363
4364 We find the upper bound by looking for the insertion
4365 point of "func"-with-last-character-incremented,
4366 i.e. "fund". */
4367 std::string after = make_sort_after_prefix_name (lang_name);
4368 if (after.empty ())
4369 return end;
4370 return std::lower_bound (lower, end, after.c_str (),
4371 lookup_compare_lower);
4372 }
4373 else
4374 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4375 } ();
4376
4377 return {lower, upper};
4378}
4379
4380/* See declaration. */
4381
4382void
4383mapped_index_base::build_name_components ()
4384{
4385 if (!this->name_components.empty ())
4386 return;
4387
4388 this->name_components_casing = case_sensitivity;
4389 auto *name_cmp
4390 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4391
4392 /* The code below only knows how to break apart components of C++
4393 symbol names (and other languages that use '::' as
4394 namespace/module separator) and Ada symbol names. */
4395 auto count = this->symbol_name_count ();
4396 for (offset_type idx = 0; idx < count; idx++)
4397 {
4398 if (this->symbol_name_slot_invalid (idx))
4399 continue;
4400
4401 const char *name = this->symbol_name_at (idx);
4402
4403 /* Add each name component to the name component table. */
4404 unsigned int previous_len = 0;
4405
4406 if (strstr (name, "::") != nullptr)
4407 {
4408 for (unsigned int current_len = cp_find_first_component (name);
4409 name[current_len] != '\0';
4410 current_len += cp_find_first_component (name + current_len))
4411 {
4412 gdb_assert (name[current_len] == ':');
4413 this->name_components.push_back ({previous_len, idx});
4414 /* Skip the '::'. */
4415 current_len += 2;
4416 previous_len = current_len;
4417 }
4418 }
4419 else
4420 {
4421 /* Handle the Ada encoded (aka mangled) form here. */
4422 for (const char *iter = strstr (name, "__");
4423 iter != nullptr;
4424 iter = strstr (iter, "__"))
4425 {
4426 this->name_components.push_back ({previous_len, idx});
4427 iter += 2;
4428 previous_len = iter - name;
4429 }
4430 }
4431
4432 this->name_components.push_back ({previous_len, idx});
4433 }
4434
4435 /* Sort name_components elements by name. */
4436 auto name_comp_compare = [&] (const name_component &left,
4437 const name_component &right)
4438 {
4439 const char *left_qualified = this->symbol_name_at (left.idx);
4440 const char *right_qualified = this->symbol_name_at (right.idx);
4441
4442 const char *left_name = left_qualified + left.name_offset;
4443 const char *right_name = right_qualified + right.name_offset;
4444
4445 return name_cmp (left_name, right_name) < 0;
4446 };
4447
4448 std::sort (this->name_components.begin (),
4449 this->name_components.end (),
4450 name_comp_compare);
4451}
4452
4453/* Helper for dw2_expand_symtabs_matching that works with a
4454 mapped_index_base instead of the containing objfile. This is split
4455 to a separate function in order to be able to unit test the
4456 name_components matching using a mock mapped_index_base. For each
4457 symbol name that matches, calls MATCH_CALLBACK, passing it the
4458 symbol's index in the mapped_index_base symbol table. */
4459
4460static void
4461dw2_expand_symtabs_matching_symbol
4462 (mapped_index_base &index,
4463 const lookup_name_info &lookup_name_in,
4464 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4465 enum search_domain kind,
4466 gdb::function_view<bool (offset_type)> match_callback)
4467{
4468 lookup_name_info lookup_name_without_params
4469 = lookup_name_in.make_ignore_params ();
4470
4471 /* Build the symbol name component sorted vector, if we haven't
4472 yet. */
4473 index.build_name_components ();
4474
4475 /* The same symbol may appear more than once in the range though.
4476 E.g., if we're looking for symbols that complete "w", and we have
4477 a symbol named "w1::w2", we'll find the two name components for
4478 that same symbol in the range. To be sure we only call the
4479 callback once per symbol, we first collect the symbol name
4480 indexes that matched in a temporary vector and ignore
4481 duplicates. */
4482 std::vector<offset_type> matches;
4483
4484 struct name_and_matcher
4485 {
4486 symbol_name_matcher_ftype *matcher;
4487 const std::string &name;
4488
4489 bool operator== (const name_and_matcher &other) const
4490 {
4491 return matcher == other.matcher && name == other.name;
4492 }
4493 };
4494
4495 /* A vector holding all the different symbol name matchers, for all
4496 languages. */
4497 std::vector<name_and_matcher> matchers;
4498
4499 for (int i = 0; i < nr_languages; i++)
4500 {
4501 enum language lang_e = (enum language) i;
4502
4503 const language_defn *lang = language_def (lang_e);
4504 symbol_name_matcher_ftype *name_matcher
4505 = get_symbol_name_matcher (lang, lookup_name_without_params);
4506
4507 name_and_matcher key {
4508 name_matcher,
4509 lookup_name_without_params.language_lookup_name (lang_e)
4510 };
4511
4512 /* Don't insert the same comparison routine more than once.
4513 Note that we do this linear walk. This is not a problem in
4514 practice because the number of supported languages is
4515 low. */
4516 if (std::find (matchers.begin (), matchers.end (), key)
4517 != matchers.end ())
4518 continue;
4519 matchers.push_back (std::move (key));
4520
4521 auto bounds
4522 = index.find_name_components_bounds (lookup_name_without_params,
4523 lang_e);
4524
4525 /* Now for each symbol name in range, check to see if we have a name
4526 match, and if so, call the MATCH_CALLBACK callback. */
4527
4528 for (; bounds.first != bounds.second; ++bounds.first)
4529 {
4530 const char *qualified = index.symbol_name_at (bounds.first->idx);
4531
4532 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4533 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4534 continue;
4535
4536 matches.push_back (bounds.first->idx);
4537 }
4538 }
4539
4540 std::sort (matches.begin (), matches.end ());
4541
4542 /* Finally call the callback, once per match. */
4543 ULONGEST prev = -1;
4544 for (offset_type idx : matches)
4545 {
4546 if (prev != idx)
4547 {
4548 if (!match_callback (idx))
4549 break;
4550 prev = idx;
4551 }
4552 }
4553
4554 /* Above we use a type wider than idx's for 'prev', since 0 and
4555 (offset_type)-1 are both possible values. */
4556 static_assert (sizeof (prev) > sizeof (offset_type), "");
4557}
4558
4559#if GDB_SELF_TEST
4560
4561namespace selftests { namespace dw2_expand_symtabs_matching {
4562
4563/* A mock .gdb_index/.debug_names-like name index table, enough to
4564 exercise dw2_expand_symtabs_matching_symbol, which works with the
4565 mapped_index_base interface. Builds an index from the symbol list
4566 passed as parameter to the constructor. */
4567class mock_mapped_index : public mapped_index_base
4568{
4569public:
4570 mock_mapped_index (gdb::array_view<const char *> symbols)
4571 : m_symbol_table (symbols)
4572 {}
4573
4574 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4575
4576 /* Return the number of names in the symbol table. */
4577 size_t symbol_name_count () const override
4578 {
4579 return m_symbol_table.size ();
4580 }
4581
4582 /* Get the name of the symbol at IDX in the symbol table. */
4583 const char *symbol_name_at (offset_type idx) const override
4584 {
4585 return m_symbol_table[idx];
4586 }
4587
4588private:
4589 gdb::array_view<const char *> m_symbol_table;
4590};
4591
4592/* Convenience function that converts a NULL pointer to a "<null>"
4593 string, to pass to print routines. */
4594
4595static const char *
4596string_or_null (const char *str)
4597{
4598 return str != NULL ? str : "<null>";
4599}
4600
4601/* Check if a lookup_name_info built from
4602 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4603 index. EXPECTED_LIST is the list of expected matches, in expected
4604 matching order. If no match expected, then an empty list is
4605 specified. Returns true on success. On failure prints a warning
4606 indicating the file:line that failed, and returns false. */
4607
4608static bool
4609check_match (const char *file, int line,
4610 mock_mapped_index &mock_index,
4611 const char *name, symbol_name_match_type match_type,
4612 bool completion_mode,
4613 std::initializer_list<const char *> expected_list)
4614{
4615 lookup_name_info lookup_name (name, match_type, completion_mode);
4616
4617 bool matched = true;
4618
4619 auto mismatch = [&] (const char *expected_str,
4620 const char *got)
4621 {
4622 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4623 "expected=\"%s\", got=\"%s\"\n"),
4624 file, line,
4625 (match_type == symbol_name_match_type::FULL
4626 ? "FULL" : "WILD"),
4627 name, string_or_null (expected_str), string_or_null (got));
4628 matched = false;
4629 };
4630
4631 auto expected_it = expected_list.begin ();
4632 auto expected_end = expected_list.end ();
4633
4634 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4635 NULL, ALL_DOMAIN,
4636 [&] (offset_type idx)
4637 {
4638 const char *matched_name = mock_index.symbol_name_at (idx);
4639 const char *expected_str
4640 = expected_it == expected_end ? NULL : *expected_it++;
4641
4642 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4643 mismatch (expected_str, matched_name);
4644 return true;
4645 });
4646
4647 const char *expected_str
4648 = expected_it == expected_end ? NULL : *expected_it++;
4649 if (expected_str != NULL)
4650 mismatch (expected_str, NULL);
4651
4652 return matched;
4653}
4654
4655/* The symbols added to the mock mapped_index for testing (in
4656 canonical form). */
4657static const char *test_symbols[] = {
4658 "function",
4659 "std::bar",
4660 "std::zfunction",
4661 "std::zfunction2",
4662 "w1::w2",
4663 "ns::foo<char*>",
4664 "ns::foo<int>",
4665 "ns::foo<long>",
4666 "ns2::tmpl<int>::foo2",
4667 "(anonymous namespace)::A::B::C",
4668
4669 /* These are used to check that the increment-last-char in the
4670 matching algorithm for completion doesn't match "t1_fund" when
4671 completing "t1_func". */
4672 "t1_func",
4673 "t1_func1",
4674 "t1_fund",
4675 "t1_fund1",
4676
4677 /* A UTF-8 name with multi-byte sequences to make sure that
4678 cp-name-parser understands this as a single identifier ("função"
4679 is "function" in PT). */
4680 u8"u8função",
4681
4682 /* \377 (0xff) is Latin1 'ÿ'. */
4683 "yfunc\377",
4684
4685 /* \377 (0xff) is Latin1 'ÿ'. */
4686 "\377",
4687 "\377\377123",
4688
4689 /* A name with all sorts of complications. Starts with "z" to make
4690 it easier for the completion tests below. */
4691#define Z_SYM_NAME \
4692 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4693 "::tuple<(anonymous namespace)::ui*, " \
4694 "std::default_delete<(anonymous namespace)::ui>, void>"
4695
4696 Z_SYM_NAME
4697};
4698
4699/* Returns true if the mapped_index_base::find_name_component_bounds
4700 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4701 in completion mode. */
4702
4703static bool
4704check_find_bounds_finds (mapped_index_base &index,
4705 const char *search_name,
4706 gdb::array_view<const char *> expected_syms)
4707{
4708 lookup_name_info lookup_name (search_name,
4709 symbol_name_match_type::FULL, true);
4710
4711 auto bounds = index.find_name_components_bounds (lookup_name,
4712 language_cplus);
4713
4714 size_t distance = std::distance (bounds.first, bounds.second);
4715 if (distance != expected_syms.size ())
4716 return false;
4717
4718 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4719 {
4720 auto nc_elem = bounds.first + exp_elem;
4721 const char *qualified = index.symbol_name_at (nc_elem->idx);
4722 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4723 return false;
4724 }
4725
4726 return true;
4727}
4728
4729/* Test the lower-level mapped_index::find_name_component_bounds
4730 method. */
4731
4732static void
4733test_mapped_index_find_name_component_bounds ()
4734{
4735 mock_mapped_index mock_index (test_symbols);
4736
4737 mock_index.build_name_components ();
4738
4739 /* Test the lower-level mapped_index::find_name_component_bounds
4740 method in completion mode. */
4741 {
4742 static const char *expected_syms[] = {
4743 "t1_func",
4744 "t1_func1",
4745 };
4746
4747 SELF_CHECK (check_find_bounds_finds (mock_index,
4748 "t1_func", expected_syms));
4749 }
4750
4751 /* Check that the increment-last-char in the name matching algorithm
4752 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4753 {
4754 static const char *expected_syms1[] = {
4755 "\377",
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377", expected_syms1));
4760
4761 static const char *expected_syms2[] = {
4762 "\377\377123",
4763 };
4764 SELF_CHECK (check_find_bounds_finds (mock_index,
4765 "\377\377", expected_syms2));
4766 }
4767}
4768
4769/* Test dw2_expand_symtabs_matching_symbol. */
4770
4771static void
4772test_dw2_expand_symtabs_matching_symbol ()
4773{
4774 mock_mapped_index mock_index (test_symbols);
4775
4776 /* We let all tests run until the end even if some fails, for debug
4777 convenience. */
4778 bool any_mismatch = false;
4779
4780 /* Create the expected symbols list (an initializer_list). Needed
4781 because lists have commas, and we need to pass them to CHECK,
4782 which is a macro. */
4783#define EXPECT(...) { __VA_ARGS__ }
4784
4785 /* Wrapper for check_match that passes down the current
4786 __FILE__/__LINE__. */
4787#define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4788 any_mismatch |= !check_match (__FILE__, __LINE__, \
4789 mock_index, \
4790 NAME, MATCH_TYPE, COMPLETION_MODE, \
4791 EXPECTED_LIST)
4792
4793 /* Identity checks. */
4794 for (const char *sym : test_symbols)
4795 {
4796 /* Should be able to match all existing symbols. */
4797 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters. */
4802 std::string with_params = std::string (sym) + "(int)";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* Should be able to match all existing symbols with
4807 parameters and qualifiers. */
4808 with_params = std::string (sym) + " ( int ) const";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 EXPECT (sym));
4811
4812 /* This should really find sym, but cp-name-parser.y doesn't
4813 know about lvalue/rvalue qualifiers yet. */
4814 with_params = std::string (sym) + " ( int ) &&";
4815 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4816 {});
4817 }
4818
4819 /* Check that the name matching algorithm for completion doesn't get
4820 confused with Latin1 'ÿ' / 0xff. */
4821 {
4822 static const char str[] = "\377";
4823 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4824 EXPECT ("\377", "\377\377123"));
4825 }
4826
4827 /* Check that the increment-last-char in the matching algorithm for
4828 completion doesn't match "t1_fund" when completing "t1_func". */
4829 {
4830 static const char str[] = "t1_func";
4831 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4832 EXPECT ("t1_func", "t1_func1"));
4833 }
4834
4835 /* Check that completion mode works at each prefix of the expected
4836 symbol name. */
4837 {
4838 static const char str[] = "function(int)";
4839 size_t len = strlen (str);
4840 std::string lookup;
4841
4842 for (size_t i = 1; i < len; i++)
4843 {
4844 lookup.assign (str, i);
4845 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4846 EXPECT ("function"));
4847 }
4848 }
4849
4850 /* While "w" is a prefix of both components, the match function
4851 should still only be called once. */
4852 {
4853 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4854 EXPECT ("w1::w2"));
4855 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4856 EXPECT ("w1::w2"));
4857 }
4858
4859 /* Same, with a "complicated" symbol. */
4860 {
4861 static const char str[] = Z_SYM_NAME;
4862 size_t len = strlen (str);
4863 std::string lookup;
4864
4865 for (size_t i = 1; i < len; i++)
4866 {
4867 lookup.assign (str, i);
4868 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4869 EXPECT (Z_SYM_NAME));
4870 }
4871 }
4872
4873 /* In FULL mode, an incomplete symbol doesn't match. */
4874 {
4875 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4876 {});
4877 }
4878
4879 /* A complete symbol with parameters matches any overload, since the
4880 index has no overload info. */
4881 {
4882 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4883 EXPECT ("std::zfunction", "std::zfunction2"));
4884 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4885 EXPECT ("std::zfunction", "std::zfunction2"));
4886 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4887 EXPECT ("std::zfunction", "std::zfunction2"));
4888 }
4889
4890 /* Check that whitespace is ignored appropriately. A symbol with a
4891 template argument list. */
4892 {
4893 static const char expected[] = "ns::foo<int>";
4894 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4895 EXPECT (expected));
4896 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4897 EXPECT (expected));
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list that includes a pointer. */
4902 {
4903 static const char expected[] = "ns::foo<char*>";
4904 /* Try both completion and non-completion modes. */
4905 static const bool completion_mode[2] = {false, true};
4906 for (size_t i = 0; i < 2; i++)
4907 {
4908 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4909 completion_mode[i], EXPECT (expected));
4910 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4911 completion_mode[i], EXPECT (expected));
4912
4913 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4914 completion_mode[i], EXPECT (expected));
4915 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4916 completion_mode[i], EXPECT (expected));
4917 }
4918 }
4919
4920 {
4921 /* Check method qualifiers are ignored. */
4922 static const char expected[] = "ns::foo<char*>";
4923 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4924 symbol_name_match_type::FULL, true, EXPECT (expected));
4925 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4926 symbol_name_match_type::FULL, true, EXPECT (expected));
4927 CHECK_MATCH ("foo < char * > ( int ) const",
4928 symbol_name_match_type::WILD, true, EXPECT (expected));
4929 CHECK_MATCH ("foo < char * > ( int ) &&",
4930 symbol_name_match_type::WILD, true, EXPECT (expected));
4931 }
4932
4933 /* Test lookup names that don't match anything. */
4934 {
4935 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4936 {});
4937
4938 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4939 {});
4940 }
4941
4942 /* Some wild matching tests, exercising "(anonymous namespace)",
4943 which should not be confused with a parameter list. */
4944 {
4945 static const char *syms[] = {
4946 "A::B::C",
4947 "B::C",
4948 "C",
4949 "A :: B :: C ( int )",
4950 "B :: C ( int )",
4951 "C ( int )",
4952 };
4953
4954 for (const char *s : syms)
4955 {
4956 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4957 EXPECT ("(anonymous namespace)::A::B::C"));
4958 }
4959 }
4960
4961 {
4962 static const char expected[] = "ns2::tmpl<int>::foo2";
4963 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4964 EXPECT (expected));
4965 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4966 EXPECT (expected));
4967 }
4968
4969 SELF_CHECK (!any_mismatch);
4970
4971#undef EXPECT
4972#undef CHECK_MATCH
4973}
4974
4975static void
4976run_test ()
4977{
4978 test_mapped_index_find_name_component_bounds ();
4979 test_dw2_expand_symtabs_matching_symbol ();
4980}
4981
4982}} // namespace selftests::dw2_expand_symtabs_matching
4983
4984#endif /* GDB_SELF_TEST */
4985
4986/* If FILE_MATCHER is NULL or if PER_CU has
4987 dwarf2_per_cu_quick_data::MARK set (see
4988 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4989 EXPANSION_NOTIFY on it. */
4990
4991static void
4992dw2_expand_symtabs_matching_one
4993 (struct dwarf2_per_cu_data *per_cu,
4994 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4995 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4996{
4997 if (file_matcher == NULL || per_cu->v.quick->mark)
4998 {
4999 bool symtab_was_null
5000 = (per_cu->v.quick->compunit_symtab == NULL);
5001
5002 dw2_instantiate_symtab (per_cu, false);
5003
5004 if (expansion_notify != NULL
5005 && symtab_was_null
5006 && per_cu->v.quick->compunit_symtab != NULL)
5007 expansion_notify (per_cu->v.quick->compunit_symtab);
5008 }
5009}
5010
5011/* Helper for dw2_expand_matching symtabs. Called on each symbol
5012 matched, to expand corresponding CUs that were marked. IDX is the
5013 index of the symbol name that matched. */
5014
5015static void
5016dw2_expand_marked_cus
5017 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5018 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5019 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5020 search_domain kind)
5021{
5022 offset_type *vec, vec_len, vec_idx;
5023 bool global_seen = false;
5024 mapped_index &index = *dwarf2_per_objfile->index_table;
5025
5026 vec = (offset_type *) (index.constant_pool
5027 + MAYBE_SWAP (index.symbol_table[idx].vec));
5028 vec_len = MAYBE_SWAP (vec[0]);
5029 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5030 {
5031 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5032 /* This value is only valid for index versions >= 7. */
5033 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5034 gdb_index_symbol_kind symbol_kind =
5035 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5036 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5037 /* Only check the symbol attributes if they're present.
5038 Indices prior to version 7 don't record them,
5039 and indices >= 7 may elide them for certain symbols
5040 (gold does this). */
5041 int attrs_valid =
5042 (index.version >= 7
5043 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5044
5045 /* Work around gold/15646. */
5046 if (attrs_valid)
5047 {
5048 if (!is_static && global_seen)
5049 continue;
5050 if (!is_static)
5051 global_seen = true;
5052 }
5053
5054 /* Only check the symbol's kind if it has one. */
5055 if (attrs_valid)
5056 {
5057 switch (kind)
5058 {
5059 case VARIABLES_DOMAIN:
5060 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5061 continue;
5062 break;
5063 case FUNCTIONS_DOMAIN:
5064 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5065 continue;
5066 break;
5067 case TYPES_DOMAIN:
5068 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5069 continue;
5070 break;
5071 case MODULES_DOMAIN:
5072 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
5073 continue;
5074 break;
5075 default:
5076 break;
5077 }
5078 }
5079
5080 /* Don't crash on bad data. */
5081 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5082 + dwarf2_per_objfile->all_type_units.size ()))
5083 {
5084 complaint (_(".gdb_index entry has bad CU index"
5085 " [in module %s]"),
5086 objfile_name (dwarf2_per_objfile->objfile));
5087 continue;
5088 }
5089
5090 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5091 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5092 expansion_notify);
5093 }
5094}
5095
5096/* If FILE_MATCHER is non-NULL, set all the
5097 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5098 that match FILE_MATCHER. */
5099
5100static void
5101dw_expand_symtabs_matching_file_matcher
5102 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5103 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5104{
5105 if (file_matcher == NULL)
5106 return;
5107
5108 objfile *const objfile = dwarf2_per_objfile->objfile;
5109
5110 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5111 htab_eq_pointer,
5112 NULL, xcalloc, xfree));
5113 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5114 htab_eq_pointer,
5115 NULL, xcalloc, xfree));
5116
5117 /* The rule is CUs specify all the files, including those used by
5118 any TU, so there's no need to scan TUs here. */
5119
5120 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5121 {
5122 QUIT;
5123
5124 per_cu->v.quick->mark = 0;
5125
5126 /* We only need to look at symtabs not already expanded. */
5127 if (per_cu->v.quick->compunit_symtab)
5128 continue;
5129
5130 quick_file_names *file_data = dw2_get_file_names (per_cu);
5131 if (file_data == NULL)
5132 continue;
5133
5134 if (htab_find (visited_not_found.get (), file_data) != NULL)
5135 continue;
5136 else if (htab_find (visited_found.get (), file_data) != NULL)
5137 {
5138 per_cu->v.quick->mark = 1;
5139 continue;
5140 }
5141
5142 for (int j = 0; j < file_data->num_file_names; ++j)
5143 {
5144 const char *this_real_name;
5145
5146 if (file_matcher (file_data->file_names[j], false))
5147 {
5148 per_cu->v.quick->mark = 1;
5149 break;
5150 }
5151
5152 /* Before we invoke realpath, which can get expensive when many
5153 files are involved, do a quick comparison of the basenames. */
5154 if (!basenames_may_differ
5155 && !file_matcher (lbasename (file_data->file_names[j]),
5156 true))
5157 continue;
5158
5159 this_real_name = dw2_get_real_path (objfile, file_data, j);
5160 if (file_matcher (this_real_name, false))
5161 {
5162 per_cu->v.quick->mark = 1;
5163 break;
5164 }
5165 }
5166
5167 void **slot = htab_find_slot (per_cu->v.quick->mark
5168 ? visited_found.get ()
5169 : visited_not_found.get (),
5170 file_data, INSERT);
5171 *slot = file_data;
5172 }
5173}
5174
5175static void
5176dw2_expand_symtabs_matching
5177 (struct objfile *objfile,
5178 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5179 const lookup_name_info &lookup_name,
5180 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5181 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5182 enum search_domain kind)
5183{
5184 struct dwarf2_per_objfile *dwarf2_per_objfile
5185 = get_dwarf2_per_objfile (objfile);
5186
5187 /* index_table is NULL if OBJF_READNOW. */
5188 if (!dwarf2_per_objfile->index_table)
5189 return;
5190
5191 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5192
5193 mapped_index &index = *dwarf2_per_objfile->index_table;
5194
5195 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5196 symbol_matcher,
5197 kind, [&] (offset_type idx)
5198 {
5199 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5200 expansion_notify, kind);
5201 return true;
5202 });
5203}
5204
5205/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5206 symtab. */
5207
5208static struct compunit_symtab *
5209recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5210 CORE_ADDR pc)
5211{
5212 int i;
5213
5214 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5215 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5216 return cust;
5217
5218 if (cust->includes == NULL)
5219 return NULL;
5220
5221 for (i = 0; cust->includes[i]; ++i)
5222 {
5223 struct compunit_symtab *s = cust->includes[i];
5224
5225 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5226 if (s != NULL)
5227 return s;
5228 }
5229
5230 return NULL;
5231}
5232
5233static struct compunit_symtab *
5234dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5235 struct bound_minimal_symbol msymbol,
5236 CORE_ADDR pc,
5237 struct obj_section *section,
5238 int warn_if_readin)
5239{
5240 struct dwarf2_per_cu_data *data;
5241 struct compunit_symtab *result;
5242
5243 if (!objfile->partial_symtabs->psymtabs_addrmap)
5244 return NULL;
5245
5246 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5247 SECT_OFF_TEXT (objfile));
5248 data = (struct dwarf2_per_cu_data *) addrmap_find
5249 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5250 if (!data)
5251 return NULL;
5252
5253 if (warn_if_readin && data->v.quick->compunit_symtab)
5254 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5255 paddress (get_objfile_arch (objfile), pc));
5256
5257 result
5258 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5259 false),
5260 pc);
5261 gdb_assert (result != NULL);
5262 return result;
5263}
5264
5265static void
5266dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5267 void *data, int need_fullname)
5268{
5269 struct dwarf2_per_objfile *dwarf2_per_objfile
5270 = get_dwarf2_per_objfile (objfile);
5271
5272 if (!dwarf2_per_objfile->filenames_cache)
5273 {
5274 dwarf2_per_objfile->filenames_cache.emplace ();
5275
5276 htab_up visited (htab_create_alloc (10,
5277 htab_hash_pointer, htab_eq_pointer,
5278 NULL, xcalloc, xfree));
5279
5280 /* The rule is CUs specify all the files, including those used
5281 by any TU, so there's no need to scan TUs here. We can
5282 ignore file names coming from already-expanded CUs. */
5283
5284 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5285 {
5286 if (per_cu->v.quick->compunit_symtab)
5287 {
5288 void **slot = htab_find_slot (visited.get (),
5289 per_cu->v.quick->file_names,
5290 INSERT);
5291
5292 *slot = per_cu->v.quick->file_names;
5293 }
5294 }
5295
5296 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5297 {
5298 /* We only need to look at symtabs not already expanded. */
5299 if (per_cu->v.quick->compunit_symtab)
5300 continue;
5301
5302 quick_file_names *file_data = dw2_get_file_names (per_cu);
5303 if (file_data == NULL)
5304 continue;
5305
5306 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5307 if (*slot)
5308 {
5309 /* Already visited. */
5310 continue;
5311 }
5312 *slot = file_data;
5313
5314 for (int j = 0; j < file_data->num_file_names; ++j)
5315 {
5316 const char *filename = file_data->file_names[j];
5317 dwarf2_per_objfile->filenames_cache->seen (filename);
5318 }
5319 }
5320 }
5321
5322 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5323 {
5324 gdb::unique_xmalloc_ptr<char> this_real_name;
5325
5326 if (need_fullname)
5327 this_real_name = gdb_realpath (filename);
5328 (*fun) (filename, this_real_name.get (), data);
5329 });
5330}
5331
5332static int
5333dw2_has_symbols (struct objfile *objfile)
5334{
5335 return 1;
5336}
5337
5338const struct quick_symbol_functions dwarf2_gdb_index_functions =
5339{
5340 dw2_has_symbols,
5341 dw2_find_last_source_symtab,
5342 dw2_forget_cached_source_info,
5343 dw2_map_symtabs_matching_filename,
5344 dw2_lookup_symbol,
5345 dw2_print_stats,
5346 dw2_dump,
5347 dw2_expand_symtabs_for_function,
5348 dw2_expand_all_symtabs,
5349 dw2_expand_symtabs_with_fullname,
5350 dw2_map_matching_symbols,
5351 dw2_expand_symtabs_matching,
5352 dw2_find_pc_sect_compunit_symtab,
5353 NULL,
5354 dw2_map_symbol_filenames
5355};
5356
5357/* DWARF-5 debug_names reader. */
5358
5359/* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5360static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5361
5362/* A helper function that reads the .debug_names section in SECTION
5363 and fills in MAP. FILENAME is the name of the file containing the
5364 section; it is used for error reporting.
5365
5366 Returns true if all went well, false otherwise. */
5367
5368static bool
5369read_debug_names_from_section (struct objfile *objfile,
5370 const char *filename,
5371 struct dwarf2_section_info *section,
5372 mapped_debug_names &map)
5373{
5374 if (dwarf2_section_empty_p (section))
5375 return false;
5376
5377 /* Older elfutils strip versions could keep the section in the main
5378 executable while splitting it for the separate debug info file. */
5379 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5380 return false;
5381
5382 dwarf2_read_section (objfile, section);
5383
5384 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5385
5386 const gdb_byte *addr = section->buffer;
5387
5388 bfd *const abfd = get_section_bfd_owner (section);
5389
5390 unsigned int bytes_read;
5391 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5392 addr += bytes_read;
5393
5394 map.dwarf5_is_dwarf64 = bytes_read != 4;
5395 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5396 if (bytes_read + length != section->size)
5397 {
5398 /* There may be multiple per-CU indices. */
5399 warning (_("Section .debug_names in %s length %s does not match "
5400 "section length %s, ignoring .debug_names."),
5401 filename, plongest (bytes_read + length),
5402 pulongest (section->size));
5403 return false;
5404 }
5405
5406 /* The version number. */
5407 uint16_t version = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (version != 5)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported version %d, "
5412 "ignoring .debug_names."),
5413 filename, version);
5414 return false;
5415 }
5416
5417 /* Padding. */
5418 uint16_t padding = read_2_bytes (abfd, addr);
5419 addr += 2;
5420 if (padding != 0)
5421 {
5422 warning (_("Section .debug_names in %s has unsupported padding %d, "
5423 "ignoring .debug_names."),
5424 filename, padding);
5425 return false;
5426 }
5427
5428 /* comp_unit_count - The number of CUs in the CU list. */
5429 map.cu_count = read_4_bytes (abfd, addr);
5430 addr += 4;
5431
5432 /* local_type_unit_count - The number of TUs in the local TU
5433 list. */
5434 map.tu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* foreign_type_unit_count - The number of TUs in the foreign TU
5438 list. */
5439 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441 if (foreign_tu_count != 0)
5442 {
5443 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5444 "ignoring .debug_names."),
5445 filename, static_cast<unsigned long> (foreign_tu_count));
5446 return false;
5447 }
5448
5449 /* bucket_count - The number of hash buckets in the hash lookup
5450 table. */
5451 map.bucket_count = read_4_bytes (abfd, addr);
5452 addr += 4;
5453
5454 /* name_count - The number of unique names in the index. */
5455 map.name_count = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* abbrev_table_size - The size in bytes of the abbreviations
5459 table. */
5460 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* augmentation_string_size - The size in bytes of the augmentation
5464 string. This value is rounded up to a multiple of 4. */
5465 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467 map.augmentation_is_gdb = ((augmentation_string_size
5468 == sizeof (dwarf5_augmentation))
5469 && memcmp (addr, dwarf5_augmentation,
5470 sizeof (dwarf5_augmentation)) == 0);
5471 augmentation_string_size += (-augmentation_string_size) & 3;
5472 addr += augmentation_string_size;
5473
5474 /* List of CUs */
5475 map.cu_table_reordered = addr;
5476 addr += map.cu_count * map.offset_size;
5477
5478 /* List of Local TUs */
5479 map.tu_table_reordered = addr;
5480 addr += map.tu_count * map.offset_size;
5481
5482 /* Hash Lookup Table */
5483 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5484 addr += map.bucket_count * 4;
5485 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5486 addr += map.name_count * 4;
5487
5488 /* Name Table */
5489 map.name_table_string_offs_reordered = addr;
5490 addr += map.name_count * map.offset_size;
5491 map.name_table_entry_offs_reordered = addr;
5492 addr += map.name_count * map.offset_size;
5493
5494 const gdb_byte *abbrev_table_start = addr;
5495 for (;;)
5496 {
5497 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5498 addr += bytes_read;
5499 if (index_num == 0)
5500 break;
5501
5502 const auto insertpair
5503 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5504 if (!insertpair.second)
5505 {
5506 warning (_("Section .debug_names in %s has duplicate index %s, "
5507 "ignoring .debug_names."),
5508 filename, pulongest (index_num));
5509 return false;
5510 }
5511 mapped_debug_names::index_val &indexval = insertpair.first->second;
5512 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5513 addr += bytes_read;
5514
5515 for (;;)
5516 {
5517 mapped_debug_names::index_val::attr attr;
5518 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5519 addr += bytes_read;
5520 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5521 addr += bytes_read;
5522 if (attr.form == DW_FORM_implicit_const)
5523 {
5524 attr.implicit_const = read_signed_leb128 (abfd, addr,
5525 &bytes_read);
5526 addr += bytes_read;
5527 }
5528 if (attr.dw_idx == 0 && attr.form == 0)
5529 break;
5530 indexval.attr_vec.push_back (std::move (attr));
5531 }
5532 }
5533 if (addr != abbrev_table_start + abbrev_table_size)
5534 {
5535 warning (_("Section .debug_names in %s has abbreviation_table "
5536 "of size %s vs. written as %u, ignoring .debug_names."),
5537 filename, plongest (addr - abbrev_table_start),
5538 abbrev_table_size);
5539 return false;
5540 }
5541 map.entry_pool = addr;
5542
5543 return true;
5544}
5545
5546/* A helper for create_cus_from_debug_names that handles the MAP's CU
5547 list. */
5548
5549static void
5550create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5551 const mapped_debug_names &map,
5552 dwarf2_section_info &section,
5553 bool is_dwz)
5554{
5555 sect_offset sect_off_prev;
5556 for (uint32_t i = 0; i <= map.cu_count; ++i)
5557 {
5558 sect_offset sect_off_next;
5559 if (i < map.cu_count)
5560 {
5561 sect_off_next
5562 = (sect_offset) (extract_unsigned_integer
5563 (map.cu_table_reordered + i * map.offset_size,
5564 map.offset_size,
5565 map.dwarf5_byte_order));
5566 }
5567 else
5568 sect_off_next = (sect_offset) section.size;
5569 if (i >= 1)
5570 {
5571 const ULONGEST length = sect_off_next - sect_off_prev;
5572 dwarf2_per_cu_data *per_cu
5573 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5574 sect_off_prev, length);
5575 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5576 }
5577 sect_off_prev = sect_off_next;
5578 }
5579}
5580
5581/* Read the CU list from the mapped index, and use it to create all
5582 the CU objects for this dwarf2_per_objfile. */
5583
5584static void
5585create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5586 const mapped_debug_names &map,
5587 const mapped_debug_names &dwz_map)
5588{
5589 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5590 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5591
5592 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5593 dwarf2_per_objfile->info,
5594 false /* is_dwz */);
5595
5596 if (dwz_map.cu_count == 0)
5597 return;
5598
5599 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5600 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5601 true /* is_dwz */);
5602}
5603
5604/* Read .debug_names. If everything went ok, initialize the "quick"
5605 elements of all the CUs and return true. Otherwise, return false. */
5606
5607static bool
5608dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5609{
5610 std::unique_ptr<mapped_debug_names> map
5611 (new mapped_debug_names (dwarf2_per_objfile));
5612 mapped_debug_names dwz_map (dwarf2_per_objfile);
5613 struct objfile *objfile = dwarf2_per_objfile->objfile;
5614
5615 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5616 &dwarf2_per_objfile->debug_names,
5617 *map))
5618 return false;
5619
5620 /* Don't use the index if it's empty. */
5621 if (map->name_count == 0)
5622 return false;
5623
5624 /* If there is a .dwz file, read it so we can get its CU list as
5625 well. */
5626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5627 if (dwz != NULL)
5628 {
5629 if (!read_debug_names_from_section (objfile,
5630 bfd_get_filename (dwz->dwz_bfd.get ()),
5631 &dwz->debug_names, dwz_map))
5632 {
5633 warning (_("could not read '.debug_names' section from %s; skipping"),
5634 bfd_get_filename (dwz->dwz_bfd.get ()));
5635 return false;
5636 }
5637 }
5638
5639 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5640
5641 if (map->tu_count != 0)
5642 {
5643 /* We can only handle a single .debug_types when we have an
5644 index. */
5645 if (dwarf2_per_objfile->types.size () != 1)
5646 return false;
5647
5648 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5649
5650 create_signatured_type_table_from_debug_names
5651 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5652 }
5653
5654 create_addrmap_from_aranges (dwarf2_per_objfile,
5655 &dwarf2_per_objfile->debug_aranges);
5656
5657 dwarf2_per_objfile->debug_names_table = std::move (map);
5658 dwarf2_per_objfile->using_index = 1;
5659 dwarf2_per_objfile->quick_file_names_table =
5660 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5661
5662 return true;
5663}
5664
5665/* Type used to manage iterating over all CUs looking for a symbol for
5666 .debug_names. */
5667
5668class dw2_debug_names_iterator
5669{
5670public:
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 gdb::optional<block_enum> block_index,
5673 domain_enum domain,
5674 const char *name)
5675 : m_map (map), m_block_index (block_index), m_domain (domain),
5676 m_addr (find_vec_in_debug_names (map, name))
5677 {}
5678
5679 dw2_debug_names_iterator (const mapped_debug_names &map,
5680 search_domain search, uint32_t namei)
5681 : m_map (map),
5682 m_search (search),
5683 m_addr (find_vec_in_debug_names (map, namei))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 block_enum block_index, domain_enum domain,
5688 uint32_t namei)
5689 : m_map (map), m_block_index (block_index), m_domain (domain),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If set, only look for symbols that match that block. Valid values are
5706 GLOBAL_BLOCK and STATIC_BLOCK. */
5707 const gdb::optional<block_enum> m_block_index;
5708
5709 /* The kind of symbol we're looking for. */
5710 const domain_enum m_domain = UNDEF_DOMAIN;
5711 const search_domain m_search = ALL_DOMAIN;
5712
5713 /* The list of CUs from the index entry of the symbol, or NULL if
5714 not found. */
5715 const gdb_byte *m_addr;
5716};
5717
5718const char *
5719mapped_debug_names::namei_to_name (uint32_t namei) const
5720{
5721 const ULONGEST namei_string_offs
5722 = extract_unsigned_integer ((name_table_string_offs_reordered
5723 + namei * offset_size),
5724 offset_size,
5725 dwarf5_byte_order);
5726 return read_indirect_string_at_offset
5727 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5728}
5729
5730/* Find a slot in .debug_names for the object named NAME. If NAME is
5731 found, return pointer to its pool data. If NAME cannot be found,
5732 return NULL. */
5733
5734const gdb_byte *
5735dw2_debug_names_iterator::find_vec_in_debug_names
5736 (const mapped_debug_names &map, const char *name)
5737{
5738 int (*cmp) (const char *, const char *);
5739
5740 gdb::unique_xmalloc_ptr<char> without_params;
5741 if (current_language->la_language == language_cplus
5742 || current_language->la_language == language_fortran
5743 || current_language->la_language == language_d)
5744 {
5745 /* NAME is already canonical. Drop any qualifiers as
5746 .debug_names does not contain any. */
5747
5748 if (strchr (name, '(') != NULL)
5749 {
5750 without_params = cp_remove_params (name);
5751 if (without_params != NULL)
5752 name = without_params.get ();
5753 }
5754 }
5755
5756 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5757
5758 const uint32_t full_hash = dwarf5_djb_hash (name);
5759 uint32_t namei
5760 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5761 (map.bucket_table_reordered
5762 + (full_hash % map.bucket_count)), 4,
5763 map.dwarf5_byte_order);
5764 if (namei == 0)
5765 return NULL;
5766 --namei;
5767 if (namei >= map.name_count)
5768 {
5769 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5770 "[in module %s]"),
5771 namei, map.name_count,
5772 objfile_name (map.dwarf2_per_objfile->objfile));
5773 return NULL;
5774 }
5775
5776 for (;;)
5777 {
5778 const uint32_t namei_full_hash
5779 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5780 (map.hash_table_reordered + namei), 4,
5781 map.dwarf5_byte_order);
5782 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5783 return NULL;
5784
5785 if (full_hash == namei_full_hash)
5786 {
5787 const char *const namei_string = map.namei_to_name (namei);
5788
5789#if 0 /* An expensive sanity check. */
5790 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5791 {
5792 complaint (_("Wrong .debug_names hash for string at index %u "
5793 "[in module %s]"),
5794 namei, objfile_name (dwarf2_per_objfile->objfile));
5795 return NULL;
5796 }
5797#endif
5798
5799 if (cmp (namei_string, name) == 0)
5800 {
5801 const ULONGEST namei_entry_offs
5802 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5803 + namei * map.offset_size),
5804 map.offset_size, map.dwarf5_byte_order);
5805 return map.entry_pool + namei_entry_offs;
5806 }
5807 }
5808
5809 ++namei;
5810 if (namei >= map.name_count)
5811 return NULL;
5812 }
5813}
5814
5815const gdb_byte *
5816dw2_debug_names_iterator::find_vec_in_debug_names
5817 (const mapped_debug_names &map, uint32_t namei)
5818{
5819 if (namei >= map.name_count)
5820 {
5821 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5822 "[in module %s]"),
5823 namei, map.name_count,
5824 objfile_name (map.dwarf2_per_objfile->objfile));
5825 return NULL;
5826 }
5827
5828 const ULONGEST namei_entry_offs
5829 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5830 + namei * map.offset_size),
5831 map.offset_size, map.dwarf5_byte_order);
5832 return map.entry_pool + namei_entry_offs;
5833}
5834
5835/* See dw2_debug_names_iterator. */
5836
5837dwarf2_per_cu_data *
5838dw2_debug_names_iterator::next ()
5839{
5840 if (m_addr == NULL)
5841 return NULL;
5842
5843 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5844 struct objfile *objfile = dwarf2_per_objfile->objfile;
5845 bfd *const abfd = objfile->obfd;
5846
5847 again:
5848
5849 unsigned int bytes_read;
5850 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5851 m_addr += bytes_read;
5852 if (abbrev == 0)
5853 return NULL;
5854
5855 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5856 if (indexval_it == m_map.abbrev_map.cend ())
5857 {
5858 complaint (_("Wrong .debug_names undefined abbrev code %s "
5859 "[in module %s]"),
5860 pulongest (abbrev), objfile_name (objfile));
5861 return NULL;
5862 }
5863 const mapped_debug_names::index_val &indexval = indexval_it->second;
5864 enum class symbol_linkage {
5865 unknown,
5866 static_,
5867 extern_,
5868 } symbol_linkage_ = symbol_linkage::unknown;
5869 dwarf2_per_cu_data *per_cu = NULL;
5870 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5871 {
5872 ULONGEST ull;
5873 switch (attr.form)
5874 {
5875 case DW_FORM_implicit_const:
5876 ull = attr.implicit_const;
5877 break;
5878 case DW_FORM_flag_present:
5879 ull = 1;
5880 break;
5881 case DW_FORM_udata:
5882 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5883 m_addr += bytes_read;
5884 break;
5885 default:
5886 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5887 dwarf_form_name (attr.form),
5888 objfile_name (objfile));
5889 return NULL;
5890 }
5891 switch (attr.dw_idx)
5892 {
5893 case DW_IDX_compile_unit:
5894 /* Don't crash on bad data. */
5895 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5896 {
5897 complaint (_(".debug_names entry has bad CU index %s"
5898 " [in module %s]"),
5899 pulongest (ull),
5900 objfile_name (dwarf2_per_objfile->objfile));
5901 continue;
5902 }
5903 per_cu = dwarf2_per_objfile->get_cutu (ull);
5904 break;
5905 case DW_IDX_type_unit:
5906 /* Don't crash on bad data. */
5907 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5908 {
5909 complaint (_(".debug_names entry has bad TU index %s"
5910 " [in module %s]"),
5911 pulongest (ull),
5912 objfile_name (dwarf2_per_objfile->objfile));
5913 continue;
5914 }
5915 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5916 break;
5917 case DW_IDX_GNU_internal:
5918 if (!m_map.augmentation_is_gdb)
5919 break;
5920 symbol_linkage_ = symbol_linkage::static_;
5921 break;
5922 case DW_IDX_GNU_external:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 symbol_linkage_ = symbol_linkage::extern_;
5926 break;
5927 }
5928 }
5929
5930 /* Skip if already read in. */
5931 if (per_cu->v.quick->compunit_symtab)
5932 goto again;
5933
5934 /* Check static vs global. */
5935 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5936 {
5937 const bool want_static = *m_block_index == STATIC_BLOCK;
5938 const bool symbol_is_static =
5939 symbol_linkage_ == symbol_linkage::static_;
5940 if (want_static != symbol_is_static)
5941 goto again;
5942 }
5943
5944 /* Match dw2_symtab_iter_next, symbol_kind
5945 and debug_names::psymbol_tag. */
5946 switch (m_domain)
5947 {
5948 case VAR_DOMAIN:
5949 switch (indexval.dwarf_tag)
5950 {
5951 case DW_TAG_variable:
5952 case DW_TAG_subprogram:
5953 /* Some types are also in VAR_DOMAIN. */
5954 case DW_TAG_typedef:
5955 case DW_TAG_structure_type:
5956 break;
5957 default:
5958 goto again;
5959 }
5960 break;
5961 case STRUCT_DOMAIN:
5962 switch (indexval.dwarf_tag)
5963 {
5964 case DW_TAG_typedef:
5965 case DW_TAG_structure_type:
5966 break;
5967 default:
5968 goto again;
5969 }
5970 break;
5971 case LABEL_DOMAIN:
5972 switch (indexval.dwarf_tag)
5973 {
5974 case 0:
5975 case DW_TAG_variable:
5976 break;
5977 default:
5978 goto again;
5979 }
5980 break;
5981 case MODULE_DOMAIN:
5982 switch (indexval.dwarf_tag)
5983 {
5984 case DW_TAG_module:
5985 break;
5986 default:
5987 goto again;
5988 }
5989 break;
5990 default:
5991 break;
5992 }
5993
5994 /* Match dw2_expand_symtabs_matching, symbol_kind and
5995 debug_names::psymbol_tag. */
5996 switch (m_search)
5997 {
5998 case VARIABLES_DOMAIN:
5999 switch (indexval.dwarf_tag)
6000 {
6001 case DW_TAG_variable:
6002 break;
6003 default:
6004 goto again;
6005 }
6006 break;
6007 case FUNCTIONS_DOMAIN:
6008 switch (indexval.dwarf_tag)
6009 {
6010 case DW_TAG_subprogram:
6011 break;
6012 default:
6013 goto again;
6014 }
6015 break;
6016 case TYPES_DOMAIN:
6017 switch (indexval.dwarf_tag)
6018 {
6019 case DW_TAG_typedef:
6020 case DW_TAG_structure_type:
6021 break;
6022 default:
6023 goto again;
6024 }
6025 break;
6026 case MODULES_DOMAIN:
6027 switch (indexval.dwarf_tag)
6028 {
6029 case DW_TAG_module:
6030 break;
6031 default:
6032 goto again;
6033 }
6034 default:
6035 break;
6036 }
6037
6038 return per_cu;
6039}
6040
6041static struct compunit_symtab *
6042dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
6043 const char *name, domain_enum domain)
6044{
6045 struct dwarf2_per_objfile *dwarf2_per_objfile
6046 = get_dwarf2_per_objfile (objfile);
6047
6048 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6049 if (!mapp)
6050 {
6051 /* index is NULL if OBJF_READNOW. */
6052 return NULL;
6053 }
6054 const auto &map = *mapp;
6055
6056 dw2_debug_names_iterator iter (map, block_index, domain, name);
6057
6058 struct compunit_symtab *stab_best = NULL;
6059 struct dwarf2_per_cu_data *per_cu;
6060 while ((per_cu = iter.next ()) != NULL)
6061 {
6062 struct symbol *sym, *with_opaque = NULL;
6063 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6064 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6065 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6066
6067 sym = block_find_symbol (block, name, domain,
6068 block_find_non_opaque_type_preferred,
6069 &with_opaque);
6070
6071 /* Some caution must be observed with overloaded functions and
6072 methods, since the index will not contain any overload
6073 information (but NAME might contain it). */
6074
6075 if (sym != NULL
6076 && strcmp_iw (sym->search_name (), name) == 0)
6077 return stab;
6078 if (with_opaque != NULL
6079 && strcmp_iw (with_opaque->search_name (), name) == 0)
6080 stab_best = stab;
6081
6082 /* Keep looking through other CUs. */
6083 }
6084
6085 return stab_best;
6086}
6087
6088/* This dumps minimal information about .debug_names. It is called
6089 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6090 uses this to verify that .debug_names has been loaded. */
6091
6092static void
6093dw2_debug_names_dump (struct objfile *objfile)
6094{
6095 struct dwarf2_per_objfile *dwarf2_per_objfile
6096 = get_dwarf2_per_objfile (objfile);
6097
6098 gdb_assert (dwarf2_per_objfile->using_index);
6099 printf_filtered (".debug_names:");
6100 if (dwarf2_per_objfile->debug_names_table)
6101 printf_filtered (" exists\n");
6102 else
6103 printf_filtered (" faked for \"readnow\"\n");
6104 printf_filtered ("\n");
6105}
6106
6107static void
6108dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6109 const char *func_name)
6110{
6111 struct dwarf2_per_objfile *dwarf2_per_objfile
6112 = get_dwarf2_per_objfile (objfile);
6113
6114 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6115 if (dwarf2_per_objfile->debug_names_table)
6116 {
6117 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6118
6119 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6120
6121 struct dwarf2_per_cu_data *per_cu;
6122 while ((per_cu = iter.next ()) != NULL)
6123 dw2_instantiate_symtab (per_cu, false);
6124 }
6125}
6126
6127static void
6128dw2_debug_names_map_matching_symbols
6129 (struct objfile *objfile,
6130 const lookup_name_info &name, domain_enum domain,
6131 int global,
6132 gdb::function_view<symbol_found_callback_ftype> callback,
6133 symbol_compare_ftype *ordered_compare)
6134{
6135 struct dwarf2_per_objfile *dwarf2_per_objfile
6136 = get_dwarf2_per_objfile (objfile);
6137
6138 /* debug_names_table is NULL if OBJF_READNOW. */
6139 if (!dwarf2_per_objfile->debug_names_table)
6140 return;
6141
6142 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6143 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6144
6145 const char *match_name = name.ada ().lookup_name ().c_str ();
6146 auto matcher = [&] (const char *symname)
6147 {
6148 if (ordered_compare == nullptr)
6149 return true;
6150 return ordered_compare (symname, match_name) == 0;
6151 };
6152
6153 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6154 [&] (offset_type namei)
6155 {
6156 /* The name was matched, now expand corresponding CUs that were
6157 marked. */
6158 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6159
6160 struct dwarf2_per_cu_data *per_cu;
6161 while ((per_cu = iter.next ()) != NULL)
6162 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6163 return true;
6164 });
6165
6166 /* It's a shame we couldn't do this inside the
6167 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6168 that have already been expanded. Instead, this loop matches what
6169 the psymtab code does. */
6170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6171 {
6172 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6173 if (cust != nullptr)
6174 {
6175 const struct block *block
6176 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6177 if (!iterate_over_symbols_terminated (block, name,
6178 domain, callback))
6179 break;
6180 }
6181 }
6182}
6183
6184static void
6185dw2_debug_names_expand_symtabs_matching
6186 (struct objfile *objfile,
6187 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6188 const lookup_name_info &lookup_name,
6189 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6190 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6191 enum search_domain kind)
6192{
6193 struct dwarf2_per_objfile *dwarf2_per_objfile
6194 = get_dwarf2_per_objfile (objfile);
6195
6196 /* debug_names_table is NULL if OBJF_READNOW. */
6197 if (!dwarf2_per_objfile->debug_names_table)
6198 return;
6199
6200 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6201
6202 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6203
6204 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6205 symbol_matcher,
6206 kind, [&] (offset_type namei)
6207 {
6208 /* The name was matched, now expand corresponding CUs that were
6209 marked. */
6210 dw2_debug_names_iterator iter (map, kind, namei);
6211
6212 struct dwarf2_per_cu_data *per_cu;
6213 while ((per_cu = iter.next ()) != NULL)
6214 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6215 expansion_notify);
6216 return true;
6217 });
6218}
6219
6220const struct quick_symbol_functions dwarf2_debug_names_functions =
6221{
6222 dw2_has_symbols,
6223 dw2_find_last_source_symtab,
6224 dw2_forget_cached_source_info,
6225 dw2_map_symtabs_matching_filename,
6226 dw2_debug_names_lookup_symbol,
6227 dw2_print_stats,
6228 dw2_debug_names_dump,
6229 dw2_debug_names_expand_symtabs_for_function,
6230 dw2_expand_all_symtabs,
6231 dw2_expand_symtabs_with_fullname,
6232 dw2_debug_names_map_matching_symbols,
6233 dw2_debug_names_expand_symtabs_matching,
6234 dw2_find_pc_sect_compunit_symtab,
6235 NULL,
6236 dw2_map_symbol_filenames
6237};
6238
6239/* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6240 to either a dwarf2_per_objfile or dwz_file object. */
6241
6242template <typename T>
6243static gdb::array_view<const gdb_byte>
6244get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6245{
6246 dwarf2_section_info *section = &section_owner->gdb_index;
6247
6248 if (dwarf2_section_empty_p (section))
6249 return {};
6250
6251 /* Older elfutils strip versions could keep the section in the main
6252 executable while splitting it for the separate debug info file. */
6253 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6254 return {};
6255
6256 dwarf2_read_section (obj, section);
6257
6258 /* dwarf2_section_info::size is a bfd_size_type, while
6259 gdb::array_view works with size_t. On 32-bit hosts, with
6260 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6261 is 32-bit. So we need an explicit narrowing conversion here.
6262 This is fine, because it's impossible to allocate or mmap an
6263 array/buffer larger than what size_t can represent. */
6264 return gdb::make_array_view (section->buffer, section->size);
6265}
6266
6267/* Lookup the index cache for the contents of the index associated to
6268 DWARF2_OBJ. */
6269
6270static gdb::array_view<const gdb_byte>
6271get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6272{
6273 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6274 if (build_id == nullptr)
6275 return {};
6276
6277 return global_index_cache.lookup_gdb_index (build_id,
6278 &dwarf2_obj->index_cache_res);
6279}
6280
6281/* Same as the above, but for DWZ. */
6282
6283static gdb::array_view<const gdb_byte>
6284get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6285{
6286 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6287 if (build_id == nullptr)
6288 return {};
6289
6290 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6291}
6292
6293/* See symfile.h. */
6294
6295bool
6296dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6297{
6298 struct dwarf2_per_objfile *dwarf2_per_objfile
6299 = get_dwarf2_per_objfile (objfile);
6300
6301 /* If we're about to read full symbols, don't bother with the
6302 indices. In this case we also don't care if some other debug
6303 format is making psymtabs, because they are all about to be
6304 expanded anyway. */
6305 if ((objfile->flags & OBJF_READNOW))
6306 {
6307 dwarf2_per_objfile->using_index = 1;
6308 create_all_comp_units (dwarf2_per_objfile);
6309 create_all_type_units (dwarf2_per_objfile);
6310 dwarf2_per_objfile->quick_file_names_table
6311 = create_quick_file_names_table
6312 (dwarf2_per_objfile->all_comp_units.size ());
6313
6314 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6315 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6316 {
6317 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6318
6319 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6320 struct dwarf2_per_cu_quick_data);
6321 }
6322
6323 /* Return 1 so that gdb sees the "quick" functions. However,
6324 these functions will be no-ops because we will have expanded
6325 all symtabs. */
6326 *index_kind = dw_index_kind::GDB_INDEX;
6327 return true;
6328 }
6329
6330 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6331 {
6332 *index_kind = dw_index_kind::DEBUG_NAMES;
6333 return true;
6334 }
6335
6336 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6337 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6338 get_gdb_index_contents_from_section<dwz_file>))
6339 {
6340 *index_kind = dw_index_kind::GDB_INDEX;
6341 return true;
6342 }
6343
6344 /* ... otherwise, try to find the index in the index cache. */
6345 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6346 get_gdb_index_contents_from_cache,
6347 get_gdb_index_contents_from_cache_dwz))
6348 {
6349 global_index_cache.hit ();
6350 *index_kind = dw_index_kind::GDB_INDEX;
6351 return true;
6352 }
6353
6354 global_index_cache.miss ();
6355 return false;
6356}
6357
6358\f
6359
6360/* Build a partial symbol table. */
6361
6362void
6363dwarf2_build_psymtabs (struct objfile *objfile)
6364{
6365 struct dwarf2_per_objfile *dwarf2_per_objfile
6366 = get_dwarf2_per_objfile (objfile);
6367
6368 init_psymbol_list (objfile, 1024);
6369
6370 try
6371 {
6372 /* This isn't really ideal: all the data we allocate on the
6373 objfile's obstack is still uselessly kept around. However,
6374 freeing it seems unsafe. */
6375 psymtab_discarder psymtabs (objfile);
6376 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6377 psymtabs.keep ();
6378
6379 /* (maybe) store an index in the cache. */
6380 global_index_cache.store (dwarf2_per_objfile);
6381 }
6382 catch (const gdb_exception_error &except)
6383 {
6384 exception_print (gdb_stderr, except);
6385 }
6386}
6387
6388/* Return the total length of the CU described by HEADER. */
6389
6390static unsigned int
6391get_cu_length (const struct comp_unit_head *header)
6392{
6393 return header->initial_length_size + header->length;
6394}
6395
6396/* Return TRUE if SECT_OFF is within CU_HEADER. */
6397
6398static inline bool
6399offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6400{
6401 sect_offset bottom = cu_header->sect_off;
6402 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6403
6404 return sect_off >= bottom && sect_off < top;
6405}
6406
6407/* Find the base address of the compilation unit for range lists and
6408 location lists. It will normally be specified by DW_AT_low_pc.
6409 In DWARF-3 draft 4, the base address could be overridden by
6410 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6411 compilation units with discontinuous ranges. */
6412
6413static void
6414dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6415{
6416 struct attribute *attr;
6417
6418 cu->base_known = 0;
6419 cu->base_address = 0;
6420
6421 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6422 if (attr != nullptr)
6423 {
6424 cu->base_address = attr_value_as_address (attr);
6425 cu->base_known = 1;
6426 }
6427 else
6428 {
6429 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6430 if (attr != nullptr)
6431 {
6432 cu->base_address = attr_value_as_address (attr);
6433 cu->base_known = 1;
6434 }
6435 }
6436}
6437
6438/* Read in the comp unit header information from the debug_info at info_ptr.
6439 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6440 NOTE: This leaves members offset, first_die_offset to be filled in
6441 by the caller. */
6442
6443static const gdb_byte *
6444read_comp_unit_head (struct comp_unit_head *cu_header,
6445 const gdb_byte *info_ptr,
6446 struct dwarf2_section_info *section,
6447 rcuh_kind section_kind)
6448{
6449 int signed_addr;
6450 unsigned int bytes_read;
6451 const char *filename = get_section_file_name (section);
6452 bfd *abfd = get_section_bfd_owner (section);
6453
6454 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6455 cu_header->initial_length_size = bytes_read;
6456 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6457 info_ptr += bytes_read;
6458 cu_header->version = read_2_bytes (abfd, info_ptr);
6459 if (cu_header->version < 2 || cu_header->version > 5)
6460 error (_("Dwarf Error: wrong version in compilation unit header "
6461 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6462 cu_header->version, filename);
6463 info_ptr += 2;
6464 if (cu_header->version < 5)
6465 switch (section_kind)
6466 {
6467 case rcuh_kind::COMPILE:
6468 cu_header->unit_type = DW_UT_compile;
6469 break;
6470 case rcuh_kind::TYPE:
6471 cu_header->unit_type = DW_UT_type;
6472 break;
6473 default:
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: invalid section_kind"));
6476 }
6477 else
6478 {
6479 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6480 (read_1_byte (abfd, info_ptr));
6481 info_ptr += 1;
6482 switch (cu_header->unit_type)
6483 {
6484 case DW_UT_compile:
6485 case DW_UT_partial:
6486 case DW_UT_skeleton:
6487 case DW_UT_split_compile:
6488 if (section_kind != rcuh_kind::COMPILE)
6489 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6490 "(is %s, should be %s) [in module %s]"),
6491 dwarf_unit_type_name (cu_header->unit_type),
6492 dwarf_unit_type_name (DW_UT_type), filename);
6493 break;
6494 case DW_UT_type:
6495 case DW_UT_split_type:
6496 section_kind = rcuh_kind::TYPE;
6497 break;
6498 default:
6499 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6500 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6501 "[in module %s]"), cu_header->unit_type,
6502 dwarf_unit_type_name (DW_UT_compile),
6503 dwarf_unit_type_name (DW_UT_skeleton),
6504 dwarf_unit_type_name (DW_UT_split_compile),
6505 dwarf_unit_type_name (DW_UT_type),
6506 dwarf_unit_type_name (DW_UT_split_type), filename);
6507 }
6508
6509 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6510 info_ptr += 1;
6511 }
6512 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6513 cu_header,
6514 &bytes_read);
6515 info_ptr += bytes_read;
6516 if (cu_header->version < 5)
6517 {
6518 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6519 info_ptr += 1;
6520 }
6521 signed_addr = bfd_get_sign_extend_vma (abfd);
6522 if (signed_addr < 0)
6523 internal_error (__FILE__, __LINE__,
6524 _("read_comp_unit_head: dwarf from non elf file"));
6525 cu_header->signed_addr_p = signed_addr;
6526
6527 bool header_has_signature = section_kind == rcuh_kind::TYPE
6528 || cu_header->unit_type == DW_UT_skeleton
6529 || cu_header->unit_type == DW_UT_split_compile;
6530
6531 if (header_has_signature)
6532 {
6533 cu_header->signature = read_8_bytes (abfd, info_ptr);
6534 info_ptr += 8;
6535 }
6536
6537 if (section_kind == rcuh_kind::TYPE)
6538 {
6539 LONGEST type_offset;
6540 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6541 info_ptr += bytes_read;
6542 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6543 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6544 error (_("Dwarf Error: Too big type_offset in compilation unit "
6545 "header (is %s) [in module %s]"), plongest (type_offset),
6546 filename);
6547 }
6548
6549 return info_ptr;
6550}
6551
6552/* Helper function that returns the proper abbrev section for
6553 THIS_CU. */
6554
6555static struct dwarf2_section_info *
6556get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6557{
6558 struct dwarf2_section_info *abbrev;
6559 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6560
6561 if (this_cu->is_dwz)
6562 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6563 else
6564 abbrev = &dwarf2_per_objfile->abbrev;
6565
6566 return abbrev;
6567}
6568
6569/* Subroutine of read_and_check_comp_unit_head and
6570 read_and_check_type_unit_head to simplify them.
6571 Perform various error checking on the header. */
6572
6573static void
6574error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6575 struct comp_unit_head *header,
6576 struct dwarf2_section_info *section,
6577 struct dwarf2_section_info *abbrev_section)
6578{
6579 const char *filename = get_section_file_name (section);
6580
6581 if (to_underlying (header->abbrev_sect_off)
6582 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6583 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6584 "(offset %s + 6) [in module %s]"),
6585 sect_offset_str (header->abbrev_sect_off),
6586 sect_offset_str (header->sect_off),
6587 filename);
6588
6589 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6590 avoid potential 32-bit overflow. */
6591 if (((ULONGEST) header->sect_off + get_cu_length (header))
6592 > section->size)
6593 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6594 "(offset %s + 0) [in module %s]"),
6595 header->length, sect_offset_str (header->sect_off),
6596 filename);
6597}
6598
6599/* Read in a CU/TU header and perform some basic error checking.
6600 The contents of the header are stored in HEADER.
6601 The result is a pointer to the start of the first DIE. */
6602
6603static const gdb_byte *
6604read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6605 struct comp_unit_head *header,
6606 struct dwarf2_section_info *section,
6607 struct dwarf2_section_info *abbrev_section,
6608 const gdb_byte *info_ptr,
6609 rcuh_kind section_kind)
6610{
6611 const gdb_byte *beg_of_comp_unit = info_ptr;
6612
6613 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6614
6615 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6616
6617 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6618
6619 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6620 abbrev_section);
6621
6622 return info_ptr;
6623}
6624
6625/* Fetch the abbreviation table offset from a comp or type unit header. */
6626
6627static sect_offset
6628read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6629 struct dwarf2_section_info *section,
6630 sect_offset sect_off)
6631{
6632 bfd *abfd = get_section_bfd_owner (section);
6633 const gdb_byte *info_ptr;
6634 unsigned int initial_length_size, offset_size;
6635 uint16_t version;
6636
6637 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6638 info_ptr = section->buffer + to_underlying (sect_off);
6639 read_initial_length (abfd, info_ptr, &initial_length_size);
6640 offset_size = initial_length_size == 4 ? 4 : 8;
6641 info_ptr += initial_length_size;
6642
6643 version = read_2_bytes (abfd, info_ptr);
6644 info_ptr += 2;
6645 if (version >= 5)
6646 {
6647 /* Skip unit type and address size. */
6648 info_ptr += 2;
6649 }
6650
6651 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6652}
6653
6654/* Allocate a new partial symtab for file named NAME and mark this new
6655 partial symtab as being an include of PST. */
6656
6657static void
6658dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6659 struct objfile *objfile)
6660{
6661 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6662
6663 if (!IS_ABSOLUTE_PATH (subpst->filename))
6664 {
6665 /* It shares objfile->objfile_obstack. */
6666 subpst->dirname = pst->dirname;
6667 }
6668
6669 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6670 subpst->dependencies[0] = pst;
6671 subpst->number_of_dependencies = 1;
6672
6673 subpst->read_symtab = pst->read_symtab;
6674
6675 /* No private part is necessary for include psymtabs. This property
6676 can be used to differentiate between such include psymtabs and
6677 the regular ones. */
6678 subpst->read_symtab_private = NULL;
6679}
6680
6681/* Read the Line Number Program data and extract the list of files
6682 included by the source file represented by PST. Build an include
6683 partial symtab for each of these included files. */
6684
6685static void
6686dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6687 struct die_info *die,
6688 struct partial_symtab *pst)
6689{
6690 line_header_up lh;
6691 struct attribute *attr;
6692
6693 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6694 if (attr != nullptr)
6695 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6696 if (lh == NULL)
6697 return; /* No linetable, so no includes. */
6698
6699 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6700 that we pass in the raw text_low here; that is ok because we're
6701 only decoding the line table to make include partial symtabs, and
6702 so the addresses aren't really used. */
6703 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6704 pst->raw_text_low (), 1);
6705}
6706
6707static hashval_t
6708hash_signatured_type (const void *item)
6709{
6710 const struct signatured_type *sig_type
6711 = (const struct signatured_type *) item;
6712
6713 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6714 return sig_type->signature;
6715}
6716
6717static int
6718eq_signatured_type (const void *item_lhs, const void *item_rhs)
6719{
6720 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6721 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6722
6723 return lhs->signature == rhs->signature;
6724}
6725
6726/* Allocate a hash table for signatured types. */
6727
6728static htab_t
6729allocate_signatured_type_table (struct objfile *objfile)
6730{
6731 return htab_create_alloc_ex (41,
6732 hash_signatured_type,
6733 eq_signatured_type,
6734 NULL,
6735 &objfile->objfile_obstack,
6736 hashtab_obstack_allocate,
6737 dummy_obstack_deallocate);
6738}
6739
6740/* A helper function to add a signatured type CU to a table. */
6741
6742static int
6743add_signatured_type_cu_to_table (void **slot, void *datum)
6744{
6745 struct signatured_type *sigt = (struct signatured_type *) *slot;
6746 std::vector<signatured_type *> *all_type_units
6747 = (std::vector<signatured_type *> *) datum;
6748
6749 all_type_units->push_back (sigt);
6750
6751 return 1;
6752}
6753
6754/* A helper for create_debug_types_hash_table. Read types from SECTION
6755 and fill them into TYPES_HTAB. It will process only type units,
6756 therefore DW_UT_type. */
6757
6758static void
6759create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6760 struct dwo_file *dwo_file,
6761 dwarf2_section_info *section, htab_t &types_htab,
6762 rcuh_kind section_kind)
6763{
6764 struct objfile *objfile = dwarf2_per_objfile->objfile;
6765 struct dwarf2_section_info *abbrev_section;
6766 bfd *abfd;
6767 const gdb_byte *info_ptr, *end_ptr;
6768
6769 abbrev_section = (dwo_file != NULL
6770 ? &dwo_file->sections.abbrev
6771 : &dwarf2_per_objfile->abbrev);
6772
6773 if (dwarf_read_debug)
6774 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6775 get_section_name (section),
6776 get_section_file_name (abbrev_section));
6777
6778 dwarf2_read_section (objfile, section);
6779 info_ptr = section->buffer;
6780
6781 if (info_ptr == NULL)
6782 return;
6783
6784 /* We can't set abfd until now because the section may be empty or
6785 not present, in which case the bfd is unknown. */
6786 abfd = get_section_bfd_owner (section);
6787
6788 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6789 because we don't need to read any dies: the signature is in the
6790 header. */
6791
6792 end_ptr = info_ptr + section->size;
6793 while (info_ptr < end_ptr)
6794 {
6795 struct signatured_type *sig_type;
6796 struct dwo_unit *dwo_tu;
6797 void **slot;
6798 const gdb_byte *ptr = info_ptr;
6799 struct comp_unit_head header;
6800 unsigned int length;
6801
6802 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6803
6804 /* Initialize it due to a false compiler warning. */
6805 header.signature = -1;
6806 header.type_cu_offset_in_tu = (cu_offset) -1;
6807
6808 /* We need to read the type's signature in order to build the hash
6809 table, but we don't need anything else just yet. */
6810
6811 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6812 abbrev_section, ptr, section_kind);
6813
6814 length = get_cu_length (&header);
6815
6816 /* Skip dummy type units. */
6817 if (ptr >= info_ptr + length
6818 || peek_abbrev_code (abfd, ptr) == 0
6819 || header.unit_type != DW_UT_type)
6820 {
6821 info_ptr += length;
6822 continue;
6823 }
6824
6825 if (types_htab == NULL)
6826 {
6827 if (dwo_file)
6828 types_htab = allocate_dwo_unit_table (objfile);
6829 else
6830 types_htab = allocate_signatured_type_table (objfile);
6831 }
6832
6833 if (dwo_file)
6834 {
6835 sig_type = NULL;
6836 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6837 struct dwo_unit);
6838 dwo_tu->dwo_file = dwo_file;
6839 dwo_tu->signature = header.signature;
6840 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6841 dwo_tu->section = section;
6842 dwo_tu->sect_off = sect_off;
6843 dwo_tu->length = length;
6844 }
6845 else
6846 {
6847 /* N.B.: type_offset is not usable if this type uses a DWO file.
6848 The real type_offset is in the DWO file. */
6849 dwo_tu = NULL;
6850 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6851 struct signatured_type);
6852 sig_type->signature = header.signature;
6853 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6854 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6855 sig_type->per_cu.is_debug_types = 1;
6856 sig_type->per_cu.section = section;
6857 sig_type->per_cu.sect_off = sect_off;
6858 sig_type->per_cu.length = length;
6859 }
6860
6861 slot = htab_find_slot (types_htab,
6862 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6863 INSERT);
6864 gdb_assert (slot != NULL);
6865 if (*slot != NULL)
6866 {
6867 sect_offset dup_sect_off;
6868
6869 if (dwo_file)
6870 {
6871 const struct dwo_unit *dup_tu
6872 = (const struct dwo_unit *) *slot;
6873
6874 dup_sect_off = dup_tu->sect_off;
6875 }
6876 else
6877 {
6878 const struct signatured_type *dup_tu
6879 = (const struct signatured_type *) *slot;
6880
6881 dup_sect_off = dup_tu->per_cu.sect_off;
6882 }
6883
6884 complaint (_("debug type entry at offset %s is duplicate to"
6885 " the entry at offset %s, signature %s"),
6886 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6887 hex_string (header.signature));
6888 }
6889 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6890
6891 if (dwarf_read_debug > 1)
6892 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6893 sect_offset_str (sect_off),
6894 hex_string (header.signature));
6895
6896 info_ptr += length;
6897 }
6898}
6899
6900/* Create the hash table of all entries in the .debug_types
6901 (or .debug_types.dwo) section(s).
6902 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6903 otherwise it is NULL.
6904
6905 The result is a pointer to the hash table or NULL if there are no types.
6906
6907 Note: This function processes DWO files only, not DWP files. */
6908
6909static void
6910create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6911 struct dwo_file *dwo_file,
6912 gdb::array_view<dwarf2_section_info> type_sections,
6913 htab_t &types_htab)
6914{
6915 for (dwarf2_section_info &section : type_sections)
6916 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6917 types_htab, rcuh_kind::TYPE);
6918}
6919
6920/* Create the hash table of all entries in the .debug_types section,
6921 and initialize all_type_units.
6922 The result is zero if there is an error (e.g. missing .debug_types section),
6923 otherwise non-zero. */
6924
6925static int
6926create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6927{
6928 htab_t types_htab = NULL;
6929
6930 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6931 &dwarf2_per_objfile->info, types_htab,
6932 rcuh_kind::COMPILE);
6933 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6934 dwarf2_per_objfile->types, types_htab);
6935 if (types_htab == NULL)
6936 {
6937 dwarf2_per_objfile->signatured_types = NULL;
6938 return 0;
6939 }
6940
6941 dwarf2_per_objfile->signatured_types = types_htab;
6942
6943 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6944 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6945
6946 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6947 &dwarf2_per_objfile->all_type_units);
6948
6949 return 1;
6950}
6951
6952/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6953 If SLOT is non-NULL, it is the entry to use in the hash table.
6954 Otherwise we find one. */
6955
6956static struct signatured_type *
6957add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6958 void **slot)
6959{
6960 struct objfile *objfile = dwarf2_per_objfile->objfile;
6961
6962 if (dwarf2_per_objfile->all_type_units.size ()
6963 == dwarf2_per_objfile->all_type_units.capacity ())
6964 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6965
6966 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6967 struct signatured_type);
6968
6969 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6970 sig_type->signature = sig;
6971 sig_type->per_cu.is_debug_types = 1;
6972 if (dwarf2_per_objfile->using_index)
6973 {
6974 sig_type->per_cu.v.quick =
6975 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6976 struct dwarf2_per_cu_quick_data);
6977 }
6978
6979 if (slot == NULL)
6980 {
6981 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6982 sig_type, INSERT);
6983 }
6984 gdb_assert (*slot == NULL);
6985 *slot = sig_type;
6986 /* The rest of sig_type must be filled in by the caller. */
6987 return sig_type;
6988}
6989
6990/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6991 Fill in SIG_ENTRY with DWO_ENTRY. */
6992
6993static void
6994fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6995 struct signatured_type *sig_entry,
6996 struct dwo_unit *dwo_entry)
6997{
6998 /* Make sure we're not clobbering something we don't expect to. */
6999 gdb_assert (! sig_entry->per_cu.queued);
7000 gdb_assert (sig_entry->per_cu.cu == NULL);
7001 if (dwarf2_per_objfile->using_index)
7002 {
7003 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7004 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7005 }
7006 else
7007 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7008 gdb_assert (sig_entry->signature == dwo_entry->signature);
7009 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7010 gdb_assert (sig_entry->type_unit_group == NULL);
7011 gdb_assert (sig_entry->dwo_unit == NULL);
7012
7013 sig_entry->per_cu.section = dwo_entry->section;
7014 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7015 sig_entry->per_cu.length = dwo_entry->length;
7016 sig_entry->per_cu.reading_dwo_directly = 1;
7017 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7018 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7019 sig_entry->dwo_unit = dwo_entry;
7020}
7021
7022/* Subroutine of lookup_signatured_type.
7023 If we haven't read the TU yet, create the signatured_type data structure
7024 for a TU to be read in directly from a DWO file, bypassing the stub.
7025 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7026 using .gdb_index, then when reading a CU we want to stay in the DWO file
7027 containing that CU. Otherwise we could end up reading several other DWO
7028 files (due to comdat folding) to process the transitive closure of all the
7029 mentioned TUs, and that can be slow. The current DWO file will have every
7030 type signature that it needs.
7031 We only do this for .gdb_index because in the psymtab case we already have
7032 to read all the DWOs to build the type unit groups. */
7033
7034static struct signatured_type *
7035lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7036{
7037 struct dwarf2_per_objfile *dwarf2_per_objfile
7038 = cu->per_cu->dwarf2_per_objfile;
7039 struct objfile *objfile = dwarf2_per_objfile->objfile;
7040 struct dwo_file *dwo_file;
7041 struct dwo_unit find_dwo_entry, *dwo_entry;
7042 struct signatured_type find_sig_entry, *sig_entry;
7043 void **slot;
7044
7045 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7046
7047 /* If TU skeletons have been removed then we may not have read in any
7048 TUs yet. */
7049 if (dwarf2_per_objfile->signatured_types == NULL)
7050 {
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
7053 }
7054
7055 /* We only ever need to read in one copy of a signatured type.
7056 Use the global signatured_types array to do our own comdat-folding
7057 of types. If this is the first time we're reading this TU, and
7058 the TU has an entry in .gdb_index, replace the recorded data from
7059 .gdb_index with this TU. */
7060
7061 find_sig_entry.signature = sig;
7062 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7063 &find_sig_entry, INSERT);
7064 sig_entry = (struct signatured_type *) *slot;
7065
7066 /* We can get here with the TU already read, *or* in the process of being
7067 read. Don't reassign the global entry to point to this DWO if that's
7068 the case. Also note that if the TU is already being read, it may not
7069 have come from a DWO, the program may be a mix of Fission-compiled
7070 code and non-Fission-compiled code. */
7071
7072 /* Have we already tried to read this TU?
7073 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7074 needn't exist in the global table yet). */
7075 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7076 return sig_entry;
7077
7078 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7079 dwo_unit of the TU itself. */
7080 dwo_file = cu->dwo_unit->dwo_file;
7081
7082 /* Ok, this is the first time we're reading this TU. */
7083 if (dwo_file->tus == NULL)
7084 return NULL;
7085 find_dwo_entry.signature = sig;
7086 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7087 if (dwo_entry == NULL)
7088 return NULL;
7089
7090 /* If the global table doesn't have an entry for this TU, add one. */
7091 if (sig_entry == NULL)
7092 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7093
7094 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7095 sig_entry->per_cu.tu_read = 1;
7096 return sig_entry;
7097}
7098
7099/* Subroutine of lookup_signatured_type.
7100 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7101 then try the DWP file. If the TU stub (skeleton) has been removed then
7102 it won't be in .gdb_index. */
7103
7104static struct signatured_type *
7105lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7106{
7107 struct dwarf2_per_objfile *dwarf2_per_objfile
7108 = cu->per_cu->dwarf2_per_objfile;
7109 struct objfile *objfile = dwarf2_per_objfile->objfile;
7110 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7111 struct dwo_unit *dwo_entry;
7112 struct signatured_type find_sig_entry, *sig_entry;
7113 void **slot;
7114
7115 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7116 gdb_assert (dwp_file != NULL);
7117
7118 /* If TU skeletons have been removed then we may not have read in any
7119 TUs yet. */
7120 if (dwarf2_per_objfile->signatured_types == NULL)
7121 {
7122 dwarf2_per_objfile->signatured_types
7123 = allocate_signatured_type_table (objfile);
7124 }
7125
7126 find_sig_entry.signature = sig;
7127 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7128 &find_sig_entry, INSERT);
7129 sig_entry = (struct signatured_type *) *slot;
7130
7131 /* Have we already tried to read this TU?
7132 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7133 needn't exist in the global table yet). */
7134 if (sig_entry != NULL)
7135 return sig_entry;
7136
7137 if (dwp_file->tus == NULL)
7138 return NULL;
7139 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7140 sig, 1 /* is_debug_types */);
7141 if (dwo_entry == NULL)
7142 return NULL;
7143
7144 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7145 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7146
7147 return sig_entry;
7148}
7149
7150/* Lookup a signature based type for DW_FORM_ref_sig8.
7151 Returns NULL if signature SIG is not present in the table.
7152 It is up to the caller to complain about this. */
7153
7154static struct signatured_type *
7155lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7156{
7157 struct dwarf2_per_objfile *dwarf2_per_objfile
7158 = cu->per_cu->dwarf2_per_objfile;
7159
7160 if (cu->dwo_unit
7161 && dwarf2_per_objfile->using_index)
7162 {
7163 /* We're in a DWO/DWP file, and we're using .gdb_index.
7164 These cases require special processing. */
7165 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7166 return lookup_dwo_signatured_type (cu, sig);
7167 else
7168 return lookup_dwp_signatured_type (cu, sig);
7169 }
7170 else
7171 {
7172 struct signatured_type find_entry, *entry;
7173
7174 if (dwarf2_per_objfile->signatured_types == NULL)
7175 return NULL;
7176 find_entry.signature = sig;
7177 entry = ((struct signatured_type *)
7178 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7179 return entry;
7180 }
7181}
7182\f
7183/* Low level DIE reading support. */
7184
7185/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7186
7187static void
7188init_cu_die_reader (struct die_reader_specs *reader,
7189 struct dwarf2_cu *cu,
7190 struct dwarf2_section_info *section,
7191 struct dwo_file *dwo_file,
7192 struct abbrev_table *abbrev_table)
7193{
7194 gdb_assert (section->readin && section->buffer != NULL);
7195 reader->abfd = get_section_bfd_owner (section);
7196 reader->cu = cu;
7197 reader->dwo_file = dwo_file;
7198 reader->die_section = section;
7199 reader->buffer = section->buffer;
7200 reader->buffer_end = section->buffer + section->size;
7201 reader->comp_dir = NULL;
7202 reader->abbrev_table = abbrev_table;
7203}
7204
7205/* Subroutine of init_cutu_and_read_dies to simplify it.
7206 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7207 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7208 already.
7209
7210 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7211 from it to the DIE in the DWO. If NULL we are skipping the stub.
7212 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7213 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7214 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7215 STUB_COMP_DIR may be non-NULL.
7216 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7217 are filled in with the info of the DIE from the DWO file.
7218 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7219 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7220 kept around for at least as long as *RESULT_READER.
7221
7222 The result is non-zero if a valid (non-dummy) DIE was found. */
7223
7224static int
7225read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7226 struct dwo_unit *dwo_unit,
7227 struct die_info *stub_comp_unit_die,
7228 const char *stub_comp_dir,
7229 struct die_reader_specs *result_reader,
7230 const gdb_byte **result_info_ptr,
7231 struct die_info **result_comp_unit_die,
7232 int *result_has_children,
7233 abbrev_table_up *result_dwo_abbrev_table)
7234{
7235 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7236 struct objfile *objfile = dwarf2_per_objfile->objfile;
7237 struct dwarf2_cu *cu = this_cu->cu;
7238 bfd *abfd;
7239 const gdb_byte *begin_info_ptr, *info_ptr;
7240 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7241 int i,num_extra_attrs;
7242 struct dwarf2_section_info *dwo_abbrev_section;
7243 struct attribute *attr;
7244 struct die_info *comp_unit_die;
7245
7246 /* At most one of these may be provided. */
7247 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7248
7249 /* These attributes aren't processed until later:
7250 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7251 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7252 referenced later. However, these attributes are found in the stub
7253 which we won't have later. In order to not impose this complication
7254 on the rest of the code, we read them here and copy them to the
7255 DWO CU/TU die. */
7256
7257 stmt_list = NULL;
7258 low_pc = NULL;
7259 high_pc = NULL;
7260 ranges = NULL;
7261 comp_dir = NULL;
7262
7263 if (stub_comp_unit_die != NULL)
7264 {
7265 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7266 DWO file. */
7267 if (! this_cu->is_debug_types)
7268 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7269 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7270 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7271 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7272 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7273
7274 /* There should be a DW_AT_addr_base attribute here (if needed).
7275 We need the value before we can process DW_FORM_GNU_addr_index
7276 or DW_FORM_addrx. */
7277 cu->addr_base = 0;
7278 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7279 if (attr != nullptr)
7280 cu->addr_base = DW_UNSND (attr);
7281
7282 /* There should be a DW_AT_ranges_base attribute here (if needed).
7283 We need the value before we can process DW_AT_ranges. */
7284 cu->ranges_base = 0;
7285 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7286 if (attr != nullptr)
7287 cu->ranges_base = DW_UNSND (attr);
7288 }
7289 else if (stub_comp_dir != NULL)
7290 {
7291 /* Reconstruct the comp_dir attribute to simplify the code below. */
7292 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7293 comp_dir->name = DW_AT_comp_dir;
7294 comp_dir->form = DW_FORM_string;
7295 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7296 DW_STRING (comp_dir) = stub_comp_dir;
7297 }
7298
7299 /* Set up for reading the DWO CU/TU. */
7300 cu->dwo_unit = dwo_unit;
7301 dwarf2_section_info *section = dwo_unit->section;
7302 dwarf2_read_section (objfile, section);
7303 abfd = get_section_bfd_owner (section);
7304 begin_info_ptr = info_ptr = (section->buffer
7305 + to_underlying (dwo_unit->sect_off));
7306 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7307
7308 if (this_cu->is_debug_types)
7309 {
7310 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7311
7312 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7313 &cu->header, section,
7314 dwo_abbrev_section,
7315 info_ptr, rcuh_kind::TYPE);
7316 /* This is not an assert because it can be caused by bad debug info. */
7317 if (sig_type->signature != cu->header.signature)
7318 {
7319 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7320 " TU at offset %s [in module %s]"),
7321 hex_string (sig_type->signature),
7322 hex_string (cu->header.signature),
7323 sect_offset_str (dwo_unit->sect_off),
7324 bfd_get_filename (abfd));
7325 }
7326 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7327 /* For DWOs coming from DWP files, we don't know the CU length
7328 nor the type's offset in the TU until now. */
7329 dwo_unit->length = get_cu_length (&cu->header);
7330 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7331
7332 /* Establish the type offset that can be used to lookup the type.
7333 For DWO files, we don't know it until now. */
7334 sig_type->type_offset_in_section
7335 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7336 }
7337 else
7338 {
7339 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7340 &cu->header, section,
7341 dwo_abbrev_section,
7342 info_ptr, rcuh_kind::COMPILE);
7343 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7344 /* For DWOs coming from DWP files, we don't know the CU length
7345 until now. */
7346 dwo_unit->length = get_cu_length (&cu->header);
7347 }
7348
7349 *result_dwo_abbrev_table
7350 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7351 cu->header.abbrev_sect_off);
7352 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7353 result_dwo_abbrev_table->get ());
7354
7355 /* Read in the die, but leave space to copy over the attributes
7356 from the stub. This has the benefit of simplifying the rest of
7357 the code - all the work to maintain the illusion of a single
7358 DW_TAG_{compile,type}_unit DIE is done here. */
7359 num_extra_attrs = ((stmt_list != NULL)
7360 + (low_pc != NULL)
7361 + (high_pc != NULL)
7362 + (ranges != NULL)
7363 + (comp_dir != NULL));
7364 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7365 result_has_children, num_extra_attrs);
7366
7367 /* Copy over the attributes from the stub to the DIE we just read in. */
7368 comp_unit_die = *result_comp_unit_die;
7369 i = comp_unit_die->num_attrs;
7370 if (stmt_list != NULL)
7371 comp_unit_die->attrs[i++] = *stmt_list;
7372 if (low_pc != NULL)
7373 comp_unit_die->attrs[i++] = *low_pc;
7374 if (high_pc != NULL)
7375 comp_unit_die->attrs[i++] = *high_pc;
7376 if (ranges != NULL)
7377 comp_unit_die->attrs[i++] = *ranges;
7378 if (comp_dir != NULL)
7379 comp_unit_die->attrs[i++] = *comp_dir;
7380 comp_unit_die->num_attrs += num_extra_attrs;
7381
7382 if (dwarf_die_debug)
7383 {
7384 fprintf_unfiltered (gdb_stdlog,
7385 "Read die from %s@0x%x of %s:\n",
7386 get_section_name (section),
7387 (unsigned) (begin_info_ptr - section->buffer),
7388 bfd_get_filename (abfd));
7389 dump_die (comp_unit_die, dwarf_die_debug);
7390 }
7391
7392 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7393 TUs by skipping the stub and going directly to the entry in the DWO file.
7394 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7395 to get it via circuitous means. Blech. */
7396 if (comp_dir != NULL)
7397 result_reader->comp_dir = DW_STRING (comp_dir);
7398
7399 /* Skip dummy compilation units. */
7400 if (info_ptr >= begin_info_ptr + dwo_unit->length
7401 || peek_abbrev_code (abfd, info_ptr) == 0)
7402 return 0;
7403
7404 *result_info_ptr = info_ptr;
7405 return 1;
7406}
7407
7408/* Return the signature of the compile unit, if found. In DWARF 4 and before,
7409 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7410 signature is part of the header. */
7411static gdb::optional<ULONGEST>
7412lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7413{
7414 if (cu->header.version >= 5)
7415 return cu->header.signature;
7416 struct attribute *attr;
7417 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7418 if (attr == nullptr)
7419 return gdb::optional<ULONGEST> ();
7420 return DW_UNSND (attr);
7421}
7422
7423/* Subroutine of init_cutu_and_read_dies to simplify it.
7424 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7425 Returns NULL if the specified DWO unit cannot be found. */
7426
7427static struct dwo_unit *
7428lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7429 struct die_info *comp_unit_die)
7430{
7431 struct dwarf2_cu *cu = this_cu->cu;
7432 struct dwo_unit *dwo_unit;
7433 const char *comp_dir, *dwo_name;
7434
7435 gdb_assert (cu != NULL);
7436
7437 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7438 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7439 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7440
7441 if (this_cu->is_debug_types)
7442 {
7443 struct signatured_type *sig_type;
7444
7445 /* Since this_cu is the first member of struct signatured_type,
7446 we can go from a pointer to one to a pointer to the other. */
7447 sig_type = (struct signatured_type *) this_cu;
7448 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7449 }
7450 else
7451 {
7452 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7453 if (!signature.has_value ())
7454 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7455 " [in module %s]"),
7456 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7457 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7458 *signature);
7459 }
7460
7461 return dwo_unit;
7462}
7463
7464/* Subroutine of init_cutu_and_read_dies to simplify it.
7465 See it for a description of the parameters.
7466 Read a TU directly from a DWO file, bypassing the stub. */
7467
7468static void
7469init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7470 int use_existing_cu, int keep,
7471 die_reader_func_ftype *die_reader_func,
7472 void *data)
7473{
7474 std::unique_ptr<dwarf2_cu> new_cu;
7475 struct signatured_type *sig_type;
7476 struct die_reader_specs reader;
7477 const gdb_byte *info_ptr;
7478 struct die_info *comp_unit_die;
7479 int has_children;
7480 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7481
7482 /* Verify we can do the following downcast, and that we have the
7483 data we need. */
7484 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7485 sig_type = (struct signatured_type *) this_cu;
7486 gdb_assert (sig_type->dwo_unit != NULL);
7487
7488 if (use_existing_cu && this_cu->cu != NULL)
7489 {
7490 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7491 /* There's no need to do the rereading_dwo_cu handling that
7492 init_cutu_and_read_dies does since we don't read the stub. */
7493 }
7494 else
7495 {
7496 /* If !use_existing_cu, this_cu->cu must be NULL. */
7497 gdb_assert (this_cu->cu == NULL);
7498 new_cu.reset (new dwarf2_cu (this_cu));
7499 }
7500
7501 /* A future optimization, if needed, would be to use an existing
7502 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7503 could share abbrev tables. */
7504
7505 /* The abbreviation table used by READER, this must live at least as long as
7506 READER. */
7507 abbrev_table_up dwo_abbrev_table;
7508
7509 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7510 NULL /* stub_comp_unit_die */,
7511 sig_type->dwo_unit->dwo_file->comp_dir,
7512 &reader, &info_ptr,
7513 &comp_unit_die, &has_children,
7514 &dwo_abbrev_table) == 0)
7515 {
7516 /* Dummy die. */
7517 return;
7518 }
7519
7520 /* All the "real" work is done here. */
7521 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7522
7523 /* This duplicates the code in init_cutu_and_read_dies,
7524 but the alternative is making the latter more complex.
7525 This function is only for the special case of using DWO files directly:
7526 no point in overly complicating the general case just to handle this. */
7527 if (new_cu != NULL && keep)
7528 {
7529 /* Link this CU into read_in_chain. */
7530 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7531 dwarf2_per_objfile->read_in_chain = this_cu;
7532 /* The chain owns it now. */
7533 new_cu.release ();
7534 }
7535}
7536
7537/* Initialize a CU (or TU) and read its DIEs.
7538 If the CU defers to a DWO file, read the DWO file as well.
7539
7540 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7541 Otherwise the table specified in the comp unit header is read in and used.
7542 This is an optimization for when we already have the abbrev table.
7543
7544 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7545 Otherwise, a new CU is allocated with xmalloc.
7546
7547 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7548 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7549
7550 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7551 linker) then DIE_READER_FUNC will not get called. */
7552
7553static void
7554init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7555 struct abbrev_table *abbrev_table,
7556 int use_existing_cu, int keep,
7557 bool skip_partial,
7558 die_reader_func_ftype *die_reader_func,
7559 void *data)
7560{
7561 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7562 struct objfile *objfile = dwarf2_per_objfile->objfile;
7563 struct dwarf2_section_info *section = this_cu->section;
7564 bfd *abfd = get_section_bfd_owner (section);
7565 struct dwarf2_cu *cu;
7566 const gdb_byte *begin_info_ptr, *info_ptr;
7567 struct die_reader_specs reader;
7568 struct die_info *comp_unit_die;
7569 int has_children;
7570 struct signatured_type *sig_type = NULL;
7571 struct dwarf2_section_info *abbrev_section;
7572 /* Non-zero if CU currently points to a DWO file and we need to
7573 reread it. When this happens we need to reread the skeleton die
7574 before we can reread the DWO file (this only applies to CUs, not TUs). */
7575 int rereading_dwo_cu = 0;
7576
7577 if (dwarf_die_debug)
7578 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7579 this_cu->is_debug_types ? "type" : "comp",
7580 sect_offset_str (this_cu->sect_off));
7581
7582 if (use_existing_cu)
7583 gdb_assert (keep);
7584
7585 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7586 file (instead of going through the stub), short-circuit all of this. */
7587 if (this_cu->reading_dwo_directly)
7588 {
7589 /* Narrow down the scope of possibilities to have to understand. */
7590 gdb_assert (this_cu->is_debug_types);
7591 gdb_assert (abbrev_table == NULL);
7592 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7593 die_reader_func, data);
7594 return;
7595 }
7596
7597 /* This is cheap if the section is already read in. */
7598 dwarf2_read_section (objfile, section);
7599
7600 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7601
7602 abbrev_section = get_abbrev_section_for_cu (this_cu);
7603
7604 std::unique_ptr<dwarf2_cu> new_cu;
7605 if (use_existing_cu && this_cu->cu != NULL)
7606 {
7607 cu = this_cu->cu;
7608 /* If this CU is from a DWO file we need to start over, we need to
7609 refetch the attributes from the skeleton CU.
7610 This could be optimized by retrieving those attributes from when we
7611 were here the first time: the previous comp_unit_die was stored in
7612 comp_unit_obstack. But there's no data yet that we need this
7613 optimization. */
7614 if (cu->dwo_unit != NULL)
7615 rereading_dwo_cu = 1;
7616 }
7617 else
7618 {
7619 /* If !use_existing_cu, this_cu->cu must be NULL. */
7620 gdb_assert (this_cu->cu == NULL);
7621 new_cu.reset (new dwarf2_cu (this_cu));
7622 cu = new_cu.get ();
7623 }
7624
7625 /* Get the header. */
7626 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7627 {
7628 /* We already have the header, there's no need to read it in again. */
7629 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7630 }
7631 else
7632 {
7633 if (this_cu->is_debug_types)
7634 {
7635 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7636 &cu->header, section,
7637 abbrev_section, info_ptr,
7638 rcuh_kind::TYPE);
7639
7640 /* Since per_cu is the first member of struct signatured_type,
7641 we can go from a pointer to one to a pointer to the other. */
7642 sig_type = (struct signatured_type *) this_cu;
7643 gdb_assert (sig_type->signature == cu->header.signature);
7644 gdb_assert (sig_type->type_offset_in_tu
7645 == cu->header.type_cu_offset_in_tu);
7646 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7647
7648 /* LENGTH has not been set yet for type units if we're
7649 using .gdb_index. */
7650 this_cu->length = get_cu_length (&cu->header);
7651
7652 /* Establish the type offset that can be used to lookup the type. */
7653 sig_type->type_offset_in_section =
7654 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7655
7656 this_cu->dwarf_version = cu->header.version;
7657 }
7658 else
7659 {
7660 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7661 &cu->header, section,
7662 abbrev_section,
7663 info_ptr,
7664 rcuh_kind::COMPILE);
7665
7666 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7667 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7668 this_cu->dwarf_version = cu->header.version;
7669 }
7670 }
7671
7672 /* Skip dummy compilation units. */
7673 if (info_ptr >= begin_info_ptr + this_cu->length
7674 || peek_abbrev_code (abfd, info_ptr) == 0)
7675 return;
7676
7677 /* If we don't have them yet, read the abbrevs for this compilation unit.
7678 And if we need to read them now, make sure they're freed when we're
7679 done (own the table through ABBREV_TABLE_HOLDER). */
7680 abbrev_table_up abbrev_table_holder;
7681 if (abbrev_table != NULL)
7682 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7683 else
7684 {
7685 abbrev_table_holder
7686 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7687 cu->header.abbrev_sect_off);
7688 abbrev_table = abbrev_table_holder.get ();
7689 }
7690
7691 /* Read the top level CU/TU die. */
7692 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7693 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7694
7695 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7696 return;
7697
7698 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7699 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7700 table from the DWO file and pass the ownership over to us. It will be
7701 referenced from READER, so we must make sure to free it after we're done
7702 with READER.
7703
7704 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7705 DWO CU, that this test will fail (the attribute will not be present). */
7706 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7707 abbrev_table_up dwo_abbrev_table;
7708 if (dwo_name != nullptr)
7709 {
7710 struct dwo_unit *dwo_unit;
7711 struct die_info *dwo_comp_unit_die;
7712
7713 if (has_children)
7714 {
7715 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7716 " has children (offset %s) [in module %s]"),
7717 sect_offset_str (this_cu->sect_off),
7718 bfd_get_filename (abfd));
7719 }
7720 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7721 if (dwo_unit != NULL)
7722 {
7723 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7724 comp_unit_die, NULL,
7725 &reader, &info_ptr,
7726 &dwo_comp_unit_die, &has_children,
7727 &dwo_abbrev_table) == 0)
7728 {
7729 /* Dummy die. */
7730 return;
7731 }
7732 comp_unit_die = dwo_comp_unit_die;
7733 }
7734 else
7735 {
7736 /* Yikes, we couldn't find the rest of the DIE, we only have
7737 the stub. A complaint has already been logged. There's
7738 not much more we can do except pass on the stub DIE to
7739 die_reader_func. We don't want to throw an error on bad
7740 debug info. */
7741 }
7742 }
7743
7744 /* All of the above is setup for this call. Yikes. */
7745 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7746
7747 /* Done, clean up. */
7748 if (new_cu != NULL && keep)
7749 {
7750 /* Link this CU into read_in_chain. */
7751 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7752 dwarf2_per_objfile->read_in_chain = this_cu;
7753 /* The chain owns it now. */
7754 new_cu.release ();
7755 }
7756}
7757
7758/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7759 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7760 to have already done the lookup to find the DWO file).
7761
7762 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7763 THIS_CU->is_debug_types, but nothing else.
7764
7765 We fill in THIS_CU->length.
7766
7767 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7768 linker) then DIE_READER_FUNC will not get called.
7769
7770 THIS_CU->cu is always freed when done.
7771 This is done in order to not leave THIS_CU->cu in a state where we have
7772 to care whether it refers to the "main" CU or the DWO CU. */
7773
7774static void
7775init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7776 struct dwo_file *dwo_file,
7777 die_reader_func_ftype *die_reader_func,
7778 void *data)
7779{
7780 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7781 struct objfile *objfile = dwarf2_per_objfile->objfile;
7782 struct dwarf2_section_info *section = this_cu->section;
7783 bfd *abfd = get_section_bfd_owner (section);
7784 struct dwarf2_section_info *abbrev_section;
7785 const gdb_byte *begin_info_ptr, *info_ptr;
7786 struct die_reader_specs reader;
7787 struct die_info *comp_unit_die;
7788 int has_children;
7789
7790 if (dwarf_die_debug)
7791 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7792 this_cu->is_debug_types ? "type" : "comp",
7793 sect_offset_str (this_cu->sect_off));
7794
7795 gdb_assert (this_cu->cu == NULL);
7796
7797 abbrev_section = (dwo_file != NULL
7798 ? &dwo_file->sections.abbrev
7799 : get_abbrev_section_for_cu (this_cu));
7800
7801 /* This is cheap if the section is already read in. */
7802 dwarf2_read_section (objfile, section);
7803
7804 struct dwarf2_cu cu (this_cu);
7805
7806 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7807 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7808 &cu.header, section,
7809 abbrev_section, info_ptr,
7810 (this_cu->is_debug_types
7811 ? rcuh_kind::TYPE
7812 : rcuh_kind::COMPILE));
7813
7814 this_cu->length = get_cu_length (&cu.header);
7815
7816 /* Skip dummy compilation units. */
7817 if (info_ptr >= begin_info_ptr + this_cu->length
7818 || peek_abbrev_code (abfd, info_ptr) == 0)
7819 return;
7820
7821 abbrev_table_up abbrev_table
7822 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7823 cu.header.abbrev_sect_off);
7824
7825 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7826 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7827
7828 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7829}
7830
7831/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7832 does not lookup the specified DWO file.
7833 This cannot be used to read DWO files.
7834
7835 THIS_CU->cu is always freed when done.
7836 This is done in order to not leave THIS_CU->cu in a state where we have
7837 to care whether it refers to the "main" CU or the DWO CU.
7838 We can revisit this if the data shows there's a performance issue. */
7839
7840static void
7841init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7842 die_reader_func_ftype *die_reader_func,
7843 void *data)
7844{
7845 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7846}
7847\f
7848/* Type Unit Groups.
7849
7850 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7851 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7852 so that all types coming from the same compilation (.o file) are grouped
7853 together. A future step could be to put the types in the same symtab as
7854 the CU the types ultimately came from. */
7855
7856static hashval_t
7857hash_type_unit_group (const void *item)
7858{
7859 const struct type_unit_group *tu_group
7860 = (const struct type_unit_group *) item;
7861
7862 return hash_stmt_list_entry (&tu_group->hash);
7863}
7864
7865static int
7866eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7867{
7868 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7869 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7870
7871 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7872}
7873
7874/* Allocate a hash table for type unit groups. */
7875
7876static htab_t
7877allocate_type_unit_groups_table (struct objfile *objfile)
7878{
7879 return htab_create_alloc_ex (3,
7880 hash_type_unit_group,
7881 eq_type_unit_group,
7882 NULL,
7883 &objfile->objfile_obstack,
7884 hashtab_obstack_allocate,
7885 dummy_obstack_deallocate);
7886}
7887
7888/* Type units that don't have DW_AT_stmt_list are grouped into their own
7889 partial symtabs. We combine several TUs per psymtab to not let the size
7890 of any one psymtab grow too big. */
7891#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7892#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7893
7894/* Helper routine for get_type_unit_group.
7895 Create the type_unit_group object used to hold one or more TUs. */
7896
7897static struct type_unit_group *
7898create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7899{
7900 struct dwarf2_per_objfile *dwarf2_per_objfile
7901 = cu->per_cu->dwarf2_per_objfile;
7902 struct objfile *objfile = dwarf2_per_objfile->objfile;
7903 struct dwarf2_per_cu_data *per_cu;
7904 struct type_unit_group *tu_group;
7905
7906 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7907 struct type_unit_group);
7908 per_cu = &tu_group->per_cu;
7909 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7910
7911 if (dwarf2_per_objfile->using_index)
7912 {
7913 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7914 struct dwarf2_per_cu_quick_data);
7915 }
7916 else
7917 {
7918 unsigned int line_offset = to_underlying (line_offset_struct);
7919 struct partial_symtab *pst;
7920 std::string name;
7921
7922 /* Give the symtab a useful name for debug purposes. */
7923 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7924 name = string_printf ("<type_units_%d>",
7925 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7926 else
7927 name = string_printf ("<type_units_at_0x%x>", line_offset);
7928
7929 pst = create_partial_symtab (per_cu, name.c_str ());
7930 pst->anonymous = 1;
7931 }
7932
7933 tu_group->hash.dwo_unit = cu->dwo_unit;
7934 tu_group->hash.line_sect_off = line_offset_struct;
7935
7936 return tu_group;
7937}
7938
7939/* Look up the type_unit_group for type unit CU, and create it if necessary.
7940 STMT_LIST is a DW_AT_stmt_list attribute. */
7941
7942static struct type_unit_group *
7943get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7944{
7945 struct dwarf2_per_objfile *dwarf2_per_objfile
7946 = cu->per_cu->dwarf2_per_objfile;
7947 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7948 struct type_unit_group *tu_group;
7949 void **slot;
7950 unsigned int line_offset;
7951 struct type_unit_group type_unit_group_for_lookup;
7952
7953 if (dwarf2_per_objfile->type_unit_groups == NULL)
7954 {
7955 dwarf2_per_objfile->type_unit_groups =
7956 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7957 }
7958
7959 /* Do we need to create a new group, or can we use an existing one? */
7960
7961 if (stmt_list)
7962 {
7963 line_offset = DW_UNSND (stmt_list);
7964 ++tu_stats->nr_symtab_sharers;
7965 }
7966 else
7967 {
7968 /* Ugh, no stmt_list. Rare, but we have to handle it.
7969 We can do various things here like create one group per TU or
7970 spread them over multiple groups to split up the expansion work.
7971 To avoid worst case scenarios (too many groups or too large groups)
7972 we, umm, group them in bunches. */
7973 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7974 | (tu_stats->nr_stmt_less_type_units
7975 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7976 ++tu_stats->nr_stmt_less_type_units;
7977 }
7978
7979 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7980 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7981 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7982 &type_unit_group_for_lookup, INSERT);
7983 if (*slot != NULL)
7984 {
7985 tu_group = (struct type_unit_group *) *slot;
7986 gdb_assert (tu_group != NULL);
7987 }
7988 else
7989 {
7990 sect_offset line_offset_struct = (sect_offset) line_offset;
7991 tu_group = create_type_unit_group (cu, line_offset_struct);
7992 *slot = tu_group;
7993 ++tu_stats->nr_symtabs;
7994 }
7995
7996 return tu_group;
7997}
7998\f
7999/* Partial symbol tables. */
8000
8001/* Create a psymtab named NAME and assign it to PER_CU.
8002
8003 The caller must fill in the following details:
8004 dirname, textlow, texthigh. */
8005
8006static struct partial_symtab *
8007create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8008{
8009 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8010 struct partial_symtab *pst;
8011
8012 pst = start_psymtab_common (objfile, name, 0);
8013
8014 pst->psymtabs_addrmap_supported = 1;
8015
8016 /* This is the glue that links PST into GDB's symbol API. */
8017 pst->read_symtab_private = per_cu;
8018 pst->read_symtab = dwarf2_read_symtab;
8019 per_cu->v.psymtab = pst;
8020
8021 return pst;
8022}
8023
8024/* The DATA object passed to process_psymtab_comp_unit_reader has this
8025 type. */
8026
8027struct process_psymtab_comp_unit_data
8028{
8029 /* True if we are reading a DW_TAG_partial_unit. */
8030
8031 int want_partial_unit;
8032
8033 /* The "pretend" language that is used if the CU doesn't declare a
8034 language. */
8035
8036 enum language pretend_language;
8037};
8038
8039/* die_reader_func for process_psymtab_comp_unit. */
8040
8041static void
8042process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8043 const gdb_byte *info_ptr,
8044 struct die_info *comp_unit_die,
8045 int has_children,
8046 void *data)
8047{
8048 struct dwarf2_cu *cu = reader->cu;
8049 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8051 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8052 CORE_ADDR baseaddr;
8053 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8054 struct partial_symtab *pst;
8055 enum pc_bounds_kind cu_bounds_kind;
8056 const char *filename;
8057 struct process_psymtab_comp_unit_data *info
8058 = (struct process_psymtab_comp_unit_data *) data;
8059
8060 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8061 return;
8062
8063 gdb_assert (! per_cu->is_debug_types);
8064
8065 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8066
8067 /* Allocate a new partial symbol table structure. */
8068 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8069 if (filename == NULL)
8070 filename = "";
8071
8072 pst = create_partial_symtab (per_cu, filename);
8073
8074 /* This must be done before calling dwarf2_build_include_psymtabs. */
8075 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8076
8077 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8078
8079 dwarf2_find_base_address (comp_unit_die, cu);
8080
8081 /* Possibly set the default values of LOWPC and HIGHPC from
8082 `DW_AT_ranges'. */
8083 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8084 &best_highpc, cu, pst);
8085 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8086 {
8087 CORE_ADDR low
8088 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8089 - baseaddr);
8090 CORE_ADDR high
8091 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8092 - baseaddr - 1);
8093 /* Store the contiguous range if it is not empty; it can be
8094 empty for CUs with no code. */
8095 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8096 low, high, pst);
8097 }
8098
8099 /* Check if comp unit has_children.
8100 If so, read the rest of the partial symbols from this comp unit.
8101 If not, there's no more debug_info for this comp unit. */
8102 if (has_children)
8103 {
8104 struct partial_die_info *first_die;
8105 CORE_ADDR lowpc, highpc;
8106
8107 lowpc = ((CORE_ADDR) -1);
8108 highpc = ((CORE_ADDR) 0);
8109
8110 first_die = load_partial_dies (reader, info_ptr, 1);
8111
8112 scan_partial_symbols (first_die, &lowpc, &highpc,
8113 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8114
8115 /* If we didn't find a lowpc, set it to highpc to avoid
8116 complaints from `maint check'. */
8117 if (lowpc == ((CORE_ADDR) -1))
8118 lowpc = highpc;
8119
8120 /* If the compilation unit didn't have an explicit address range,
8121 then use the information extracted from its child dies. */
8122 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8123 {
8124 best_lowpc = lowpc;
8125 best_highpc = highpc;
8126 }
8127 }
8128 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8129 best_lowpc + baseaddr)
8130 - baseaddr);
8131 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8132 best_highpc + baseaddr)
8133 - baseaddr);
8134
8135 end_psymtab_common (objfile, pst);
8136
8137 if (!cu->per_cu->imported_symtabs_empty ())
8138 {
8139 int i;
8140 int len = cu->per_cu->imported_symtabs_size ();
8141
8142 /* Fill in 'dependencies' here; we fill in 'users' in a
8143 post-pass. */
8144 pst->number_of_dependencies = len;
8145 pst->dependencies
8146 = objfile->partial_symtabs->allocate_dependencies (len);
8147 for (i = 0; i < len; ++i)
8148 {
8149 pst->dependencies[i]
8150 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
8151 }
8152
8153 cu->per_cu->imported_symtabs_free ();
8154 }
8155
8156 /* Get the list of files included in the current compilation unit,
8157 and build a psymtab for each of them. */
8158 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8159
8160 if (dwarf_read_debug)
8161 fprintf_unfiltered (gdb_stdlog,
8162 "Psymtab for %s unit @%s: %s - %s"
8163 ", %d global, %d static syms\n",
8164 per_cu->is_debug_types ? "type" : "comp",
8165 sect_offset_str (per_cu->sect_off),
8166 paddress (gdbarch, pst->text_low (objfile)),
8167 paddress (gdbarch, pst->text_high (objfile)),
8168 pst->n_global_syms, pst->n_static_syms);
8169}
8170
8171/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8172 Process compilation unit THIS_CU for a psymtab. */
8173
8174static void
8175process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8176 int want_partial_unit,
8177 enum language pretend_language)
8178{
8179 /* If this compilation unit was already read in, free the
8180 cached copy in order to read it in again. This is
8181 necessary because we skipped some symbols when we first
8182 read in the compilation unit (see load_partial_dies).
8183 This problem could be avoided, but the benefit is unclear. */
8184 if (this_cu->cu != NULL)
8185 free_one_cached_comp_unit (this_cu);
8186
8187 if (this_cu->is_debug_types)
8188 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8189 build_type_psymtabs_reader, NULL);
8190 else
8191 {
8192 process_psymtab_comp_unit_data info;
8193 info.want_partial_unit = want_partial_unit;
8194 info.pretend_language = pretend_language;
8195 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8196 process_psymtab_comp_unit_reader, &info);
8197 }
8198
8199 /* Age out any secondary CUs. */
8200 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8201}
8202
8203/* Reader function for build_type_psymtabs. */
8204
8205static void
8206build_type_psymtabs_reader (const struct die_reader_specs *reader,
8207 const gdb_byte *info_ptr,
8208 struct die_info *type_unit_die,
8209 int has_children,
8210 void *data)
8211{
8212 struct dwarf2_per_objfile *dwarf2_per_objfile
8213 = reader->cu->per_cu->dwarf2_per_objfile;
8214 struct objfile *objfile = dwarf2_per_objfile->objfile;
8215 struct dwarf2_cu *cu = reader->cu;
8216 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8217 struct signatured_type *sig_type;
8218 struct type_unit_group *tu_group;
8219 struct attribute *attr;
8220 struct partial_die_info *first_die;
8221 CORE_ADDR lowpc, highpc;
8222 struct partial_symtab *pst;
8223
8224 gdb_assert (data == NULL);
8225 gdb_assert (per_cu->is_debug_types);
8226 sig_type = (struct signatured_type *) per_cu;
8227
8228 if (! has_children)
8229 return;
8230
8231 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8232 tu_group = get_type_unit_group (cu, attr);
8233
8234 if (tu_group->tus == nullptr)
8235 tu_group->tus = new std::vector<signatured_type *>;
8236 tu_group->tus->push_back (sig_type);
8237
8238 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8239 pst = create_partial_symtab (per_cu, "");
8240 pst->anonymous = 1;
8241
8242 first_die = load_partial_dies (reader, info_ptr, 1);
8243
8244 lowpc = (CORE_ADDR) -1;
8245 highpc = (CORE_ADDR) 0;
8246 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8247
8248 end_psymtab_common (objfile, pst);
8249}
8250
8251/* Struct used to sort TUs by their abbreviation table offset. */
8252
8253struct tu_abbrev_offset
8254{
8255 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8256 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8257 {}
8258
8259 signatured_type *sig_type;
8260 sect_offset abbrev_offset;
8261};
8262
8263/* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8264
8265static bool
8266sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8267 const struct tu_abbrev_offset &b)
8268{
8269 return a.abbrev_offset < b.abbrev_offset;
8270}
8271
8272/* Efficiently read all the type units.
8273 This does the bulk of the work for build_type_psymtabs.
8274
8275 The efficiency is because we sort TUs by the abbrev table they use and
8276 only read each abbrev table once. In one program there are 200K TUs
8277 sharing 8K abbrev tables.
8278
8279 The main purpose of this function is to support building the
8280 dwarf2_per_objfile->type_unit_groups table.
8281 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8282 can collapse the search space by grouping them by stmt_list.
8283 The savings can be significant, in the same program from above the 200K TUs
8284 share 8K stmt_list tables.
8285
8286 FUNC is expected to call get_type_unit_group, which will create the
8287 struct type_unit_group if necessary and add it to
8288 dwarf2_per_objfile->type_unit_groups. */
8289
8290static void
8291build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8292{
8293 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8294 abbrev_table_up abbrev_table;
8295 sect_offset abbrev_offset;
8296
8297 /* It's up to the caller to not call us multiple times. */
8298 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8299
8300 if (dwarf2_per_objfile->all_type_units.empty ())
8301 return;
8302
8303 /* TUs typically share abbrev tables, and there can be way more TUs than
8304 abbrev tables. Sort by abbrev table to reduce the number of times we
8305 read each abbrev table in.
8306 Alternatives are to punt or to maintain a cache of abbrev tables.
8307 This is simpler and efficient enough for now.
8308
8309 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8310 symtab to use). Typically TUs with the same abbrev offset have the same
8311 stmt_list value too so in practice this should work well.
8312
8313 The basic algorithm here is:
8314
8315 sort TUs by abbrev table
8316 for each TU with same abbrev table:
8317 read abbrev table if first user
8318 read TU top level DIE
8319 [IWBN if DWO skeletons had DW_AT_stmt_list]
8320 call FUNC */
8321
8322 if (dwarf_read_debug)
8323 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8324
8325 /* Sort in a separate table to maintain the order of all_type_units
8326 for .gdb_index: TU indices directly index all_type_units. */
8327 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8328 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8329
8330 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8331 sorted_by_abbrev.emplace_back
8332 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8333 sig_type->per_cu.section,
8334 sig_type->per_cu.sect_off));
8335
8336 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8337 sort_tu_by_abbrev_offset);
8338
8339 abbrev_offset = (sect_offset) ~(unsigned) 0;
8340
8341 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8342 {
8343 /* Switch to the next abbrev table if necessary. */
8344 if (abbrev_table == NULL
8345 || tu.abbrev_offset != abbrev_offset)
8346 {
8347 abbrev_offset = tu.abbrev_offset;
8348 abbrev_table =
8349 abbrev_table_read_table (dwarf2_per_objfile,
8350 &dwarf2_per_objfile->abbrev,
8351 abbrev_offset);
8352 ++tu_stats->nr_uniq_abbrev_tables;
8353 }
8354
8355 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8356 0, 0, false, build_type_psymtabs_reader, NULL);
8357 }
8358}
8359
8360/* Print collected type unit statistics. */
8361
8362static void
8363print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8364{
8365 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8366
8367 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8368 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8369 dwarf2_per_objfile->all_type_units.size ());
8370 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8371 tu_stats->nr_uniq_abbrev_tables);
8372 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8373 tu_stats->nr_symtabs);
8374 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8375 tu_stats->nr_symtab_sharers);
8376 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8377 tu_stats->nr_stmt_less_type_units);
8378 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8379 tu_stats->nr_all_type_units_reallocs);
8380}
8381
8382/* Traversal function for build_type_psymtabs. */
8383
8384static int
8385build_type_psymtab_dependencies (void **slot, void *info)
8386{
8387 struct dwarf2_per_objfile *dwarf2_per_objfile
8388 = (struct dwarf2_per_objfile *) info;
8389 struct objfile *objfile = dwarf2_per_objfile->objfile;
8390 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8391 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8392 struct partial_symtab *pst = per_cu->v.psymtab;
8393 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8394 int i;
8395
8396 gdb_assert (len > 0);
8397 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8398
8399 pst->number_of_dependencies = len;
8400 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8401 for (i = 0; i < len; ++i)
8402 {
8403 struct signatured_type *iter = tu_group->tus->at (i);
8404 gdb_assert (iter->per_cu.is_debug_types);
8405 pst->dependencies[i] = iter->per_cu.v.psymtab;
8406 iter->type_unit_group = tu_group;
8407 }
8408
8409 delete tu_group->tus;
8410 tu_group->tus = nullptr;
8411
8412 return 1;
8413}
8414
8415/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8416 Build partial symbol tables for the .debug_types comp-units. */
8417
8418static void
8419build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8420{
8421 if (! create_all_type_units (dwarf2_per_objfile))
8422 return;
8423
8424 build_type_psymtabs_1 (dwarf2_per_objfile);
8425}
8426
8427/* Traversal function for process_skeletonless_type_unit.
8428 Read a TU in a DWO file and build partial symbols for it. */
8429
8430static int
8431process_skeletonless_type_unit (void **slot, void *info)
8432{
8433 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8434 struct dwarf2_per_objfile *dwarf2_per_objfile
8435 = (struct dwarf2_per_objfile *) info;
8436 struct signatured_type find_entry, *entry;
8437
8438 /* If this TU doesn't exist in the global table, add it and read it in. */
8439
8440 if (dwarf2_per_objfile->signatured_types == NULL)
8441 {
8442 dwarf2_per_objfile->signatured_types
8443 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8444 }
8445
8446 find_entry.signature = dwo_unit->signature;
8447 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8448 INSERT);
8449 /* If we've already seen this type there's nothing to do. What's happening
8450 is we're doing our own version of comdat-folding here. */
8451 if (*slot != NULL)
8452 return 1;
8453
8454 /* This does the job that create_all_type_units would have done for
8455 this TU. */
8456 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8457 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8458 *slot = entry;
8459
8460 /* This does the job that build_type_psymtabs_1 would have done. */
8461 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8462 build_type_psymtabs_reader, NULL);
8463
8464 return 1;
8465}
8466
8467/* Traversal function for process_skeletonless_type_units. */
8468
8469static int
8470process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8471{
8472 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8473
8474 if (dwo_file->tus != NULL)
8475 {
8476 htab_traverse_noresize (dwo_file->tus,
8477 process_skeletonless_type_unit, info);
8478 }
8479
8480 return 1;
8481}
8482
8483/* Scan all TUs of DWO files, verifying we've processed them.
8484 This is needed in case a TU was emitted without its skeleton.
8485 Note: This can't be done until we know what all the DWO files are. */
8486
8487static void
8488process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8489{
8490 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8491 if (get_dwp_file (dwarf2_per_objfile) == NULL
8492 && dwarf2_per_objfile->dwo_files != NULL)
8493 {
8494 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8495 process_dwo_file_for_skeletonless_type_units,
8496 dwarf2_per_objfile);
8497 }
8498}
8499
8500/* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8501
8502static void
8503set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8504{
8505 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8506 {
8507 struct partial_symtab *pst = per_cu->v.psymtab;
8508
8509 if (pst == NULL)
8510 continue;
8511
8512 for (int j = 0; j < pst->number_of_dependencies; ++j)
8513 {
8514 /* Set the 'user' field only if it is not already set. */
8515 if (pst->dependencies[j]->user == NULL)
8516 pst->dependencies[j]->user = pst;
8517 }
8518 }
8519}
8520
8521/* Build the partial symbol table by doing a quick pass through the
8522 .debug_info and .debug_abbrev sections. */
8523
8524static void
8525dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8526{
8527 struct objfile *objfile = dwarf2_per_objfile->objfile;
8528
8529 if (dwarf_read_debug)
8530 {
8531 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8532 objfile_name (objfile));
8533 }
8534
8535 dwarf2_per_objfile->reading_partial_symbols = 1;
8536
8537 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8538
8539 /* Any cached compilation units will be linked by the per-objfile
8540 read_in_chain. Make sure to free them when we're done. */
8541 free_cached_comp_units freer (dwarf2_per_objfile);
8542
8543 build_type_psymtabs (dwarf2_per_objfile);
8544
8545 create_all_comp_units (dwarf2_per_objfile);
8546
8547 /* Create a temporary address map on a temporary obstack. We later
8548 copy this to the final obstack. */
8549 auto_obstack temp_obstack;
8550
8551 scoped_restore save_psymtabs_addrmap
8552 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8553 addrmap_create_mutable (&temp_obstack));
8554
8555 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8556 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8557
8558 /* This has to wait until we read the CUs, we need the list of DWOs. */
8559 process_skeletonless_type_units (dwarf2_per_objfile);
8560
8561 /* Now that all TUs have been processed we can fill in the dependencies. */
8562 if (dwarf2_per_objfile->type_unit_groups != NULL)
8563 {
8564 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8565 build_type_psymtab_dependencies, dwarf2_per_objfile);
8566 }
8567
8568 if (dwarf_read_debug)
8569 print_tu_stats (dwarf2_per_objfile);
8570
8571 set_partial_user (dwarf2_per_objfile);
8572
8573 objfile->partial_symtabs->psymtabs_addrmap
8574 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8575 objfile->partial_symtabs->obstack ());
8576 /* At this point we want to keep the address map. */
8577 save_psymtabs_addrmap.release ();
8578
8579 if (dwarf_read_debug)
8580 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8581 objfile_name (objfile));
8582}
8583
8584/* die_reader_func for load_partial_comp_unit. */
8585
8586static void
8587load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8588 const gdb_byte *info_ptr,
8589 struct die_info *comp_unit_die,
8590 int has_children,
8591 void *data)
8592{
8593 struct dwarf2_cu *cu = reader->cu;
8594
8595 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8596
8597 /* Check if comp unit has_children.
8598 If so, read the rest of the partial symbols from this comp unit.
8599 If not, there's no more debug_info for this comp unit. */
8600 if (has_children)
8601 load_partial_dies (reader, info_ptr, 0);
8602}
8603
8604/* Load the partial DIEs for a secondary CU into memory.
8605 This is also used when rereading a primary CU with load_all_dies. */
8606
8607static void
8608load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8609{
8610 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8611 load_partial_comp_unit_reader, NULL);
8612}
8613
8614static void
8615read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8616 struct dwarf2_section_info *section,
8617 struct dwarf2_section_info *abbrev_section,
8618 unsigned int is_dwz)
8619{
8620 const gdb_byte *info_ptr;
8621 struct objfile *objfile = dwarf2_per_objfile->objfile;
8622
8623 if (dwarf_read_debug)
8624 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8625 get_section_name (section),
8626 get_section_file_name (section));
8627
8628 dwarf2_read_section (objfile, section);
8629
8630 info_ptr = section->buffer;
8631
8632 while (info_ptr < section->buffer + section->size)
8633 {
8634 struct dwarf2_per_cu_data *this_cu;
8635
8636 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8637
8638 comp_unit_head cu_header;
8639 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8640 abbrev_section, info_ptr,
8641 rcuh_kind::COMPILE);
8642
8643 /* Save the compilation unit for later lookup. */
8644 if (cu_header.unit_type != DW_UT_type)
8645 {
8646 this_cu = XOBNEW (&objfile->objfile_obstack,
8647 struct dwarf2_per_cu_data);
8648 memset (this_cu, 0, sizeof (*this_cu));
8649 }
8650 else
8651 {
8652 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8653 struct signatured_type);
8654 memset (sig_type, 0, sizeof (*sig_type));
8655 sig_type->signature = cu_header.signature;
8656 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8657 this_cu = &sig_type->per_cu;
8658 }
8659 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8660 this_cu->sect_off = sect_off;
8661 this_cu->length = cu_header.length + cu_header.initial_length_size;
8662 this_cu->is_dwz = is_dwz;
8663 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8664 this_cu->section = section;
8665
8666 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8667
8668 info_ptr = info_ptr + this_cu->length;
8669 }
8670}
8671
8672/* Create a list of all compilation units in OBJFILE.
8673 This is only done for -readnow and building partial symtabs. */
8674
8675static void
8676create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8677{
8678 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8679 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8680 &dwarf2_per_objfile->abbrev, 0);
8681
8682 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8683 if (dwz != NULL)
8684 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8685 1);
8686}
8687
8688/* Process all loaded DIEs for compilation unit CU, starting at
8689 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8690 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8691 DW_AT_ranges). See the comments of add_partial_subprogram on how
8692 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8693
8694static void
8695scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8696 CORE_ADDR *highpc, int set_addrmap,
8697 struct dwarf2_cu *cu)
8698{
8699 struct partial_die_info *pdi;
8700
8701 /* Now, march along the PDI's, descending into ones which have
8702 interesting children but skipping the children of the other ones,
8703 until we reach the end of the compilation unit. */
8704
8705 pdi = first_die;
8706
8707 while (pdi != NULL)
8708 {
8709 pdi->fixup (cu);
8710
8711 /* Anonymous namespaces or modules have no name but have interesting
8712 children, so we need to look at them. Ditto for anonymous
8713 enums. */
8714
8715 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8716 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8717 || pdi->tag == DW_TAG_imported_unit
8718 || pdi->tag == DW_TAG_inlined_subroutine)
8719 {
8720 switch (pdi->tag)
8721 {
8722 case DW_TAG_subprogram:
8723 case DW_TAG_inlined_subroutine:
8724 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8725 break;
8726 case DW_TAG_constant:
8727 case DW_TAG_variable:
8728 case DW_TAG_typedef:
8729 case DW_TAG_union_type:
8730 if (!pdi->is_declaration)
8731 {
8732 add_partial_symbol (pdi, cu);
8733 }
8734 break;
8735 case DW_TAG_class_type:
8736 case DW_TAG_interface_type:
8737 case DW_TAG_structure_type:
8738 if (!pdi->is_declaration)
8739 {
8740 add_partial_symbol (pdi, cu);
8741 }
8742 if ((cu->language == language_rust
8743 || cu->language == language_cplus) && pdi->has_children)
8744 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8745 set_addrmap, cu);
8746 break;
8747 case DW_TAG_enumeration_type:
8748 if (!pdi->is_declaration)
8749 add_partial_enumeration (pdi, cu);
8750 break;
8751 case DW_TAG_base_type:
8752 case DW_TAG_subrange_type:
8753 /* File scope base type definitions are added to the partial
8754 symbol table. */
8755 add_partial_symbol (pdi, cu);
8756 break;
8757 case DW_TAG_namespace:
8758 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8759 break;
8760 case DW_TAG_module:
8761 if (!pdi->is_declaration)
8762 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8763 break;
8764 case DW_TAG_imported_unit:
8765 {
8766 struct dwarf2_per_cu_data *per_cu;
8767
8768 /* For now we don't handle imported units in type units. */
8769 if (cu->per_cu->is_debug_types)
8770 {
8771 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8772 " supported in type units [in module %s]"),
8773 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8774 }
8775
8776 per_cu = dwarf2_find_containing_comp_unit
8777 (pdi->d.sect_off, pdi->is_dwz,
8778 cu->per_cu->dwarf2_per_objfile);
8779
8780 /* Go read the partial unit, if needed. */
8781 if (per_cu->v.psymtab == NULL)
8782 process_psymtab_comp_unit (per_cu, 1, cu->language);
8783
8784 cu->per_cu->imported_symtabs_push (per_cu);
8785 }
8786 break;
8787 case DW_TAG_imported_declaration:
8788 add_partial_symbol (pdi, cu);
8789 break;
8790 default:
8791 break;
8792 }
8793 }
8794
8795 /* If the die has a sibling, skip to the sibling. */
8796
8797 pdi = pdi->die_sibling;
8798 }
8799}
8800
8801/* Functions used to compute the fully scoped name of a partial DIE.
8802
8803 Normally, this is simple. For C++, the parent DIE's fully scoped
8804 name is concatenated with "::" and the partial DIE's name.
8805 Enumerators are an exception; they use the scope of their parent
8806 enumeration type, i.e. the name of the enumeration type is not
8807 prepended to the enumerator.
8808
8809 There are two complexities. One is DW_AT_specification; in this
8810 case "parent" means the parent of the target of the specification,
8811 instead of the direct parent of the DIE. The other is compilers
8812 which do not emit DW_TAG_namespace; in this case we try to guess
8813 the fully qualified name of structure types from their members'
8814 linkage names. This must be done using the DIE's children rather
8815 than the children of any DW_AT_specification target. We only need
8816 to do this for structures at the top level, i.e. if the target of
8817 any DW_AT_specification (if any; otherwise the DIE itself) does not
8818 have a parent. */
8819
8820/* Compute the scope prefix associated with PDI's parent, in
8821 compilation unit CU. The result will be allocated on CU's
8822 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8823 field. NULL is returned if no prefix is necessary. */
8824static const char *
8825partial_die_parent_scope (struct partial_die_info *pdi,
8826 struct dwarf2_cu *cu)
8827{
8828 const char *grandparent_scope;
8829 struct partial_die_info *parent, *real_pdi;
8830
8831 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8832 then this means the parent of the specification DIE. */
8833
8834 real_pdi = pdi;
8835 while (real_pdi->has_specification)
8836 {
8837 auto res = find_partial_die (real_pdi->spec_offset,
8838 real_pdi->spec_is_dwz, cu);
8839 real_pdi = res.pdi;
8840 cu = res.cu;
8841 }
8842
8843 parent = real_pdi->die_parent;
8844 if (parent == NULL)
8845 return NULL;
8846
8847 if (parent->scope_set)
8848 return parent->scope;
8849
8850 parent->fixup (cu);
8851
8852 grandparent_scope = partial_die_parent_scope (parent, cu);
8853
8854 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8855 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8856 Work around this problem here. */
8857 if (cu->language == language_cplus
8858 && parent->tag == DW_TAG_namespace
8859 && strcmp (parent->name, "::") == 0
8860 && grandparent_scope == NULL)
8861 {
8862 parent->scope = NULL;
8863 parent->scope_set = 1;
8864 return NULL;
8865 }
8866
8867 /* Nested subroutines in Fortran get a prefix. */
8868 if (pdi->tag == DW_TAG_enumerator)
8869 /* Enumerators should not get the name of the enumeration as a prefix. */
8870 parent->scope = grandparent_scope;
8871 else if (parent->tag == DW_TAG_namespace
8872 || parent->tag == DW_TAG_module
8873 || parent->tag == DW_TAG_structure_type
8874 || parent->tag == DW_TAG_class_type
8875 || parent->tag == DW_TAG_interface_type
8876 || parent->tag == DW_TAG_union_type
8877 || parent->tag == DW_TAG_enumeration_type
8878 || (cu->language == language_fortran
8879 && parent->tag == DW_TAG_subprogram
8880 && pdi->tag == DW_TAG_subprogram))
8881 {
8882 if (grandparent_scope == NULL)
8883 parent->scope = parent->name;
8884 else
8885 parent->scope = typename_concat (&cu->comp_unit_obstack,
8886 grandparent_scope,
8887 parent->name, 0, cu);
8888 }
8889 else
8890 {
8891 /* FIXME drow/2004-04-01: What should we be doing with
8892 function-local names? For partial symbols, we should probably be
8893 ignoring them. */
8894 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8895 dwarf_tag_name (parent->tag),
8896 sect_offset_str (pdi->sect_off));
8897 parent->scope = grandparent_scope;
8898 }
8899
8900 parent->scope_set = 1;
8901 return parent->scope;
8902}
8903
8904/* Return the fully scoped name associated with PDI, from compilation unit
8905 CU. The result will be allocated with malloc. */
8906
8907static char *
8908partial_die_full_name (struct partial_die_info *pdi,
8909 struct dwarf2_cu *cu)
8910{
8911 const char *parent_scope;
8912
8913 /* If this is a template instantiation, we can not work out the
8914 template arguments from partial DIEs. So, unfortunately, we have
8915 to go through the full DIEs. At least any work we do building
8916 types here will be reused if full symbols are loaded later. */
8917 if (pdi->has_template_arguments)
8918 {
8919 pdi->fixup (cu);
8920
8921 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8922 {
8923 struct die_info *die;
8924 struct attribute attr;
8925 struct dwarf2_cu *ref_cu = cu;
8926
8927 /* DW_FORM_ref_addr is using section offset. */
8928 attr.name = (enum dwarf_attribute) 0;
8929 attr.form = DW_FORM_ref_addr;
8930 attr.u.unsnd = to_underlying (pdi->sect_off);
8931 die = follow_die_ref (NULL, &attr, &ref_cu);
8932
8933 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8934 }
8935 }
8936
8937 parent_scope = partial_die_parent_scope (pdi, cu);
8938 if (parent_scope == NULL)
8939 return NULL;
8940 else
8941 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8942}
8943
8944static void
8945add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8946{
8947 struct dwarf2_per_objfile *dwarf2_per_objfile
8948 = cu->per_cu->dwarf2_per_objfile;
8949 struct objfile *objfile = dwarf2_per_objfile->objfile;
8950 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8951 CORE_ADDR addr = 0;
8952 const char *actual_name = NULL;
8953 CORE_ADDR baseaddr;
8954 char *built_actual_name;
8955
8956 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8957
8958 built_actual_name = partial_die_full_name (pdi, cu);
8959 if (built_actual_name != NULL)
8960 actual_name = built_actual_name;
8961
8962 if (actual_name == NULL)
8963 actual_name = pdi->name;
8964
8965 switch (pdi->tag)
8966 {
8967 case DW_TAG_inlined_subroutine:
8968 case DW_TAG_subprogram:
8969 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8970 - baseaddr);
8971 if (pdi->is_external
8972 || cu->language == language_ada
8973 || (cu->language == language_fortran
8974 && pdi->die_parent != NULL
8975 && pdi->die_parent->tag == DW_TAG_subprogram))
8976 {
8977 /* Normally, only "external" DIEs are part of the global scope.
8978 But in Ada and Fortran, we want to be able to access nested
8979 procedures globally. So all Ada and Fortran subprograms are
8980 stored in the global scope. */
8981 add_psymbol_to_list (actual_name,
8982 built_actual_name != NULL,
8983 VAR_DOMAIN, LOC_BLOCK,
8984 SECT_OFF_TEXT (objfile),
8985 psymbol_placement::GLOBAL,
8986 addr,
8987 cu->language, objfile);
8988 }
8989 else
8990 {
8991 add_psymbol_to_list (actual_name,
8992 built_actual_name != NULL,
8993 VAR_DOMAIN, LOC_BLOCK,
8994 SECT_OFF_TEXT (objfile),
8995 psymbol_placement::STATIC,
8996 addr, cu->language, objfile);
8997 }
8998
8999 if (pdi->main_subprogram && actual_name != NULL)
9000 set_objfile_main_name (objfile, actual_name, cu->language);
9001 break;
9002 case DW_TAG_constant:
9003 add_psymbol_to_list (actual_name,
9004 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9005 -1, (pdi->is_external
9006 ? psymbol_placement::GLOBAL
9007 : psymbol_placement::STATIC),
9008 0, cu->language, objfile);
9009 break;
9010 case DW_TAG_variable:
9011 if (pdi->d.locdesc)
9012 addr = decode_locdesc (pdi->d.locdesc, cu);
9013
9014 if (pdi->d.locdesc
9015 && addr == 0
9016 && !dwarf2_per_objfile->has_section_at_zero)
9017 {
9018 /* A global or static variable may also have been stripped
9019 out by the linker if unused, in which case its address
9020 will be nullified; do not add such variables into partial
9021 symbol table then. */
9022 }
9023 else if (pdi->is_external)
9024 {
9025 /* Global Variable.
9026 Don't enter into the minimal symbol tables as there is
9027 a minimal symbol table entry from the ELF symbols already.
9028 Enter into partial symbol table if it has a location
9029 descriptor or a type.
9030 If the location descriptor is missing, new_symbol will create
9031 a LOC_UNRESOLVED symbol, the address of the variable will then
9032 be determined from the minimal symbol table whenever the variable
9033 is referenced.
9034 The address for the partial symbol table entry is not
9035 used by GDB, but it comes in handy for debugging partial symbol
9036 table building. */
9037
9038 if (pdi->d.locdesc || pdi->has_type)
9039 add_psymbol_to_list (actual_name,
9040 built_actual_name != NULL,
9041 VAR_DOMAIN, LOC_STATIC,
9042 SECT_OFF_TEXT (objfile),
9043 psymbol_placement::GLOBAL,
9044 addr, cu->language, objfile);
9045 }
9046 else
9047 {
9048 int has_loc = pdi->d.locdesc != NULL;
9049
9050 /* Static Variable. Skip symbols whose value we cannot know (those
9051 without location descriptors or constant values). */
9052 if (!has_loc && !pdi->has_const_value)
9053 {
9054 xfree (built_actual_name);
9055 return;
9056 }
9057
9058 add_psymbol_to_list (actual_name,
9059 built_actual_name != NULL,
9060 VAR_DOMAIN, LOC_STATIC,
9061 SECT_OFF_TEXT (objfile),
9062 psymbol_placement::STATIC,
9063 has_loc ? addr : 0,
9064 cu->language, objfile);
9065 }
9066 break;
9067 case DW_TAG_typedef:
9068 case DW_TAG_base_type:
9069 case DW_TAG_subrange_type:
9070 add_psymbol_to_list (actual_name,
9071 built_actual_name != NULL,
9072 VAR_DOMAIN, LOC_TYPEDEF, -1,
9073 psymbol_placement::STATIC,
9074 0, cu->language, objfile);
9075 break;
9076 case DW_TAG_imported_declaration:
9077 case DW_TAG_namespace:
9078 add_psymbol_to_list (actual_name,
9079 built_actual_name != NULL,
9080 VAR_DOMAIN, LOC_TYPEDEF, -1,
9081 psymbol_placement::GLOBAL,
9082 0, cu->language, objfile);
9083 break;
9084 case DW_TAG_module:
9085 /* With Fortran 77 there might be a "BLOCK DATA" module
9086 available without any name. If so, we skip the module as it
9087 doesn't bring any value. */
9088 if (actual_name != nullptr)
9089 add_psymbol_to_list (actual_name,
9090 built_actual_name != NULL,
9091 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9092 psymbol_placement::GLOBAL,
9093 0, cu->language, objfile);
9094 break;
9095 case DW_TAG_class_type:
9096 case DW_TAG_interface_type:
9097 case DW_TAG_structure_type:
9098 case DW_TAG_union_type:
9099 case DW_TAG_enumeration_type:
9100 /* Skip external references. The DWARF standard says in the section
9101 about "Structure, Union, and Class Type Entries": "An incomplete
9102 structure, union or class type is represented by a structure,
9103 union or class entry that does not have a byte size attribute
9104 and that has a DW_AT_declaration attribute." */
9105 if (!pdi->has_byte_size && pdi->is_declaration)
9106 {
9107 xfree (built_actual_name);
9108 return;
9109 }
9110
9111 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9112 static vs. global. */
9113 add_psymbol_to_list (actual_name,
9114 built_actual_name != NULL,
9115 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9116 cu->language == language_cplus
9117 ? psymbol_placement::GLOBAL
9118 : psymbol_placement::STATIC,
9119 0, cu->language, objfile);
9120
9121 break;
9122 case DW_TAG_enumerator:
9123 add_psymbol_to_list (actual_name,
9124 built_actual_name != NULL,
9125 VAR_DOMAIN, LOC_CONST, -1,
9126 cu->language == language_cplus
9127 ? psymbol_placement::GLOBAL
9128 : psymbol_placement::STATIC,
9129 0, cu->language, objfile);
9130 break;
9131 default:
9132 break;
9133 }
9134
9135 xfree (built_actual_name);
9136}
9137
9138/* Read a partial die corresponding to a namespace; also, add a symbol
9139 corresponding to that namespace to the symbol table. NAMESPACE is
9140 the name of the enclosing namespace. */
9141
9142static void
9143add_partial_namespace (struct partial_die_info *pdi,
9144 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9145 int set_addrmap, struct dwarf2_cu *cu)
9146{
9147 /* Add a symbol for the namespace. */
9148
9149 add_partial_symbol (pdi, cu);
9150
9151 /* Now scan partial symbols in that namespace. */
9152
9153 if (pdi->has_children)
9154 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9155}
9156
9157/* Read a partial die corresponding to a Fortran module. */
9158
9159static void
9160add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9161 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9162{
9163 /* Add a symbol for the namespace. */
9164
9165 add_partial_symbol (pdi, cu);
9166
9167 /* Now scan partial symbols in that module. */
9168
9169 if (pdi->has_children)
9170 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9171}
9172
9173/* Read a partial die corresponding to a subprogram or an inlined
9174 subprogram and create a partial symbol for that subprogram.
9175 When the CU language allows it, this routine also defines a partial
9176 symbol for each nested subprogram that this subprogram contains.
9177 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9178 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9179
9180 PDI may also be a lexical block, in which case we simply search
9181 recursively for subprograms defined inside that lexical block.
9182 Again, this is only performed when the CU language allows this
9183 type of definitions. */
9184
9185static void
9186add_partial_subprogram (struct partial_die_info *pdi,
9187 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9188 int set_addrmap, struct dwarf2_cu *cu)
9189{
9190 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9191 {
9192 if (pdi->has_pc_info)
9193 {
9194 if (pdi->lowpc < *lowpc)
9195 *lowpc = pdi->lowpc;
9196 if (pdi->highpc > *highpc)
9197 *highpc = pdi->highpc;
9198 if (set_addrmap)
9199 {
9200 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9202 CORE_ADDR baseaddr;
9203 CORE_ADDR this_highpc;
9204 CORE_ADDR this_lowpc;
9205
9206 baseaddr = ANOFFSET (objfile->section_offsets,
9207 SECT_OFF_TEXT (objfile));
9208 this_lowpc
9209 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9210 pdi->lowpc + baseaddr)
9211 - baseaddr);
9212 this_highpc
9213 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9214 pdi->highpc + baseaddr)
9215 - baseaddr);
9216 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9217 this_lowpc, this_highpc - 1,
9218 cu->per_cu->v.psymtab);
9219 }
9220 }
9221
9222 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9223 {
9224 if (!pdi->is_declaration)
9225 /* Ignore subprogram DIEs that do not have a name, they are
9226 illegal. Do not emit a complaint at this point, we will
9227 do so when we convert this psymtab into a symtab. */
9228 if (pdi->name)
9229 add_partial_symbol (pdi, cu);
9230 }
9231 }
9232
9233 if (! pdi->has_children)
9234 return;
9235
9236 if (cu->language == language_ada || cu->language == language_fortran)
9237 {
9238 pdi = pdi->die_child;
9239 while (pdi != NULL)
9240 {
9241 pdi->fixup (cu);
9242 if (pdi->tag == DW_TAG_subprogram
9243 || pdi->tag == DW_TAG_inlined_subroutine
9244 || pdi->tag == DW_TAG_lexical_block)
9245 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9246 pdi = pdi->die_sibling;
9247 }
9248 }
9249}
9250
9251/* Read a partial die corresponding to an enumeration type. */
9252
9253static void
9254add_partial_enumeration (struct partial_die_info *enum_pdi,
9255 struct dwarf2_cu *cu)
9256{
9257 struct partial_die_info *pdi;
9258
9259 if (enum_pdi->name != NULL)
9260 add_partial_symbol (enum_pdi, cu);
9261
9262 pdi = enum_pdi->die_child;
9263 while (pdi)
9264 {
9265 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9266 complaint (_("malformed enumerator DIE ignored"));
9267 else
9268 add_partial_symbol (pdi, cu);
9269 pdi = pdi->die_sibling;
9270 }
9271}
9272
9273/* Return the initial uleb128 in the die at INFO_PTR. */
9274
9275static unsigned int
9276peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9277{
9278 unsigned int bytes_read;
9279
9280 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9281}
9282
9283/* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9284 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9285
9286 Return the corresponding abbrev, or NULL if the number is zero (indicating
9287 an empty DIE). In either case *BYTES_READ will be set to the length of
9288 the initial number. */
9289
9290static struct abbrev_info *
9291peek_die_abbrev (const die_reader_specs &reader,
9292 const gdb_byte *info_ptr, unsigned int *bytes_read)
9293{
9294 dwarf2_cu *cu = reader.cu;
9295 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9296 unsigned int abbrev_number
9297 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9298
9299 if (abbrev_number == 0)
9300 return NULL;
9301
9302 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9303 if (!abbrev)
9304 {
9305 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9306 " at offset %s [in module %s]"),
9307 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9308 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9309 }
9310
9311 return abbrev;
9312}
9313
9314/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9315 Returns a pointer to the end of a series of DIEs, terminated by an empty
9316 DIE. Any children of the skipped DIEs will also be skipped. */
9317
9318static const gdb_byte *
9319skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9320{
9321 while (1)
9322 {
9323 unsigned int bytes_read;
9324 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9325
9326 if (abbrev == NULL)
9327 return info_ptr + bytes_read;
9328 else
9329 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9330 }
9331}
9332
9333/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9334 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9335 abbrev corresponding to that skipped uleb128 should be passed in
9336 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9337 children. */
9338
9339static const gdb_byte *
9340skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9341 struct abbrev_info *abbrev)
9342{
9343 unsigned int bytes_read;
9344 struct attribute attr;
9345 bfd *abfd = reader->abfd;
9346 struct dwarf2_cu *cu = reader->cu;
9347 const gdb_byte *buffer = reader->buffer;
9348 const gdb_byte *buffer_end = reader->buffer_end;
9349 unsigned int form, i;
9350
9351 for (i = 0; i < abbrev->num_attrs; i++)
9352 {
9353 /* The only abbrev we care about is DW_AT_sibling. */
9354 if (abbrev->attrs[i].name == DW_AT_sibling)
9355 {
9356 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9357 if (attr.form == DW_FORM_ref_addr)
9358 complaint (_("ignoring absolute DW_AT_sibling"));
9359 else
9360 {
9361 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9362 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9363
9364 if (sibling_ptr < info_ptr)
9365 complaint (_("DW_AT_sibling points backwards"));
9366 else if (sibling_ptr > reader->buffer_end)
9367 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9368 else
9369 return sibling_ptr;
9370 }
9371 }
9372
9373 /* If it isn't DW_AT_sibling, skip this attribute. */
9374 form = abbrev->attrs[i].form;
9375 skip_attribute:
9376 switch (form)
9377 {
9378 case DW_FORM_ref_addr:
9379 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9380 and later it is offset sized. */
9381 if (cu->header.version == 2)
9382 info_ptr += cu->header.addr_size;
9383 else
9384 info_ptr += cu->header.offset_size;
9385 break;
9386 case DW_FORM_GNU_ref_alt:
9387 info_ptr += cu->header.offset_size;
9388 break;
9389 case DW_FORM_addr:
9390 info_ptr += cu->header.addr_size;
9391 break;
9392 case DW_FORM_data1:
9393 case DW_FORM_ref1:
9394 case DW_FORM_flag:
9395 case DW_FORM_strx1:
9396 info_ptr += 1;
9397 break;
9398 case DW_FORM_flag_present:
9399 case DW_FORM_implicit_const:
9400 break;
9401 case DW_FORM_data2:
9402 case DW_FORM_ref2:
9403 case DW_FORM_strx2:
9404 info_ptr += 2;
9405 break;
9406 case DW_FORM_strx3:
9407 info_ptr += 3;
9408 break;
9409 case DW_FORM_data4:
9410 case DW_FORM_ref4:
9411 case DW_FORM_strx4:
9412 info_ptr += 4;
9413 break;
9414 case DW_FORM_data8:
9415 case DW_FORM_ref8:
9416 case DW_FORM_ref_sig8:
9417 info_ptr += 8;
9418 break;
9419 case DW_FORM_data16:
9420 info_ptr += 16;
9421 break;
9422 case DW_FORM_string:
9423 read_direct_string (abfd, info_ptr, &bytes_read);
9424 info_ptr += bytes_read;
9425 break;
9426 case DW_FORM_sec_offset:
9427 case DW_FORM_strp:
9428 case DW_FORM_GNU_strp_alt:
9429 info_ptr += cu->header.offset_size;
9430 break;
9431 case DW_FORM_exprloc:
9432 case DW_FORM_block:
9433 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9434 info_ptr += bytes_read;
9435 break;
9436 case DW_FORM_block1:
9437 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9438 break;
9439 case DW_FORM_block2:
9440 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9441 break;
9442 case DW_FORM_block4:
9443 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9444 break;
9445 case DW_FORM_addrx:
9446 case DW_FORM_strx:
9447 case DW_FORM_sdata:
9448 case DW_FORM_udata:
9449 case DW_FORM_ref_udata:
9450 case DW_FORM_GNU_addr_index:
9451 case DW_FORM_GNU_str_index:
9452 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9453 break;
9454 case DW_FORM_indirect:
9455 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9456 info_ptr += bytes_read;
9457 /* We need to continue parsing from here, so just go back to
9458 the top. */
9459 goto skip_attribute;
9460
9461 default:
9462 error (_("Dwarf Error: Cannot handle %s "
9463 "in DWARF reader [in module %s]"),
9464 dwarf_form_name (form),
9465 bfd_get_filename (abfd));
9466 }
9467 }
9468
9469 if (abbrev->has_children)
9470 return skip_children (reader, info_ptr);
9471 else
9472 return info_ptr;
9473}
9474
9475/* Locate ORIG_PDI's sibling.
9476 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9477
9478static const gdb_byte *
9479locate_pdi_sibling (const struct die_reader_specs *reader,
9480 struct partial_die_info *orig_pdi,
9481 const gdb_byte *info_ptr)
9482{
9483 /* Do we know the sibling already? */
9484
9485 if (orig_pdi->sibling)
9486 return orig_pdi->sibling;
9487
9488 /* Are there any children to deal with? */
9489
9490 if (!orig_pdi->has_children)
9491 return info_ptr;
9492
9493 /* Skip the children the long way. */
9494
9495 return skip_children (reader, info_ptr);
9496}
9497
9498/* Expand this partial symbol table into a full symbol table. SELF is
9499 not NULL. */
9500
9501static void
9502dwarf2_read_symtab (struct partial_symtab *self,
9503 struct objfile *objfile)
9504{
9505 struct dwarf2_per_objfile *dwarf2_per_objfile
9506 = get_dwarf2_per_objfile (objfile);
9507
9508 if (self->readin)
9509 {
9510 warning (_("bug: psymtab for %s is already read in."),
9511 self->filename);
9512 }
9513 else
9514 {
9515 if (info_verbose)
9516 {
9517 printf_filtered (_("Reading in symbols for %s..."),
9518 self->filename);
9519 gdb_flush (gdb_stdout);
9520 }
9521
9522 /* If this psymtab is constructed from a debug-only objfile, the
9523 has_section_at_zero flag will not necessarily be correct. We
9524 can get the correct value for this flag by looking at the data
9525 associated with the (presumably stripped) associated objfile. */
9526 if (objfile->separate_debug_objfile_backlink)
9527 {
9528 struct dwarf2_per_objfile *dpo_backlink
9529 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9530
9531 dwarf2_per_objfile->has_section_at_zero
9532 = dpo_backlink->has_section_at_zero;
9533 }
9534
9535 dwarf2_per_objfile->reading_partial_symbols = 0;
9536
9537 psymtab_to_symtab_1 (self);
9538
9539 /* Finish up the debug error message. */
9540 if (info_verbose)
9541 printf_filtered (_("done.\n"));
9542 }
9543
9544 process_cu_includes (dwarf2_per_objfile);
9545}
9546\f
9547/* Reading in full CUs. */
9548
9549/* Add PER_CU to the queue. */
9550
9551static void
9552queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9553 enum language pretend_language)
9554{
9555 struct dwarf2_queue_item *item;
9556
9557 per_cu->queued = 1;
9558 item = XNEW (struct dwarf2_queue_item);
9559 item->per_cu = per_cu;
9560 item->pretend_language = pretend_language;
9561 item->next = NULL;
9562
9563 if (dwarf2_queue == NULL)
9564 dwarf2_queue = item;
9565 else
9566 dwarf2_queue_tail->next = item;
9567
9568 dwarf2_queue_tail = item;
9569}
9570
9571/* If PER_CU is not yet queued, add it to the queue.
9572 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9573 dependency.
9574 The result is non-zero if PER_CU was queued, otherwise the result is zero
9575 meaning either PER_CU is already queued or it is already loaded.
9576
9577 N.B. There is an invariant here that if a CU is queued then it is loaded.
9578 The caller is required to load PER_CU if we return non-zero. */
9579
9580static int
9581maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9582 struct dwarf2_per_cu_data *per_cu,
9583 enum language pretend_language)
9584{
9585 /* We may arrive here during partial symbol reading, if we need full
9586 DIEs to process an unusual case (e.g. template arguments). Do
9587 not queue PER_CU, just tell our caller to load its DIEs. */
9588 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9589 {
9590 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9591 return 1;
9592 return 0;
9593 }
9594
9595 /* Mark the dependence relation so that we don't flush PER_CU
9596 too early. */
9597 if (dependent_cu != NULL)
9598 dwarf2_add_dependence (dependent_cu, per_cu);
9599
9600 /* If it's already on the queue, we have nothing to do. */
9601 if (per_cu->queued)
9602 return 0;
9603
9604 /* If the compilation unit is already loaded, just mark it as
9605 used. */
9606 if (per_cu->cu != NULL)
9607 {
9608 per_cu->cu->last_used = 0;
9609 return 0;
9610 }
9611
9612 /* Add it to the queue. */
9613 queue_comp_unit (per_cu, pretend_language);
9614
9615 return 1;
9616}
9617
9618/* Process the queue. */
9619
9620static void
9621process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9622{
9623 struct dwarf2_queue_item *item, *next_item;
9624
9625 if (dwarf_read_debug)
9626 {
9627 fprintf_unfiltered (gdb_stdlog,
9628 "Expanding one or more symtabs of objfile %s ...\n",
9629 objfile_name (dwarf2_per_objfile->objfile));
9630 }
9631
9632 /* The queue starts out with one item, but following a DIE reference
9633 may load a new CU, adding it to the end of the queue. */
9634 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9635 {
9636 if ((dwarf2_per_objfile->using_index
9637 ? !item->per_cu->v.quick->compunit_symtab
9638 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9639 /* Skip dummy CUs. */
9640 && item->per_cu->cu != NULL)
9641 {
9642 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9643 unsigned int debug_print_threshold;
9644 char buf[100];
9645
9646 if (per_cu->is_debug_types)
9647 {
9648 struct signatured_type *sig_type =
9649 (struct signatured_type *) per_cu;
9650
9651 sprintf (buf, "TU %s at offset %s",
9652 hex_string (sig_type->signature),
9653 sect_offset_str (per_cu->sect_off));
9654 /* There can be 100s of TUs.
9655 Only print them in verbose mode. */
9656 debug_print_threshold = 2;
9657 }
9658 else
9659 {
9660 sprintf (buf, "CU at offset %s",
9661 sect_offset_str (per_cu->sect_off));
9662 debug_print_threshold = 1;
9663 }
9664
9665 if (dwarf_read_debug >= debug_print_threshold)
9666 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9667
9668 if (per_cu->is_debug_types)
9669 process_full_type_unit (per_cu, item->pretend_language);
9670 else
9671 process_full_comp_unit (per_cu, item->pretend_language);
9672
9673 if (dwarf_read_debug >= debug_print_threshold)
9674 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9675 }
9676
9677 item->per_cu->queued = 0;
9678 next_item = item->next;
9679 xfree (item);
9680 }
9681
9682 dwarf2_queue_tail = NULL;
9683
9684 if (dwarf_read_debug)
9685 {
9686 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9687 objfile_name (dwarf2_per_objfile->objfile));
9688 }
9689}
9690
9691/* Read in full symbols for PST, and anything it depends on. */
9692
9693static void
9694psymtab_to_symtab_1 (struct partial_symtab *pst)
9695{
9696 struct dwarf2_per_cu_data *per_cu;
9697 int i;
9698
9699 if (pst->readin)
9700 return;
9701
9702 for (i = 0; i < pst->number_of_dependencies; i++)
9703 if (!pst->dependencies[i]->readin
9704 && pst->dependencies[i]->user == NULL)
9705 {
9706 /* Inform about additional files that need to be read in. */
9707 if (info_verbose)
9708 {
9709 /* FIXME: i18n: Need to make this a single string. */
9710 fputs_filtered (" ", gdb_stdout);
9711 wrap_here ("");
9712 fputs_filtered ("and ", gdb_stdout);
9713 wrap_here ("");
9714 printf_filtered ("%s...", pst->dependencies[i]->filename);
9715 wrap_here (""); /* Flush output. */
9716 gdb_flush (gdb_stdout);
9717 }
9718 psymtab_to_symtab_1 (pst->dependencies[i]);
9719 }
9720
9721 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9722
9723 if (per_cu == NULL)
9724 {
9725 /* It's an include file, no symbols to read for it.
9726 Everything is in the parent symtab. */
9727 pst->readin = 1;
9728 return;
9729 }
9730
9731 dw2_do_instantiate_symtab (per_cu, false);
9732}
9733
9734/* Trivial hash function for die_info: the hash value of a DIE
9735 is its offset in .debug_info for this objfile. */
9736
9737static hashval_t
9738die_hash (const void *item)
9739{
9740 const struct die_info *die = (const struct die_info *) item;
9741
9742 return to_underlying (die->sect_off);
9743}
9744
9745/* Trivial comparison function for die_info structures: two DIEs
9746 are equal if they have the same offset. */
9747
9748static int
9749die_eq (const void *item_lhs, const void *item_rhs)
9750{
9751 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9752 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9753
9754 return die_lhs->sect_off == die_rhs->sect_off;
9755}
9756
9757/* die_reader_func for load_full_comp_unit.
9758 This is identical to read_signatured_type_reader,
9759 but is kept separate for now. */
9760
9761static void
9762load_full_comp_unit_reader (const struct die_reader_specs *reader,
9763 const gdb_byte *info_ptr,
9764 struct die_info *comp_unit_die,
9765 int has_children,
9766 void *data)
9767{
9768 struct dwarf2_cu *cu = reader->cu;
9769 enum language *language_ptr = (enum language *) data;
9770
9771 gdb_assert (cu->die_hash == NULL);
9772 cu->die_hash =
9773 htab_create_alloc_ex (cu->header.length / 12,
9774 die_hash,
9775 die_eq,
9776 NULL,
9777 &cu->comp_unit_obstack,
9778 hashtab_obstack_allocate,
9779 dummy_obstack_deallocate);
9780
9781 if (has_children)
9782 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9783 &info_ptr, comp_unit_die);
9784 cu->dies = comp_unit_die;
9785 /* comp_unit_die is not stored in die_hash, no need. */
9786
9787 /* We try not to read any attributes in this function, because not
9788 all CUs needed for references have been loaded yet, and symbol
9789 table processing isn't initialized. But we have to set the CU language,
9790 or we won't be able to build types correctly.
9791 Similarly, if we do not read the producer, we can not apply
9792 producer-specific interpretation. */
9793 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9794}
9795
9796/* Load the DIEs associated with PER_CU into memory. */
9797
9798static void
9799load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9800 bool skip_partial,
9801 enum language pretend_language)
9802{
9803 gdb_assert (! this_cu->is_debug_types);
9804
9805 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9806 load_full_comp_unit_reader, &pretend_language);
9807}
9808
9809/* Add a DIE to the delayed physname list. */
9810
9811static void
9812add_to_method_list (struct type *type, int fnfield_index, int index,
9813 const char *name, struct die_info *die,
9814 struct dwarf2_cu *cu)
9815{
9816 struct delayed_method_info mi;
9817 mi.type = type;
9818 mi.fnfield_index = fnfield_index;
9819 mi.index = index;
9820 mi.name = name;
9821 mi.die = die;
9822 cu->method_list.push_back (mi);
9823}
9824
9825/* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9826 "const" / "volatile". If so, decrements LEN by the length of the
9827 modifier and return true. Otherwise return false. */
9828
9829template<size_t N>
9830static bool
9831check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9832{
9833 size_t mod_len = sizeof (mod) - 1;
9834 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9835 {
9836 len -= mod_len;
9837 return true;
9838 }
9839 return false;
9840}
9841
9842/* Compute the physnames of any methods on the CU's method list.
9843
9844 The computation of method physnames is delayed in order to avoid the
9845 (bad) condition that one of the method's formal parameters is of an as yet
9846 incomplete type. */
9847
9848static void
9849compute_delayed_physnames (struct dwarf2_cu *cu)
9850{
9851 /* Only C++ delays computing physnames. */
9852 if (cu->method_list.empty ())
9853 return;
9854 gdb_assert (cu->language == language_cplus);
9855
9856 for (const delayed_method_info &mi : cu->method_list)
9857 {
9858 const char *physname;
9859 struct fn_fieldlist *fn_flp
9860 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9861 physname = dwarf2_physname (mi.name, mi.die, cu);
9862 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9863 = physname ? physname : "";
9864
9865 /* Since there's no tag to indicate whether a method is a
9866 const/volatile overload, extract that information out of the
9867 demangled name. */
9868 if (physname != NULL)
9869 {
9870 size_t len = strlen (physname);
9871
9872 while (1)
9873 {
9874 if (physname[len] == ')') /* shortcut */
9875 break;
9876 else if (check_modifier (physname, len, " const"))
9877 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9878 else if (check_modifier (physname, len, " volatile"))
9879 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9880 else
9881 break;
9882 }
9883 }
9884 }
9885
9886 /* The list is no longer needed. */
9887 cu->method_list.clear ();
9888}
9889
9890/* Go objects should be embedded in a DW_TAG_module DIE,
9891 and it's not clear if/how imported objects will appear.
9892 To keep Go support simple until that's worked out,
9893 go back through what we've read and create something usable.
9894 We could do this while processing each DIE, and feels kinda cleaner,
9895 but that way is more invasive.
9896 This is to, for example, allow the user to type "p var" or "b main"
9897 without having to specify the package name, and allow lookups
9898 of module.object to work in contexts that use the expression
9899 parser. */
9900
9901static void
9902fixup_go_packaging (struct dwarf2_cu *cu)
9903{
9904 char *package_name = NULL;
9905 struct pending *list;
9906 int i;
9907
9908 for (list = *cu->get_builder ()->get_global_symbols ();
9909 list != NULL;
9910 list = list->next)
9911 {
9912 for (i = 0; i < list->nsyms; ++i)
9913 {
9914 struct symbol *sym = list->symbol[i];
9915
9916 if (SYMBOL_LANGUAGE (sym) == language_go
9917 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9918 {
9919 char *this_package_name = go_symbol_package_name (sym);
9920
9921 if (this_package_name == NULL)
9922 continue;
9923 if (package_name == NULL)
9924 package_name = this_package_name;
9925 else
9926 {
9927 struct objfile *objfile
9928 = cu->per_cu->dwarf2_per_objfile->objfile;
9929 if (strcmp (package_name, this_package_name) != 0)
9930 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9931 (symbol_symtab (sym) != NULL
9932 ? symtab_to_filename_for_display
9933 (symbol_symtab (sym))
9934 : objfile_name (objfile)),
9935 this_package_name, package_name);
9936 xfree (this_package_name);
9937 }
9938 }
9939 }
9940 }
9941
9942 if (package_name != NULL)
9943 {
9944 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9945 const char *saved_package_name
9946 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9947 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9948 saved_package_name);
9949 struct symbol *sym;
9950
9951 sym = allocate_symbol (objfile);
9952 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9953 SYMBOL_SET_NAMES (sym, saved_package_name, false, objfile);
9954 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9955 e.g., "main" finds the "main" module and not C's main(). */
9956 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9957 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9958 SYMBOL_TYPE (sym) = type;
9959
9960 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9961
9962 xfree (package_name);
9963 }
9964}
9965
9966/* Allocate a fully-qualified name consisting of the two parts on the
9967 obstack. */
9968
9969static const char *
9970rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9971{
9972 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9973}
9974
9975/* A helper that allocates a struct discriminant_info to attach to a
9976 union type. */
9977
9978static struct discriminant_info *
9979alloc_discriminant_info (struct type *type, int discriminant_index,
9980 int default_index)
9981{
9982 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9983 gdb_assert (discriminant_index == -1
9984 || (discriminant_index >= 0
9985 && discriminant_index < TYPE_NFIELDS (type)));
9986 gdb_assert (default_index == -1
9987 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9988
9989 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9990
9991 struct discriminant_info *disc
9992 = ((struct discriminant_info *)
9993 TYPE_ZALLOC (type,
9994 offsetof (struct discriminant_info, discriminants)
9995 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9996 disc->default_index = default_index;
9997 disc->discriminant_index = discriminant_index;
9998
9999 struct dynamic_prop prop;
10000 prop.kind = PROP_UNDEFINED;
10001 prop.data.baton = disc;
10002
10003 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
10004
10005 return disc;
10006}
10007
10008/* Some versions of rustc emitted enums in an unusual way.
10009
10010 Ordinary enums were emitted as unions. The first element of each
10011 structure in the union was named "RUST$ENUM$DISR". This element
10012 held the discriminant.
10013
10014 These versions of Rust also implemented the "non-zero"
10015 optimization. When the enum had two values, and one is empty and
10016 the other holds a pointer that cannot be zero, the pointer is used
10017 as the discriminant, with a zero value meaning the empty variant.
10018 Here, the union's first member is of the form
10019 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
10020 where the fieldnos are the indices of the fields that should be
10021 traversed in order to find the field (which may be several fields deep)
10022 and the variantname is the name of the variant of the case when the
10023 field is zero.
10024
10025 This function recognizes whether TYPE is of one of these forms,
10026 and, if so, smashes it to be a variant type. */
10027
10028static void
10029quirk_rust_enum (struct type *type, struct objfile *objfile)
10030{
10031 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10032
10033 /* We don't need to deal with empty enums. */
10034 if (TYPE_NFIELDS (type) == 0)
10035 return;
10036
10037#define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
10038 if (TYPE_NFIELDS (type) == 1
10039 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
10040 {
10041 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
10042
10043 /* Decode the field name to find the offset of the
10044 discriminant. */
10045 ULONGEST bit_offset = 0;
10046 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
10047 while (name[0] >= '0' && name[0] <= '9')
10048 {
10049 char *tail;
10050 unsigned long index = strtoul (name, &tail, 10);
10051 name = tail;
10052 if (*name != '$'
10053 || index >= TYPE_NFIELDS (field_type)
10054 || (TYPE_FIELD_LOC_KIND (field_type, index)
10055 != FIELD_LOC_KIND_BITPOS))
10056 {
10057 complaint (_("Could not parse Rust enum encoding string \"%s\""
10058 "[in module %s]"),
10059 TYPE_FIELD_NAME (type, 0),
10060 objfile_name (objfile));
10061 return;
10062 }
10063 ++name;
10064
10065 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10066 field_type = TYPE_FIELD_TYPE (field_type, index);
10067 }
10068
10069 /* Make a union to hold the variants. */
10070 struct type *union_type = alloc_type (objfile);
10071 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10072 TYPE_NFIELDS (union_type) = 3;
10073 TYPE_FIELDS (union_type)
10074 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10075 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10076 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10077
10078 /* Put the discriminant must at index 0. */
10079 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10080 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10081 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10082 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10083
10084 /* The order of fields doesn't really matter, so put the real
10085 field at index 1 and the data-less field at index 2. */
10086 struct discriminant_info *disc
10087 = alloc_discriminant_info (union_type, 0, 1);
10088 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10089 TYPE_FIELD_NAME (union_type, 1)
10090 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10091 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10092 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10093 TYPE_FIELD_NAME (union_type, 1));
10094
10095 const char *dataless_name
10096 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10097 name);
10098 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10099 dataless_name);
10100 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10101 /* NAME points into the original discriminant name, which
10102 already has the correct lifetime. */
10103 TYPE_FIELD_NAME (union_type, 2) = name;
10104 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10105 disc->discriminants[2] = 0;
10106
10107 /* Smash this type to be a structure type. We have to do this
10108 because the type has already been recorded. */
10109 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10110 TYPE_NFIELDS (type) = 1;
10111 TYPE_FIELDS (type)
10112 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10113
10114 /* Install the variant part. */
10115 TYPE_FIELD_TYPE (type, 0) = union_type;
10116 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10117 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10118 }
10119 /* A union with a single anonymous field is probably an old-style
10120 univariant enum. */
10121 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
10122 {
10123 /* Smash this type to be a structure type. We have to do this
10124 because the type has already been recorded. */
10125 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10126
10127 /* Make a union to hold the variants. */
10128 struct type *union_type = alloc_type (objfile);
10129 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10130 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10131 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10132 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10133 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10134
10135 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10136 const char *variant_name
10137 = rust_last_path_segment (TYPE_NAME (field_type));
10138 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10139 TYPE_NAME (field_type)
10140 = rust_fully_qualify (&objfile->objfile_obstack,
10141 TYPE_NAME (type), variant_name);
10142
10143 /* Install the union in the outer struct type. */
10144 TYPE_NFIELDS (type) = 1;
10145 TYPE_FIELDS (type)
10146 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10147 TYPE_FIELD_TYPE (type, 0) = union_type;
10148 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10149 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10150
10151 alloc_discriminant_info (union_type, -1, 0);
10152 }
10153 else
10154 {
10155 struct type *disr_type = nullptr;
10156 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10157 {
10158 disr_type = TYPE_FIELD_TYPE (type, i);
10159
10160 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10161 {
10162 /* All fields of a true enum will be structs. */
10163 return;
10164 }
10165 else if (TYPE_NFIELDS (disr_type) == 0)
10166 {
10167 /* Could be data-less variant, so keep going. */
10168 disr_type = nullptr;
10169 }
10170 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10171 "RUST$ENUM$DISR") != 0)
10172 {
10173 /* Not a Rust enum. */
10174 return;
10175 }
10176 else
10177 {
10178 /* Found one. */
10179 break;
10180 }
10181 }
10182
10183 /* If we got here without a discriminant, then it's probably
10184 just a union. */
10185 if (disr_type == nullptr)
10186 return;
10187
10188 /* Smash this type to be a structure type. We have to do this
10189 because the type has already been recorded. */
10190 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10191
10192 /* Make a union to hold the variants. */
10193 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10194 struct type *union_type = alloc_type (objfile);
10195 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10196 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10197 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10198 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10199 TYPE_FIELDS (union_type)
10200 = (struct field *) TYPE_ZALLOC (union_type,
10201 (TYPE_NFIELDS (union_type)
10202 * sizeof (struct field)));
10203
10204 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10205 TYPE_NFIELDS (type) * sizeof (struct field));
10206
10207 /* Install the discriminant at index 0 in the union. */
10208 TYPE_FIELD (union_type, 0) = *disr_field;
10209 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10210 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10211
10212 /* Install the union in the outer struct type. */
10213 TYPE_FIELD_TYPE (type, 0) = union_type;
10214 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10215 TYPE_NFIELDS (type) = 1;
10216
10217 /* Set the size and offset of the union type. */
10218 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10219
10220 /* We need a way to find the correct discriminant given a
10221 variant name. For convenience we build a map here. */
10222 struct type *enum_type = FIELD_TYPE (*disr_field);
10223 std::unordered_map<std::string, ULONGEST> discriminant_map;
10224 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10225 {
10226 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10227 {
10228 const char *name
10229 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10230 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10231 }
10232 }
10233
10234 int n_fields = TYPE_NFIELDS (union_type);
10235 struct discriminant_info *disc
10236 = alloc_discriminant_info (union_type, 0, -1);
10237 /* Skip the discriminant here. */
10238 for (int i = 1; i < n_fields; ++i)
10239 {
10240 /* Find the final word in the name of this variant's type.
10241 That name can be used to look up the correct
10242 discriminant. */
10243 const char *variant_name
10244 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10245 i)));
10246
10247 auto iter = discriminant_map.find (variant_name);
10248 if (iter != discriminant_map.end ())
10249 disc->discriminants[i] = iter->second;
10250
10251 /* Remove the discriminant field, if it exists. */
10252 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10253 if (TYPE_NFIELDS (sub_type) > 0)
10254 {
10255 --TYPE_NFIELDS (sub_type);
10256 ++TYPE_FIELDS (sub_type);
10257 }
10258 TYPE_FIELD_NAME (union_type, i) = variant_name;
10259 TYPE_NAME (sub_type)
10260 = rust_fully_qualify (&objfile->objfile_obstack,
10261 TYPE_NAME (type), variant_name);
10262 }
10263 }
10264}
10265
10266/* Rewrite some Rust unions to be structures with variants parts. */
10267
10268static void
10269rust_union_quirks (struct dwarf2_cu *cu)
10270{
10271 gdb_assert (cu->language == language_rust);
10272 for (type *type_ : cu->rust_unions)
10273 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10274 /* We don't need this any more. */
10275 cu->rust_unions.clear ();
10276}
10277
10278/* Return the symtab for PER_CU. This works properly regardless of
10279 whether we're using the index or psymtabs. */
10280
10281static struct compunit_symtab *
10282get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10283{
10284 return (per_cu->dwarf2_per_objfile->using_index
10285 ? per_cu->v.quick->compunit_symtab
10286 : per_cu->v.psymtab->compunit_symtab);
10287}
10288
10289/* A helper function for computing the list of all symbol tables
10290 included by PER_CU. */
10291
10292static void
10293recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10294 htab_t all_children, htab_t all_type_symtabs,
10295 struct dwarf2_per_cu_data *per_cu,
10296 struct compunit_symtab *immediate_parent)
10297{
10298 void **slot;
10299 struct compunit_symtab *cust;
10300
10301 slot = htab_find_slot (all_children, per_cu, INSERT);
10302 if (*slot != NULL)
10303 {
10304 /* This inclusion and its children have been processed. */
10305 return;
10306 }
10307
10308 *slot = per_cu;
10309 /* Only add a CU if it has a symbol table. */
10310 cust = get_compunit_symtab (per_cu);
10311 if (cust != NULL)
10312 {
10313 /* If this is a type unit only add its symbol table if we haven't
10314 seen it yet (type unit per_cu's can share symtabs). */
10315 if (per_cu->is_debug_types)
10316 {
10317 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10318 if (*slot == NULL)
10319 {
10320 *slot = cust;
10321 result->push_back (cust);
10322 if (cust->user == NULL)
10323 cust->user = immediate_parent;
10324 }
10325 }
10326 else
10327 {
10328 result->push_back (cust);
10329 if (cust->user == NULL)
10330 cust->user = immediate_parent;
10331 }
10332 }
10333
10334 if (!per_cu->imported_symtabs_empty ())
10335 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10336 {
10337 recursively_compute_inclusions (result, all_children,
10338 all_type_symtabs, ptr, cust);
10339 }
10340}
10341
10342/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10343 PER_CU. */
10344
10345static void
10346compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10347{
10348 gdb_assert (! per_cu->is_debug_types);
10349
10350 if (!per_cu->imported_symtabs_empty ())
10351 {
10352 int len;
10353 std::vector<compunit_symtab *> result_symtabs;
10354 htab_t all_children, all_type_symtabs;
10355 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10356
10357 /* If we don't have a symtab, we can just skip this case. */
10358 if (cust == NULL)
10359 return;
10360
10361 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10362 NULL, xcalloc, xfree);
10363 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10364 NULL, xcalloc, xfree);
10365
10366 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10367 {
10368 recursively_compute_inclusions (&result_symtabs, all_children,
10369 all_type_symtabs, ptr, cust);
10370 }
10371
10372 /* Now we have a transitive closure of all the included symtabs. */
10373 len = result_symtabs.size ();
10374 cust->includes
10375 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10376 struct compunit_symtab *, len + 1);
10377 memcpy (cust->includes, result_symtabs.data (),
10378 len * sizeof (compunit_symtab *));
10379 cust->includes[len] = NULL;
10380
10381 htab_delete (all_children);
10382 htab_delete (all_type_symtabs);
10383 }
10384}
10385
10386/* Compute the 'includes' field for the symtabs of all the CUs we just
10387 read. */
10388
10389static void
10390process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10391{
10392 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10393 {
10394 if (! iter->is_debug_types)
10395 compute_compunit_symtab_includes (iter);
10396 }
10397
10398 dwarf2_per_objfile->just_read_cus.clear ();
10399}
10400
10401/* Generate full symbol information for PER_CU, whose DIEs have
10402 already been loaded into memory. */
10403
10404static void
10405process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10406 enum language pretend_language)
10407{
10408 struct dwarf2_cu *cu = per_cu->cu;
10409 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10410 struct objfile *objfile = dwarf2_per_objfile->objfile;
10411 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10412 CORE_ADDR lowpc, highpc;
10413 struct compunit_symtab *cust;
10414 CORE_ADDR baseaddr;
10415 struct block *static_block;
10416 CORE_ADDR addr;
10417
10418 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10419
10420 /* Clear the list here in case something was left over. */
10421 cu->method_list.clear ();
10422
10423 cu->language = pretend_language;
10424 cu->language_defn = language_def (cu->language);
10425
10426 /* Do line number decoding in read_file_scope () */
10427 process_die (cu->dies, cu);
10428
10429 /* For now fudge the Go package. */
10430 if (cu->language == language_go)
10431 fixup_go_packaging (cu);
10432
10433 /* Now that we have processed all the DIEs in the CU, all the types
10434 should be complete, and it should now be safe to compute all of the
10435 physnames. */
10436 compute_delayed_physnames (cu);
10437
10438 if (cu->language == language_rust)
10439 rust_union_quirks (cu);
10440
10441 /* Some compilers don't define a DW_AT_high_pc attribute for the
10442 compilation unit. If the DW_AT_high_pc is missing, synthesize
10443 it, by scanning the DIE's below the compilation unit. */
10444 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10445
10446 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10447 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10448
10449 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10450 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10451 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10452 addrmap to help ensure it has an accurate map of pc values belonging to
10453 this comp unit. */
10454 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10455
10456 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10457 SECT_OFF_TEXT (objfile),
10458 0);
10459
10460 if (cust != NULL)
10461 {
10462 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10463
10464 /* Set symtab language to language from DW_AT_language. If the
10465 compilation is from a C file generated by language preprocessors, do
10466 not set the language if it was already deduced by start_subfile. */
10467 if (!(cu->language == language_c
10468 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10469 COMPUNIT_FILETABS (cust)->language = cu->language;
10470
10471 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10472 produce DW_AT_location with location lists but it can be possibly
10473 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10474 there were bugs in prologue debug info, fixed later in GCC-4.5
10475 by "unwind info for epilogues" patch (which is not directly related).
10476
10477 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10478 needed, it would be wrong due to missing DW_AT_producer there.
10479
10480 Still one can confuse GDB by using non-standard GCC compilation
10481 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10482 */
10483 if (cu->has_loclist && gcc_4_minor >= 5)
10484 cust->locations_valid = 1;
10485
10486 if (gcc_4_minor >= 5)
10487 cust->epilogue_unwind_valid = 1;
10488
10489 cust->call_site_htab = cu->call_site_htab;
10490 }
10491
10492 if (dwarf2_per_objfile->using_index)
10493 per_cu->v.quick->compunit_symtab = cust;
10494 else
10495 {
10496 struct partial_symtab *pst = per_cu->v.psymtab;
10497 pst->compunit_symtab = cust;
10498 pst->readin = 1;
10499 }
10500
10501 /* Push it for inclusion processing later. */
10502 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10503
10504 /* Not needed any more. */
10505 cu->reset_builder ();
10506}
10507
10508/* Generate full symbol information for type unit PER_CU, whose DIEs have
10509 already been loaded into memory. */
10510
10511static void
10512process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10513 enum language pretend_language)
10514{
10515 struct dwarf2_cu *cu = per_cu->cu;
10516 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10517 struct objfile *objfile = dwarf2_per_objfile->objfile;
10518 struct compunit_symtab *cust;
10519 struct signatured_type *sig_type;
10520
10521 gdb_assert (per_cu->is_debug_types);
10522 sig_type = (struct signatured_type *) per_cu;
10523
10524 /* Clear the list here in case something was left over. */
10525 cu->method_list.clear ();
10526
10527 cu->language = pretend_language;
10528 cu->language_defn = language_def (cu->language);
10529
10530 /* The symbol tables are set up in read_type_unit_scope. */
10531 process_die (cu->dies, cu);
10532
10533 /* For now fudge the Go package. */
10534 if (cu->language == language_go)
10535 fixup_go_packaging (cu);
10536
10537 /* Now that we have processed all the DIEs in the CU, all the types
10538 should be complete, and it should now be safe to compute all of the
10539 physnames. */
10540 compute_delayed_physnames (cu);
10541
10542 if (cu->language == language_rust)
10543 rust_union_quirks (cu);
10544
10545 /* TUs share symbol tables.
10546 If this is the first TU to use this symtab, complete the construction
10547 of it with end_expandable_symtab. Otherwise, complete the addition of
10548 this TU's symbols to the existing symtab. */
10549 if (sig_type->type_unit_group->compunit_symtab == NULL)
10550 {
10551 buildsym_compunit *builder = cu->get_builder ();
10552 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10553 sig_type->type_unit_group->compunit_symtab = cust;
10554
10555 if (cust != NULL)
10556 {
10557 /* Set symtab language to language from DW_AT_language. If the
10558 compilation is from a C file generated by language preprocessors,
10559 do not set the language if it was already deduced by
10560 start_subfile. */
10561 if (!(cu->language == language_c
10562 && COMPUNIT_FILETABS (cust)->language != language_c))
10563 COMPUNIT_FILETABS (cust)->language = cu->language;
10564 }
10565 }
10566 else
10567 {
10568 cu->get_builder ()->augment_type_symtab ();
10569 cust = sig_type->type_unit_group->compunit_symtab;
10570 }
10571
10572 if (dwarf2_per_objfile->using_index)
10573 per_cu->v.quick->compunit_symtab = cust;
10574 else
10575 {
10576 struct partial_symtab *pst = per_cu->v.psymtab;
10577 pst->compunit_symtab = cust;
10578 pst->readin = 1;
10579 }
10580
10581 /* Not needed any more. */
10582 cu->reset_builder ();
10583}
10584
10585/* Process an imported unit DIE. */
10586
10587static void
10588process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10589{
10590 struct attribute *attr;
10591
10592 /* For now we don't handle imported units in type units. */
10593 if (cu->per_cu->is_debug_types)
10594 {
10595 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10596 " supported in type units [in module %s]"),
10597 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10598 }
10599
10600 attr = dwarf2_attr (die, DW_AT_import, cu);
10601 if (attr != NULL)
10602 {
10603 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10604 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10605 dwarf2_per_cu_data *per_cu
10606 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10607 cu->per_cu->dwarf2_per_objfile);
10608
10609 /* If necessary, add it to the queue and load its DIEs. */
10610 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10611 load_full_comp_unit (per_cu, false, cu->language);
10612
10613 cu->per_cu->imported_symtabs_push (per_cu);
10614 }
10615}
10616
10617/* RAII object that represents a process_die scope: i.e.,
10618 starts/finishes processing a DIE. */
10619class process_die_scope
10620{
10621public:
10622 process_die_scope (die_info *die, dwarf2_cu *cu)
10623 : m_die (die), m_cu (cu)
10624 {
10625 /* We should only be processing DIEs not already in process. */
10626 gdb_assert (!m_die->in_process);
10627 m_die->in_process = true;
10628 }
10629
10630 ~process_die_scope ()
10631 {
10632 m_die->in_process = false;
10633
10634 /* If we're done processing the DIE for the CU that owns the line
10635 header, we don't need the line header anymore. */
10636 if (m_cu->line_header_die_owner == m_die)
10637 {
10638 delete m_cu->line_header;
10639 m_cu->line_header = NULL;
10640 m_cu->line_header_die_owner = NULL;
10641 }
10642 }
10643
10644private:
10645 die_info *m_die;
10646 dwarf2_cu *m_cu;
10647};
10648
10649/* Process a die and its children. */
10650
10651static void
10652process_die (struct die_info *die, struct dwarf2_cu *cu)
10653{
10654 process_die_scope scope (die, cu);
10655
10656 switch (die->tag)
10657 {
10658 case DW_TAG_padding:
10659 break;
10660 case DW_TAG_compile_unit:
10661 case DW_TAG_partial_unit:
10662 read_file_scope (die, cu);
10663 break;
10664 case DW_TAG_type_unit:
10665 read_type_unit_scope (die, cu);
10666 break;
10667 case DW_TAG_subprogram:
10668 /* Nested subprograms in Fortran get a prefix. */
10669 if (cu->language == language_fortran
10670 && die->parent != NULL
10671 && die->parent->tag == DW_TAG_subprogram)
10672 cu->processing_has_namespace_info = true;
10673 /* Fall through. */
10674 case DW_TAG_inlined_subroutine:
10675 read_func_scope (die, cu);
10676 break;
10677 case DW_TAG_lexical_block:
10678 case DW_TAG_try_block:
10679 case DW_TAG_catch_block:
10680 read_lexical_block_scope (die, cu);
10681 break;
10682 case DW_TAG_call_site:
10683 case DW_TAG_GNU_call_site:
10684 read_call_site_scope (die, cu);
10685 break;
10686 case DW_TAG_class_type:
10687 case DW_TAG_interface_type:
10688 case DW_TAG_structure_type:
10689 case DW_TAG_union_type:
10690 process_structure_scope (die, cu);
10691 break;
10692 case DW_TAG_enumeration_type:
10693 process_enumeration_scope (die, cu);
10694 break;
10695
10696 /* These dies have a type, but processing them does not create
10697 a symbol or recurse to process the children. Therefore we can
10698 read them on-demand through read_type_die. */
10699 case DW_TAG_subroutine_type:
10700 case DW_TAG_set_type:
10701 case DW_TAG_array_type:
10702 case DW_TAG_pointer_type:
10703 case DW_TAG_ptr_to_member_type:
10704 case DW_TAG_reference_type:
10705 case DW_TAG_rvalue_reference_type:
10706 case DW_TAG_string_type:
10707 break;
10708
10709 case DW_TAG_base_type:
10710 case DW_TAG_subrange_type:
10711 case DW_TAG_typedef:
10712 /* Add a typedef symbol for the type definition, if it has a
10713 DW_AT_name. */
10714 new_symbol (die, read_type_die (die, cu), cu);
10715 break;
10716 case DW_TAG_common_block:
10717 read_common_block (die, cu);
10718 break;
10719 case DW_TAG_common_inclusion:
10720 break;
10721 case DW_TAG_namespace:
10722 cu->processing_has_namespace_info = true;
10723 read_namespace (die, cu);
10724 break;
10725 case DW_TAG_module:
10726 cu->processing_has_namespace_info = true;
10727 read_module (die, cu);
10728 break;
10729 case DW_TAG_imported_declaration:
10730 cu->processing_has_namespace_info = true;
10731 if (read_namespace_alias (die, cu))
10732 break;
10733 /* The declaration is not a global namespace alias. */
10734 /* Fall through. */
10735 case DW_TAG_imported_module:
10736 cu->processing_has_namespace_info = true;
10737 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10738 || cu->language != language_fortran))
10739 complaint (_("Tag '%s' has unexpected children"),
10740 dwarf_tag_name (die->tag));
10741 read_import_statement (die, cu);
10742 break;
10743
10744 case DW_TAG_imported_unit:
10745 process_imported_unit_die (die, cu);
10746 break;
10747
10748 case DW_TAG_variable:
10749 read_variable (die, cu);
10750 break;
10751
10752 default:
10753 new_symbol (die, NULL, cu);
10754 break;
10755 }
10756}
10757\f
10758/* DWARF name computation. */
10759
10760/* A helper function for dwarf2_compute_name which determines whether DIE
10761 needs to have the name of the scope prepended to the name listed in the
10762 die. */
10763
10764static int
10765die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10766{
10767 struct attribute *attr;
10768
10769 switch (die->tag)
10770 {
10771 case DW_TAG_namespace:
10772 case DW_TAG_typedef:
10773 case DW_TAG_class_type:
10774 case DW_TAG_interface_type:
10775 case DW_TAG_structure_type:
10776 case DW_TAG_union_type:
10777 case DW_TAG_enumeration_type:
10778 case DW_TAG_enumerator:
10779 case DW_TAG_subprogram:
10780 case DW_TAG_inlined_subroutine:
10781 case DW_TAG_member:
10782 case DW_TAG_imported_declaration:
10783 return 1;
10784
10785 case DW_TAG_variable:
10786 case DW_TAG_constant:
10787 /* We only need to prefix "globally" visible variables. These include
10788 any variable marked with DW_AT_external or any variable that
10789 lives in a namespace. [Variables in anonymous namespaces
10790 require prefixing, but they are not DW_AT_external.] */
10791
10792 if (dwarf2_attr (die, DW_AT_specification, cu))
10793 {
10794 struct dwarf2_cu *spec_cu = cu;
10795
10796 return die_needs_namespace (die_specification (die, &spec_cu),
10797 spec_cu);
10798 }
10799
10800 attr = dwarf2_attr (die, DW_AT_external, cu);
10801 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10802 && die->parent->tag != DW_TAG_module)
10803 return 0;
10804 /* A variable in a lexical block of some kind does not need a
10805 namespace, even though in C++ such variables may be external
10806 and have a mangled name. */
10807 if (die->parent->tag == DW_TAG_lexical_block
10808 || die->parent->tag == DW_TAG_try_block
10809 || die->parent->tag == DW_TAG_catch_block
10810 || die->parent->tag == DW_TAG_subprogram)
10811 return 0;
10812 return 1;
10813
10814 default:
10815 return 0;
10816 }
10817}
10818
10819/* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10820 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10821 defined for the given DIE. */
10822
10823static struct attribute *
10824dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10825{
10826 struct attribute *attr;
10827
10828 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10829 if (attr == NULL)
10830 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10831
10832 return attr;
10833}
10834
10835/* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10836 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10837 defined for the given DIE. */
10838
10839static const char *
10840dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10841{
10842 const char *linkage_name;
10843
10844 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10845 if (linkage_name == NULL)
10846 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10847
10848 return linkage_name;
10849}
10850
10851/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10852 compute the physname for the object, which include a method's:
10853 - formal parameters (C++),
10854 - receiver type (Go),
10855
10856 The term "physname" is a bit confusing.
10857 For C++, for example, it is the demangled name.
10858 For Go, for example, it's the mangled name.
10859
10860 For Ada, return the DIE's linkage name rather than the fully qualified
10861 name. PHYSNAME is ignored..
10862
10863 The result is allocated on the objfile_obstack and canonicalized. */
10864
10865static const char *
10866dwarf2_compute_name (const char *name,
10867 struct die_info *die, struct dwarf2_cu *cu,
10868 int physname)
10869{
10870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10871
10872 if (name == NULL)
10873 name = dwarf2_name (die, cu);
10874
10875 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10876 but otherwise compute it by typename_concat inside GDB.
10877 FIXME: Actually this is not really true, or at least not always true.
10878 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10879 Fortran names because there is no mangling standard. So new_symbol
10880 will set the demangled name to the result of dwarf2_full_name, and it is
10881 the demangled name that GDB uses if it exists. */
10882 if (cu->language == language_ada
10883 || (cu->language == language_fortran && physname))
10884 {
10885 /* For Ada unit, we prefer the linkage name over the name, as
10886 the former contains the exported name, which the user expects
10887 to be able to reference. Ideally, we want the user to be able
10888 to reference this entity using either natural or linkage name,
10889 but we haven't started looking at this enhancement yet. */
10890 const char *linkage_name = dw2_linkage_name (die, cu);
10891
10892 if (linkage_name != NULL)
10893 return linkage_name;
10894 }
10895
10896 /* These are the only languages we know how to qualify names in. */
10897 if (name != NULL
10898 && (cu->language == language_cplus
10899 || cu->language == language_fortran || cu->language == language_d
10900 || cu->language == language_rust))
10901 {
10902 if (die_needs_namespace (die, cu))
10903 {
10904 const char *prefix;
10905 const char *canonical_name = NULL;
10906
10907 string_file buf;
10908
10909 prefix = determine_prefix (die, cu);
10910 if (*prefix != '\0')
10911 {
10912 char *prefixed_name = typename_concat (NULL, prefix, name,
10913 physname, cu);
10914
10915 buf.puts (prefixed_name);
10916 xfree (prefixed_name);
10917 }
10918 else
10919 buf.puts (name);
10920
10921 /* Template parameters may be specified in the DIE's DW_AT_name, or
10922 as children with DW_TAG_template_type_param or
10923 DW_TAG_value_type_param. If the latter, add them to the name
10924 here. If the name already has template parameters, then
10925 skip this step; some versions of GCC emit both, and
10926 it is more efficient to use the pre-computed name.
10927
10928 Something to keep in mind about this process: it is very
10929 unlikely, or in some cases downright impossible, to produce
10930 something that will match the mangled name of a function.
10931 If the definition of the function has the same debug info,
10932 we should be able to match up with it anyway. But fallbacks
10933 using the minimal symbol, for instance to find a method
10934 implemented in a stripped copy of libstdc++, will not work.
10935 If we do not have debug info for the definition, we will have to
10936 match them up some other way.
10937
10938 When we do name matching there is a related problem with function
10939 templates; two instantiated function templates are allowed to
10940 differ only by their return types, which we do not add here. */
10941
10942 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10943 {
10944 struct attribute *attr;
10945 struct die_info *child;
10946 int first = 1;
10947
10948 die->building_fullname = 1;
10949
10950 for (child = die->child; child != NULL; child = child->sibling)
10951 {
10952 struct type *type;
10953 LONGEST value;
10954 const gdb_byte *bytes;
10955 struct dwarf2_locexpr_baton *baton;
10956 struct value *v;
10957
10958 if (child->tag != DW_TAG_template_type_param
10959 && child->tag != DW_TAG_template_value_param)
10960 continue;
10961
10962 if (first)
10963 {
10964 buf.puts ("<");
10965 first = 0;
10966 }
10967 else
10968 buf.puts (", ");
10969
10970 attr = dwarf2_attr (child, DW_AT_type, cu);
10971 if (attr == NULL)
10972 {
10973 complaint (_("template parameter missing DW_AT_type"));
10974 buf.puts ("UNKNOWN_TYPE");
10975 continue;
10976 }
10977 type = die_type (child, cu);
10978
10979 if (child->tag == DW_TAG_template_type_param)
10980 {
10981 c_print_type (type, "", &buf, -1, 0, cu->language,
10982 &type_print_raw_options);
10983 continue;
10984 }
10985
10986 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10987 if (attr == NULL)
10988 {
10989 complaint (_("template parameter missing "
10990 "DW_AT_const_value"));
10991 buf.puts ("UNKNOWN_VALUE");
10992 continue;
10993 }
10994
10995 dwarf2_const_value_attr (attr, type, name,
10996 &cu->comp_unit_obstack, cu,
10997 &value, &bytes, &baton);
10998
10999 if (TYPE_NOSIGN (type))
11000 /* GDB prints characters as NUMBER 'CHAR'. If that's
11001 changed, this can use value_print instead. */
11002 c_printchar (value, type, &buf);
11003 else
11004 {
11005 struct value_print_options opts;
11006
11007 if (baton != NULL)
11008 v = dwarf2_evaluate_loc_desc (type, NULL,
11009 baton->data,
11010 baton->size,
11011 baton->per_cu);
11012 else if (bytes != NULL)
11013 {
11014 v = allocate_value (type);
11015 memcpy (value_contents_writeable (v), bytes,
11016 TYPE_LENGTH (type));
11017 }
11018 else
11019 v = value_from_longest (type, value);
11020
11021 /* Specify decimal so that we do not depend on
11022 the radix. */
11023 get_formatted_print_options (&opts, 'd');
11024 opts.raw = 1;
11025 value_print (v, &buf, &opts);
11026 release_value (v);
11027 }
11028 }
11029
11030 die->building_fullname = 0;
11031
11032 if (!first)
11033 {
11034 /* Close the argument list, with a space if necessary
11035 (nested templates). */
11036 if (!buf.empty () && buf.string ().back () == '>')
11037 buf.puts (" >");
11038 else
11039 buf.puts (">");
11040 }
11041 }
11042
11043 /* For C++ methods, append formal parameter type
11044 information, if PHYSNAME. */
11045
11046 if (physname && die->tag == DW_TAG_subprogram
11047 && cu->language == language_cplus)
11048 {
11049 struct type *type = read_type_die (die, cu);
11050
11051 c_type_print_args (type, &buf, 1, cu->language,
11052 &type_print_raw_options);
11053
11054 if (cu->language == language_cplus)
11055 {
11056 /* Assume that an artificial first parameter is
11057 "this", but do not crash if it is not. RealView
11058 marks unnamed (and thus unused) parameters as
11059 artificial; there is no way to differentiate
11060 the two cases. */
11061 if (TYPE_NFIELDS (type) > 0
11062 && TYPE_FIELD_ARTIFICIAL (type, 0)
11063 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11064 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11065 0))))
11066 buf.puts (" const");
11067 }
11068 }
11069
11070 const std::string &intermediate_name = buf.string ();
11071
11072 if (cu->language == language_cplus)
11073 canonical_name
11074 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11075 &objfile->per_bfd->storage_obstack);
11076
11077 /* If we only computed INTERMEDIATE_NAME, or if
11078 INTERMEDIATE_NAME is already canonical, then we need to
11079 copy it to the appropriate obstack. */
11080 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11081 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11082 intermediate_name);
11083 else
11084 name = canonical_name;
11085 }
11086 }
11087
11088 return name;
11089}
11090
11091/* Return the fully qualified name of DIE, based on its DW_AT_name.
11092 If scope qualifiers are appropriate they will be added. The result
11093 will be allocated on the storage_obstack, or NULL if the DIE does
11094 not have a name. NAME may either be from a previous call to
11095 dwarf2_name or NULL.
11096
11097 The output string will be canonicalized (if C++). */
11098
11099static const char *
11100dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11101{
11102 return dwarf2_compute_name (name, die, cu, 0);
11103}
11104
11105/* Construct a physname for the given DIE in CU. NAME may either be
11106 from a previous call to dwarf2_name or NULL. The result will be
11107 allocated on the objfile_objstack or NULL if the DIE does not have a
11108 name.
11109
11110 The output string will be canonicalized (if C++). */
11111
11112static const char *
11113dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11114{
11115 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11116 const char *retval, *mangled = NULL, *canon = NULL;
11117 int need_copy = 1;
11118
11119 /* In this case dwarf2_compute_name is just a shortcut not building anything
11120 on its own. */
11121 if (!die_needs_namespace (die, cu))
11122 return dwarf2_compute_name (name, die, cu, 1);
11123
11124 mangled = dw2_linkage_name (die, cu);
11125
11126 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11127 See https://github.com/rust-lang/rust/issues/32925. */
11128 if (cu->language == language_rust && mangled != NULL
11129 && strchr (mangled, '{') != NULL)
11130 mangled = NULL;
11131
11132 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11133 has computed. */
11134 gdb::unique_xmalloc_ptr<char> demangled;
11135 if (mangled != NULL)
11136 {
11137
11138 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11139 {
11140 /* Do nothing (do not demangle the symbol name). */
11141 }
11142 else if (cu->language == language_go)
11143 {
11144 /* This is a lie, but we already lie to the caller new_symbol.
11145 new_symbol assumes we return the mangled name.
11146 This just undoes that lie until things are cleaned up. */
11147 }
11148 else
11149 {
11150 /* Use DMGL_RET_DROP for C++ template functions to suppress
11151 their return type. It is easier for GDB users to search
11152 for such functions as `name(params)' than `long name(params)'.
11153 In such case the minimal symbol names do not match the full
11154 symbol names but for template functions there is never a need
11155 to look up their definition from their declaration so
11156 the only disadvantage remains the minimal symbol variant
11157 `long name(params)' does not have the proper inferior type. */
11158 demangled.reset (gdb_demangle (mangled,
11159 (DMGL_PARAMS | DMGL_ANSI
11160 | DMGL_RET_DROP)));
11161 }
11162 if (demangled)
11163 canon = demangled.get ();
11164 else
11165 {
11166 canon = mangled;
11167 need_copy = 0;
11168 }
11169 }
11170
11171 if (canon == NULL || check_physname)
11172 {
11173 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11174
11175 if (canon != NULL && strcmp (physname, canon) != 0)
11176 {
11177 /* It may not mean a bug in GDB. The compiler could also
11178 compute DW_AT_linkage_name incorrectly. But in such case
11179 GDB would need to be bug-to-bug compatible. */
11180
11181 complaint (_("Computed physname <%s> does not match demangled <%s> "
11182 "(from linkage <%s>) - DIE at %s [in module %s]"),
11183 physname, canon, mangled, sect_offset_str (die->sect_off),
11184 objfile_name (objfile));
11185
11186 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11187 is available here - over computed PHYSNAME. It is safer
11188 against both buggy GDB and buggy compilers. */
11189
11190 retval = canon;
11191 }
11192 else
11193 {
11194 retval = physname;
11195 need_copy = 0;
11196 }
11197 }
11198 else
11199 retval = canon;
11200
11201 if (need_copy)
11202 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11203
11204 return retval;
11205}
11206
11207/* Inspect DIE in CU for a namespace alias. If one exists, record
11208 a new symbol for it.
11209
11210 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11211
11212static int
11213read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11214{
11215 struct attribute *attr;
11216
11217 /* If the die does not have a name, this is not a namespace
11218 alias. */
11219 attr = dwarf2_attr (die, DW_AT_name, cu);
11220 if (attr != NULL)
11221 {
11222 int num;
11223 struct die_info *d = die;
11224 struct dwarf2_cu *imported_cu = cu;
11225
11226 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11227 keep inspecting DIEs until we hit the underlying import. */
11228#define MAX_NESTED_IMPORTED_DECLARATIONS 100
11229 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11230 {
11231 attr = dwarf2_attr (d, DW_AT_import, cu);
11232 if (attr == NULL)
11233 break;
11234
11235 d = follow_die_ref (d, attr, &imported_cu);
11236 if (d->tag != DW_TAG_imported_declaration)
11237 break;
11238 }
11239
11240 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11241 {
11242 complaint (_("DIE at %s has too many recursively imported "
11243 "declarations"), sect_offset_str (d->sect_off));
11244 return 0;
11245 }
11246
11247 if (attr != NULL)
11248 {
11249 struct type *type;
11250 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11251
11252 type = get_die_type_at_offset (sect_off, cu->per_cu);
11253 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11254 {
11255 /* This declaration is a global namespace alias. Add
11256 a symbol for it whose type is the aliased namespace. */
11257 new_symbol (die, type, cu);
11258 return 1;
11259 }
11260 }
11261 }
11262
11263 return 0;
11264}
11265
11266/* Return the using directives repository (global or local?) to use in the
11267 current context for CU.
11268
11269 For Ada, imported declarations can materialize renamings, which *may* be
11270 global. However it is impossible (for now?) in DWARF to distinguish
11271 "external" imported declarations and "static" ones. As all imported
11272 declarations seem to be static in all other languages, make them all CU-wide
11273 global only in Ada. */
11274
11275static struct using_direct **
11276using_directives (struct dwarf2_cu *cu)
11277{
11278 if (cu->language == language_ada
11279 && cu->get_builder ()->outermost_context_p ())
11280 return cu->get_builder ()->get_global_using_directives ();
11281 else
11282 return cu->get_builder ()->get_local_using_directives ();
11283}
11284
11285/* Read the import statement specified by the given die and record it. */
11286
11287static void
11288read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11289{
11290 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11291 struct attribute *import_attr;
11292 struct die_info *imported_die, *child_die;
11293 struct dwarf2_cu *imported_cu;
11294 const char *imported_name;
11295 const char *imported_name_prefix;
11296 const char *canonical_name;
11297 const char *import_alias;
11298 const char *imported_declaration = NULL;
11299 const char *import_prefix;
11300 std::vector<const char *> excludes;
11301
11302 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11303 if (import_attr == NULL)
11304 {
11305 complaint (_("Tag '%s' has no DW_AT_import"),
11306 dwarf_tag_name (die->tag));
11307 return;
11308 }
11309
11310 imported_cu = cu;
11311 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11312 imported_name = dwarf2_name (imported_die, imported_cu);
11313 if (imported_name == NULL)
11314 {
11315 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11316
11317 The import in the following code:
11318 namespace A
11319 {
11320 typedef int B;
11321 }
11322
11323 int main ()
11324 {
11325 using A::B;
11326 B b;
11327 return b;
11328 }
11329
11330 ...
11331 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11332 <52> DW_AT_decl_file : 1
11333 <53> DW_AT_decl_line : 6
11334 <54> DW_AT_import : <0x75>
11335 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11336 <59> DW_AT_name : B
11337 <5b> DW_AT_decl_file : 1
11338 <5c> DW_AT_decl_line : 2
11339 <5d> DW_AT_type : <0x6e>
11340 ...
11341 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11342 <76> DW_AT_byte_size : 4
11343 <77> DW_AT_encoding : 5 (signed)
11344
11345 imports the wrong die ( 0x75 instead of 0x58 ).
11346 This case will be ignored until the gcc bug is fixed. */
11347 return;
11348 }
11349
11350 /* Figure out the local name after import. */
11351 import_alias = dwarf2_name (die, cu);
11352
11353 /* Figure out where the statement is being imported to. */
11354 import_prefix = determine_prefix (die, cu);
11355
11356 /* Figure out what the scope of the imported die is and prepend it
11357 to the name of the imported die. */
11358 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11359
11360 if (imported_die->tag != DW_TAG_namespace
11361 && imported_die->tag != DW_TAG_module)
11362 {
11363 imported_declaration = imported_name;
11364 canonical_name = imported_name_prefix;
11365 }
11366 else if (strlen (imported_name_prefix) > 0)
11367 canonical_name = obconcat (&objfile->objfile_obstack,
11368 imported_name_prefix,
11369 (cu->language == language_d ? "." : "::"),
11370 imported_name, (char *) NULL);
11371 else
11372 canonical_name = imported_name;
11373
11374 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11375 for (child_die = die->child; child_die && child_die->tag;
11376 child_die = sibling_die (child_die))
11377 {
11378 /* DWARF-4: A Fortran use statement with a “rename list” may be
11379 represented by an imported module entry with an import attribute
11380 referring to the module and owned entries corresponding to those
11381 entities that are renamed as part of being imported. */
11382
11383 if (child_die->tag != DW_TAG_imported_declaration)
11384 {
11385 complaint (_("child DW_TAG_imported_declaration expected "
11386 "- DIE at %s [in module %s]"),
11387 sect_offset_str (child_die->sect_off),
11388 objfile_name (objfile));
11389 continue;
11390 }
11391
11392 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11393 if (import_attr == NULL)
11394 {
11395 complaint (_("Tag '%s' has no DW_AT_import"),
11396 dwarf_tag_name (child_die->tag));
11397 continue;
11398 }
11399
11400 imported_cu = cu;
11401 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11402 &imported_cu);
11403 imported_name = dwarf2_name (imported_die, imported_cu);
11404 if (imported_name == NULL)
11405 {
11406 complaint (_("child DW_TAG_imported_declaration has unknown "
11407 "imported name - DIE at %s [in module %s]"),
11408 sect_offset_str (child_die->sect_off),
11409 objfile_name (objfile));
11410 continue;
11411 }
11412
11413 excludes.push_back (imported_name);
11414
11415 process_die (child_die, cu);
11416 }
11417
11418 add_using_directive (using_directives (cu),
11419 import_prefix,
11420 canonical_name,
11421 import_alias,
11422 imported_declaration,
11423 excludes,
11424 0,
11425 &objfile->objfile_obstack);
11426}
11427
11428/* ICC<14 does not output the required DW_AT_declaration on incomplete
11429 types, but gives them a size of zero. Starting with version 14,
11430 ICC is compatible with GCC. */
11431
11432static bool
11433producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11434{
11435 if (!cu->checked_producer)
11436 check_producer (cu);
11437
11438 return cu->producer_is_icc_lt_14;
11439}
11440
11441/* ICC generates a DW_AT_type for C void functions. This was observed on
11442 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11443 which says that void functions should not have a DW_AT_type. */
11444
11445static bool
11446producer_is_icc (struct dwarf2_cu *cu)
11447{
11448 if (!cu->checked_producer)
11449 check_producer (cu);
11450
11451 return cu->producer_is_icc;
11452}
11453
11454/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11455 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11456 this, it was first present in GCC release 4.3.0. */
11457
11458static bool
11459producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11460{
11461 if (!cu->checked_producer)
11462 check_producer (cu);
11463
11464 return cu->producer_is_gcc_lt_4_3;
11465}
11466
11467static file_and_directory
11468find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11469{
11470 file_and_directory res;
11471
11472 /* Find the filename. Do not use dwarf2_name here, since the filename
11473 is not a source language identifier. */
11474 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11475 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11476
11477 if (res.comp_dir == NULL
11478 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11479 && IS_ABSOLUTE_PATH (res.name))
11480 {
11481 res.comp_dir_storage = ldirname (res.name);
11482 if (!res.comp_dir_storage.empty ())
11483 res.comp_dir = res.comp_dir_storage.c_str ();
11484 }
11485 if (res.comp_dir != NULL)
11486 {
11487 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11488 directory, get rid of it. */
11489 const char *cp = strchr (res.comp_dir, ':');
11490
11491 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11492 res.comp_dir = cp + 1;
11493 }
11494
11495 if (res.name == NULL)
11496 res.name = "<unknown>";
11497
11498 return res;
11499}
11500
11501/* Handle DW_AT_stmt_list for a compilation unit.
11502 DIE is the DW_TAG_compile_unit die for CU.
11503 COMP_DIR is the compilation directory. LOWPC is passed to
11504 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11505
11506static void
11507handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11508 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11509{
11510 struct dwarf2_per_objfile *dwarf2_per_objfile
11511 = cu->per_cu->dwarf2_per_objfile;
11512 struct objfile *objfile = dwarf2_per_objfile->objfile;
11513 struct attribute *attr;
11514 struct line_header line_header_local;
11515 hashval_t line_header_local_hash;
11516 void **slot;
11517 int decode_mapping;
11518
11519 gdb_assert (! cu->per_cu->is_debug_types);
11520
11521 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11522 if (attr == NULL)
11523 return;
11524
11525 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11526
11527 /* The line header hash table is only created if needed (it exists to
11528 prevent redundant reading of the line table for partial_units).
11529 If we're given a partial_unit, we'll need it. If we're given a
11530 compile_unit, then use the line header hash table if it's already
11531 created, but don't create one just yet. */
11532
11533 if (dwarf2_per_objfile->line_header_hash == NULL
11534 && die->tag == DW_TAG_partial_unit)
11535 {
11536 dwarf2_per_objfile->line_header_hash
11537 = htab_create_alloc_ex (127, line_header_hash_voidp,
11538 line_header_eq_voidp,
11539 free_line_header_voidp,
11540 &objfile->objfile_obstack,
11541 hashtab_obstack_allocate,
11542 dummy_obstack_deallocate);
11543 }
11544
11545 line_header_local.sect_off = line_offset;
11546 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11547 line_header_local_hash = line_header_hash (&line_header_local);
11548 if (dwarf2_per_objfile->line_header_hash != NULL)
11549 {
11550 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11551 &line_header_local,
11552 line_header_local_hash, NO_INSERT);
11553
11554 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11555 is not present in *SLOT (since if there is something in *SLOT then
11556 it will be for a partial_unit). */
11557 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11558 {
11559 gdb_assert (*slot != NULL);
11560 cu->line_header = (struct line_header *) *slot;
11561 return;
11562 }
11563 }
11564
11565 /* dwarf_decode_line_header does not yet provide sufficient information.
11566 We always have to call also dwarf_decode_lines for it. */
11567 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11568 if (lh == NULL)
11569 return;
11570
11571 cu->line_header = lh.release ();
11572 cu->line_header_die_owner = die;
11573
11574 if (dwarf2_per_objfile->line_header_hash == NULL)
11575 slot = NULL;
11576 else
11577 {
11578 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11579 &line_header_local,
11580 line_header_local_hash, INSERT);
11581 gdb_assert (slot != NULL);
11582 }
11583 if (slot != NULL && *slot == NULL)
11584 {
11585 /* This newly decoded line number information unit will be owned
11586 by line_header_hash hash table. */
11587 *slot = cu->line_header;
11588 cu->line_header_die_owner = NULL;
11589 }
11590 else
11591 {
11592 /* We cannot free any current entry in (*slot) as that struct line_header
11593 may be already used by multiple CUs. Create only temporary decoded
11594 line_header for this CU - it may happen at most once for each line
11595 number information unit. And if we're not using line_header_hash
11596 then this is what we want as well. */
11597 gdb_assert (die->tag != DW_TAG_partial_unit);
11598 }
11599 decode_mapping = (die->tag != DW_TAG_partial_unit);
11600 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11601 decode_mapping);
11602
11603}
11604
11605/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11606
11607static void
11608read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11609{
11610 struct dwarf2_per_objfile *dwarf2_per_objfile
11611 = cu->per_cu->dwarf2_per_objfile;
11612 struct objfile *objfile = dwarf2_per_objfile->objfile;
11613 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11614 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11615 CORE_ADDR highpc = ((CORE_ADDR) 0);
11616 struct attribute *attr;
11617 struct die_info *child_die;
11618 CORE_ADDR baseaddr;
11619
11620 prepare_one_comp_unit (cu, die, cu->language);
11621 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11622
11623 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11624
11625 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11626 from finish_block. */
11627 if (lowpc == ((CORE_ADDR) -1))
11628 lowpc = highpc;
11629 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11630
11631 file_and_directory fnd = find_file_and_directory (die, cu);
11632
11633 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11634 standardised yet. As a workaround for the language detection we fall
11635 back to the DW_AT_producer string. */
11636 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11637 cu->language = language_opencl;
11638
11639 /* Similar hack for Go. */
11640 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11641 set_cu_language (DW_LANG_Go, cu);
11642
11643 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11644
11645 /* Decode line number information if present. We do this before
11646 processing child DIEs, so that the line header table is available
11647 for DW_AT_decl_file. */
11648 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11649
11650 /* Process all dies in compilation unit. */
11651 if (die->child != NULL)
11652 {
11653 child_die = die->child;
11654 while (child_die && child_die->tag)
11655 {
11656 process_die (child_die, cu);
11657 child_die = sibling_die (child_die);
11658 }
11659 }
11660
11661 /* Decode macro information, if present. Dwarf 2 macro information
11662 refers to information in the line number info statement program
11663 header, so we can only read it if we've read the header
11664 successfully. */
11665 attr = dwarf2_attr (die, DW_AT_macros, cu);
11666 if (attr == NULL)
11667 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11668 if (attr && cu->line_header)
11669 {
11670 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11671 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11672
11673 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11674 }
11675 else
11676 {
11677 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11678 if (attr && cu->line_header)
11679 {
11680 unsigned int macro_offset = DW_UNSND (attr);
11681
11682 dwarf_decode_macros (cu, macro_offset, 0);
11683 }
11684 }
11685}
11686
11687void
11688dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11689{
11690 struct type_unit_group *tu_group;
11691 int first_time;
11692 struct attribute *attr;
11693 unsigned int i;
11694 struct signatured_type *sig_type;
11695
11696 gdb_assert (per_cu->is_debug_types);
11697 sig_type = (struct signatured_type *) per_cu;
11698
11699 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11700
11701 /* If we're using .gdb_index (includes -readnow) then
11702 per_cu->type_unit_group may not have been set up yet. */
11703 if (sig_type->type_unit_group == NULL)
11704 sig_type->type_unit_group = get_type_unit_group (this, attr);
11705 tu_group = sig_type->type_unit_group;
11706
11707 /* If we've already processed this stmt_list there's no real need to
11708 do it again, we could fake it and just recreate the part we need
11709 (file name,index -> symtab mapping). If data shows this optimization
11710 is useful we can do it then. */
11711 first_time = tu_group->compunit_symtab == NULL;
11712
11713 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11714 debug info. */
11715 line_header_up lh;
11716 if (attr != NULL)
11717 {
11718 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11719 lh = dwarf_decode_line_header (line_offset, this);
11720 }
11721 if (lh == NULL)
11722 {
11723 if (first_time)
11724 start_symtab ("", NULL, 0);
11725 else
11726 {
11727 gdb_assert (tu_group->symtabs == NULL);
11728 gdb_assert (m_builder == nullptr);
11729 struct compunit_symtab *cust = tu_group->compunit_symtab;
11730 m_builder.reset (new struct buildsym_compunit
11731 (COMPUNIT_OBJFILE (cust), "",
11732 COMPUNIT_DIRNAME (cust),
11733 compunit_language (cust),
11734 0, cust));
11735 }
11736 return;
11737 }
11738
11739 line_header = lh.release ();
11740 line_header_die_owner = die;
11741
11742 if (first_time)
11743 {
11744 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11745
11746 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11747 still initializing it, and our caller (a few levels up)
11748 process_full_type_unit still needs to know if this is the first
11749 time. */
11750
11751 tu_group->num_symtabs = line_header->file_names_size ();
11752 tu_group->symtabs = XNEWVEC (struct symtab *,
11753 line_header->file_names_size ());
11754
11755 auto &file_names = line_header->file_names ();
11756 for (i = 0; i < file_names.size (); ++i)
11757 {
11758 file_entry &fe = file_names[i];
11759 dwarf2_start_subfile (this, fe.name,
11760 fe.include_dir (line_header));
11761 buildsym_compunit *b = get_builder ();
11762 if (b->get_current_subfile ()->symtab == NULL)
11763 {
11764 /* NOTE: start_subfile will recognize when it's been
11765 passed a file it has already seen. So we can't
11766 assume there's a simple mapping from
11767 cu->line_header->file_names to subfiles, plus
11768 cu->line_header->file_names may contain dups. */
11769 b->get_current_subfile ()->symtab
11770 = allocate_symtab (cust, b->get_current_subfile ()->name);
11771 }
11772
11773 fe.symtab = b->get_current_subfile ()->symtab;
11774 tu_group->symtabs[i] = fe.symtab;
11775 }
11776 }
11777 else
11778 {
11779 gdb_assert (m_builder == nullptr);
11780 struct compunit_symtab *cust = tu_group->compunit_symtab;
11781 m_builder.reset (new struct buildsym_compunit
11782 (COMPUNIT_OBJFILE (cust), "",
11783 COMPUNIT_DIRNAME (cust),
11784 compunit_language (cust),
11785 0, cust));
11786
11787 auto &file_names = line_header->file_names ();
11788 for (i = 0; i < file_names.size (); ++i)
11789 {
11790 file_entry &fe = file_names[i];
11791 fe.symtab = tu_group->symtabs[i];
11792 }
11793 }
11794
11795 /* The main symtab is allocated last. Type units don't have DW_AT_name
11796 so they don't have a "real" (so to speak) symtab anyway.
11797 There is later code that will assign the main symtab to all symbols
11798 that don't have one. We need to handle the case of a symbol with a
11799 missing symtab (DW_AT_decl_file) anyway. */
11800}
11801
11802/* Process DW_TAG_type_unit.
11803 For TUs we want to skip the first top level sibling if it's not the
11804 actual type being defined by this TU. In this case the first top
11805 level sibling is there to provide context only. */
11806
11807static void
11808read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11809{
11810 struct die_info *child_die;
11811
11812 prepare_one_comp_unit (cu, die, language_minimal);
11813
11814 /* Initialize (or reinitialize) the machinery for building symtabs.
11815 We do this before processing child DIEs, so that the line header table
11816 is available for DW_AT_decl_file. */
11817 cu->setup_type_unit_groups (die);
11818
11819 if (die->child != NULL)
11820 {
11821 child_die = die->child;
11822 while (child_die && child_die->tag)
11823 {
11824 process_die (child_die, cu);
11825 child_die = sibling_die (child_die);
11826 }
11827 }
11828}
11829\f
11830/* DWO/DWP files.
11831
11832 http://gcc.gnu.org/wiki/DebugFission
11833 http://gcc.gnu.org/wiki/DebugFissionDWP
11834
11835 To simplify handling of both DWO files ("object" files with the DWARF info)
11836 and DWP files (a file with the DWOs packaged up into one file), we treat
11837 DWP files as having a collection of virtual DWO files. */
11838
11839static hashval_t
11840hash_dwo_file (const void *item)
11841{
11842 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11843 hashval_t hash;
11844
11845 hash = htab_hash_string (dwo_file->dwo_name);
11846 if (dwo_file->comp_dir != NULL)
11847 hash += htab_hash_string (dwo_file->comp_dir);
11848 return hash;
11849}
11850
11851static int
11852eq_dwo_file (const void *item_lhs, const void *item_rhs)
11853{
11854 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11855 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11856
11857 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11858 return 0;
11859 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11860 return lhs->comp_dir == rhs->comp_dir;
11861 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11862}
11863
11864/* Allocate a hash table for DWO files. */
11865
11866static htab_up
11867allocate_dwo_file_hash_table (struct objfile *objfile)
11868{
11869 auto delete_dwo_file = [] (void *item)
11870 {
11871 struct dwo_file *dwo_file = (struct dwo_file *) item;
11872
11873 delete dwo_file;
11874 };
11875
11876 return htab_up (htab_create_alloc_ex (41,
11877 hash_dwo_file,
11878 eq_dwo_file,
11879 delete_dwo_file,
11880 &objfile->objfile_obstack,
11881 hashtab_obstack_allocate,
11882 dummy_obstack_deallocate));
11883}
11884
11885/* Lookup DWO file DWO_NAME. */
11886
11887static void **
11888lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11889 const char *dwo_name,
11890 const char *comp_dir)
11891{
11892 struct dwo_file find_entry;
11893 void **slot;
11894
11895 if (dwarf2_per_objfile->dwo_files == NULL)
11896 dwarf2_per_objfile->dwo_files
11897 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11898
11899 find_entry.dwo_name = dwo_name;
11900 find_entry.comp_dir = comp_dir;
11901 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11902 INSERT);
11903
11904 return slot;
11905}
11906
11907static hashval_t
11908hash_dwo_unit (const void *item)
11909{
11910 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11911
11912 /* This drops the top 32 bits of the id, but is ok for a hash. */
11913 return dwo_unit->signature;
11914}
11915
11916static int
11917eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11918{
11919 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11920 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11921
11922 /* The signature is assumed to be unique within the DWO file.
11923 So while object file CU dwo_id's always have the value zero,
11924 that's OK, assuming each object file DWO file has only one CU,
11925 and that's the rule for now. */
11926 return lhs->signature == rhs->signature;
11927}
11928
11929/* Allocate a hash table for DWO CUs,TUs.
11930 There is one of these tables for each of CUs,TUs for each DWO file. */
11931
11932static htab_t
11933allocate_dwo_unit_table (struct objfile *objfile)
11934{
11935 /* Start out with a pretty small number.
11936 Generally DWO files contain only one CU and maybe some TUs. */
11937 return htab_create_alloc_ex (3,
11938 hash_dwo_unit,
11939 eq_dwo_unit,
11940 NULL,
11941 &objfile->objfile_obstack,
11942 hashtab_obstack_allocate,
11943 dummy_obstack_deallocate);
11944}
11945
11946/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11947
11948struct create_dwo_cu_data
11949{
11950 struct dwo_file *dwo_file;
11951 struct dwo_unit dwo_unit;
11952};
11953
11954/* die_reader_func for create_dwo_cu. */
11955
11956static void
11957create_dwo_cu_reader (const struct die_reader_specs *reader,
11958 const gdb_byte *info_ptr,
11959 struct die_info *comp_unit_die,
11960 int has_children,
11961 void *datap)
11962{
11963 struct dwarf2_cu *cu = reader->cu;
11964 sect_offset sect_off = cu->per_cu->sect_off;
11965 struct dwarf2_section_info *section = cu->per_cu->section;
11966 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11967 struct dwo_file *dwo_file = data->dwo_file;
11968 struct dwo_unit *dwo_unit = &data->dwo_unit;
11969
11970 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11971 if (!signature.has_value ())
11972 {
11973 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11974 " its dwo_id [in module %s]"),
11975 sect_offset_str (sect_off), dwo_file->dwo_name);
11976 return;
11977 }
11978
11979 dwo_unit->dwo_file = dwo_file;
11980 dwo_unit->signature = *signature;
11981 dwo_unit->section = section;
11982 dwo_unit->sect_off = sect_off;
11983 dwo_unit->length = cu->per_cu->length;
11984
11985 if (dwarf_read_debug)
11986 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11987 sect_offset_str (sect_off),
11988 hex_string (dwo_unit->signature));
11989}
11990
11991/* Create the dwo_units for the CUs in a DWO_FILE.
11992 Note: This function processes DWO files only, not DWP files. */
11993
11994static void
11995create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11996 struct dwo_file &dwo_file, dwarf2_section_info &section,
11997 htab_t &cus_htab)
11998{
11999 struct objfile *objfile = dwarf2_per_objfile->objfile;
12000 const gdb_byte *info_ptr, *end_ptr;
12001
12002 dwarf2_read_section (objfile, &section);
12003 info_ptr = section.buffer;
12004
12005 if (info_ptr == NULL)
12006 return;
12007
12008 if (dwarf_read_debug)
12009 {
12010 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12011 get_section_name (&section),
12012 get_section_file_name (&section));
12013 }
12014
12015 end_ptr = info_ptr + section.size;
12016 while (info_ptr < end_ptr)
12017 {
12018 struct dwarf2_per_cu_data per_cu;
12019 struct create_dwo_cu_data create_dwo_cu_data;
12020 struct dwo_unit *dwo_unit;
12021 void **slot;
12022 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12023
12024 memset (&create_dwo_cu_data.dwo_unit, 0,
12025 sizeof (create_dwo_cu_data.dwo_unit));
12026 memset (&per_cu, 0, sizeof (per_cu));
12027 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12028 per_cu.is_debug_types = 0;
12029 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12030 per_cu.section = &section;
12031 create_dwo_cu_data.dwo_file = &dwo_file;
12032
12033 init_cutu_and_read_dies_no_follow (
12034 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12035 info_ptr += per_cu.length;
12036
12037 // If the unit could not be parsed, skip it.
12038 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12039 continue;
12040
12041 if (cus_htab == NULL)
12042 cus_htab = allocate_dwo_unit_table (objfile);
12043
12044 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12045 *dwo_unit = create_dwo_cu_data.dwo_unit;
12046 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12047 gdb_assert (slot != NULL);
12048 if (*slot != NULL)
12049 {
12050 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12051 sect_offset dup_sect_off = dup_cu->sect_off;
12052
12053 complaint (_("debug cu entry at offset %s is duplicate to"
12054 " the entry at offset %s, signature %s"),
12055 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12056 hex_string (dwo_unit->signature));
12057 }
12058 *slot = (void *)dwo_unit;
12059 }
12060}
12061
12062/* DWP file .debug_{cu,tu}_index section format:
12063 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12064
12065 DWP Version 1:
12066
12067 Both index sections have the same format, and serve to map a 64-bit
12068 signature to a set of section numbers. Each section begins with a header,
12069 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12070 indexes, and a pool of 32-bit section numbers. The index sections will be
12071 aligned at 8-byte boundaries in the file.
12072
12073 The index section header consists of:
12074
12075 V, 32 bit version number
12076 -, 32 bits unused
12077 N, 32 bit number of compilation units or type units in the index
12078 M, 32 bit number of slots in the hash table
12079
12080 Numbers are recorded using the byte order of the application binary.
12081
12082 The hash table begins at offset 16 in the section, and consists of an array
12083 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12084 order of the application binary). Unused slots in the hash table are 0.
12085 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12086
12087 The parallel table begins immediately after the hash table
12088 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12089 array of 32-bit indexes (using the byte order of the application binary),
12090 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12091 table contains a 32-bit index into the pool of section numbers. For unused
12092 hash table slots, the corresponding entry in the parallel table will be 0.
12093
12094 The pool of section numbers begins immediately following the hash table
12095 (at offset 16 + 12 * M from the beginning of the section). The pool of
12096 section numbers consists of an array of 32-bit words (using the byte order
12097 of the application binary). Each item in the array is indexed starting
12098 from 0. The hash table entry provides the index of the first section
12099 number in the set. Additional section numbers in the set follow, and the
12100 set is terminated by a 0 entry (section number 0 is not used in ELF).
12101
12102 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12103 section must be the first entry in the set, and the .debug_abbrev.dwo must
12104 be the second entry. Other members of the set may follow in any order.
12105
12106 ---
12107
12108 DWP Version 2:
12109
12110 DWP Version 2 combines all the .debug_info, etc. sections into one,
12111 and the entries in the index tables are now offsets into these sections.
12112 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12113 section.
12114
12115 Index Section Contents:
12116 Header
12117 Hash Table of Signatures dwp_hash_table.hash_table
12118 Parallel Table of Indices dwp_hash_table.unit_table
12119 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12120 Table of Section Sizes dwp_hash_table.v2.sizes
12121
12122 The index section header consists of:
12123
12124 V, 32 bit version number
12125 L, 32 bit number of columns in the table of section offsets
12126 N, 32 bit number of compilation units or type units in the index
12127 M, 32 bit number of slots in the hash table
12128
12129 Numbers are recorded using the byte order of the application binary.
12130
12131 The hash table has the same format as version 1.
12132 The parallel table of indices has the same format as version 1,
12133 except that the entries are origin-1 indices into the table of sections
12134 offsets and the table of section sizes.
12135
12136 The table of offsets begins immediately following the parallel table
12137 (at offset 16 + 12 * M from the beginning of the section). The table is
12138 a two-dimensional array of 32-bit words (using the byte order of the
12139 application binary), with L columns and N+1 rows, in row-major order.
12140 Each row in the array is indexed starting from 0. The first row provides
12141 a key to the remaining rows: each column in this row provides an identifier
12142 for a debug section, and the offsets in the same column of subsequent rows
12143 refer to that section. The section identifiers are:
12144
12145 DW_SECT_INFO 1 .debug_info.dwo
12146 DW_SECT_TYPES 2 .debug_types.dwo
12147 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12148 DW_SECT_LINE 4 .debug_line.dwo
12149 DW_SECT_LOC 5 .debug_loc.dwo
12150 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12151 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12152 DW_SECT_MACRO 8 .debug_macro.dwo
12153
12154 The offsets provided by the CU and TU index sections are the base offsets
12155 for the contributions made by each CU or TU to the corresponding section
12156 in the package file. Each CU and TU header contains an abbrev_offset
12157 field, used to find the abbreviations table for that CU or TU within the
12158 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12159 be interpreted as relative to the base offset given in the index section.
12160 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12161 should be interpreted as relative to the base offset for .debug_line.dwo,
12162 and offsets into other debug sections obtained from DWARF attributes should
12163 also be interpreted as relative to the corresponding base offset.
12164
12165 The table of sizes begins immediately following the table of offsets.
12166 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12167 with L columns and N rows, in row-major order. Each row in the array is
12168 indexed starting from 1 (row 0 is shared by the two tables).
12169
12170 ---
12171
12172 Hash table lookup is handled the same in version 1 and 2:
12173
12174 We assume that N and M will not exceed 2^32 - 1.
12175 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12176
12177 Given a 64-bit compilation unit signature or a type signature S, an entry
12178 in the hash table is located as follows:
12179
12180 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12181 the low-order k bits all set to 1.
12182
12183 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12184
12185 3) If the hash table entry at index H matches the signature, use that
12186 entry. If the hash table entry at index H is unused (all zeroes),
12187 terminate the search: the signature is not present in the table.
12188
12189 4) Let H = (H + H') modulo M. Repeat at Step 3.
12190
12191 Because M > N and H' and M are relatively prime, the search is guaranteed
12192 to stop at an unused slot or find the match. */
12193
12194/* Create a hash table to map DWO IDs to their CU/TU entry in
12195 .debug_{info,types}.dwo in DWP_FILE.
12196 Returns NULL if there isn't one.
12197 Note: This function processes DWP files only, not DWO files. */
12198
12199static struct dwp_hash_table *
12200create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12201 struct dwp_file *dwp_file, int is_debug_types)
12202{
12203 struct objfile *objfile = dwarf2_per_objfile->objfile;
12204 bfd *dbfd = dwp_file->dbfd.get ();
12205 const gdb_byte *index_ptr, *index_end;
12206 struct dwarf2_section_info *index;
12207 uint32_t version, nr_columns, nr_units, nr_slots;
12208 struct dwp_hash_table *htab;
12209
12210 if (is_debug_types)
12211 index = &dwp_file->sections.tu_index;
12212 else
12213 index = &dwp_file->sections.cu_index;
12214
12215 if (dwarf2_section_empty_p (index))
12216 return NULL;
12217 dwarf2_read_section (objfile, index);
12218
12219 index_ptr = index->buffer;
12220 index_end = index_ptr + index->size;
12221
12222 version = read_4_bytes (dbfd, index_ptr);
12223 index_ptr += 4;
12224 if (version == 2)
12225 nr_columns = read_4_bytes (dbfd, index_ptr);
12226 else
12227 nr_columns = 0;
12228 index_ptr += 4;
12229 nr_units = read_4_bytes (dbfd, index_ptr);
12230 index_ptr += 4;
12231 nr_slots = read_4_bytes (dbfd, index_ptr);
12232 index_ptr += 4;
12233
12234 if (version != 1 && version != 2)
12235 {
12236 error (_("Dwarf Error: unsupported DWP file version (%s)"
12237 " [in module %s]"),
12238 pulongest (version), dwp_file->name);
12239 }
12240 if (nr_slots != (nr_slots & -nr_slots))
12241 {
12242 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12243 " is not power of 2 [in module %s]"),
12244 pulongest (nr_slots), dwp_file->name);
12245 }
12246
12247 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12248 htab->version = version;
12249 htab->nr_columns = nr_columns;
12250 htab->nr_units = nr_units;
12251 htab->nr_slots = nr_slots;
12252 htab->hash_table = index_ptr;
12253 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12254
12255 /* Exit early if the table is empty. */
12256 if (nr_slots == 0 || nr_units == 0
12257 || (version == 2 && nr_columns == 0))
12258 {
12259 /* All must be zero. */
12260 if (nr_slots != 0 || nr_units != 0
12261 || (version == 2 && nr_columns != 0))
12262 {
12263 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12264 " all zero [in modules %s]"),
12265 dwp_file->name);
12266 }
12267 return htab;
12268 }
12269
12270 if (version == 1)
12271 {
12272 htab->section_pool.v1.indices =
12273 htab->unit_table + sizeof (uint32_t) * nr_slots;
12274 /* It's harder to decide whether the section is too small in v1.
12275 V1 is deprecated anyway so we punt. */
12276 }
12277 else
12278 {
12279 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12280 int *ids = htab->section_pool.v2.section_ids;
12281 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12282 /* Reverse map for error checking. */
12283 int ids_seen[DW_SECT_MAX + 1];
12284 int i;
12285
12286 if (nr_columns < 2)
12287 {
12288 error (_("Dwarf Error: bad DWP hash table, too few columns"
12289 " in section table [in module %s]"),
12290 dwp_file->name);
12291 }
12292 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12293 {
12294 error (_("Dwarf Error: bad DWP hash table, too many columns"
12295 " in section table [in module %s]"),
12296 dwp_file->name);
12297 }
12298 memset (ids, 255, sizeof_ids);
12299 memset (ids_seen, 255, sizeof (ids_seen));
12300 for (i = 0; i < nr_columns; ++i)
12301 {
12302 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12303
12304 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12305 {
12306 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12307 " in section table [in module %s]"),
12308 id, dwp_file->name);
12309 }
12310 if (ids_seen[id] != -1)
12311 {
12312 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12313 " id %d in section table [in module %s]"),
12314 id, dwp_file->name);
12315 }
12316 ids_seen[id] = i;
12317 ids[i] = id;
12318 }
12319 /* Must have exactly one info or types section. */
12320 if (((ids_seen[DW_SECT_INFO] != -1)
12321 + (ids_seen[DW_SECT_TYPES] != -1))
12322 != 1)
12323 {
12324 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12325 " DWO info/types section [in module %s]"),
12326 dwp_file->name);
12327 }
12328 /* Must have an abbrev section. */
12329 if (ids_seen[DW_SECT_ABBREV] == -1)
12330 {
12331 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12332 " section [in module %s]"),
12333 dwp_file->name);
12334 }
12335 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12336 htab->section_pool.v2.sizes =
12337 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12338 * nr_units * nr_columns);
12339 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12340 * nr_units * nr_columns))
12341 > index_end)
12342 {
12343 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12344 " [in module %s]"),
12345 dwp_file->name);
12346 }
12347 }
12348
12349 return htab;
12350}
12351
12352/* Update SECTIONS with the data from SECTP.
12353
12354 This function is like the other "locate" section routines that are
12355 passed to bfd_map_over_sections, but in this context the sections to
12356 read comes from the DWP V1 hash table, not the full ELF section table.
12357
12358 The result is non-zero for success, or zero if an error was found. */
12359
12360static int
12361locate_v1_virtual_dwo_sections (asection *sectp,
12362 struct virtual_v1_dwo_sections *sections)
12363{
12364 const struct dwop_section_names *names = &dwop_section_names;
12365
12366 if (section_is_p (sectp->name, &names->abbrev_dwo))
12367 {
12368 /* There can be only one. */
12369 if (sections->abbrev.s.section != NULL)
12370 return 0;
12371 sections->abbrev.s.section = sectp;
12372 sections->abbrev.size = bfd_section_size (sectp);
12373 }
12374 else if (section_is_p (sectp->name, &names->info_dwo)
12375 || section_is_p (sectp->name, &names->types_dwo))
12376 {
12377 /* There can be only one. */
12378 if (sections->info_or_types.s.section != NULL)
12379 return 0;
12380 sections->info_or_types.s.section = sectp;
12381 sections->info_or_types.size = bfd_section_size (sectp);
12382 }
12383 else if (section_is_p (sectp->name, &names->line_dwo))
12384 {
12385 /* There can be only one. */
12386 if (sections->line.s.section != NULL)
12387 return 0;
12388 sections->line.s.section = sectp;
12389 sections->line.size = bfd_section_size (sectp);
12390 }
12391 else if (section_is_p (sectp->name, &names->loc_dwo))
12392 {
12393 /* There can be only one. */
12394 if (sections->loc.s.section != NULL)
12395 return 0;
12396 sections->loc.s.section = sectp;
12397 sections->loc.size = bfd_section_size (sectp);
12398 }
12399 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12400 {
12401 /* There can be only one. */
12402 if (sections->macinfo.s.section != NULL)
12403 return 0;
12404 sections->macinfo.s.section = sectp;
12405 sections->macinfo.size = bfd_section_size (sectp);
12406 }
12407 else if (section_is_p (sectp->name, &names->macro_dwo))
12408 {
12409 /* There can be only one. */
12410 if (sections->macro.s.section != NULL)
12411 return 0;
12412 sections->macro.s.section = sectp;
12413 sections->macro.size = bfd_section_size (sectp);
12414 }
12415 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12416 {
12417 /* There can be only one. */
12418 if (sections->str_offsets.s.section != NULL)
12419 return 0;
12420 sections->str_offsets.s.section = sectp;
12421 sections->str_offsets.size = bfd_section_size (sectp);
12422 }
12423 else
12424 {
12425 /* No other kind of section is valid. */
12426 return 0;
12427 }
12428
12429 return 1;
12430}
12431
12432/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12433 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12434 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12435 This is for DWP version 1 files. */
12436
12437static struct dwo_unit *
12438create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12439 struct dwp_file *dwp_file,
12440 uint32_t unit_index,
12441 const char *comp_dir,
12442 ULONGEST signature, int is_debug_types)
12443{
12444 struct objfile *objfile = dwarf2_per_objfile->objfile;
12445 const struct dwp_hash_table *dwp_htab =
12446 is_debug_types ? dwp_file->tus : dwp_file->cus;
12447 bfd *dbfd = dwp_file->dbfd.get ();
12448 const char *kind = is_debug_types ? "TU" : "CU";
12449 struct dwo_file *dwo_file;
12450 struct dwo_unit *dwo_unit;
12451 struct virtual_v1_dwo_sections sections;
12452 void **dwo_file_slot;
12453 int i;
12454
12455 gdb_assert (dwp_file->version == 1);
12456
12457 if (dwarf_read_debug)
12458 {
12459 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12460 kind,
12461 pulongest (unit_index), hex_string (signature),
12462 dwp_file->name);
12463 }
12464
12465 /* Fetch the sections of this DWO unit.
12466 Put a limit on the number of sections we look for so that bad data
12467 doesn't cause us to loop forever. */
12468
12469#define MAX_NR_V1_DWO_SECTIONS \
12470 (1 /* .debug_info or .debug_types */ \
12471 + 1 /* .debug_abbrev */ \
12472 + 1 /* .debug_line */ \
12473 + 1 /* .debug_loc */ \
12474 + 1 /* .debug_str_offsets */ \
12475 + 1 /* .debug_macro or .debug_macinfo */ \
12476 + 1 /* trailing zero */)
12477
12478 memset (&sections, 0, sizeof (sections));
12479
12480 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12481 {
12482 asection *sectp;
12483 uint32_t section_nr =
12484 read_4_bytes (dbfd,
12485 dwp_htab->section_pool.v1.indices
12486 + (unit_index + i) * sizeof (uint32_t));
12487
12488 if (section_nr == 0)
12489 break;
12490 if (section_nr >= dwp_file->num_sections)
12491 {
12492 error (_("Dwarf Error: bad DWP hash table, section number too large"
12493 " [in module %s]"),
12494 dwp_file->name);
12495 }
12496
12497 sectp = dwp_file->elf_sections[section_nr];
12498 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12499 {
12500 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12501 " [in module %s]"),
12502 dwp_file->name);
12503 }
12504 }
12505
12506 if (i < 2
12507 || dwarf2_section_empty_p (&sections.info_or_types)
12508 || dwarf2_section_empty_p (&sections.abbrev))
12509 {
12510 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12511 " [in module %s]"),
12512 dwp_file->name);
12513 }
12514 if (i == MAX_NR_V1_DWO_SECTIONS)
12515 {
12516 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12517 " [in module %s]"),
12518 dwp_file->name);
12519 }
12520
12521 /* It's easier for the rest of the code if we fake a struct dwo_file and
12522 have dwo_unit "live" in that. At least for now.
12523
12524 The DWP file can be made up of a random collection of CUs and TUs.
12525 However, for each CU + set of TUs that came from the same original DWO
12526 file, we can combine them back into a virtual DWO file to save space
12527 (fewer struct dwo_file objects to allocate). Remember that for really
12528 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12529
12530 std::string virtual_dwo_name =
12531 string_printf ("virtual-dwo/%d-%d-%d-%d",
12532 get_section_id (&sections.abbrev),
12533 get_section_id (&sections.line),
12534 get_section_id (&sections.loc),
12535 get_section_id (&sections.str_offsets));
12536 /* Can we use an existing virtual DWO file? */
12537 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12538 virtual_dwo_name.c_str (),
12539 comp_dir);
12540 /* Create one if necessary. */
12541 if (*dwo_file_slot == NULL)
12542 {
12543 if (dwarf_read_debug)
12544 {
12545 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12546 virtual_dwo_name.c_str ());
12547 }
12548 dwo_file = new struct dwo_file;
12549 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12550 virtual_dwo_name);
12551 dwo_file->comp_dir = comp_dir;
12552 dwo_file->sections.abbrev = sections.abbrev;
12553 dwo_file->sections.line = sections.line;
12554 dwo_file->sections.loc = sections.loc;
12555 dwo_file->sections.macinfo = sections.macinfo;
12556 dwo_file->sections.macro = sections.macro;
12557 dwo_file->sections.str_offsets = sections.str_offsets;
12558 /* The "str" section is global to the entire DWP file. */
12559 dwo_file->sections.str = dwp_file->sections.str;
12560 /* The info or types section is assigned below to dwo_unit,
12561 there's no need to record it in dwo_file.
12562 Also, we can't simply record type sections in dwo_file because
12563 we record a pointer into the vector in dwo_unit. As we collect more
12564 types we'll grow the vector and eventually have to reallocate space
12565 for it, invalidating all copies of pointers into the previous
12566 contents. */
12567 *dwo_file_slot = dwo_file;
12568 }
12569 else
12570 {
12571 if (dwarf_read_debug)
12572 {
12573 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12574 virtual_dwo_name.c_str ());
12575 }
12576 dwo_file = (struct dwo_file *) *dwo_file_slot;
12577 }
12578
12579 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12580 dwo_unit->dwo_file = dwo_file;
12581 dwo_unit->signature = signature;
12582 dwo_unit->section =
12583 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12584 *dwo_unit->section = sections.info_or_types;
12585 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12586
12587 return dwo_unit;
12588}
12589
12590/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12591 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12592 piece within that section used by a TU/CU, return a virtual section
12593 of just that piece. */
12594
12595static struct dwarf2_section_info
12596create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12597 struct dwarf2_section_info *section,
12598 bfd_size_type offset, bfd_size_type size)
12599{
12600 struct dwarf2_section_info result;
12601 asection *sectp;
12602
12603 gdb_assert (section != NULL);
12604 gdb_assert (!section->is_virtual);
12605
12606 memset (&result, 0, sizeof (result));
12607 result.s.containing_section = section;
12608 result.is_virtual = true;
12609
12610 if (size == 0)
12611 return result;
12612
12613 sectp = get_section_bfd_section (section);
12614
12615 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12616 bounds of the real section. This is a pretty-rare event, so just
12617 flag an error (easier) instead of a warning and trying to cope. */
12618 if (sectp == NULL
12619 || offset + size > bfd_section_size (sectp))
12620 {
12621 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12622 " in section %s [in module %s]"),
12623 sectp ? bfd_section_name (sectp) : "<unknown>",
12624 objfile_name (dwarf2_per_objfile->objfile));
12625 }
12626
12627 result.virtual_offset = offset;
12628 result.size = size;
12629 return result;
12630}
12631
12632/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12633 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12634 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12635 This is for DWP version 2 files. */
12636
12637static struct dwo_unit *
12638create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12639 struct dwp_file *dwp_file,
12640 uint32_t unit_index,
12641 const char *comp_dir,
12642 ULONGEST signature, int is_debug_types)
12643{
12644 struct objfile *objfile = dwarf2_per_objfile->objfile;
12645 const struct dwp_hash_table *dwp_htab =
12646 is_debug_types ? dwp_file->tus : dwp_file->cus;
12647 bfd *dbfd = dwp_file->dbfd.get ();
12648 const char *kind = is_debug_types ? "TU" : "CU";
12649 struct dwo_file *dwo_file;
12650 struct dwo_unit *dwo_unit;
12651 struct virtual_v2_dwo_sections sections;
12652 void **dwo_file_slot;
12653 int i;
12654
12655 gdb_assert (dwp_file->version == 2);
12656
12657 if (dwarf_read_debug)
12658 {
12659 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12660 kind,
12661 pulongest (unit_index), hex_string (signature),
12662 dwp_file->name);
12663 }
12664
12665 /* Fetch the section offsets of this DWO unit. */
12666
12667 memset (&sections, 0, sizeof (sections));
12668
12669 for (i = 0; i < dwp_htab->nr_columns; ++i)
12670 {
12671 uint32_t offset = read_4_bytes (dbfd,
12672 dwp_htab->section_pool.v2.offsets
12673 + (((unit_index - 1) * dwp_htab->nr_columns
12674 + i)
12675 * sizeof (uint32_t)));
12676 uint32_t size = read_4_bytes (dbfd,
12677 dwp_htab->section_pool.v2.sizes
12678 + (((unit_index - 1) * dwp_htab->nr_columns
12679 + i)
12680 * sizeof (uint32_t)));
12681
12682 switch (dwp_htab->section_pool.v2.section_ids[i])
12683 {
12684 case DW_SECT_INFO:
12685 case DW_SECT_TYPES:
12686 sections.info_or_types_offset = offset;
12687 sections.info_or_types_size = size;
12688 break;
12689 case DW_SECT_ABBREV:
12690 sections.abbrev_offset = offset;
12691 sections.abbrev_size = size;
12692 break;
12693 case DW_SECT_LINE:
12694 sections.line_offset = offset;
12695 sections.line_size = size;
12696 break;
12697 case DW_SECT_LOC:
12698 sections.loc_offset = offset;
12699 sections.loc_size = size;
12700 break;
12701 case DW_SECT_STR_OFFSETS:
12702 sections.str_offsets_offset = offset;
12703 sections.str_offsets_size = size;
12704 break;
12705 case DW_SECT_MACINFO:
12706 sections.macinfo_offset = offset;
12707 sections.macinfo_size = size;
12708 break;
12709 case DW_SECT_MACRO:
12710 sections.macro_offset = offset;
12711 sections.macro_size = size;
12712 break;
12713 }
12714 }
12715
12716 /* It's easier for the rest of the code if we fake a struct dwo_file and
12717 have dwo_unit "live" in that. At least for now.
12718
12719 The DWP file can be made up of a random collection of CUs and TUs.
12720 However, for each CU + set of TUs that came from the same original DWO
12721 file, we can combine them back into a virtual DWO file to save space
12722 (fewer struct dwo_file objects to allocate). Remember that for really
12723 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12724
12725 std::string virtual_dwo_name =
12726 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12727 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12728 (long) (sections.line_size ? sections.line_offset : 0),
12729 (long) (sections.loc_size ? sections.loc_offset : 0),
12730 (long) (sections.str_offsets_size
12731 ? sections.str_offsets_offset : 0));
12732 /* Can we use an existing virtual DWO file? */
12733 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12734 virtual_dwo_name.c_str (),
12735 comp_dir);
12736 /* Create one if necessary. */
12737 if (*dwo_file_slot == NULL)
12738 {
12739 if (dwarf_read_debug)
12740 {
12741 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12742 virtual_dwo_name.c_str ());
12743 }
12744 dwo_file = new struct dwo_file;
12745 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12746 virtual_dwo_name);
12747 dwo_file->comp_dir = comp_dir;
12748 dwo_file->sections.abbrev =
12749 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12750 sections.abbrev_offset, sections.abbrev_size);
12751 dwo_file->sections.line =
12752 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12753 sections.line_offset, sections.line_size);
12754 dwo_file->sections.loc =
12755 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12756 sections.loc_offset, sections.loc_size);
12757 dwo_file->sections.macinfo =
12758 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12759 sections.macinfo_offset, sections.macinfo_size);
12760 dwo_file->sections.macro =
12761 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12762 sections.macro_offset, sections.macro_size);
12763 dwo_file->sections.str_offsets =
12764 create_dwp_v2_section (dwarf2_per_objfile,
12765 &dwp_file->sections.str_offsets,
12766 sections.str_offsets_offset,
12767 sections.str_offsets_size);
12768 /* The "str" section is global to the entire DWP file. */
12769 dwo_file->sections.str = dwp_file->sections.str;
12770 /* The info or types section is assigned below to dwo_unit,
12771 there's no need to record it in dwo_file.
12772 Also, we can't simply record type sections in dwo_file because
12773 we record a pointer into the vector in dwo_unit. As we collect more
12774 types we'll grow the vector and eventually have to reallocate space
12775 for it, invalidating all copies of pointers into the previous
12776 contents. */
12777 *dwo_file_slot = dwo_file;
12778 }
12779 else
12780 {
12781 if (dwarf_read_debug)
12782 {
12783 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12784 virtual_dwo_name.c_str ());
12785 }
12786 dwo_file = (struct dwo_file *) *dwo_file_slot;
12787 }
12788
12789 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12790 dwo_unit->dwo_file = dwo_file;
12791 dwo_unit->signature = signature;
12792 dwo_unit->section =
12793 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12794 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12795 is_debug_types
12796 ? &dwp_file->sections.types
12797 : &dwp_file->sections.info,
12798 sections.info_or_types_offset,
12799 sections.info_or_types_size);
12800 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12801
12802 return dwo_unit;
12803}
12804
12805/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12806 Returns NULL if the signature isn't found. */
12807
12808static struct dwo_unit *
12809lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12810 struct dwp_file *dwp_file, const char *comp_dir,
12811 ULONGEST signature, int is_debug_types)
12812{
12813 const struct dwp_hash_table *dwp_htab =
12814 is_debug_types ? dwp_file->tus : dwp_file->cus;
12815 bfd *dbfd = dwp_file->dbfd.get ();
12816 uint32_t mask = dwp_htab->nr_slots - 1;
12817 uint32_t hash = signature & mask;
12818 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12819 unsigned int i;
12820 void **slot;
12821 struct dwo_unit find_dwo_cu;
12822
12823 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12824 find_dwo_cu.signature = signature;
12825 slot = htab_find_slot (is_debug_types
12826 ? dwp_file->loaded_tus
12827 : dwp_file->loaded_cus,
12828 &find_dwo_cu, INSERT);
12829
12830 if (*slot != NULL)
12831 return (struct dwo_unit *) *slot;
12832
12833 /* Use a for loop so that we don't loop forever on bad debug info. */
12834 for (i = 0; i < dwp_htab->nr_slots; ++i)
12835 {
12836 ULONGEST signature_in_table;
12837
12838 signature_in_table =
12839 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12840 if (signature_in_table == signature)
12841 {
12842 uint32_t unit_index =
12843 read_4_bytes (dbfd,
12844 dwp_htab->unit_table + hash * sizeof (uint32_t));
12845
12846 if (dwp_file->version == 1)
12847 {
12848 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12849 dwp_file, unit_index,
12850 comp_dir, signature,
12851 is_debug_types);
12852 }
12853 else
12854 {
12855 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12856 dwp_file, unit_index,
12857 comp_dir, signature,
12858 is_debug_types);
12859 }
12860 return (struct dwo_unit *) *slot;
12861 }
12862 if (signature_in_table == 0)
12863 return NULL;
12864 hash = (hash + hash2) & mask;
12865 }
12866
12867 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12868 " [in module %s]"),
12869 dwp_file->name);
12870}
12871
12872/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12873 Open the file specified by FILE_NAME and hand it off to BFD for
12874 preliminary analysis. Return a newly initialized bfd *, which
12875 includes a canonicalized copy of FILE_NAME.
12876 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12877 SEARCH_CWD is true if the current directory is to be searched.
12878 It will be searched before debug-file-directory.
12879 If successful, the file is added to the bfd include table of the
12880 objfile's bfd (see gdb_bfd_record_inclusion).
12881 If unable to find/open the file, return NULL.
12882 NOTE: This function is derived from symfile_bfd_open. */
12883
12884static gdb_bfd_ref_ptr
12885try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12886 const char *file_name, int is_dwp, int search_cwd)
12887{
12888 int desc;
12889 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12890 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12891 to debug_file_directory. */
12892 const char *search_path;
12893 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12894
12895 gdb::unique_xmalloc_ptr<char> search_path_holder;
12896 if (search_cwd)
12897 {
12898 if (*debug_file_directory != '\0')
12899 {
12900 search_path_holder.reset (concat (".", dirname_separator_string,
12901 debug_file_directory,
12902 (char *) NULL));
12903 search_path = search_path_holder.get ();
12904 }
12905 else
12906 search_path = ".";
12907 }
12908 else
12909 search_path = debug_file_directory;
12910
12911 openp_flags flags = OPF_RETURN_REALPATH;
12912 if (is_dwp)
12913 flags |= OPF_SEARCH_IN_PATH;
12914
12915 gdb::unique_xmalloc_ptr<char> absolute_name;
12916 desc = openp (search_path, flags, file_name,
12917 O_RDONLY | O_BINARY, &absolute_name);
12918 if (desc < 0)
12919 return NULL;
12920
12921 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12922 gnutarget, desc));
12923 if (sym_bfd == NULL)
12924 return NULL;
12925 bfd_set_cacheable (sym_bfd.get (), 1);
12926
12927 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12928 return NULL;
12929
12930 /* Success. Record the bfd as having been included by the objfile's bfd.
12931 This is important because things like demangled_names_hash lives in the
12932 objfile's per_bfd space and may have references to things like symbol
12933 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12934 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12935
12936 return sym_bfd;
12937}
12938
12939/* Try to open DWO file FILE_NAME.
12940 COMP_DIR is the DW_AT_comp_dir attribute.
12941 The result is the bfd handle of the file.
12942 If there is a problem finding or opening the file, return NULL.
12943 Upon success, the canonicalized path of the file is stored in the bfd,
12944 same as symfile_bfd_open. */
12945
12946static gdb_bfd_ref_ptr
12947open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12948 const char *file_name, const char *comp_dir)
12949{
12950 if (IS_ABSOLUTE_PATH (file_name))
12951 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12952 0 /*is_dwp*/, 0 /*search_cwd*/);
12953
12954 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12955
12956 if (comp_dir != NULL)
12957 {
12958 char *path_to_try = concat (comp_dir, SLASH_STRING,
12959 file_name, (char *) NULL);
12960
12961 /* NOTE: If comp_dir is a relative path, this will also try the
12962 search path, which seems useful. */
12963 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12964 path_to_try,
12965 0 /*is_dwp*/,
12966 1 /*search_cwd*/));
12967 xfree (path_to_try);
12968 if (abfd != NULL)
12969 return abfd;
12970 }
12971
12972 /* That didn't work, try debug-file-directory, which, despite its name,
12973 is a list of paths. */
12974
12975 if (*debug_file_directory == '\0')
12976 return NULL;
12977
12978 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12979 0 /*is_dwp*/, 1 /*search_cwd*/);
12980}
12981
12982/* This function is mapped across the sections and remembers the offset and
12983 size of each of the DWO debugging sections we are interested in. */
12984
12985static void
12986dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12987{
12988 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12989 const struct dwop_section_names *names = &dwop_section_names;
12990
12991 if (section_is_p (sectp->name, &names->abbrev_dwo))
12992 {
12993 dwo_sections->abbrev.s.section = sectp;
12994 dwo_sections->abbrev.size = bfd_section_size (sectp);
12995 }
12996 else if (section_is_p (sectp->name, &names->info_dwo))
12997 {
12998 dwo_sections->info.s.section = sectp;
12999 dwo_sections->info.size = bfd_section_size (sectp);
13000 }
13001 else if (section_is_p (sectp->name, &names->line_dwo))
13002 {
13003 dwo_sections->line.s.section = sectp;
13004 dwo_sections->line.size = bfd_section_size (sectp);
13005 }
13006 else if (section_is_p (sectp->name, &names->loc_dwo))
13007 {
13008 dwo_sections->loc.s.section = sectp;
13009 dwo_sections->loc.size = bfd_section_size (sectp);
13010 }
13011 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13012 {
13013 dwo_sections->macinfo.s.section = sectp;
13014 dwo_sections->macinfo.size = bfd_section_size (sectp);
13015 }
13016 else if (section_is_p (sectp->name, &names->macro_dwo))
13017 {
13018 dwo_sections->macro.s.section = sectp;
13019 dwo_sections->macro.size = bfd_section_size (sectp);
13020 }
13021 else if (section_is_p (sectp->name, &names->str_dwo))
13022 {
13023 dwo_sections->str.s.section = sectp;
13024 dwo_sections->str.size = bfd_section_size (sectp);
13025 }
13026 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13027 {
13028 dwo_sections->str_offsets.s.section = sectp;
13029 dwo_sections->str_offsets.size = bfd_section_size (sectp);
13030 }
13031 else if (section_is_p (sectp->name, &names->types_dwo))
13032 {
13033 struct dwarf2_section_info type_section;
13034
13035 memset (&type_section, 0, sizeof (type_section));
13036 type_section.s.section = sectp;
13037 type_section.size = bfd_section_size (sectp);
13038 dwo_sections->types.push_back (type_section);
13039 }
13040}
13041
13042/* Initialize the use of the DWO file specified by DWO_NAME and referenced
13043 by PER_CU. This is for the non-DWP case.
13044 The result is NULL if DWO_NAME can't be found. */
13045
13046static struct dwo_file *
13047open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13048 const char *dwo_name, const char *comp_dir)
13049{
13050 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13051
13052 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
13053 if (dbfd == NULL)
13054 {
13055 if (dwarf_read_debug)
13056 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13057 return NULL;
13058 }
13059
13060 dwo_file_up dwo_file (new struct dwo_file);
13061 dwo_file->dwo_name = dwo_name;
13062 dwo_file->comp_dir = comp_dir;
13063 dwo_file->dbfd = std::move (dbfd);
13064
13065 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
13066 &dwo_file->sections);
13067
13068 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13069 dwo_file->cus);
13070
13071 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13072 dwo_file->sections.types, dwo_file->tus);
13073
13074 if (dwarf_read_debug)
13075 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13076
13077 return dwo_file.release ();
13078}
13079
13080/* This function is mapped across the sections and remembers the offset and
13081 size of each of the DWP debugging sections common to version 1 and 2 that
13082 we are interested in. */
13083
13084static void
13085dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13086 void *dwp_file_ptr)
13087{
13088 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13089 const struct dwop_section_names *names = &dwop_section_names;
13090 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13091
13092 /* Record the ELF section number for later lookup: this is what the
13093 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13094 gdb_assert (elf_section_nr < dwp_file->num_sections);
13095 dwp_file->elf_sections[elf_section_nr] = sectp;
13096
13097 /* Look for specific sections that we need. */
13098 if (section_is_p (sectp->name, &names->str_dwo))
13099 {
13100 dwp_file->sections.str.s.section = sectp;
13101 dwp_file->sections.str.size = bfd_section_size (sectp);
13102 }
13103 else if (section_is_p (sectp->name, &names->cu_index))
13104 {
13105 dwp_file->sections.cu_index.s.section = sectp;
13106 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
13107 }
13108 else if (section_is_p (sectp->name, &names->tu_index))
13109 {
13110 dwp_file->sections.tu_index.s.section = sectp;
13111 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
13112 }
13113}
13114
13115/* This function is mapped across the sections and remembers the offset and
13116 size of each of the DWP version 2 debugging sections that we are interested
13117 in. This is split into a separate function because we don't know if we
13118 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13119
13120static void
13121dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13122{
13123 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13124 const struct dwop_section_names *names = &dwop_section_names;
13125 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13126
13127 /* Record the ELF section number for later lookup: this is what the
13128 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13129 gdb_assert (elf_section_nr < dwp_file->num_sections);
13130 dwp_file->elf_sections[elf_section_nr] = sectp;
13131
13132 /* Look for specific sections that we need. */
13133 if (section_is_p (sectp->name, &names->abbrev_dwo))
13134 {
13135 dwp_file->sections.abbrev.s.section = sectp;
13136 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
13137 }
13138 else if (section_is_p (sectp->name, &names->info_dwo))
13139 {
13140 dwp_file->sections.info.s.section = sectp;
13141 dwp_file->sections.info.size = bfd_section_size (sectp);
13142 }
13143 else if (section_is_p (sectp->name, &names->line_dwo))
13144 {
13145 dwp_file->sections.line.s.section = sectp;
13146 dwp_file->sections.line.size = bfd_section_size (sectp);
13147 }
13148 else if (section_is_p (sectp->name, &names->loc_dwo))
13149 {
13150 dwp_file->sections.loc.s.section = sectp;
13151 dwp_file->sections.loc.size = bfd_section_size (sectp);
13152 }
13153 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13154 {
13155 dwp_file->sections.macinfo.s.section = sectp;
13156 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
13157 }
13158 else if (section_is_p (sectp->name, &names->macro_dwo))
13159 {
13160 dwp_file->sections.macro.s.section = sectp;
13161 dwp_file->sections.macro.size = bfd_section_size (sectp);
13162 }
13163 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13164 {
13165 dwp_file->sections.str_offsets.s.section = sectp;
13166 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
13167 }
13168 else if (section_is_p (sectp->name, &names->types_dwo))
13169 {
13170 dwp_file->sections.types.s.section = sectp;
13171 dwp_file->sections.types.size = bfd_section_size (sectp);
13172 }
13173}
13174
13175/* Hash function for dwp_file loaded CUs/TUs. */
13176
13177static hashval_t
13178hash_dwp_loaded_cutus (const void *item)
13179{
13180 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13181
13182 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13183 return dwo_unit->signature;
13184}
13185
13186/* Equality function for dwp_file loaded CUs/TUs. */
13187
13188static int
13189eq_dwp_loaded_cutus (const void *a, const void *b)
13190{
13191 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13192 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13193
13194 return dua->signature == dub->signature;
13195}
13196
13197/* Allocate a hash table for dwp_file loaded CUs/TUs. */
13198
13199static htab_t
13200allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13201{
13202 return htab_create_alloc_ex (3,
13203 hash_dwp_loaded_cutus,
13204 eq_dwp_loaded_cutus,
13205 NULL,
13206 &objfile->objfile_obstack,
13207 hashtab_obstack_allocate,
13208 dummy_obstack_deallocate);
13209}
13210
13211/* Try to open DWP file FILE_NAME.
13212 The result is the bfd handle of the file.
13213 If there is a problem finding or opening the file, return NULL.
13214 Upon success, the canonicalized path of the file is stored in the bfd,
13215 same as symfile_bfd_open. */
13216
13217static gdb_bfd_ref_ptr
13218open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13219 const char *file_name)
13220{
13221 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13222 1 /*is_dwp*/,
13223 1 /*search_cwd*/));
13224 if (abfd != NULL)
13225 return abfd;
13226
13227 /* Work around upstream bug 15652.
13228 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13229 [Whether that's a "bug" is debatable, but it is getting in our way.]
13230 We have no real idea where the dwp file is, because gdb's realpath-ing
13231 of the executable's path may have discarded the needed info.
13232 [IWBN if the dwp file name was recorded in the executable, akin to
13233 .gnu_debuglink, but that doesn't exist yet.]
13234 Strip the directory from FILE_NAME and search again. */
13235 if (*debug_file_directory != '\0')
13236 {
13237 /* Don't implicitly search the current directory here.
13238 If the user wants to search "." to handle this case,
13239 it must be added to debug-file-directory. */
13240 return try_open_dwop_file (dwarf2_per_objfile,
13241 lbasename (file_name), 1 /*is_dwp*/,
13242 0 /*search_cwd*/);
13243 }
13244
13245 return NULL;
13246}
13247
13248/* Initialize the use of the DWP file for the current objfile.
13249 By convention the name of the DWP file is ${objfile}.dwp.
13250 The result is NULL if it can't be found. */
13251
13252static std::unique_ptr<struct dwp_file>
13253open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13254{
13255 struct objfile *objfile = dwarf2_per_objfile->objfile;
13256
13257 /* Try to find first .dwp for the binary file before any symbolic links
13258 resolving. */
13259
13260 /* If the objfile is a debug file, find the name of the real binary
13261 file and get the name of dwp file from there. */
13262 std::string dwp_name;
13263 if (objfile->separate_debug_objfile_backlink != NULL)
13264 {
13265 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13266 const char *backlink_basename = lbasename (backlink->original_name);
13267
13268 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13269 }
13270 else
13271 dwp_name = objfile->original_name;
13272
13273 dwp_name += ".dwp";
13274
13275 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13276 if (dbfd == NULL
13277 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13278 {
13279 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13280 dwp_name = objfile_name (objfile);
13281 dwp_name += ".dwp";
13282 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13283 }
13284
13285 if (dbfd == NULL)
13286 {
13287 if (dwarf_read_debug)
13288 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13289 return std::unique_ptr<dwp_file> ();
13290 }
13291
13292 const char *name = bfd_get_filename (dbfd.get ());
13293 std::unique_ptr<struct dwp_file> dwp_file
13294 (new struct dwp_file (name, std::move (dbfd)));
13295
13296 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13297 dwp_file->elf_sections =
13298 OBSTACK_CALLOC (&objfile->objfile_obstack,
13299 dwp_file->num_sections, asection *);
13300
13301 bfd_map_over_sections (dwp_file->dbfd.get (),
13302 dwarf2_locate_common_dwp_sections,
13303 dwp_file.get ());
13304
13305 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13306 0);
13307
13308 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13309 1);
13310
13311 /* The DWP file version is stored in the hash table. Oh well. */
13312 if (dwp_file->cus && dwp_file->tus
13313 && dwp_file->cus->version != dwp_file->tus->version)
13314 {
13315 /* Technically speaking, we should try to limp along, but this is
13316 pretty bizarre. We use pulongest here because that's the established
13317 portability solution (e.g, we cannot use %u for uint32_t). */
13318 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13319 " TU version %s [in DWP file %s]"),
13320 pulongest (dwp_file->cus->version),
13321 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13322 }
13323
13324 if (dwp_file->cus)
13325 dwp_file->version = dwp_file->cus->version;
13326 else if (dwp_file->tus)
13327 dwp_file->version = dwp_file->tus->version;
13328 else
13329 dwp_file->version = 2;
13330
13331 if (dwp_file->version == 2)
13332 bfd_map_over_sections (dwp_file->dbfd.get (),
13333 dwarf2_locate_v2_dwp_sections,
13334 dwp_file.get ());
13335
13336 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13337 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13338
13339 if (dwarf_read_debug)
13340 {
13341 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13342 fprintf_unfiltered (gdb_stdlog,
13343 " %s CUs, %s TUs\n",
13344 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13345 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13346 }
13347
13348 return dwp_file;
13349}
13350
13351/* Wrapper around open_and_init_dwp_file, only open it once. */
13352
13353static struct dwp_file *
13354get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13355{
13356 if (! dwarf2_per_objfile->dwp_checked)
13357 {
13358 dwarf2_per_objfile->dwp_file
13359 = open_and_init_dwp_file (dwarf2_per_objfile);
13360 dwarf2_per_objfile->dwp_checked = 1;
13361 }
13362 return dwarf2_per_objfile->dwp_file.get ();
13363}
13364
13365/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13366 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13367 or in the DWP file for the objfile, referenced by THIS_UNIT.
13368 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13369 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13370
13371 This is called, for example, when wanting to read a variable with a
13372 complex location. Therefore we don't want to do file i/o for every call.
13373 Therefore we don't want to look for a DWO file on every call.
13374 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13375 then we check if we've already seen DWO_NAME, and only THEN do we check
13376 for a DWO file.
13377
13378 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13379 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13380
13381static struct dwo_unit *
13382lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13383 const char *dwo_name, const char *comp_dir,
13384 ULONGEST signature, int is_debug_types)
13385{
13386 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13387 struct objfile *objfile = dwarf2_per_objfile->objfile;
13388 const char *kind = is_debug_types ? "TU" : "CU";
13389 void **dwo_file_slot;
13390 struct dwo_file *dwo_file;
13391 struct dwp_file *dwp_file;
13392
13393 /* First see if there's a DWP file.
13394 If we have a DWP file but didn't find the DWO inside it, don't
13395 look for the original DWO file. It makes gdb behave differently
13396 depending on whether one is debugging in the build tree. */
13397
13398 dwp_file = get_dwp_file (dwarf2_per_objfile);
13399 if (dwp_file != NULL)
13400 {
13401 const struct dwp_hash_table *dwp_htab =
13402 is_debug_types ? dwp_file->tus : dwp_file->cus;
13403
13404 if (dwp_htab != NULL)
13405 {
13406 struct dwo_unit *dwo_cutu =
13407 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13408 signature, is_debug_types);
13409
13410 if (dwo_cutu != NULL)
13411 {
13412 if (dwarf_read_debug)
13413 {
13414 fprintf_unfiltered (gdb_stdlog,
13415 "Virtual DWO %s %s found: @%s\n",
13416 kind, hex_string (signature),
13417 host_address_to_string (dwo_cutu));
13418 }
13419 return dwo_cutu;
13420 }
13421 }
13422 }
13423 else
13424 {
13425 /* No DWP file, look for the DWO file. */
13426
13427 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13428 dwo_name, comp_dir);
13429 if (*dwo_file_slot == NULL)
13430 {
13431 /* Read in the file and build a table of the CUs/TUs it contains. */
13432 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13433 }
13434 /* NOTE: This will be NULL if unable to open the file. */
13435 dwo_file = (struct dwo_file *) *dwo_file_slot;
13436
13437 if (dwo_file != NULL)
13438 {
13439 struct dwo_unit *dwo_cutu = NULL;
13440
13441 if (is_debug_types && dwo_file->tus)
13442 {
13443 struct dwo_unit find_dwo_cutu;
13444
13445 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13446 find_dwo_cutu.signature = signature;
13447 dwo_cutu
13448 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13449 }
13450 else if (!is_debug_types && dwo_file->cus)
13451 {
13452 struct dwo_unit find_dwo_cutu;
13453
13454 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13455 find_dwo_cutu.signature = signature;
13456 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13457 &find_dwo_cutu);
13458 }
13459
13460 if (dwo_cutu != NULL)
13461 {
13462 if (dwarf_read_debug)
13463 {
13464 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13465 kind, dwo_name, hex_string (signature),
13466 host_address_to_string (dwo_cutu));
13467 }
13468 return dwo_cutu;
13469 }
13470 }
13471 }
13472
13473 /* We didn't find it. This could mean a dwo_id mismatch, or
13474 someone deleted the DWO/DWP file, or the search path isn't set up
13475 correctly to find the file. */
13476
13477 if (dwarf_read_debug)
13478 {
13479 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13480 kind, dwo_name, hex_string (signature));
13481 }
13482
13483 /* This is a warning and not a complaint because it can be caused by
13484 pilot error (e.g., user accidentally deleting the DWO). */
13485 {
13486 /* Print the name of the DWP file if we looked there, helps the user
13487 better diagnose the problem. */
13488 std::string dwp_text;
13489
13490 if (dwp_file != NULL)
13491 dwp_text = string_printf (" [in DWP file %s]",
13492 lbasename (dwp_file->name));
13493
13494 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13495 " [in module %s]"),
13496 kind, dwo_name, hex_string (signature),
13497 dwp_text.c_str (),
13498 this_unit->is_debug_types ? "TU" : "CU",
13499 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13500 }
13501 return NULL;
13502}
13503
13504/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13505 See lookup_dwo_cutu_unit for details. */
13506
13507static struct dwo_unit *
13508lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13509 const char *dwo_name, const char *comp_dir,
13510 ULONGEST signature)
13511{
13512 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13513}
13514
13515/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13516 See lookup_dwo_cutu_unit for details. */
13517
13518static struct dwo_unit *
13519lookup_dwo_type_unit (struct signatured_type *this_tu,
13520 const char *dwo_name, const char *comp_dir)
13521{
13522 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13523}
13524
13525/* Traversal function for queue_and_load_all_dwo_tus. */
13526
13527static int
13528queue_and_load_dwo_tu (void **slot, void *info)
13529{
13530 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13531 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13532 ULONGEST signature = dwo_unit->signature;
13533 struct signatured_type *sig_type =
13534 lookup_dwo_signatured_type (per_cu->cu, signature);
13535
13536 if (sig_type != NULL)
13537 {
13538 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13539
13540 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13541 a real dependency of PER_CU on SIG_TYPE. That is detected later
13542 while processing PER_CU. */
13543 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13544 load_full_type_unit (sig_cu);
13545 per_cu->imported_symtabs_push (sig_cu);
13546 }
13547
13548 return 1;
13549}
13550
13551/* Queue all TUs contained in the DWO of PER_CU to be read in.
13552 The DWO may have the only definition of the type, though it may not be
13553 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13554 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13555
13556static void
13557queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13558{
13559 struct dwo_unit *dwo_unit;
13560 struct dwo_file *dwo_file;
13561
13562 gdb_assert (!per_cu->is_debug_types);
13563 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13564 gdb_assert (per_cu->cu != NULL);
13565
13566 dwo_unit = per_cu->cu->dwo_unit;
13567 gdb_assert (dwo_unit != NULL);
13568
13569 dwo_file = dwo_unit->dwo_file;
13570 if (dwo_file->tus != NULL)
13571 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13572}
13573
13574/* Read in various DIEs. */
13575
13576/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13577 Inherit only the children of the DW_AT_abstract_origin DIE not being
13578 already referenced by DW_AT_abstract_origin from the children of the
13579 current DIE. */
13580
13581static void
13582inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13583{
13584 struct die_info *child_die;
13585 sect_offset *offsetp;
13586 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13587 struct die_info *origin_die;
13588 /* Iterator of the ORIGIN_DIE children. */
13589 struct die_info *origin_child_die;
13590 struct attribute *attr;
13591 struct dwarf2_cu *origin_cu;
13592 struct pending **origin_previous_list_in_scope;
13593
13594 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13595 if (!attr)
13596 return;
13597
13598 /* Note that following die references may follow to a die in a
13599 different cu. */
13600
13601 origin_cu = cu;
13602 origin_die = follow_die_ref (die, attr, &origin_cu);
13603
13604 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13605 symbols in. */
13606 origin_previous_list_in_scope = origin_cu->list_in_scope;
13607 origin_cu->list_in_scope = cu->list_in_scope;
13608
13609 if (die->tag != origin_die->tag
13610 && !(die->tag == DW_TAG_inlined_subroutine
13611 && origin_die->tag == DW_TAG_subprogram))
13612 complaint (_("DIE %s and its abstract origin %s have different tags"),
13613 sect_offset_str (die->sect_off),
13614 sect_offset_str (origin_die->sect_off));
13615
13616 std::vector<sect_offset> offsets;
13617
13618 for (child_die = die->child;
13619 child_die && child_die->tag;
13620 child_die = sibling_die (child_die))
13621 {
13622 struct die_info *child_origin_die;
13623 struct dwarf2_cu *child_origin_cu;
13624
13625 /* We are trying to process concrete instance entries:
13626 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13627 it's not relevant to our analysis here. i.e. detecting DIEs that are
13628 present in the abstract instance but not referenced in the concrete
13629 one. */
13630 if (child_die->tag == DW_TAG_call_site
13631 || child_die->tag == DW_TAG_GNU_call_site)
13632 continue;
13633
13634 /* For each CHILD_DIE, find the corresponding child of
13635 ORIGIN_DIE. If there is more than one layer of
13636 DW_AT_abstract_origin, follow them all; there shouldn't be,
13637 but GCC versions at least through 4.4 generate this (GCC PR
13638 40573). */
13639 child_origin_die = child_die;
13640 child_origin_cu = cu;
13641 while (1)
13642 {
13643 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13644 child_origin_cu);
13645 if (attr == NULL)
13646 break;
13647 child_origin_die = follow_die_ref (child_origin_die, attr,
13648 &child_origin_cu);
13649 }
13650
13651 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13652 counterpart may exist. */
13653 if (child_origin_die != child_die)
13654 {
13655 if (child_die->tag != child_origin_die->tag
13656 && !(child_die->tag == DW_TAG_inlined_subroutine
13657 && child_origin_die->tag == DW_TAG_subprogram))
13658 complaint (_("Child DIE %s and its abstract origin %s have "
13659 "different tags"),
13660 sect_offset_str (child_die->sect_off),
13661 sect_offset_str (child_origin_die->sect_off));
13662 if (child_origin_die->parent != origin_die)
13663 complaint (_("Child DIE %s and its abstract origin %s have "
13664 "different parents"),
13665 sect_offset_str (child_die->sect_off),
13666 sect_offset_str (child_origin_die->sect_off));
13667 else
13668 offsets.push_back (child_origin_die->sect_off);
13669 }
13670 }
13671 std::sort (offsets.begin (), offsets.end ());
13672 sect_offset *offsets_end = offsets.data () + offsets.size ();
13673 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13674 if (offsetp[-1] == *offsetp)
13675 complaint (_("Multiple children of DIE %s refer "
13676 "to DIE %s as their abstract origin"),
13677 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13678
13679 offsetp = offsets.data ();
13680 origin_child_die = origin_die->child;
13681 while (origin_child_die && origin_child_die->tag)
13682 {
13683 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13684 while (offsetp < offsets_end
13685 && *offsetp < origin_child_die->sect_off)
13686 offsetp++;
13687 if (offsetp >= offsets_end
13688 || *offsetp > origin_child_die->sect_off)
13689 {
13690 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13691 Check whether we're already processing ORIGIN_CHILD_DIE.
13692 This can happen with mutually referenced abstract_origins.
13693 PR 16581. */
13694 if (!origin_child_die->in_process)
13695 process_die (origin_child_die, origin_cu);
13696 }
13697 origin_child_die = sibling_die (origin_child_die);
13698 }
13699 origin_cu->list_in_scope = origin_previous_list_in_scope;
13700
13701 if (cu != origin_cu)
13702 compute_delayed_physnames (origin_cu);
13703}
13704
13705static void
13706read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13707{
13708 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13709 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13710 struct context_stack *newobj;
13711 CORE_ADDR lowpc;
13712 CORE_ADDR highpc;
13713 struct die_info *child_die;
13714 struct attribute *attr, *call_line, *call_file;
13715 const char *name;
13716 CORE_ADDR baseaddr;
13717 struct block *block;
13718 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13719 std::vector<struct symbol *> template_args;
13720 struct template_symbol *templ_func = NULL;
13721
13722 if (inlined_func)
13723 {
13724 /* If we do not have call site information, we can't show the
13725 caller of this inlined function. That's too confusing, so
13726 only use the scope for local variables. */
13727 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13728 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13729 if (call_line == NULL || call_file == NULL)
13730 {
13731 read_lexical_block_scope (die, cu);
13732 return;
13733 }
13734 }
13735
13736 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13737
13738 name = dwarf2_name (die, cu);
13739
13740 /* Ignore functions with missing or empty names. These are actually
13741 illegal according to the DWARF standard. */
13742 if (name == NULL)
13743 {
13744 complaint (_("missing name for subprogram DIE at %s"),
13745 sect_offset_str (die->sect_off));
13746 return;
13747 }
13748
13749 /* Ignore functions with missing or invalid low and high pc attributes. */
13750 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13751 <= PC_BOUNDS_INVALID)
13752 {
13753 attr = dwarf2_attr (die, DW_AT_external, cu);
13754 if (!attr || !DW_UNSND (attr))
13755 complaint (_("cannot get low and high bounds "
13756 "for subprogram DIE at %s"),
13757 sect_offset_str (die->sect_off));
13758 return;
13759 }
13760
13761 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13762 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13763
13764 /* If we have any template arguments, then we must allocate a
13765 different sort of symbol. */
13766 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13767 {
13768 if (child_die->tag == DW_TAG_template_type_param
13769 || child_die->tag == DW_TAG_template_value_param)
13770 {
13771 templ_func = allocate_template_symbol (objfile);
13772 templ_func->subclass = SYMBOL_TEMPLATE;
13773 break;
13774 }
13775 }
13776
13777 newobj = cu->get_builder ()->push_context (0, lowpc);
13778 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13779 (struct symbol *) templ_func);
13780
13781 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13782 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13783 cu->language);
13784
13785 /* If there is a location expression for DW_AT_frame_base, record
13786 it. */
13787 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13788 if (attr != nullptr)
13789 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13790
13791 /* If there is a location for the static link, record it. */
13792 newobj->static_link = NULL;
13793 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13794 if (attr != nullptr)
13795 {
13796 newobj->static_link
13797 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13798 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13799 dwarf2_per_cu_addr_type (cu->per_cu));
13800 }
13801
13802 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13803
13804 if (die->child != NULL)
13805 {
13806 child_die = die->child;
13807 while (child_die && child_die->tag)
13808 {
13809 if (child_die->tag == DW_TAG_template_type_param
13810 || child_die->tag == DW_TAG_template_value_param)
13811 {
13812 struct symbol *arg = new_symbol (child_die, NULL, cu);
13813
13814 if (arg != NULL)
13815 template_args.push_back (arg);
13816 }
13817 else
13818 process_die (child_die, cu);
13819 child_die = sibling_die (child_die);
13820 }
13821 }
13822
13823 inherit_abstract_dies (die, cu);
13824
13825 /* If we have a DW_AT_specification, we might need to import using
13826 directives from the context of the specification DIE. See the
13827 comment in determine_prefix. */
13828 if (cu->language == language_cplus
13829 && dwarf2_attr (die, DW_AT_specification, cu))
13830 {
13831 struct dwarf2_cu *spec_cu = cu;
13832 struct die_info *spec_die = die_specification (die, &spec_cu);
13833
13834 while (spec_die)
13835 {
13836 child_die = spec_die->child;
13837 while (child_die && child_die->tag)
13838 {
13839 if (child_die->tag == DW_TAG_imported_module)
13840 process_die (child_die, spec_cu);
13841 child_die = sibling_die (child_die);
13842 }
13843
13844 /* In some cases, GCC generates specification DIEs that
13845 themselves contain DW_AT_specification attributes. */
13846 spec_die = die_specification (spec_die, &spec_cu);
13847 }
13848 }
13849
13850 struct context_stack cstk = cu->get_builder ()->pop_context ();
13851 /* Make a block for the local symbols within. */
13852 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13853 cstk.static_link, lowpc, highpc);
13854
13855 /* For C++, set the block's scope. */
13856 if ((cu->language == language_cplus
13857 || cu->language == language_fortran
13858 || cu->language == language_d
13859 || cu->language == language_rust)
13860 && cu->processing_has_namespace_info)
13861 block_set_scope (block, determine_prefix (die, cu),
13862 &objfile->objfile_obstack);
13863
13864 /* If we have address ranges, record them. */
13865 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13866
13867 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13868
13869 /* Attach template arguments to function. */
13870 if (!template_args.empty ())
13871 {
13872 gdb_assert (templ_func != NULL);
13873
13874 templ_func->n_template_arguments = template_args.size ();
13875 templ_func->template_arguments
13876 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13877 templ_func->n_template_arguments);
13878 memcpy (templ_func->template_arguments,
13879 template_args.data (),
13880 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13881
13882 /* Make sure that the symtab is set on the new symbols. Even
13883 though they don't appear in this symtab directly, other parts
13884 of gdb assume that symbols do, and this is reasonably
13885 true. */
13886 for (symbol *sym : template_args)
13887 symbol_set_symtab (sym, symbol_symtab (templ_func));
13888 }
13889
13890 /* In C++, we can have functions nested inside functions (e.g., when
13891 a function declares a class that has methods). This means that
13892 when we finish processing a function scope, we may need to go
13893 back to building a containing block's symbol lists. */
13894 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13895 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13896
13897 /* If we've finished processing a top-level function, subsequent
13898 symbols go in the file symbol list. */
13899 if (cu->get_builder ()->outermost_context_p ())
13900 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13901}
13902
13903/* Process all the DIES contained within a lexical block scope. Start
13904 a new scope, process the dies, and then close the scope. */
13905
13906static void
13907read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13908{
13909 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13910 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13911 CORE_ADDR lowpc, highpc;
13912 struct die_info *child_die;
13913 CORE_ADDR baseaddr;
13914
13915 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13916
13917 /* Ignore blocks with missing or invalid low and high pc attributes. */
13918 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13919 as multiple lexical blocks? Handling children in a sane way would
13920 be nasty. Might be easier to properly extend generic blocks to
13921 describe ranges. */
13922 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13923 {
13924 case PC_BOUNDS_NOT_PRESENT:
13925 /* DW_TAG_lexical_block has no attributes, process its children as if
13926 there was no wrapping by that DW_TAG_lexical_block.
13927 GCC does no longer produces such DWARF since GCC r224161. */
13928 for (child_die = die->child;
13929 child_die != NULL && child_die->tag;
13930 child_die = sibling_die (child_die))
13931 process_die (child_die, cu);
13932 return;
13933 case PC_BOUNDS_INVALID:
13934 return;
13935 }
13936 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13937 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13938
13939 cu->get_builder ()->push_context (0, lowpc);
13940 if (die->child != NULL)
13941 {
13942 child_die = die->child;
13943 while (child_die && child_die->tag)
13944 {
13945 process_die (child_die, cu);
13946 child_die = sibling_die (child_die);
13947 }
13948 }
13949 inherit_abstract_dies (die, cu);
13950 struct context_stack cstk = cu->get_builder ()->pop_context ();
13951
13952 if (*cu->get_builder ()->get_local_symbols () != NULL
13953 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13954 {
13955 struct block *block
13956 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13957 cstk.start_addr, highpc);
13958
13959 /* Note that recording ranges after traversing children, as we
13960 do here, means that recording a parent's ranges entails
13961 walking across all its children's ranges as they appear in
13962 the address map, which is quadratic behavior.
13963
13964 It would be nicer to record the parent's ranges before
13965 traversing its children, simply overriding whatever you find
13966 there. But since we don't even decide whether to create a
13967 block until after we've traversed its children, that's hard
13968 to do. */
13969 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13970 }
13971 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13972 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13973}
13974
13975/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13976
13977static void
13978read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13979{
13980 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13981 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13982 CORE_ADDR pc, baseaddr;
13983 struct attribute *attr;
13984 struct call_site *call_site, call_site_local;
13985 void **slot;
13986 int nparams;
13987 struct die_info *child_die;
13988
13989 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13990
13991 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13992 if (attr == NULL)
13993 {
13994 /* This was a pre-DWARF-5 GNU extension alias
13995 for DW_AT_call_return_pc. */
13996 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13997 }
13998 if (!attr)
13999 {
14000 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
14001 "DIE %s [in module %s]"),
14002 sect_offset_str (die->sect_off), objfile_name (objfile));
14003 return;
14004 }
14005 pc = attr_value_as_address (attr) + baseaddr;
14006 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14007
14008 if (cu->call_site_htab == NULL)
14009 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14010 NULL, &objfile->objfile_obstack,
14011 hashtab_obstack_allocate, NULL);
14012 call_site_local.pc = pc;
14013 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14014 if (*slot != NULL)
14015 {
14016 complaint (_("Duplicate PC %s for DW_TAG_call_site "
14017 "DIE %s [in module %s]"),
14018 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14019 objfile_name (objfile));
14020 return;
14021 }
14022
14023 /* Count parameters at the caller. */
14024
14025 nparams = 0;
14026 for (child_die = die->child; child_die && child_die->tag;
14027 child_die = sibling_die (child_die))
14028 {
14029 if (child_die->tag != DW_TAG_call_site_parameter
14030 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14031 {
14032 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
14033 "DW_TAG_call_site child DIE %s [in module %s]"),
14034 child_die->tag, sect_offset_str (child_die->sect_off),
14035 objfile_name (objfile));
14036 continue;
14037 }
14038
14039 nparams++;
14040 }
14041
14042 call_site
14043 = ((struct call_site *)
14044 obstack_alloc (&objfile->objfile_obstack,
14045 sizeof (*call_site)
14046 + (sizeof (*call_site->parameter) * (nparams - 1))));
14047 *slot = call_site;
14048 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14049 call_site->pc = pc;
14050
14051 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14052 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14053 {
14054 struct die_info *func_die;
14055
14056 /* Skip also over DW_TAG_inlined_subroutine. */
14057 for (func_die = die->parent;
14058 func_die && func_die->tag != DW_TAG_subprogram
14059 && func_die->tag != DW_TAG_subroutine_type;
14060 func_die = func_die->parent);
14061
14062 /* DW_AT_call_all_calls is a superset
14063 of DW_AT_call_all_tail_calls. */
14064 if (func_die
14065 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14066 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14067 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14068 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14069 {
14070 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14071 not complete. But keep CALL_SITE for look ups via call_site_htab,
14072 both the initial caller containing the real return address PC and
14073 the final callee containing the current PC of a chain of tail
14074 calls do not need to have the tail call list complete. But any
14075 function candidate for a virtual tail call frame searched via
14076 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14077 determined unambiguously. */
14078 }
14079 else
14080 {
14081 struct type *func_type = NULL;
14082
14083 if (func_die)
14084 func_type = get_die_type (func_die, cu);
14085 if (func_type != NULL)
14086 {
14087 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14088
14089 /* Enlist this call site to the function. */
14090 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14091 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14092 }
14093 else
14094 complaint (_("Cannot find function owning DW_TAG_call_site "
14095 "DIE %s [in module %s]"),
14096 sect_offset_str (die->sect_off), objfile_name (objfile));
14097 }
14098 }
14099
14100 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14101 if (attr == NULL)
14102 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14103 if (attr == NULL)
14104 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14105 if (attr == NULL)
14106 {
14107 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14108 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14109 }
14110 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14111 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14112 /* Keep NULL DWARF_BLOCK. */;
14113 else if (attr_form_is_block (attr))
14114 {
14115 struct dwarf2_locexpr_baton *dlbaton;
14116
14117 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14118 dlbaton->data = DW_BLOCK (attr)->data;
14119 dlbaton->size = DW_BLOCK (attr)->size;
14120 dlbaton->per_cu = cu->per_cu;
14121
14122 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14123 }
14124 else if (attr_form_is_ref (attr))
14125 {
14126 struct dwarf2_cu *target_cu = cu;
14127 struct die_info *target_die;
14128
14129 target_die = follow_die_ref (die, attr, &target_cu);
14130 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14131 if (die_is_declaration (target_die, target_cu))
14132 {
14133 const char *target_physname;
14134
14135 /* Prefer the mangled name; otherwise compute the demangled one. */
14136 target_physname = dw2_linkage_name (target_die, target_cu);
14137 if (target_physname == NULL)
14138 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14139 if (target_physname == NULL)
14140 complaint (_("DW_AT_call_target target DIE has invalid "
14141 "physname, for referencing DIE %s [in module %s]"),
14142 sect_offset_str (die->sect_off), objfile_name (objfile));
14143 else
14144 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14145 }
14146 else
14147 {
14148 CORE_ADDR lowpc;
14149
14150 /* DW_AT_entry_pc should be preferred. */
14151 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14152 <= PC_BOUNDS_INVALID)
14153 complaint (_("DW_AT_call_target target DIE has invalid "
14154 "low pc, for referencing DIE %s [in module %s]"),
14155 sect_offset_str (die->sect_off), objfile_name (objfile));
14156 else
14157 {
14158 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14159 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14160 }
14161 }
14162 }
14163 else
14164 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14165 "block nor reference, for DIE %s [in module %s]"),
14166 sect_offset_str (die->sect_off), objfile_name (objfile));
14167
14168 call_site->per_cu = cu->per_cu;
14169
14170 for (child_die = die->child;
14171 child_die && child_die->tag;
14172 child_die = sibling_die (child_die))
14173 {
14174 struct call_site_parameter *parameter;
14175 struct attribute *loc, *origin;
14176
14177 if (child_die->tag != DW_TAG_call_site_parameter
14178 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14179 {
14180 /* Already printed the complaint above. */
14181 continue;
14182 }
14183
14184 gdb_assert (call_site->parameter_count < nparams);
14185 parameter = &call_site->parameter[call_site->parameter_count];
14186
14187 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14188 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14189 register is contained in DW_AT_call_value. */
14190
14191 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14192 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14193 if (origin == NULL)
14194 {
14195 /* This was a pre-DWARF-5 GNU extension alias
14196 for DW_AT_call_parameter. */
14197 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14198 }
14199 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14200 {
14201 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14202
14203 sect_offset sect_off
14204 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14205 if (!offset_in_cu_p (&cu->header, sect_off))
14206 {
14207 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14208 binding can be done only inside one CU. Such referenced DIE
14209 therefore cannot be even moved to DW_TAG_partial_unit. */
14210 complaint (_("DW_AT_call_parameter offset is not in CU for "
14211 "DW_TAG_call_site child DIE %s [in module %s]"),
14212 sect_offset_str (child_die->sect_off),
14213 objfile_name (objfile));
14214 continue;
14215 }
14216 parameter->u.param_cu_off
14217 = (cu_offset) (sect_off - cu->header.sect_off);
14218 }
14219 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14220 {
14221 complaint (_("No DW_FORM_block* DW_AT_location for "
14222 "DW_TAG_call_site child DIE %s [in module %s]"),
14223 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14224 continue;
14225 }
14226 else
14227 {
14228 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14229 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14230 if (parameter->u.dwarf_reg != -1)
14231 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14232 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14233 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14234 &parameter->u.fb_offset))
14235 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14236 else
14237 {
14238 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14239 "for DW_FORM_block* DW_AT_location is supported for "
14240 "DW_TAG_call_site child DIE %s "
14241 "[in module %s]"),
14242 sect_offset_str (child_die->sect_off),
14243 objfile_name (objfile));
14244 continue;
14245 }
14246 }
14247
14248 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14249 if (attr == NULL)
14250 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14251 if (!attr_form_is_block (attr))
14252 {
14253 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14254 "DW_TAG_call_site child DIE %s [in module %s]"),
14255 sect_offset_str (child_die->sect_off),
14256 objfile_name (objfile));
14257 continue;
14258 }
14259 parameter->value = DW_BLOCK (attr)->data;
14260 parameter->value_size = DW_BLOCK (attr)->size;
14261
14262 /* Parameters are not pre-cleared by memset above. */
14263 parameter->data_value = NULL;
14264 parameter->data_value_size = 0;
14265 call_site->parameter_count++;
14266
14267 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14268 if (attr == NULL)
14269 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14270 if (attr != nullptr)
14271 {
14272 if (!attr_form_is_block (attr))
14273 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14274 "DW_TAG_call_site child DIE %s [in module %s]"),
14275 sect_offset_str (child_die->sect_off),
14276 objfile_name (objfile));
14277 else
14278 {
14279 parameter->data_value = DW_BLOCK (attr)->data;
14280 parameter->data_value_size = DW_BLOCK (attr)->size;
14281 }
14282 }
14283 }
14284}
14285
14286/* Helper function for read_variable. If DIE represents a virtual
14287 table, then return the type of the concrete object that is
14288 associated with the virtual table. Otherwise, return NULL. */
14289
14290static struct type *
14291rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14292{
14293 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14294 if (attr == NULL)
14295 return NULL;
14296
14297 /* Find the type DIE. */
14298 struct die_info *type_die = NULL;
14299 struct dwarf2_cu *type_cu = cu;
14300
14301 if (attr_form_is_ref (attr))
14302 type_die = follow_die_ref (die, attr, &type_cu);
14303 if (type_die == NULL)
14304 return NULL;
14305
14306 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14307 return NULL;
14308 return die_containing_type (type_die, type_cu);
14309}
14310
14311/* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14312
14313static void
14314read_variable (struct die_info *die, struct dwarf2_cu *cu)
14315{
14316 struct rust_vtable_symbol *storage = NULL;
14317
14318 if (cu->language == language_rust)
14319 {
14320 struct type *containing_type = rust_containing_type (die, cu);
14321
14322 if (containing_type != NULL)
14323 {
14324 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14325
14326 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
14327 initialize_objfile_symbol (storage);
14328 storage->concrete_type = containing_type;
14329 storage->subclass = SYMBOL_RUST_VTABLE;
14330 }
14331 }
14332
14333 struct symbol *res = new_symbol (die, NULL, cu, storage);
14334 struct attribute *abstract_origin
14335 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14336 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14337 if (res == NULL && loc && abstract_origin)
14338 {
14339 /* We have a variable without a name, but with a location and an abstract
14340 origin. This may be a concrete instance of an abstract variable
14341 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14342 later. */
14343 struct dwarf2_cu *origin_cu = cu;
14344 struct die_info *origin_die
14345 = follow_die_ref (die, abstract_origin, &origin_cu);
14346 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14347 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14348 }
14349}
14350
14351/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14352 reading .debug_rnglists.
14353 Callback's type should be:
14354 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14355 Return true if the attributes are present and valid, otherwise,
14356 return false. */
14357
14358template <typename Callback>
14359static bool
14360dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14361 Callback &&callback)
14362{
14363 struct dwarf2_per_objfile *dwarf2_per_objfile
14364 = cu->per_cu->dwarf2_per_objfile;
14365 struct objfile *objfile = dwarf2_per_objfile->objfile;
14366 bfd *obfd = objfile->obfd;
14367 /* Base address selection entry. */
14368 CORE_ADDR base;
14369 int found_base;
14370 const gdb_byte *buffer;
14371 CORE_ADDR baseaddr;
14372 bool overflow = false;
14373
14374 found_base = cu->base_known;
14375 base = cu->base_address;
14376
14377 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14378 if (offset >= dwarf2_per_objfile->rnglists.size)
14379 {
14380 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14381 offset);
14382 return false;
14383 }
14384 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14385
14386 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14387
14388 while (1)
14389 {
14390 /* Initialize it due to a false compiler warning. */
14391 CORE_ADDR range_beginning = 0, range_end = 0;
14392 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14393 + dwarf2_per_objfile->rnglists.size);
14394 unsigned int bytes_read;
14395
14396 if (buffer == buf_end)
14397 {
14398 overflow = true;
14399 break;
14400 }
14401 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14402 switch (rlet)
14403 {
14404 case DW_RLE_end_of_list:
14405 break;
14406 case DW_RLE_base_address:
14407 if (buffer + cu->header.addr_size > buf_end)
14408 {
14409 overflow = true;
14410 break;
14411 }
14412 base = read_address (obfd, buffer, cu, &bytes_read);
14413 found_base = 1;
14414 buffer += bytes_read;
14415 break;
14416 case DW_RLE_start_length:
14417 if (buffer + cu->header.addr_size > buf_end)
14418 {
14419 overflow = true;
14420 break;
14421 }
14422 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14423 buffer += bytes_read;
14424 range_end = (range_beginning
14425 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14426 buffer += bytes_read;
14427 if (buffer > buf_end)
14428 {
14429 overflow = true;
14430 break;
14431 }
14432 break;
14433 case DW_RLE_offset_pair:
14434 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14435 buffer += bytes_read;
14436 if (buffer > buf_end)
14437 {
14438 overflow = true;
14439 break;
14440 }
14441 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14442 buffer += bytes_read;
14443 if (buffer > buf_end)
14444 {
14445 overflow = true;
14446 break;
14447 }
14448 break;
14449 case DW_RLE_start_end:
14450 if (buffer + 2 * cu->header.addr_size > buf_end)
14451 {
14452 overflow = true;
14453 break;
14454 }
14455 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14456 buffer += bytes_read;
14457 range_end = read_address (obfd, buffer, cu, &bytes_read);
14458 buffer += bytes_read;
14459 break;
14460 default:
14461 complaint (_("Invalid .debug_rnglists data (no base address)"));
14462 return false;
14463 }
14464 if (rlet == DW_RLE_end_of_list || overflow)
14465 break;
14466 if (rlet == DW_RLE_base_address)
14467 continue;
14468
14469 if (!found_base)
14470 {
14471 /* We have no valid base address for the ranges
14472 data. */
14473 complaint (_("Invalid .debug_rnglists data (no base address)"));
14474 return false;
14475 }
14476
14477 if (range_beginning > range_end)
14478 {
14479 /* Inverted range entries are invalid. */
14480 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14481 return false;
14482 }
14483
14484 /* Empty range entries have no effect. */
14485 if (range_beginning == range_end)
14486 continue;
14487
14488 range_beginning += base;
14489 range_end += base;
14490
14491 /* A not-uncommon case of bad debug info.
14492 Don't pollute the addrmap with bad data. */
14493 if (range_beginning + baseaddr == 0
14494 && !dwarf2_per_objfile->has_section_at_zero)
14495 {
14496 complaint (_(".debug_rnglists entry has start address of zero"
14497 " [in module %s]"), objfile_name (objfile));
14498 continue;
14499 }
14500
14501 callback (range_beginning, range_end);
14502 }
14503
14504 if (overflow)
14505 {
14506 complaint (_("Offset %d is not terminated "
14507 "for DW_AT_ranges attribute"),
14508 offset);
14509 return false;
14510 }
14511
14512 return true;
14513}
14514
14515/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14516 Callback's type should be:
14517 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14518 Return 1 if the attributes are present and valid, otherwise, return 0. */
14519
14520template <typename Callback>
14521static int
14522dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14523 Callback &&callback)
14524{
14525 struct dwarf2_per_objfile *dwarf2_per_objfile
14526 = cu->per_cu->dwarf2_per_objfile;
14527 struct objfile *objfile = dwarf2_per_objfile->objfile;
14528 struct comp_unit_head *cu_header = &cu->header;
14529 bfd *obfd = objfile->obfd;
14530 unsigned int addr_size = cu_header->addr_size;
14531 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14532 /* Base address selection entry. */
14533 CORE_ADDR base;
14534 int found_base;
14535 unsigned int dummy;
14536 const gdb_byte *buffer;
14537 CORE_ADDR baseaddr;
14538
14539 if (cu_header->version >= 5)
14540 return dwarf2_rnglists_process (offset, cu, callback);
14541
14542 found_base = cu->base_known;
14543 base = cu->base_address;
14544
14545 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14546 if (offset >= dwarf2_per_objfile->ranges.size)
14547 {
14548 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14549 offset);
14550 return 0;
14551 }
14552 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14553
14554 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14555
14556 while (1)
14557 {
14558 CORE_ADDR range_beginning, range_end;
14559
14560 range_beginning = read_address (obfd, buffer, cu, &dummy);
14561 buffer += addr_size;
14562 range_end = read_address (obfd, buffer, cu, &dummy);
14563 buffer += addr_size;
14564 offset += 2 * addr_size;
14565
14566 /* An end of list marker is a pair of zero addresses. */
14567 if (range_beginning == 0 && range_end == 0)
14568 /* Found the end of list entry. */
14569 break;
14570
14571 /* Each base address selection entry is a pair of 2 values.
14572 The first is the largest possible address, the second is
14573 the base address. Check for a base address here. */
14574 if ((range_beginning & mask) == mask)
14575 {
14576 /* If we found the largest possible address, then we already
14577 have the base address in range_end. */
14578 base = range_end;
14579 found_base = 1;
14580 continue;
14581 }
14582
14583 if (!found_base)
14584 {
14585 /* We have no valid base address for the ranges
14586 data. */
14587 complaint (_("Invalid .debug_ranges data (no base address)"));
14588 return 0;
14589 }
14590
14591 if (range_beginning > range_end)
14592 {
14593 /* Inverted range entries are invalid. */
14594 complaint (_("Invalid .debug_ranges data (inverted range)"));
14595 return 0;
14596 }
14597
14598 /* Empty range entries have no effect. */
14599 if (range_beginning == range_end)
14600 continue;
14601
14602 range_beginning += base;
14603 range_end += base;
14604
14605 /* A not-uncommon case of bad debug info.
14606 Don't pollute the addrmap with bad data. */
14607 if (range_beginning + baseaddr == 0
14608 && !dwarf2_per_objfile->has_section_at_zero)
14609 {
14610 complaint (_(".debug_ranges entry has start address of zero"
14611 " [in module %s]"), objfile_name (objfile));
14612 continue;
14613 }
14614
14615 callback (range_beginning, range_end);
14616 }
14617
14618 return 1;
14619}
14620
14621/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14622 Return 1 if the attributes are present and valid, otherwise, return 0.
14623 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14624
14625static int
14626dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14627 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14628 struct partial_symtab *ranges_pst)
14629{
14630 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14631 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14632 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14633 SECT_OFF_TEXT (objfile));
14634 int low_set = 0;
14635 CORE_ADDR low = 0;
14636 CORE_ADDR high = 0;
14637 int retval;
14638
14639 retval = dwarf2_ranges_process (offset, cu,
14640 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14641 {
14642 if (ranges_pst != NULL)
14643 {
14644 CORE_ADDR lowpc;
14645 CORE_ADDR highpc;
14646
14647 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14648 range_beginning + baseaddr)
14649 - baseaddr);
14650 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14651 range_end + baseaddr)
14652 - baseaddr);
14653 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14654 lowpc, highpc - 1, ranges_pst);
14655 }
14656
14657 /* FIXME: This is recording everything as a low-high
14658 segment of consecutive addresses. We should have a
14659 data structure for discontiguous block ranges
14660 instead. */
14661 if (! low_set)
14662 {
14663 low = range_beginning;
14664 high = range_end;
14665 low_set = 1;
14666 }
14667 else
14668 {
14669 if (range_beginning < low)
14670 low = range_beginning;
14671 if (range_end > high)
14672 high = range_end;
14673 }
14674 });
14675 if (!retval)
14676 return 0;
14677
14678 if (! low_set)
14679 /* If the first entry is an end-of-list marker, the range
14680 describes an empty scope, i.e. no instructions. */
14681 return 0;
14682
14683 if (low_return)
14684 *low_return = low;
14685 if (high_return)
14686 *high_return = high;
14687 return 1;
14688}
14689
14690/* Get low and high pc attributes from a die. See enum pc_bounds_kind
14691 definition for the return value. *LOWPC and *HIGHPC are set iff
14692 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14693
14694static enum pc_bounds_kind
14695dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14696 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14697 struct partial_symtab *pst)
14698{
14699 struct dwarf2_per_objfile *dwarf2_per_objfile
14700 = cu->per_cu->dwarf2_per_objfile;
14701 struct attribute *attr;
14702 struct attribute *attr_high;
14703 CORE_ADDR low = 0;
14704 CORE_ADDR high = 0;
14705 enum pc_bounds_kind ret;
14706
14707 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14708 if (attr_high)
14709 {
14710 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14711 if (attr != nullptr)
14712 {
14713 low = attr_value_as_address (attr);
14714 high = attr_value_as_address (attr_high);
14715 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14716 high += low;
14717 }
14718 else
14719 /* Found high w/o low attribute. */
14720 return PC_BOUNDS_INVALID;
14721
14722 /* Found consecutive range of addresses. */
14723 ret = PC_BOUNDS_HIGH_LOW;
14724 }
14725 else
14726 {
14727 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14728 if (attr != NULL)
14729 {
14730 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14731 We take advantage of the fact that DW_AT_ranges does not appear
14732 in DW_TAG_compile_unit of DWO files. */
14733 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14734 unsigned int ranges_offset = (DW_UNSND (attr)
14735 + (need_ranges_base
14736 ? cu->ranges_base
14737 : 0));
14738
14739 /* Value of the DW_AT_ranges attribute is the offset in the
14740 .debug_ranges section. */
14741 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14742 return PC_BOUNDS_INVALID;
14743 /* Found discontinuous range of addresses. */
14744 ret = PC_BOUNDS_RANGES;
14745 }
14746 else
14747 return PC_BOUNDS_NOT_PRESENT;
14748 }
14749
14750 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14751 if (high <= low)
14752 return PC_BOUNDS_INVALID;
14753
14754 /* When using the GNU linker, .gnu.linkonce. sections are used to
14755 eliminate duplicate copies of functions and vtables and such.
14756 The linker will arbitrarily choose one and discard the others.
14757 The AT_*_pc values for such functions refer to local labels in
14758 these sections. If the section from that file was discarded, the
14759 labels are not in the output, so the relocs get a value of 0.
14760 If this is a discarded function, mark the pc bounds as invalid,
14761 so that GDB will ignore it. */
14762 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14763 return PC_BOUNDS_INVALID;
14764
14765 *lowpc = low;
14766 if (highpc)
14767 *highpc = high;
14768 return ret;
14769}
14770
14771/* Assuming that DIE represents a subprogram DIE or a lexical block, get
14772 its low and high PC addresses. Do nothing if these addresses could not
14773 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14774 and HIGHPC to the high address if greater than HIGHPC. */
14775
14776static void
14777dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14778 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14779 struct dwarf2_cu *cu)
14780{
14781 CORE_ADDR low, high;
14782 struct die_info *child = die->child;
14783
14784 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14785 {
14786 *lowpc = std::min (*lowpc, low);
14787 *highpc = std::max (*highpc, high);
14788 }
14789
14790 /* If the language does not allow nested subprograms (either inside
14791 subprograms or lexical blocks), we're done. */
14792 if (cu->language != language_ada)
14793 return;
14794
14795 /* Check all the children of the given DIE. If it contains nested
14796 subprograms, then check their pc bounds. Likewise, we need to
14797 check lexical blocks as well, as they may also contain subprogram
14798 definitions. */
14799 while (child && child->tag)
14800 {
14801 if (child->tag == DW_TAG_subprogram
14802 || child->tag == DW_TAG_lexical_block)
14803 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14804 child = sibling_die (child);
14805 }
14806}
14807
14808/* Get the low and high pc's represented by the scope DIE, and store
14809 them in *LOWPC and *HIGHPC. If the correct values can't be
14810 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14811
14812static void
14813get_scope_pc_bounds (struct die_info *die,
14814 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14815 struct dwarf2_cu *cu)
14816{
14817 CORE_ADDR best_low = (CORE_ADDR) -1;
14818 CORE_ADDR best_high = (CORE_ADDR) 0;
14819 CORE_ADDR current_low, current_high;
14820
14821 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14822 >= PC_BOUNDS_RANGES)
14823 {
14824 best_low = current_low;
14825 best_high = current_high;
14826 }
14827 else
14828 {
14829 struct die_info *child = die->child;
14830
14831 while (child && child->tag)
14832 {
14833 switch (child->tag) {
14834 case DW_TAG_subprogram:
14835 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14836 break;
14837 case DW_TAG_namespace:
14838 case DW_TAG_module:
14839 /* FIXME: carlton/2004-01-16: Should we do this for
14840 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14841 that current GCC's always emit the DIEs corresponding
14842 to definitions of methods of classes as children of a
14843 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14844 the DIEs giving the declarations, which could be
14845 anywhere). But I don't see any reason why the
14846 standards says that they have to be there. */
14847 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14848
14849 if (current_low != ((CORE_ADDR) -1))
14850 {
14851 best_low = std::min (best_low, current_low);
14852 best_high = std::max (best_high, current_high);
14853 }
14854 break;
14855 default:
14856 /* Ignore. */
14857 break;
14858 }
14859
14860 child = sibling_die (child);
14861 }
14862 }
14863
14864 *lowpc = best_low;
14865 *highpc = best_high;
14866}
14867
14868/* Record the address ranges for BLOCK, offset by BASEADDR, as given
14869 in DIE. */
14870
14871static void
14872dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14873 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14874{
14875 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14877 struct attribute *attr;
14878 struct attribute *attr_high;
14879
14880 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14881 if (attr_high)
14882 {
14883 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14884 if (attr != nullptr)
14885 {
14886 CORE_ADDR low = attr_value_as_address (attr);
14887 CORE_ADDR high = attr_value_as_address (attr_high);
14888
14889 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14890 high += low;
14891
14892 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14893 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14894 cu->get_builder ()->record_block_range (block, low, high - 1);
14895 }
14896 }
14897
14898 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14899 if (attr != nullptr)
14900 {
14901 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14902 We take advantage of the fact that DW_AT_ranges does not appear
14903 in DW_TAG_compile_unit of DWO files. */
14904 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14905
14906 /* The value of the DW_AT_ranges attribute is the offset of the
14907 address range list in the .debug_ranges section. */
14908 unsigned long offset = (DW_UNSND (attr)
14909 + (need_ranges_base ? cu->ranges_base : 0));
14910
14911 std::vector<blockrange> blockvec;
14912 dwarf2_ranges_process (offset, cu,
14913 [&] (CORE_ADDR start, CORE_ADDR end)
14914 {
14915 start += baseaddr;
14916 end += baseaddr;
14917 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14918 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14919 cu->get_builder ()->record_block_range (block, start, end - 1);
14920 blockvec.emplace_back (start, end);
14921 });
14922
14923 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14924 }
14925}
14926
14927/* Check whether the producer field indicates either of GCC < 4.6, or the
14928 Intel C/C++ compiler, and cache the result in CU. */
14929
14930static void
14931check_producer (struct dwarf2_cu *cu)
14932{
14933 int major, minor;
14934
14935 if (cu->producer == NULL)
14936 {
14937 /* For unknown compilers expect their behavior is DWARF version
14938 compliant.
14939
14940 GCC started to support .debug_types sections by -gdwarf-4 since
14941 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14942 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14943 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14944 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14945 }
14946 else if (producer_is_gcc (cu->producer, &major, &minor))
14947 {
14948 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14949 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14950 }
14951 else if (producer_is_icc (cu->producer, &major, &minor))
14952 {
14953 cu->producer_is_icc = true;
14954 cu->producer_is_icc_lt_14 = major < 14;
14955 }
14956 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14957 cu->producer_is_codewarrior = true;
14958 else
14959 {
14960 /* For other non-GCC compilers, expect their behavior is DWARF version
14961 compliant. */
14962 }
14963
14964 cu->checked_producer = true;
14965}
14966
14967/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14968 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14969 during 4.6.0 experimental. */
14970
14971static bool
14972producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14973{
14974 if (!cu->checked_producer)
14975 check_producer (cu);
14976
14977 return cu->producer_is_gxx_lt_4_6;
14978}
14979
14980
14981/* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14982 with incorrect is_stmt attributes. */
14983
14984static bool
14985producer_is_codewarrior (struct dwarf2_cu *cu)
14986{
14987 if (!cu->checked_producer)
14988 check_producer (cu);
14989
14990 return cu->producer_is_codewarrior;
14991}
14992
14993/* Return the default accessibility type if it is not overridden by
14994 DW_AT_accessibility. */
14995
14996static enum dwarf_access_attribute
14997dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14998{
14999 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15000 {
15001 /* The default DWARF 2 accessibility for members is public, the default
15002 accessibility for inheritance is private. */
15003
15004 if (die->tag != DW_TAG_inheritance)
15005 return DW_ACCESS_public;
15006 else
15007 return DW_ACCESS_private;
15008 }
15009 else
15010 {
15011 /* DWARF 3+ defines the default accessibility a different way. The same
15012 rules apply now for DW_TAG_inheritance as for the members and it only
15013 depends on the container kind. */
15014
15015 if (die->parent->tag == DW_TAG_class_type)
15016 return DW_ACCESS_private;
15017 else
15018 return DW_ACCESS_public;
15019 }
15020}
15021
15022/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15023 offset. If the attribute was not found return 0, otherwise return
15024 1. If it was found but could not properly be handled, set *OFFSET
15025 to 0. */
15026
15027static int
15028handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15029 LONGEST *offset)
15030{
15031 struct attribute *attr;
15032
15033 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15034 if (attr != NULL)
15035 {
15036 *offset = 0;
15037
15038 /* Note that we do not check for a section offset first here.
15039 This is because DW_AT_data_member_location is new in DWARF 4,
15040 so if we see it, we can assume that a constant form is really
15041 a constant and not a section offset. */
15042 if (attr_form_is_constant (attr))
15043 *offset = dwarf2_get_attr_constant_value (attr, 0);
15044 else if (attr_form_is_section_offset (attr))
15045 dwarf2_complex_location_expr_complaint ();
15046 else if (attr_form_is_block (attr))
15047 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15048 else
15049 dwarf2_complex_location_expr_complaint ();
15050
15051 return 1;
15052 }
15053
15054 return 0;
15055}
15056
15057/* Add an aggregate field to the field list. */
15058
15059static void
15060dwarf2_add_field (struct field_info *fip, struct die_info *die,
15061 struct dwarf2_cu *cu)
15062{
15063 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15064 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15065 struct nextfield *new_field;
15066 struct attribute *attr;
15067 struct field *fp;
15068 const char *fieldname = "";
15069
15070 if (die->tag == DW_TAG_inheritance)
15071 {
15072 fip->baseclasses.emplace_back ();
15073 new_field = &fip->baseclasses.back ();
15074 }
15075 else
15076 {
15077 fip->fields.emplace_back ();
15078 new_field = &fip->fields.back ();
15079 }
15080
15081 fip->nfields++;
15082
15083 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15084 if (attr != nullptr)
15085 new_field->accessibility = DW_UNSND (attr);
15086 else
15087 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15088 if (new_field->accessibility != DW_ACCESS_public)
15089 fip->non_public_fields = 1;
15090
15091 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15092 if (attr != nullptr)
15093 new_field->virtuality = DW_UNSND (attr);
15094 else
15095 new_field->virtuality = DW_VIRTUALITY_none;
15096
15097 fp = &new_field->field;
15098
15099 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15100 {
15101 LONGEST offset;
15102
15103 /* Data member other than a C++ static data member. */
15104
15105 /* Get type of field. */
15106 fp->type = die_type (die, cu);
15107
15108 SET_FIELD_BITPOS (*fp, 0);
15109
15110 /* Get bit size of field (zero if none). */
15111 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15112 if (attr != nullptr)
15113 {
15114 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15115 }
15116 else
15117 {
15118 FIELD_BITSIZE (*fp) = 0;
15119 }
15120
15121 /* Get bit offset of field. */
15122 if (handle_data_member_location (die, cu, &offset))
15123 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15124 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15125 if (attr != nullptr)
15126 {
15127 if (gdbarch_bits_big_endian (gdbarch))
15128 {
15129 /* For big endian bits, the DW_AT_bit_offset gives the
15130 additional bit offset from the MSB of the containing
15131 anonymous object to the MSB of the field. We don't
15132 have to do anything special since we don't need to
15133 know the size of the anonymous object. */
15134 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15135 }
15136 else
15137 {
15138 /* For little endian bits, compute the bit offset to the
15139 MSB of the anonymous object, subtract off the number of
15140 bits from the MSB of the field to the MSB of the
15141 object, and then subtract off the number of bits of
15142 the field itself. The result is the bit offset of
15143 the LSB of the field. */
15144 int anonymous_size;
15145 int bit_offset = DW_UNSND (attr);
15146
15147 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15148 if (attr != nullptr)
15149 {
15150 /* The size of the anonymous object containing
15151 the bit field is explicit, so use the
15152 indicated size (in bytes). */
15153 anonymous_size = DW_UNSND (attr);
15154 }
15155 else
15156 {
15157 /* The size of the anonymous object containing
15158 the bit field must be inferred from the type
15159 attribute of the data member containing the
15160 bit field. */
15161 anonymous_size = TYPE_LENGTH (fp->type);
15162 }
15163 SET_FIELD_BITPOS (*fp,
15164 (FIELD_BITPOS (*fp)
15165 + anonymous_size * bits_per_byte
15166 - bit_offset - FIELD_BITSIZE (*fp)));
15167 }
15168 }
15169 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15170 if (attr != NULL)
15171 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15172 + dwarf2_get_attr_constant_value (attr, 0)));
15173
15174 /* Get name of field. */
15175 fieldname = dwarf2_name (die, cu);
15176 if (fieldname == NULL)
15177 fieldname = "";
15178
15179 /* The name is already allocated along with this objfile, so we don't
15180 need to duplicate it for the type. */
15181 fp->name = fieldname;
15182
15183 /* Change accessibility for artificial fields (e.g. virtual table
15184 pointer or virtual base class pointer) to private. */
15185 if (dwarf2_attr (die, DW_AT_artificial, cu))
15186 {
15187 FIELD_ARTIFICIAL (*fp) = 1;
15188 new_field->accessibility = DW_ACCESS_private;
15189 fip->non_public_fields = 1;
15190 }
15191 }
15192 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15193 {
15194 /* C++ static member. */
15195
15196 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15197 is a declaration, but all versions of G++ as of this writing
15198 (so through at least 3.2.1) incorrectly generate
15199 DW_TAG_variable tags. */
15200
15201 const char *physname;
15202
15203 /* Get name of field. */
15204 fieldname = dwarf2_name (die, cu);
15205 if (fieldname == NULL)
15206 return;
15207
15208 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15209 if (attr
15210 /* Only create a symbol if this is an external value.
15211 new_symbol checks this and puts the value in the global symbol
15212 table, which we want. If it is not external, new_symbol
15213 will try to put the value in cu->list_in_scope which is wrong. */
15214 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15215 {
15216 /* A static const member, not much different than an enum as far as
15217 we're concerned, except that we can support more types. */
15218 new_symbol (die, NULL, cu);
15219 }
15220
15221 /* Get physical name. */
15222 physname = dwarf2_physname (fieldname, die, cu);
15223
15224 /* The name is already allocated along with this objfile, so we don't
15225 need to duplicate it for the type. */
15226 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15227 FIELD_TYPE (*fp) = die_type (die, cu);
15228 FIELD_NAME (*fp) = fieldname;
15229 }
15230 else if (die->tag == DW_TAG_inheritance)
15231 {
15232 LONGEST offset;
15233
15234 /* C++ base class field. */
15235 if (handle_data_member_location (die, cu, &offset))
15236 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15237 FIELD_BITSIZE (*fp) = 0;
15238 FIELD_TYPE (*fp) = die_type (die, cu);
15239 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15240 }
15241 else if (die->tag == DW_TAG_variant_part)
15242 {
15243 /* process_structure_scope will treat this DIE as a union. */
15244 process_structure_scope (die, cu);
15245
15246 /* The variant part is relative to the start of the enclosing
15247 structure. */
15248 SET_FIELD_BITPOS (*fp, 0);
15249 fp->type = get_die_type (die, cu);
15250 fp->artificial = 1;
15251 fp->name = "<<variant>>";
15252
15253 /* Normally a DW_TAG_variant_part won't have a size, but our
15254 representation requires one, so set it to the maximum of the
15255 child sizes, being sure to account for the offset at which
15256 each child is seen. */
15257 if (TYPE_LENGTH (fp->type) == 0)
15258 {
15259 unsigned max = 0;
15260 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15261 {
15262 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
15263 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
15264 if (len > max)
15265 max = len;
15266 }
15267 TYPE_LENGTH (fp->type) = max;
15268 }
15269 }
15270 else
15271 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15272}
15273
15274/* Can the type given by DIE define another type? */
15275
15276static bool
15277type_can_define_types (const struct die_info *die)
15278{
15279 switch (die->tag)
15280 {
15281 case DW_TAG_typedef:
15282 case DW_TAG_class_type:
15283 case DW_TAG_structure_type:
15284 case DW_TAG_union_type:
15285 case DW_TAG_enumeration_type:
15286 return true;
15287
15288 default:
15289 return false;
15290 }
15291}
15292
15293/* Add a type definition defined in the scope of the FIP's class. */
15294
15295static void
15296dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15297 struct dwarf2_cu *cu)
15298{
15299 struct decl_field fp;
15300 memset (&fp, 0, sizeof (fp));
15301
15302 gdb_assert (type_can_define_types (die));
15303
15304 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15305 fp.name = dwarf2_name (die, cu);
15306 fp.type = read_type_die (die, cu);
15307
15308 /* Save accessibility. */
15309 enum dwarf_access_attribute accessibility;
15310 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15311 if (attr != NULL)
15312 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15313 else
15314 accessibility = dwarf2_default_access_attribute (die, cu);
15315 switch (accessibility)
15316 {
15317 case DW_ACCESS_public:
15318 /* The assumed value if neither private nor protected. */
15319 break;
15320 case DW_ACCESS_private:
15321 fp.is_private = 1;
15322 break;
15323 case DW_ACCESS_protected:
15324 fp.is_protected = 1;
15325 break;
15326 default:
15327 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15328 }
15329
15330 if (die->tag == DW_TAG_typedef)
15331 fip->typedef_field_list.push_back (fp);
15332 else
15333 fip->nested_types_list.push_back (fp);
15334}
15335
15336/* Create the vector of fields, and attach it to the type. */
15337
15338static void
15339dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15340 struct dwarf2_cu *cu)
15341{
15342 int nfields = fip->nfields;
15343
15344 /* Record the field count, allocate space for the array of fields,
15345 and create blank accessibility bitfields if necessary. */
15346 TYPE_NFIELDS (type) = nfields;
15347 TYPE_FIELDS (type) = (struct field *)
15348 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15349
15350 if (fip->non_public_fields && cu->language != language_ada)
15351 {
15352 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15353
15354 TYPE_FIELD_PRIVATE_BITS (type) =
15355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15356 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15357
15358 TYPE_FIELD_PROTECTED_BITS (type) =
15359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15360 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15361
15362 TYPE_FIELD_IGNORE_BITS (type) =
15363 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15364 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15365 }
15366
15367 /* If the type has baseclasses, allocate and clear a bit vector for
15368 TYPE_FIELD_VIRTUAL_BITS. */
15369 if (!fip->baseclasses.empty () && cu->language != language_ada)
15370 {
15371 int num_bytes = B_BYTES (fip->baseclasses.size ());
15372 unsigned char *pointer;
15373
15374 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15375 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15376 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15377 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15378 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15379 }
15380
15381 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15382 {
15383 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15384
15385 for (int index = 0; index < nfields; ++index)
15386 {
15387 struct nextfield &field = fip->fields[index];
15388
15389 if (field.variant.is_discriminant)
15390 di->discriminant_index = index;
15391 else if (field.variant.default_branch)
15392 di->default_index = index;
15393 else
15394 di->discriminants[index] = field.variant.discriminant_value;
15395 }
15396 }
15397
15398 /* Copy the saved-up fields into the field vector. */
15399 for (int i = 0; i < nfields; ++i)
15400 {
15401 struct nextfield &field
15402 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15403 : fip->fields[i - fip->baseclasses.size ()]);
15404
15405 TYPE_FIELD (type, i) = field.field;
15406 switch (field.accessibility)
15407 {
15408 case DW_ACCESS_private:
15409 if (cu->language != language_ada)
15410 SET_TYPE_FIELD_PRIVATE (type, i);
15411 break;
15412
15413 case DW_ACCESS_protected:
15414 if (cu->language != language_ada)
15415 SET_TYPE_FIELD_PROTECTED (type, i);
15416 break;
15417
15418 case DW_ACCESS_public:
15419 break;
15420
15421 default:
15422 /* Unknown accessibility. Complain and treat it as public. */
15423 {
15424 complaint (_("unsupported accessibility %d"),
15425 field.accessibility);
15426 }
15427 break;
15428 }
15429 if (i < fip->baseclasses.size ())
15430 {
15431 switch (field.virtuality)
15432 {
15433 case DW_VIRTUALITY_virtual:
15434 case DW_VIRTUALITY_pure_virtual:
15435 if (cu->language == language_ada)
15436 error (_("unexpected virtuality in component of Ada type"));
15437 SET_TYPE_FIELD_VIRTUAL (type, i);
15438 break;
15439 }
15440 }
15441 }
15442}
15443
15444/* Return true if this member function is a constructor, false
15445 otherwise. */
15446
15447static int
15448dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15449{
15450 const char *fieldname;
15451 const char *type_name;
15452 int len;
15453
15454 if (die->parent == NULL)
15455 return 0;
15456
15457 if (die->parent->tag != DW_TAG_structure_type
15458 && die->parent->tag != DW_TAG_union_type
15459 && die->parent->tag != DW_TAG_class_type)
15460 return 0;
15461
15462 fieldname = dwarf2_name (die, cu);
15463 type_name = dwarf2_name (die->parent, cu);
15464 if (fieldname == NULL || type_name == NULL)
15465 return 0;
15466
15467 len = strlen (fieldname);
15468 return (strncmp (fieldname, type_name, len) == 0
15469 && (type_name[len] == '\0' || type_name[len] == '<'));
15470}
15471
15472/* Add a member function to the proper fieldlist. */
15473
15474static void
15475dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15476 struct type *type, struct dwarf2_cu *cu)
15477{
15478 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15479 struct attribute *attr;
15480 int i;
15481 struct fnfieldlist *flp = nullptr;
15482 struct fn_field *fnp;
15483 const char *fieldname;
15484 struct type *this_type;
15485 enum dwarf_access_attribute accessibility;
15486
15487 if (cu->language == language_ada)
15488 error (_("unexpected member function in Ada type"));
15489
15490 /* Get name of member function. */
15491 fieldname = dwarf2_name (die, cu);
15492 if (fieldname == NULL)
15493 return;
15494
15495 /* Look up member function name in fieldlist. */
15496 for (i = 0; i < fip->fnfieldlists.size (); i++)
15497 {
15498 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15499 {
15500 flp = &fip->fnfieldlists[i];
15501 break;
15502 }
15503 }
15504
15505 /* Create a new fnfieldlist if necessary. */
15506 if (flp == nullptr)
15507 {
15508 fip->fnfieldlists.emplace_back ();
15509 flp = &fip->fnfieldlists.back ();
15510 flp->name = fieldname;
15511 i = fip->fnfieldlists.size () - 1;
15512 }
15513
15514 /* Create a new member function field and add it to the vector of
15515 fnfieldlists. */
15516 flp->fnfields.emplace_back ();
15517 fnp = &flp->fnfields.back ();
15518
15519 /* Delay processing of the physname until later. */
15520 if (cu->language == language_cplus)
15521 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15522 die, cu);
15523 else
15524 {
15525 const char *physname = dwarf2_physname (fieldname, die, cu);
15526 fnp->physname = physname ? physname : "";
15527 }
15528
15529 fnp->type = alloc_type (objfile);
15530 this_type = read_type_die (die, cu);
15531 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15532 {
15533 int nparams = TYPE_NFIELDS (this_type);
15534
15535 /* TYPE is the domain of this method, and THIS_TYPE is the type
15536 of the method itself (TYPE_CODE_METHOD). */
15537 smash_to_method_type (fnp->type, type,
15538 TYPE_TARGET_TYPE (this_type),
15539 TYPE_FIELDS (this_type),
15540 TYPE_NFIELDS (this_type),
15541 TYPE_VARARGS (this_type));
15542
15543 /* Handle static member functions.
15544 Dwarf2 has no clean way to discern C++ static and non-static
15545 member functions. G++ helps GDB by marking the first
15546 parameter for non-static member functions (which is the this
15547 pointer) as artificial. We obtain this information from
15548 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15549 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15550 fnp->voffset = VOFFSET_STATIC;
15551 }
15552 else
15553 complaint (_("member function type missing for '%s'"),
15554 dwarf2_full_name (fieldname, die, cu));
15555
15556 /* Get fcontext from DW_AT_containing_type if present. */
15557 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15558 fnp->fcontext = die_containing_type (die, cu);
15559
15560 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15561 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15562
15563 /* Get accessibility. */
15564 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15565 if (attr != nullptr)
15566 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15567 else
15568 accessibility = dwarf2_default_access_attribute (die, cu);
15569 switch (accessibility)
15570 {
15571 case DW_ACCESS_private:
15572 fnp->is_private = 1;
15573 break;
15574 case DW_ACCESS_protected:
15575 fnp->is_protected = 1;
15576 break;
15577 }
15578
15579 /* Check for artificial methods. */
15580 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15581 if (attr && DW_UNSND (attr) != 0)
15582 fnp->is_artificial = 1;
15583
15584 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15585
15586 /* Get index in virtual function table if it is a virtual member
15587 function. For older versions of GCC, this is an offset in the
15588 appropriate virtual table, as specified by DW_AT_containing_type.
15589 For everyone else, it is an expression to be evaluated relative
15590 to the object address. */
15591
15592 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15593 if (attr != nullptr)
15594 {
15595 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15596 {
15597 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15598 {
15599 /* Old-style GCC. */
15600 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15601 }
15602 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15603 || (DW_BLOCK (attr)->size > 1
15604 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15605 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15606 {
15607 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15608 if ((fnp->voffset % cu->header.addr_size) != 0)
15609 dwarf2_complex_location_expr_complaint ();
15610 else
15611 fnp->voffset /= cu->header.addr_size;
15612 fnp->voffset += 2;
15613 }
15614 else
15615 dwarf2_complex_location_expr_complaint ();
15616
15617 if (!fnp->fcontext)
15618 {
15619 /* If there is no `this' field and no DW_AT_containing_type,
15620 we cannot actually find a base class context for the
15621 vtable! */
15622 if (TYPE_NFIELDS (this_type) == 0
15623 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15624 {
15625 complaint (_("cannot determine context for virtual member "
15626 "function \"%s\" (offset %s)"),
15627 fieldname, sect_offset_str (die->sect_off));
15628 }
15629 else
15630 {
15631 fnp->fcontext
15632 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15633 }
15634 }
15635 }
15636 else if (attr_form_is_section_offset (attr))
15637 {
15638 dwarf2_complex_location_expr_complaint ();
15639 }
15640 else
15641 {
15642 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15643 fieldname);
15644 }
15645 }
15646 else
15647 {
15648 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15649 if (attr && DW_UNSND (attr))
15650 {
15651 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15652 complaint (_("Member function \"%s\" (offset %s) is virtual "
15653 "but the vtable offset is not specified"),
15654 fieldname, sect_offset_str (die->sect_off));
15655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15656 TYPE_CPLUS_DYNAMIC (type) = 1;
15657 }
15658 }
15659}
15660
15661/* Create the vector of member function fields, and attach it to the type. */
15662
15663static void
15664dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15665 struct dwarf2_cu *cu)
15666{
15667 if (cu->language == language_ada)
15668 error (_("unexpected member functions in Ada type"));
15669
15670 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15671 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15672 TYPE_ALLOC (type,
15673 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15674
15675 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15676 {
15677 struct fnfieldlist &nf = fip->fnfieldlists[i];
15678 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15679
15680 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15681 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15682 fn_flp->fn_fields = (struct fn_field *)
15683 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15684
15685 for (int k = 0; k < nf.fnfields.size (); ++k)
15686 fn_flp->fn_fields[k] = nf.fnfields[k];
15687 }
15688
15689 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15690}
15691
15692/* Returns non-zero if NAME is the name of a vtable member in CU's
15693 language, zero otherwise. */
15694static int
15695is_vtable_name (const char *name, struct dwarf2_cu *cu)
15696{
15697 static const char vptr[] = "_vptr";
15698
15699 /* Look for the C++ form of the vtable. */
15700 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15701 return 1;
15702
15703 return 0;
15704}
15705
15706/* GCC outputs unnamed structures that are really pointers to member
15707 functions, with the ABI-specified layout. If TYPE describes
15708 such a structure, smash it into a member function type.
15709
15710 GCC shouldn't do this; it should just output pointer to member DIEs.
15711 This is GCC PR debug/28767. */
15712
15713static void
15714quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15715{
15716 struct type *pfn_type, *self_type, *new_type;
15717
15718 /* Check for a structure with no name and two children. */
15719 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15720 return;
15721
15722 /* Check for __pfn and __delta members. */
15723 if (TYPE_FIELD_NAME (type, 0) == NULL
15724 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15725 || TYPE_FIELD_NAME (type, 1) == NULL
15726 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15727 return;
15728
15729 /* Find the type of the method. */
15730 pfn_type = TYPE_FIELD_TYPE (type, 0);
15731 if (pfn_type == NULL
15732 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15733 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15734 return;
15735
15736 /* Look for the "this" argument. */
15737 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15738 if (TYPE_NFIELDS (pfn_type) == 0
15739 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15740 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15741 return;
15742
15743 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15744 new_type = alloc_type (objfile);
15745 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15746 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15747 TYPE_VARARGS (pfn_type));
15748 smash_to_methodptr_type (type, new_type);
15749}
15750
15751/* If the DIE has a DW_AT_alignment attribute, return its value, doing
15752 appropriate error checking and issuing complaints if there is a
15753 problem. */
15754
15755static ULONGEST
15756get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15757{
15758 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15759
15760 if (attr == nullptr)
15761 return 0;
15762
15763 if (!attr_form_is_constant (attr))
15764 {
15765 complaint (_("DW_AT_alignment must have constant form"
15766 " - DIE at %s [in module %s]"),
15767 sect_offset_str (die->sect_off),
15768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15769 return 0;
15770 }
15771
15772 ULONGEST align;
15773 if (attr->form == DW_FORM_sdata)
15774 {
15775 LONGEST val = DW_SND (attr);
15776 if (val < 0)
15777 {
15778 complaint (_("DW_AT_alignment value must not be negative"
15779 " - DIE at %s [in module %s]"),
15780 sect_offset_str (die->sect_off),
15781 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15782 return 0;
15783 }
15784 align = val;
15785 }
15786 else
15787 align = DW_UNSND (attr);
15788
15789 if (align == 0)
15790 {
15791 complaint (_("DW_AT_alignment value must not be zero"
15792 " - DIE at %s [in module %s]"),
15793 sect_offset_str (die->sect_off),
15794 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15795 return 0;
15796 }
15797 if ((align & (align - 1)) != 0)
15798 {
15799 complaint (_("DW_AT_alignment value must be a power of 2"
15800 " - DIE at %s [in module %s]"),
15801 sect_offset_str (die->sect_off),
15802 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15803 return 0;
15804 }
15805
15806 return align;
15807}
15808
15809/* If the DIE has a DW_AT_alignment attribute, use its value to set
15810 the alignment for TYPE. */
15811
15812static void
15813maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15814 struct type *type)
15815{
15816 if (!set_type_align (type, get_alignment (cu, die)))
15817 complaint (_("DW_AT_alignment value too large"
15818 " - DIE at %s [in module %s]"),
15819 sect_offset_str (die->sect_off),
15820 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15821}
15822
15823/* Called when we find the DIE that starts a structure or union scope
15824 (definition) to create a type for the structure or union. Fill in
15825 the type's name and general properties; the members will not be
15826 processed until process_structure_scope. A symbol table entry for
15827 the type will also not be done until process_structure_scope (assuming
15828 the type has a name).
15829
15830 NOTE: we need to call these functions regardless of whether or not the
15831 DIE has a DW_AT_name attribute, since it might be an anonymous
15832 structure or union. This gets the type entered into our set of
15833 user defined types. */
15834
15835static struct type *
15836read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15837{
15838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15839 struct type *type;
15840 struct attribute *attr;
15841 const char *name;
15842
15843 /* If the definition of this type lives in .debug_types, read that type.
15844 Don't follow DW_AT_specification though, that will take us back up
15845 the chain and we want to go down. */
15846 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15847 if (attr != nullptr)
15848 {
15849 type = get_DW_AT_signature_type (die, attr, cu);
15850
15851 /* The type's CU may not be the same as CU.
15852 Ensure TYPE is recorded with CU in die_type_hash. */
15853 return set_die_type (die, type, cu);
15854 }
15855
15856 type = alloc_type (objfile);
15857 INIT_CPLUS_SPECIFIC (type);
15858
15859 name = dwarf2_name (die, cu);
15860 if (name != NULL)
15861 {
15862 if (cu->language == language_cplus
15863 || cu->language == language_d
15864 || cu->language == language_rust)
15865 {
15866 const char *full_name = dwarf2_full_name (name, die, cu);
15867
15868 /* dwarf2_full_name might have already finished building the DIE's
15869 type. If so, there is no need to continue. */
15870 if (get_die_type (die, cu) != NULL)
15871 return get_die_type (die, cu);
15872
15873 TYPE_NAME (type) = full_name;
15874 }
15875 else
15876 {
15877 /* The name is already allocated along with this objfile, so
15878 we don't need to duplicate it for the type. */
15879 TYPE_NAME (type) = name;
15880 }
15881 }
15882
15883 if (die->tag == DW_TAG_structure_type)
15884 {
15885 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15886 }
15887 else if (die->tag == DW_TAG_union_type)
15888 {
15889 TYPE_CODE (type) = TYPE_CODE_UNION;
15890 }
15891 else if (die->tag == DW_TAG_variant_part)
15892 {
15893 TYPE_CODE (type) = TYPE_CODE_UNION;
15894 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15895 }
15896 else
15897 {
15898 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15899 }
15900
15901 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15902 TYPE_DECLARED_CLASS (type) = 1;
15903
15904 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15905 if (attr != nullptr)
15906 {
15907 if (attr_form_is_constant (attr))
15908 TYPE_LENGTH (type) = DW_UNSND (attr);
15909 else
15910 {
15911 /* For the moment, dynamic type sizes are not supported
15912 by GDB's struct type. The actual size is determined
15913 on-demand when resolving the type of a given object,
15914 so set the type's length to zero for now. Otherwise,
15915 we record an expression as the length, and that expression
15916 could lead to a very large value, which could eventually
15917 lead to us trying to allocate that much memory when creating
15918 a value of that type. */
15919 TYPE_LENGTH (type) = 0;
15920 }
15921 }
15922 else
15923 {
15924 TYPE_LENGTH (type) = 0;
15925 }
15926
15927 maybe_set_alignment (cu, die, type);
15928
15929 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15930 {
15931 /* ICC<14 does not output the required DW_AT_declaration on
15932 incomplete types, but gives them a size of zero. */
15933 TYPE_STUB (type) = 1;
15934 }
15935 else
15936 TYPE_STUB_SUPPORTED (type) = 1;
15937
15938 if (die_is_declaration (die, cu))
15939 TYPE_STUB (type) = 1;
15940 else if (attr == NULL && die->child == NULL
15941 && producer_is_realview (cu->producer))
15942 /* RealView does not output the required DW_AT_declaration
15943 on incomplete types. */
15944 TYPE_STUB (type) = 1;
15945
15946 /* We need to add the type field to the die immediately so we don't
15947 infinitely recurse when dealing with pointers to the structure
15948 type within the structure itself. */
15949 set_die_type (die, type, cu);
15950
15951 /* set_die_type should be already done. */
15952 set_descriptive_type (type, die, cu);
15953
15954 return type;
15955}
15956
15957/* A helper for process_structure_scope that handles a single member
15958 DIE. */
15959
15960static void
15961handle_struct_member_die (struct die_info *child_die, struct type *type,
15962 struct field_info *fi,
15963 std::vector<struct symbol *> *template_args,
15964 struct dwarf2_cu *cu)
15965{
15966 if (child_die->tag == DW_TAG_member
15967 || child_die->tag == DW_TAG_variable
15968 || child_die->tag == DW_TAG_variant_part)
15969 {
15970 /* NOTE: carlton/2002-11-05: A C++ static data member
15971 should be a DW_TAG_member that is a declaration, but
15972 all versions of G++ as of this writing (so through at
15973 least 3.2.1) incorrectly generate DW_TAG_variable
15974 tags for them instead. */
15975 dwarf2_add_field (fi, child_die, cu);
15976 }
15977 else if (child_die->tag == DW_TAG_subprogram)
15978 {
15979 /* Rust doesn't have member functions in the C++ sense.
15980 However, it does emit ordinary functions as children
15981 of a struct DIE. */
15982 if (cu->language == language_rust)
15983 read_func_scope (child_die, cu);
15984 else
15985 {
15986 /* C++ member function. */
15987 dwarf2_add_member_fn (fi, child_die, type, cu);
15988 }
15989 }
15990 else if (child_die->tag == DW_TAG_inheritance)
15991 {
15992 /* C++ base class field. */
15993 dwarf2_add_field (fi, child_die, cu);
15994 }
15995 else if (type_can_define_types (child_die))
15996 dwarf2_add_type_defn (fi, child_die, cu);
15997 else if (child_die->tag == DW_TAG_template_type_param
15998 || child_die->tag == DW_TAG_template_value_param)
15999 {
16000 struct symbol *arg = new_symbol (child_die, NULL, cu);
16001
16002 if (arg != NULL)
16003 template_args->push_back (arg);
16004 }
16005 else if (child_die->tag == DW_TAG_variant)
16006 {
16007 /* In a variant we want to get the discriminant and also add a
16008 field for our sole member child. */
16009 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
16010
16011 for (die_info *variant_child = child_die->child;
16012 variant_child != NULL;
16013 variant_child = sibling_die (variant_child))
16014 {
16015 if (variant_child->tag == DW_TAG_member)
16016 {
16017 handle_struct_member_die (variant_child, type, fi,
16018 template_args, cu);
16019 /* Only handle the one. */
16020 break;
16021 }
16022 }
16023
16024 /* We don't handle this but we might as well report it if we see
16025 it. */
16026 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
16027 complaint (_("DW_AT_discr_list is not supported yet"
16028 " - DIE at %s [in module %s]"),
16029 sect_offset_str (child_die->sect_off),
16030 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16031
16032 /* The first field was just added, so we can stash the
16033 discriminant there. */
16034 gdb_assert (!fi->fields.empty ());
16035 if (discr == NULL)
16036 fi->fields.back ().variant.default_branch = true;
16037 else
16038 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16039 }
16040}
16041
16042/* Finish creating a structure or union type, including filling in
16043 its members and creating a symbol for it. */
16044
16045static void
16046process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16047{
16048 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16049 struct die_info *child_die;
16050 struct type *type;
16051
16052 type = get_die_type (die, cu);
16053 if (type == NULL)
16054 type = read_structure_type (die, cu);
16055
16056 /* When reading a DW_TAG_variant_part, we need to notice when we
16057 read the discriminant member, so we can record it later in the
16058 discriminant_info. */
16059 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16060 sect_offset discr_offset;
16061 bool has_template_parameters = false;
16062
16063 if (is_variant_part)
16064 {
16065 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16066 if (discr == NULL)
16067 {
16068 /* Maybe it's a univariant form, an extension we support.
16069 In this case arrange not to check the offset. */
16070 is_variant_part = false;
16071 }
16072 else if (attr_form_is_ref (discr))
16073 {
16074 struct dwarf2_cu *target_cu = cu;
16075 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16076
16077 discr_offset = target_die->sect_off;
16078 }
16079 else
16080 {
16081 complaint (_("DW_AT_discr does not have DIE reference form"
16082 " - DIE at %s [in module %s]"),
16083 sect_offset_str (die->sect_off),
16084 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16085 is_variant_part = false;
16086 }
16087 }
16088
16089 if (die->child != NULL && ! die_is_declaration (die, cu))
16090 {
16091 struct field_info fi;
16092 std::vector<struct symbol *> template_args;
16093
16094 child_die = die->child;
16095
16096 while (child_die && child_die->tag)
16097 {
16098 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16099
16100 if (is_variant_part && discr_offset == child_die->sect_off)
16101 fi.fields.back ().variant.is_discriminant = true;
16102
16103 child_die = sibling_die (child_die);
16104 }
16105
16106 /* Attach template arguments to type. */
16107 if (!template_args.empty ())
16108 {
16109 has_template_parameters = true;
16110 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16111 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16112 TYPE_TEMPLATE_ARGUMENTS (type)
16113 = XOBNEWVEC (&objfile->objfile_obstack,
16114 struct symbol *,
16115 TYPE_N_TEMPLATE_ARGUMENTS (type));
16116 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16117 template_args.data (),
16118 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16119 * sizeof (struct symbol *)));
16120 }
16121
16122 /* Attach fields and member functions to the type. */
16123 if (fi.nfields)
16124 dwarf2_attach_fields_to_type (&fi, type, cu);
16125 if (!fi.fnfieldlists.empty ())
16126 {
16127 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16128
16129 /* Get the type which refers to the base class (possibly this
16130 class itself) which contains the vtable pointer for the current
16131 class from the DW_AT_containing_type attribute. This use of
16132 DW_AT_containing_type is a GNU extension. */
16133
16134 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16135 {
16136 struct type *t = die_containing_type (die, cu);
16137
16138 set_type_vptr_basetype (type, t);
16139 if (type == t)
16140 {
16141 int i;
16142
16143 /* Our own class provides vtbl ptr. */
16144 for (i = TYPE_NFIELDS (t) - 1;
16145 i >= TYPE_N_BASECLASSES (t);
16146 --i)
16147 {
16148 const char *fieldname = TYPE_FIELD_NAME (t, i);
16149
16150 if (is_vtable_name (fieldname, cu))
16151 {
16152 set_type_vptr_fieldno (type, i);
16153 break;
16154 }
16155 }
16156
16157 /* Complain if virtual function table field not found. */
16158 if (i < TYPE_N_BASECLASSES (t))
16159 complaint (_("virtual function table pointer "
16160 "not found when defining class '%s'"),
16161 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16162 }
16163 else
16164 {
16165 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16166 }
16167 }
16168 else if (cu->producer
16169 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16170 {
16171 /* The IBM XLC compiler does not provide direct indication
16172 of the containing type, but the vtable pointer is
16173 always named __vfp. */
16174
16175 int i;
16176
16177 for (i = TYPE_NFIELDS (type) - 1;
16178 i >= TYPE_N_BASECLASSES (type);
16179 --i)
16180 {
16181 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16182 {
16183 set_type_vptr_fieldno (type, i);
16184 set_type_vptr_basetype (type, type);
16185 break;
16186 }
16187 }
16188 }
16189 }
16190
16191 /* Copy fi.typedef_field_list linked list elements content into the
16192 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16193 if (!fi.typedef_field_list.empty ())
16194 {
16195 int count = fi.typedef_field_list.size ();
16196
16197 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16198 TYPE_TYPEDEF_FIELD_ARRAY (type)
16199 = ((struct decl_field *)
16200 TYPE_ALLOC (type,
16201 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16202 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16203
16204 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16205 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16206 }
16207
16208 /* Copy fi.nested_types_list linked list elements content into the
16209 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16210 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16211 {
16212 int count = fi.nested_types_list.size ();
16213
16214 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16215 TYPE_NESTED_TYPES_ARRAY (type)
16216 = ((struct decl_field *)
16217 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16218 TYPE_NESTED_TYPES_COUNT (type) = count;
16219
16220 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16221 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16222 }
16223 }
16224
16225 quirk_gcc_member_function_pointer (type, objfile);
16226 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16227 cu->rust_unions.push_back (type);
16228
16229 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16230 snapshots) has been known to create a die giving a declaration
16231 for a class that has, as a child, a die giving a definition for a
16232 nested class. So we have to process our children even if the
16233 current die is a declaration. Normally, of course, a declaration
16234 won't have any children at all. */
16235
16236 child_die = die->child;
16237
16238 while (child_die != NULL && child_die->tag)
16239 {
16240 if (child_die->tag == DW_TAG_member
16241 || child_die->tag == DW_TAG_variable
16242 || child_die->tag == DW_TAG_inheritance
16243 || child_die->tag == DW_TAG_template_value_param
16244 || child_die->tag == DW_TAG_template_type_param)
16245 {
16246 /* Do nothing. */
16247 }
16248 else
16249 process_die (child_die, cu);
16250
16251 child_die = sibling_die (child_die);
16252 }
16253
16254 /* Do not consider external references. According to the DWARF standard,
16255 these DIEs are identified by the fact that they have no byte_size
16256 attribute, and a declaration attribute. */
16257 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16258 || !die_is_declaration (die, cu))
16259 {
16260 struct symbol *sym = new_symbol (die, type, cu);
16261
16262 if (has_template_parameters)
16263 {
16264 struct symtab *symtab;
16265 if (sym != nullptr)
16266 symtab = symbol_symtab (sym);
16267 else if (cu->line_header != nullptr)
16268 {
16269 /* Any related symtab will do. */
16270 symtab
16271 = cu->line_header->file_names ()[0].symtab;
16272 }
16273 else
16274 {
16275 symtab = nullptr;
16276 complaint (_("could not find suitable "
16277 "symtab for template parameter"
16278 " - DIE at %s [in module %s]"),
16279 sect_offset_str (die->sect_off),
16280 objfile_name (objfile));
16281 }
16282
16283 if (symtab != nullptr)
16284 {
16285 /* Make sure that the symtab is set on the new symbols.
16286 Even though they don't appear in this symtab directly,
16287 other parts of gdb assume that symbols do, and this is
16288 reasonably true. */
16289 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16290 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16291 }
16292 }
16293 }
16294}
16295
16296/* Assuming DIE is an enumeration type, and TYPE is its associated type,
16297 update TYPE using some information only available in DIE's children. */
16298
16299static void
16300update_enumeration_type_from_children (struct die_info *die,
16301 struct type *type,
16302 struct dwarf2_cu *cu)
16303{
16304 struct die_info *child_die;
16305 int unsigned_enum = 1;
16306 int flag_enum = 1;
16307 ULONGEST mask = 0;
16308
16309 auto_obstack obstack;
16310
16311 for (child_die = die->child;
16312 child_die != NULL && child_die->tag;
16313 child_die = sibling_die (child_die))
16314 {
16315 struct attribute *attr;
16316 LONGEST value;
16317 const gdb_byte *bytes;
16318 struct dwarf2_locexpr_baton *baton;
16319 const char *name;
16320
16321 if (child_die->tag != DW_TAG_enumerator)
16322 continue;
16323
16324 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16325 if (attr == NULL)
16326 continue;
16327
16328 name = dwarf2_name (child_die, cu);
16329 if (name == NULL)
16330 name = "<anonymous enumerator>";
16331
16332 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16333 &value, &bytes, &baton);
16334 if (value < 0)
16335 {
16336 unsigned_enum = 0;
16337 flag_enum = 0;
16338 }
16339 else if ((mask & value) != 0)
16340 flag_enum = 0;
16341 else
16342 mask |= value;
16343
16344 /* If we already know that the enum type is neither unsigned, nor
16345 a flag type, no need to look at the rest of the enumerates. */
16346 if (!unsigned_enum && !flag_enum)
16347 break;
16348 }
16349
16350 if (unsigned_enum)
16351 TYPE_UNSIGNED (type) = 1;
16352 if (flag_enum)
16353 TYPE_FLAG_ENUM (type) = 1;
16354}
16355
16356/* Given a DW_AT_enumeration_type die, set its type. We do not
16357 complete the type's fields yet, or create any symbols. */
16358
16359static struct type *
16360read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16361{
16362 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16363 struct type *type;
16364 struct attribute *attr;
16365 const char *name;
16366
16367 /* If the definition of this type lives in .debug_types, read that type.
16368 Don't follow DW_AT_specification though, that will take us back up
16369 the chain and we want to go down. */
16370 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16371 if (attr != nullptr)
16372 {
16373 type = get_DW_AT_signature_type (die, attr, cu);
16374
16375 /* The type's CU may not be the same as CU.
16376 Ensure TYPE is recorded with CU in die_type_hash. */
16377 return set_die_type (die, type, cu);
16378 }
16379
16380 type = alloc_type (objfile);
16381
16382 TYPE_CODE (type) = TYPE_CODE_ENUM;
16383 name = dwarf2_full_name (NULL, die, cu);
16384 if (name != NULL)
16385 TYPE_NAME (type) = name;
16386
16387 attr = dwarf2_attr (die, DW_AT_type, cu);
16388 if (attr != NULL)
16389 {
16390 struct type *underlying_type = die_type (die, cu);
16391
16392 TYPE_TARGET_TYPE (type) = underlying_type;
16393 }
16394
16395 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16396 if (attr != nullptr)
16397 {
16398 TYPE_LENGTH (type) = DW_UNSND (attr);
16399 }
16400 else
16401 {
16402 TYPE_LENGTH (type) = 0;
16403 }
16404
16405 maybe_set_alignment (cu, die, type);
16406
16407 /* The enumeration DIE can be incomplete. In Ada, any type can be
16408 declared as private in the package spec, and then defined only
16409 inside the package body. Such types are known as Taft Amendment
16410 Types. When another package uses such a type, an incomplete DIE
16411 may be generated by the compiler. */
16412 if (die_is_declaration (die, cu))
16413 TYPE_STUB (type) = 1;
16414
16415 /* Finish the creation of this type by using the enum's children.
16416 We must call this even when the underlying type has been provided
16417 so that we can determine if we're looking at a "flag" enum. */
16418 update_enumeration_type_from_children (die, type, cu);
16419
16420 /* If this type has an underlying type that is not a stub, then we
16421 may use its attributes. We always use the "unsigned" attribute
16422 in this situation, because ordinarily we guess whether the type
16423 is unsigned -- but the guess can be wrong and the underlying type
16424 can tell us the reality. However, we defer to a local size
16425 attribute if one exists, because this lets the compiler override
16426 the underlying type if needed. */
16427 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16428 {
16429 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16430 if (TYPE_LENGTH (type) == 0)
16431 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16432 if (TYPE_RAW_ALIGN (type) == 0
16433 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16434 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16435 }
16436
16437 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16438
16439 return set_die_type (die, type, cu);
16440}
16441
16442/* Given a pointer to a die which begins an enumeration, process all
16443 the dies that define the members of the enumeration, and create the
16444 symbol for the enumeration type.
16445
16446 NOTE: We reverse the order of the element list. */
16447
16448static void
16449process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16450{
16451 struct type *this_type;
16452
16453 this_type = get_die_type (die, cu);
16454 if (this_type == NULL)
16455 this_type = read_enumeration_type (die, cu);
16456
16457 if (die->child != NULL)
16458 {
16459 struct die_info *child_die;
16460 struct symbol *sym;
16461 struct field *fields = NULL;
16462 int num_fields = 0;
16463 const char *name;
16464
16465 child_die = die->child;
16466 while (child_die && child_die->tag)
16467 {
16468 if (child_die->tag != DW_TAG_enumerator)
16469 {
16470 process_die (child_die, cu);
16471 }
16472 else
16473 {
16474 name = dwarf2_name (child_die, cu);
16475 if (name)
16476 {
16477 sym = new_symbol (child_die, this_type, cu);
16478
16479 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16480 {
16481 fields = (struct field *)
16482 xrealloc (fields,
16483 (num_fields + DW_FIELD_ALLOC_CHUNK)
16484 * sizeof (struct field));
16485 }
16486
16487 FIELD_NAME (fields[num_fields]) = sym->linkage_name ();
16488 FIELD_TYPE (fields[num_fields]) = NULL;
16489 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16490 FIELD_BITSIZE (fields[num_fields]) = 0;
16491
16492 num_fields++;
16493 }
16494 }
16495
16496 child_die = sibling_die (child_die);
16497 }
16498
16499 if (num_fields)
16500 {
16501 TYPE_NFIELDS (this_type) = num_fields;
16502 TYPE_FIELDS (this_type) = (struct field *)
16503 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16504 memcpy (TYPE_FIELDS (this_type), fields,
16505 sizeof (struct field) * num_fields);
16506 xfree (fields);
16507 }
16508 }
16509
16510 /* If we are reading an enum from a .debug_types unit, and the enum
16511 is a declaration, and the enum is not the signatured type in the
16512 unit, then we do not want to add a symbol for it. Adding a
16513 symbol would in some cases obscure the true definition of the
16514 enum, giving users an incomplete type when the definition is
16515 actually available. Note that we do not want to do this for all
16516 enums which are just declarations, because C++0x allows forward
16517 enum declarations. */
16518 if (cu->per_cu->is_debug_types
16519 && die_is_declaration (die, cu))
16520 {
16521 struct signatured_type *sig_type;
16522
16523 sig_type = (struct signatured_type *) cu->per_cu;
16524 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16525 if (sig_type->type_offset_in_section != die->sect_off)
16526 return;
16527 }
16528
16529 new_symbol (die, this_type, cu);
16530}
16531
16532/* Extract all information from a DW_TAG_array_type DIE and put it in
16533 the DIE's type field. For now, this only handles one dimensional
16534 arrays. */
16535
16536static struct type *
16537read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16538{
16539 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16540 struct die_info *child_die;
16541 struct type *type;
16542 struct type *element_type, *range_type, *index_type;
16543 struct attribute *attr;
16544 const char *name;
16545 struct dynamic_prop *byte_stride_prop = NULL;
16546 unsigned int bit_stride = 0;
16547
16548 element_type = die_type (die, cu);
16549
16550 /* The die_type call above may have already set the type for this DIE. */
16551 type = get_die_type (die, cu);
16552 if (type)
16553 return type;
16554
16555 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16556 if (attr != NULL)
16557 {
16558 int stride_ok;
16559 struct type *prop_type
16560 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16561
16562 byte_stride_prop
16563 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16564 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16565 prop_type);
16566 if (!stride_ok)
16567 {
16568 complaint (_("unable to read array DW_AT_byte_stride "
16569 " - DIE at %s [in module %s]"),
16570 sect_offset_str (die->sect_off),
16571 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16572 /* Ignore this attribute. We will likely not be able to print
16573 arrays of this type correctly, but there is little we can do
16574 to help if we cannot read the attribute's value. */
16575 byte_stride_prop = NULL;
16576 }
16577 }
16578
16579 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16580 if (attr != NULL)
16581 bit_stride = DW_UNSND (attr);
16582
16583 /* Irix 6.2 native cc creates array types without children for
16584 arrays with unspecified length. */
16585 if (die->child == NULL)
16586 {
16587 index_type = objfile_type (objfile)->builtin_int;
16588 range_type = create_static_range_type (NULL, index_type, 0, -1);
16589 type = create_array_type_with_stride (NULL, element_type, range_type,
16590 byte_stride_prop, bit_stride);
16591 return set_die_type (die, type, cu);
16592 }
16593
16594 std::vector<struct type *> range_types;
16595 child_die = die->child;
16596 while (child_die && child_die->tag)
16597 {
16598 if (child_die->tag == DW_TAG_subrange_type)
16599 {
16600 struct type *child_type = read_type_die (child_die, cu);
16601
16602 if (child_type != NULL)
16603 {
16604 /* The range type was succesfully read. Save it for the
16605 array type creation. */
16606 range_types.push_back (child_type);
16607 }
16608 }
16609 child_die = sibling_die (child_die);
16610 }
16611
16612 /* Dwarf2 dimensions are output from left to right, create the
16613 necessary array types in backwards order. */
16614
16615 type = element_type;
16616
16617 if (read_array_order (die, cu) == DW_ORD_col_major)
16618 {
16619 int i = 0;
16620
16621 while (i < range_types.size ())
16622 type = create_array_type_with_stride (NULL, type, range_types[i++],
16623 byte_stride_prop, bit_stride);
16624 }
16625 else
16626 {
16627 size_t ndim = range_types.size ();
16628 while (ndim-- > 0)
16629 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16630 byte_stride_prop, bit_stride);
16631 }
16632
16633 /* Understand Dwarf2 support for vector types (like they occur on
16634 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16635 array type. This is not part of the Dwarf2/3 standard yet, but a
16636 custom vendor extension. The main difference between a regular
16637 array and the vector variant is that vectors are passed by value
16638 to functions. */
16639 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16640 if (attr != nullptr)
16641 make_vector_type (type);
16642
16643 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16644 implementation may choose to implement triple vectors using this
16645 attribute. */
16646 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16647 if (attr != nullptr)
16648 {
16649 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16650 TYPE_LENGTH (type) = DW_UNSND (attr);
16651 else
16652 complaint (_("DW_AT_byte_size for array type smaller "
16653 "than the total size of elements"));
16654 }
16655
16656 name = dwarf2_name (die, cu);
16657 if (name)
16658 TYPE_NAME (type) = name;
16659
16660 maybe_set_alignment (cu, die, type);
16661
16662 /* Install the type in the die. */
16663 set_die_type (die, type, cu);
16664
16665 /* set_die_type should be already done. */
16666 set_descriptive_type (type, die, cu);
16667
16668 return type;
16669}
16670
16671static enum dwarf_array_dim_ordering
16672read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16673{
16674 struct attribute *attr;
16675
16676 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16677
16678 if (attr != nullptr)
16679 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16680
16681 /* GNU F77 is a special case, as at 08/2004 array type info is the
16682 opposite order to the dwarf2 specification, but data is still
16683 laid out as per normal fortran.
16684
16685 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16686 version checking. */
16687
16688 if (cu->language == language_fortran
16689 && cu->producer && strstr (cu->producer, "GNU F77"))
16690 {
16691 return DW_ORD_row_major;
16692 }
16693
16694 switch (cu->language_defn->la_array_ordering)
16695 {
16696 case array_column_major:
16697 return DW_ORD_col_major;
16698 case array_row_major:
16699 default:
16700 return DW_ORD_row_major;
16701 };
16702}
16703
16704/* Extract all information from a DW_TAG_set_type DIE and put it in
16705 the DIE's type field. */
16706
16707static struct type *
16708read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16709{
16710 struct type *domain_type, *set_type;
16711 struct attribute *attr;
16712
16713 domain_type = die_type (die, cu);
16714
16715 /* The die_type call above may have already set the type for this DIE. */
16716 set_type = get_die_type (die, cu);
16717 if (set_type)
16718 return set_type;
16719
16720 set_type = create_set_type (NULL, domain_type);
16721
16722 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16723 if (attr != nullptr)
16724 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16725
16726 maybe_set_alignment (cu, die, set_type);
16727
16728 return set_die_type (die, set_type, cu);
16729}
16730
16731/* A helper for read_common_block that creates a locexpr baton.
16732 SYM is the symbol which we are marking as computed.
16733 COMMON_DIE is the DIE for the common block.
16734 COMMON_LOC is the location expression attribute for the common
16735 block itself.
16736 MEMBER_LOC is the location expression attribute for the particular
16737 member of the common block that we are processing.
16738 CU is the CU from which the above come. */
16739
16740static void
16741mark_common_block_symbol_computed (struct symbol *sym,
16742 struct die_info *common_die,
16743 struct attribute *common_loc,
16744 struct attribute *member_loc,
16745 struct dwarf2_cu *cu)
16746{
16747 struct dwarf2_per_objfile *dwarf2_per_objfile
16748 = cu->per_cu->dwarf2_per_objfile;
16749 struct objfile *objfile = dwarf2_per_objfile->objfile;
16750 struct dwarf2_locexpr_baton *baton;
16751 gdb_byte *ptr;
16752 unsigned int cu_off;
16753 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16754 LONGEST offset = 0;
16755
16756 gdb_assert (common_loc && member_loc);
16757 gdb_assert (attr_form_is_block (common_loc));
16758 gdb_assert (attr_form_is_block (member_loc)
16759 || attr_form_is_constant (member_loc));
16760
16761 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16762 baton->per_cu = cu->per_cu;
16763 gdb_assert (baton->per_cu);
16764
16765 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16766
16767 if (attr_form_is_constant (member_loc))
16768 {
16769 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16770 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16771 }
16772 else
16773 baton->size += DW_BLOCK (member_loc)->size;
16774
16775 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16776 baton->data = ptr;
16777
16778 *ptr++ = DW_OP_call4;
16779 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16780 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16781 ptr += 4;
16782
16783 if (attr_form_is_constant (member_loc))
16784 {
16785 *ptr++ = DW_OP_addr;
16786 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16787 ptr += cu->header.addr_size;
16788 }
16789 else
16790 {
16791 /* We have to copy the data here, because DW_OP_call4 will only
16792 use a DW_AT_location attribute. */
16793 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16794 ptr += DW_BLOCK (member_loc)->size;
16795 }
16796
16797 *ptr++ = DW_OP_plus;
16798 gdb_assert (ptr - baton->data == baton->size);
16799
16800 SYMBOL_LOCATION_BATON (sym) = baton;
16801 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16802}
16803
16804/* Create appropriate locally-scoped variables for all the
16805 DW_TAG_common_block entries. Also create a struct common_block
16806 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16807 is used to separate the common blocks name namespace from regular
16808 variable names. */
16809
16810static void
16811read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16812{
16813 struct attribute *attr;
16814
16815 attr = dwarf2_attr (die, DW_AT_location, cu);
16816 if (attr != nullptr)
16817 {
16818 /* Support the .debug_loc offsets. */
16819 if (attr_form_is_block (attr))
16820 {
16821 /* Ok. */
16822 }
16823 else if (attr_form_is_section_offset (attr))
16824 {
16825 dwarf2_complex_location_expr_complaint ();
16826 attr = NULL;
16827 }
16828 else
16829 {
16830 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16831 "common block member");
16832 attr = NULL;
16833 }
16834 }
16835
16836 if (die->child != NULL)
16837 {
16838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16839 struct die_info *child_die;
16840 size_t n_entries = 0, size;
16841 struct common_block *common_block;
16842 struct symbol *sym;
16843
16844 for (child_die = die->child;
16845 child_die && child_die->tag;
16846 child_die = sibling_die (child_die))
16847 ++n_entries;
16848
16849 size = (sizeof (struct common_block)
16850 + (n_entries - 1) * sizeof (struct symbol *));
16851 common_block
16852 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16853 size);
16854 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16855 common_block->n_entries = 0;
16856
16857 for (child_die = die->child;
16858 child_die && child_die->tag;
16859 child_die = sibling_die (child_die))
16860 {
16861 /* Create the symbol in the DW_TAG_common_block block in the current
16862 symbol scope. */
16863 sym = new_symbol (child_die, NULL, cu);
16864 if (sym != NULL)
16865 {
16866 struct attribute *member_loc;
16867
16868 common_block->contents[common_block->n_entries++] = sym;
16869
16870 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16871 cu);
16872 if (member_loc)
16873 {
16874 /* GDB has handled this for a long time, but it is
16875 not specified by DWARF. It seems to have been
16876 emitted by gfortran at least as recently as:
16877 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16878 complaint (_("Variable in common block has "
16879 "DW_AT_data_member_location "
16880 "- DIE at %s [in module %s]"),
16881 sect_offset_str (child_die->sect_off),
16882 objfile_name (objfile));
16883
16884 if (attr_form_is_section_offset (member_loc))
16885 dwarf2_complex_location_expr_complaint ();
16886 else if (attr_form_is_constant (member_loc)
16887 || attr_form_is_block (member_loc))
16888 {
16889 if (attr != nullptr)
16890 mark_common_block_symbol_computed (sym, die, attr,
16891 member_loc, cu);
16892 }
16893 else
16894 dwarf2_complex_location_expr_complaint ();
16895 }
16896 }
16897 }
16898
16899 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16900 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16901 }
16902}
16903
16904/* Create a type for a C++ namespace. */
16905
16906static struct type *
16907read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16908{
16909 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16910 const char *previous_prefix, *name;
16911 int is_anonymous;
16912 struct type *type;
16913
16914 /* For extensions, reuse the type of the original namespace. */
16915 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16916 {
16917 struct die_info *ext_die;
16918 struct dwarf2_cu *ext_cu = cu;
16919
16920 ext_die = dwarf2_extension (die, &ext_cu);
16921 type = read_type_die (ext_die, ext_cu);
16922
16923 /* EXT_CU may not be the same as CU.
16924 Ensure TYPE is recorded with CU in die_type_hash. */
16925 return set_die_type (die, type, cu);
16926 }
16927
16928 name = namespace_name (die, &is_anonymous, cu);
16929
16930 /* Now build the name of the current namespace. */
16931
16932 previous_prefix = determine_prefix (die, cu);
16933 if (previous_prefix[0] != '\0')
16934 name = typename_concat (&objfile->objfile_obstack,
16935 previous_prefix, name, 0, cu);
16936
16937 /* Create the type. */
16938 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16939
16940 return set_die_type (die, type, cu);
16941}
16942
16943/* Read a namespace scope. */
16944
16945static void
16946read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16947{
16948 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16949 int is_anonymous;
16950
16951 /* Add a symbol associated to this if we haven't seen the namespace
16952 before. Also, add a using directive if it's an anonymous
16953 namespace. */
16954
16955 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16956 {
16957 struct type *type;
16958
16959 type = read_type_die (die, cu);
16960 new_symbol (die, type, cu);
16961
16962 namespace_name (die, &is_anonymous, cu);
16963 if (is_anonymous)
16964 {
16965 const char *previous_prefix = determine_prefix (die, cu);
16966
16967 std::vector<const char *> excludes;
16968 add_using_directive (using_directives (cu),
16969 previous_prefix, TYPE_NAME (type), NULL,
16970 NULL, excludes, 0, &objfile->objfile_obstack);
16971 }
16972 }
16973
16974 if (die->child != NULL)
16975 {
16976 struct die_info *child_die = die->child;
16977
16978 while (child_die && child_die->tag)
16979 {
16980 process_die (child_die, cu);
16981 child_die = sibling_die (child_die);
16982 }
16983 }
16984}
16985
16986/* Read a Fortran module as type. This DIE can be only a declaration used for
16987 imported module. Still we need that type as local Fortran "use ... only"
16988 declaration imports depend on the created type in determine_prefix. */
16989
16990static struct type *
16991read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16992{
16993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16994 const char *module_name;
16995 struct type *type;
16996
16997 module_name = dwarf2_name (die, cu);
16998 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16999
17000 return set_die_type (die, type, cu);
17001}
17002
17003/* Read a Fortran module. */
17004
17005static void
17006read_module (struct die_info *die, struct dwarf2_cu *cu)
17007{
17008 struct die_info *child_die = die->child;
17009 struct type *type;
17010
17011 type = read_type_die (die, cu);
17012 new_symbol (die, type, cu);
17013
17014 while (child_die && child_die->tag)
17015 {
17016 process_die (child_die, cu);
17017 child_die = sibling_die (child_die);
17018 }
17019}
17020
17021/* Return the name of the namespace represented by DIE. Set
17022 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17023 namespace. */
17024
17025static const char *
17026namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17027{
17028 struct die_info *current_die;
17029 const char *name = NULL;
17030
17031 /* Loop through the extensions until we find a name. */
17032
17033 for (current_die = die;
17034 current_die != NULL;
17035 current_die = dwarf2_extension (die, &cu))
17036 {
17037 /* We don't use dwarf2_name here so that we can detect the absence
17038 of a name -> anonymous namespace. */
17039 name = dwarf2_string_attr (die, DW_AT_name, cu);
17040
17041 if (name != NULL)
17042 break;
17043 }
17044
17045 /* Is it an anonymous namespace? */
17046
17047 *is_anonymous = (name == NULL);
17048 if (*is_anonymous)
17049 name = CP_ANONYMOUS_NAMESPACE_STR;
17050
17051 return name;
17052}
17053
17054/* Extract all information from a DW_TAG_pointer_type DIE and add to
17055 the user defined type vector. */
17056
17057static struct type *
17058read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17059{
17060 struct gdbarch *gdbarch
17061 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17062 struct comp_unit_head *cu_header = &cu->header;
17063 struct type *type;
17064 struct attribute *attr_byte_size;
17065 struct attribute *attr_address_class;
17066 int byte_size, addr_class;
17067 struct type *target_type;
17068
17069 target_type = die_type (die, cu);
17070
17071 /* The die_type call above may have already set the type for this DIE. */
17072 type = get_die_type (die, cu);
17073 if (type)
17074 return type;
17075
17076 type = lookup_pointer_type (target_type);
17077
17078 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17079 if (attr_byte_size)
17080 byte_size = DW_UNSND (attr_byte_size);
17081 else
17082 byte_size = cu_header->addr_size;
17083
17084 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17085 if (attr_address_class)
17086 addr_class = DW_UNSND (attr_address_class);
17087 else
17088 addr_class = DW_ADDR_none;
17089
17090 ULONGEST alignment = get_alignment (cu, die);
17091
17092 /* If the pointer size, alignment, or address class is different
17093 than the default, create a type variant marked as such and set
17094 the length accordingly. */
17095 if (TYPE_LENGTH (type) != byte_size
17096 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17097 && alignment != TYPE_RAW_ALIGN (type))
17098 || addr_class != DW_ADDR_none)
17099 {
17100 if (gdbarch_address_class_type_flags_p (gdbarch))
17101 {
17102 int type_flags;
17103
17104 type_flags = gdbarch_address_class_type_flags
17105 (gdbarch, byte_size, addr_class);
17106 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17107 == 0);
17108 type = make_type_with_address_space (type, type_flags);
17109 }
17110 else if (TYPE_LENGTH (type) != byte_size)
17111 {
17112 complaint (_("invalid pointer size %d"), byte_size);
17113 }
17114 else if (TYPE_RAW_ALIGN (type) != alignment)
17115 {
17116 complaint (_("Invalid DW_AT_alignment"
17117 " - DIE at %s [in module %s]"),
17118 sect_offset_str (die->sect_off),
17119 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17120 }
17121 else
17122 {
17123 /* Should we also complain about unhandled address classes? */
17124 }
17125 }
17126
17127 TYPE_LENGTH (type) = byte_size;
17128 set_type_align (type, alignment);
17129 return set_die_type (die, type, cu);
17130}
17131
17132/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17133 the user defined type vector. */
17134
17135static struct type *
17136read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17137{
17138 struct type *type;
17139 struct type *to_type;
17140 struct type *domain;
17141
17142 to_type = die_type (die, cu);
17143 domain = die_containing_type (die, cu);
17144
17145 /* The calls above may have already set the type for this DIE. */
17146 type = get_die_type (die, cu);
17147 if (type)
17148 return type;
17149
17150 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17151 type = lookup_methodptr_type (to_type);
17152 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17153 {
17154 struct type *new_type
17155 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17156
17157 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17158 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17159 TYPE_VARARGS (to_type));
17160 type = lookup_methodptr_type (new_type);
17161 }
17162 else
17163 type = lookup_memberptr_type (to_type, domain);
17164
17165 return set_die_type (die, type, cu);
17166}
17167
17168/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17169 the user defined type vector. */
17170
17171static struct type *
17172read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17173 enum type_code refcode)
17174{
17175 struct comp_unit_head *cu_header = &cu->header;
17176 struct type *type, *target_type;
17177 struct attribute *attr;
17178
17179 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17180
17181 target_type = die_type (die, cu);
17182
17183 /* The die_type call above may have already set the type for this DIE. */
17184 type = get_die_type (die, cu);
17185 if (type)
17186 return type;
17187
17188 type = lookup_reference_type (target_type, refcode);
17189 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17190 if (attr != nullptr)
17191 {
17192 TYPE_LENGTH (type) = DW_UNSND (attr);
17193 }
17194 else
17195 {
17196 TYPE_LENGTH (type) = cu_header->addr_size;
17197 }
17198 maybe_set_alignment (cu, die, type);
17199 return set_die_type (die, type, cu);
17200}
17201
17202/* Add the given cv-qualifiers to the element type of the array. GCC
17203 outputs DWARF type qualifiers that apply to an array, not the
17204 element type. But GDB relies on the array element type to carry
17205 the cv-qualifiers. This mimics section 6.7.3 of the C99
17206 specification. */
17207
17208static struct type *
17209add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17210 struct type *base_type, int cnst, int voltl)
17211{
17212 struct type *el_type, *inner_array;
17213
17214 base_type = copy_type (base_type);
17215 inner_array = base_type;
17216
17217 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17218 {
17219 TYPE_TARGET_TYPE (inner_array) =
17220 copy_type (TYPE_TARGET_TYPE (inner_array));
17221 inner_array = TYPE_TARGET_TYPE (inner_array);
17222 }
17223
17224 el_type = TYPE_TARGET_TYPE (inner_array);
17225 cnst |= TYPE_CONST (el_type);
17226 voltl |= TYPE_VOLATILE (el_type);
17227 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17228
17229 return set_die_type (die, base_type, cu);
17230}
17231
17232static struct type *
17233read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17234{
17235 struct type *base_type, *cv_type;
17236
17237 base_type = die_type (die, cu);
17238
17239 /* The die_type call above may have already set the type for this DIE. */
17240 cv_type = get_die_type (die, cu);
17241 if (cv_type)
17242 return cv_type;
17243
17244 /* In case the const qualifier is applied to an array type, the element type
17245 is so qualified, not the array type (section 6.7.3 of C99). */
17246 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17247 return add_array_cv_type (die, cu, base_type, 1, 0);
17248
17249 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17250 return set_die_type (die, cv_type, cu);
17251}
17252
17253static struct type *
17254read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17255{
17256 struct type *base_type, *cv_type;
17257
17258 base_type = die_type (die, cu);
17259
17260 /* The die_type call above may have already set the type for this DIE. */
17261 cv_type = get_die_type (die, cu);
17262 if (cv_type)
17263 return cv_type;
17264
17265 /* In case the volatile qualifier is applied to an array type, the
17266 element type is so qualified, not the array type (section 6.7.3
17267 of C99). */
17268 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17269 return add_array_cv_type (die, cu, base_type, 0, 1);
17270
17271 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17272 return set_die_type (die, cv_type, cu);
17273}
17274
17275/* Handle DW_TAG_restrict_type. */
17276
17277static struct type *
17278read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17279{
17280 struct type *base_type, *cv_type;
17281
17282 base_type = die_type (die, cu);
17283
17284 /* The die_type call above may have already set the type for this DIE. */
17285 cv_type = get_die_type (die, cu);
17286 if (cv_type)
17287 return cv_type;
17288
17289 cv_type = make_restrict_type (base_type);
17290 return set_die_type (die, cv_type, cu);
17291}
17292
17293/* Handle DW_TAG_atomic_type. */
17294
17295static struct type *
17296read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17297{
17298 struct type *base_type, *cv_type;
17299
17300 base_type = die_type (die, cu);
17301
17302 /* The die_type call above may have already set the type for this DIE. */
17303 cv_type = get_die_type (die, cu);
17304 if (cv_type)
17305 return cv_type;
17306
17307 cv_type = make_atomic_type (base_type);
17308 return set_die_type (die, cv_type, cu);
17309}
17310
17311/* Extract all information from a DW_TAG_string_type DIE and add to
17312 the user defined type vector. It isn't really a user defined type,
17313 but it behaves like one, with other DIE's using an AT_user_def_type
17314 attribute to reference it. */
17315
17316static struct type *
17317read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17318{
17319 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17320 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17321 struct type *type, *range_type, *index_type, *char_type;
17322 struct attribute *attr;
17323 unsigned int length;
17324
17325 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17326 if (attr != nullptr)
17327 {
17328 length = DW_UNSND (attr);
17329 }
17330 else
17331 {
17332 /* Check for the DW_AT_byte_size attribute. */
17333 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17334 if (attr != nullptr)
17335 {
17336 length = DW_UNSND (attr);
17337 }
17338 else
17339 {
17340 length = 1;
17341 }
17342 }
17343
17344 index_type = objfile_type (objfile)->builtin_int;
17345 range_type = create_static_range_type (NULL, index_type, 1, length);
17346 char_type = language_string_char_type (cu->language_defn, gdbarch);
17347 type = create_string_type (NULL, char_type, range_type);
17348
17349 return set_die_type (die, type, cu);
17350}
17351
17352/* Assuming that DIE corresponds to a function, returns nonzero
17353 if the function is prototyped. */
17354
17355static int
17356prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17357{
17358 struct attribute *attr;
17359
17360 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17361 if (attr && (DW_UNSND (attr) != 0))
17362 return 1;
17363
17364 /* The DWARF standard implies that the DW_AT_prototyped attribute
17365 is only meaningful for C, but the concept also extends to other
17366 languages that allow unprototyped functions (Eg: Objective C).
17367 For all other languages, assume that functions are always
17368 prototyped. */
17369 if (cu->language != language_c
17370 && cu->language != language_objc
17371 && cu->language != language_opencl)
17372 return 1;
17373
17374 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17375 prototyped and unprototyped functions; default to prototyped,
17376 since that is more common in modern code (and RealView warns
17377 about unprototyped functions). */
17378 if (producer_is_realview (cu->producer))
17379 return 1;
17380
17381 return 0;
17382}
17383
17384/* Handle DIES due to C code like:
17385
17386 struct foo
17387 {
17388 int (*funcp)(int a, long l);
17389 int b;
17390 };
17391
17392 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17393
17394static struct type *
17395read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17396{
17397 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17398 struct type *type; /* Type that this function returns. */
17399 struct type *ftype; /* Function that returns above type. */
17400 struct attribute *attr;
17401
17402 type = die_type (die, cu);
17403
17404 /* The die_type call above may have already set the type for this DIE. */
17405 ftype = get_die_type (die, cu);
17406 if (ftype)
17407 return ftype;
17408
17409 ftype = lookup_function_type (type);
17410
17411 if (prototyped_function_p (die, cu))
17412 TYPE_PROTOTYPED (ftype) = 1;
17413
17414 /* Store the calling convention in the type if it's available in
17415 the subroutine die. Otherwise set the calling convention to
17416 the default value DW_CC_normal. */
17417 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17418 if (attr != nullptr)
17419 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17420 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17421 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17422 else
17423 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17424
17425 /* Record whether the function returns normally to its caller or not
17426 if the DWARF producer set that information. */
17427 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17428 if (attr && (DW_UNSND (attr) != 0))
17429 TYPE_NO_RETURN (ftype) = 1;
17430
17431 /* We need to add the subroutine type to the die immediately so
17432 we don't infinitely recurse when dealing with parameters
17433 declared as the same subroutine type. */
17434 set_die_type (die, ftype, cu);
17435
17436 if (die->child != NULL)
17437 {
17438 struct type *void_type = objfile_type (objfile)->builtin_void;
17439 struct die_info *child_die;
17440 int nparams, iparams;
17441
17442 /* Count the number of parameters.
17443 FIXME: GDB currently ignores vararg functions, but knows about
17444 vararg member functions. */
17445 nparams = 0;
17446 child_die = die->child;
17447 while (child_die && child_die->tag)
17448 {
17449 if (child_die->tag == DW_TAG_formal_parameter)
17450 nparams++;
17451 else if (child_die->tag == DW_TAG_unspecified_parameters)
17452 TYPE_VARARGS (ftype) = 1;
17453 child_die = sibling_die (child_die);
17454 }
17455
17456 /* Allocate storage for parameters and fill them in. */
17457 TYPE_NFIELDS (ftype) = nparams;
17458 TYPE_FIELDS (ftype) = (struct field *)
17459 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17460
17461 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17462 even if we error out during the parameters reading below. */
17463 for (iparams = 0; iparams < nparams; iparams++)
17464 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17465
17466 iparams = 0;
17467 child_die = die->child;
17468 while (child_die && child_die->tag)
17469 {
17470 if (child_die->tag == DW_TAG_formal_parameter)
17471 {
17472 struct type *arg_type;
17473
17474 /* DWARF version 2 has no clean way to discern C++
17475 static and non-static member functions. G++ helps
17476 GDB by marking the first parameter for non-static
17477 member functions (which is the this pointer) as
17478 artificial. We pass this information to
17479 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17480
17481 DWARF version 3 added DW_AT_object_pointer, which GCC
17482 4.5 does not yet generate. */
17483 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17484 if (attr != nullptr)
17485 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17486 else
17487 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17488 arg_type = die_type (child_die, cu);
17489
17490 /* RealView does not mark THIS as const, which the testsuite
17491 expects. GCC marks THIS as const in method definitions,
17492 but not in the class specifications (GCC PR 43053). */
17493 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17494 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17495 {
17496 int is_this = 0;
17497 struct dwarf2_cu *arg_cu = cu;
17498 const char *name = dwarf2_name (child_die, cu);
17499
17500 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17501 if (attr != nullptr)
17502 {
17503 /* If the compiler emits this, use it. */
17504 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17505 is_this = 1;
17506 }
17507 else if (name && strcmp (name, "this") == 0)
17508 /* Function definitions will have the argument names. */
17509 is_this = 1;
17510 else if (name == NULL && iparams == 0)
17511 /* Declarations may not have the names, so like
17512 elsewhere in GDB, assume an artificial first
17513 argument is "this". */
17514 is_this = 1;
17515
17516 if (is_this)
17517 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17518 arg_type, 0);
17519 }
17520
17521 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17522 iparams++;
17523 }
17524 child_die = sibling_die (child_die);
17525 }
17526 }
17527
17528 return ftype;
17529}
17530
17531static struct type *
17532read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17533{
17534 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17535 const char *name = NULL;
17536 struct type *this_type, *target_type;
17537
17538 name = dwarf2_full_name (NULL, die, cu);
17539 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17540 TYPE_TARGET_STUB (this_type) = 1;
17541 set_die_type (die, this_type, cu);
17542 target_type = die_type (die, cu);
17543 if (target_type != this_type)
17544 TYPE_TARGET_TYPE (this_type) = target_type;
17545 else
17546 {
17547 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17548 spec and cause infinite loops in GDB. */
17549 complaint (_("Self-referential DW_TAG_typedef "
17550 "- DIE at %s [in module %s]"),
17551 sect_offset_str (die->sect_off), objfile_name (objfile));
17552 TYPE_TARGET_TYPE (this_type) = NULL;
17553 }
17554 return this_type;
17555}
17556
17557/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17558 (which may be different from NAME) to the architecture back-end to allow
17559 it to guess the correct format if necessary. */
17560
17561static struct type *
17562dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17563 const char *name_hint)
17564{
17565 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17566 const struct floatformat **format;
17567 struct type *type;
17568
17569 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17570 if (format)
17571 type = init_float_type (objfile, bits, name, format);
17572 else
17573 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17574
17575 return type;
17576}
17577
17578/* Allocate an integer type of size BITS and name NAME. */
17579
17580static struct type *
17581dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17582 int bits, int unsigned_p, const char *name)
17583{
17584 struct type *type;
17585
17586 /* Versions of Intel's C Compiler generate an integer type called "void"
17587 instead of using DW_TAG_unspecified_type. This has been seen on
17588 at least versions 14, 17, and 18. */
17589 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17590 && strcmp (name, "void") == 0)
17591 type = objfile_type (objfile)->builtin_void;
17592 else
17593 type = init_integer_type (objfile, bits, unsigned_p, name);
17594
17595 return type;
17596}
17597
17598/* Initialise and return a floating point type of size BITS suitable for
17599 use as a component of a complex number. The NAME_HINT is passed through
17600 when initialising the floating point type and is the name of the complex
17601 type.
17602
17603 As DWARF doesn't currently provide an explicit name for the components
17604 of a complex number, but it can be helpful to have these components
17605 named, we try to select a suitable name based on the size of the
17606 component. */
17607static struct type *
17608dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17609 struct objfile *objfile,
17610 int bits, const char *name_hint)
17611{
17612 gdbarch *gdbarch = get_objfile_arch (objfile);
17613 struct type *tt = nullptr;
17614
17615 /* Try to find a suitable floating point builtin type of size BITS.
17616 We're going to use the name of this type as the name for the complex
17617 target type that we are about to create. */
17618 switch (cu->language)
17619 {
17620 case language_fortran:
17621 switch (bits)
17622 {
17623 case 32:
17624 tt = builtin_f_type (gdbarch)->builtin_real;
17625 break;
17626 case 64:
17627 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17628 break;
17629 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17630 case 128:
17631 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17632 break;
17633 }
17634 break;
17635 default:
17636 switch (bits)
17637 {
17638 case 32:
17639 tt = builtin_type (gdbarch)->builtin_float;
17640 break;
17641 case 64:
17642 tt = builtin_type (gdbarch)->builtin_double;
17643 break;
17644 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17645 case 128:
17646 tt = builtin_type (gdbarch)->builtin_long_double;
17647 break;
17648 }
17649 break;
17650 }
17651
17652 /* If the type we found doesn't match the size we were looking for, then
17653 pretend we didn't find a type at all, the complex target type we
17654 create will then be nameless. */
17655 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17656 tt = nullptr;
17657
17658 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17659 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17660}
17661
17662/* Find a representation of a given base type and install
17663 it in the TYPE field of the die. */
17664
17665static struct type *
17666read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17667{
17668 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17669 struct type *type;
17670 struct attribute *attr;
17671 int encoding = 0, bits = 0;
17672 int endianity = 0;
17673 const char *name;
17674 gdbarch *arch;
17675
17676 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17677 if (attr != nullptr)
17678 encoding = DW_UNSND (attr);
17679 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17680 if (attr != nullptr)
17681 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17682 name = dwarf2_name (die, cu);
17683 if (!name)
17684 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17685 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17686 if (attr)
17687 endianity = DW_UNSND (attr);
17688
17689 arch = get_objfile_arch (objfile);
17690 switch (encoding)
17691 {
17692 case DW_ATE_address:
17693 /* Turn DW_ATE_address into a void * pointer. */
17694 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17695 type = init_pointer_type (objfile, bits, name, type);
17696 break;
17697 case DW_ATE_boolean:
17698 type = init_boolean_type (objfile, bits, 1, name);
17699 break;
17700 case DW_ATE_complex_float:
17701 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17702 type = init_complex_type (objfile, name, type);
17703 break;
17704 case DW_ATE_decimal_float:
17705 type = init_decfloat_type (objfile, bits, name);
17706 break;
17707 case DW_ATE_float:
17708 type = dwarf2_init_float_type (objfile, bits, name, name);
17709 break;
17710 case DW_ATE_signed:
17711 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17712 break;
17713 case DW_ATE_unsigned:
17714 if (cu->language == language_fortran
17715 && name
17716 && startswith (name, "character("))
17717 type = init_character_type (objfile, bits, 1, name);
17718 else
17719 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17720 break;
17721 case DW_ATE_signed_char:
17722 if (cu->language == language_ada || cu->language == language_m2
17723 || cu->language == language_pascal
17724 || cu->language == language_fortran)
17725 type = init_character_type (objfile, bits, 0, name);
17726 else
17727 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17728 break;
17729 case DW_ATE_unsigned_char:
17730 if (cu->language == language_ada || cu->language == language_m2
17731 || cu->language == language_pascal
17732 || cu->language == language_fortran
17733 || cu->language == language_rust)
17734 type = init_character_type (objfile, bits, 1, name);
17735 else
17736 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17737 break;
17738 case DW_ATE_UTF:
17739 {
17740 if (bits == 16)
17741 type = builtin_type (arch)->builtin_char16;
17742 else if (bits == 32)
17743 type = builtin_type (arch)->builtin_char32;
17744 else
17745 {
17746 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17747 bits);
17748 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17749 }
17750 return set_die_type (die, type, cu);
17751 }
17752 break;
17753
17754 default:
17755 complaint (_("unsupported DW_AT_encoding: '%s'"),
17756 dwarf_type_encoding_name (encoding));
17757 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17758 break;
17759 }
17760
17761 if (name && strcmp (name, "char") == 0)
17762 TYPE_NOSIGN (type) = 1;
17763
17764 maybe_set_alignment (cu, die, type);
17765
17766 switch (endianity)
17767 {
17768 case DW_END_big:
17769 if (gdbarch_byte_order (arch) == BFD_ENDIAN_LITTLE)
17770 TYPE_ENDIANITY_NOT_DEFAULT (type) = 1;
17771 break;
17772 case DW_END_little:
17773 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
17774 TYPE_ENDIANITY_NOT_DEFAULT (type) = 1;
17775 break;
17776 }
17777
17778 return set_die_type (die, type, cu);
17779}
17780
17781/* Parse dwarf attribute if it's a block, reference or constant and put the
17782 resulting value of the attribute into struct bound_prop.
17783 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17784
17785static int
17786attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17787 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17788 struct type *default_type)
17789{
17790 struct dwarf2_property_baton *baton;
17791 struct obstack *obstack
17792 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17793
17794 gdb_assert (default_type != NULL);
17795
17796 if (attr == NULL || prop == NULL)
17797 return 0;
17798
17799 if (attr_form_is_block (attr))
17800 {
17801 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17802 baton->property_type = default_type;
17803 baton->locexpr.per_cu = cu->per_cu;
17804 baton->locexpr.size = DW_BLOCK (attr)->size;
17805 baton->locexpr.data = DW_BLOCK (attr)->data;
17806 baton->locexpr.is_reference = false;
17807 prop->data.baton = baton;
17808 prop->kind = PROP_LOCEXPR;
17809 gdb_assert (prop->data.baton != NULL);
17810 }
17811 else if (attr_form_is_ref (attr))
17812 {
17813 struct dwarf2_cu *target_cu = cu;
17814 struct die_info *target_die;
17815 struct attribute *target_attr;
17816
17817 target_die = follow_die_ref (die, attr, &target_cu);
17818 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17819 if (target_attr == NULL)
17820 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17821 target_cu);
17822 if (target_attr == NULL)
17823 return 0;
17824
17825 switch (target_attr->name)
17826 {
17827 case DW_AT_location:
17828 if (attr_form_is_section_offset (target_attr))
17829 {
17830 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17831 baton->property_type = die_type (target_die, target_cu);
17832 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17833 prop->data.baton = baton;
17834 prop->kind = PROP_LOCLIST;
17835 gdb_assert (prop->data.baton != NULL);
17836 }
17837 else if (attr_form_is_block (target_attr))
17838 {
17839 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17840 baton->property_type = die_type (target_die, target_cu);
17841 baton->locexpr.per_cu = cu->per_cu;
17842 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17843 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17844 baton->locexpr.is_reference = true;
17845 prop->data.baton = baton;
17846 prop->kind = PROP_LOCEXPR;
17847 gdb_assert (prop->data.baton != NULL);
17848 }
17849 else
17850 {
17851 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17852 "dynamic property");
17853 return 0;
17854 }
17855 break;
17856 case DW_AT_data_member_location:
17857 {
17858 LONGEST offset;
17859
17860 if (!handle_data_member_location (target_die, target_cu,
17861 &offset))
17862 return 0;
17863
17864 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17865 baton->property_type = read_type_die (target_die->parent,
17866 target_cu);
17867 baton->offset_info.offset = offset;
17868 baton->offset_info.type = die_type (target_die, target_cu);
17869 prop->data.baton = baton;
17870 prop->kind = PROP_ADDR_OFFSET;
17871 break;
17872 }
17873 }
17874 }
17875 else if (attr_form_is_constant (attr))
17876 {
17877 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17878 prop->kind = PROP_CONST;
17879 }
17880 else
17881 {
17882 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17883 dwarf2_name (die, cu));
17884 return 0;
17885 }
17886
17887 return 1;
17888}
17889
17890/* Find an integer type the same size as the address size given in the
17891 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17892 is unsigned or not. */
17893
17894static struct type *
17895dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17896 bool unsigned_p)
17897{
17898 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17899 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17900 struct type *int_type;
17901
17902 /* Helper macro to examine the various builtin types. */
17903#define TRY_TYPE(F) \
17904 int_type = (unsigned_p \
17905 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17906 : objfile_type (objfile)->builtin_ ## F); \
17907 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17908 return int_type
17909
17910 TRY_TYPE (char);
17911 TRY_TYPE (short);
17912 TRY_TYPE (int);
17913 TRY_TYPE (long);
17914 TRY_TYPE (long_long);
17915
17916#undef TRY_TYPE
17917
17918 gdb_assert_not_reached ("unable to find suitable integer type");
17919}
17920
17921/* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17922 present (which is valid) then compute the default type based on the
17923 compilation units address size. */
17924
17925static struct type *
17926read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17927{
17928 struct type *index_type = die_type (die, cu);
17929
17930 /* Dwarf-2 specifications explicitly allows to create subrange types
17931 without specifying a base type.
17932 In that case, the base type must be set to the type of
17933 the lower bound, upper bound or count, in that order, if any of these
17934 three attributes references an object that has a type.
17935 If no base type is found, the Dwarf-2 specifications say that
17936 a signed integer type of size equal to the size of an address should
17937 be used.
17938 For the following C code: `extern char gdb_int [];'
17939 GCC produces an empty range DIE.
17940 FIXME: muller/2010-05-28: Possible references to object for low bound,
17941 high bound or count are not yet handled by this code. */
17942 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17943 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17944
17945 return index_type;
17946}
17947
17948/* Read the given DW_AT_subrange DIE. */
17949
17950static struct type *
17951read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17952{
17953 struct type *base_type, *orig_base_type;
17954 struct type *range_type;
17955 struct attribute *attr;
17956 struct dynamic_prop low, high;
17957 int low_default_is_valid;
17958 int high_bound_is_count = 0;
17959 const char *name;
17960 ULONGEST negative_mask;
17961
17962 orig_base_type = read_subrange_index_type (die, cu);
17963
17964 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17965 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17966 creating the range type, but we use the result of check_typedef
17967 when examining properties of the type. */
17968 base_type = check_typedef (orig_base_type);
17969
17970 /* The die_type call above may have already set the type for this DIE. */
17971 range_type = get_die_type (die, cu);
17972 if (range_type)
17973 return range_type;
17974
17975 low.kind = PROP_CONST;
17976 high.kind = PROP_CONST;
17977 high.data.const_val = 0;
17978
17979 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17980 omitting DW_AT_lower_bound. */
17981 switch (cu->language)
17982 {
17983 case language_c:
17984 case language_cplus:
17985 low.data.const_val = 0;
17986 low_default_is_valid = 1;
17987 break;
17988 case language_fortran:
17989 low.data.const_val = 1;
17990 low_default_is_valid = 1;
17991 break;
17992 case language_d:
17993 case language_objc:
17994 case language_rust:
17995 low.data.const_val = 0;
17996 low_default_is_valid = (cu->header.version >= 4);
17997 break;
17998 case language_ada:
17999 case language_m2:
18000 case language_pascal:
18001 low.data.const_val = 1;
18002 low_default_is_valid = (cu->header.version >= 4);
18003 break;
18004 default:
18005 low.data.const_val = 0;
18006 low_default_is_valid = 0;
18007 break;
18008 }
18009
18010 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18011 if (attr != nullptr)
18012 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
18013 else if (!low_default_is_valid)
18014 complaint (_("Missing DW_AT_lower_bound "
18015 "- DIE at %s [in module %s]"),
18016 sect_offset_str (die->sect_off),
18017 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18018
18019 struct attribute *attr_ub, *attr_count;
18020 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18021 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18022 {
18023 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18024 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18025 {
18026 /* If bounds are constant do the final calculation here. */
18027 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
18028 high.data.const_val = low.data.const_val + high.data.const_val - 1;
18029 else
18030 high_bound_is_count = 1;
18031 }
18032 else
18033 {
18034 if (attr_ub != NULL)
18035 complaint (_("Unresolved DW_AT_upper_bound "
18036 "- DIE at %s [in module %s]"),
18037 sect_offset_str (die->sect_off),
18038 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18039 if (attr_count != NULL)
18040 complaint (_("Unresolved DW_AT_count "
18041 "- DIE at %s [in module %s]"),
18042 sect_offset_str (die->sect_off),
18043 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18044 }
18045 }
18046
18047 LONGEST bias = 0;
18048 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18049 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
18050 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
18051
18052 /* Normally, the DWARF producers are expected to use a signed
18053 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18054 But this is unfortunately not always the case, as witnessed
18055 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18056 is used instead. To work around that ambiguity, we treat
18057 the bounds as signed, and thus sign-extend their values, when
18058 the base type is signed. */
18059 negative_mask =
18060 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18061 if (low.kind == PROP_CONST
18062 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18063 low.data.const_val |= negative_mask;
18064 if (high.kind == PROP_CONST
18065 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18066 high.data.const_val |= negative_mask;
18067
18068 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18069
18070 if (high_bound_is_count)
18071 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18072
18073 /* Ada expects an empty array on no boundary attributes. */
18074 if (attr == NULL && cu->language != language_ada)
18075 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18076
18077 name = dwarf2_name (die, cu);
18078 if (name)
18079 TYPE_NAME (range_type) = name;
18080
18081 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18082 if (attr != nullptr)
18083 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18084
18085 maybe_set_alignment (cu, die, range_type);
18086
18087 set_die_type (die, range_type, cu);
18088
18089 /* set_die_type should be already done. */
18090 set_descriptive_type (range_type, die, cu);
18091
18092 return range_type;
18093}
18094
18095static struct type *
18096read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18097{
18098 struct type *type;
18099
18100 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18101 NULL);
18102 TYPE_NAME (type) = dwarf2_name (die, cu);
18103
18104 /* In Ada, an unspecified type is typically used when the description
18105 of the type is deferred to a different unit. When encountering
18106 such a type, we treat it as a stub, and try to resolve it later on,
18107 when needed. */
18108 if (cu->language == language_ada)
18109 TYPE_STUB (type) = 1;
18110
18111 return set_die_type (die, type, cu);
18112}
18113
18114/* Read a single die and all its descendents. Set the die's sibling
18115 field to NULL; set other fields in the die correctly, and set all
18116 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18117 location of the info_ptr after reading all of those dies. PARENT
18118 is the parent of the die in question. */
18119
18120static struct die_info *
18121read_die_and_children (const struct die_reader_specs *reader,
18122 const gdb_byte *info_ptr,
18123 const gdb_byte **new_info_ptr,
18124 struct die_info *parent)
18125{
18126 struct die_info *die;
18127 const gdb_byte *cur_ptr;
18128 int has_children;
18129
18130 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18131 if (die == NULL)
18132 {
18133 *new_info_ptr = cur_ptr;
18134 return NULL;
18135 }
18136 store_in_ref_table (die, reader->cu);
18137
18138 if (has_children)
18139 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18140 else
18141 {
18142 die->child = NULL;
18143 *new_info_ptr = cur_ptr;
18144 }
18145
18146 die->sibling = NULL;
18147 die->parent = parent;
18148 return die;
18149}
18150
18151/* Read a die, all of its descendents, and all of its siblings; set
18152 all of the fields of all of the dies correctly. Arguments are as
18153 in read_die_and_children. */
18154
18155static struct die_info *
18156read_die_and_siblings_1 (const struct die_reader_specs *reader,
18157 const gdb_byte *info_ptr,
18158 const gdb_byte **new_info_ptr,
18159 struct die_info *parent)
18160{
18161 struct die_info *first_die, *last_sibling;
18162 const gdb_byte *cur_ptr;
18163
18164 cur_ptr = info_ptr;
18165 first_die = last_sibling = NULL;
18166
18167 while (1)
18168 {
18169 struct die_info *die
18170 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18171
18172 if (die == NULL)
18173 {
18174 *new_info_ptr = cur_ptr;
18175 return first_die;
18176 }
18177
18178 if (!first_die)
18179 first_die = die;
18180 else
18181 last_sibling->sibling = die;
18182
18183 last_sibling = die;
18184 }
18185}
18186
18187/* Read a die, all of its descendents, and all of its siblings; set
18188 all of the fields of all of the dies correctly. Arguments are as
18189 in read_die_and_children.
18190 This the main entry point for reading a DIE and all its children. */
18191
18192static struct die_info *
18193read_die_and_siblings (const struct die_reader_specs *reader,
18194 const gdb_byte *info_ptr,
18195 const gdb_byte **new_info_ptr,
18196 struct die_info *parent)
18197{
18198 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18199 new_info_ptr, parent);
18200
18201 if (dwarf_die_debug)
18202 {
18203 fprintf_unfiltered (gdb_stdlog,
18204 "Read die from %s@0x%x of %s:\n",
18205 get_section_name (reader->die_section),
18206 (unsigned) (info_ptr - reader->die_section->buffer),
18207 bfd_get_filename (reader->abfd));
18208 dump_die (die, dwarf_die_debug);
18209 }
18210
18211 return die;
18212}
18213
18214/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18215 attributes.
18216 The caller is responsible for filling in the extra attributes
18217 and updating (*DIEP)->num_attrs.
18218 Set DIEP to point to a newly allocated die with its information,
18219 except for its child, sibling, and parent fields.
18220 Set HAS_CHILDREN to tell whether the die has children or not. */
18221
18222static const gdb_byte *
18223read_full_die_1 (const struct die_reader_specs *reader,
18224 struct die_info **diep, const gdb_byte *info_ptr,
18225 int *has_children, int num_extra_attrs)
18226{
18227 unsigned int abbrev_number, bytes_read, i;
18228 struct abbrev_info *abbrev;
18229 struct die_info *die;
18230 struct dwarf2_cu *cu = reader->cu;
18231 bfd *abfd = reader->abfd;
18232
18233 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18234 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18235 info_ptr += bytes_read;
18236 if (!abbrev_number)
18237 {
18238 *diep = NULL;
18239 *has_children = 0;
18240 return info_ptr;
18241 }
18242
18243 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18244 if (!abbrev)
18245 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18246 abbrev_number,
18247 bfd_get_filename (abfd));
18248
18249 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18250 die->sect_off = sect_off;
18251 die->tag = abbrev->tag;
18252 die->abbrev = abbrev_number;
18253
18254 /* Make the result usable.
18255 The caller needs to update num_attrs after adding the extra
18256 attributes. */
18257 die->num_attrs = abbrev->num_attrs;
18258
18259 for (i = 0; i < abbrev->num_attrs; ++i)
18260 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18261 info_ptr);
18262
18263 *diep = die;
18264 *has_children = abbrev->has_children;
18265 return info_ptr;
18266}
18267
18268/* Read a die and all its attributes.
18269 Set DIEP to point to a newly allocated die with its information,
18270 except for its child, sibling, and parent fields.
18271 Set HAS_CHILDREN to tell whether the die has children or not. */
18272
18273static const gdb_byte *
18274read_full_die (const struct die_reader_specs *reader,
18275 struct die_info **diep, const gdb_byte *info_ptr,
18276 int *has_children)
18277{
18278 const gdb_byte *result;
18279
18280 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18281
18282 if (dwarf_die_debug)
18283 {
18284 fprintf_unfiltered (gdb_stdlog,
18285 "Read die from %s@0x%x of %s:\n",
18286 get_section_name (reader->die_section),
18287 (unsigned) (info_ptr - reader->die_section->buffer),
18288 bfd_get_filename (reader->abfd));
18289 dump_die (*diep, dwarf_die_debug);
18290 }
18291
18292 return result;
18293}
18294\f
18295/* Abbreviation tables.
18296
18297 In DWARF version 2, the description of the debugging information is
18298 stored in a separate .debug_abbrev section. Before we read any
18299 dies from a section we read in all abbreviations and install them
18300 in a hash table. */
18301
18302/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18303
18304struct abbrev_info *
18305abbrev_table::alloc_abbrev ()
18306{
18307 struct abbrev_info *abbrev;
18308
18309 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18310 memset (abbrev, 0, sizeof (struct abbrev_info));
18311
18312 return abbrev;
18313}
18314
18315/* Add an abbreviation to the table. */
18316
18317void
18318abbrev_table::add_abbrev (unsigned int abbrev_number,
18319 struct abbrev_info *abbrev)
18320{
18321 unsigned int hash_number;
18322
18323 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18324 abbrev->next = m_abbrevs[hash_number];
18325 m_abbrevs[hash_number] = abbrev;
18326}
18327
18328/* Look up an abbrev in the table.
18329 Returns NULL if the abbrev is not found. */
18330
18331struct abbrev_info *
18332abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18333{
18334 unsigned int hash_number;
18335 struct abbrev_info *abbrev;
18336
18337 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18338 abbrev = m_abbrevs[hash_number];
18339
18340 while (abbrev)
18341 {
18342 if (abbrev->number == abbrev_number)
18343 return abbrev;
18344 abbrev = abbrev->next;
18345 }
18346 return NULL;
18347}
18348
18349/* Read in an abbrev table. */
18350
18351static abbrev_table_up
18352abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18353 struct dwarf2_section_info *section,
18354 sect_offset sect_off)
18355{
18356 struct objfile *objfile = dwarf2_per_objfile->objfile;
18357 bfd *abfd = get_section_bfd_owner (section);
18358 const gdb_byte *abbrev_ptr;
18359 struct abbrev_info *cur_abbrev;
18360 unsigned int abbrev_number, bytes_read, abbrev_name;
18361 unsigned int abbrev_form;
18362 struct attr_abbrev *cur_attrs;
18363 unsigned int allocated_attrs;
18364
18365 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18366
18367 dwarf2_read_section (objfile, section);
18368 abbrev_ptr = section->buffer + to_underlying (sect_off);
18369 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18370 abbrev_ptr += bytes_read;
18371
18372 allocated_attrs = ATTR_ALLOC_CHUNK;
18373 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18374
18375 /* Loop until we reach an abbrev number of 0. */
18376 while (abbrev_number)
18377 {
18378 cur_abbrev = abbrev_table->alloc_abbrev ();
18379
18380 /* read in abbrev header */
18381 cur_abbrev->number = abbrev_number;
18382 cur_abbrev->tag
18383 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18384 abbrev_ptr += bytes_read;
18385 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18386 abbrev_ptr += 1;
18387
18388 /* now read in declarations */
18389 for (;;)
18390 {
18391 LONGEST implicit_const;
18392
18393 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18394 abbrev_ptr += bytes_read;
18395 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18396 abbrev_ptr += bytes_read;
18397 if (abbrev_form == DW_FORM_implicit_const)
18398 {
18399 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18400 &bytes_read);
18401 abbrev_ptr += bytes_read;
18402 }
18403 else
18404 {
18405 /* Initialize it due to a false compiler warning. */
18406 implicit_const = -1;
18407 }
18408
18409 if (abbrev_name == 0)
18410 break;
18411
18412 if (cur_abbrev->num_attrs == allocated_attrs)
18413 {
18414 allocated_attrs += ATTR_ALLOC_CHUNK;
18415 cur_attrs
18416 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18417 }
18418
18419 cur_attrs[cur_abbrev->num_attrs].name
18420 = (enum dwarf_attribute) abbrev_name;
18421 cur_attrs[cur_abbrev->num_attrs].form
18422 = (enum dwarf_form) abbrev_form;
18423 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18424 ++cur_abbrev->num_attrs;
18425 }
18426
18427 cur_abbrev->attrs =
18428 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18429 cur_abbrev->num_attrs);
18430 memcpy (cur_abbrev->attrs, cur_attrs,
18431 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18432
18433 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18434
18435 /* Get next abbreviation.
18436 Under Irix6 the abbreviations for a compilation unit are not
18437 always properly terminated with an abbrev number of 0.
18438 Exit loop if we encounter an abbreviation which we have
18439 already read (which means we are about to read the abbreviations
18440 for the next compile unit) or if the end of the abbreviation
18441 table is reached. */
18442 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18443 break;
18444 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18445 abbrev_ptr += bytes_read;
18446 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18447 break;
18448 }
18449
18450 xfree (cur_attrs);
18451 return abbrev_table;
18452}
18453
18454/* Returns nonzero if TAG represents a type that we might generate a partial
18455 symbol for. */
18456
18457static int
18458is_type_tag_for_partial (int tag)
18459{
18460 switch (tag)
18461 {
18462#if 0
18463 /* Some types that would be reasonable to generate partial symbols for,
18464 that we don't at present. */
18465 case DW_TAG_array_type:
18466 case DW_TAG_file_type:
18467 case DW_TAG_ptr_to_member_type:
18468 case DW_TAG_set_type:
18469 case DW_TAG_string_type:
18470 case DW_TAG_subroutine_type:
18471#endif
18472 case DW_TAG_base_type:
18473 case DW_TAG_class_type:
18474 case DW_TAG_interface_type:
18475 case DW_TAG_enumeration_type:
18476 case DW_TAG_structure_type:
18477 case DW_TAG_subrange_type:
18478 case DW_TAG_typedef:
18479 case DW_TAG_union_type:
18480 return 1;
18481 default:
18482 return 0;
18483 }
18484}
18485
18486/* Load all DIEs that are interesting for partial symbols into memory. */
18487
18488static struct partial_die_info *
18489load_partial_dies (const struct die_reader_specs *reader,
18490 const gdb_byte *info_ptr, int building_psymtab)
18491{
18492 struct dwarf2_cu *cu = reader->cu;
18493 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18494 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18495 unsigned int bytes_read;
18496 unsigned int load_all = 0;
18497 int nesting_level = 1;
18498
18499 parent_die = NULL;
18500 last_die = NULL;
18501
18502 gdb_assert (cu->per_cu != NULL);
18503 if (cu->per_cu->load_all_dies)
18504 load_all = 1;
18505
18506 cu->partial_dies
18507 = htab_create_alloc_ex (cu->header.length / 12,
18508 partial_die_hash,
18509 partial_die_eq,
18510 NULL,
18511 &cu->comp_unit_obstack,
18512 hashtab_obstack_allocate,
18513 dummy_obstack_deallocate);
18514
18515 while (1)
18516 {
18517 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18518
18519 /* A NULL abbrev means the end of a series of children. */
18520 if (abbrev == NULL)
18521 {
18522 if (--nesting_level == 0)
18523 return first_die;
18524
18525 info_ptr += bytes_read;
18526 last_die = parent_die;
18527 parent_die = parent_die->die_parent;
18528 continue;
18529 }
18530
18531 /* Check for template arguments. We never save these; if
18532 they're seen, we just mark the parent, and go on our way. */
18533 if (parent_die != NULL
18534 && cu->language == language_cplus
18535 && (abbrev->tag == DW_TAG_template_type_param
18536 || abbrev->tag == DW_TAG_template_value_param))
18537 {
18538 parent_die->has_template_arguments = 1;
18539
18540 if (!load_all)
18541 {
18542 /* We don't need a partial DIE for the template argument. */
18543 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18544 continue;
18545 }
18546 }
18547
18548 /* We only recurse into c++ subprograms looking for template arguments.
18549 Skip their other children. */
18550 if (!load_all
18551 && cu->language == language_cplus
18552 && parent_die != NULL
18553 && parent_die->tag == DW_TAG_subprogram)
18554 {
18555 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18556 continue;
18557 }
18558
18559 /* Check whether this DIE is interesting enough to save. Normally
18560 we would not be interested in members here, but there may be
18561 later variables referencing them via DW_AT_specification (for
18562 static members). */
18563 if (!load_all
18564 && !is_type_tag_for_partial (abbrev->tag)
18565 && abbrev->tag != DW_TAG_constant
18566 && abbrev->tag != DW_TAG_enumerator
18567 && abbrev->tag != DW_TAG_subprogram
18568 && abbrev->tag != DW_TAG_inlined_subroutine
18569 && abbrev->tag != DW_TAG_lexical_block
18570 && abbrev->tag != DW_TAG_variable
18571 && abbrev->tag != DW_TAG_namespace
18572 && abbrev->tag != DW_TAG_module
18573 && abbrev->tag != DW_TAG_member
18574 && abbrev->tag != DW_TAG_imported_unit
18575 && abbrev->tag != DW_TAG_imported_declaration)
18576 {
18577 /* Otherwise we skip to the next sibling, if any. */
18578 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18579 continue;
18580 }
18581
18582 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18583 abbrev);
18584
18585 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18586
18587 /* This two-pass algorithm for processing partial symbols has a
18588 high cost in cache pressure. Thus, handle some simple cases
18589 here which cover the majority of C partial symbols. DIEs
18590 which neither have specification tags in them, nor could have
18591 specification tags elsewhere pointing at them, can simply be
18592 processed and discarded.
18593
18594 This segment is also optional; scan_partial_symbols and
18595 add_partial_symbol will handle these DIEs if we chain
18596 them in normally. When compilers which do not emit large
18597 quantities of duplicate debug information are more common,
18598 this code can probably be removed. */
18599
18600 /* Any complete simple types at the top level (pretty much all
18601 of them, for a language without namespaces), can be processed
18602 directly. */
18603 if (parent_die == NULL
18604 && pdi.has_specification == 0
18605 && pdi.is_declaration == 0
18606 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18607 || pdi.tag == DW_TAG_base_type
18608 || pdi.tag == DW_TAG_subrange_type))
18609 {
18610 if (building_psymtab && pdi.name != NULL)
18611 add_psymbol_to_list (pdi.name, false,
18612 VAR_DOMAIN, LOC_TYPEDEF, -1,
18613 psymbol_placement::STATIC,
18614 0, cu->language, objfile);
18615 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18616 continue;
18617 }
18618
18619 /* The exception for DW_TAG_typedef with has_children above is
18620 a workaround of GCC PR debug/47510. In the case of this complaint
18621 type_name_or_error will error on such types later.
18622
18623 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18624 it could not find the child DIEs referenced later, this is checked
18625 above. In correct DWARF DW_TAG_typedef should have no children. */
18626
18627 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18628 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18629 "- DIE at %s [in module %s]"),
18630 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18631
18632 /* If we're at the second level, and we're an enumerator, and
18633 our parent has no specification (meaning possibly lives in a
18634 namespace elsewhere), then we can add the partial symbol now
18635 instead of queueing it. */
18636 if (pdi.tag == DW_TAG_enumerator
18637 && parent_die != NULL
18638 && parent_die->die_parent == NULL
18639 && parent_die->tag == DW_TAG_enumeration_type
18640 && parent_die->has_specification == 0)
18641 {
18642 if (pdi.name == NULL)
18643 complaint (_("malformed enumerator DIE ignored"));
18644 else if (building_psymtab)
18645 add_psymbol_to_list (pdi.name, false,
18646 VAR_DOMAIN, LOC_CONST, -1,
18647 cu->language == language_cplus
18648 ? psymbol_placement::GLOBAL
18649 : psymbol_placement::STATIC,
18650 0, cu->language, objfile);
18651
18652 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18653 continue;
18654 }
18655
18656 struct partial_die_info *part_die
18657 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18658
18659 /* We'll save this DIE so link it in. */
18660 part_die->die_parent = parent_die;
18661 part_die->die_sibling = NULL;
18662 part_die->die_child = NULL;
18663
18664 if (last_die && last_die == parent_die)
18665 last_die->die_child = part_die;
18666 else if (last_die)
18667 last_die->die_sibling = part_die;
18668
18669 last_die = part_die;
18670
18671 if (first_die == NULL)
18672 first_die = part_die;
18673
18674 /* Maybe add the DIE to the hash table. Not all DIEs that we
18675 find interesting need to be in the hash table, because we
18676 also have the parent/sibling/child chains; only those that we
18677 might refer to by offset later during partial symbol reading.
18678
18679 For now this means things that might have be the target of a
18680 DW_AT_specification, DW_AT_abstract_origin, or
18681 DW_AT_extension. DW_AT_extension will refer only to
18682 namespaces; DW_AT_abstract_origin refers to functions (and
18683 many things under the function DIE, but we do not recurse
18684 into function DIEs during partial symbol reading) and
18685 possibly variables as well; DW_AT_specification refers to
18686 declarations. Declarations ought to have the DW_AT_declaration
18687 flag. It happens that GCC forgets to put it in sometimes, but
18688 only for functions, not for types.
18689
18690 Adding more things than necessary to the hash table is harmless
18691 except for the performance cost. Adding too few will result in
18692 wasted time in find_partial_die, when we reread the compilation
18693 unit with load_all_dies set. */
18694
18695 if (load_all
18696 || abbrev->tag == DW_TAG_constant
18697 || abbrev->tag == DW_TAG_subprogram
18698 || abbrev->tag == DW_TAG_variable
18699 || abbrev->tag == DW_TAG_namespace
18700 || part_die->is_declaration)
18701 {
18702 void **slot;
18703
18704 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18705 to_underlying (part_die->sect_off),
18706 INSERT);
18707 *slot = part_die;
18708 }
18709
18710 /* For some DIEs we want to follow their children (if any). For C
18711 we have no reason to follow the children of structures; for other
18712 languages we have to, so that we can get at method physnames
18713 to infer fully qualified class names, for DW_AT_specification,
18714 and for C++ template arguments. For C++, we also look one level
18715 inside functions to find template arguments (if the name of the
18716 function does not already contain the template arguments).
18717
18718 For Ada and Fortran, we need to scan the children of subprograms
18719 and lexical blocks as well because these languages allow the
18720 definition of nested entities that could be interesting for the
18721 debugger, such as nested subprograms for instance. */
18722 if (last_die->has_children
18723 && (load_all
18724 || last_die->tag == DW_TAG_namespace
18725 || last_die->tag == DW_TAG_module
18726 || last_die->tag == DW_TAG_enumeration_type
18727 || (cu->language == language_cplus
18728 && last_die->tag == DW_TAG_subprogram
18729 && (last_die->name == NULL
18730 || strchr (last_die->name, '<') == NULL))
18731 || (cu->language != language_c
18732 && (last_die->tag == DW_TAG_class_type
18733 || last_die->tag == DW_TAG_interface_type
18734 || last_die->tag == DW_TAG_structure_type
18735 || last_die->tag == DW_TAG_union_type))
18736 || ((cu->language == language_ada
18737 || cu->language == language_fortran)
18738 && (last_die->tag == DW_TAG_subprogram
18739 || last_die->tag == DW_TAG_lexical_block))))
18740 {
18741 nesting_level++;
18742 parent_die = last_die;
18743 continue;
18744 }
18745
18746 /* Otherwise we skip to the next sibling, if any. */
18747 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18748
18749 /* Back to the top, do it again. */
18750 }
18751}
18752
18753partial_die_info::partial_die_info (sect_offset sect_off_,
18754 struct abbrev_info *abbrev)
18755 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18756{
18757}
18758
18759/* Read a minimal amount of information into the minimal die structure.
18760 INFO_PTR should point just after the initial uleb128 of a DIE. */
18761
18762const gdb_byte *
18763partial_die_info::read (const struct die_reader_specs *reader,
18764 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18765{
18766 struct dwarf2_cu *cu = reader->cu;
18767 struct dwarf2_per_objfile *dwarf2_per_objfile
18768 = cu->per_cu->dwarf2_per_objfile;
18769 unsigned int i;
18770 int has_low_pc_attr = 0;
18771 int has_high_pc_attr = 0;
18772 int high_pc_relative = 0;
18773
18774 for (i = 0; i < abbrev.num_attrs; ++i)
18775 {
18776 struct attribute attr;
18777
18778 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18779
18780 /* Store the data if it is of an attribute we want to keep in a
18781 partial symbol table. */
18782 switch (attr.name)
18783 {
18784 case DW_AT_name:
18785 switch (tag)
18786 {
18787 case DW_TAG_compile_unit:
18788 case DW_TAG_partial_unit:
18789 case DW_TAG_type_unit:
18790 /* Compilation units have a DW_AT_name that is a filename, not
18791 a source language identifier. */
18792 case DW_TAG_enumeration_type:
18793 case DW_TAG_enumerator:
18794 /* These tags always have simple identifiers already; no need
18795 to canonicalize them. */
18796 name = DW_STRING (&attr);
18797 break;
18798 default:
18799 {
18800 struct objfile *objfile = dwarf2_per_objfile->objfile;
18801
18802 name
18803 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18804 &objfile->per_bfd->storage_obstack);
18805 }
18806 break;
18807 }
18808 break;
18809 case DW_AT_linkage_name:
18810 case DW_AT_MIPS_linkage_name:
18811 /* Note that both forms of linkage name might appear. We
18812 assume they will be the same, and we only store the last
18813 one we see. */
18814 linkage_name = DW_STRING (&attr);
18815 break;
18816 case DW_AT_low_pc:
18817 has_low_pc_attr = 1;
18818 lowpc = attr_value_as_address (&attr);
18819 break;
18820 case DW_AT_high_pc:
18821 has_high_pc_attr = 1;
18822 highpc = attr_value_as_address (&attr);
18823 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18824 high_pc_relative = 1;
18825 break;
18826 case DW_AT_location:
18827 /* Support the .debug_loc offsets. */
18828 if (attr_form_is_block (&attr))
18829 {
18830 d.locdesc = DW_BLOCK (&attr);
18831 }
18832 else if (attr_form_is_section_offset (&attr))
18833 {
18834 dwarf2_complex_location_expr_complaint ();
18835 }
18836 else
18837 {
18838 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18839 "partial symbol information");
18840 }
18841 break;
18842 case DW_AT_external:
18843 is_external = DW_UNSND (&attr);
18844 break;
18845 case DW_AT_declaration:
18846 is_declaration = DW_UNSND (&attr);
18847 break;
18848 case DW_AT_type:
18849 has_type = 1;
18850 break;
18851 case DW_AT_abstract_origin:
18852 case DW_AT_specification:
18853 case DW_AT_extension:
18854 has_specification = 1;
18855 spec_offset = dwarf2_get_ref_die_offset (&attr);
18856 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18857 || cu->per_cu->is_dwz);
18858 break;
18859 case DW_AT_sibling:
18860 /* Ignore absolute siblings, they might point outside of
18861 the current compile unit. */
18862 if (attr.form == DW_FORM_ref_addr)
18863 complaint (_("ignoring absolute DW_AT_sibling"));
18864 else
18865 {
18866 const gdb_byte *buffer = reader->buffer;
18867 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18868 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18869
18870 if (sibling_ptr < info_ptr)
18871 complaint (_("DW_AT_sibling points backwards"));
18872 else if (sibling_ptr > reader->buffer_end)
18873 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18874 else
18875 sibling = sibling_ptr;
18876 }
18877 break;
18878 case DW_AT_byte_size:
18879 has_byte_size = 1;
18880 break;
18881 case DW_AT_const_value:
18882 has_const_value = 1;
18883 break;
18884 case DW_AT_calling_convention:
18885 /* DWARF doesn't provide a way to identify a program's source-level
18886 entry point. DW_AT_calling_convention attributes are only meant
18887 to describe functions' calling conventions.
18888
18889 However, because it's a necessary piece of information in
18890 Fortran, and before DWARF 4 DW_CC_program was the only
18891 piece of debugging information whose definition refers to
18892 a 'main program' at all, several compilers marked Fortran
18893 main programs with DW_CC_program --- even when those
18894 functions use the standard calling conventions.
18895
18896 Although DWARF now specifies a way to provide this
18897 information, we support this practice for backward
18898 compatibility. */
18899 if (DW_UNSND (&attr) == DW_CC_program
18900 && cu->language == language_fortran)
18901 main_subprogram = 1;
18902 break;
18903 case DW_AT_inline:
18904 if (DW_UNSND (&attr) == DW_INL_inlined
18905 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18906 may_be_inlined = 1;
18907 break;
18908
18909 case DW_AT_import:
18910 if (tag == DW_TAG_imported_unit)
18911 {
18912 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18913 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18914 || cu->per_cu->is_dwz);
18915 }
18916 break;
18917
18918 case DW_AT_main_subprogram:
18919 main_subprogram = DW_UNSND (&attr);
18920 break;
18921
18922 case DW_AT_ranges:
18923 {
18924 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18925 but that requires a full DIE, so instead we just
18926 reimplement it. */
18927 int need_ranges_base = tag != DW_TAG_compile_unit;
18928 unsigned int ranges_offset = (DW_UNSND (&attr)
18929 + (need_ranges_base
18930 ? cu->ranges_base
18931 : 0));
18932
18933 /* Value of the DW_AT_ranges attribute is the offset in the
18934 .debug_ranges section. */
18935 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18936 nullptr))
18937 has_pc_info = 1;
18938 }
18939 break;
18940
18941 default:
18942 break;
18943 }
18944 }
18945
18946 /* For Ada, if both the name and the linkage name appear, we prefer
18947 the latter. This lets "catch exception" work better, regardless
18948 of the order in which the name and linkage name were emitted.
18949 Really, though, this is just a workaround for the fact that gdb
18950 doesn't store both the name and the linkage name. */
18951 if (cu->language == language_ada && linkage_name != nullptr)
18952 name = linkage_name;
18953
18954 if (high_pc_relative)
18955 highpc += lowpc;
18956
18957 if (has_low_pc_attr && has_high_pc_attr)
18958 {
18959 /* When using the GNU linker, .gnu.linkonce. sections are used to
18960 eliminate duplicate copies of functions and vtables and such.
18961 The linker will arbitrarily choose one and discard the others.
18962 The AT_*_pc values for such functions refer to local labels in
18963 these sections. If the section from that file was discarded, the
18964 labels are not in the output, so the relocs get a value of 0.
18965 If this is a discarded function, mark the pc bounds as invalid,
18966 so that GDB will ignore it. */
18967 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18968 {
18969 struct objfile *objfile = dwarf2_per_objfile->objfile;
18970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18971
18972 complaint (_("DW_AT_low_pc %s is zero "
18973 "for DIE at %s [in module %s]"),
18974 paddress (gdbarch, lowpc),
18975 sect_offset_str (sect_off),
18976 objfile_name (objfile));
18977 }
18978 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18979 else if (lowpc >= highpc)
18980 {
18981 struct objfile *objfile = dwarf2_per_objfile->objfile;
18982 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18983
18984 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18985 "for DIE at %s [in module %s]"),
18986 paddress (gdbarch, lowpc),
18987 paddress (gdbarch, highpc),
18988 sect_offset_str (sect_off),
18989 objfile_name (objfile));
18990 }
18991 else
18992 has_pc_info = 1;
18993 }
18994
18995 return info_ptr;
18996}
18997
18998/* Find a cached partial DIE at OFFSET in CU. */
18999
19000struct partial_die_info *
19001dwarf2_cu::find_partial_die (sect_offset sect_off)
19002{
19003 struct partial_die_info *lookup_die = NULL;
19004 struct partial_die_info part_die (sect_off);
19005
19006 lookup_die = ((struct partial_die_info *)
19007 htab_find_with_hash (partial_dies, &part_die,
19008 to_underlying (sect_off)));
19009
19010 return lookup_die;
19011}
19012
19013/* Find a partial DIE at OFFSET, which may or may not be in CU,
19014 except in the case of .debug_types DIEs which do not reference
19015 outside their CU (they do however referencing other types via
19016 DW_FORM_ref_sig8). */
19017
19018static const struct cu_partial_die_info
19019find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19020{
19021 struct dwarf2_per_objfile *dwarf2_per_objfile
19022 = cu->per_cu->dwarf2_per_objfile;
19023 struct objfile *objfile = dwarf2_per_objfile->objfile;
19024 struct dwarf2_per_cu_data *per_cu = NULL;
19025 struct partial_die_info *pd = NULL;
19026
19027 if (offset_in_dwz == cu->per_cu->is_dwz
19028 && offset_in_cu_p (&cu->header, sect_off))
19029 {
19030 pd = cu->find_partial_die (sect_off);
19031 if (pd != NULL)
19032 return { cu, pd };
19033 /* We missed recording what we needed.
19034 Load all dies and try again. */
19035 per_cu = cu->per_cu;
19036 }
19037 else
19038 {
19039 /* TUs don't reference other CUs/TUs (except via type signatures). */
19040 if (cu->per_cu->is_debug_types)
19041 {
19042 error (_("Dwarf Error: Type Unit at offset %s contains"
19043 " external reference to offset %s [in module %s].\n"),
19044 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19045 bfd_get_filename (objfile->obfd));
19046 }
19047 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19048 dwarf2_per_objfile);
19049
19050 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
19051 load_partial_comp_unit (per_cu);
19052
19053 per_cu->cu->last_used = 0;
19054 pd = per_cu->cu->find_partial_die (sect_off);
19055 }
19056
19057 /* If we didn't find it, and not all dies have been loaded,
19058 load them all and try again. */
19059
19060 if (pd == NULL && per_cu->load_all_dies == 0)
19061 {
19062 per_cu->load_all_dies = 1;
19063
19064 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19065 THIS_CU->cu may already be in use. So we can't just free it and
19066 replace its DIEs with the ones we read in. Instead, we leave those
19067 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19068 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19069 set. */
19070 load_partial_comp_unit (per_cu);
19071
19072 pd = per_cu->cu->find_partial_die (sect_off);
19073 }
19074
19075 if (pd == NULL)
19076 internal_error (__FILE__, __LINE__,
19077 _("could not find partial DIE %s "
19078 "in cache [from module %s]\n"),
19079 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19080 return { per_cu->cu, pd };
19081}
19082
19083/* See if we can figure out if the class lives in a namespace. We do
19084 this by looking for a member function; its demangled name will
19085 contain namespace info, if there is any. */
19086
19087static void
19088guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19089 struct dwarf2_cu *cu)
19090{
19091 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19092 what template types look like, because the demangler
19093 frequently doesn't give the same name as the debug info. We
19094 could fix this by only using the demangled name to get the
19095 prefix (but see comment in read_structure_type). */
19096
19097 struct partial_die_info *real_pdi;
19098 struct partial_die_info *child_pdi;
19099
19100 /* If this DIE (this DIE's specification, if any) has a parent, then
19101 we should not do this. We'll prepend the parent's fully qualified
19102 name when we create the partial symbol. */
19103
19104 real_pdi = struct_pdi;
19105 while (real_pdi->has_specification)
19106 {
19107 auto res = find_partial_die (real_pdi->spec_offset,
19108 real_pdi->spec_is_dwz, cu);
19109 real_pdi = res.pdi;
19110 cu = res.cu;
19111 }
19112
19113 if (real_pdi->die_parent != NULL)
19114 return;
19115
19116 for (child_pdi = struct_pdi->die_child;
19117 child_pdi != NULL;
19118 child_pdi = child_pdi->die_sibling)
19119 {
19120 if (child_pdi->tag == DW_TAG_subprogram
19121 && child_pdi->linkage_name != NULL)
19122 {
19123 char *actual_class_name
19124 = language_class_name_from_physname (cu->language_defn,
19125 child_pdi->linkage_name);
19126 if (actual_class_name != NULL)
19127 {
19128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19129 struct_pdi->name
19130 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19131 actual_class_name);
19132 xfree (actual_class_name);
19133 }
19134 break;
19135 }
19136 }
19137}
19138
19139void
19140partial_die_info::fixup (struct dwarf2_cu *cu)
19141{
19142 /* Once we've fixed up a die, there's no point in doing so again.
19143 This also avoids a memory leak if we were to call
19144 guess_partial_die_structure_name multiple times. */
19145 if (fixup_called)
19146 return;
19147
19148 /* If we found a reference attribute and the DIE has no name, try
19149 to find a name in the referred to DIE. */
19150
19151 if (name == NULL && has_specification)
19152 {
19153 struct partial_die_info *spec_die;
19154
19155 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19156 spec_die = res.pdi;
19157 cu = res.cu;
19158
19159 spec_die->fixup (cu);
19160
19161 if (spec_die->name)
19162 {
19163 name = spec_die->name;
19164
19165 /* Copy DW_AT_external attribute if it is set. */
19166 if (spec_die->is_external)
19167 is_external = spec_die->is_external;
19168 }
19169 }
19170
19171 /* Set default names for some unnamed DIEs. */
19172
19173 if (name == NULL && tag == DW_TAG_namespace)
19174 name = CP_ANONYMOUS_NAMESPACE_STR;
19175
19176 /* If there is no parent die to provide a namespace, and there are
19177 children, see if we can determine the namespace from their linkage
19178 name. */
19179 if (cu->language == language_cplus
19180 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19181 && die_parent == NULL
19182 && has_children
19183 && (tag == DW_TAG_class_type
19184 || tag == DW_TAG_structure_type
19185 || tag == DW_TAG_union_type))
19186 guess_partial_die_structure_name (this, cu);
19187
19188 /* GCC might emit a nameless struct or union that has a linkage
19189 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19190 if (name == NULL
19191 && (tag == DW_TAG_class_type
19192 || tag == DW_TAG_interface_type
19193 || tag == DW_TAG_structure_type
19194 || tag == DW_TAG_union_type)
19195 && linkage_name != NULL)
19196 {
19197 char *demangled;
19198
19199 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19200 if (demangled)
19201 {
19202 const char *base;
19203
19204 /* Strip any leading namespaces/classes, keep only the base name.
19205 DW_AT_name for named DIEs does not contain the prefixes. */
19206 base = strrchr (demangled, ':');
19207 if (base && base > demangled && base[-1] == ':')
19208 base++;
19209 else
19210 base = demangled;
19211
19212 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19213 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19214 xfree (demangled);
19215 }
19216 }
19217
19218 fixup_called = 1;
19219}
19220
19221/* Read an attribute value described by an attribute form. */
19222
19223static const gdb_byte *
19224read_attribute_value (const struct die_reader_specs *reader,
19225 struct attribute *attr, unsigned form,
19226 LONGEST implicit_const, const gdb_byte *info_ptr)
19227{
19228 struct dwarf2_cu *cu = reader->cu;
19229 struct dwarf2_per_objfile *dwarf2_per_objfile
19230 = cu->per_cu->dwarf2_per_objfile;
19231 struct objfile *objfile = dwarf2_per_objfile->objfile;
19232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19233 bfd *abfd = reader->abfd;
19234 struct comp_unit_head *cu_header = &cu->header;
19235 unsigned int bytes_read;
19236 struct dwarf_block *blk;
19237
19238 attr->form = (enum dwarf_form) form;
19239 switch (form)
19240 {
19241 case DW_FORM_ref_addr:
19242 if (cu->header.version == 2)
19243 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19244 else
19245 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19246 &cu->header, &bytes_read);
19247 info_ptr += bytes_read;
19248 break;
19249 case DW_FORM_GNU_ref_alt:
19250 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19251 info_ptr += bytes_read;
19252 break;
19253 case DW_FORM_addr:
19254 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19255 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19256 info_ptr += bytes_read;
19257 break;
19258 case DW_FORM_block2:
19259 blk = dwarf_alloc_block (cu);
19260 blk->size = read_2_bytes (abfd, info_ptr);
19261 info_ptr += 2;
19262 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19263 info_ptr += blk->size;
19264 DW_BLOCK (attr) = blk;
19265 break;
19266 case DW_FORM_block4:
19267 blk = dwarf_alloc_block (cu);
19268 blk->size = read_4_bytes (abfd, info_ptr);
19269 info_ptr += 4;
19270 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19271 info_ptr += blk->size;
19272 DW_BLOCK (attr) = blk;
19273 break;
19274 case DW_FORM_data2:
19275 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19276 info_ptr += 2;
19277 break;
19278 case DW_FORM_data4:
19279 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19280 info_ptr += 4;
19281 break;
19282 case DW_FORM_data8:
19283 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19284 info_ptr += 8;
19285 break;
19286 case DW_FORM_data16:
19287 blk = dwarf_alloc_block (cu);
19288 blk->size = 16;
19289 blk->data = read_n_bytes (abfd, info_ptr, 16);
19290 info_ptr += 16;
19291 DW_BLOCK (attr) = blk;
19292 break;
19293 case DW_FORM_sec_offset:
19294 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19295 info_ptr += bytes_read;
19296 break;
19297 case DW_FORM_string:
19298 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19299 DW_STRING_IS_CANONICAL (attr) = 0;
19300 info_ptr += bytes_read;
19301 break;
19302 case DW_FORM_strp:
19303 if (!cu->per_cu->is_dwz)
19304 {
19305 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19306 abfd, info_ptr, cu_header,
19307 &bytes_read);
19308 DW_STRING_IS_CANONICAL (attr) = 0;
19309 info_ptr += bytes_read;
19310 break;
19311 }
19312 /* FALLTHROUGH */
19313 case DW_FORM_line_strp:
19314 if (!cu->per_cu->is_dwz)
19315 {
19316 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19317 abfd, info_ptr,
19318 cu_header, &bytes_read);
19319 DW_STRING_IS_CANONICAL (attr) = 0;
19320 info_ptr += bytes_read;
19321 break;
19322 }
19323 /* FALLTHROUGH */
19324 case DW_FORM_GNU_strp_alt:
19325 {
19326 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19327 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19328 &bytes_read);
19329
19330 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19331 dwz, str_offset);
19332 DW_STRING_IS_CANONICAL (attr) = 0;
19333 info_ptr += bytes_read;
19334 }
19335 break;
19336 case DW_FORM_exprloc:
19337 case DW_FORM_block:
19338 blk = dwarf_alloc_block (cu);
19339 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19340 info_ptr += bytes_read;
19341 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19342 info_ptr += blk->size;
19343 DW_BLOCK (attr) = blk;
19344 break;
19345 case DW_FORM_block1:
19346 blk = dwarf_alloc_block (cu);
19347 blk->size = read_1_byte (abfd, info_ptr);
19348 info_ptr += 1;
19349 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19350 info_ptr += blk->size;
19351 DW_BLOCK (attr) = blk;
19352 break;
19353 case DW_FORM_data1:
19354 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19355 info_ptr += 1;
19356 break;
19357 case DW_FORM_flag:
19358 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19359 info_ptr += 1;
19360 break;
19361 case DW_FORM_flag_present:
19362 DW_UNSND (attr) = 1;
19363 break;
19364 case DW_FORM_sdata:
19365 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19366 info_ptr += bytes_read;
19367 break;
19368 case DW_FORM_udata:
19369 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19370 info_ptr += bytes_read;
19371 break;
19372 case DW_FORM_ref1:
19373 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19374 + read_1_byte (abfd, info_ptr));
19375 info_ptr += 1;
19376 break;
19377 case DW_FORM_ref2:
19378 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19379 + read_2_bytes (abfd, info_ptr));
19380 info_ptr += 2;
19381 break;
19382 case DW_FORM_ref4:
19383 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19384 + read_4_bytes (abfd, info_ptr));
19385 info_ptr += 4;
19386 break;
19387 case DW_FORM_ref8:
19388 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19389 + read_8_bytes (abfd, info_ptr));
19390 info_ptr += 8;
19391 break;
19392 case DW_FORM_ref_sig8:
19393 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19394 info_ptr += 8;
19395 break;
19396 case DW_FORM_ref_udata:
19397 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19398 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19399 info_ptr += bytes_read;
19400 break;
19401 case DW_FORM_indirect:
19402 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19403 info_ptr += bytes_read;
19404 if (form == DW_FORM_implicit_const)
19405 {
19406 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19407 info_ptr += bytes_read;
19408 }
19409 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19410 info_ptr);
19411 break;
19412 case DW_FORM_implicit_const:
19413 DW_SND (attr) = implicit_const;
19414 break;
19415 case DW_FORM_addrx:
19416 case DW_FORM_GNU_addr_index:
19417 if (reader->dwo_file == NULL)
19418 {
19419 /* For now flag a hard error.
19420 Later we can turn this into a complaint. */
19421 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19422 dwarf_form_name (form),
19423 bfd_get_filename (abfd));
19424 }
19425 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19426 info_ptr += bytes_read;
19427 break;
19428 case DW_FORM_strx:
19429 case DW_FORM_strx1:
19430 case DW_FORM_strx2:
19431 case DW_FORM_strx3:
19432 case DW_FORM_strx4:
19433 case DW_FORM_GNU_str_index:
19434 if (reader->dwo_file == NULL)
19435 {
19436 /* For now flag a hard error.
19437 Later we can turn this into a complaint if warranted. */
19438 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19439 dwarf_form_name (form),
19440 bfd_get_filename (abfd));
19441 }
19442 {
19443 ULONGEST str_index;
19444 if (form == DW_FORM_strx1)
19445 {
19446 str_index = read_1_byte (abfd, info_ptr);
19447 info_ptr += 1;
19448 }
19449 else if (form == DW_FORM_strx2)
19450 {
19451 str_index = read_2_bytes (abfd, info_ptr);
19452 info_ptr += 2;
19453 }
19454 else if (form == DW_FORM_strx3)
19455 {
19456 str_index = read_3_bytes (abfd, info_ptr);
19457 info_ptr += 3;
19458 }
19459 else if (form == DW_FORM_strx4)
19460 {
19461 str_index = read_4_bytes (abfd, info_ptr);
19462 info_ptr += 4;
19463 }
19464 else
19465 {
19466 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19467 info_ptr += bytes_read;
19468 }
19469 DW_STRING (attr) = read_str_index (reader, str_index);
19470 DW_STRING_IS_CANONICAL (attr) = 0;
19471 }
19472 break;
19473 default:
19474 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19475 dwarf_form_name (form),
19476 bfd_get_filename (abfd));
19477 }
19478
19479 /* Super hack. */
19480 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19481 attr->form = DW_FORM_GNU_ref_alt;
19482
19483 /* We have seen instances where the compiler tried to emit a byte
19484 size attribute of -1 which ended up being encoded as an unsigned
19485 0xffffffff. Although 0xffffffff is technically a valid size value,
19486 an object of this size seems pretty unlikely so we can relatively
19487 safely treat these cases as if the size attribute was invalid and
19488 treat them as zero by default. */
19489 if (attr->name == DW_AT_byte_size
19490 && form == DW_FORM_data4
19491 && DW_UNSND (attr) >= 0xffffffff)
19492 {
19493 complaint
19494 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19495 hex_string (DW_UNSND (attr)));
19496 DW_UNSND (attr) = 0;
19497 }
19498
19499 return info_ptr;
19500}
19501
19502/* Read an attribute described by an abbreviated attribute. */
19503
19504static const gdb_byte *
19505read_attribute (const struct die_reader_specs *reader,
19506 struct attribute *attr, struct attr_abbrev *abbrev,
19507 const gdb_byte *info_ptr)
19508{
19509 attr->name = abbrev->name;
19510 return read_attribute_value (reader, attr, abbrev->form,
19511 abbrev->implicit_const, info_ptr);
19512}
19513
19514/* Read dwarf information from a buffer. */
19515
19516static unsigned int
19517read_1_byte (bfd *abfd, const gdb_byte *buf)
19518{
19519 return bfd_get_8 (abfd, buf);
19520}
19521
19522static int
19523read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19524{
19525 return bfd_get_signed_8 (abfd, buf);
19526}
19527
19528static unsigned int
19529read_2_bytes (bfd *abfd, const gdb_byte *buf)
19530{
19531 return bfd_get_16 (abfd, buf);
19532}
19533
19534static int
19535read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19536{
19537 return bfd_get_signed_16 (abfd, buf);
19538}
19539
19540static unsigned int
19541read_3_bytes (bfd *abfd, const gdb_byte *buf)
19542{
19543 unsigned int result = 0;
19544 for (int i = 0; i < 3; ++i)
19545 {
19546 unsigned char byte = bfd_get_8 (abfd, buf);
19547 buf++;
19548 result |= ((unsigned int) byte << (i * 8));
19549 }
19550 return result;
19551}
19552
19553static unsigned int
19554read_4_bytes (bfd *abfd, const gdb_byte *buf)
19555{
19556 return bfd_get_32 (abfd, buf);
19557}
19558
19559static int
19560read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19561{
19562 return bfd_get_signed_32 (abfd, buf);
19563}
19564
19565static ULONGEST
19566read_8_bytes (bfd *abfd, const gdb_byte *buf)
19567{
19568 return bfd_get_64 (abfd, buf);
19569}
19570
19571static CORE_ADDR
19572read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19573 unsigned int *bytes_read)
19574{
19575 struct comp_unit_head *cu_header = &cu->header;
19576 CORE_ADDR retval = 0;
19577
19578 if (cu_header->signed_addr_p)
19579 {
19580 switch (cu_header->addr_size)
19581 {
19582 case 2:
19583 retval = bfd_get_signed_16 (abfd, buf);
19584 break;
19585 case 4:
19586 retval = bfd_get_signed_32 (abfd, buf);
19587 break;
19588 case 8:
19589 retval = bfd_get_signed_64 (abfd, buf);
19590 break;
19591 default:
19592 internal_error (__FILE__, __LINE__,
19593 _("read_address: bad switch, signed [in module %s]"),
19594 bfd_get_filename (abfd));
19595 }
19596 }
19597 else
19598 {
19599 switch (cu_header->addr_size)
19600 {
19601 case 2:
19602 retval = bfd_get_16 (abfd, buf);
19603 break;
19604 case 4:
19605 retval = bfd_get_32 (abfd, buf);
19606 break;
19607 case 8:
19608 retval = bfd_get_64 (abfd, buf);
19609 break;
19610 default:
19611 internal_error (__FILE__, __LINE__,
19612 _("read_address: bad switch, "
19613 "unsigned [in module %s]"),
19614 bfd_get_filename (abfd));
19615 }
19616 }
19617
19618 *bytes_read = cu_header->addr_size;
19619 return retval;
19620}
19621
19622/* Read the initial length from a section. The (draft) DWARF 3
19623 specification allows the initial length to take up either 4 bytes
19624 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19625 bytes describe the length and all offsets will be 8 bytes in length
19626 instead of 4.
19627
19628 An older, non-standard 64-bit format is also handled by this
19629 function. The older format in question stores the initial length
19630 as an 8-byte quantity without an escape value. Lengths greater
19631 than 2^32 aren't very common which means that the initial 4 bytes
19632 is almost always zero. Since a length value of zero doesn't make
19633 sense for the 32-bit format, this initial zero can be considered to
19634 be an escape value which indicates the presence of the older 64-bit
19635 format. As written, the code can't detect (old format) lengths
19636 greater than 4GB. If it becomes necessary to handle lengths
19637 somewhat larger than 4GB, we could allow other small values (such
19638 as the non-sensical values of 1, 2, and 3) to also be used as
19639 escape values indicating the presence of the old format.
19640
19641 The value returned via bytes_read should be used to increment the
19642 relevant pointer after calling read_initial_length().
19643
19644 [ Note: read_initial_length() and read_offset() are based on the
19645 document entitled "DWARF Debugging Information Format", revision
19646 3, draft 8, dated November 19, 2001. This document was obtained
19647 from:
19648
19649 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19650
19651 This document is only a draft and is subject to change. (So beware.)
19652
19653 Details regarding the older, non-standard 64-bit format were
19654 determined empirically by examining 64-bit ELF files produced by
19655 the SGI toolchain on an IRIX 6.5 machine.
19656
19657 - Kevin, July 16, 2002
19658 ] */
19659
19660static LONGEST
19661read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19662{
19663 LONGEST length = bfd_get_32 (abfd, buf);
19664
19665 if (length == 0xffffffff)
19666 {
19667 length = bfd_get_64 (abfd, buf + 4);
19668 *bytes_read = 12;
19669 }
19670 else if (length == 0)
19671 {
19672 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19673 length = bfd_get_64 (abfd, buf);
19674 *bytes_read = 8;
19675 }
19676 else
19677 {
19678 *bytes_read = 4;
19679 }
19680
19681 return length;
19682}
19683
19684/* Cover function for read_initial_length.
19685 Returns the length of the object at BUF, and stores the size of the
19686 initial length in *BYTES_READ and stores the size that offsets will be in
19687 *OFFSET_SIZE.
19688 If the initial length size is not equivalent to that specified in
19689 CU_HEADER then issue a complaint.
19690 This is useful when reading non-comp-unit headers. */
19691
19692static LONGEST
19693read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19694 const struct comp_unit_head *cu_header,
19695 unsigned int *bytes_read,
19696 unsigned int *offset_size)
19697{
19698 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19699
19700 gdb_assert (cu_header->initial_length_size == 4
19701 || cu_header->initial_length_size == 8
19702 || cu_header->initial_length_size == 12);
19703
19704 if (cu_header->initial_length_size != *bytes_read)
19705 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19706
19707 *offset_size = (*bytes_read == 4) ? 4 : 8;
19708 return length;
19709}
19710
19711/* Read an offset from the data stream. The size of the offset is
19712 given by cu_header->offset_size. */
19713
19714static LONGEST
19715read_offset (bfd *abfd, const gdb_byte *buf,
19716 const struct comp_unit_head *cu_header,
19717 unsigned int *bytes_read)
19718{
19719 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19720
19721 *bytes_read = cu_header->offset_size;
19722 return offset;
19723}
19724
19725/* Read an offset from the data stream. */
19726
19727static LONGEST
19728read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19729{
19730 LONGEST retval = 0;
19731
19732 switch (offset_size)
19733 {
19734 case 4:
19735 retval = bfd_get_32 (abfd, buf);
19736 break;
19737 case 8:
19738 retval = bfd_get_64 (abfd, buf);
19739 break;
19740 default:
19741 internal_error (__FILE__, __LINE__,
19742 _("read_offset_1: bad switch [in module %s]"),
19743 bfd_get_filename (abfd));
19744 }
19745
19746 return retval;
19747}
19748
19749static const gdb_byte *
19750read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19751{
19752 /* If the size of a host char is 8 bits, we can return a pointer
19753 to the buffer, otherwise we have to copy the data to a buffer
19754 allocated on the temporary obstack. */
19755 gdb_assert (HOST_CHAR_BIT == 8);
19756 return buf;
19757}
19758
19759static const char *
19760read_direct_string (bfd *abfd, const gdb_byte *buf,
19761 unsigned int *bytes_read_ptr)
19762{
19763 /* If the size of a host char is 8 bits, we can return a pointer
19764 to the string, otherwise we have to copy the string to a buffer
19765 allocated on the temporary obstack. */
19766 gdb_assert (HOST_CHAR_BIT == 8);
19767 if (*buf == '\0')
19768 {
19769 *bytes_read_ptr = 1;
19770 return NULL;
19771 }
19772 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19773 return (const char *) buf;
19774}
19775
19776/* Return pointer to string at section SECT offset STR_OFFSET with error
19777 reporting strings FORM_NAME and SECT_NAME. */
19778
19779static const char *
19780read_indirect_string_at_offset_from (struct objfile *objfile,
19781 bfd *abfd, LONGEST str_offset,
19782 struct dwarf2_section_info *sect,
19783 const char *form_name,
19784 const char *sect_name)
19785{
19786 dwarf2_read_section (objfile, sect);
19787 if (sect->buffer == NULL)
19788 error (_("%s used without %s section [in module %s]"),
19789 form_name, sect_name, bfd_get_filename (abfd));
19790 if (str_offset >= sect->size)
19791 error (_("%s pointing outside of %s section [in module %s]"),
19792 form_name, sect_name, bfd_get_filename (abfd));
19793 gdb_assert (HOST_CHAR_BIT == 8);
19794 if (sect->buffer[str_offset] == '\0')
19795 return NULL;
19796 return (const char *) (sect->buffer + str_offset);
19797}
19798
19799/* Return pointer to string at .debug_str offset STR_OFFSET. */
19800
19801static const char *
19802read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19803 bfd *abfd, LONGEST str_offset)
19804{
19805 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19806 abfd, str_offset,
19807 &dwarf2_per_objfile->str,
19808 "DW_FORM_strp", ".debug_str");
19809}
19810
19811/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19812
19813static const char *
19814read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19815 bfd *abfd, LONGEST str_offset)
19816{
19817 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19818 abfd, str_offset,
19819 &dwarf2_per_objfile->line_str,
19820 "DW_FORM_line_strp",
19821 ".debug_line_str");
19822}
19823
19824/* Read a string at offset STR_OFFSET in the .debug_str section from
19825 the .dwz file DWZ. Throw an error if the offset is too large. If
19826 the string consists of a single NUL byte, return NULL; otherwise
19827 return a pointer to the string. */
19828
19829static const char *
19830read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19831 LONGEST str_offset)
19832{
19833 dwarf2_read_section (objfile, &dwz->str);
19834
19835 if (dwz->str.buffer == NULL)
19836 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19837 "section [in module %s]"),
19838 bfd_get_filename (dwz->dwz_bfd.get ()));
19839 if (str_offset >= dwz->str.size)
19840 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19841 ".debug_str section [in module %s]"),
19842 bfd_get_filename (dwz->dwz_bfd.get ()));
19843 gdb_assert (HOST_CHAR_BIT == 8);
19844 if (dwz->str.buffer[str_offset] == '\0')
19845 return NULL;
19846 return (const char *) (dwz->str.buffer + str_offset);
19847}
19848
19849/* Return pointer to string at .debug_str offset as read from BUF.
19850 BUF is assumed to be in a compilation unit described by CU_HEADER.
19851 Return *BYTES_READ_PTR count of bytes read from BUF. */
19852
19853static const char *
19854read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19855 const gdb_byte *buf,
19856 const struct comp_unit_head *cu_header,
19857 unsigned int *bytes_read_ptr)
19858{
19859 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19860
19861 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19862}
19863
19864/* Return pointer to string at .debug_line_str offset as read from BUF.
19865 BUF is assumed to be in a compilation unit described by CU_HEADER.
19866 Return *BYTES_READ_PTR count of bytes read from BUF. */
19867
19868static const char *
19869read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19870 bfd *abfd, const gdb_byte *buf,
19871 const struct comp_unit_head *cu_header,
19872 unsigned int *bytes_read_ptr)
19873{
19874 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19875
19876 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19877 str_offset);
19878}
19879
19880ULONGEST
19881read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19882 unsigned int *bytes_read_ptr)
19883{
19884 ULONGEST result;
19885 unsigned int num_read;
19886 int shift;
19887 unsigned char byte;
19888
19889 result = 0;
19890 shift = 0;
19891 num_read = 0;
19892 while (1)
19893 {
19894 byte = bfd_get_8 (abfd, buf);
19895 buf++;
19896 num_read++;
19897 result |= ((ULONGEST) (byte & 127) << shift);
19898 if ((byte & 128) == 0)
19899 {
19900 break;
19901 }
19902 shift += 7;
19903 }
19904 *bytes_read_ptr = num_read;
19905 return result;
19906}
19907
19908static LONGEST
19909read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19910 unsigned int *bytes_read_ptr)
19911{
19912 ULONGEST result;
19913 int shift, num_read;
19914 unsigned char byte;
19915
19916 result = 0;
19917 shift = 0;
19918 num_read = 0;
19919 while (1)
19920 {
19921 byte = bfd_get_8 (abfd, buf);
19922 buf++;
19923 num_read++;
19924 result |= ((ULONGEST) (byte & 127) << shift);
19925 shift += 7;
19926 if ((byte & 128) == 0)
19927 {
19928 break;
19929 }
19930 }
19931 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19932 result |= -(((ULONGEST) 1) << shift);
19933 *bytes_read_ptr = num_read;
19934 return result;
19935}
19936
19937/* Given index ADDR_INDEX in .debug_addr, fetch the value.
19938 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19939 ADDR_SIZE is the size of addresses from the CU header. */
19940
19941static CORE_ADDR
19942read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19943 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19944{
19945 struct objfile *objfile = dwarf2_per_objfile->objfile;
19946 bfd *abfd = objfile->obfd;
19947 const gdb_byte *info_ptr;
19948
19949 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19950 if (dwarf2_per_objfile->addr.buffer == NULL)
19951 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19952 objfile_name (objfile));
19953 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19954 error (_("DW_FORM_addr_index pointing outside of "
19955 ".debug_addr section [in module %s]"),
19956 objfile_name (objfile));
19957 info_ptr = (dwarf2_per_objfile->addr.buffer
19958 + addr_base + addr_index * addr_size);
19959 if (addr_size == 4)
19960 return bfd_get_32 (abfd, info_ptr);
19961 else
19962 return bfd_get_64 (abfd, info_ptr);
19963}
19964
19965/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19966
19967static CORE_ADDR
19968read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19969{
19970 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19971 cu->addr_base, cu->header.addr_size);
19972}
19973
19974/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19975
19976static CORE_ADDR
19977read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19978 unsigned int *bytes_read)
19979{
19980 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19981 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19982
19983 return read_addr_index (cu, addr_index);
19984}
19985
19986/* Data structure to pass results from dwarf2_read_addr_index_reader
19987 back to dwarf2_read_addr_index. */
19988
19989struct dwarf2_read_addr_index_data
19990{
19991 ULONGEST addr_base;
19992 int addr_size;
19993};
19994
19995/* die_reader_func for dwarf2_read_addr_index. */
19996
19997static void
19998dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19999 const gdb_byte *info_ptr,
20000 struct die_info *comp_unit_die,
20001 int has_children,
20002 void *data)
20003{
20004 struct dwarf2_cu *cu = reader->cu;
20005 struct dwarf2_read_addr_index_data *aidata =
20006 (struct dwarf2_read_addr_index_data *) data;
20007
20008 aidata->addr_base = cu->addr_base;
20009 aidata->addr_size = cu->header.addr_size;
20010}
20011
20012/* Given an index in .debug_addr, fetch the value.
20013 NOTE: This can be called during dwarf expression evaluation,
20014 long after the debug information has been read, and thus per_cu->cu
20015 may no longer exist. */
20016
20017CORE_ADDR
20018dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
20019 unsigned int addr_index)
20020{
20021 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
20022 struct dwarf2_cu *cu = per_cu->cu;
20023 ULONGEST addr_base;
20024 int addr_size;
20025
20026 /* We need addr_base and addr_size.
20027 If we don't have PER_CU->cu, we have to get it.
20028 Nasty, but the alternative is storing the needed info in PER_CU,
20029 which at this point doesn't seem justified: it's not clear how frequently
20030 it would get used and it would increase the size of every PER_CU.
20031 Entry points like dwarf2_per_cu_addr_size do a similar thing
20032 so we're not in uncharted territory here.
20033 Alas we need to be a bit more complicated as addr_base is contained
20034 in the DIE.
20035
20036 We don't need to read the entire CU(/TU).
20037 We just need the header and top level die.
20038
20039 IWBN to use the aging mechanism to let us lazily later discard the CU.
20040 For now we skip this optimization. */
20041
20042 if (cu != NULL)
20043 {
20044 addr_base = cu->addr_base;
20045 addr_size = cu->header.addr_size;
20046 }
20047 else
20048 {
20049 struct dwarf2_read_addr_index_data aidata;
20050
20051 /* Note: We can't use init_cutu_and_read_dies_simple here,
20052 we need addr_base. */
20053 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
20054 dwarf2_read_addr_index_reader, &aidata);
20055 addr_base = aidata.addr_base;
20056 addr_size = aidata.addr_size;
20057 }
20058
20059 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20060 addr_size);
20061}
20062
20063/* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
20064 This is only used by the Fission support. */
20065
20066static const char *
20067read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20068{
20069 struct dwarf2_cu *cu = reader->cu;
20070 struct dwarf2_per_objfile *dwarf2_per_objfile
20071 = cu->per_cu->dwarf2_per_objfile;
20072 struct objfile *objfile = dwarf2_per_objfile->objfile;
20073 const char *objf_name = objfile_name (objfile);
20074 bfd *abfd = objfile->obfd;
20075 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20076 struct dwarf2_section_info *str_offsets_section =
20077 &reader->dwo_file->sections.str_offsets;
20078 const gdb_byte *info_ptr;
20079 ULONGEST str_offset;
20080 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20081
20082 dwarf2_read_section (objfile, str_section);
20083 dwarf2_read_section (objfile, str_offsets_section);
20084 if (str_section->buffer == NULL)
20085 error (_("%s used without .debug_str.dwo section"
20086 " in CU at offset %s [in module %s]"),
20087 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20088 if (str_offsets_section->buffer == NULL)
20089 error (_("%s used without .debug_str_offsets.dwo section"
20090 " in CU at offset %s [in module %s]"),
20091 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20092 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20093 error (_("%s pointing outside of .debug_str_offsets.dwo"
20094 " section in CU at offset %s [in module %s]"),
20095 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20096 info_ptr = (str_offsets_section->buffer
20097 + str_index * cu->header.offset_size);
20098 if (cu->header.offset_size == 4)
20099 str_offset = bfd_get_32 (abfd, info_ptr);
20100 else
20101 str_offset = bfd_get_64 (abfd, info_ptr);
20102 if (str_offset >= str_section->size)
20103 error (_("Offset from %s pointing outside of"
20104 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20105 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20106 return (const char *) (str_section->buffer + str_offset);
20107}
20108
20109/* Return the length of an LEB128 number in BUF. */
20110
20111static int
20112leb128_size (const gdb_byte *buf)
20113{
20114 const gdb_byte *begin = buf;
20115 gdb_byte byte;
20116
20117 while (1)
20118 {
20119 byte = *buf++;
20120 if ((byte & 128) == 0)
20121 return buf - begin;
20122 }
20123}
20124
20125static void
20126set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20127{
20128 switch (lang)
20129 {
20130 case DW_LANG_C89:
20131 case DW_LANG_C99:
20132 case DW_LANG_C11:
20133 case DW_LANG_C:
20134 case DW_LANG_UPC:
20135 cu->language = language_c;
20136 break;
20137 case DW_LANG_Java:
20138 case DW_LANG_C_plus_plus:
20139 case DW_LANG_C_plus_plus_11:
20140 case DW_LANG_C_plus_plus_14:
20141 cu->language = language_cplus;
20142 break;
20143 case DW_LANG_D:
20144 cu->language = language_d;
20145 break;
20146 case DW_LANG_Fortran77:
20147 case DW_LANG_Fortran90:
20148 case DW_LANG_Fortran95:
20149 case DW_LANG_Fortran03:
20150 case DW_LANG_Fortran08:
20151 cu->language = language_fortran;
20152 break;
20153 case DW_LANG_Go:
20154 cu->language = language_go;
20155 break;
20156 case DW_LANG_Mips_Assembler:
20157 cu->language = language_asm;
20158 break;
20159 case DW_LANG_Ada83:
20160 case DW_LANG_Ada95:
20161 cu->language = language_ada;
20162 break;
20163 case DW_LANG_Modula2:
20164 cu->language = language_m2;
20165 break;
20166 case DW_LANG_Pascal83:
20167 cu->language = language_pascal;
20168 break;
20169 case DW_LANG_ObjC:
20170 cu->language = language_objc;
20171 break;
20172 case DW_LANG_Rust:
20173 case DW_LANG_Rust_old:
20174 cu->language = language_rust;
20175 break;
20176 case DW_LANG_Cobol74:
20177 case DW_LANG_Cobol85:
20178 default:
20179 cu->language = language_minimal;
20180 break;
20181 }
20182 cu->language_defn = language_def (cu->language);
20183}
20184
20185/* Return the named attribute or NULL if not there. */
20186
20187static struct attribute *
20188dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20189{
20190 for (;;)
20191 {
20192 unsigned int i;
20193 struct attribute *spec = NULL;
20194
20195 for (i = 0; i < die->num_attrs; ++i)
20196 {
20197 if (die->attrs[i].name == name)
20198 return &die->attrs[i];
20199 if (die->attrs[i].name == DW_AT_specification
20200 || die->attrs[i].name == DW_AT_abstract_origin)
20201 spec = &die->attrs[i];
20202 }
20203
20204 if (!spec)
20205 break;
20206
20207 die = follow_die_ref (die, spec, &cu);
20208 }
20209
20210 return NULL;
20211}
20212
20213/* Return the named attribute or NULL if not there,
20214 but do not follow DW_AT_specification, etc.
20215 This is for use in contexts where we're reading .debug_types dies.
20216 Following DW_AT_specification, DW_AT_abstract_origin will take us
20217 back up the chain, and we want to go down. */
20218
20219static struct attribute *
20220dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20221{
20222 unsigned int i;
20223
20224 for (i = 0; i < die->num_attrs; ++i)
20225 if (die->attrs[i].name == name)
20226 return &die->attrs[i];
20227
20228 return NULL;
20229}
20230
20231/* Return the string associated with a string-typed attribute, or NULL if it
20232 is either not found or is of an incorrect type. */
20233
20234static const char *
20235dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20236{
20237 struct attribute *attr;
20238 const char *str = NULL;
20239
20240 attr = dwarf2_attr (die, name, cu);
20241
20242 if (attr != NULL)
20243 {
20244 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20245 || attr->form == DW_FORM_string
20246 || attr->form == DW_FORM_strx
20247 || attr->form == DW_FORM_strx1
20248 || attr->form == DW_FORM_strx2
20249 || attr->form == DW_FORM_strx3
20250 || attr->form == DW_FORM_strx4
20251 || attr->form == DW_FORM_GNU_str_index
20252 || attr->form == DW_FORM_GNU_strp_alt)
20253 str = DW_STRING (attr);
20254 else
20255 complaint (_("string type expected for attribute %s for "
20256 "DIE at %s in module %s"),
20257 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20258 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20259 }
20260
20261 return str;
20262}
20263
20264/* Return the dwo name or NULL if not present. If present, it is in either
20265 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20266static const char *
20267dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20268{
20269 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20270 if (dwo_name == nullptr)
20271 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20272 return dwo_name;
20273}
20274
20275/* Return non-zero iff the attribute NAME is defined for the given DIE,
20276 and holds a non-zero value. This function should only be used for
20277 DW_FORM_flag or DW_FORM_flag_present attributes. */
20278
20279static int
20280dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20281{
20282 struct attribute *attr = dwarf2_attr (die, name, cu);
20283
20284 return (attr && DW_UNSND (attr));
20285}
20286
20287static int
20288die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20289{
20290 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20291 which value is non-zero. However, we have to be careful with
20292 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20293 (via dwarf2_flag_true_p) follows this attribute. So we may
20294 end up accidently finding a declaration attribute that belongs
20295 to a different DIE referenced by the specification attribute,
20296 even though the given DIE does not have a declaration attribute. */
20297 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20298 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20299}
20300
20301/* Return the die giving the specification for DIE, if there is
20302 one. *SPEC_CU is the CU containing DIE on input, and the CU
20303 containing the return value on output. If there is no
20304 specification, but there is an abstract origin, that is
20305 returned. */
20306
20307static struct die_info *
20308die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20309{
20310 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20311 *spec_cu);
20312
20313 if (spec_attr == NULL)
20314 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20315
20316 if (spec_attr == NULL)
20317 return NULL;
20318 else
20319 return follow_die_ref (die, spec_attr, spec_cu);
20320}
20321
20322/* Stub for free_line_header to match void * callback types. */
20323
20324static void
20325free_line_header_voidp (void *arg)
20326{
20327 struct line_header *lh = (struct line_header *) arg;
20328
20329 delete lh;
20330}
20331
20332void
20333line_header::add_include_dir (const char *include_dir)
20334{
20335 if (dwarf_line_debug >= 2)
20336 {
20337 size_t new_size;
20338 if (version >= 5)
20339 new_size = m_include_dirs.size ();
20340 else
20341 new_size = m_include_dirs.size () + 1;
20342 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20343 new_size, include_dir);
20344 }
20345 m_include_dirs.push_back (include_dir);
20346}
20347
20348void
20349line_header::add_file_name (const char *name,
20350 dir_index d_index,
20351 unsigned int mod_time,
20352 unsigned int length)
20353{
20354 if (dwarf_line_debug >= 2)
20355 {
20356 size_t new_size;
20357 if (version >= 5)
20358 new_size = file_names_size ();
20359 else
20360 new_size = file_names_size () + 1;
20361 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
20362 new_size, name);
20363 }
20364 m_file_names.emplace_back (name, d_index, mod_time, length);
20365}
20366
20367/* A convenience function to find the proper .debug_line section for a CU. */
20368
20369static struct dwarf2_section_info *
20370get_debug_line_section (struct dwarf2_cu *cu)
20371{
20372 struct dwarf2_section_info *section;
20373 struct dwarf2_per_objfile *dwarf2_per_objfile
20374 = cu->per_cu->dwarf2_per_objfile;
20375
20376 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20377 DWO file. */
20378 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20379 section = &cu->dwo_unit->dwo_file->sections.line;
20380 else if (cu->per_cu->is_dwz)
20381 {
20382 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20383
20384 section = &dwz->line;
20385 }
20386 else
20387 section = &dwarf2_per_objfile->line;
20388
20389 return section;
20390}
20391
20392/* Read directory or file name entry format, starting with byte of
20393 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20394 entries count and the entries themselves in the described entry
20395 format. */
20396
20397static void
20398read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20399 bfd *abfd, const gdb_byte **bufp,
20400 struct line_header *lh,
20401 const struct comp_unit_head *cu_header,
20402 void (*callback) (struct line_header *lh,
20403 const char *name,
20404 dir_index d_index,
20405 unsigned int mod_time,
20406 unsigned int length))
20407{
20408 gdb_byte format_count, formati;
20409 ULONGEST data_count, datai;
20410 const gdb_byte *buf = *bufp;
20411 const gdb_byte *format_header_data;
20412 unsigned int bytes_read;
20413
20414 format_count = read_1_byte (abfd, buf);
20415 buf += 1;
20416 format_header_data = buf;
20417 for (formati = 0; formati < format_count; formati++)
20418 {
20419 read_unsigned_leb128 (abfd, buf, &bytes_read);
20420 buf += bytes_read;
20421 read_unsigned_leb128 (abfd, buf, &bytes_read);
20422 buf += bytes_read;
20423 }
20424
20425 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20426 buf += bytes_read;
20427 for (datai = 0; datai < data_count; datai++)
20428 {
20429 const gdb_byte *format = format_header_data;
20430 struct file_entry fe;
20431
20432 for (formati = 0; formati < format_count; formati++)
20433 {
20434 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20435 format += bytes_read;
20436
20437 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20438 format += bytes_read;
20439
20440 gdb::optional<const char *> string;
20441 gdb::optional<unsigned int> uint;
20442
20443 switch (form)
20444 {
20445 case DW_FORM_string:
20446 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20447 buf += bytes_read;
20448 break;
20449
20450 case DW_FORM_line_strp:
20451 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20452 abfd, buf,
20453 cu_header,
20454 &bytes_read));
20455 buf += bytes_read;
20456 break;
20457
20458 case DW_FORM_data1:
20459 uint.emplace (read_1_byte (abfd, buf));
20460 buf += 1;
20461 break;
20462
20463 case DW_FORM_data2:
20464 uint.emplace (read_2_bytes (abfd, buf));
20465 buf += 2;
20466 break;
20467
20468 case DW_FORM_data4:
20469 uint.emplace (read_4_bytes (abfd, buf));
20470 buf += 4;
20471 break;
20472
20473 case DW_FORM_data8:
20474 uint.emplace (read_8_bytes (abfd, buf));
20475 buf += 8;
20476 break;
20477
20478 case DW_FORM_data16:
20479 /* This is used for MD5, but file_entry does not record MD5s. */
20480 buf += 16;
20481 break;
20482
20483 case DW_FORM_udata:
20484 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20485 buf += bytes_read;
20486 break;
20487
20488 case DW_FORM_block:
20489 /* It is valid only for DW_LNCT_timestamp which is ignored by
20490 current GDB. */
20491 break;
20492 }
20493
20494 switch (content_type)
20495 {
20496 case DW_LNCT_path:
20497 if (string.has_value ())
20498 fe.name = *string;
20499 break;
20500 case DW_LNCT_directory_index:
20501 if (uint.has_value ())
20502 fe.d_index = (dir_index) *uint;
20503 break;
20504 case DW_LNCT_timestamp:
20505 if (uint.has_value ())
20506 fe.mod_time = *uint;
20507 break;
20508 case DW_LNCT_size:
20509 if (uint.has_value ())
20510 fe.length = *uint;
20511 break;
20512 case DW_LNCT_MD5:
20513 break;
20514 default:
20515 complaint (_("Unknown format content type %s"),
20516 pulongest (content_type));
20517 }
20518 }
20519
20520 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20521 }
20522
20523 *bufp = buf;
20524}
20525
20526/* Read the statement program header starting at OFFSET in
20527 .debug_line, or .debug_line.dwo. Return a pointer
20528 to a struct line_header, allocated using xmalloc.
20529 Returns NULL if there is a problem reading the header, e.g., if it
20530 has a version we don't understand.
20531
20532 NOTE: the strings in the include directory and file name tables of
20533 the returned object point into the dwarf line section buffer,
20534 and must not be freed. */
20535
20536static line_header_up
20537dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20538{
20539 const gdb_byte *line_ptr;
20540 unsigned int bytes_read, offset_size;
20541 int i;
20542 const char *cur_dir, *cur_file;
20543 struct dwarf2_section_info *section;
20544 bfd *abfd;
20545 struct dwarf2_per_objfile *dwarf2_per_objfile
20546 = cu->per_cu->dwarf2_per_objfile;
20547
20548 section = get_debug_line_section (cu);
20549 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20550 if (section->buffer == NULL)
20551 {
20552 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20553 complaint (_("missing .debug_line.dwo section"));
20554 else
20555 complaint (_("missing .debug_line section"));
20556 return 0;
20557 }
20558
20559 /* We can't do this until we know the section is non-empty.
20560 Only then do we know we have such a section. */
20561 abfd = get_section_bfd_owner (section);
20562
20563 /* Make sure that at least there's room for the total_length field.
20564 That could be 12 bytes long, but we're just going to fudge that. */
20565 if (to_underlying (sect_off) + 4 >= section->size)
20566 {
20567 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20568 return 0;
20569 }
20570
20571 line_header_up lh (new line_header ());
20572
20573 lh->sect_off = sect_off;
20574 lh->offset_in_dwz = cu->per_cu->is_dwz;
20575
20576 line_ptr = section->buffer + to_underlying (sect_off);
20577
20578 /* Read in the header. */
20579 lh->total_length =
20580 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20581 &bytes_read, &offset_size);
20582 line_ptr += bytes_read;
20583
20584 const gdb_byte *start_here = line_ptr;
20585
20586 if (line_ptr + lh->total_length > (section->buffer + section->size))
20587 {
20588 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20589 return 0;
20590 }
20591 lh->statement_program_end = start_here + lh->total_length;
20592 lh->version = read_2_bytes (abfd, line_ptr);
20593 line_ptr += 2;
20594 if (lh->version > 5)
20595 {
20596 /* This is a version we don't understand. The format could have
20597 changed in ways we don't handle properly so just punt. */
20598 complaint (_("unsupported version in .debug_line section"));
20599 return NULL;
20600 }
20601 if (lh->version >= 5)
20602 {
20603 gdb_byte segment_selector_size;
20604
20605 /* Skip address size. */
20606 read_1_byte (abfd, line_ptr);
20607 line_ptr += 1;
20608
20609 segment_selector_size = read_1_byte (abfd, line_ptr);
20610 line_ptr += 1;
20611 if (segment_selector_size != 0)
20612 {
20613 complaint (_("unsupported segment selector size %u "
20614 "in .debug_line section"),
20615 segment_selector_size);
20616 return NULL;
20617 }
20618 }
20619 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20620 line_ptr += offset_size;
20621 lh->statement_program_start = line_ptr + lh->header_length;
20622 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20623 line_ptr += 1;
20624 if (lh->version >= 4)
20625 {
20626 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20627 line_ptr += 1;
20628 }
20629 else
20630 lh->maximum_ops_per_instruction = 1;
20631
20632 if (lh->maximum_ops_per_instruction == 0)
20633 {
20634 lh->maximum_ops_per_instruction = 1;
20635 complaint (_("invalid maximum_ops_per_instruction "
20636 "in `.debug_line' section"));
20637 }
20638
20639 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20640 line_ptr += 1;
20641 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20642 line_ptr += 1;
20643 lh->line_range = read_1_byte (abfd, line_ptr);
20644 line_ptr += 1;
20645 lh->opcode_base = read_1_byte (abfd, line_ptr);
20646 line_ptr += 1;
20647 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20648
20649 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20650 for (i = 1; i < lh->opcode_base; ++i)
20651 {
20652 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20653 line_ptr += 1;
20654 }
20655
20656 if (lh->version >= 5)
20657 {
20658 /* Read directory table. */
20659 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20660 &cu->header,
20661 [] (struct line_header *header, const char *name,
20662 dir_index d_index, unsigned int mod_time,
20663 unsigned int length)
20664 {
20665 header->add_include_dir (name);
20666 });
20667
20668 /* Read file name table. */
20669 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20670 &cu->header,
20671 [] (struct line_header *header, const char *name,
20672 dir_index d_index, unsigned int mod_time,
20673 unsigned int length)
20674 {
20675 header->add_file_name (name, d_index, mod_time, length);
20676 });
20677 }
20678 else
20679 {
20680 /* Read directory table. */
20681 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20682 {
20683 line_ptr += bytes_read;
20684 lh->add_include_dir (cur_dir);
20685 }
20686 line_ptr += bytes_read;
20687
20688 /* Read file name table. */
20689 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20690 {
20691 unsigned int mod_time, length;
20692 dir_index d_index;
20693
20694 line_ptr += bytes_read;
20695 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20696 line_ptr += bytes_read;
20697 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20698 line_ptr += bytes_read;
20699 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20700 line_ptr += bytes_read;
20701
20702 lh->add_file_name (cur_file, d_index, mod_time, length);
20703 }
20704 line_ptr += bytes_read;
20705 }
20706
20707 if (line_ptr > (section->buffer + section->size))
20708 complaint (_("line number info header doesn't "
20709 "fit in `.debug_line' section"));
20710
20711 return lh;
20712}
20713
20714/* Subroutine of dwarf_decode_lines to simplify it.
20715 Return the file name of the psymtab for the given file_entry.
20716 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20717 If space for the result is malloc'd, *NAME_HOLDER will be set.
20718 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20719
20720static const char *
20721psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20722 const struct partial_symtab *pst,
20723 const char *comp_dir,
20724 gdb::unique_xmalloc_ptr<char> *name_holder)
20725{
20726 const char *include_name = fe.name;
20727 const char *include_name_to_compare = include_name;
20728 const char *pst_filename;
20729 int file_is_pst;
20730
20731 const char *dir_name = fe.include_dir (lh);
20732
20733 gdb::unique_xmalloc_ptr<char> hold_compare;
20734 if (!IS_ABSOLUTE_PATH (include_name)
20735 && (dir_name != NULL || comp_dir != NULL))
20736 {
20737 /* Avoid creating a duplicate psymtab for PST.
20738 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20739 Before we do the comparison, however, we need to account
20740 for DIR_NAME and COMP_DIR.
20741 First prepend dir_name (if non-NULL). If we still don't
20742 have an absolute path prepend comp_dir (if non-NULL).
20743 However, the directory we record in the include-file's
20744 psymtab does not contain COMP_DIR (to match the
20745 corresponding symtab(s)).
20746
20747 Example:
20748
20749 bash$ cd /tmp
20750 bash$ gcc -g ./hello.c
20751 include_name = "hello.c"
20752 dir_name = "."
20753 DW_AT_comp_dir = comp_dir = "/tmp"
20754 DW_AT_name = "./hello.c"
20755
20756 */
20757
20758 if (dir_name != NULL)
20759 {
20760 name_holder->reset (concat (dir_name, SLASH_STRING,
20761 include_name, (char *) NULL));
20762 include_name = name_holder->get ();
20763 include_name_to_compare = include_name;
20764 }
20765 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20766 {
20767 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20768 include_name, (char *) NULL));
20769 include_name_to_compare = hold_compare.get ();
20770 }
20771 }
20772
20773 pst_filename = pst->filename;
20774 gdb::unique_xmalloc_ptr<char> copied_name;
20775 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20776 {
20777 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20778 pst_filename, (char *) NULL));
20779 pst_filename = copied_name.get ();
20780 }
20781
20782 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20783
20784 if (file_is_pst)
20785 return NULL;
20786 return include_name;
20787}
20788
20789/* State machine to track the state of the line number program. */
20790
20791class lnp_state_machine
20792{
20793public:
20794 /* Initialize a machine state for the start of a line number
20795 program. */
20796 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20797 bool record_lines_p);
20798
20799 file_entry *current_file ()
20800 {
20801 /* lh->file_names is 0-based, but the file name numbers in the
20802 statement program are 1-based. */
20803 return m_line_header->file_name_at (m_file);
20804 }
20805
20806 /* Record the line in the state machine. END_SEQUENCE is true if
20807 we're processing the end of a sequence. */
20808 void record_line (bool end_sequence);
20809
20810 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20811 nop-out rest of the lines in this sequence. */
20812 void check_line_address (struct dwarf2_cu *cu,
20813 const gdb_byte *line_ptr,
20814 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20815
20816 void handle_set_discriminator (unsigned int discriminator)
20817 {
20818 m_discriminator = discriminator;
20819 m_line_has_non_zero_discriminator |= discriminator != 0;
20820 }
20821
20822 /* Handle DW_LNE_set_address. */
20823 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20824 {
20825 m_op_index = 0;
20826 address += baseaddr;
20827 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20828 }
20829
20830 /* Handle DW_LNS_advance_pc. */
20831 void handle_advance_pc (CORE_ADDR adjust);
20832
20833 /* Handle a special opcode. */
20834 void handle_special_opcode (unsigned char op_code);
20835
20836 /* Handle DW_LNS_advance_line. */
20837 void handle_advance_line (int line_delta)
20838 {
20839 advance_line (line_delta);
20840 }
20841
20842 /* Handle DW_LNS_set_file. */
20843 void handle_set_file (file_name_index file);
20844
20845 /* Handle DW_LNS_negate_stmt. */
20846 void handle_negate_stmt ()
20847 {
20848 m_is_stmt = !m_is_stmt;
20849 }
20850
20851 /* Handle DW_LNS_const_add_pc. */
20852 void handle_const_add_pc ();
20853
20854 /* Handle DW_LNS_fixed_advance_pc. */
20855 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20856 {
20857 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20858 m_op_index = 0;
20859 }
20860
20861 /* Handle DW_LNS_copy. */
20862 void handle_copy ()
20863 {
20864 record_line (false);
20865 m_discriminator = 0;
20866 }
20867
20868 /* Handle DW_LNE_end_sequence. */
20869 void handle_end_sequence ()
20870 {
20871 m_currently_recording_lines = true;
20872 }
20873
20874private:
20875 /* Advance the line by LINE_DELTA. */
20876 void advance_line (int line_delta)
20877 {
20878 m_line += line_delta;
20879
20880 if (line_delta != 0)
20881 m_line_has_non_zero_discriminator = m_discriminator != 0;
20882 }
20883
20884 struct dwarf2_cu *m_cu;
20885
20886 gdbarch *m_gdbarch;
20887
20888 /* True if we're recording lines.
20889 Otherwise we're building partial symtabs and are just interested in
20890 finding include files mentioned by the line number program. */
20891 bool m_record_lines_p;
20892
20893 /* The line number header. */
20894 line_header *m_line_header;
20895
20896 /* These are part of the standard DWARF line number state machine,
20897 and initialized according to the DWARF spec. */
20898
20899 unsigned char m_op_index = 0;
20900 /* The line table index of the current file. */
20901 file_name_index m_file = 1;
20902 unsigned int m_line = 1;
20903
20904 /* These are initialized in the constructor. */
20905
20906 CORE_ADDR m_address;
20907 bool m_is_stmt;
20908 unsigned int m_discriminator;
20909
20910 /* Additional bits of state we need to track. */
20911
20912 /* The last file that we called dwarf2_start_subfile for.
20913 This is only used for TLLs. */
20914 unsigned int m_last_file = 0;
20915 /* The last file a line number was recorded for. */
20916 struct subfile *m_last_subfile = NULL;
20917
20918 /* When true, record the lines we decode. */
20919 bool m_currently_recording_lines = false;
20920
20921 /* The last line number that was recorded, used to coalesce
20922 consecutive entries for the same line. This can happen, for
20923 example, when discriminators are present. PR 17276. */
20924 unsigned int m_last_line = 0;
20925 bool m_line_has_non_zero_discriminator = false;
20926};
20927
20928void
20929lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20930{
20931 CORE_ADDR addr_adj = (((m_op_index + adjust)
20932 / m_line_header->maximum_ops_per_instruction)
20933 * m_line_header->minimum_instruction_length);
20934 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20935 m_op_index = ((m_op_index + adjust)
20936 % m_line_header->maximum_ops_per_instruction);
20937}
20938
20939void
20940lnp_state_machine::handle_special_opcode (unsigned char op_code)
20941{
20942 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20943 CORE_ADDR addr_adj = (((m_op_index
20944 + (adj_opcode / m_line_header->line_range))
20945 / m_line_header->maximum_ops_per_instruction)
20946 * m_line_header->minimum_instruction_length);
20947 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20948 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20949 % m_line_header->maximum_ops_per_instruction);
20950
20951 int line_delta = (m_line_header->line_base
20952 + (adj_opcode % m_line_header->line_range));
20953 advance_line (line_delta);
20954 record_line (false);
20955 m_discriminator = 0;
20956}
20957
20958void
20959lnp_state_machine::handle_set_file (file_name_index file)
20960{
20961 m_file = file;
20962
20963 const file_entry *fe = current_file ();
20964 if (fe == NULL)
20965 dwarf2_debug_line_missing_file_complaint ();
20966 else if (m_record_lines_p)
20967 {
20968 const char *dir = fe->include_dir (m_line_header);
20969
20970 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20971 m_line_has_non_zero_discriminator = m_discriminator != 0;
20972 dwarf2_start_subfile (m_cu, fe->name, dir);
20973 }
20974}
20975
20976void
20977lnp_state_machine::handle_const_add_pc ()
20978{
20979 CORE_ADDR adjust
20980 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20981
20982 CORE_ADDR addr_adj
20983 = (((m_op_index + adjust)
20984 / m_line_header->maximum_ops_per_instruction)
20985 * m_line_header->minimum_instruction_length);
20986
20987 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20988 m_op_index = ((m_op_index + adjust)
20989 % m_line_header->maximum_ops_per_instruction);
20990}
20991
20992/* Return non-zero if we should add LINE to the line number table.
20993 LINE is the line to add, LAST_LINE is the last line that was added,
20994 LAST_SUBFILE is the subfile for LAST_LINE.
20995 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20996 had a non-zero discriminator.
20997
20998 We have to be careful in the presence of discriminators.
20999 E.g., for this line:
21000
21001 for (i = 0; i < 100000; i++);
21002
21003 clang can emit four line number entries for that one line,
21004 each with a different discriminator.
21005 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
21006
21007 However, we want gdb to coalesce all four entries into one.
21008 Otherwise the user could stepi into the middle of the line and
21009 gdb would get confused about whether the pc really was in the
21010 middle of the line.
21011
21012 Things are further complicated by the fact that two consecutive
21013 line number entries for the same line is a heuristic used by gcc
21014 to denote the end of the prologue. So we can't just discard duplicate
21015 entries, we have to be selective about it. The heuristic we use is
21016 that we only collapse consecutive entries for the same line if at least
21017 one of those entries has a non-zero discriminator. PR 17276.
21018
21019 Note: Addresses in the line number state machine can never go backwards
21020 within one sequence, thus this coalescing is ok. */
21021
21022static int
21023dwarf_record_line_p (struct dwarf2_cu *cu,
21024 unsigned int line, unsigned int last_line,
21025 int line_has_non_zero_discriminator,
21026 struct subfile *last_subfile)
21027{
21028 if (cu->get_builder ()->get_current_subfile () != last_subfile)
21029 return 1;
21030 if (line != last_line)
21031 return 1;
21032 /* Same line for the same file that we've seen already.
21033 As a last check, for pr 17276, only record the line if the line
21034 has never had a non-zero discriminator. */
21035 if (!line_has_non_zero_discriminator)
21036 return 1;
21037 return 0;
21038}
21039
21040/* Use the CU's builder to record line number LINE beginning at
21041 address ADDRESS in the line table of subfile SUBFILE. */
21042
21043static void
21044dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21045 unsigned int line, CORE_ADDR address,
21046 struct dwarf2_cu *cu)
21047{
21048 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21049
21050 if (dwarf_line_debug)
21051 {
21052 fprintf_unfiltered (gdb_stdlog,
21053 "Recording line %u, file %s, address %s\n",
21054 line, lbasename (subfile->name),
21055 paddress (gdbarch, address));
21056 }
21057
21058 if (cu != nullptr)
21059 cu->get_builder ()->record_line (subfile, line, addr);
21060}
21061
21062/* Subroutine of dwarf_decode_lines_1 to simplify it.
21063 Mark the end of a set of line number records.
21064 The arguments are the same as for dwarf_record_line_1.
21065 If SUBFILE is NULL the request is ignored. */
21066
21067static void
21068dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21069 CORE_ADDR address, struct dwarf2_cu *cu)
21070{
21071 if (subfile == NULL)
21072 return;
21073
21074 if (dwarf_line_debug)
21075 {
21076 fprintf_unfiltered (gdb_stdlog,
21077 "Finishing current line, file %s, address %s\n",
21078 lbasename (subfile->name),
21079 paddress (gdbarch, address));
21080 }
21081
21082 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
21083}
21084
21085void
21086lnp_state_machine::record_line (bool end_sequence)
21087{
21088 if (dwarf_line_debug)
21089 {
21090 fprintf_unfiltered (gdb_stdlog,
21091 "Processing actual line %u: file %u,"
21092 " address %s, is_stmt %u, discrim %u\n",
21093 m_line, m_file,
21094 paddress (m_gdbarch, m_address),
21095 m_is_stmt, m_discriminator);
21096 }
21097
21098 file_entry *fe = current_file ();
21099
21100 if (fe == NULL)
21101 dwarf2_debug_line_missing_file_complaint ();
21102 /* For now we ignore lines not starting on an instruction boundary.
21103 But not when processing end_sequence for compatibility with the
21104 previous version of the code. */
21105 else if (m_op_index == 0 || end_sequence)
21106 {
21107 fe->included_p = 1;
21108 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
21109 {
21110 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21111 || end_sequence)
21112 {
21113 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21114 m_currently_recording_lines ? m_cu : nullptr);
21115 }
21116
21117 if (!end_sequence)
21118 {
21119 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21120 m_line_has_non_zero_discriminator,
21121 m_last_subfile))
21122 {
21123 buildsym_compunit *builder = m_cu->get_builder ();
21124 dwarf_record_line_1 (m_gdbarch,
21125 builder->get_current_subfile (),
21126 m_line, m_address,
21127 m_currently_recording_lines ? m_cu : nullptr);
21128 }
21129 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21130 m_last_line = m_line;
21131 }
21132 }
21133 }
21134}
21135
21136lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21137 line_header *lh, bool record_lines_p)
21138{
21139 m_cu = cu;
21140 m_gdbarch = arch;
21141 m_record_lines_p = record_lines_p;
21142 m_line_header = lh;
21143
21144 m_currently_recording_lines = true;
21145
21146 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21147 was a line entry for it so that the backend has a chance to adjust it
21148 and also record it in case it needs it. This is currently used by MIPS
21149 code, cf. `mips_adjust_dwarf2_line'. */
21150 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21151 m_is_stmt = lh->default_is_stmt;
21152 m_discriminator = 0;
21153}
21154
21155void
21156lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21157 const gdb_byte *line_ptr,
21158 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21159{
21160 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21161 the pc range of the CU. However, we restrict the test to only ADDRESS
21162 values of zero to preserve GDB's previous behaviour which is to handle
21163 the specific case of a function being GC'd by the linker. */
21164
21165 if (address == 0 && address < unrelocated_lowpc)
21166 {
21167 /* This line table is for a function which has been
21168 GCd by the linker. Ignore it. PR gdb/12528 */
21169
21170 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21171 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21172
21173 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21174 line_offset, objfile_name (objfile));
21175 m_currently_recording_lines = false;
21176 /* Note: m_currently_recording_lines is left as false until we see
21177 DW_LNE_end_sequence. */
21178 }
21179}
21180
21181/* Subroutine of dwarf_decode_lines to simplify it.
21182 Process the line number information in LH.
21183 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21184 program in order to set included_p for every referenced header. */
21185
21186static void
21187dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21188 const int decode_for_pst_p, CORE_ADDR lowpc)
21189{
21190 const gdb_byte *line_ptr, *extended_end;
21191 const gdb_byte *line_end;
21192 unsigned int bytes_read, extended_len;
21193 unsigned char op_code, extended_op;
21194 CORE_ADDR baseaddr;
21195 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21196 bfd *abfd = objfile->obfd;
21197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21198 /* True if we're recording line info (as opposed to building partial
21199 symtabs and just interested in finding include files mentioned by
21200 the line number program). */
21201 bool record_lines_p = !decode_for_pst_p;
21202
21203 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21204
21205 line_ptr = lh->statement_program_start;
21206 line_end = lh->statement_program_end;
21207
21208 /* Read the statement sequences until there's nothing left. */
21209 while (line_ptr < line_end)
21210 {
21211 /* The DWARF line number program state machine. Reset the state
21212 machine at the start of each sequence. */
21213 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21214 bool end_sequence = false;
21215
21216 if (record_lines_p)
21217 {
21218 /* Start a subfile for the current file of the state
21219 machine. */
21220 const file_entry *fe = state_machine.current_file ();
21221
21222 if (fe != NULL)
21223 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21224 }
21225
21226 /* Decode the table. */
21227 while (line_ptr < line_end && !end_sequence)
21228 {
21229 op_code = read_1_byte (abfd, line_ptr);
21230 line_ptr += 1;
21231
21232 if (op_code >= lh->opcode_base)
21233 {
21234 /* Special opcode. */
21235 state_machine.handle_special_opcode (op_code);
21236 }
21237 else switch (op_code)
21238 {
21239 case DW_LNS_extended_op:
21240 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21241 &bytes_read);
21242 line_ptr += bytes_read;
21243 extended_end = line_ptr + extended_len;
21244 extended_op = read_1_byte (abfd, line_ptr);
21245 line_ptr += 1;
21246 switch (extended_op)
21247 {
21248 case DW_LNE_end_sequence:
21249 state_machine.handle_end_sequence ();
21250 end_sequence = true;
21251 break;
21252 case DW_LNE_set_address:
21253 {
21254 CORE_ADDR address
21255 = read_address (abfd, line_ptr, cu, &bytes_read);
21256 line_ptr += bytes_read;
21257
21258 state_machine.check_line_address (cu, line_ptr,
21259 lowpc - baseaddr, address);
21260 state_machine.handle_set_address (baseaddr, address);
21261 }
21262 break;
21263 case DW_LNE_define_file:
21264 {
21265 const char *cur_file;
21266 unsigned int mod_time, length;
21267 dir_index dindex;
21268
21269 cur_file = read_direct_string (abfd, line_ptr,
21270 &bytes_read);
21271 line_ptr += bytes_read;
21272 dindex = (dir_index)
21273 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21274 line_ptr += bytes_read;
21275 mod_time =
21276 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21277 line_ptr += bytes_read;
21278 length =
21279 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21280 line_ptr += bytes_read;
21281 lh->add_file_name (cur_file, dindex, mod_time, length);
21282 }
21283 break;
21284 case DW_LNE_set_discriminator:
21285 {
21286 /* The discriminator is not interesting to the
21287 debugger; just ignore it. We still need to
21288 check its value though:
21289 if there are consecutive entries for the same
21290 (non-prologue) line we want to coalesce them.
21291 PR 17276. */
21292 unsigned int discr
21293 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21294 line_ptr += bytes_read;
21295
21296 state_machine.handle_set_discriminator (discr);
21297 }
21298 break;
21299 default:
21300 complaint (_("mangled .debug_line section"));
21301 return;
21302 }
21303 /* Make sure that we parsed the extended op correctly. If e.g.
21304 we expected a different address size than the producer used,
21305 we may have read the wrong number of bytes. */
21306 if (line_ptr != extended_end)
21307 {
21308 complaint (_("mangled .debug_line section"));
21309 return;
21310 }
21311 break;
21312 case DW_LNS_copy:
21313 state_machine.handle_copy ();
21314 break;
21315 case DW_LNS_advance_pc:
21316 {
21317 CORE_ADDR adjust
21318 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21319 line_ptr += bytes_read;
21320
21321 state_machine.handle_advance_pc (adjust);
21322 }
21323 break;
21324 case DW_LNS_advance_line:
21325 {
21326 int line_delta
21327 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21328 line_ptr += bytes_read;
21329
21330 state_machine.handle_advance_line (line_delta);
21331 }
21332 break;
21333 case DW_LNS_set_file:
21334 {
21335 file_name_index file
21336 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21337 &bytes_read);
21338 line_ptr += bytes_read;
21339
21340 state_machine.handle_set_file (file);
21341 }
21342 break;
21343 case DW_LNS_set_column:
21344 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21345 line_ptr += bytes_read;
21346 break;
21347 case DW_LNS_negate_stmt:
21348 state_machine.handle_negate_stmt ();
21349 break;
21350 case DW_LNS_set_basic_block:
21351 break;
21352 /* Add to the address register of the state machine the
21353 address increment value corresponding to special opcode
21354 255. I.e., this value is scaled by the minimum
21355 instruction length since special opcode 255 would have
21356 scaled the increment. */
21357 case DW_LNS_const_add_pc:
21358 state_machine.handle_const_add_pc ();
21359 break;
21360 case DW_LNS_fixed_advance_pc:
21361 {
21362 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21363 line_ptr += 2;
21364
21365 state_machine.handle_fixed_advance_pc (addr_adj);
21366 }
21367 break;
21368 default:
21369 {
21370 /* Unknown standard opcode, ignore it. */
21371 int i;
21372
21373 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21374 {
21375 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21376 line_ptr += bytes_read;
21377 }
21378 }
21379 }
21380 }
21381
21382 if (!end_sequence)
21383 dwarf2_debug_line_missing_end_sequence_complaint ();
21384
21385 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21386 in which case we still finish recording the last line). */
21387 state_machine.record_line (true);
21388 }
21389}
21390
21391/* Decode the Line Number Program (LNP) for the given line_header
21392 structure and CU. The actual information extracted and the type
21393 of structures created from the LNP depends on the value of PST.
21394
21395 1. If PST is NULL, then this procedure uses the data from the program
21396 to create all necessary symbol tables, and their linetables.
21397
21398 2. If PST is not NULL, this procedure reads the program to determine
21399 the list of files included by the unit represented by PST, and
21400 builds all the associated partial symbol tables.
21401
21402 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21403 It is used for relative paths in the line table.
21404 NOTE: When processing partial symtabs (pst != NULL),
21405 comp_dir == pst->dirname.
21406
21407 NOTE: It is important that psymtabs have the same file name (via strcmp)
21408 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21409 symtab we don't use it in the name of the psymtabs we create.
21410 E.g. expand_line_sal requires this when finding psymtabs to expand.
21411 A good testcase for this is mb-inline.exp.
21412
21413 LOWPC is the lowest address in CU (or 0 if not known).
21414
21415 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21416 for its PC<->lines mapping information. Otherwise only the filename
21417 table is read in. */
21418
21419static void
21420dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21421 struct dwarf2_cu *cu, struct partial_symtab *pst,
21422 CORE_ADDR lowpc, int decode_mapping)
21423{
21424 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21425 const int decode_for_pst_p = (pst != NULL);
21426
21427 if (decode_mapping)
21428 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21429
21430 if (decode_for_pst_p)
21431 {
21432 /* Now that we're done scanning the Line Header Program, we can
21433 create the psymtab of each included file. */
21434 for (auto &file_entry : lh->file_names ())
21435 if (file_entry.included_p == 1)
21436 {
21437 gdb::unique_xmalloc_ptr<char> name_holder;
21438 const char *include_name =
21439 psymtab_include_file_name (lh, file_entry, pst,
21440 comp_dir, &name_holder);
21441 if (include_name != NULL)
21442 dwarf2_create_include_psymtab (include_name, pst, objfile);
21443 }
21444 }
21445 else
21446 {
21447 /* Make sure a symtab is created for every file, even files
21448 which contain only variables (i.e. no code with associated
21449 line numbers). */
21450 buildsym_compunit *builder = cu->get_builder ();
21451 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21452
21453 for (auto &fe : lh->file_names ())
21454 {
21455 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21456 if (builder->get_current_subfile ()->symtab == NULL)
21457 {
21458 builder->get_current_subfile ()->symtab
21459 = allocate_symtab (cust,
21460 builder->get_current_subfile ()->name);
21461 }
21462 fe.symtab = builder->get_current_subfile ()->symtab;
21463 }
21464 }
21465}
21466
21467/* Start a subfile for DWARF. FILENAME is the name of the file and
21468 DIRNAME the name of the source directory which contains FILENAME
21469 or NULL if not known.
21470 This routine tries to keep line numbers from identical absolute and
21471 relative file names in a common subfile.
21472
21473 Using the `list' example from the GDB testsuite, which resides in
21474 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21475 of /srcdir/list0.c yields the following debugging information for list0.c:
21476
21477 DW_AT_name: /srcdir/list0.c
21478 DW_AT_comp_dir: /compdir
21479 files.files[0].name: list0.h
21480 files.files[0].dir: /srcdir
21481 files.files[1].name: list0.c
21482 files.files[1].dir: /srcdir
21483
21484 The line number information for list0.c has to end up in a single
21485 subfile, so that `break /srcdir/list0.c:1' works as expected.
21486 start_subfile will ensure that this happens provided that we pass the
21487 concatenation of files.files[1].dir and files.files[1].name as the
21488 subfile's name. */
21489
21490static void
21491dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21492 const char *dirname)
21493{
21494 char *copy = NULL;
21495
21496 /* In order not to lose the line information directory,
21497 we concatenate it to the filename when it makes sense.
21498 Note that the Dwarf3 standard says (speaking of filenames in line
21499 information): ``The directory index is ignored for file names
21500 that represent full path names''. Thus ignoring dirname in the
21501 `else' branch below isn't an issue. */
21502
21503 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21504 {
21505 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21506 filename = copy;
21507 }
21508
21509 cu->get_builder ()->start_subfile (filename);
21510
21511 if (copy != NULL)
21512 xfree (copy);
21513}
21514
21515/* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21516 buildsym_compunit constructor. */
21517
21518struct compunit_symtab *
21519dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21520 CORE_ADDR low_pc)
21521{
21522 gdb_assert (m_builder == nullptr);
21523
21524 m_builder.reset (new struct buildsym_compunit
21525 (per_cu->dwarf2_per_objfile->objfile,
21526 name, comp_dir, language, low_pc));
21527
21528 list_in_scope = get_builder ()->get_file_symbols ();
21529
21530 get_builder ()->record_debugformat ("DWARF 2");
21531 get_builder ()->record_producer (producer);
21532
21533 processing_has_namespace_info = false;
21534
21535 return get_builder ()->get_compunit_symtab ();
21536}
21537
21538static void
21539var_decode_location (struct attribute *attr, struct symbol *sym,
21540 struct dwarf2_cu *cu)
21541{
21542 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21543 struct comp_unit_head *cu_header = &cu->header;
21544
21545 /* NOTE drow/2003-01-30: There used to be a comment and some special
21546 code here to turn a symbol with DW_AT_external and a
21547 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21548 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21549 with some versions of binutils) where shared libraries could have
21550 relocations against symbols in their debug information - the
21551 minimal symbol would have the right address, but the debug info
21552 would not. It's no longer necessary, because we will explicitly
21553 apply relocations when we read in the debug information now. */
21554
21555 /* A DW_AT_location attribute with no contents indicates that a
21556 variable has been optimized away. */
21557 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21558 {
21559 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21560 return;
21561 }
21562
21563 /* Handle one degenerate form of location expression specially, to
21564 preserve GDB's previous behavior when section offsets are
21565 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21566 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21567
21568 if (attr_form_is_block (attr)
21569 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21570 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21571 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21572 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21573 && (DW_BLOCK (attr)->size
21574 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21575 {
21576 unsigned int dummy;
21577
21578 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21579 SET_SYMBOL_VALUE_ADDRESS (sym,
21580 read_address (objfile->obfd,
21581 DW_BLOCK (attr)->data + 1,
21582 cu, &dummy));
21583 else
21584 SET_SYMBOL_VALUE_ADDRESS
21585 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21586 &dummy));
21587 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21588 fixup_symbol_section (sym, objfile);
21589 SET_SYMBOL_VALUE_ADDRESS (sym,
21590 SYMBOL_VALUE_ADDRESS (sym)
21591 + ANOFFSET (objfile->section_offsets,
21592 SYMBOL_SECTION (sym)));
21593 return;
21594 }
21595
21596 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21597 expression evaluator, and use LOC_COMPUTED only when necessary
21598 (i.e. when the value of a register or memory location is
21599 referenced, or a thread-local block, etc.). Then again, it might
21600 not be worthwhile. I'm assuming that it isn't unless performance
21601 or memory numbers show me otherwise. */
21602
21603 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21604
21605 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21606 cu->has_loclist = true;
21607}
21608
21609/* Given a pointer to a DWARF information entry, figure out if we need
21610 to make a symbol table entry for it, and if so, create a new entry
21611 and return a pointer to it.
21612 If TYPE is NULL, determine symbol type from the die, otherwise
21613 used the passed type.
21614 If SPACE is not NULL, use it to hold the new symbol. If it is
21615 NULL, allocate a new symbol on the objfile's obstack. */
21616
21617static struct symbol *
21618new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21619 struct symbol *space)
21620{
21621 struct dwarf2_per_objfile *dwarf2_per_objfile
21622 = cu->per_cu->dwarf2_per_objfile;
21623 struct objfile *objfile = dwarf2_per_objfile->objfile;
21624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21625 struct symbol *sym = NULL;
21626 const char *name;
21627 struct attribute *attr = NULL;
21628 struct attribute *attr2 = NULL;
21629 CORE_ADDR baseaddr;
21630 struct pending **list_to_add = NULL;
21631
21632 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21633
21634 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21635
21636 name = dwarf2_name (die, cu);
21637 if (name)
21638 {
21639 const char *linkagename;
21640 int suppress_add = 0;
21641
21642 if (space)
21643 sym = space;
21644 else
21645 sym = allocate_symbol (objfile);
21646 OBJSTAT (objfile, n_syms++);
21647
21648 /* Cache this symbol's name and the name's demangled form (if any). */
21649 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21650 linkagename = dwarf2_physname (name, die, cu);
21651 SYMBOL_SET_NAMES (sym, linkagename, false, objfile);
21652
21653 /* Fortran does not have mangling standard and the mangling does differ
21654 between gfortran, iFort etc. */
21655 if (cu->language == language_fortran
21656 && symbol_get_demangled_name (sym) == NULL)
21657 symbol_set_demangled_name (sym,
21658 dwarf2_full_name (name, die, cu),
21659 NULL);
21660
21661 /* Default assumptions.
21662 Use the passed type or decode it from the die. */
21663 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21664 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21665 if (type != NULL)
21666 SYMBOL_TYPE (sym) = type;
21667 else
21668 SYMBOL_TYPE (sym) = die_type (die, cu);
21669 attr = dwarf2_attr (die,
21670 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21671 cu);
21672 if (attr != nullptr)
21673 {
21674 SYMBOL_LINE (sym) = DW_UNSND (attr);
21675 }
21676
21677 attr = dwarf2_attr (die,
21678 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21679 cu);
21680 if (attr != nullptr)
21681 {
21682 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21683 struct file_entry *fe;
21684
21685 if (cu->line_header != NULL)
21686 fe = cu->line_header->file_name_at (file_index);
21687 else
21688 fe = NULL;
21689
21690 if (fe == NULL)
21691 complaint (_("file index out of range"));
21692 else
21693 symbol_set_symtab (sym, fe->symtab);
21694 }
21695
21696 switch (die->tag)
21697 {
21698 case DW_TAG_label:
21699 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21700 if (attr != nullptr)
21701 {
21702 CORE_ADDR addr;
21703
21704 addr = attr_value_as_address (attr);
21705 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21706 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21707 }
21708 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21709 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21710 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21711 add_symbol_to_list (sym, cu->list_in_scope);
21712 break;
21713 case DW_TAG_subprogram:
21714 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21715 finish_block. */
21716 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21717 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21718 if ((attr2 && (DW_UNSND (attr2) != 0))
21719 || cu->language == language_ada
21720 || cu->language == language_fortran)
21721 {
21722 /* Subprograms marked external are stored as a global symbol.
21723 Ada and Fortran subprograms, whether marked external or
21724 not, are always stored as a global symbol, because we want
21725 to be able to access them globally. For instance, we want
21726 to be able to break on a nested subprogram without having
21727 to specify the context. */
21728 list_to_add = cu->get_builder ()->get_global_symbols ();
21729 }
21730 else
21731 {
21732 list_to_add = cu->list_in_scope;
21733 }
21734 break;
21735 case DW_TAG_inlined_subroutine:
21736 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21737 finish_block. */
21738 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21739 SYMBOL_INLINED (sym) = 1;
21740 list_to_add = cu->list_in_scope;
21741 break;
21742 case DW_TAG_template_value_param:
21743 suppress_add = 1;
21744 /* Fall through. */
21745 case DW_TAG_constant:
21746 case DW_TAG_variable:
21747 case DW_TAG_member:
21748 /* Compilation with minimal debug info may result in
21749 variables with missing type entries. Change the
21750 misleading `void' type to something sensible. */
21751 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21752 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21753
21754 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21755 /* In the case of DW_TAG_member, we should only be called for
21756 static const members. */
21757 if (die->tag == DW_TAG_member)
21758 {
21759 /* dwarf2_add_field uses die_is_declaration,
21760 so we do the same. */
21761 gdb_assert (die_is_declaration (die, cu));
21762 gdb_assert (attr);
21763 }
21764 if (attr != nullptr)
21765 {
21766 dwarf2_const_value (attr, sym, cu);
21767 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21768 if (!suppress_add)
21769 {
21770 if (attr2 && (DW_UNSND (attr2) != 0))
21771 list_to_add = cu->get_builder ()->get_global_symbols ();
21772 else
21773 list_to_add = cu->list_in_scope;
21774 }
21775 break;
21776 }
21777 attr = dwarf2_attr (die, DW_AT_location, cu);
21778 if (attr != nullptr)
21779 {
21780 var_decode_location (attr, sym, cu);
21781 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21782
21783 /* Fortran explicitly imports any global symbols to the local
21784 scope by DW_TAG_common_block. */
21785 if (cu->language == language_fortran && die->parent
21786 && die->parent->tag == DW_TAG_common_block)
21787 attr2 = NULL;
21788
21789 if (SYMBOL_CLASS (sym) == LOC_STATIC
21790 && SYMBOL_VALUE_ADDRESS (sym) == 0
21791 && !dwarf2_per_objfile->has_section_at_zero)
21792 {
21793 /* When a static variable is eliminated by the linker,
21794 the corresponding debug information is not stripped
21795 out, but the variable address is set to null;
21796 do not add such variables into symbol table. */
21797 }
21798 else if (attr2 && (DW_UNSND (attr2) != 0))
21799 {
21800 if (SYMBOL_CLASS (sym) == LOC_STATIC
21801 && (objfile->flags & OBJF_MAINLINE) == 0
21802 && dwarf2_per_objfile->can_copy)
21803 {
21804 /* A global static variable might be subject to
21805 copy relocation. We first check for a local
21806 minsym, though, because maybe the symbol was
21807 marked hidden, in which case this would not
21808 apply. */
21809 bound_minimal_symbol found
21810 = (lookup_minimal_symbol_linkage
21811 (sym->linkage_name (), objfile));
21812 if (found.minsym != nullptr)
21813 sym->maybe_copied = 1;
21814 }
21815
21816 /* A variable with DW_AT_external is never static,
21817 but it may be block-scoped. */
21818 list_to_add
21819 = ((cu->list_in_scope
21820 == cu->get_builder ()->get_file_symbols ())
21821 ? cu->get_builder ()->get_global_symbols ()
21822 : cu->list_in_scope);
21823 }
21824 else
21825 list_to_add = cu->list_in_scope;
21826 }
21827 else
21828 {
21829 /* We do not know the address of this symbol.
21830 If it is an external symbol and we have type information
21831 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21832 The address of the variable will then be determined from
21833 the minimal symbol table whenever the variable is
21834 referenced. */
21835 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21836
21837 /* Fortran explicitly imports any global symbols to the local
21838 scope by DW_TAG_common_block. */
21839 if (cu->language == language_fortran && die->parent
21840 && die->parent->tag == DW_TAG_common_block)
21841 {
21842 /* SYMBOL_CLASS doesn't matter here because
21843 read_common_block is going to reset it. */
21844 if (!suppress_add)
21845 list_to_add = cu->list_in_scope;
21846 }
21847 else if (attr2 && (DW_UNSND (attr2) != 0)
21848 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21849 {
21850 /* A variable with DW_AT_external is never static, but it
21851 may be block-scoped. */
21852 list_to_add
21853 = ((cu->list_in_scope
21854 == cu->get_builder ()->get_file_symbols ())
21855 ? cu->get_builder ()->get_global_symbols ()
21856 : cu->list_in_scope);
21857
21858 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21859 }
21860 else if (!die_is_declaration (die, cu))
21861 {
21862 /* Use the default LOC_OPTIMIZED_OUT class. */
21863 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21864 if (!suppress_add)
21865 list_to_add = cu->list_in_scope;
21866 }
21867 }
21868 break;
21869 case DW_TAG_formal_parameter:
21870 {
21871 /* If we are inside a function, mark this as an argument. If
21872 not, we might be looking at an argument to an inlined function
21873 when we do not have enough information to show inlined frames;
21874 pretend it's a local variable in that case so that the user can
21875 still see it. */
21876 struct context_stack *curr
21877 = cu->get_builder ()->get_current_context_stack ();
21878 if (curr != nullptr && curr->name != nullptr)
21879 SYMBOL_IS_ARGUMENT (sym) = 1;
21880 attr = dwarf2_attr (die, DW_AT_location, cu);
21881 if (attr != nullptr)
21882 {
21883 var_decode_location (attr, sym, cu);
21884 }
21885 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21886 if (attr != nullptr)
21887 {
21888 dwarf2_const_value (attr, sym, cu);
21889 }
21890
21891 list_to_add = cu->list_in_scope;
21892 }
21893 break;
21894 case DW_TAG_unspecified_parameters:
21895 /* From varargs functions; gdb doesn't seem to have any
21896 interest in this information, so just ignore it for now.
21897 (FIXME?) */
21898 break;
21899 case DW_TAG_template_type_param:
21900 suppress_add = 1;
21901 /* Fall through. */
21902 case DW_TAG_class_type:
21903 case DW_TAG_interface_type:
21904 case DW_TAG_structure_type:
21905 case DW_TAG_union_type:
21906 case DW_TAG_set_type:
21907 case DW_TAG_enumeration_type:
21908 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21909 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21910
21911 {
21912 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21913 really ever be static objects: otherwise, if you try
21914 to, say, break of a class's method and you're in a file
21915 which doesn't mention that class, it won't work unless
21916 the check for all static symbols in lookup_symbol_aux
21917 saves you. See the OtherFileClass tests in
21918 gdb.c++/namespace.exp. */
21919
21920 if (!suppress_add)
21921 {
21922 buildsym_compunit *builder = cu->get_builder ();
21923 list_to_add
21924 = (cu->list_in_scope == builder->get_file_symbols ()
21925 && cu->language == language_cplus
21926 ? builder->get_global_symbols ()
21927 : cu->list_in_scope);
21928
21929 /* The semantics of C++ state that "struct foo {
21930 ... }" also defines a typedef for "foo". */
21931 if (cu->language == language_cplus
21932 || cu->language == language_ada
21933 || cu->language == language_d
21934 || cu->language == language_rust)
21935 {
21936 /* The symbol's name is already allocated along
21937 with this objfile, so we don't need to
21938 duplicate it for the type. */
21939 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21940 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
21941 }
21942 }
21943 }
21944 break;
21945 case DW_TAG_typedef:
21946 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21947 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21948 list_to_add = cu->list_in_scope;
21949 break;
21950 case DW_TAG_base_type:
21951 case DW_TAG_subrange_type:
21952 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21953 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21954 list_to_add = cu->list_in_scope;
21955 break;
21956 case DW_TAG_enumerator:
21957 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21958 if (attr != nullptr)
21959 {
21960 dwarf2_const_value (attr, sym, cu);
21961 }
21962 {
21963 /* NOTE: carlton/2003-11-10: See comment above in the
21964 DW_TAG_class_type, etc. block. */
21965
21966 list_to_add
21967 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21968 && cu->language == language_cplus
21969 ? cu->get_builder ()->get_global_symbols ()
21970 : cu->list_in_scope);
21971 }
21972 break;
21973 case DW_TAG_imported_declaration:
21974 case DW_TAG_namespace:
21975 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21976 list_to_add = cu->get_builder ()->get_global_symbols ();
21977 break;
21978 case DW_TAG_module:
21979 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21980 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21981 list_to_add = cu->get_builder ()->get_global_symbols ();
21982 break;
21983 case DW_TAG_common_block:
21984 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21985 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21986 add_symbol_to_list (sym, cu->list_in_scope);
21987 break;
21988 default:
21989 /* Not a tag we recognize. Hopefully we aren't processing
21990 trash data, but since we must specifically ignore things
21991 we don't recognize, there is nothing else we should do at
21992 this point. */
21993 complaint (_("unsupported tag: '%s'"),
21994 dwarf_tag_name (die->tag));
21995 break;
21996 }
21997
21998 if (suppress_add)
21999 {
22000 sym->hash_next = objfile->template_symbols;
22001 objfile->template_symbols = sym;
22002 list_to_add = NULL;
22003 }
22004
22005 if (list_to_add != NULL)
22006 add_symbol_to_list (sym, list_to_add);
22007
22008 /* For the benefit of old versions of GCC, check for anonymous
22009 namespaces based on the demangled name. */
22010 if (!cu->processing_has_namespace_info
22011 && cu->language == language_cplus)
22012 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
22013 }
22014 return (sym);
22015}
22016
22017/* Given an attr with a DW_FORM_dataN value in host byte order,
22018 zero-extend it as appropriate for the symbol's type. The DWARF
22019 standard (v4) is not entirely clear about the meaning of using
22020 DW_FORM_dataN for a constant with a signed type, where the type is
22021 wider than the data. The conclusion of a discussion on the DWARF
22022 list was that this is unspecified. We choose to always zero-extend
22023 because that is the interpretation long in use by GCC. */
22024
22025static gdb_byte *
22026dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
22027 struct dwarf2_cu *cu, LONGEST *value, int bits)
22028{
22029 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22030 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22031 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
22032 LONGEST l = DW_UNSND (attr);
22033
22034 if (bits < sizeof (*value) * 8)
22035 {
22036 l &= ((LONGEST) 1 << bits) - 1;
22037 *value = l;
22038 }
22039 else if (bits == sizeof (*value) * 8)
22040 *value = l;
22041 else
22042 {
22043 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22044 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22045 return bytes;
22046 }
22047
22048 return NULL;
22049}
22050
22051/* Read a constant value from an attribute. Either set *VALUE, or if
22052 the value does not fit in *VALUE, set *BYTES - either already
22053 allocated on the objfile obstack, or newly allocated on OBSTACK,
22054 or, set *BATON, if we translated the constant to a location
22055 expression. */
22056
22057static void
22058dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22059 const char *name, struct obstack *obstack,
22060 struct dwarf2_cu *cu,
22061 LONGEST *value, const gdb_byte **bytes,
22062 struct dwarf2_locexpr_baton **baton)
22063{
22064 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22065 struct comp_unit_head *cu_header = &cu->header;
22066 struct dwarf_block *blk;
22067 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22068 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22069
22070 *value = 0;
22071 *bytes = NULL;
22072 *baton = NULL;
22073
22074 switch (attr->form)
22075 {
22076 case DW_FORM_addr:
22077 case DW_FORM_addrx:
22078 case DW_FORM_GNU_addr_index:
22079 {
22080 gdb_byte *data;
22081
22082 if (TYPE_LENGTH (type) != cu_header->addr_size)
22083 dwarf2_const_value_length_mismatch_complaint (name,
22084 cu_header->addr_size,
22085 TYPE_LENGTH (type));
22086 /* Symbols of this form are reasonably rare, so we just
22087 piggyback on the existing location code rather than writing
22088 a new implementation of symbol_computed_ops. */
22089 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22090 (*baton)->per_cu = cu->per_cu;
22091 gdb_assert ((*baton)->per_cu);
22092
22093 (*baton)->size = 2 + cu_header->addr_size;
22094 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22095 (*baton)->data = data;
22096
22097 data[0] = DW_OP_addr;
22098 store_unsigned_integer (&data[1], cu_header->addr_size,
22099 byte_order, DW_ADDR (attr));
22100 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22101 }
22102 break;
22103 case DW_FORM_string:
22104 case DW_FORM_strp:
22105 case DW_FORM_strx:
22106 case DW_FORM_GNU_str_index:
22107 case DW_FORM_GNU_strp_alt:
22108 /* DW_STRING is already allocated on the objfile obstack, point
22109 directly to it. */
22110 *bytes = (const gdb_byte *) DW_STRING (attr);
22111 break;
22112 case DW_FORM_block1:
22113 case DW_FORM_block2:
22114 case DW_FORM_block4:
22115 case DW_FORM_block:
22116 case DW_FORM_exprloc:
22117 case DW_FORM_data16:
22118 blk = DW_BLOCK (attr);
22119 if (TYPE_LENGTH (type) != blk->size)
22120 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22121 TYPE_LENGTH (type));
22122 *bytes = blk->data;
22123 break;
22124
22125 /* The DW_AT_const_value attributes are supposed to carry the
22126 symbol's value "represented as it would be on the target
22127 architecture." By the time we get here, it's already been
22128 converted to host endianness, so we just need to sign- or
22129 zero-extend it as appropriate. */
22130 case DW_FORM_data1:
22131 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22132 break;
22133 case DW_FORM_data2:
22134 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22135 break;
22136 case DW_FORM_data4:
22137 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22138 break;
22139 case DW_FORM_data8:
22140 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22141 break;
22142
22143 case DW_FORM_sdata:
22144 case DW_FORM_implicit_const:
22145 *value = DW_SND (attr);
22146 break;
22147
22148 case DW_FORM_udata:
22149 *value = DW_UNSND (attr);
22150 break;
22151
22152 default:
22153 complaint (_("unsupported const value attribute form: '%s'"),
22154 dwarf_form_name (attr->form));
22155 *value = 0;
22156 break;
22157 }
22158}
22159
22160
22161/* Copy constant value from an attribute to a symbol. */
22162
22163static void
22164dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22165 struct dwarf2_cu *cu)
22166{
22167 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22168 LONGEST value;
22169 const gdb_byte *bytes;
22170 struct dwarf2_locexpr_baton *baton;
22171
22172 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22173 sym->print_name (),
22174 &objfile->objfile_obstack, cu,
22175 &value, &bytes, &baton);
22176
22177 if (baton != NULL)
22178 {
22179 SYMBOL_LOCATION_BATON (sym) = baton;
22180 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22181 }
22182 else if (bytes != NULL)
22183 {
22184 SYMBOL_VALUE_BYTES (sym) = bytes;
22185 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22186 }
22187 else
22188 {
22189 SYMBOL_VALUE (sym) = value;
22190 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22191 }
22192}
22193
22194/* Return the type of the die in question using its DW_AT_type attribute. */
22195
22196static struct type *
22197die_type (struct die_info *die, struct dwarf2_cu *cu)
22198{
22199 struct attribute *type_attr;
22200
22201 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22202 if (!type_attr)
22203 {
22204 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22205 /* A missing DW_AT_type represents a void type. */
22206 return objfile_type (objfile)->builtin_void;
22207 }
22208
22209 return lookup_die_type (die, type_attr, cu);
22210}
22211
22212/* True iff CU's producer generates GNAT Ada auxiliary information
22213 that allows to find parallel types through that information instead
22214 of having to do expensive parallel lookups by type name. */
22215
22216static int
22217need_gnat_info (struct dwarf2_cu *cu)
22218{
22219 /* Assume that the Ada compiler was GNAT, which always produces
22220 the auxiliary information. */
22221 return (cu->language == language_ada);
22222}
22223
22224/* Return the auxiliary type of the die in question using its
22225 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22226 attribute is not present. */
22227
22228static struct type *
22229die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22230{
22231 struct attribute *type_attr;
22232
22233 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22234 if (!type_attr)
22235 return NULL;
22236
22237 return lookup_die_type (die, type_attr, cu);
22238}
22239
22240/* If DIE has a descriptive_type attribute, then set the TYPE's
22241 descriptive type accordingly. */
22242
22243static void
22244set_descriptive_type (struct type *type, struct die_info *die,
22245 struct dwarf2_cu *cu)
22246{
22247 struct type *descriptive_type = die_descriptive_type (die, cu);
22248
22249 if (descriptive_type)
22250 {
22251 ALLOCATE_GNAT_AUX_TYPE (type);
22252 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22253 }
22254}
22255
22256/* Return the containing type of the die in question using its
22257 DW_AT_containing_type attribute. */
22258
22259static struct type *
22260die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22261{
22262 struct attribute *type_attr;
22263 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22264
22265 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22266 if (!type_attr)
22267 error (_("Dwarf Error: Problem turning containing type into gdb type "
22268 "[in module %s]"), objfile_name (objfile));
22269
22270 return lookup_die_type (die, type_attr, cu);
22271}
22272
22273/* Return an error marker type to use for the ill formed type in DIE/CU. */
22274
22275static struct type *
22276build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22277{
22278 struct dwarf2_per_objfile *dwarf2_per_objfile
22279 = cu->per_cu->dwarf2_per_objfile;
22280 struct objfile *objfile = dwarf2_per_objfile->objfile;
22281 char *saved;
22282
22283 std::string message
22284 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22285 objfile_name (objfile),
22286 sect_offset_str (cu->header.sect_off),
22287 sect_offset_str (die->sect_off));
22288 saved = obstack_strdup (&objfile->objfile_obstack, message);
22289
22290 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22291}
22292
22293/* Look up the type of DIE in CU using its type attribute ATTR.
22294 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22295 DW_AT_containing_type.
22296 If there is no type substitute an error marker. */
22297
22298static struct type *
22299lookup_die_type (struct die_info *die, const struct attribute *attr,
22300 struct dwarf2_cu *cu)
22301{
22302 struct dwarf2_per_objfile *dwarf2_per_objfile
22303 = cu->per_cu->dwarf2_per_objfile;
22304 struct objfile *objfile = dwarf2_per_objfile->objfile;
22305 struct type *this_type;
22306
22307 gdb_assert (attr->name == DW_AT_type
22308 || attr->name == DW_AT_GNAT_descriptive_type
22309 || attr->name == DW_AT_containing_type);
22310
22311 /* First see if we have it cached. */
22312
22313 if (attr->form == DW_FORM_GNU_ref_alt)
22314 {
22315 struct dwarf2_per_cu_data *per_cu;
22316 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22317
22318 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22319 dwarf2_per_objfile);
22320 this_type = get_die_type_at_offset (sect_off, per_cu);
22321 }
22322 else if (attr_form_is_ref (attr))
22323 {
22324 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22325
22326 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22327 }
22328 else if (attr->form == DW_FORM_ref_sig8)
22329 {
22330 ULONGEST signature = DW_SIGNATURE (attr);
22331
22332 return get_signatured_type (die, signature, cu);
22333 }
22334 else
22335 {
22336 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22337 " at %s [in module %s]"),
22338 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22339 objfile_name (objfile));
22340 return build_error_marker_type (cu, die);
22341 }
22342
22343 /* If not cached we need to read it in. */
22344
22345 if (this_type == NULL)
22346 {
22347 struct die_info *type_die = NULL;
22348 struct dwarf2_cu *type_cu = cu;
22349
22350 if (attr_form_is_ref (attr))
22351 type_die = follow_die_ref (die, attr, &type_cu);
22352 if (type_die == NULL)
22353 return build_error_marker_type (cu, die);
22354 /* If we find the type now, it's probably because the type came
22355 from an inter-CU reference and the type's CU got expanded before
22356 ours. */
22357 this_type = read_type_die (type_die, type_cu);
22358 }
22359
22360 /* If we still don't have a type use an error marker. */
22361
22362 if (this_type == NULL)
22363 return build_error_marker_type (cu, die);
22364
22365 return this_type;
22366}
22367
22368/* Return the type in DIE, CU.
22369 Returns NULL for invalid types.
22370
22371 This first does a lookup in die_type_hash,
22372 and only reads the die in if necessary.
22373
22374 NOTE: This can be called when reading in partial or full symbols. */
22375
22376static struct type *
22377read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22378{
22379 struct type *this_type;
22380
22381 this_type = get_die_type (die, cu);
22382 if (this_type)
22383 return this_type;
22384
22385 return read_type_die_1 (die, cu);
22386}
22387
22388/* Read the type in DIE, CU.
22389 Returns NULL for invalid types. */
22390
22391static struct type *
22392read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22393{
22394 struct type *this_type = NULL;
22395
22396 switch (die->tag)
22397 {
22398 case DW_TAG_class_type:
22399 case DW_TAG_interface_type:
22400 case DW_TAG_structure_type:
22401 case DW_TAG_union_type:
22402 this_type = read_structure_type (die, cu);
22403 break;
22404 case DW_TAG_enumeration_type:
22405 this_type = read_enumeration_type (die, cu);
22406 break;
22407 case DW_TAG_subprogram:
22408 case DW_TAG_subroutine_type:
22409 case DW_TAG_inlined_subroutine:
22410 this_type = read_subroutine_type (die, cu);
22411 break;
22412 case DW_TAG_array_type:
22413 this_type = read_array_type (die, cu);
22414 break;
22415 case DW_TAG_set_type:
22416 this_type = read_set_type (die, cu);
22417 break;
22418 case DW_TAG_pointer_type:
22419 this_type = read_tag_pointer_type (die, cu);
22420 break;
22421 case DW_TAG_ptr_to_member_type:
22422 this_type = read_tag_ptr_to_member_type (die, cu);
22423 break;
22424 case DW_TAG_reference_type:
22425 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22426 break;
22427 case DW_TAG_rvalue_reference_type:
22428 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22429 break;
22430 case DW_TAG_const_type:
22431 this_type = read_tag_const_type (die, cu);
22432 break;
22433 case DW_TAG_volatile_type:
22434 this_type = read_tag_volatile_type (die, cu);
22435 break;
22436 case DW_TAG_restrict_type:
22437 this_type = read_tag_restrict_type (die, cu);
22438 break;
22439 case DW_TAG_string_type:
22440 this_type = read_tag_string_type (die, cu);
22441 break;
22442 case DW_TAG_typedef:
22443 this_type = read_typedef (die, cu);
22444 break;
22445 case DW_TAG_subrange_type:
22446 this_type = read_subrange_type (die, cu);
22447 break;
22448 case DW_TAG_base_type:
22449 this_type = read_base_type (die, cu);
22450 break;
22451 case DW_TAG_unspecified_type:
22452 this_type = read_unspecified_type (die, cu);
22453 break;
22454 case DW_TAG_namespace:
22455 this_type = read_namespace_type (die, cu);
22456 break;
22457 case DW_TAG_module:
22458 this_type = read_module_type (die, cu);
22459 break;
22460 case DW_TAG_atomic_type:
22461 this_type = read_tag_atomic_type (die, cu);
22462 break;
22463 default:
22464 complaint (_("unexpected tag in read_type_die: '%s'"),
22465 dwarf_tag_name (die->tag));
22466 break;
22467 }
22468
22469 return this_type;
22470}
22471
22472/* See if we can figure out if the class lives in a namespace. We do
22473 this by looking for a member function; its demangled name will
22474 contain namespace info, if there is any.
22475 Return the computed name or NULL.
22476 Space for the result is allocated on the objfile's obstack.
22477 This is the full-die version of guess_partial_die_structure_name.
22478 In this case we know DIE has no useful parent. */
22479
22480static char *
22481guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22482{
22483 struct die_info *spec_die;
22484 struct dwarf2_cu *spec_cu;
22485 struct die_info *child;
22486 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22487
22488 spec_cu = cu;
22489 spec_die = die_specification (die, &spec_cu);
22490 if (spec_die != NULL)
22491 {
22492 die = spec_die;
22493 cu = spec_cu;
22494 }
22495
22496 for (child = die->child;
22497 child != NULL;
22498 child = child->sibling)
22499 {
22500 if (child->tag == DW_TAG_subprogram)
22501 {
22502 const char *linkage_name = dw2_linkage_name (child, cu);
22503
22504 if (linkage_name != NULL)
22505 {
22506 char *actual_name
22507 = language_class_name_from_physname (cu->language_defn,
22508 linkage_name);
22509 char *name = NULL;
22510
22511 if (actual_name != NULL)
22512 {
22513 const char *die_name = dwarf2_name (die, cu);
22514
22515 if (die_name != NULL
22516 && strcmp (die_name, actual_name) != 0)
22517 {
22518 /* Strip off the class name from the full name.
22519 We want the prefix. */
22520 int die_name_len = strlen (die_name);
22521 int actual_name_len = strlen (actual_name);
22522
22523 /* Test for '::' as a sanity check. */
22524 if (actual_name_len > die_name_len + 2
22525 && actual_name[actual_name_len
22526 - die_name_len - 1] == ':')
22527 name = obstack_strndup (
22528 &objfile->per_bfd->storage_obstack,
22529 actual_name, actual_name_len - die_name_len - 2);
22530 }
22531 }
22532 xfree (actual_name);
22533 return name;
22534 }
22535 }
22536 }
22537
22538 return NULL;
22539}
22540
22541/* GCC might emit a nameless typedef that has a linkage name. Determine the
22542 prefix part in such case. See
22543 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22544
22545static const char *
22546anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22547{
22548 struct attribute *attr;
22549 const char *base;
22550
22551 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22552 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22553 return NULL;
22554
22555 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22556 return NULL;
22557
22558 attr = dw2_linkage_name_attr (die, cu);
22559 if (attr == NULL || DW_STRING (attr) == NULL)
22560 return NULL;
22561
22562 /* dwarf2_name had to be already called. */
22563 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22564
22565 /* Strip the base name, keep any leading namespaces/classes. */
22566 base = strrchr (DW_STRING (attr), ':');
22567 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22568 return "";
22569
22570 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22571 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22572 DW_STRING (attr),
22573 &base[-1] - DW_STRING (attr));
22574}
22575
22576/* Return the name of the namespace/class that DIE is defined within,
22577 or "" if we can't tell. The caller should not xfree the result.
22578
22579 For example, if we're within the method foo() in the following
22580 code:
22581
22582 namespace N {
22583 class C {
22584 void foo () {
22585 }
22586 };
22587 }
22588
22589 then determine_prefix on foo's die will return "N::C". */
22590
22591static const char *
22592determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22593{
22594 struct dwarf2_per_objfile *dwarf2_per_objfile
22595 = cu->per_cu->dwarf2_per_objfile;
22596 struct die_info *parent, *spec_die;
22597 struct dwarf2_cu *spec_cu;
22598 struct type *parent_type;
22599 const char *retval;
22600
22601 if (cu->language != language_cplus
22602 && cu->language != language_fortran && cu->language != language_d
22603 && cu->language != language_rust)
22604 return "";
22605
22606 retval = anonymous_struct_prefix (die, cu);
22607 if (retval)
22608 return retval;
22609
22610 /* We have to be careful in the presence of DW_AT_specification.
22611 For example, with GCC 3.4, given the code
22612
22613 namespace N {
22614 void foo() {
22615 // Definition of N::foo.
22616 }
22617 }
22618
22619 then we'll have a tree of DIEs like this:
22620
22621 1: DW_TAG_compile_unit
22622 2: DW_TAG_namespace // N
22623 3: DW_TAG_subprogram // declaration of N::foo
22624 4: DW_TAG_subprogram // definition of N::foo
22625 DW_AT_specification // refers to die #3
22626
22627 Thus, when processing die #4, we have to pretend that we're in
22628 the context of its DW_AT_specification, namely the contex of die
22629 #3. */
22630 spec_cu = cu;
22631 spec_die = die_specification (die, &spec_cu);
22632 if (spec_die == NULL)
22633 parent = die->parent;
22634 else
22635 {
22636 parent = spec_die->parent;
22637 cu = spec_cu;
22638 }
22639
22640 if (parent == NULL)
22641 return "";
22642 else if (parent->building_fullname)
22643 {
22644 const char *name;
22645 const char *parent_name;
22646
22647 /* It has been seen on RealView 2.2 built binaries,
22648 DW_TAG_template_type_param types actually _defined_ as
22649 children of the parent class:
22650
22651 enum E {};
22652 template class <class Enum> Class{};
22653 Class<enum E> class_e;
22654
22655 1: DW_TAG_class_type (Class)
22656 2: DW_TAG_enumeration_type (E)
22657 3: DW_TAG_enumerator (enum1:0)
22658 3: DW_TAG_enumerator (enum2:1)
22659 ...
22660 2: DW_TAG_template_type_param
22661 DW_AT_type DW_FORM_ref_udata (E)
22662
22663 Besides being broken debug info, it can put GDB into an
22664 infinite loop. Consider:
22665
22666 When we're building the full name for Class<E>, we'll start
22667 at Class, and go look over its template type parameters,
22668 finding E. We'll then try to build the full name of E, and
22669 reach here. We're now trying to build the full name of E,
22670 and look over the parent DIE for containing scope. In the
22671 broken case, if we followed the parent DIE of E, we'd again
22672 find Class, and once again go look at its template type
22673 arguments, etc., etc. Simply don't consider such parent die
22674 as source-level parent of this die (it can't be, the language
22675 doesn't allow it), and break the loop here. */
22676 name = dwarf2_name (die, cu);
22677 parent_name = dwarf2_name (parent, cu);
22678 complaint (_("template param type '%s' defined within parent '%s'"),
22679 name ? name : "<unknown>",
22680 parent_name ? parent_name : "<unknown>");
22681 return "";
22682 }
22683 else
22684 switch (parent->tag)
22685 {
22686 case DW_TAG_namespace:
22687 parent_type = read_type_die (parent, cu);
22688 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22689 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22690 Work around this problem here. */
22691 if (cu->language == language_cplus
22692 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22693 return "";
22694 /* We give a name to even anonymous namespaces. */
22695 return TYPE_NAME (parent_type);
22696 case DW_TAG_class_type:
22697 case DW_TAG_interface_type:
22698 case DW_TAG_structure_type:
22699 case DW_TAG_union_type:
22700 case DW_TAG_module:
22701 parent_type = read_type_die (parent, cu);
22702 if (TYPE_NAME (parent_type) != NULL)
22703 return TYPE_NAME (parent_type);
22704 else
22705 /* An anonymous structure is only allowed non-static data
22706 members; no typedefs, no member functions, et cetera.
22707 So it does not need a prefix. */
22708 return "";
22709 case DW_TAG_compile_unit:
22710 case DW_TAG_partial_unit:
22711 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22712 if (cu->language == language_cplus
22713 && !dwarf2_per_objfile->types.empty ()
22714 && die->child != NULL
22715 && (die->tag == DW_TAG_class_type
22716 || die->tag == DW_TAG_structure_type
22717 || die->tag == DW_TAG_union_type))
22718 {
22719 char *name = guess_full_die_structure_name (die, cu);
22720 if (name != NULL)
22721 return name;
22722 }
22723 return "";
22724 case DW_TAG_subprogram:
22725 /* Nested subroutines in Fortran get a prefix with the name
22726 of the parent's subroutine. */
22727 if (cu->language == language_fortran)
22728 {
22729 if ((die->tag == DW_TAG_subprogram)
22730 && (dwarf2_name (parent, cu) != NULL))
22731 return dwarf2_name (parent, cu);
22732 }
22733 return determine_prefix (parent, cu);
22734 case DW_TAG_enumeration_type:
22735 parent_type = read_type_die (parent, cu);
22736 if (TYPE_DECLARED_CLASS (parent_type))
22737 {
22738 if (TYPE_NAME (parent_type) != NULL)
22739 return TYPE_NAME (parent_type);
22740 return "";
22741 }
22742 /* Fall through. */
22743 default:
22744 return determine_prefix (parent, cu);
22745 }
22746}
22747
22748/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22749 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22750 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22751 an obconcat, otherwise allocate storage for the result. The CU argument is
22752 used to determine the language and hence, the appropriate separator. */
22753
22754#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22755
22756static char *
22757typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22758 int physname, struct dwarf2_cu *cu)
22759{
22760 const char *lead = "";
22761 const char *sep;
22762
22763 if (suffix == NULL || suffix[0] == '\0'
22764 || prefix == NULL || prefix[0] == '\0')
22765 sep = "";
22766 else if (cu->language == language_d)
22767 {
22768 /* For D, the 'main' function could be defined in any module, but it
22769 should never be prefixed. */
22770 if (strcmp (suffix, "D main") == 0)
22771 {
22772 prefix = "";
22773 sep = "";
22774 }
22775 else
22776 sep = ".";
22777 }
22778 else if (cu->language == language_fortran && physname)
22779 {
22780 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22781 DW_AT_MIPS_linkage_name is preferred and used instead. */
22782
22783 lead = "__";
22784 sep = "_MOD_";
22785 }
22786 else
22787 sep = "::";
22788
22789 if (prefix == NULL)
22790 prefix = "";
22791 if (suffix == NULL)
22792 suffix = "";
22793
22794 if (obs == NULL)
22795 {
22796 char *retval
22797 = ((char *)
22798 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22799
22800 strcpy (retval, lead);
22801 strcat (retval, prefix);
22802 strcat (retval, sep);
22803 strcat (retval, suffix);
22804 return retval;
22805 }
22806 else
22807 {
22808 /* We have an obstack. */
22809 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22810 }
22811}
22812
22813/* Return sibling of die, NULL if no sibling. */
22814
22815static struct die_info *
22816sibling_die (struct die_info *die)
22817{
22818 return die->sibling;
22819}
22820
22821/* Get name of a die, return NULL if not found. */
22822
22823static const char *
22824dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22825 struct obstack *obstack)
22826{
22827 if (name && cu->language == language_cplus)
22828 {
22829 std::string canon_name = cp_canonicalize_string (name);
22830
22831 if (!canon_name.empty ())
22832 {
22833 if (canon_name != name)
22834 name = obstack_strdup (obstack, canon_name);
22835 }
22836 }
22837
22838 return name;
22839}
22840
22841/* Get name of a die, return NULL if not found.
22842 Anonymous namespaces are converted to their magic string. */
22843
22844static const char *
22845dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22846{
22847 struct attribute *attr;
22848 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22849
22850 attr = dwarf2_attr (die, DW_AT_name, cu);
22851 if ((!attr || !DW_STRING (attr))
22852 && die->tag != DW_TAG_namespace
22853 && die->tag != DW_TAG_class_type
22854 && die->tag != DW_TAG_interface_type
22855 && die->tag != DW_TAG_structure_type
22856 && die->tag != DW_TAG_union_type)
22857 return NULL;
22858
22859 switch (die->tag)
22860 {
22861 case DW_TAG_compile_unit:
22862 case DW_TAG_partial_unit:
22863 /* Compilation units have a DW_AT_name that is a filename, not
22864 a source language identifier. */
22865 case DW_TAG_enumeration_type:
22866 case DW_TAG_enumerator:
22867 /* These tags always have simple identifiers already; no need
22868 to canonicalize them. */
22869 return DW_STRING (attr);
22870
22871 case DW_TAG_namespace:
22872 if (attr != NULL && DW_STRING (attr) != NULL)
22873 return DW_STRING (attr);
22874 return CP_ANONYMOUS_NAMESPACE_STR;
22875
22876 case DW_TAG_class_type:
22877 case DW_TAG_interface_type:
22878 case DW_TAG_structure_type:
22879 case DW_TAG_union_type:
22880 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22881 structures or unions. These were of the form "._%d" in GCC 4.1,
22882 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22883 and GCC 4.4. We work around this problem by ignoring these. */
22884 if (attr && DW_STRING (attr)
22885 && (startswith (DW_STRING (attr), "._")
22886 || startswith (DW_STRING (attr), "<anonymous")))
22887 return NULL;
22888
22889 /* GCC might emit a nameless typedef that has a linkage name. See
22890 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22891 if (!attr || DW_STRING (attr) == NULL)
22892 {
22893 char *demangled = NULL;
22894
22895 attr = dw2_linkage_name_attr (die, cu);
22896 if (attr == NULL || DW_STRING (attr) == NULL)
22897 return NULL;
22898
22899 /* Avoid demangling DW_STRING (attr) the second time on a second
22900 call for the same DIE. */
22901 if (!DW_STRING_IS_CANONICAL (attr))
22902 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22903
22904 if (demangled)
22905 {
22906 const char *base;
22907
22908 /* FIXME: we already did this for the partial symbol... */
22909 DW_STRING (attr)
22910 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22911 demangled);
22912 DW_STRING_IS_CANONICAL (attr) = 1;
22913 xfree (demangled);
22914
22915 /* Strip any leading namespaces/classes, keep only the base name.
22916 DW_AT_name for named DIEs does not contain the prefixes. */
22917 base = strrchr (DW_STRING (attr), ':');
22918 if (base && base > DW_STRING (attr) && base[-1] == ':')
22919 return &base[1];
22920 else
22921 return DW_STRING (attr);
22922 }
22923 }
22924 break;
22925
22926 default:
22927 break;
22928 }
22929
22930 if (!DW_STRING_IS_CANONICAL (attr))
22931 {
22932 DW_STRING (attr)
22933 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22934 &objfile->per_bfd->storage_obstack);
22935 DW_STRING_IS_CANONICAL (attr) = 1;
22936 }
22937 return DW_STRING (attr);
22938}
22939
22940/* Return the die that this die in an extension of, or NULL if there
22941 is none. *EXT_CU is the CU containing DIE on input, and the CU
22942 containing the return value on output. */
22943
22944static struct die_info *
22945dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22946{
22947 struct attribute *attr;
22948
22949 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22950 if (attr == NULL)
22951 return NULL;
22952
22953 return follow_die_ref (die, attr, ext_cu);
22954}
22955
22956/* A convenience function that returns an "unknown" DWARF name,
22957 including the value of V. STR is the name of the entity being
22958 printed, e.g., "TAG". */
22959
22960static const char *
22961dwarf_unknown (const char *str, unsigned v)
22962{
22963 char *cell = get_print_cell ();
22964 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22965 return cell;
22966}
22967
22968/* Convert a DIE tag into its string name. */
22969
22970static const char *
22971dwarf_tag_name (unsigned tag)
22972{
22973 const char *name = get_DW_TAG_name (tag);
22974
22975 if (name == NULL)
22976 return dwarf_unknown ("TAG", tag);
22977
22978 return name;
22979}
22980
22981/* Convert a DWARF attribute code into its string name. */
22982
22983static const char *
22984dwarf_attr_name (unsigned attr)
22985{
22986 const char *name;
22987
22988#ifdef MIPS /* collides with DW_AT_HP_block_index */
22989 if (attr == DW_AT_MIPS_fde)
22990 return "DW_AT_MIPS_fde";
22991#else
22992 if (attr == DW_AT_HP_block_index)
22993 return "DW_AT_HP_block_index";
22994#endif
22995
22996 name = get_DW_AT_name (attr);
22997
22998 if (name == NULL)
22999 return dwarf_unknown ("AT", attr);
23000
23001 return name;
23002}
23003
23004/* Convert a unit type to corresponding DW_UT name. */
23005
23006static const char *
23007dwarf_unit_type_name (int unit_type) {
23008 switch (unit_type)
23009 {
23010 case 0x01:
23011 return "DW_UT_compile (0x01)";
23012 case 0x02:
23013 return "DW_UT_type (0x02)";
23014 case 0x03:
23015 return "DW_UT_partial (0x03)";
23016 case 0x04:
23017 return "DW_UT_skeleton (0x04)";
23018 case 0x05:
23019 return "DW_UT_split_compile (0x05)";
23020 case 0x06:
23021 return "DW_UT_split_type (0x06)";
23022 case 0x80:
23023 return "DW_UT_lo_user (0x80)";
23024 case 0xff:
23025 return "DW_UT_hi_user (0xff)";
23026 default:
23027 return nullptr;
23028 }
23029}
23030
23031/* Convert a DWARF value form code into its string name. */
23032
23033static const char *
23034dwarf_form_name (unsigned form)
23035{
23036 const char *name = get_DW_FORM_name (form);
23037
23038 if (name == NULL)
23039 return dwarf_unknown ("FORM", form);
23040
23041 return name;
23042}
23043
23044static const char *
23045dwarf_bool_name (unsigned mybool)
23046{
23047 if (mybool)
23048 return "TRUE";
23049 else
23050 return "FALSE";
23051}
23052
23053/* Convert a DWARF type code into its string name. */
23054
23055static const char *
23056dwarf_type_encoding_name (unsigned enc)
23057{
23058 const char *name = get_DW_ATE_name (enc);
23059
23060 if (name == NULL)
23061 return dwarf_unknown ("ATE", enc);
23062
23063 return name;
23064}
23065
23066static void
23067dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23068{
23069 unsigned int i;
23070
23071 print_spaces (indent, f);
23072 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23073 dwarf_tag_name (die->tag), die->abbrev,
23074 sect_offset_str (die->sect_off));
23075
23076 if (die->parent != NULL)
23077 {
23078 print_spaces (indent, f);
23079 fprintf_unfiltered (f, " parent at offset: %s\n",
23080 sect_offset_str (die->parent->sect_off));
23081 }
23082
23083 print_spaces (indent, f);
23084 fprintf_unfiltered (f, " has children: %s\n",
23085 dwarf_bool_name (die->child != NULL));
23086
23087 print_spaces (indent, f);
23088 fprintf_unfiltered (f, " attributes:\n");
23089
23090 for (i = 0; i < die->num_attrs; ++i)
23091 {
23092 print_spaces (indent, f);
23093 fprintf_unfiltered (f, " %s (%s) ",
23094 dwarf_attr_name (die->attrs[i].name),
23095 dwarf_form_name (die->attrs[i].form));
23096
23097 switch (die->attrs[i].form)
23098 {
23099 case DW_FORM_addr:
23100 case DW_FORM_addrx:
23101 case DW_FORM_GNU_addr_index:
23102 fprintf_unfiltered (f, "address: ");
23103 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23104 break;
23105 case DW_FORM_block2:
23106 case DW_FORM_block4:
23107 case DW_FORM_block:
23108 case DW_FORM_block1:
23109 fprintf_unfiltered (f, "block: size %s",
23110 pulongest (DW_BLOCK (&die->attrs[i])->size));
23111 break;
23112 case DW_FORM_exprloc:
23113 fprintf_unfiltered (f, "expression: size %s",
23114 pulongest (DW_BLOCK (&die->attrs[i])->size));
23115 break;
23116 case DW_FORM_data16:
23117 fprintf_unfiltered (f, "constant of 16 bytes");
23118 break;
23119 case DW_FORM_ref_addr:
23120 fprintf_unfiltered (f, "ref address: ");
23121 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23122 break;
23123 case DW_FORM_GNU_ref_alt:
23124 fprintf_unfiltered (f, "alt ref address: ");
23125 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23126 break;
23127 case DW_FORM_ref1:
23128 case DW_FORM_ref2:
23129 case DW_FORM_ref4:
23130 case DW_FORM_ref8:
23131 case DW_FORM_ref_udata:
23132 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23133 (long) (DW_UNSND (&die->attrs[i])));
23134 break;
23135 case DW_FORM_data1:
23136 case DW_FORM_data2:
23137 case DW_FORM_data4:
23138 case DW_FORM_data8:
23139 case DW_FORM_udata:
23140 case DW_FORM_sdata:
23141 fprintf_unfiltered (f, "constant: %s",
23142 pulongest (DW_UNSND (&die->attrs[i])));
23143 break;
23144 case DW_FORM_sec_offset:
23145 fprintf_unfiltered (f, "section offset: %s",
23146 pulongest (DW_UNSND (&die->attrs[i])));
23147 break;
23148 case DW_FORM_ref_sig8:
23149 fprintf_unfiltered (f, "signature: %s",
23150 hex_string (DW_SIGNATURE (&die->attrs[i])));
23151 break;
23152 case DW_FORM_string:
23153 case DW_FORM_strp:
23154 case DW_FORM_line_strp:
23155 case DW_FORM_strx:
23156 case DW_FORM_GNU_str_index:
23157 case DW_FORM_GNU_strp_alt:
23158 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23159 DW_STRING (&die->attrs[i])
23160 ? DW_STRING (&die->attrs[i]) : "",
23161 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23162 break;
23163 case DW_FORM_flag:
23164 if (DW_UNSND (&die->attrs[i]))
23165 fprintf_unfiltered (f, "flag: TRUE");
23166 else
23167 fprintf_unfiltered (f, "flag: FALSE");
23168 break;
23169 case DW_FORM_flag_present:
23170 fprintf_unfiltered (f, "flag: TRUE");
23171 break;
23172 case DW_FORM_indirect:
23173 /* The reader will have reduced the indirect form to
23174 the "base form" so this form should not occur. */
23175 fprintf_unfiltered (f,
23176 "unexpected attribute form: DW_FORM_indirect");
23177 break;
23178 case DW_FORM_implicit_const:
23179 fprintf_unfiltered (f, "constant: %s",
23180 plongest (DW_SND (&die->attrs[i])));
23181 break;
23182 default:
23183 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23184 die->attrs[i].form);
23185 break;
23186 }
23187 fprintf_unfiltered (f, "\n");
23188 }
23189}
23190
23191static void
23192dump_die_for_error (struct die_info *die)
23193{
23194 dump_die_shallow (gdb_stderr, 0, die);
23195}
23196
23197static void
23198dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23199{
23200 int indent = level * 4;
23201
23202 gdb_assert (die != NULL);
23203
23204 if (level >= max_level)
23205 return;
23206
23207 dump_die_shallow (f, indent, die);
23208
23209 if (die->child != NULL)
23210 {
23211 print_spaces (indent, f);
23212 fprintf_unfiltered (f, " Children:");
23213 if (level + 1 < max_level)
23214 {
23215 fprintf_unfiltered (f, "\n");
23216 dump_die_1 (f, level + 1, max_level, die->child);
23217 }
23218 else
23219 {
23220 fprintf_unfiltered (f,
23221 " [not printed, max nesting level reached]\n");
23222 }
23223 }
23224
23225 if (die->sibling != NULL && level > 0)
23226 {
23227 dump_die_1 (f, level, max_level, die->sibling);
23228 }
23229}
23230
23231/* This is called from the pdie macro in gdbinit.in.
23232 It's not static so gcc will keep a copy callable from gdb. */
23233
23234void
23235dump_die (struct die_info *die, int max_level)
23236{
23237 dump_die_1 (gdb_stdlog, 0, max_level, die);
23238}
23239
23240static void
23241store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23242{
23243 void **slot;
23244
23245 slot = htab_find_slot_with_hash (cu->die_hash, die,
23246 to_underlying (die->sect_off),
23247 INSERT);
23248
23249 *slot = die;
23250}
23251
23252/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23253 required kind. */
23254
23255static sect_offset
23256dwarf2_get_ref_die_offset (const struct attribute *attr)
23257{
23258 if (attr_form_is_ref (attr))
23259 return (sect_offset) DW_UNSND (attr);
23260
23261 complaint (_("unsupported die ref attribute form: '%s'"),
23262 dwarf_form_name (attr->form));
23263 return {};
23264}
23265
23266/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23267 * the value held by the attribute is not constant. */
23268
23269static LONGEST
23270dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23271{
23272 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23273 return DW_SND (attr);
23274 else if (attr->form == DW_FORM_udata
23275 || attr->form == DW_FORM_data1
23276 || attr->form == DW_FORM_data2
23277 || attr->form == DW_FORM_data4
23278 || attr->form == DW_FORM_data8)
23279 return DW_UNSND (attr);
23280 else
23281 {
23282 /* For DW_FORM_data16 see attr_form_is_constant. */
23283 complaint (_("Attribute value is not a constant (%s)"),
23284 dwarf_form_name (attr->form));
23285 return default_value;
23286 }
23287}
23288
23289/* Follow reference or signature attribute ATTR of SRC_DIE.
23290 On entry *REF_CU is the CU of SRC_DIE.
23291 On exit *REF_CU is the CU of the result. */
23292
23293static struct die_info *
23294follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23295 struct dwarf2_cu **ref_cu)
23296{
23297 struct die_info *die;
23298
23299 if (attr_form_is_ref (attr))
23300 die = follow_die_ref (src_die, attr, ref_cu);
23301 else if (attr->form == DW_FORM_ref_sig8)
23302 die = follow_die_sig (src_die, attr, ref_cu);
23303 else
23304 {
23305 dump_die_for_error (src_die);
23306 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23307 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23308 }
23309
23310 return die;
23311}
23312
23313/* Follow reference OFFSET.
23314 On entry *REF_CU is the CU of the source die referencing OFFSET.
23315 On exit *REF_CU is the CU of the result.
23316 Returns NULL if OFFSET is invalid. */
23317
23318static struct die_info *
23319follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23320 struct dwarf2_cu **ref_cu)
23321{
23322 struct die_info temp_die;
23323 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23324 struct dwarf2_per_objfile *dwarf2_per_objfile
23325 = cu->per_cu->dwarf2_per_objfile;
23326
23327 gdb_assert (cu->per_cu != NULL);
23328
23329 target_cu = cu;
23330
23331 if (cu->per_cu->is_debug_types)
23332 {
23333 /* .debug_types CUs cannot reference anything outside their CU.
23334 If they need to, they have to reference a signatured type via
23335 DW_FORM_ref_sig8. */
23336 if (!offset_in_cu_p (&cu->header, sect_off))
23337 return NULL;
23338 }
23339 else if (offset_in_dwz != cu->per_cu->is_dwz
23340 || !offset_in_cu_p (&cu->header, sect_off))
23341 {
23342 struct dwarf2_per_cu_data *per_cu;
23343
23344 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23345 dwarf2_per_objfile);
23346
23347 /* If necessary, add it to the queue and load its DIEs. */
23348 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23349 load_full_comp_unit (per_cu, false, cu->language);
23350
23351 target_cu = per_cu->cu;
23352 }
23353 else if (cu->dies == NULL)
23354 {
23355 /* We're loading full DIEs during partial symbol reading. */
23356 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23357 load_full_comp_unit (cu->per_cu, false, language_minimal);
23358 }
23359
23360 *ref_cu = target_cu;
23361 temp_die.sect_off = sect_off;
23362
23363 if (target_cu != cu)
23364 target_cu->ancestor = cu;
23365
23366 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23367 &temp_die,
23368 to_underlying (sect_off));
23369}
23370
23371/* Follow reference attribute ATTR of SRC_DIE.
23372 On entry *REF_CU is the CU of SRC_DIE.
23373 On exit *REF_CU is the CU of the result. */
23374
23375static struct die_info *
23376follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23377 struct dwarf2_cu **ref_cu)
23378{
23379 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23380 struct dwarf2_cu *cu = *ref_cu;
23381 struct die_info *die;
23382
23383 die = follow_die_offset (sect_off,
23384 (attr->form == DW_FORM_GNU_ref_alt
23385 || cu->per_cu->is_dwz),
23386 ref_cu);
23387 if (!die)
23388 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23389 "at %s [in module %s]"),
23390 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23391 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23392
23393 return die;
23394}
23395
23396/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23397 Returned value is intended for DW_OP_call*. Returned
23398 dwarf2_locexpr_baton->data has lifetime of
23399 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23400
23401struct dwarf2_locexpr_baton
23402dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23403 struct dwarf2_per_cu_data *per_cu,
23404 CORE_ADDR (*get_frame_pc) (void *baton),
23405 void *baton, bool resolve_abstract_p)
23406{
23407 struct dwarf2_cu *cu;
23408 struct die_info *die;
23409 struct attribute *attr;
23410 struct dwarf2_locexpr_baton retval;
23411 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23412 struct objfile *objfile = dwarf2_per_objfile->objfile;
23413
23414 if (per_cu->cu == NULL)
23415 load_cu (per_cu, false);
23416 cu = per_cu->cu;
23417 if (cu == NULL)
23418 {
23419 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23420 Instead just throw an error, not much else we can do. */
23421 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23422 sect_offset_str (sect_off), objfile_name (objfile));
23423 }
23424
23425 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23426 if (!die)
23427 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23428 sect_offset_str (sect_off), objfile_name (objfile));
23429
23430 attr = dwarf2_attr (die, DW_AT_location, cu);
23431 if (!attr && resolve_abstract_p
23432 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23433 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23434 {
23435 CORE_ADDR pc = (*get_frame_pc) (baton);
23436 CORE_ADDR baseaddr
23437 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23438 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23439
23440 for (const auto &cand_off
23441 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23442 {
23443 struct dwarf2_cu *cand_cu = cu;
23444 struct die_info *cand
23445 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23446 if (!cand
23447 || !cand->parent
23448 || cand->parent->tag != DW_TAG_subprogram)
23449 continue;
23450
23451 CORE_ADDR pc_low, pc_high;
23452 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23453 if (pc_low == ((CORE_ADDR) -1))
23454 continue;
23455 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23456 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23457 if (!(pc_low <= pc && pc < pc_high))
23458 continue;
23459
23460 die = cand;
23461 attr = dwarf2_attr (die, DW_AT_location, cu);
23462 break;
23463 }
23464 }
23465
23466 if (!attr)
23467 {
23468 /* DWARF: "If there is no such attribute, then there is no effect.".
23469 DATA is ignored if SIZE is 0. */
23470
23471 retval.data = NULL;
23472 retval.size = 0;
23473 }
23474 else if (attr_form_is_section_offset (attr))
23475 {
23476 struct dwarf2_loclist_baton loclist_baton;
23477 CORE_ADDR pc = (*get_frame_pc) (baton);
23478 size_t size;
23479
23480 fill_in_loclist_baton (cu, &loclist_baton, attr);
23481
23482 retval.data = dwarf2_find_location_expression (&loclist_baton,
23483 &size, pc);
23484 retval.size = size;
23485 }
23486 else
23487 {
23488 if (!attr_form_is_block (attr))
23489 error (_("Dwarf Error: DIE at %s referenced in module %s "
23490 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23491 sect_offset_str (sect_off), objfile_name (objfile));
23492
23493 retval.data = DW_BLOCK (attr)->data;
23494 retval.size = DW_BLOCK (attr)->size;
23495 }
23496 retval.per_cu = cu->per_cu;
23497
23498 age_cached_comp_units (dwarf2_per_objfile);
23499
23500 return retval;
23501}
23502
23503/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23504 offset. */
23505
23506struct dwarf2_locexpr_baton
23507dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23508 struct dwarf2_per_cu_data *per_cu,
23509 CORE_ADDR (*get_frame_pc) (void *baton),
23510 void *baton)
23511{
23512 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23513
23514 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23515}
23516
23517/* Write a constant of a given type as target-ordered bytes into
23518 OBSTACK. */
23519
23520static const gdb_byte *
23521write_constant_as_bytes (struct obstack *obstack,
23522 enum bfd_endian byte_order,
23523 struct type *type,
23524 ULONGEST value,
23525 LONGEST *len)
23526{
23527 gdb_byte *result;
23528
23529 *len = TYPE_LENGTH (type);
23530 result = (gdb_byte *) obstack_alloc (obstack, *len);
23531 store_unsigned_integer (result, *len, byte_order, value);
23532
23533 return result;
23534}
23535
23536/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23537 pointer to the constant bytes and set LEN to the length of the
23538 data. If memory is needed, allocate it on OBSTACK. If the DIE
23539 does not have a DW_AT_const_value, return NULL. */
23540
23541const gdb_byte *
23542dwarf2_fetch_constant_bytes (sect_offset sect_off,
23543 struct dwarf2_per_cu_data *per_cu,
23544 struct obstack *obstack,
23545 LONGEST *len)
23546{
23547 struct dwarf2_cu *cu;
23548 struct die_info *die;
23549 struct attribute *attr;
23550 const gdb_byte *result = NULL;
23551 struct type *type;
23552 LONGEST value;
23553 enum bfd_endian byte_order;
23554 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23555
23556 if (per_cu->cu == NULL)
23557 load_cu (per_cu, false);
23558 cu = per_cu->cu;
23559 if (cu == NULL)
23560 {
23561 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23562 Instead just throw an error, not much else we can do. */
23563 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23564 sect_offset_str (sect_off), objfile_name (objfile));
23565 }
23566
23567 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23568 if (!die)
23569 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23570 sect_offset_str (sect_off), objfile_name (objfile));
23571
23572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23573 if (attr == NULL)
23574 return NULL;
23575
23576 byte_order = (bfd_big_endian (objfile->obfd)
23577 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23578
23579 switch (attr->form)
23580 {
23581 case DW_FORM_addr:
23582 case DW_FORM_addrx:
23583 case DW_FORM_GNU_addr_index:
23584 {
23585 gdb_byte *tem;
23586
23587 *len = cu->header.addr_size;
23588 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23589 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23590 result = tem;
23591 }
23592 break;
23593 case DW_FORM_string:
23594 case DW_FORM_strp:
23595 case DW_FORM_strx:
23596 case DW_FORM_GNU_str_index:
23597 case DW_FORM_GNU_strp_alt:
23598 /* DW_STRING is already allocated on the objfile obstack, point
23599 directly to it. */
23600 result = (const gdb_byte *) DW_STRING (attr);
23601 *len = strlen (DW_STRING (attr));
23602 break;
23603 case DW_FORM_block1:
23604 case DW_FORM_block2:
23605 case DW_FORM_block4:
23606 case DW_FORM_block:
23607 case DW_FORM_exprloc:
23608 case DW_FORM_data16:
23609 result = DW_BLOCK (attr)->data;
23610 *len = DW_BLOCK (attr)->size;
23611 break;
23612
23613 /* The DW_AT_const_value attributes are supposed to carry the
23614 symbol's value "represented as it would be on the target
23615 architecture." By the time we get here, it's already been
23616 converted to host endianness, so we just need to sign- or
23617 zero-extend it as appropriate. */
23618 case DW_FORM_data1:
23619 type = die_type (die, cu);
23620 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23621 if (result == NULL)
23622 result = write_constant_as_bytes (obstack, byte_order,
23623 type, value, len);
23624 break;
23625 case DW_FORM_data2:
23626 type = die_type (die, cu);
23627 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23628 if (result == NULL)
23629 result = write_constant_as_bytes (obstack, byte_order,
23630 type, value, len);
23631 break;
23632 case DW_FORM_data4:
23633 type = die_type (die, cu);
23634 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23635 if (result == NULL)
23636 result = write_constant_as_bytes (obstack, byte_order,
23637 type, value, len);
23638 break;
23639 case DW_FORM_data8:
23640 type = die_type (die, cu);
23641 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23642 if (result == NULL)
23643 result = write_constant_as_bytes (obstack, byte_order,
23644 type, value, len);
23645 break;
23646
23647 case DW_FORM_sdata:
23648 case DW_FORM_implicit_const:
23649 type = die_type (die, cu);
23650 result = write_constant_as_bytes (obstack, byte_order,
23651 type, DW_SND (attr), len);
23652 break;
23653
23654 case DW_FORM_udata:
23655 type = die_type (die, cu);
23656 result = write_constant_as_bytes (obstack, byte_order,
23657 type, DW_UNSND (attr), len);
23658 break;
23659
23660 default:
23661 complaint (_("unsupported const value attribute form: '%s'"),
23662 dwarf_form_name (attr->form));
23663 break;
23664 }
23665
23666 return result;
23667}
23668
23669/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23670 valid type for this die is found. */
23671
23672struct type *
23673dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23674 struct dwarf2_per_cu_data *per_cu)
23675{
23676 struct dwarf2_cu *cu;
23677 struct die_info *die;
23678
23679 if (per_cu->cu == NULL)
23680 load_cu (per_cu, false);
23681 cu = per_cu->cu;
23682 if (!cu)
23683 return NULL;
23684
23685 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23686 if (!die)
23687 return NULL;
23688
23689 return die_type (die, cu);
23690}
23691
23692/* Return the type of the DIE at DIE_OFFSET in the CU named by
23693 PER_CU. */
23694
23695struct type *
23696dwarf2_get_die_type (cu_offset die_offset,
23697 struct dwarf2_per_cu_data *per_cu)
23698{
23699 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23700 return get_die_type_at_offset (die_offset_sect, per_cu);
23701}
23702
23703/* Follow type unit SIG_TYPE referenced by SRC_DIE.
23704 On entry *REF_CU is the CU of SRC_DIE.
23705 On exit *REF_CU is the CU of the result.
23706 Returns NULL if the referenced DIE isn't found. */
23707
23708static struct die_info *
23709follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23710 struct dwarf2_cu **ref_cu)
23711{
23712 struct die_info temp_die;
23713 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23714 struct die_info *die;
23715
23716 /* While it might be nice to assert sig_type->type == NULL here,
23717 we can get here for DW_AT_imported_declaration where we need
23718 the DIE not the type. */
23719
23720 /* If necessary, add it to the queue and load its DIEs. */
23721
23722 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23723 read_signatured_type (sig_type);
23724
23725 sig_cu = sig_type->per_cu.cu;
23726 gdb_assert (sig_cu != NULL);
23727 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23728 temp_die.sect_off = sig_type->type_offset_in_section;
23729 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23730 to_underlying (temp_die.sect_off));
23731 if (die)
23732 {
23733 struct dwarf2_per_objfile *dwarf2_per_objfile
23734 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23735
23736 /* For .gdb_index version 7 keep track of included TUs.
23737 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23738 if (dwarf2_per_objfile->index_table != NULL
23739 && dwarf2_per_objfile->index_table->version <= 7)
23740 {
23741 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23742 }
23743
23744 *ref_cu = sig_cu;
23745 if (sig_cu != cu)
23746 sig_cu->ancestor = cu;
23747
23748 return die;
23749 }
23750
23751 return NULL;
23752}
23753
23754/* Follow signatured type referenced by ATTR in SRC_DIE.
23755 On entry *REF_CU is the CU of SRC_DIE.
23756 On exit *REF_CU is the CU of the result.
23757 The result is the DIE of the type.
23758 If the referenced type cannot be found an error is thrown. */
23759
23760static struct die_info *
23761follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23762 struct dwarf2_cu **ref_cu)
23763{
23764 ULONGEST signature = DW_SIGNATURE (attr);
23765 struct signatured_type *sig_type;
23766 struct die_info *die;
23767
23768 gdb_assert (attr->form == DW_FORM_ref_sig8);
23769
23770 sig_type = lookup_signatured_type (*ref_cu, signature);
23771 /* sig_type will be NULL if the signatured type is missing from
23772 the debug info. */
23773 if (sig_type == NULL)
23774 {
23775 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23776 " from DIE at %s [in module %s]"),
23777 hex_string (signature), sect_offset_str (src_die->sect_off),
23778 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23779 }
23780
23781 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23782 if (die == NULL)
23783 {
23784 dump_die_for_error (src_die);
23785 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23786 " from DIE at %s [in module %s]"),
23787 hex_string (signature), sect_offset_str (src_die->sect_off),
23788 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23789 }
23790
23791 return die;
23792}
23793
23794/* Get the type specified by SIGNATURE referenced in DIE/CU,
23795 reading in and processing the type unit if necessary. */
23796
23797static struct type *
23798get_signatured_type (struct die_info *die, ULONGEST signature,
23799 struct dwarf2_cu *cu)
23800{
23801 struct dwarf2_per_objfile *dwarf2_per_objfile
23802 = cu->per_cu->dwarf2_per_objfile;
23803 struct signatured_type *sig_type;
23804 struct dwarf2_cu *type_cu;
23805 struct die_info *type_die;
23806 struct type *type;
23807
23808 sig_type = lookup_signatured_type (cu, signature);
23809 /* sig_type will be NULL if the signatured type is missing from
23810 the debug info. */
23811 if (sig_type == NULL)
23812 {
23813 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23814 " from DIE at %s [in module %s]"),
23815 hex_string (signature), sect_offset_str (die->sect_off),
23816 objfile_name (dwarf2_per_objfile->objfile));
23817 return build_error_marker_type (cu, die);
23818 }
23819
23820 /* If we already know the type we're done. */
23821 if (sig_type->type != NULL)
23822 return sig_type->type;
23823
23824 type_cu = cu;
23825 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23826 if (type_die != NULL)
23827 {
23828 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23829 is created. This is important, for example, because for c++ classes
23830 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23831 type = read_type_die (type_die, type_cu);
23832 if (type == NULL)
23833 {
23834 complaint (_("Dwarf Error: Cannot build signatured type %s"
23835 " referenced from DIE at %s [in module %s]"),
23836 hex_string (signature), sect_offset_str (die->sect_off),
23837 objfile_name (dwarf2_per_objfile->objfile));
23838 type = build_error_marker_type (cu, die);
23839 }
23840 }
23841 else
23842 {
23843 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23844 " from DIE at %s [in module %s]"),
23845 hex_string (signature), sect_offset_str (die->sect_off),
23846 objfile_name (dwarf2_per_objfile->objfile));
23847 type = build_error_marker_type (cu, die);
23848 }
23849 sig_type->type = type;
23850
23851 return type;
23852}
23853
23854/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23855 reading in and processing the type unit if necessary. */
23856
23857static struct type *
23858get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23859 struct dwarf2_cu *cu) /* ARI: editCase function */
23860{
23861 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23862 if (attr_form_is_ref (attr))
23863 {
23864 struct dwarf2_cu *type_cu = cu;
23865 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23866
23867 return read_type_die (type_die, type_cu);
23868 }
23869 else if (attr->form == DW_FORM_ref_sig8)
23870 {
23871 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23872 }
23873 else
23874 {
23875 struct dwarf2_per_objfile *dwarf2_per_objfile
23876 = cu->per_cu->dwarf2_per_objfile;
23877
23878 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23879 " at %s [in module %s]"),
23880 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23881 objfile_name (dwarf2_per_objfile->objfile));
23882 return build_error_marker_type (cu, die);
23883 }
23884}
23885
23886/* Load the DIEs associated with type unit PER_CU into memory. */
23887
23888static void
23889load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23890{
23891 struct signatured_type *sig_type;
23892
23893 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23894 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23895
23896 /* We have the per_cu, but we need the signatured_type.
23897 Fortunately this is an easy translation. */
23898 gdb_assert (per_cu->is_debug_types);
23899 sig_type = (struct signatured_type *) per_cu;
23900
23901 gdb_assert (per_cu->cu == NULL);
23902
23903 read_signatured_type (sig_type);
23904
23905 gdb_assert (per_cu->cu != NULL);
23906}
23907
23908/* die_reader_func for read_signatured_type.
23909 This is identical to load_full_comp_unit_reader,
23910 but is kept separate for now. */
23911
23912static void
23913read_signatured_type_reader (const struct die_reader_specs *reader,
23914 const gdb_byte *info_ptr,
23915 struct die_info *comp_unit_die,
23916 int has_children,
23917 void *data)
23918{
23919 struct dwarf2_cu *cu = reader->cu;
23920
23921 gdb_assert (cu->die_hash == NULL);
23922 cu->die_hash =
23923 htab_create_alloc_ex (cu->header.length / 12,
23924 die_hash,
23925 die_eq,
23926 NULL,
23927 &cu->comp_unit_obstack,
23928 hashtab_obstack_allocate,
23929 dummy_obstack_deallocate);
23930
23931 if (has_children)
23932 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23933 &info_ptr, comp_unit_die);
23934 cu->dies = comp_unit_die;
23935 /* comp_unit_die is not stored in die_hash, no need. */
23936
23937 /* We try not to read any attributes in this function, because not
23938 all CUs needed for references have been loaded yet, and symbol
23939 table processing isn't initialized. But we have to set the CU language,
23940 or we won't be able to build types correctly.
23941 Similarly, if we do not read the producer, we can not apply
23942 producer-specific interpretation. */
23943 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23944}
23945
23946/* Read in a signatured type and build its CU and DIEs.
23947 If the type is a stub for the real type in a DWO file,
23948 read in the real type from the DWO file as well. */
23949
23950static void
23951read_signatured_type (struct signatured_type *sig_type)
23952{
23953 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23954
23955 gdb_assert (per_cu->is_debug_types);
23956 gdb_assert (per_cu->cu == NULL);
23957
23958 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23959 read_signatured_type_reader, NULL);
23960 sig_type->per_cu.tu_read = 1;
23961}
23962
23963/* Decode simple location descriptions.
23964 Given a pointer to a dwarf block that defines a location, compute
23965 the location and return the value.
23966
23967 NOTE drow/2003-11-18: This function is called in two situations
23968 now: for the address of static or global variables (partial symbols
23969 only) and for offsets into structures which are expected to be
23970 (more or less) constant. The partial symbol case should go away,
23971 and only the constant case should remain. That will let this
23972 function complain more accurately. A few special modes are allowed
23973 without complaint for global variables (for instance, global
23974 register values and thread-local values).
23975
23976 A location description containing no operations indicates that the
23977 object is optimized out. The return value is 0 for that case.
23978 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23979 callers will only want a very basic result and this can become a
23980 complaint.
23981
23982 Note that stack[0] is unused except as a default error return. */
23983
23984static CORE_ADDR
23985decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23986{
23987 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23988 size_t i;
23989 size_t size = blk->size;
23990 const gdb_byte *data = blk->data;
23991 CORE_ADDR stack[64];
23992 int stacki;
23993 unsigned int bytes_read, unsnd;
23994 gdb_byte op;
23995
23996 i = 0;
23997 stacki = 0;
23998 stack[stacki] = 0;
23999 stack[++stacki] = 0;
24000
24001 while (i < size)
24002 {
24003 op = data[i++];
24004 switch (op)
24005 {
24006 case DW_OP_lit0:
24007 case DW_OP_lit1:
24008 case DW_OP_lit2:
24009 case DW_OP_lit3:
24010 case DW_OP_lit4:
24011 case DW_OP_lit5:
24012 case DW_OP_lit6:
24013 case DW_OP_lit7:
24014 case DW_OP_lit8:
24015 case DW_OP_lit9:
24016 case DW_OP_lit10:
24017 case DW_OP_lit11:
24018 case DW_OP_lit12:
24019 case DW_OP_lit13:
24020 case DW_OP_lit14:
24021 case DW_OP_lit15:
24022 case DW_OP_lit16:
24023 case DW_OP_lit17:
24024 case DW_OP_lit18:
24025 case DW_OP_lit19:
24026 case DW_OP_lit20:
24027 case DW_OP_lit21:
24028 case DW_OP_lit22:
24029 case DW_OP_lit23:
24030 case DW_OP_lit24:
24031 case DW_OP_lit25:
24032 case DW_OP_lit26:
24033 case DW_OP_lit27:
24034 case DW_OP_lit28:
24035 case DW_OP_lit29:
24036 case DW_OP_lit30:
24037 case DW_OP_lit31:
24038 stack[++stacki] = op - DW_OP_lit0;
24039 break;
24040
24041 case DW_OP_reg0:
24042 case DW_OP_reg1:
24043 case DW_OP_reg2:
24044 case DW_OP_reg3:
24045 case DW_OP_reg4:
24046 case DW_OP_reg5:
24047 case DW_OP_reg6:
24048 case DW_OP_reg7:
24049 case DW_OP_reg8:
24050 case DW_OP_reg9:
24051 case DW_OP_reg10:
24052 case DW_OP_reg11:
24053 case DW_OP_reg12:
24054 case DW_OP_reg13:
24055 case DW_OP_reg14:
24056 case DW_OP_reg15:
24057 case DW_OP_reg16:
24058 case DW_OP_reg17:
24059 case DW_OP_reg18:
24060 case DW_OP_reg19:
24061 case DW_OP_reg20:
24062 case DW_OP_reg21:
24063 case DW_OP_reg22:
24064 case DW_OP_reg23:
24065 case DW_OP_reg24:
24066 case DW_OP_reg25:
24067 case DW_OP_reg26:
24068 case DW_OP_reg27:
24069 case DW_OP_reg28:
24070 case DW_OP_reg29:
24071 case DW_OP_reg30:
24072 case DW_OP_reg31:
24073 stack[++stacki] = op - DW_OP_reg0;
24074 if (i < size)
24075 dwarf2_complex_location_expr_complaint ();
24076 break;
24077
24078 case DW_OP_regx:
24079 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
24080 i += bytes_read;
24081 stack[++stacki] = unsnd;
24082 if (i < size)
24083 dwarf2_complex_location_expr_complaint ();
24084 break;
24085
24086 case DW_OP_addr:
24087 stack[++stacki] = read_address (objfile->obfd, &data[i],
24088 cu, &bytes_read);
24089 i += bytes_read;
24090 break;
24091
24092 case DW_OP_const1u:
24093 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24094 i += 1;
24095 break;
24096
24097 case DW_OP_const1s:
24098 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24099 i += 1;
24100 break;
24101
24102 case DW_OP_const2u:
24103 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24104 i += 2;
24105 break;
24106
24107 case DW_OP_const2s:
24108 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24109 i += 2;
24110 break;
24111
24112 case DW_OP_const4u:
24113 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24114 i += 4;
24115 break;
24116
24117 case DW_OP_const4s:
24118 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24119 i += 4;
24120 break;
24121
24122 case DW_OP_const8u:
24123 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24124 i += 8;
24125 break;
24126
24127 case DW_OP_constu:
24128 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24129 &bytes_read);
24130 i += bytes_read;
24131 break;
24132
24133 case DW_OP_consts:
24134 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24135 i += bytes_read;
24136 break;
24137
24138 case DW_OP_dup:
24139 stack[stacki + 1] = stack[stacki];
24140 stacki++;
24141 break;
24142
24143 case DW_OP_plus:
24144 stack[stacki - 1] += stack[stacki];
24145 stacki--;
24146 break;
24147
24148 case DW_OP_plus_uconst:
24149 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24150 &bytes_read);
24151 i += bytes_read;
24152 break;
24153
24154 case DW_OP_minus:
24155 stack[stacki - 1] -= stack[stacki];
24156 stacki--;
24157 break;
24158
24159 case DW_OP_deref:
24160 /* If we're not the last op, then we definitely can't encode
24161 this using GDB's address_class enum. This is valid for partial
24162 global symbols, although the variable's address will be bogus
24163 in the psymtab. */
24164 if (i < size)
24165 dwarf2_complex_location_expr_complaint ();
24166 break;
24167
24168 case DW_OP_GNU_push_tls_address:
24169 case DW_OP_form_tls_address:
24170 /* The top of the stack has the offset from the beginning
24171 of the thread control block at which the variable is located. */
24172 /* Nothing should follow this operator, so the top of stack would
24173 be returned. */
24174 /* This is valid for partial global symbols, but the variable's
24175 address will be bogus in the psymtab. Make it always at least
24176 non-zero to not look as a variable garbage collected by linker
24177 which have DW_OP_addr 0. */
24178 if (i < size)
24179 dwarf2_complex_location_expr_complaint ();
24180 stack[stacki]++;
24181 break;
24182
24183 case DW_OP_GNU_uninit:
24184 break;
24185
24186 case DW_OP_addrx:
24187 case DW_OP_GNU_addr_index:
24188 case DW_OP_GNU_const_index:
24189 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24190 &bytes_read);
24191 i += bytes_read;
24192 break;
24193
24194 default:
24195 {
24196 const char *name = get_DW_OP_name (op);
24197
24198 if (name)
24199 complaint (_("unsupported stack op: '%s'"),
24200 name);
24201 else
24202 complaint (_("unsupported stack op: '%02x'"),
24203 op);
24204 }
24205
24206 return (stack[stacki]);
24207 }
24208
24209 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24210 outside of the allocated space. Also enforce minimum>0. */
24211 if (stacki >= ARRAY_SIZE (stack) - 1)
24212 {
24213 complaint (_("location description stack overflow"));
24214 return 0;
24215 }
24216
24217 if (stacki <= 0)
24218 {
24219 complaint (_("location description stack underflow"));
24220 return 0;
24221 }
24222 }
24223 return (stack[stacki]);
24224}
24225
24226/* memory allocation interface */
24227
24228static struct dwarf_block *
24229dwarf_alloc_block (struct dwarf2_cu *cu)
24230{
24231 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24232}
24233
24234static struct die_info *
24235dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24236{
24237 struct die_info *die;
24238 size_t size = sizeof (struct die_info);
24239
24240 if (num_attrs > 1)
24241 size += (num_attrs - 1) * sizeof (struct attribute);
24242
24243 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24244 memset (die, 0, sizeof (struct die_info));
24245 return (die);
24246}
24247
24248\f
24249/* Macro support. */
24250
24251/* Return file name relative to the compilation directory of file number I in
24252 *LH's file name table. The result is allocated using xmalloc; the caller is
24253 responsible for freeing it. */
24254
24255static char *
24256file_file_name (int file, struct line_header *lh)
24257{
24258 /* Is the file number a valid index into the line header's file name
24259 table? Remember that file numbers start with one, not zero. */
24260 if (lh->is_valid_file_index (file))
24261 {
24262 const file_entry *fe = lh->file_name_at (file);
24263
24264 if (!IS_ABSOLUTE_PATH (fe->name))
24265 {
24266 const char *dir = fe->include_dir (lh);
24267 if (dir != NULL)
24268 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
24269 }
24270 return xstrdup (fe->name);
24271 }
24272 else
24273 {
24274 /* The compiler produced a bogus file number. We can at least
24275 record the macro definitions made in the file, even if we
24276 won't be able to find the file by name. */
24277 char fake_name[80];
24278
24279 xsnprintf (fake_name, sizeof (fake_name),
24280 "<bad macro file number %d>", file);
24281
24282 complaint (_("bad file number in macro information (%d)"),
24283 file);
24284
24285 return xstrdup (fake_name);
24286 }
24287}
24288
24289/* Return the full name of file number I in *LH's file name table.
24290 Use COMP_DIR as the name of the current directory of the
24291 compilation. The result is allocated using xmalloc; the caller is
24292 responsible for freeing it. */
24293static char *
24294file_full_name (int file, struct line_header *lh, const char *comp_dir)
24295{
24296 /* Is the file number a valid index into the line header's file name
24297 table? Remember that file numbers start with one, not zero. */
24298 if (lh->is_valid_file_index (file))
24299 {
24300 char *relative = file_file_name (file, lh);
24301
24302 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24303 return relative;
24304 return reconcat (relative, comp_dir, SLASH_STRING,
24305 relative, (char *) NULL);
24306 }
24307 else
24308 return file_file_name (file, lh);
24309}
24310
24311
24312static struct macro_source_file *
24313macro_start_file (struct dwarf2_cu *cu,
24314 int file, int line,
24315 struct macro_source_file *current_file,
24316 struct line_header *lh)
24317{
24318 /* File name relative to the compilation directory of this source file. */
24319 char *file_name = file_file_name (file, lh);
24320
24321 if (! current_file)
24322 {
24323 /* Note: We don't create a macro table for this compilation unit
24324 at all until we actually get a filename. */
24325 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24326
24327 /* If we have no current file, then this must be the start_file
24328 directive for the compilation unit's main source file. */
24329 current_file = macro_set_main (macro_table, file_name);
24330 macro_define_special (macro_table);
24331 }
24332 else
24333 current_file = macro_include (current_file, line, file_name);
24334
24335 xfree (file_name);
24336
24337 return current_file;
24338}
24339
24340static const char *
24341consume_improper_spaces (const char *p, const char *body)
24342{
24343 if (*p == ' ')
24344 {
24345 complaint (_("macro definition contains spaces "
24346 "in formal argument list:\n`%s'"),
24347 body);
24348
24349 while (*p == ' ')
24350 p++;
24351 }
24352
24353 return p;
24354}
24355
24356
24357static void
24358parse_macro_definition (struct macro_source_file *file, int line,
24359 const char *body)
24360{
24361 const char *p;
24362
24363 /* The body string takes one of two forms. For object-like macro
24364 definitions, it should be:
24365
24366 <macro name> " " <definition>
24367
24368 For function-like macro definitions, it should be:
24369
24370 <macro name> "() " <definition>
24371 or
24372 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24373
24374 Spaces may appear only where explicitly indicated, and in the
24375 <definition>.
24376
24377 The Dwarf 2 spec says that an object-like macro's name is always
24378 followed by a space, but versions of GCC around March 2002 omit
24379 the space when the macro's definition is the empty string.
24380
24381 The Dwarf 2 spec says that there should be no spaces between the
24382 formal arguments in a function-like macro's formal argument list,
24383 but versions of GCC around March 2002 include spaces after the
24384 commas. */
24385
24386
24387 /* Find the extent of the macro name. The macro name is terminated
24388 by either a space or null character (for an object-like macro) or
24389 an opening paren (for a function-like macro). */
24390 for (p = body; *p; p++)
24391 if (*p == ' ' || *p == '(')
24392 break;
24393
24394 if (*p == ' ' || *p == '\0')
24395 {
24396 /* It's an object-like macro. */
24397 int name_len = p - body;
24398 char *name = savestring (body, name_len);
24399 const char *replacement;
24400
24401 if (*p == ' ')
24402 replacement = body + name_len + 1;
24403 else
24404 {
24405 dwarf2_macro_malformed_definition_complaint (body);
24406 replacement = body + name_len;
24407 }
24408
24409 macro_define_object (file, line, name, replacement);
24410
24411 xfree (name);
24412 }
24413 else if (*p == '(')
24414 {
24415 /* It's a function-like macro. */
24416 char *name = savestring (body, p - body);
24417 int argc = 0;
24418 int argv_size = 1;
24419 char **argv = XNEWVEC (char *, argv_size);
24420
24421 p++;
24422
24423 p = consume_improper_spaces (p, body);
24424
24425 /* Parse the formal argument list. */
24426 while (*p && *p != ')')
24427 {
24428 /* Find the extent of the current argument name. */
24429 const char *arg_start = p;
24430
24431 while (*p && *p != ',' && *p != ')' && *p != ' ')
24432 p++;
24433
24434 if (! *p || p == arg_start)
24435 dwarf2_macro_malformed_definition_complaint (body);
24436 else
24437 {
24438 /* Make sure argv has room for the new argument. */
24439 if (argc >= argv_size)
24440 {
24441 argv_size *= 2;
24442 argv = XRESIZEVEC (char *, argv, argv_size);
24443 }
24444
24445 argv[argc++] = savestring (arg_start, p - arg_start);
24446 }
24447
24448 p = consume_improper_spaces (p, body);
24449
24450 /* Consume the comma, if present. */
24451 if (*p == ',')
24452 {
24453 p++;
24454
24455 p = consume_improper_spaces (p, body);
24456 }
24457 }
24458
24459 if (*p == ')')
24460 {
24461 p++;
24462
24463 if (*p == ' ')
24464 /* Perfectly formed definition, no complaints. */
24465 macro_define_function (file, line, name,
24466 argc, (const char **) argv,
24467 p + 1);
24468 else if (*p == '\0')
24469 {
24470 /* Complain, but do define it. */
24471 dwarf2_macro_malformed_definition_complaint (body);
24472 macro_define_function (file, line, name,
24473 argc, (const char **) argv,
24474 p);
24475 }
24476 else
24477 /* Just complain. */
24478 dwarf2_macro_malformed_definition_complaint (body);
24479 }
24480 else
24481 /* Just complain. */
24482 dwarf2_macro_malformed_definition_complaint (body);
24483
24484 xfree (name);
24485 {
24486 int i;
24487
24488 for (i = 0; i < argc; i++)
24489 xfree (argv[i]);
24490 }
24491 xfree (argv);
24492 }
24493 else
24494 dwarf2_macro_malformed_definition_complaint (body);
24495}
24496
24497/* Skip some bytes from BYTES according to the form given in FORM.
24498 Returns the new pointer. */
24499
24500static const gdb_byte *
24501skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24502 enum dwarf_form form,
24503 unsigned int offset_size,
24504 struct dwarf2_section_info *section)
24505{
24506 unsigned int bytes_read;
24507
24508 switch (form)
24509 {
24510 case DW_FORM_data1:
24511 case DW_FORM_flag:
24512 ++bytes;
24513 break;
24514
24515 case DW_FORM_data2:
24516 bytes += 2;
24517 break;
24518
24519 case DW_FORM_data4:
24520 bytes += 4;
24521 break;
24522
24523 case DW_FORM_data8:
24524 bytes += 8;
24525 break;
24526
24527 case DW_FORM_data16:
24528 bytes += 16;
24529 break;
24530
24531 case DW_FORM_string:
24532 read_direct_string (abfd, bytes, &bytes_read);
24533 bytes += bytes_read;
24534 break;
24535
24536 case DW_FORM_sec_offset:
24537 case DW_FORM_strp:
24538 case DW_FORM_GNU_strp_alt:
24539 bytes += offset_size;
24540 break;
24541
24542 case DW_FORM_block:
24543 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24544 bytes += bytes_read;
24545 break;
24546
24547 case DW_FORM_block1:
24548 bytes += 1 + read_1_byte (abfd, bytes);
24549 break;
24550 case DW_FORM_block2:
24551 bytes += 2 + read_2_bytes (abfd, bytes);
24552 break;
24553 case DW_FORM_block4:
24554 bytes += 4 + read_4_bytes (abfd, bytes);
24555 break;
24556
24557 case DW_FORM_addrx:
24558 case DW_FORM_sdata:
24559 case DW_FORM_strx:
24560 case DW_FORM_udata:
24561 case DW_FORM_GNU_addr_index:
24562 case DW_FORM_GNU_str_index:
24563 bytes = gdb_skip_leb128 (bytes, buffer_end);
24564 if (bytes == NULL)
24565 {
24566 dwarf2_section_buffer_overflow_complaint (section);
24567 return NULL;
24568 }
24569 break;
24570
24571 case DW_FORM_implicit_const:
24572 break;
24573
24574 default:
24575 {
24576 complaint (_("invalid form 0x%x in `%s'"),
24577 form, get_section_name (section));
24578 return NULL;
24579 }
24580 }
24581
24582 return bytes;
24583}
24584
24585/* A helper for dwarf_decode_macros that handles skipping an unknown
24586 opcode. Returns an updated pointer to the macro data buffer; or,
24587 on error, issues a complaint and returns NULL. */
24588
24589static const gdb_byte *
24590skip_unknown_opcode (unsigned int opcode,
24591 const gdb_byte **opcode_definitions,
24592 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24593 bfd *abfd,
24594 unsigned int offset_size,
24595 struct dwarf2_section_info *section)
24596{
24597 unsigned int bytes_read, i;
24598 unsigned long arg;
24599 const gdb_byte *defn;
24600
24601 if (opcode_definitions[opcode] == NULL)
24602 {
24603 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24604 opcode);
24605 return NULL;
24606 }
24607
24608 defn = opcode_definitions[opcode];
24609 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24610 defn += bytes_read;
24611
24612 for (i = 0; i < arg; ++i)
24613 {
24614 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24615 (enum dwarf_form) defn[i], offset_size,
24616 section);
24617 if (mac_ptr == NULL)
24618 {
24619 /* skip_form_bytes already issued the complaint. */
24620 return NULL;
24621 }
24622 }
24623
24624 return mac_ptr;
24625}
24626
24627/* A helper function which parses the header of a macro section.
24628 If the macro section is the extended (for now called "GNU") type,
24629 then this updates *OFFSET_SIZE. Returns a pointer to just after
24630 the header, or issues a complaint and returns NULL on error. */
24631
24632static const gdb_byte *
24633dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24634 bfd *abfd,
24635 const gdb_byte *mac_ptr,
24636 unsigned int *offset_size,
24637 int section_is_gnu)
24638{
24639 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24640
24641 if (section_is_gnu)
24642 {
24643 unsigned int version, flags;
24644
24645 version = read_2_bytes (abfd, mac_ptr);
24646 if (version != 4 && version != 5)
24647 {
24648 complaint (_("unrecognized version `%d' in .debug_macro section"),
24649 version);
24650 return NULL;
24651 }
24652 mac_ptr += 2;
24653
24654 flags = read_1_byte (abfd, mac_ptr);
24655 ++mac_ptr;
24656 *offset_size = (flags & 1) ? 8 : 4;
24657
24658 if ((flags & 2) != 0)
24659 /* We don't need the line table offset. */
24660 mac_ptr += *offset_size;
24661
24662 /* Vendor opcode descriptions. */
24663 if ((flags & 4) != 0)
24664 {
24665 unsigned int i, count;
24666
24667 count = read_1_byte (abfd, mac_ptr);
24668 ++mac_ptr;
24669 for (i = 0; i < count; ++i)
24670 {
24671 unsigned int opcode, bytes_read;
24672 unsigned long arg;
24673
24674 opcode = read_1_byte (abfd, mac_ptr);
24675 ++mac_ptr;
24676 opcode_definitions[opcode] = mac_ptr;
24677 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24678 mac_ptr += bytes_read;
24679 mac_ptr += arg;
24680 }
24681 }
24682 }
24683
24684 return mac_ptr;
24685}
24686
24687/* A helper for dwarf_decode_macros that handles the GNU extensions,
24688 including DW_MACRO_import. */
24689
24690static void
24691dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24692 bfd *abfd,
24693 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24694 struct macro_source_file *current_file,
24695 struct line_header *lh,
24696 struct dwarf2_section_info *section,
24697 int section_is_gnu, int section_is_dwz,
24698 unsigned int offset_size,
24699 htab_t include_hash)
24700{
24701 struct dwarf2_per_objfile *dwarf2_per_objfile
24702 = cu->per_cu->dwarf2_per_objfile;
24703 struct objfile *objfile = dwarf2_per_objfile->objfile;
24704 enum dwarf_macro_record_type macinfo_type;
24705 int at_commandline;
24706 const gdb_byte *opcode_definitions[256];
24707
24708 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24709 &offset_size, section_is_gnu);
24710 if (mac_ptr == NULL)
24711 {
24712 /* We already issued a complaint. */
24713 return;
24714 }
24715
24716 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24717 GDB is still reading the definitions from command line. First
24718 DW_MACINFO_start_file will need to be ignored as it was already executed
24719 to create CURRENT_FILE for the main source holding also the command line
24720 definitions. On first met DW_MACINFO_start_file this flag is reset to
24721 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24722
24723 at_commandline = 1;
24724
24725 do
24726 {
24727 /* Do we at least have room for a macinfo type byte? */
24728 if (mac_ptr >= mac_end)
24729 {
24730 dwarf2_section_buffer_overflow_complaint (section);
24731 break;
24732 }
24733
24734 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24735 mac_ptr++;
24736
24737 /* Note that we rely on the fact that the corresponding GNU and
24738 DWARF constants are the same. */
24739 DIAGNOSTIC_PUSH
24740 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24741 switch (macinfo_type)
24742 {
24743 /* A zero macinfo type indicates the end of the macro
24744 information. */
24745 case 0:
24746 break;
24747
24748 case DW_MACRO_define:
24749 case DW_MACRO_undef:
24750 case DW_MACRO_define_strp:
24751 case DW_MACRO_undef_strp:
24752 case DW_MACRO_define_sup:
24753 case DW_MACRO_undef_sup:
24754 {
24755 unsigned int bytes_read;
24756 int line;
24757 const char *body;
24758 int is_define;
24759
24760 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24761 mac_ptr += bytes_read;
24762
24763 if (macinfo_type == DW_MACRO_define
24764 || macinfo_type == DW_MACRO_undef)
24765 {
24766 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24767 mac_ptr += bytes_read;
24768 }
24769 else
24770 {
24771 LONGEST str_offset;
24772
24773 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24774 mac_ptr += offset_size;
24775
24776 if (macinfo_type == DW_MACRO_define_sup
24777 || macinfo_type == DW_MACRO_undef_sup
24778 || section_is_dwz)
24779 {
24780 struct dwz_file *dwz
24781 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24782
24783 body = read_indirect_string_from_dwz (objfile,
24784 dwz, str_offset);
24785 }
24786 else
24787 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24788 abfd, str_offset);
24789 }
24790
24791 is_define = (macinfo_type == DW_MACRO_define
24792 || macinfo_type == DW_MACRO_define_strp
24793 || macinfo_type == DW_MACRO_define_sup);
24794 if (! current_file)
24795 {
24796 /* DWARF violation as no main source is present. */
24797 complaint (_("debug info with no main source gives macro %s "
24798 "on line %d: %s"),
24799 is_define ? _("definition") : _("undefinition"),
24800 line, body);
24801 break;
24802 }
24803 if ((line == 0 && !at_commandline)
24804 || (line != 0 && at_commandline))
24805 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24806 at_commandline ? _("command-line") : _("in-file"),
24807 is_define ? _("definition") : _("undefinition"),
24808 line == 0 ? _("zero") : _("non-zero"), line, body);
24809
24810 if (body == NULL)
24811 {
24812 /* Fedora's rpm-build's "debugedit" binary
24813 corrupted .debug_macro sections.
24814
24815 For more info, see
24816 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24817 complaint (_("debug info gives %s invalid macro %s "
24818 "without body (corrupted?) at line %d "
24819 "on file %s"),
24820 at_commandline ? _("command-line") : _("in-file"),
24821 is_define ? _("definition") : _("undefinition"),
24822 line, current_file->filename);
24823 }
24824 else if (is_define)
24825 parse_macro_definition (current_file, line, body);
24826 else
24827 {
24828 gdb_assert (macinfo_type == DW_MACRO_undef
24829 || macinfo_type == DW_MACRO_undef_strp
24830 || macinfo_type == DW_MACRO_undef_sup);
24831 macro_undef (current_file, line, body);
24832 }
24833 }
24834 break;
24835
24836 case DW_MACRO_start_file:
24837 {
24838 unsigned int bytes_read;
24839 int line, file;
24840
24841 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24842 mac_ptr += bytes_read;
24843 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24844 mac_ptr += bytes_read;
24845
24846 if ((line == 0 && !at_commandline)
24847 || (line != 0 && at_commandline))
24848 complaint (_("debug info gives source %d included "
24849 "from %s at %s line %d"),
24850 file, at_commandline ? _("command-line") : _("file"),
24851 line == 0 ? _("zero") : _("non-zero"), line);
24852
24853 if (at_commandline)
24854 {
24855 /* This DW_MACRO_start_file was executed in the
24856 pass one. */
24857 at_commandline = 0;
24858 }
24859 else
24860 current_file = macro_start_file (cu, file, line, current_file,
24861 lh);
24862 }
24863 break;
24864
24865 case DW_MACRO_end_file:
24866 if (! current_file)
24867 complaint (_("macro debug info has an unmatched "
24868 "`close_file' directive"));
24869 else
24870 {
24871 current_file = current_file->included_by;
24872 if (! current_file)
24873 {
24874 enum dwarf_macro_record_type next_type;
24875
24876 /* GCC circa March 2002 doesn't produce the zero
24877 type byte marking the end of the compilation
24878 unit. Complain if it's not there, but exit no
24879 matter what. */
24880
24881 /* Do we at least have room for a macinfo type byte? */
24882 if (mac_ptr >= mac_end)
24883 {
24884 dwarf2_section_buffer_overflow_complaint (section);
24885 return;
24886 }
24887
24888 /* We don't increment mac_ptr here, so this is just
24889 a look-ahead. */
24890 next_type
24891 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24892 mac_ptr);
24893 if (next_type != 0)
24894 complaint (_("no terminating 0-type entry for "
24895 "macros in `.debug_macinfo' section"));
24896
24897 return;
24898 }
24899 }
24900 break;
24901
24902 case DW_MACRO_import:
24903 case DW_MACRO_import_sup:
24904 {
24905 LONGEST offset;
24906 void **slot;
24907 bfd *include_bfd = abfd;
24908 struct dwarf2_section_info *include_section = section;
24909 const gdb_byte *include_mac_end = mac_end;
24910 int is_dwz = section_is_dwz;
24911 const gdb_byte *new_mac_ptr;
24912
24913 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24914 mac_ptr += offset_size;
24915
24916 if (macinfo_type == DW_MACRO_import_sup)
24917 {
24918 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24919
24920 dwarf2_read_section (objfile, &dwz->macro);
24921
24922 include_section = &dwz->macro;
24923 include_bfd = get_section_bfd_owner (include_section);
24924 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24925 is_dwz = 1;
24926 }
24927
24928 new_mac_ptr = include_section->buffer + offset;
24929 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24930
24931 if (*slot != NULL)
24932 {
24933 /* This has actually happened; see
24934 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24935 complaint (_("recursive DW_MACRO_import in "
24936 ".debug_macro section"));
24937 }
24938 else
24939 {
24940 *slot = (void *) new_mac_ptr;
24941
24942 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24943 include_mac_end, current_file, lh,
24944 section, section_is_gnu, is_dwz,
24945 offset_size, include_hash);
24946
24947 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24948 }
24949 }
24950 break;
24951
24952 case DW_MACINFO_vendor_ext:
24953 if (!section_is_gnu)
24954 {
24955 unsigned int bytes_read;
24956
24957 /* This reads the constant, but since we don't recognize
24958 any vendor extensions, we ignore it. */
24959 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24960 mac_ptr += bytes_read;
24961 read_direct_string (abfd, mac_ptr, &bytes_read);
24962 mac_ptr += bytes_read;
24963
24964 /* We don't recognize any vendor extensions. */
24965 break;
24966 }
24967 /* FALLTHROUGH */
24968
24969 default:
24970 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24971 mac_ptr, mac_end, abfd, offset_size,
24972 section);
24973 if (mac_ptr == NULL)
24974 return;
24975 break;
24976 }
24977 DIAGNOSTIC_POP
24978 } while (macinfo_type != 0);
24979}
24980
24981static void
24982dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24983 int section_is_gnu)
24984{
24985 struct dwarf2_per_objfile *dwarf2_per_objfile
24986 = cu->per_cu->dwarf2_per_objfile;
24987 struct objfile *objfile = dwarf2_per_objfile->objfile;
24988 struct line_header *lh = cu->line_header;
24989 bfd *abfd;
24990 const gdb_byte *mac_ptr, *mac_end;
24991 struct macro_source_file *current_file = 0;
24992 enum dwarf_macro_record_type macinfo_type;
24993 unsigned int offset_size = cu->header.offset_size;
24994 const gdb_byte *opcode_definitions[256];
24995 void **slot;
24996 struct dwarf2_section_info *section;
24997 const char *section_name;
24998
24999 if (cu->dwo_unit != NULL)
25000 {
25001 if (section_is_gnu)
25002 {
25003 section = &cu->dwo_unit->dwo_file->sections.macro;
25004 section_name = ".debug_macro.dwo";
25005 }
25006 else
25007 {
25008 section = &cu->dwo_unit->dwo_file->sections.macinfo;
25009 section_name = ".debug_macinfo.dwo";
25010 }
25011 }
25012 else
25013 {
25014 if (section_is_gnu)
25015 {
25016 section = &dwarf2_per_objfile->macro;
25017 section_name = ".debug_macro";
25018 }
25019 else
25020 {
25021 section = &dwarf2_per_objfile->macinfo;
25022 section_name = ".debug_macinfo";
25023 }
25024 }
25025
25026 dwarf2_read_section (objfile, section);
25027 if (section->buffer == NULL)
25028 {
25029 complaint (_("missing %s section"), section_name);
25030 return;
25031 }
25032 abfd = get_section_bfd_owner (section);
25033
25034 /* First pass: Find the name of the base filename.
25035 This filename is needed in order to process all macros whose definition
25036 (or undefinition) comes from the command line. These macros are defined
25037 before the first DW_MACINFO_start_file entry, and yet still need to be
25038 associated to the base file.
25039
25040 To determine the base file name, we scan the macro definitions until we
25041 reach the first DW_MACINFO_start_file entry. We then initialize
25042 CURRENT_FILE accordingly so that any macro definition found before the
25043 first DW_MACINFO_start_file can still be associated to the base file. */
25044
25045 mac_ptr = section->buffer + offset;
25046 mac_end = section->buffer + section->size;
25047
25048 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
25049 &offset_size, section_is_gnu);
25050 if (mac_ptr == NULL)
25051 {
25052 /* We already issued a complaint. */
25053 return;
25054 }
25055
25056 do
25057 {
25058 /* Do we at least have room for a macinfo type byte? */
25059 if (mac_ptr >= mac_end)
25060 {
25061 /* Complaint is printed during the second pass as GDB will probably
25062 stop the first pass earlier upon finding
25063 DW_MACINFO_start_file. */
25064 break;
25065 }
25066
25067 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
25068 mac_ptr++;
25069
25070 /* Note that we rely on the fact that the corresponding GNU and
25071 DWARF constants are the same. */
25072 DIAGNOSTIC_PUSH
25073 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
25074 switch (macinfo_type)
25075 {
25076 /* A zero macinfo type indicates the end of the macro
25077 information. */
25078 case 0:
25079 break;
25080
25081 case DW_MACRO_define:
25082 case DW_MACRO_undef:
25083 /* Only skip the data by MAC_PTR. */
25084 {
25085 unsigned int bytes_read;
25086
25087 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25088 mac_ptr += bytes_read;
25089 read_direct_string (abfd, mac_ptr, &bytes_read);
25090 mac_ptr += bytes_read;
25091 }
25092 break;
25093
25094 case DW_MACRO_start_file:
25095 {
25096 unsigned int bytes_read;
25097 int line, file;
25098
25099 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25100 mac_ptr += bytes_read;
25101 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25102 mac_ptr += bytes_read;
25103
25104 current_file = macro_start_file (cu, file, line, current_file, lh);
25105 }
25106 break;
25107
25108 case DW_MACRO_end_file:
25109 /* No data to skip by MAC_PTR. */
25110 break;
25111
25112 case DW_MACRO_define_strp:
25113 case DW_MACRO_undef_strp:
25114 case DW_MACRO_define_sup:
25115 case DW_MACRO_undef_sup:
25116 {
25117 unsigned int bytes_read;
25118
25119 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25120 mac_ptr += bytes_read;
25121 mac_ptr += offset_size;
25122 }
25123 break;
25124
25125 case DW_MACRO_import:
25126 case DW_MACRO_import_sup:
25127 /* Note that, according to the spec, a transparent include
25128 chain cannot call DW_MACRO_start_file. So, we can just
25129 skip this opcode. */
25130 mac_ptr += offset_size;
25131 break;
25132
25133 case DW_MACINFO_vendor_ext:
25134 /* Only skip the data by MAC_PTR. */
25135 if (!section_is_gnu)
25136 {
25137 unsigned int bytes_read;
25138
25139 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25140 mac_ptr += bytes_read;
25141 read_direct_string (abfd, mac_ptr, &bytes_read);
25142 mac_ptr += bytes_read;
25143 }
25144 /* FALLTHROUGH */
25145
25146 default:
25147 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25148 mac_ptr, mac_end, abfd, offset_size,
25149 section);
25150 if (mac_ptr == NULL)
25151 return;
25152 break;
25153 }
25154 DIAGNOSTIC_POP
25155 } while (macinfo_type != 0 && current_file == NULL);
25156
25157 /* Second pass: Process all entries.
25158
25159 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25160 command-line macro definitions/undefinitions. This flag is unset when we
25161 reach the first DW_MACINFO_start_file entry. */
25162
25163 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25164 htab_eq_pointer,
25165 NULL, xcalloc, xfree));
25166 mac_ptr = section->buffer + offset;
25167 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25168 *slot = (void *) mac_ptr;
25169 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25170 current_file, lh, section,
25171 section_is_gnu, 0, offset_size,
25172 include_hash.get ());
25173}
25174
25175/* Check if the attribute's form is a DW_FORM_block*
25176 if so return true else false. */
25177
25178static int
25179attr_form_is_block (const struct attribute *attr)
25180{
25181 return (attr == NULL ? 0 :
25182 attr->form == DW_FORM_block1
25183 || attr->form == DW_FORM_block2
25184 || attr->form == DW_FORM_block4
25185 || attr->form == DW_FORM_block
25186 || attr->form == DW_FORM_exprloc);
25187}
25188
25189/* Return non-zero if ATTR's value is a section offset --- classes
25190 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25191 You may use DW_UNSND (attr) to retrieve such offsets.
25192
25193 Section 7.5.4, "Attribute Encodings", explains that no attribute
25194 may have a value that belongs to more than one of these classes; it
25195 would be ambiguous if we did, because we use the same forms for all
25196 of them. */
25197
25198static int
25199attr_form_is_section_offset (const struct attribute *attr)
25200{
25201 return (attr->form == DW_FORM_data4
25202 || attr->form == DW_FORM_data8
25203 || attr->form == DW_FORM_sec_offset);
25204}
25205
25206/* Return non-zero if ATTR's value falls in the 'constant' class, or
25207 zero otherwise. When this function returns true, you can apply
25208 dwarf2_get_attr_constant_value to it.
25209
25210 However, note that for some attributes you must check
25211 attr_form_is_section_offset before using this test. DW_FORM_data4
25212 and DW_FORM_data8 are members of both the constant class, and of
25213 the classes that contain offsets into other debug sections
25214 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25215 that, if an attribute's can be either a constant or one of the
25216 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25217 taken as section offsets, not constants.
25218
25219 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25220 cannot handle that. */
25221
25222static int
25223attr_form_is_constant (const struct attribute *attr)
25224{
25225 switch (attr->form)
25226 {
25227 case DW_FORM_sdata:
25228 case DW_FORM_udata:
25229 case DW_FORM_data1:
25230 case DW_FORM_data2:
25231 case DW_FORM_data4:
25232 case DW_FORM_data8:
25233 case DW_FORM_implicit_const:
25234 return 1;
25235 default:
25236 return 0;
25237 }
25238}
25239
25240
25241/* DW_ADDR is always stored already as sect_offset; despite for the forms
25242 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25243
25244static int
25245attr_form_is_ref (const struct attribute *attr)
25246{
25247 switch (attr->form)
25248 {
25249 case DW_FORM_ref_addr:
25250 case DW_FORM_ref1:
25251 case DW_FORM_ref2:
25252 case DW_FORM_ref4:
25253 case DW_FORM_ref8:
25254 case DW_FORM_ref_udata:
25255 case DW_FORM_GNU_ref_alt:
25256 return 1;
25257 default:
25258 return 0;
25259 }
25260}
25261
25262/* Return the .debug_loc section to use for CU.
25263 For DWO files use .debug_loc.dwo. */
25264
25265static struct dwarf2_section_info *
25266cu_debug_loc_section (struct dwarf2_cu *cu)
25267{
25268 struct dwarf2_per_objfile *dwarf2_per_objfile
25269 = cu->per_cu->dwarf2_per_objfile;
25270
25271 if (cu->dwo_unit)
25272 {
25273 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25274
25275 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25276 }
25277 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25278 : &dwarf2_per_objfile->loc);
25279}
25280
25281/* A helper function that fills in a dwarf2_loclist_baton. */
25282
25283static void
25284fill_in_loclist_baton (struct dwarf2_cu *cu,
25285 struct dwarf2_loclist_baton *baton,
25286 const struct attribute *attr)
25287{
25288 struct dwarf2_per_objfile *dwarf2_per_objfile
25289 = cu->per_cu->dwarf2_per_objfile;
25290 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25291
25292 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25293
25294 baton->per_cu = cu->per_cu;
25295 gdb_assert (baton->per_cu);
25296 /* We don't know how long the location list is, but make sure we
25297 don't run off the edge of the section. */
25298 baton->size = section->size - DW_UNSND (attr);
25299 baton->data = section->buffer + DW_UNSND (attr);
25300 baton->base_address = cu->base_address;
25301 baton->from_dwo = cu->dwo_unit != NULL;
25302}
25303
25304static void
25305dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25306 struct dwarf2_cu *cu, int is_block)
25307{
25308 struct dwarf2_per_objfile *dwarf2_per_objfile
25309 = cu->per_cu->dwarf2_per_objfile;
25310 struct objfile *objfile = dwarf2_per_objfile->objfile;
25311 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25312
25313 if (attr_form_is_section_offset (attr)
25314 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25315 the section. If so, fall through to the complaint in the
25316 other branch. */
25317 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25318 {
25319 struct dwarf2_loclist_baton *baton;
25320
25321 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25322
25323 fill_in_loclist_baton (cu, baton, attr);
25324
25325 if (cu->base_known == 0)
25326 complaint (_("Location list used without "
25327 "specifying the CU base address."));
25328
25329 SYMBOL_ACLASS_INDEX (sym) = (is_block
25330 ? dwarf2_loclist_block_index
25331 : dwarf2_loclist_index);
25332 SYMBOL_LOCATION_BATON (sym) = baton;
25333 }
25334 else
25335 {
25336 struct dwarf2_locexpr_baton *baton;
25337
25338 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25339 baton->per_cu = cu->per_cu;
25340 gdb_assert (baton->per_cu);
25341
25342 if (attr_form_is_block (attr))
25343 {
25344 /* Note that we're just copying the block's data pointer
25345 here, not the actual data. We're still pointing into the
25346 info_buffer for SYM's objfile; right now we never release
25347 that buffer, but when we do clean up properly this may
25348 need to change. */
25349 baton->size = DW_BLOCK (attr)->size;
25350 baton->data = DW_BLOCK (attr)->data;
25351 }
25352 else
25353 {
25354 dwarf2_invalid_attrib_class_complaint ("location description",
25355 sym->natural_name ());
25356 baton->size = 0;
25357 }
25358
25359 SYMBOL_ACLASS_INDEX (sym) = (is_block
25360 ? dwarf2_locexpr_block_index
25361 : dwarf2_locexpr_index);
25362 SYMBOL_LOCATION_BATON (sym) = baton;
25363 }
25364}
25365
25366/* Return the OBJFILE associated with the compilation unit CU. If CU
25367 came from a separate debuginfo file, then the master objfile is
25368 returned. */
25369
25370struct objfile *
25371dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25372{
25373 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25374
25375 /* Return the master objfile, so that we can report and look up the
25376 correct file containing this variable. */
25377 if (objfile->separate_debug_objfile_backlink)
25378 objfile = objfile->separate_debug_objfile_backlink;
25379
25380 return objfile;
25381}
25382
25383/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25384 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25385 CU_HEADERP first. */
25386
25387static const struct comp_unit_head *
25388per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25389 struct dwarf2_per_cu_data *per_cu)
25390{
25391 const gdb_byte *info_ptr;
25392
25393 if (per_cu->cu)
25394 return &per_cu->cu->header;
25395
25396 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25397
25398 memset (cu_headerp, 0, sizeof (*cu_headerp));
25399 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25400 rcuh_kind::COMPILE);
25401
25402 return cu_headerp;
25403}
25404
25405/* Return the address size given in the compilation unit header for CU. */
25406
25407int
25408dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25409{
25410 struct comp_unit_head cu_header_local;
25411 const struct comp_unit_head *cu_headerp;
25412
25413 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25414
25415 return cu_headerp->addr_size;
25416}
25417
25418/* Return the offset size given in the compilation unit header for CU. */
25419
25420int
25421dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25422{
25423 struct comp_unit_head cu_header_local;
25424 const struct comp_unit_head *cu_headerp;
25425
25426 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25427
25428 return cu_headerp->offset_size;
25429}
25430
25431/* See its dwarf2loc.h declaration. */
25432
25433int
25434dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25435{
25436 struct comp_unit_head cu_header_local;
25437 const struct comp_unit_head *cu_headerp;
25438
25439 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25440
25441 if (cu_headerp->version == 2)
25442 return cu_headerp->addr_size;
25443 else
25444 return cu_headerp->offset_size;
25445}
25446
25447/* Return the text offset of the CU. The returned offset comes from
25448 this CU's objfile. If this objfile came from a separate debuginfo
25449 file, then the offset may be different from the corresponding
25450 offset in the parent objfile. */
25451
25452CORE_ADDR
25453dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25454{
25455 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25456
25457 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25458}
25459
25460/* Return a type that is a generic pointer type, the size of which matches
25461 the address size given in the compilation unit header for PER_CU. */
25462static struct type *
25463dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25464{
25465 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25466 struct type *void_type = objfile_type (objfile)->builtin_void;
25467 struct type *addr_type = lookup_pointer_type (void_type);
25468 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25469
25470 if (TYPE_LENGTH (addr_type) == addr_size)
25471 return addr_type;
25472
25473 addr_type
25474 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25475 return addr_type;
25476}
25477
25478/* Return DWARF version number of PER_CU. */
25479
25480short
25481dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25482{
25483 return per_cu->dwarf_version;
25484}
25485
25486/* Locate the .debug_info compilation unit from CU's objfile which contains
25487 the DIE at OFFSET. Raises an error on failure. */
25488
25489static struct dwarf2_per_cu_data *
25490dwarf2_find_containing_comp_unit (sect_offset sect_off,
25491 unsigned int offset_in_dwz,
25492 struct dwarf2_per_objfile *dwarf2_per_objfile)
25493{
25494 struct dwarf2_per_cu_data *this_cu;
25495 int low, high;
25496
25497 low = 0;
25498 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25499 while (high > low)
25500 {
25501 struct dwarf2_per_cu_data *mid_cu;
25502 int mid = low + (high - low) / 2;
25503
25504 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25505 if (mid_cu->is_dwz > offset_in_dwz
25506 || (mid_cu->is_dwz == offset_in_dwz
25507 && mid_cu->sect_off + mid_cu->length >= sect_off))
25508 high = mid;
25509 else
25510 low = mid + 1;
25511 }
25512 gdb_assert (low == high);
25513 this_cu = dwarf2_per_objfile->all_comp_units[low];
25514 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25515 {
25516 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25517 error (_("Dwarf Error: could not find partial DIE containing "
25518 "offset %s [in module %s]"),
25519 sect_offset_str (sect_off),
25520 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25521
25522 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25523 <= sect_off);
25524 return dwarf2_per_objfile->all_comp_units[low-1];
25525 }
25526 else
25527 {
25528 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25529 && sect_off >= this_cu->sect_off + this_cu->length)
25530 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25531 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25532 return this_cu;
25533 }
25534}
25535
25536/* Initialize dwarf2_cu CU, owned by PER_CU. */
25537
25538dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25539 : per_cu (per_cu_),
25540 mark (false),
25541 has_loclist (false),
25542 checked_producer (false),
25543 producer_is_gxx_lt_4_6 (false),
25544 producer_is_gcc_lt_4_3 (false),
25545 producer_is_icc (false),
25546 producer_is_icc_lt_14 (false),
25547 producer_is_codewarrior (false),
25548 processing_has_namespace_info (false)
25549{
25550 per_cu->cu = this;
25551}
25552
25553/* Destroy a dwarf2_cu. */
25554
25555dwarf2_cu::~dwarf2_cu ()
25556{
25557 per_cu->cu = NULL;
25558}
25559
25560/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25561
25562static void
25563prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25564 enum language pretend_language)
25565{
25566 struct attribute *attr;
25567
25568 /* Set the language we're debugging. */
25569 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25570 if (attr != nullptr)
25571 set_cu_language (DW_UNSND (attr), cu);
25572 else
25573 {
25574 cu->language = pretend_language;
25575 cu->language_defn = language_def (cu->language);
25576 }
25577
25578 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25579}
25580
25581/* Increase the age counter on each cached compilation unit, and free
25582 any that are too old. */
25583
25584static void
25585age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25586{
25587 struct dwarf2_per_cu_data *per_cu, **last_chain;
25588
25589 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25590 per_cu = dwarf2_per_objfile->read_in_chain;
25591 while (per_cu != NULL)
25592 {
25593 per_cu->cu->last_used ++;
25594 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25595 dwarf2_mark (per_cu->cu);
25596 per_cu = per_cu->cu->read_in_chain;
25597 }
25598
25599 per_cu = dwarf2_per_objfile->read_in_chain;
25600 last_chain = &dwarf2_per_objfile->read_in_chain;
25601 while (per_cu != NULL)
25602 {
25603 struct dwarf2_per_cu_data *next_cu;
25604
25605 next_cu = per_cu->cu->read_in_chain;
25606
25607 if (!per_cu->cu->mark)
25608 {
25609 delete per_cu->cu;
25610 *last_chain = next_cu;
25611 }
25612 else
25613 last_chain = &per_cu->cu->read_in_chain;
25614
25615 per_cu = next_cu;
25616 }
25617}
25618
25619/* Remove a single compilation unit from the cache. */
25620
25621static void
25622free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25623{
25624 struct dwarf2_per_cu_data *per_cu, **last_chain;
25625 struct dwarf2_per_objfile *dwarf2_per_objfile
25626 = target_per_cu->dwarf2_per_objfile;
25627
25628 per_cu = dwarf2_per_objfile->read_in_chain;
25629 last_chain = &dwarf2_per_objfile->read_in_chain;
25630 while (per_cu != NULL)
25631 {
25632 struct dwarf2_per_cu_data *next_cu;
25633
25634 next_cu = per_cu->cu->read_in_chain;
25635
25636 if (per_cu == target_per_cu)
25637 {
25638 delete per_cu->cu;
25639 per_cu->cu = NULL;
25640 *last_chain = next_cu;
25641 break;
25642 }
25643 else
25644 last_chain = &per_cu->cu->read_in_chain;
25645
25646 per_cu = next_cu;
25647 }
25648}
25649
25650/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25651 We store these in a hash table separate from the DIEs, and preserve them
25652 when the DIEs are flushed out of cache.
25653
25654 The CU "per_cu" pointer is needed because offset alone is not enough to
25655 uniquely identify the type. A file may have multiple .debug_types sections,
25656 or the type may come from a DWO file. Furthermore, while it's more logical
25657 to use per_cu->section+offset, with Fission the section with the data is in
25658 the DWO file but we don't know that section at the point we need it.
25659 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25660 because we can enter the lookup routine, get_die_type_at_offset, from
25661 outside this file, and thus won't necessarily have PER_CU->cu.
25662 Fortunately, PER_CU is stable for the life of the objfile. */
25663
25664struct dwarf2_per_cu_offset_and_type
25665{
25666 const struct dwarf2_per_cu_data *per_cu;
25667 sect_offset sect_off;
25668 struct type *type;
25669};
25670
25671/* Hash function for a dwarf2_per_cu_offset_and_type. */
25672
25673static hashval_t
25674per_cu_offset_and_type_hash (const void *item)
25675{
25676 const struct dwarf2_per_cu_offset_and_type *ofs
25677 = (const struct dwarf2_per_cu_offset_and_type *) item;
25678
25679 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25680}
25681
25682/* Equality function for a dwarf2_per_cu_offset_and_type. */
25683
25684static int
25685per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25686{
25687 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25688 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25689 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25690 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25691
25692 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25693 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25694}
25695
25696/* Set the type associated with DIE to TYPE. Save it in CU's hash
25697 table if necessary. For convenience, return TYPE.
25698
25699 The DIEs reading must have careful ordering to:
25700 * Not cause infinite loops trying to read in DIEs as a prerequisite for
25701 reading current DIE.
25702 * Not trying to dereference contents of still incompletely read in types
25703 while reading in other DIEs.
25704 * Enable referencing still incompletely read in types just by a pointer to
25705 the type without accessing its fields.
25706
25707 Therefore caller should follow these rules:
25708 * Try to fetch any prerequisite types we may need to build this DIE type
25709 before building the type and calling set_die_type.
25710 * After building type call set_die_type for current DIE as soon as
25711 possible before fetching more types to complete the current type.
25712 * Make the type as complete as possible before fetching more types. */
25713
25714static struct type *
25715set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25716{
25717 struct dwarf2_per_objfile *dwarf2_per_objfile
25718 = cu->per_cu->dwarf2_per_objfile;
25719 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25720 struct objfile *objfile = dwarf2_per_objfile->objfile;
25721 struct attribute *attr;
25722 struct dynamic_prop prop;
25723
25724 /* For Ada types, make sure that the gnat-specific data is always
25725 initialized (if not already set). There are a few types where
25726 we should not be doing so, because the type-specific area is
25727 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25728 where the type-specific area is used to store the floatformat).
25729 But this is not a problem, because the gnat-specific information
25730 is actually not needed for these types. */
25731 if (need_gnat_info (cu)
25732 && TYPE_CODE (type) != TYPE_CODE_FUNC
25733 && TYPE_CODE (type) != TYPE_CODE_FLT
25734 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25735 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25736 && TYPE_CODE (type) != TYPE_CODE_METHOD
25737 && !HAVE_GNAT_AUX_INFO (type))
25738 INIT_GNAT_SPECIFIC (type);
25739
25740 /* Read DW_AT_allocated and set in type. */
25741 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25742 if (attr_form_is_block (attr))
25743 {
25744 struct type *prop_type
25745 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25746 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25747 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25748 }
25749 else if (attr != NULL)
25750 {
25751 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25752 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25753 sect_offset_str (die->sect_off));
25754 }
25755
25756 /* Read DW_AT_associated and set in type. */
25757 attr = dwarf2_attr (die, DW_AT_associated, cu);
25758 if (attr_form_is_block (attr))
25759 {
25760 struct type *prop_type
25761 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25762 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25763 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25764 }
25765 else if (attr != NULL)
25766 {
25767 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25768 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25769 sect_offset_str (die->sect_off));
25770 }
25771
25772 /* Read DW_AT_data_location and set in type. */
25773 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25774 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25775 dwarf2_per_cu_addr_type (cu->per_cu)))
25776 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25777
25778 if (dwarf2_per_objfile->die_type_hash == NULL)
25779 {
25780 dwarf2_per_objfile->die_type_hash =
25781 htab_create_alloc_ex (127,
25782 per_cu_offset_and_type_hash,
25783 per_cu_offset_and_type_eq,
25784 NULL,
25785 &objfile->objfile_obstack,
25786 hashtab_obstack_allocate,
25787 dummy_obstack_deallocate);
25788 }
25789
25790 ofs.per_cu = cu->per_cu;
25791 ofs.sect_off = die->sect_off;
25792 ofs.type = type;
25793 slot = (struct dwarf2_per_cu_offset_and_type **)
25794 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25795 if (*slot)
25796 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25797 sect_offset_str (die->sect_off));
25798 *slot = XOBNEW (&objfile->objfile_obstack,
25799 struct dwarf2_per_cu_offset_and_type);
25800 **slot = ofs;
25801 return type;
25802}
25803
25804/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25805 or return NULL if the die does not have a saved type. */
25806
25807static struct type *
25808get_die_type_at_offset (sect_offset sect_off,
25809 struct dwarf2_per_cu_data *per_cu)
25810{
25811 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25812 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25813
25814 if (dwarf2_per_objfile->die_type_hash == NULL)
25815 return NULL;
25816
25817 ofs.per_cu = per_cu;
25818 ofs.sect_off = sect_off;
25819 slot = ((struct dwarf2_per_cu_offset_and_type *)
25820 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25821 if (slot)
25822 return slot->type;
25823 else
25824 return NULL;
25825}
25826
25827/* Look up the type for DIE in CU in die_type_hash,
25828 or return NULL if DIE does not have a saved type. */
25829
25830static struct type *
25831get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25832{
25833 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25834}
25835
25836/* Add a dependence relationship from CU to REF_PER_CU. */
25837
25838static void
25839dwarf2_add_dependence (struct dwarf2_cu *cu,
25840 struct dwarf2_per_cu_data *ref_per_cu)
25841{
25842 void **slot;
25843
25844 if (cu->dependencies == NULL)
25845 cu->dependencies
25846 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25847 NULL, &cu->comp_unit_obstack,
25848 hashtab_obstack_allocate,
25849 dummy_obstack_deallocate);
25850
25851 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25852 if (*slot == NULL)
25853 *slot = ref_per_cu;
25854}
25855
25856/* Subroutine of dwarf2_mark to pass to htab_traverse.
25857 Set the mark field in every compilation unit in the
25858 cache that we must keep because we are keeping CU. */
25859
25860static int
25861dwarf2_mark_helper (void **slot, void *data)
25862{
25863 struct dwarf2_per_cu_data *per_cu;
25864
25865 per_cu = (struct dwarf2_per_cu_data *) *slot;
25866
25867 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25868 reading of the chain. As such dependencies remain valid it is not much
25869 useful to track and undo them during QUIT cleanups. */
25870 if (per_cu->cu == NULL)
25871 return 1;
25872
25873 if (per_cu->cu->mark)
25874 return 1;
25875 per_cu->cu->mark = true;
25876
25877 if (per_cu->cu->dependencies != NULL)
25878 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25879
25880 return 1;
25881}
25882
25883/* Set the mark field in CU and in every other compilation unit in the
25884 cache that we must keep because we are keeping CU. */
25885
25886static void
25887dwarf2_mark (struct dwarf2_cu *cu)
25888{
25889 if (cu->mark)
25890 return;
25891 cu->mark = true;
25892 if (cu->dependencies != NULL)
25893 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25894}
25895
25896static void
25897dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25898{
25899 while (per_cu)
25900 {
25901 per_cu->cu->mark = false;
25902 per_cu = per_cu->cu->read_in_chain;
25903 }
25904}
25905
25906/* Trivial hash function for partial_die_info: the hash value of a DIE
25907 is its offset in .debug_info for this objfile. */
25908
25909static hashval_t
25910partial_die_hash (const void *item)
25911{
25912 const struct partial_die_info *part_die
25913 = (const struct partial_die_info *) item;
25914
25915 return to_underlying (part_die->sect_off);
25916}
25917
25918/* Trivial comparison function for partial_die_info structures: two DIEs
25919 are equal if they have the same offset. */
25920
25921static int
25922partial_die_eq (const void *item_lhs, const void *item_rhs)
25923{
25924 const struct partial_die_info *part_die_lhs
25925 = (const struct partial_die_info *) item_lhs;
25926 const struct partial_die_info *part_die_rhs
25927 = (const struct partial_die_info *) item_rhs;
25928
25929 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25930}
25931
25932struct cmd_list_element *set_dwarf_cmdlist;
25933struct cmd_list_element *show_dwarf_cmdlist;
25934
25935static void
25936set_dwarf_cmd (const char *args, int from_tty)
25937{
25938 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25939 gdb_stdout);
25940}
25941
25942static void
25943show_dwarf_cmd (const char *args, int from_tty)
25944{
25945 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25946}
25947
25948bool dwarf_always_disassemble;
25949
25950static void
25951show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25952 struct cmd_list_element *c, const char *value)
25953{
25954 fprintf_filtered (file,
25955 _("Whether to always disassemble "
25956 "DWARF expressions is %s.\n"),
25957 value);
25958}
25959
25960static void
25961show_check_physname (struct ui_file *file, int from_tty,
25962 struct cmd_list_element *c, const char *value)
25963{
25964 fprintf_filtered (file,
25965 _("Whether to check \"physname\" is %s.\n"),
25966 value);
25967}
25968
25969void
25970_initialize_dwarf2_read (void)
25971{
25972 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25973Set DWARF specific variables.\n\
25974Configure DWARF variables such as the cache size."),
25975 &set_dwarf_cmdlist, "maintenance set dwarf ",
25976 0/*allow-unknown*/, &maintenance_set_cmdlist);
25977
25978 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25979Show DWARF specific variables.\n\
25980Show DWARF variables such as the cache size."),
25981 &show_dwarf_cmdlist, "maintenance show dwarf ",
25982 0/*allow-unknown*/, &maintenance_show_cmdlist);
25983
25984 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25985 &dwarf_max_cache_age, _("\
25986Set the upper bound on the age of cached DWARF compilation units."), _("\
25987Show the upper bound on the age of cached DWARF compilation units."), _("\
25988A higher limit means that cached compilation units will be stored\n\
25989in memory longer, and more total memory will be used. Zero disables\n\
25990caching, which can slow down startup."),
25991 NULL,
25992 show_dwarf_max_cache_age,
25993 &set_dwarf_cmdlist,
25994 &show_dwarf_cmdlist);
25995
25996 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25997 &dwarf_always_disassemble, _("\
25998Set whether `info address' always disassembles DWARF expressions."), _("\
25999Show whether `info address' always disassembles DWARF expressions."), _("\
26000When enabled, DWARF expressions are always printed in an assembly-like\n\
26001syntax. When disabled, expressions will be printed in a more\n\
26002conversational style, when possible."),
26003 NULL,
26004 show_dwarf_always_disassemble,
26005 &set_dwarf_cmdlist,
26006 &show_dwarf_cmdlist);
26007
26008 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
26009Set debugging of the DWARF reader."), _("\
26010Show debugging of the DWARF reader."), _("\
26011When enabled (non-zero), debugging messages are printed during DWARF\n\
26012reading and symtab expansion. A value of 1 (one) provides basic\n\
26013information. A value greater than 1 provides more verbose information."),
26014 NULL,
26015 NULL,
26016 &setdebuglist, &showdebuglist);
26017
26018 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
26019Set debugging of the DWARF DIE reader."), _("\
26020Show debugging of the DWARF DIE reader."), _("\
26021When enabled (non-zero), DIEs are dumped after they are read in.\n\
26022The value is the maximum depth to print."),
26023 NULL,
26024 NULL,
26025 &setdebuglist, &showdebuglist);
26026
26027 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
26028Set debugging of the dwarf line reader."), _("\
26029Show debugging of the dwarf line reader."), _("\
26030When enabled (non-zero), line number entries are dumped as they are read in.\n\
26031A value of 1 (one) provides basic information.\n\
26032A value greater than 1 provides more verbose information."),
26033 NULL,
26034 NULL,
26035 &setdebuglist, &showdebuglist);
26036
26037 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
26038Set cross-checking of \"physname\" code against demangler."), _("\
26039Show cross-checking of \"physname\" code against demangler."), _("\
26040When enabled, GDB's internal \"physname\" code is checked against\n\
26041the demangler."),
26042 NULL, show_check_physname,
26043 &setdebuglist, &showdebuglist);
26044
26045 add_setshow_boolean_cmd ("use-deprecated-index-sections",
26046 no_class, &use_deprecated_index_sections, _("\
26047Set whether to use deprecated gdb_index sections."), _("\
26048Show whether to use deprecated gdb_index sections."), _("\
26049When enabled, deprecated .gdb_index sections are used anyway.\n\
26050Normally they are ignored either because of a missing feature or\n\
26051performance issue.\n\
26052Warning: This option must be enabled before gdb reads the file."),
26053 NULL,
26054 NULL,
26055 &setlist, &showlist);
26056
26057 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
26058 &dwarf2_locexpr_funcs);
26059 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
26060 &dwarf2_loclist_funcs);
26061
26062 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
26063 &dwarf2_block_frame_base_locexpr_funcs);
26064 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
26065 &dwarf2_block_frame_base_loclist_funcs);
26066
26067#if GDB_SELF_TEST
26068 selftests::register_test ("dw2_expand_symtabs_matching",
26069 selftests::dw2_expand_symtabs_matching::run_test);
26070#endif
26071}
This page took 0.191294 seconds and 4 git commands to generate.