2011-02-25 Rafael Ávila de Espíndola <respindola@mozilla.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
... / ...
CommitLineData
1/* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29#include "defs.h"
30#include "bfd.h"
31#include "symtab.h"
32#include "gdbtypes.h"
33#include "objfiles.h"
34#include "dwarf2.h"
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
38#include "filenames.h" /* for DOSish file names */
39#include "macrotab.h"
40#include "language.h"
41#include "complaints.h"
42#include "bcache.h"
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
45#include "cp-support.h"
46#include "hashtab.h"
47#include "command.h"
48#include "gdbcmd.h"
49#include "block.h"
50#include "addrmap.h"
51#include "typeprint.h"
52#include "jv-lang.h"
53#include "psympriv.h"
54#include "exceptions.h"
55#include "gdb_stat.h"
56#include "completer.h"
57#include "vec.h"
58#include "c-lang.h"
59#include "valprint.h"
60
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_assert.h"
64#include <sys/types.h>
65#ifdef HAVE_ZLIB_H
66#include <zlib.h>
67#endif
68#ifdef HAVE_MMAP
69#include <sys/mman.h>
70#ifndef MAP_FAILED
71#define MAP_FAILED ((void *) -1)
72#endif
73#endif
74
75typedef struct symbol *symbolp;
76DEF_VEC_P (symbolp);
77
78#if 0
79/* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91_COMP_UNIT_HEADER;
92#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93#endif
94
95/* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116_STATEMENT_PROLOGUE;
117
118/* When non-zero, dump DIEs after they are read in. */
119static int dwarf2_die_debug = 0;
120
121static int pagesize;
122
123/* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127static int processing_has_namespace_info;
128
129static const struct objfile_data *dwarf2_objfile_data_key;
130
131struct dwarf2_section_info
132{
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139};
140
141/* All offsets in the index are of this type. It must be
142 architecture-independent. */
143typedef uint32_t offset_type;
144
145DEF_VEC_I (offset_type);
146
147/* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149struct mapped_index
150{
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163};
164
165struct dwarf2_per_objfile
166{
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
209 unsigned char using_index;
210
211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
212 struct mapped_index *index_table;
213
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
233};
234
235static struct dwarf2_per_objfile *dwarf2_per_objfile;
236
237/* names of the debugging sections */
238
239/* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242#define INFO_SECTION "debug_info"
243#define ABBREV_SECTION "debug_abbrev"
244#define LINE_SECTION "debug_line"
245#define LOC_SECTION "debug_loc"
246#define MACINFO_SECTION "debug_macinfo"
247#define STR_SECTION "debug_str"
248#define RANGES_SECTION "debug_ranges"
249#define TYPES_SECTION "debug_types"
250#define FRAME_SECTION "debug_frame"
251#define EH_FRAME_SECTION "eh_frame"
252#define GDB_INDEX_SECTION "gdb_index"
253
254/* local data types */
255
256/* We hold several abbreviation tables in memory at the same time. */
257#ifndef ABBREV_HASH_SIZE
258#define ABBREV_HASH_SIZE 121
259#endif
260
261/* The data in a compilation unit header, after target2host
262 translation, looks like this. */
263struct comp_unit_head
264{
265 unsigned int length;
266 short version;
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
269 unsigned int abbrev_offset;
270
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
273
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
276
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
280
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
284};
285
286/* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288struct delayed_method_info
289{
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304};
305
306typedef struct delayed_method_info delayed_method_info;
307DEF_VEC_O (delayed_method_info);
308
309/* Internal state when decoding a particular compilation unit. */
310struct dwarf2_cu
311{
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
315 /* The header of the compilation unit. */
316 struct comp_unit_head header;
317
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
330 const char *producer;
331
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
368 /* A hash table of die offsets for following references. */
369 htab_t die_hash;
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
398};
399
400/* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
406struct dwarf2_per_cu_data
407{
408 /* The start offset and length of this compilation unit. 2**29-1
409 bytes should suffice to store the length of any compilation unit
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
413 unsigned int offset;
414 unsigned int length : 29;
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
418 unsigned int queued : 1;
419
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
432 struct dwarf2_cu *cu;
433
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449};
450
451/* Entry in the signatured_types hash table. */
452
453struct signatured_type
454{
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465};
466
467/* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
472
473struct die_reader_specs
474{
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484};
485
486/* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489struct line_header
490{
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
495 unsigned char maximum_ops_per_instruction;
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
519 {
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
524 int included_p; /* Non-zero if referenced by the Line Number Program. */
525 struct symtab *symtab; /* The associated symbol table, if any. */
526 } *file_names;
527
528 /* The start and end of the statement program following this
529 header. These point into dwarf2_per_objfile->line_buffer. */
530 gdb_byte *statement_program_start, *statement_program_end;
531};
532
533/* When we construct a partial symbol table entry we only
534 need this much information. */
535struct partial_die_info
536 {
537 /* Offset of this DIE. */
538 unsigned int offset;
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
564 /* The name of this DIE. Normally the value of DW_AT_name, but
565 sometimes a default name for unnamed DIEs. */
566 char *name;
567
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
582
583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
584 DW_AT_sibling, if any. */
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
587 gdb_byte *sibling;
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
597 };
598
599/* This data structure holds the information of an abbrev. */
600struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610struct attr_abbrev
611 {
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
614 };
615
616/* Attributes have a name and a value. */
617struct attribute
618 {
619 ENUM_BITFIELD(dwarf_attribute) name : 16;
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
631 ULONGEST unsnd;
632 LONGEST snd;
633 CORE_ADDR addr;
634 struct signatured_type *signatured_type;
635 }
636 u;
637 };
638
639/* This data structure holds a complete die structure. */
640struct die_info
641 {
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
655 /* Offset in .debug_info or .debug_types section. */
656 unsigned int offset;
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
661 together via their SIBLING fields. */
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
665
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
670 };
671
672struct function_range
673{
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678};
679
680/* Get at parts of an attribute structure. */
681
682#define DW_STRING(attr) ((attr)->u.str)
683#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
684#define DW_UNSND(attr) ((attr)->u.unsnd)
685#define DW_BLOCK(attr) ((attr)->u.blk)
686#define DW_SND(attr) ((attr)->u.snd)
687#define DW_ADDR(attr) ((attr)->u.addr)
688#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
689
690/* Blocks are a bunch of untyped bytes. */
691struct dwarf_block
692 {
693 unsigned int size;
694 gdb_byte *data;
695 };
696
697#ifndef ATTR_ALLOC_CHUNK
698#define ATTR_ALLOC_CHUNK 4
699#endif
700
701/* Allocate fields for structs, unions and enums in this size. */
702#ifndef DW_FIELD_ALLOC_CHUNK
703#define DW_FIELD_ALLOC_CHUNK 4
704#endif
705
706/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709static int bits_per_byte = 8;
710
711/* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714struct field_info
715 {
716 /* List of data member and baseclasses fields. */
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
724 *fields, *baseclasses;
725
726 /* Number of fields (including baseclasses). */
727 int nfields;
728
729 /* Number of baseclasses. */
730 int nbaseclasses;
731
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
734
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
743
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
754
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
767 };
768
769/* One item on the queue of compilation units to read in full symbols
770 for. */
771struct dwarf2_queue_item
772{
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775};
776
777/* The current queue. */
778static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
780/* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785static int dwarf2_max_cache_age = 5;
786static void
787show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789{
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
792 value);
793}
794
795
796/* Various complaints about symbol reading that don't abort the process. */
797
798static void
799dwarf2_statement_list_fits_in_line_number_section_complaint (void)
800{
801 complaint (&symfile_complaints,
802 _("statement list doesn't fit in .debug_line section"));
803}
804
805static void
806dwarf2_debug_line_missing_file_complaint (void)
807{
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810}
811
812static void
813dwarf2_debug_line_missing_end_sequence_complaint (void)
814{
815 complaint (&symfile_complaints,
816 _(".debug_line section has line "
817 "program sequence without an end"));
818}
819
820static void
821dwarf2_complex_location_expr_complaint (void)
822{
823 complaint (&symfile_complaints, _("location expression too complex"));
824}
825
826static void
827dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
829{
830 complaint (&symfile_complaints,
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
833}
834
835static void
836dwarf2_macros_too_long_complaint (void)
837{
838 complaint (&symfile_complaints,
839 _("macro info runs off end of `.debug_macinfo' section"));
840}
841
842static void
843dwarf2_macro_malformed_definition_complaint (const char *arg1)
844{
845 complaint (&symfile_complaints,
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
848 arg1);
849}
850
851static void
852dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
853{
854 complaint (&symfile_complaints,
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
857}
858
859/* local function prototypes */
860
861static void dwarf2_locate_sections (bfd *, asection *, void *);
862
863static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
866static void dwarf2_build_psymtabs_hard (struct objfile *);
867
868static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
870 int, struct dwarf2_cu *);
871
872static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
874
875static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
877 int need_pc, struct dwarf2_cu *cu);
878
879static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
883static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
885
886static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
888 int need_pc, struct dwarf2_cu *cu);
889
890static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
893
894static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
895
896static void psymtab_to_symtab_1 (struct partial_symtab *);
897
898static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
899
900static void dwarf2_free_abbrev_table (void *);
901
902static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
903 struct dwarf2_cu *);
904
905static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
906 struct dwarf2_cu *);
907
908static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
911
912static gdb_byte *read_partial_die (struct partial_die_info *,
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
917
918static struct partial_die_info *find_partial_die (unsigned int,
919 struct dwarf2_cu *);
920
921static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
924static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
926
927static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
929
930static unsigned int read_1_byte (bfd *, gdb_byte *);
931
932static int read_1_signed_byte (bfd *, gdb_byte *);
933
934static unsigned int read_2_bytes (bfd *, gdb_byte *);
935
936static unsigned int read_4_bytes (bfd *, gdb_byte *);
937
938static ULONGEST read_8_bytes (bfd *, gdb_byte *);
939
940static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
941 unsigned int *);
942
943static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
948
949static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
950 unsigned int *);
951
952static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
953
954static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
955
956static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
957
958static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
961
962static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
965
966static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
967
968static void set_cu_language (unsigned int, struct dwarf2_cu *);
969
970static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
972
973static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
977static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
980static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
981
982static struct die_info *die_specification (struct die_info *die,
983 struct dwarf2_cu **);
984
985static void free_line_header (struct line_header *lh);
986
987static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
990static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
992 bfd *abfd, struct dwarf2_cu *cu));
993
994static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
995 struct dwarf2_cu *, struct partial_symtab *);
996
997static void dwarf2_start_subfile (char *, const char *, const char *);
998
999static struct symbol *new_symbol (struct die_info *, struct type *,
1000 struct dwarf2_cu *);
1001
1002static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
1005static void dwarf2_const_value (struct attribute *, struct symbol *,
1006 struct dwarf2_cu *);
1007
1008static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
1015
1016static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1017
1018static int need_gnat_info (struct dwarf2_cu *);
1019
1020static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
1022
1023static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
1026static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
1028
1029static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
1031
1032static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1033
1034static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
1036static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1037
1038static char *typename_concat (struct obstack *obs, const char *prefix,
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
1041
1042static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1043
1044static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
1046static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1047
1048static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1049
1050static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
1053static int dwarf2_get_pc_bounds (struct die_info *,
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
1056
1057static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
1061static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
1064static void dwarf2_add_field (struct field_info *, struct die_info *,
1065 struct dwarf2_cu *);
1066
1067static void dwarf2_attach_fields_to_type (struct field_info *,
1068 struct type *, struct dwarf2_cu *);
1069
1070static void dwarf2_add_member_fn (struct field_info *,
1071 struct die_info *, struct type *,
1072 struct dwarf2_cu *);
1073
1074static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1075 struct type *,
1076 struct dwarf2_cu *);
1077
1078static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1079
1080static void read_common_block (struct die_info *, struct dwarf2_cu *);
1081
1082static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1083
1084static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
1086static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
1088static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
1091static const char *namespace_name (struct die_info *die,
1092 int *is_anonymous, struct dwarf2_cu *);
1093
1094static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1095
1096static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1097
1098static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1099 struct dwarf2_cu *);
1100
1101static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1102
1103static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
1108static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
1110 gdb_byte **new_info_ptr,
1111 struct die_info *parent);
1112
1113static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
1115 gdb_byte **new_info_ptr,
1116 struct die_info *parent);
1117
1118static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
1122static void process_die (struct die_info *, struct dwarf2_cu *);
1123
1124static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
1127static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1128
1129static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133static struct die_info *dwarf2_extension (struct die_info *die,
1134 struct dwarf2_cu **);
1135
1136static char *dwarf_tag_name (unsigned int);
1137
1138static char *dwarf_attr_name (unsigned int);
1139
1140static char *dwarf_form_name (unsigned int);
1141
1142static char *dwarf_bool_name (unsigned int);
1143
1144static char *dwarf_type_encoding_name (unsigned int);
1145
1146#if 0
1147static char *dwarf_cfi_name (unsigned int);
1148#endif
1149
1150static struct die_info *sibling_die (struct die_info *);
1151
1152static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154static void dump_die_for_error (struct die_info *);
1155
1156static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
1158
1159/*static*/ void dump_die (struct die_info *, int max_level);
1160
1161static void store_in_ref_table (struct die_info *,
1162 struct dwarf2_cu *);
1163
1164static int is_ref_attr (struct attribute *);
1165
1166static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1167
1168static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1169
1170static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
1174static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
1176 struct dwarf2_cu **);
1177
1178static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
1188/* memory allocation interface */
1189
1190static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1191
1192static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1193
1194static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1195
1196static void initialize_cu_func_list (struct dwarf2_cu *);
1197
1198static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
1200
1201static void dwarf_decode_macros (struct line_header *, unsigned int,
1202 char *, bfd *, struct dwarf2_cu *);
1203
1204static int attr_form_is_block (struct attribute *);
1205
1206static int attr_form_is_section_offset (struct attribute *);
1207
1208static int attr_form_is_constant (struct attribute *);
1209
1210static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222static void free_stack_comp_unit (void *);
1223
1224static hashval_t partial_die_hash (const void *item);
1225
1226static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (unsigned int offset, struct objfile *objfile);
1230
1231static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1232 (unsigned int offset, struct objfile *objfile);
1233
1234static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
1239
1240static void free_one_comp_unit (void *);
1241
1242static void free_cached_comp_units (void *);
1243
1244static void age_cached_comp_units (void);
1245
1246static void free_one_cached_comp_unit (void *);
1247
1248static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1250
1251static void create_all_comp_units (struct objfile *);
1252
1253static int create_debug_types_hash_table (struct objfile *objfile);
1254
1255static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
1257
1258static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
1263static void dwarf2_mark (struct dwarf2_cu *);
1264
1265static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
1267static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
1270static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1271
1272static void dwarf2_release_queue (void *dummy);
1273
1274static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277static void process_queue (struct objfile *objfile);
1278
1279static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
1295static htab_t allocate_signatured_type_table (struct objfile *objfile);
1296
1297#if WORDS_BIGENDIAN
1298
1299/* Convert VALUE between big- and little-endian. */
1300static offset_type
1301byte_swap (offset_type value)
1302{
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310}
1311
1312#define MAYBE_SWAP(V) byte_swap (V)
1313
1314#else
1315#define MAYBE_SWAP(V) (V)
1316#endif /* WORDS_BIGENDIAN */
1317
1318/* The suffix for an index file. */
1319#define INDEX_SUFFIX ".gdb-index"
1320
1321static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
1324/* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327int
1328dwarf2_has_info (struct objfile *objfile)
1329{
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1336
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
1340
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
1346}
1347
1348/* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351static int
1352section_is_p (const char *section_name, const char *name)
1353{
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
1358}
1359
1360/* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364static void
1365dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1366{
1367 if (section_is_p (sectp->name, INFO_SECTION))
1368 {
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1371 }
1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
1373 {
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1376 }
1377 else if (section_is_p (sectp->name, LINE_SECTION))
1378 {
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1381 }
1382 else if (section_is_p (sectp->name, LOC_SECTION))
1383 {
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1386 }
1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
1388 {
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1391 }
1392 else if (section_is_p (sectp->name, STR_SECTION))
1393 {
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1396 }
1397 else if (section_is_p (sectp->name, FRAME_SECTION))
1398 {
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1401 }
1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1403 {
1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1405
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1410 }
1411 }
1412 else if (section_is_p (sectp->name, RANGES_SECTION))
1413 {
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1416 }
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
1427
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
1431}
1432
1433/* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1435
1436static void
1437zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439{
1440 bfd *abfd = objfile->obfd;
1441#ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445#else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
1506 do_cleanups (cleanup);
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509#endif
1510}
1511
1512/* A helper function that decides whether a section is empty. */
1513
1514static int
1515dwarf2_section_empty_p (struct dwarf2_section_info *info)
1516{
1517 return info->asection == NULL || info->size == 0;
1518}
1519
1520/* Read the contents of the section SECTP from object file specified by
1521 OBJFILE, store info about the section into INFO.
1522 If the section is compressed, uncompress it before returning. */
1523
1524static void
1525dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1526{
1527 bfd *abfd = objfile->obfd;
1528 asection *sectp = info->asection;
1529 gdb_byte *buf, *retbuf;
1530 unsigned char header[4];
1531
1532 if (info->readin)
1533 return;
1534 info->buffer = NULL;
1535 info->was_mmapped = 0;
1536 info->readin = 1;
1537
1538 if (dwarf2_section_empty_p (info))
1539 return;
1540
1541 /* Check if the file has a 4-byte header indicating compression. */
1542 if (info->size > sizeof (header)
1543 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1544 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1545 {
1546 /* Upon decompression, update the buffer and its size. */
1547 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1548 {
1549 zlib_decompress_section (objfile, sectp, &info->buffer,
1550 &info->size);
1551 return;
1552 }
1553 }
1554
1555#ifdef HAVE_MMAP
1556 if (pagesize == 0)
1557 pagesize = getpagesize ();
1558
1559 /* Only try to mmap sections which are large enough: we don't want to
1560 waste space due to fragmentation. Also, only try mmap for sections
1561 without relocations. */
1562
1563 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1564 {
1565 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1566 size_t map_length = info->size + sectp->filepos - pg_offset;
1567 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1568 MAP_PRIVATE, pg_offset);
1569
1570 if (retbuf != MAP_FAILED)
1571 {
1572 info->was_mmapped = 1;
1573 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1574#if HAVE_POSIX_MADVISE
1575 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1576#endif
1577 return;
1578 }
1579 }
1580#endif
1581
1582 /* If we get here, we are a normal, not-compressed section. */
1583 info->buffer = buf
1584 = obstack_alloc (&objfile->objfile_obstack, info->size);
1585
1586 /* When debugging .o files, we may need to apply relocations; see
1587 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1588 We never compress sections in .o files, so we only need to
1589 try this when the section is not compressed. */
1590 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1591 if (retbuf != NULL)
1592 {
1593 info->buffer = retbuf;
1594 return;
1595 }
1596
1597 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1598 || bfd_bread (buf, info->size, abfd) != info->size)
1599 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1600 bfd_get_filename (abfd));
1601}
1602
1603/* A helper function that returns the size of a section in a safe way.
1604 If you are positive that the section has been read before using the
1605 size, then it is safe to refer to the dwarf2_section_info object's
1606 "size" field directly. In other cases, you must call this
1607 function, because for compressed sections the size field is not set
1608 correctly until the section has been read. */
1609
1610static bfd_size_type
1611dwarf2_section_size (struct objfile *objfile,
1612 struct dwarf2_section_info *info)
1613{
1614 if (!info->readin)
1615 dwarf2_read_section (objfile, info);
1616 return info->size;
1617}
1618
1619/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1620 SECTION_NAME. */
1621
1622void
1623dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1624 asection **sectp, gdb_byte **bufp,
1625 bfd_size_type *sizep)
1626{
1627 struct dwarf2_per_objfile *data
1628 = objfile_data (objfile, dwarf2_objfile_data_key);
1629 struct dwarf2_section_info *info;
1630
1631 /* We may see an objfile without any DWARF, in which case we just
1632 return nothing. */
1633 if (data == NULL)
1634 {
1635 *sectp = NULL;
1636 *bufp = NULL;
1637 *sizep = 0;
1638 return;
1639 }
1640 if (section_is_p (section_name, EH_FRAME_SECTION))
1641 info = &data->eh_frame;
1642 else if (section_is_p (section_name, FRAME_SECTION))
1643 info = &data->frame;
1644 else
1645 gdb_assert_not_reached ("unexpected section");
1646
1647 dwarf2_read_section (objfile, info);
1648
1649 *sectp = info->asection;
1650 *bufp = info->buffer;
1651 *sizep = info->size;
1652}
1653
1654\f
1655/* DWARF quick_symbols_functions support. */
1656
1657/* TUs can share .debug_line entries, and there can be a lot more TUs than
1658 unique line tables, so we maintain a separate table of all .debug_line
1659 derived entries to support the sharing.
1660 All the quick functions need is the list of file names. We discard the
1661 line_header when we're done and don't need to record it here. */
1662struct quick_file_names
1663{
1664 /* The offset in .debug_line of the line table. We hash on this. */
1665 unsigned int offset;
1666
1667 /* The number of entries in file_names, real_names. */
1668 unsigned int num_file_names;
1669
1670 /* The file names from the line table, after being run through
1671 file_full_name. */
1672 const char **file_names;
1673
1674 /* The file names from the line table after being run through
1675 gdb_realpath. These are computed lazily. */
1676 const char **real_names;
1677};
1678
1679/* When using the index (and thus not using psymtabs), each CU has an
1680 object of this type. This is used to hold information needed by
1681 the various "quick" methods. */
1682struct dwarf2_per_cu_quick_data
1683{
1684 /* The file table. This can be NULL if there was no file table
1685 or it's currently not read in.
1686 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1687 struct quick_file_names *file_names;
1688
1689 /* The corresponding symbol table. This is NULL if symbols for this
1690 CU have not yet been read. */
1691 struct symtab *symtab;
1692
1693 /* A temporary mark bit used when iterating over all CUs in
1694 expand_symtabs_matching. */
1695 unsigned int mark : 1;
1696
1697 /* True if we've tried to read the file table and found there isn't one.
1698 There will be no point in trying to read it again next time. */
1699 unsigned int no_file_data : 1;
1700};
1701
1702/* Hash function for a quick_file_names. */
1703
1704static hashval_t
1705hash_file_name_entry (const void *e)
1706{
1707 const struct quick_file_names *file_data = e;
1708
1709 return file_data->offset;
1710}
1711
1712/* Equality function for a quick_file_names. */
1713
1714static int
1715eq_file_name_entry (const void *a, const void *b)
1716{
1717 const struct quick_file_names *ea = a;
1718 const struct quick_file_names *eb = b;
1719
1720 return ea->offset == eb->offset;
1721}
1722
1723/* Delete function for a quick_file_names. */
1724
1725static void
1726delete_file_name_entry (void *e)
1727{
1728 struct quick_file_names *file_data = e;
1729 int i;
1730
1731 for (i = 0; i < file_data->num_file_names; ++i)
1732 {
1733 xfree ((void*) file_data->file_names[i]);
1734 if (file_data->real_names)
1735 xfree ((void*) file_data->real_names[i]);
1736 }
1737
1738 /* The space for the struct itself lives on objfile_obstack,
1739 so we don't free it here. */
1740}
1741
1742/* Create a quick_file_names hash table. */
1743
1744static htab_t
1745create_quick_file_names_table (unsigned int nr_initial_entries)
1746{
1747 return htab_create_alloc (nr_initial_entries,
1748 hash_file_name_entry, eq_file_name_entry,
1749 delete_file_name_entry, xcalloc, xfree);
1750}
1751
1752/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1753 this CU came. */
1754
1755static void
1756dw2_do_instantiate_symtab (struct objfile *objfile,
1757 struct dwarf2_per_cu_data *per_cu)
1758{
1759 struct cleanup *back_to;
1760
1761 back_to = make_cleanup (dwarf2_release_queue, NULL);
1762
1763 queue_comp_unit (per_cu, objfile);
1764
1765 if (per_cu->from_debug_types)
1766 read_signatured_type_at_offset (objfile, per_cu->offset);
1767 else
1768 load_full_comp_unit (per_cu, objfile);
1769
1770 process_queue (objfile);
1771
1772 /* Age the cache, releasing compilation units that have not
1773 been used recently. */
1774 age_cached_comp_units ();
1775
1776 do_cleanups (back_to);
1777}
1778
1779/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1780 the objfile from which this CU came. Returns the resulting symbol
1781 table. */
1782
1783static struct symtab *
1784dw2_instantiate_symtab (struct objfile *objfile,
1785 struct dwarf2_per_cu_data *per_cu)
1786{
1787 if (!per_cu->v.quick->symtab)
1788 {
1789 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1790 increment_reading_symtab ();
1791 dw2_do_instantiate_symtab (objfile, per_cu);
1792 do_cleanups (back_to);
1793 }
1794 return per_cu->v.quick->symtab;
1795}
1796
1797/* Return the CU given its index. */
1798
1799static struct dwarf2_per_cu_data *
1800dw2_get_cu (int index)
1801{
1802 if (index >= dwarf2_per_objfile->n_comp_units)
1803 {
1804 index -= dwarf2_per_objfile->n_comp_units;
1805 return dwarf2_per_objfile->type_comp_units[index];
1806 }
1807 return dwarf2_per_objfile->all_comp_units[index];
1808}
1809
1810/* A helper function that knows how to read a 64-bit value in a way
1811 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1812 otherwise. */
1813
1814static int
1815extract_cu_value (const char *bytes, ULONGEST *result)
1816{
1817 if (sizeof (ULONGEST) < 8)
1818 {
1819 int i;
1820
1821 /* Ignore the upper 4 bytes if they are all zero. */
1822 for (i = 0; i < 4; ++i)
1823 if (bytes[i + 4] != 0)
1824 return 0;
1825
1826 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1827 }
1828 else
1829 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1830 return 1;
1831}
1832
1833/* Read the CU list from the mapped index, and use it to create all
1834 the CU objects for this objfile. Return 0 if something went wrong,
1835 1 if everything went ok. */
1836
1837static int
1838create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1839 offset_type cu_list_elements)
1840{
1841 offset_type i;
1842
1843 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1844 dwarf2_per_objfile->all_comp_units
1845 = obstack_alloc (&objfile->objfile_obstack,
1846 dwarf2_per_objfile->n_comp_units
1847 * sizeof (struct dwarf2_per_cu_data *));
1848
1849 for (i = 0; i < cu_list_elements; i += 2)
1850 {
1851 struct dwarf2_per_cu_data *the_cu;
1852 ULONGEST offset, length;
1853
1854 if (!extract_cu_value (cu_list, &offset)
1855 || !extract_cu_value (cu_list + 8, &length))
1856 return 0;
1857 cu_list += 2 * 8;
1858
1859 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1860 struct dwarf2_per_cu_data);
1861 the_cu->offset = offset;
1862 the_cu->length = length;
1863 the_cu->objfile = objfile;
1864 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1865 struct dwarf2_per_cu_quick_data);
1866 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1867 }
1868
1869 return 1;
1870}
1871
1872/* Create the signatured type hash table from the index. */
1873
1874static int
1875create_signatured_type_table_from_index (struct objfile *objfile,
1876 const gdb_byte *bytes,
1877 offset_type elements)
1878{
1879 offset_type i;
1880 htab_t sig_types_hash;
1881
1882 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1883 dwarf2_per_objfile->type_comp_units
1884 = obstack_alloc (&objfile->objfile_obstack,
1885 dwarf2_per_objfile->n_type_comp_units
1886 * sizeof (struct dwarf2_per_cu_data *));
1887
1888 sig_types_hash = allocate_signatured_type_table (objfile);
1889
1890 for (i = 0; i < elements; i += 3)
1891 {
1892 struct signatured_type *type_sig;
1893 ULONGEST offset, type_offset, signature;
1894 void **slot;
1895
1896 if (!extract_cu_value (bytes, &offset)
1897 || !extract_cu_value (bytes + 8, &type_offset))
1898 return 0;
1899 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1900 bytes += 3 * 8;
1901
1902 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1903 struct signatured_type);
1904 type_sig->signature = signature;
1905 type_sig->offset = offset;
1906 type_sig->type_offset = type_offset;
1907 type_sig->per_cu.from_debug_types = 1;
1908 type_sig->per_cu.offset = offset;
1909 type_sig->per_cu.objfile = objfile;
1910 type_sig->per_cu.v.quick
1911 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1912 struct dwarf2_per_cu_quick_data);
1913
1914 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1915 *slot = type_sig;
1916
1917 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1918 }
1919
1920 dwarf2_per_objfile->signatured_types = sig_types_hash;
1921
1922 return 1;
1923}
1924
1925/* Read the address map data from the mapped index, and use it to
1926 populate the objfile's psymtabs_addrmap. */
1927
1928static void
1929create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1930{
1931 const gdb_byte *iter, *end;
1932 struct obstack temp_obstack;
1933 struct addrmap *mutable_map;
1934 struct cleanup *cleanup;
1935 CORE_ADDR baseaddr;
1936
1937 obstack_init (&temp_obstack);
1938 cleanup = make_cleanup_obstack_free (&temp_obstack);
1939 mutable_map = addrmap_create_mutable (&temp_obstack);
1940
1941 iter = index->address_table;
1942 end = iter + index->address_table_size;
1943
1944 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1945
1946 while (iter < end)
1947 {
1948 ULONGEST hi, lo, cu_index;
1949 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1950 iter += 8;
1951 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1952 iter += 8;
1953 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1954 iter += 4;
1955
1956 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1957 dw2_get_cu (cu_index));
1958 }
1959
1960 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1961 &objfile->objfile_obstack);
1962 do_cleanups (cleanup);
1963}
1964
1965/* The hash function for strings in the mapped index. This is the
1966 same as the hashtab.c hash function, but we keep a separate copy to
1967 maintain control over the implementation. This is necessary
1968 because the hash function is tied to the format of the mapped index
1969 file. */
1970
1971static hashval_t
1972mapped_index_string_hash (const void *p)
1973{
1974 const unsigned char *str = (const unsigned char *) p;
1975 hashval_t r = 0;
1976 unsigned char c;
1977
1978 while ((c = *str++) != 0)
1979 r = r * 67 + c - 113;
1980
1981 return r;
1982}
1983
1984/* Find a slot in the mapped index INDEX for the object named NAME.
1985 If NAME is found, set *VEC_OUT to point to the CU vector in the
1986 constant pool and return 1. If NAME cannot be found, return 0. */
1987
1988static int
1989find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1990 offset_type **vec_out)
1991{
1992 offset_type hash = mapped_index_string_hash (name);
1993 offset_type slot, step;
1994
1995 slot = hash & (index->symbol_table_slots - 1);
1996 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1997
1998 for (;;)
1999 {
2000 /* Convert a slot number to an offset into the table. */
2001 offset_type i = 2 * slot;
2002 const char *str;
2003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2004 return 0;
2005
2006 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2007 if (!strcmp (name, str))
2008 {
2009 *vec_out = (offset_type *) (index->constant_pool
2010 + MAYBE_SWAP (index->symbol_table[i + 1]));
2011 return 1;
2012 }
2013
2014 slot = (slot + step) & (index->symbol_table_slots - 1);
2015 }
2016}
2017
2018/* Read the index file. If everything went ok, initialize the "quick"
2019 elements of all the CUs and return 1. Otherwise, return 0. */
2020
2021static int
2022dwarf2_read_index (struct objfile *objfile)
2023{
2024 char *addr;
2025 struct mapped_index *map;
2026 offset_type *metadata;
2027 const gdb_byte *cu_list;
2028 const gdb_byte *types_list = NULL;
2029 offset_type version, cu_list_elements;
2030 offset_type types_list_elements = 0;
2031 int i;
2032
2033 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2034 return 0;
2035
2036 /* Older elfutils strip versions could keep the section in the main
2037 executable while splitting it for the separate debug info file. */
2038 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2039 & SEC_HAS_CONTENTS) == 0)
2040 return 0;
2041
2042 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2043
2044 addr = dwarf2_per_objfile->gdb_index.buffer;
2045 /* Version check. */
2046 version = MAYBE_SWAP (*(offset_type *) addr);
2047 /* Versions earlier than 3 emitted every copy of a psymbol. This
2048 causes the index to behave very poorly for certain requests. Version 4
2049 contained incomplete addrmap. So, it seems better to just ignore such
2050 indices. */
2051 if (version < 4)
2052 return 0;
2053 /* Indexes with higher version than the one supported by GDB may be no
2054 longer backward compatible. */
2055 if (version > 4)
2056 return 0;
2057
2058 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2059 map->total_size = dwarf2_per_objfile->gdb_index.size;
2060
2061 metadata = (offset_type *) (addr + sizeof (offset_type));
2062
2063 i = 0;
2064 cu_list = addr + MAYBE_SWAP (metadata[i]);
2065 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2066 / 8);
2067 ++i;
2068
2069 types_list = addr + MAYBE_SWAP (metadata[i]);
2070 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2071 - MAYBE_SWAP (metadata[i]))
2072 / 8);
2073 ++i;
2074
2075 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2076 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2077 - MAYBE_SWAP (metadata[i]));
2078 ++i;
2079
2080 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2081 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2082 - MAYBE_SWAP (metadata[i]))
2083 / (2 * sizeof (offset_type)));
2084 ++i;
2085
2086 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2087
2088 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2089 return 0;
2090
2091 if (types_list_elements
2092 && !create_signatured_type_table_from_index (objfile, types_list,
2093 types_list_elements))
2094 return 0;
2095
2096 create_addrmap_from_index (objfile, map);
2097
2098 dwarf2_per_objfile->index_table = map;
2099 dwarf2_per_objfile->using_index = 1;
2100 dwarf2_per_objfile->quick_file_names_table =
2101 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2102
2103 return 1;
2104}
2105
2106/* A helper for the "quick" functions which sets the global
2107 dwarf2_per_objfile according to OBJFILE. */
2108
2109static void
2110dw2_setup (struct objfile *objfile)
2111{
2112 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2113 gdb_assert (dwarf2_per_objfile);
2114}
2115
2116/* A helper for the "quick" functions which attempts to read the line
2117 table for THIS_CU. */
2118
2119static struct quick_file_names *
2120dw2_get_file_names (struct objfile *objfile,
2121 struct dwarf2_per_cu_data *this_cu)
2122{
2123 bfd *abfd = objfile->obfd;
2124 struct line_header *lh;
2125 struct attribute *attr;
2126 struct cleanup *cleanups;
2127 struct die_info *comp_unit_die;
2128 struct dwarf2_section_info* sec;
2129 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2130 int has_children, i;
2131 struct dwarf2_cu cu;
2132 unsigned int bytes_read, buffer_size;
2133 struct die_reader_specs reader_specs;
2134 char *name, *comp_dir;
2135 void **slot;
2136 struct quick_file_names *qfn;
2137 unsigned int line_offset;
2138
2139 if (this_cu->v.quick->file_names != NULL)
2140 return this_cu->v.quick->file_names;
2141 /* If we know there is no line data, no point in looking again. */
2142 if (this_cu->v.quick->no_file_data)
2143 return NULL;
2144
2145 init_one_comp_unit (&cu, objfile);
2146 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2147
2148 if (this_cu->from_debug_types)
2149 sec = &dwarf2_per_objfile->types;
2150 else
2151 sec = &dwarf2_per_objfile->info;
2152 dwarf2_read_section (objfile, sec);
2153 buffer_size = sec->size;
2154 buffer = sec->buffer;
2155 info_ptr = buffer + this_cu->offset;
2156 beg_of_comp_unit = info_ptr;
2157
2158 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2159 buffer, buffer_size,
2160 abfd);
2161
2162 /* Complete the cu_header. */
2163 cu.header.offset = beg_of_comp_unit - buffer;
2164 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2165
2166 this_cu->cu = &cu;
2167 cu.per_cu = this_cu;
2168
2169 dwarf2_read_abbrevs (abfd, &cu);
2170 make_cleanup (dwarf2_free_abbrev_table, &cu);
2171
2172 if (this_cu->from_debug_types)
2173 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2174 init_cu_die_reader (&reader_specs, &cu);
2175 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2176 &has_children);
2177
2178 lh = NULL;
2179 slot = NULL;
2180 line_offset = 0;
2181 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2182 if (attr)
2183 {
2184 struct quick_file_names find_entry;
2185
2186 line_offset = DW_UNSND (attr);
2187
2188 /* We may have already read in this line header (TU line header sharing).
2189 If we have we're done. */
2190 find_entry.offset = line_offset;
2191 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2192 &find_entry, INSERT);
2193 if (*slot != NULL)
2194 {
2195 do_cleanups (cleanups);
2196 this_cu->v.quick->file_names = *slot;
2197 return *slot;
2198 }
2199
2200 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2201 }
2202 if (lh == NULL)
2203 {
2204 do_cleanups (cleanups);
2205 this_cu->v.quick->no_file_data = 1;
2206 return NULL;
2207 }
2208
2209 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2210 qfn->offset = line_offset;
2211 gdb_assert (slot != NULL);
2212 *slot = qfn;
2213
2214 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2215
2216 qfn->num_file_names = lh->num_file_names;
2217 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2218 lh->num_file_names * sizeof (char *));
2219 for (i = 0; i < lh->num_file_names; ++i)
2220 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2221 qfn->real_names = NULL;
2222
2223 free_line_header (lh);
2224 do_cleanups (cleanups);
2225
2226 this_cu->v.quick->file_names = qfn;
2227 return qfn;
2228}
2229
2230/* A helper for the "quick" functions which computes and caches the
2231 real path for a given file name from the line table. */
2232
2233static const char *
2234dw2_get_real_path (struct objfile *objfile,
2235 struct quick_file_names *qfn, int index)
2236{
2237 if (qfn->real_names == NULL)
2238 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2239 qfn->num_file_names, sizeof (char *));
2240
2241 if (qfn->real_names[index] == NULL)
2242 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2243
2244 return qfn->real_names[index];
2245}
2246
2247static struct symtab *
2248dw2_find_last_source_symtab (struct objfile *objfile)
2249{
2250 int index;
2251
2252 dw2_setup (objfile);
2253 index = dwarf2_per_objfile->n_comp_units - 1;
2254 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2255}
2256
2257/* Traversal function for dw2_forget_cached_source_info. */
2258
2259static int
2260dw2_free_cached_file_names (void **slot, void *info)
2261{
2262 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2263
2264 if (file_data->real_names)
2265 {
2266 int i;
2267
2268 for (i = 0; i < file_data->num_file_names; ++i)
2269 {
2270 xfree ((void*) file_data->real_names[i]);
2271 file_data->real_names[i] = NULL;
2272 }
2273 }
2274
2275 return 1;
2276}
2277
2278static void
2279dw2_forget_cached_source_info (struct objfile *objfile)
2280{
2281 dw2_setup (objfile);
2282
2283 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2284 dw2_free_cached_file_names, NULL);
2285}
2286
2287static int
2288dw2_lookup_symtab (struct objfile *objfile, const char *name,
2289 const char *full_path, const char *real_path,
2290 struct symtab **result)
2291{
2292 int i;
2293 int check_basename = lbasename (name) == name;
2294 struct dwarf2_per_cu_data *base_cu = NULL;
2295
2296 dw2_setup (objfile);
2297
2298 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2299 + dwarf2_per_objfile->n_type_comp_units); ++i)
2300 {
2301 int j;
2302 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2303 struct quick_file_names *file_data;
2304
2305 if (per_cu->v.quick->symtab)
2306 continue;
2307
2308 file_data = dw2_get_file_names (objfile, per_cu);
2309 if (file_data == NULL)
2310 continue;
2311
2312 for (j = 0; j < file_data->num_file_names; ++j)
2313 {
2314 const char *this_name = file_data->file_names[j];
2315
2316 if (FILENAME_CMP (name, this_name) == 0)
2317 {
2318 *result = dw2_instantiate_symtab (objfile, per_cu);
2319 return 1;
2320 }
2321
2322 if (check_basename && ! base_cu
2323 && FILENAME_CMP (lbasename (this_name), name) == 0)
2324 base_cu = per_cu;
2325
2326 if (full_path != NULL)
2327 {
2328 const char *this_real_name = dw2_get_real_path (objfile,
2329 file_data, j);
2330
2331 if (this_real_name != NULL
2332 && FILENAME_CMP (full_path, this_real_name) == 0)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, per_cu);
2335 return 1;
2336 }
2337 }
2338
2339 if (real_path != NULL)
2340 {
2341 const char *this_real_name = dw2_get_real_path (objfile,
2342 file_data, j);
2343
2344 if (this_real_name != NULL
2345 && FILENAME_CMP (real_path, this_real_name) == 0)
2346 {
2347 *result = dw2_instantiate_symtab (objfile, per_cu);
2348 return 1;
2349 }
2350 }
2351 }
2352 }
2353
2354 if (base_cu)
2355 {
2356 *result = dw2_instantiate_symtab (objfile, base_cu);
2357 return 1;
2358 }
2359
2360 return 0;
2361}
2362
2363static struct symtab *
2364dw2_lookup_symbol (struct objfile *objfile, int block_index,
2365 const char *name, domain_enum domain)
2366{
2367 /* We do all the work in the pre_expand_symtabs_matching hook
2368 instead. */
2369 return NULL;
2370}
2371
2372/* A helper function that expands all symtabs that hold an object
2373 named NAME. */
2374
2375static void
2376dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2377{
2378 dw2_setup (objfile);
2379
2380 /* index_table is NULL if OBJF_READNOW. */
2381 if (dwarf2_per_objfile->index_table)
2382 {
2383 offset_type *vec;
2384
2385 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2386 name, &vec))
2387 {
2388 offset_type i, len = MAYBE_SWAP (*vec);
2389 for (i = 0; i < len; ++i)
2390 {
2391 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2392 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2393
2394 dw2_instantiate_symtab (objfile, per_cu);
2395 }
2396 }
2397 }
2398}
2399
2400static void
2401dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2402 int kind, const char *name,
2403 domain_enum domain)
2404{
2405 dw2_do_expand_symtabs_matching (objfile, name);
2406}
2407
2408static void
2409dw2_print_stats (struct objfile *objfile)
2410{
2411 int i, count;
2412
2413 dw2_setup (objfile);
2414 count = 0;
2415 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2416 + dwarf2_per_objfile->n_type_comp_units); ++i)
2417 {
2418 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2419
2420 if (!per_cu->v.quick->symtab)
2421 ++count;
2422 }
2423 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2424}
2425
2426static void
2427dw2_dump (struct objfile *objfile)
2428{
2429 /* Nothing worth printing. */
2430}
2431
2432static void
2433dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2434 struct section_offsets *delta)
2435{
2436 /* There's nothing to relocate here. */
2437}
2438
2439static void
2440dw2_expand_symtabs_for_function (struct objfile *objfile,
2441 const char *func_name)
2442{
2443 dw2_do_expand_symtabs_matching (objfile, func_name);
2444}
2445
2446static void
2447dw2_expand_all_symtabs (struct objfile *objfile)
2448{
2449 int i;
2450
2451 dw2_setup (objfile);
2452
2453 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2454 + dwarf2_per_objfile->n_type_comp_units); ++i)
2455 {
2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2457
2458 dw2_instantiate_symtab (objfile, per_cu);
2459 }
2460}
2461
2462static void
2463dw2_expand_symtabs_with_filename (struct objfile *objfile,
2464 const char *filename)
2465{
2466 int i;
2467
2468 dw2_setup (objfile);
2469
2470 /* We don't need to consider type units here.
2471 This is only called for examining code, e.g. expand_line_sal.
2472 There can be an order of magnitude (or more) more type units
2473 than comp units, and we avoid them if we can. */
2474
2475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2476 {
2477 int j;
2478 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2479 struct quick_file_names *file_data;
2480
2481 if (per_cu->v.quick->symtab)
2482 continue;
2483
2484 file_data = dw2_get_file_names (objfile, per_cu);
2485 if (file_data == NULL)
2486 continue;
2487
2488 for (j = 0; j < file_data->num_file_names; ++j)
2489 {
2490 const char *this_name = file_data->file_names[j];
2491 if (FILENAME_CMP (this_name, filename) == 0)
2492 {
2493 dw2_instantiate_symtab (objfile, per_cu);
2494 break;
2495 }
2496 }
2497 }
2498}
2499
2500static const char *
2501dw2_find_symbol_file (struct objfile *objfile, const char *name)
2502{
2503 struct dwarf2_per_cu_data *per_cu;
2504 offset_type *vec;
2505 struct quick_file_names *file_data;
2506
2507 dw2_setup (objfile);
2508
2509 /* index_table is NULL if OBJF_READNOW. */
2510 if (!dwarf2_per_objfile->index_table)
2511 return NULL;
2512
2513 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2514 name, &vec))
2515 return NULL;
2516
2517 /* Note that this just looks at the very first one named NAME -- but
2518 actually we are looking for a function. find_main_filename
2519 should be rewritten so that it doesn't require a custom hook. It
2520 could just use the ordinary symbol tables. */
2521 /* vec[0] is the length, which must always be >0. */
2522 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2523
2524 file_data = dw2_get_file_names (objfile, per_cu);
2525 if (file_data == NULL)
2526 return NULL;
2527
2528 return file_data->file_names[file_data->num_file_names - 1];
2529}
2530
2531static void
2532dw2_map_matching_symbols (const char * name, domain_enum namespace,
2533 struct objfile *objfile, int global,
2534 int (*callback) (struct block *,
2535 struct symbol *, void *),
2536 void *data, symbol_compare_ftype *match,
2537 symbol_compare_ftype *ordered_compare)
2538{
2539 /* Currently unimplemented; used for Ada. The function can be called if the
2540 current language is Ada for a non-Ada objfile using GNU index. As Ada
2541 does not look for non-Ada symbols this function should just return. */
2542}
2543
2544static void
2545dw2_expand_symtabs_matching (struct objfile *objfile,
2546 int (*file_matcher) (const char *, void *),
2547 int (*name_matcher) (const char *, void *),
2548 domain_enum kind,
2549 void *data)
2550{
2551 int i;
2552 offset_type iter;
2553 struct mapped_index *index;
2554
2555 dw2_setup (objfile);
2556
2557 /* index_table is NULL if OBJF_READNOW. */
2558 if (!dwarf2_per_objfile->index_table)
2559 return;
2560 index = dwarf2_per_objfile->index_table;
2561
2562 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2563 + dwarf2_per_objfile->n_type_comp_units); ++i)
2564 {
2565 int j;
2566 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2567 struct quick_file_names *file_data;
2568
2569 per_cu->v.quick->mark = 0;
2570 if (per_cu->v.quick->symtab)
2571 continue;
2572
2573 file_data = dw2_get_file_names (objfile, per_cu);
2574 if (file_data == NULL)
2575 continue;
2576
2577 for (j = 0; j < file_data->num_file_names; ++j)
2578 {
2579 if (file_matcher (file_data->file_names[j], data))
2580 {
2581 per_cu->v.quick->mark = 1;
2582 break;
2583 }
2584 }
2585 }
2586
2587 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2588 {
2589 offset_type idx = 2 * iter;
2590 const char *name;
2591 offset_type *vec, vec_len, vec_idx;
2592
2593 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2594 continue;
2595
2596 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2597
2598 if (! (*name_matcher) (name, data))
2599 continue;
2600
2601 /* The name was matched, now expand corresponding CUs that were
2602 marked. */
2603 vec = (offset_type *) (index->constant_pool
2604 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2605 vec_len = MAYBE_SWAP (vec[0]);
2606 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2607 {
2608 struct dwarf2_per_cu_data *per_cu;
2609
2610 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2611 if (per_cu->v.quick->mark)
2612 dw2_instantiate_symtab (objfile, per_cu);
2613 }
2614 }
2615}
2616
2617static struct symtab *
2618dw2_find_pc_sect_symtab (struct objfile *objfile,
2619 struct minimal_symbol *msymbol,
2620 CORE_ADDR pc,
2621 struct obj_section *section,
2622 int warn_if_readin)
2623{
2624 struct dwarf2_per_cu_data *data;
2625
2626 dw2_setup (objfile);
2627
2628 if (!objfile->psymtabs_addrmap)
2629 return NULL;
2630
2631 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2632 if (!data)
2633 return NULL;
2634
2635 if (warn_if_readin && data->v.quick->symtab)
2636 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2637 paddress (get_objfile_arch (objfile), pc));
2638
2639 return dw2_instantiate_symtab (objfile, data);
2640}
2641
2642static void
2643dw2_map_symbol_names (struct objfile *objfile,
2644 void (*fun) (const char *, void *),
2645 void *data)
2646{
2647 offset_type iter;
2648 struct mapped_index *index;
2649
2650 dw2_setup (objfile);
2651
2652 /* index_table is NULL if OBJF_READNOW. */
2653 if (!dwarf2_per_objfile->index_table)
2654 return;
2655 index = dwarf2_per_objfile->index_table;
2656
2657 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2658 {
2659 offset_type idx = 2 * iter;
2660 const char *name;
2661 offset_type *vec, vec_len, vec_idx;
2662
2663 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2664 continue;
2665
2666 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2667
2668 (*fun) (name, data);
2669 }
2670}
2671
2672static void
2673dw2_map_symbol_filenames (struct objfile *objfile,
2674 void (*fun) (const char *, const char *, void *),
2675 void *data)
2676{
2677 int i;
2678
2679 dw2_setup (objfile);
2680
2681 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2682 + dwarf2_per_objfile->n_type_comp_units); ++i)
2683 {
2684 int j;
2685 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2686 struct quick_file_names *file_data;
2687
2688 if (per_cu->v.quick->symtab)
2689 continue;
2690
2691 file_data = dw2_get_file_names (objfile, per_cu);
2692 if (file_data == NULL)
2693 continue;
2694
2695 for (j = 0; j < file_data->num_file_names; ++j)
2696 {
2697 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2698 j);
2699 (*fun) (file_data->file_names[j], this_real_name, data);
2700 }
2701 }
2702}
2703
2704static int
2705dw2_has_symbols (struct objfile *objfile)
2706{
2707 return 1;
2708}
2709
2710const struct quick_symbol_functions dwarf2_gdb_index_functions =
2711{
2712 dw2_has_symbols,
2713 dw2_find_last_source_symtab,
2714 dw2_forget_cached_source_info,
2715 dw2_lookup_symtab,
2716 dw2_lookup_symbol,
2717 dw2_pre_expand_symtabs_matching,
2718 dw2_print_stats,
2719 dw2_dump,
2720 dw2_relocate,
2721 dw2_expand_symtabs_for_function,
2722 dw2_expand_all_symtabs,
2723 dw2_expand_symtabs_with_filename,
2724 dw2_find_symbol_file,
2725 dw2_map_matching_symbols,
2726 dw2_expand_symtabs_matching,
2727 dw2_find_pc_sect_symtab,
2728 dw2_map_symbol_names,
2729 dw2_map_symbol_filenames
2730};
2731
2732/* Initialize for reading DWARF for this objfile. Return 0 if this
2733 file will use psymtabs, or 1 if using the GNU index. */
2734
2735int
2736dwarf2_initialize_objfile (struct objfile *objfile)
2737{
2738 /* If we're about to read full symbols, don't bother with the
2739 indices. In this case we also don't care if some other debug
2740 format is making psymtabs, because they are all about to be
2741 expanded anyway. */
2742 if ((objfile->flags & OBJF_READNOW))
2743 {
2744 int i;
2745
2746 dwarf2_per_objfile->using_index = 1;
2747 create_all_comp_units (objfile);
2748 create_debug_types_hash_table (objfile);
2749 dwarf2_per_objfile->quick_file_names_table =
2750 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2751
2752 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2753 + dwarf2_per_objfile->n_type_comp_units); ++i)
2754 {
2755 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2756
2757 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2758 struct dwarf2_per_cu_quick_data);
2759 }
2760
2761 /* Return 1 so that gdb sees the "quick" functions. However,
2762 these functions will be no-ops because we will have expanded
2763 all symtabs. */
2764 return 1;
2765 }
2766
2767 if (dwarf2_read_index (objfile))
2768 return 1;
2769
2770 dwarf2_build_psymtabs (objfile);
2771 return 0;
2772}
2773
2774\f
2775
2776/* Build a partial symbol table. */
2777
2778void
2779dwarf2_build_psymtabs (struct objfile *objfile)
2780{
2781 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2782 {
2783 init_psymbol_list (objfile, 1024);
2784 }
2785
2786 dwarf2_build_psymtabs_hard (objfile);
2787}
2788
2789/* Return TRUE if OFFSET is within CU_HEADER. */
2790
2791static inline int
2792offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2793{
2794 unsigned int bottom = cu_header->offset;
2795 unsigned int top = (cu_header->offset
2796 + cu_header->length
2797 + cu_header->initial_length_size);
2798
2799 return (offset >= bottom && offset < top);
2800}
2801
2802/* Read in the comp unit header information from the debug_info at info_ptr.
2803 NOTE: This leaves members offset, first_die_offset to be filled in
2804 by the caller. */
2805
2806static gdb_byte *
2807read_comp_unit_head (struct comp_unit_head *cu_header,
2808 gdb_byte *info_ptr, bfd *abfd)
2809{
2810 int signed_addr;
2811 unsigned int bytes_read;
2812
2813 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2814 cu_header->initial_length_size = bytes_read;
2815 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2816 info_ptr += bytes_read;
2817 cu_header->version = read_2_bytes (abfd, info_ptr);
2818 info_ptr += 2;
2819 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2820 &bytes_read);
2821 info_ptr += bytes_read;
2822 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2823 info_ptr += 1;
2824 signed_addr = bfd_get_sign_extend_vma (abfd);
2825 if (signed_addr < 0)
2826 internal_error (__FILE__, __LINE__,
2827 _("read_comp_unit_head: dwarf from non elf file"));
2828 cu_header->signed_addr_p = signed_addr;
2829
2830 return info_ptr;
2831}
2832
2833static gdb_byte *
2834partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2835 gdb_byte *buffer, unsigned int buffer_size,
2836 bfd *abfd)
2837{
2838 gdb_byte *beg_of_comp_unit = info_ptr;
2839
2840 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2841
2842 if (header->version != 2 && header->version != 3 && header->version != 4)
2843 error (_("Dwarf Error: wrong version in compilation unit header "
2844 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2845 bfd_get_filename (abfd));
2846
2847 if (header->abbrev_offset
2848 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2849 &dwarf2_per_objfile->abbrev))
2850 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2851 "(offset 0x%lx + 6) [in module %s]"),
2852 (long) header->abbrev_offset,
2853 (long) (beg_of_comp_unit - buffer),
2854 bfd_get_filename (abfd));
2855
2856 if (beg_of_comp_unit + header->length + header->initial_length_size
2857 > buffer + buffer_size)
2858 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2859 "(offset 0x%lx + 0) [in module %s]"),
2860 (long) header->length,
2861 (long) (beg_of_comp_unit - buffer),
2862 bfd_get_filename (abfd));
2863
2864 return info_ptr;
2865}
2866
2867/* Read in the types comp unit header information from .debug_types entry at
2868 types_ptr. The result is a pointer to one past the end of the header. */
2869
2870static gdb_byte *
2871read_type_comp_unit_head (struct comp_unit_head *cu_header,
2872 ULONGEST *signature,
2873 gdb_byte *types_ptr, bfd *abfd)
2874{
2875 gdb_byte *initial_types_ptr = types_ptr;
2876
2877 dwarf2_read_section (dwarf2_per_objfile->objfile,
2878 &dwarf2_per_objfile->types);
2879 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2880
2881 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2882
2883 *signature = read_8_bytes (abfd, types_ptr);
2884 types_ptr += 8;
2885 types_ptr += cu_header->offset_size;
2886 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2887
2888 return types_ptr;
2889}
2890
2891/* Allocate a new partial symtab for file named NAME and mark this new
2892 partial symtab as being an include of PST. */
2893
2894static void
2895dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2896 struct objfile *objfile)
2897{
2898 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2899
2900 subpst->section_offsets = pst->section_offsets;
2901 subpst->textlow = 0;
2902 subpst->texthigh = 0;
2903
2904 subpst->dependencies = (struct partial_symtab **)
2905 obstack_alloc (&objfile->objfile_obstack,
2906 sizeof (struct partial_symtab *));
2907 subpst->dependencies[0] = pst;
2908 subpst->number_of_dependencies = 1;
2909
2910 subpst->globals_offset = 0;
2911 subpst->n_global_syms = 0;
2912 subpst->statics_offset = 0;
2913 subpst->n_static_syms = 0;
2914 subpst->symtab = NULL;
2915 subpst->read_symtab = pst->read_symtab;
2916 subpst->readin = 0;
2917
2918 /* No private part is necessary for include psymtabs. This property
2919 can be used to differentiate between such include psymtabs and
2920 the regular ones. */
2921 subpst->read_symtab_private = NULL;
2922}
2923
2924/* Read the Line Number Program data and extract the list of files
2925 included by the source file represented by PST. Build an include
2926 partial symtab for each of these included files. */
2927
2928static void
2929dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2930 struct die_info *die,
2931 struct partial_symtab *pst)
2932{
2933 struct objfile *objfile = cu->objfile;
2934 bfd *abfd = objfile->obfd;
2935 struct line_header *lh = NULL;
2936 struct attribute *attr;
2937
2938 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2939 if (attr)
2940 {
2941 unsigned int line_offset = DW_UNSND (attr);
2942
2943 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2944 }
2945 if (lh == NULL)
2946 return; /* No linetable, so no includes. */
2947
2948 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2949 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2950
2951 free_line_header (lh);
2952}
2953
2954static hashval_t
2955hash_type_signature (const void *item)
2956{
2957 const struct signatured_type *type_sig = item;
2958
2959 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2960 return type_sig->signature;
2961}
2962
2963static int
2964eq_type_signature (const void *item_lhs, const void *item_rhs)
2965{
2966 const struct signatured_type *lhs = item_lhs;
2967 const struct signatured_type *rhs = item_rhs;
2968
2969 return lhs->signature == rhs->signature;
2970}
2971
2972/* Allocate a hash table for signatured types. */
2973
2974static htab_t
2975allocate_signatured_type_table (struct objfile *objfile)
2976{
2977 return htab_create_alloc_ex (41,
2978 hash_type_signature,
2979 eq_type_signature,
2980 NULL,
2981 &objfile->objfile_obstack,
2982 hashtab_obstack_allocate,
2983 dummy_obstack_deallocate);
2984}
2985
2986/* A helper function to add a signatured type CU to a list. */
2987
2988static int
2989add_signatured_type_cu_to_list (void **slot, void *datum)
2990{
2991 struct signatured_type *sigt = *slot;
2992 struct dwarf2_per_cu_data ***datap = datum;
2993
2994 **datap = &sigt->per_cu;
2995 ++*datap;
2996
2997 return 1;
2998}
2999
3000/* Create the hash table of all entries in the .debug_types section.
3001 The result is zero if there is an error (e.g. missing .debug_types section),
3002 otherwise non-zero. */
3003
3004static int
3005create_debug_types_hash_table (struct objfile *objfile)
3006{
3007 gdb_byte *info_ptr;
3008 htab_t types_htab;
3009 struct dwarf2_per_cu_data **iter;
3010
3011 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
3012 info_ptr = dwarf2_per_objfile->types.buffer;
3013
3014 if (info_ptr == NULL)
3015 {
3016 dwarf2_per_objfile->signatured_types = NULL;
3017 return 0;
3018 }
3019
3020 types_htab = allocate_signatured_type_table (objfile);
3021
3022 if (dwarf2_die_debug)
3023 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3024
3025 while (info_ptr < dwarf2_per_objfile->types.buffer
3026 + dwarf2_per_objfile->types.size)
3027 {
3028 unsigned int offset;
3029 unsigned int offset_size;
3030 unsigned int type_offset;
3031 unsigned int length, initial_length_size;
3032 unsigned short version;
3033 ULONGEST signature;
3034 struct signatured_type *type_sig;
3035 void **slot;
3036 gdb_byte *ptr = info_ptr;
3037
3038 offset = ptr - dwarf2_per_objfile->types.buffer;
3039
3040 /* We need to read the type's signature in order to build the hash
3041 table, but we don't need to read anything else just yet. */
3042
3043 /* Sanity check to ensure entire cu is present. */
3044 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3045 if (ptr + length + initial_length_size
3046 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3047 {
3048 complaint (&symfile_complaints,
3049 _("debug type entry runs off end "
3050 "of `.debug_types' section, ignored"));
3051 break;
3052 }
3053
3054 offset_size = initial_length_size == 4 ? 4 : 8;
3055 ptr += initial_length_size;
3056 version = bfd_get_16 (objfile->obfd, ptr);
3057 ptr += 2;
3058 ptr += offset_size; /* abbrev offset */
3059 ptr += 1; /* address size */
3060 signature = bfd_get_64 (objfile->obfd, ptr);
3061 ptr += 8;
3062 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3063
3064 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3065 memset (type_sig, 0, sizeof (*type_sig));
3066 type_sig->signature = signature;
3067 type_sig->offset = offset;
3068 type_sig->type_offset = type_offset;
3069 type_sig->per_cu.objfile = objfile;
3070 type_sig->per_cu.from_debug_types = 1;
3071
3072 slot = htab_find_slot (types_htab, type_sig, INSERT);
3073 gdb_assert (slot != NULL);
3074 *slot = type_sig;
3075
3076 if (dwarf2_die_debug)
3077 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3078 offset, phex (signature, sizeof (signature)));
3079
3080 info_ptr = info_ptr + initial_length_size + length;
3081 }
3082
3083 dwarf2_per_objfile->signatured_types = types_htab;
3084
3085 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3086 dwarf2_per_objfile->type_comp_units
3087 = obstack_alloc (&objfile->objfile_obstack,
3088 dwarf2_per_objfile->n_type_comp_units
3089 * sizeof (struct dwarf2_per_cu_data *));
3090 iter = &dwarf2_per_objfile->type_comp_units[0];
3091 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3092 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3093 == dwarf2_per_objfile->n_type_comp_units);
3094
3095 return 1;
3096}
3097
3098/* Lookup a signature based type.
3099 Returns NULL if SIG is not present in the table. */
3100
3101static struct signatured_type *
3102lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3103{
3104 struct signatured_type find_entry, *entry;
3105
3106 if (dwarf2_per_objfile->signatured_types == NULL)
3107 {
3108 complaint (&symfile_complaints,
3109 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3110 return 0;
3111 }
3112
3113 find_entry.signature = sig;
3114 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3115 return entry;
3116}
3117
3118/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3119
3120static void
3121init_cu_die_reader (struct die_reader_specs *reader,
3122 struct dwarf2_cu *cu)
3123{
3124 reader->abfd = cu->objfile->obfd;
3125 reader->cu = cu;
3126 if (cu->per_cu->from_debug_types)
3127 {
3128 gdb_assert (dwarf2_per_objfile->types.readin);
3129 reader->buffer = dwarf2_per_objfile->types.buffer;
3130 }
3131 else
3132 {
3133 gdb_assert (dwarf2_per_objfile->info.readin);
3134 reader->buffer = dwarf2_per_objfile->info.buffer;
3135 }
3136}
3137
3138/* Find the base address of the compilation unit for range lists and
3139 location lists. It will normally be specified by DW_AT_low_pc.
3140 In DWARF-3 draft 4, the base address could be overridden by
3141 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3142 compilation units with discontinuous ranges. */
3143
3144static void
3145dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3146{
3147 struct attribute *attr;
3148
3149 cu->base_known = 0;
3150 cu->base_address = 0;
3151
3152 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3153 if (attr)
3154 {
3155 cu->base_address = DW_ADDR (attr);
3156 cu->base_known = 1;
3157 }
3158 else
3159 {
3160 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3161 if (attr)
3162 {
3163 cu->base_address = DW_ADDR (attr);
3164 cu->base_known = 1;
3165 }
3166 }
3167}
3168
3169/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3170 to combine the common parts.
3171 Process a compilation unit for a psymtab.
3172 BUFFER is a pointer to the beginning of the dwarf section buffer,
3173 either .debug_info or debug_types.
3174 INFO_PTR is a pointer to the start of the CU.
3175 Returns a pointer to the next CU. */
3176
3177static gdb_byte *
3178process_psymtab_comp_unit (struct objfile *objfile,
3179 struct dwarf2_per_cu_data *this_cu,
3180 gdb_byte *buffer, gdb_byte *info_ptr,
3181 unsigned int buffer_size)
3182{
3183 bfd *abfd = objfile->obfd;
3184 gdb_byte *beg_of_comp_unit = info_ptr;
3185 struct die_info *comp_unit_die;
3186 struct partial_symtab *pst;
3187 CORE_ADDR baseaddr;
3188 struct cleanup *back_to_inner;
3189 struct dwarf2_cu cu;
3190 int has_children, has_pc_info;
3191 struct attribute *attr;
3192 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3193 struct die_reader_specs reader_specs;
3194
3195 init_one_comp_unit (&cu, objfile);
3196 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3197
3198 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3199 buffer, buffer_size,
3200 abfd);
3201
3202 /* Complete the cu_header. */
3203 cu.header.offset = beg_of_comp_unit - buffer;
3204 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3205
3206 cu.list_in_scope = &file_symbols;
3207
3208 /* If this compilation unit was already read in, free the
3209 cached copy in order to read it in again. This is
3210 necessary because we skipped some symbols when we first
3211 read in the compilation unit (see load_partial_dies).
3212 This problem could be avoided, but the benefit is
3213 unclear. */
3214 if (this_cu->cu != NULL)
3215 free_one_cached_comp_unit (this_cu->cu);
3216
3217 /* Note that this is a pointer to our stack frame, being
3218 added to a global data structure. It will be cleaned up
3219 in free_stack_comp_unit when we finish with this
3220 compilation unit. */
3221 this_cu->cu = &cu;
3222 cu.per_cu = this_cu;
3223
3224 /* Read the abbrevs for this compilation unit into a table. */
3225 dwarf2_read_abbrevs (abfd, &cu);
3226 make_cleanup (dwarf2_free_abbrev_table, &cu);
3227
3228 /* Read the compilation unit die. */
3229 if (this_cu->from_debug_types)
3230 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3231 init_cu_die_reader (&reader_specs, &cu);
3232 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3233 &has_children);
3234
3235 if (this_cu->from_debug_types)
3236 {
3237 /* offset,length haven't been set yet for type units. */
3238 this_cu->offset = cu.header.offset;
3239 this_cu->length = cu.header.length + cu.header.initial_length_size;
3240 }
3241 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3242 {
3243 info_ptr = (beg_of_comp_unit + cu.header.length
3244 + cu.header.initial_length_size);
3245 do_cleanups (back_to_inner);
3246 return info_ptr;
3247 }
3248
3249 prepare_one_comp_unit (&cu, comp_unit_die);
3250
3251 /* Allocate a new partial symbol table structure. */
3252 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3253 pst = start_psymtab_common (objfile, objfile->section_offsets,
3254 (attr != NULL) ? DW_STRING (attr) : "",
3255 /* TEXTLOW and TEXTHIGH are set below. */
3256 0,
3257 objfile->global_psymbols.next,
3258 objfile->static_psymbols.next);
3259
3260 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3261 if (attr != NULL)
3262 pst->dirname = DW_STRING (attr);
3263
3264 pst->read_symtab_private = this_cu;
3265
3266 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3267
3268 /* Store the function that reads in the rest of the symbol table. */
3269 pst->read_symtab = dwarf2_psymtab_to_symtab;
3270
3271 this_cu->v.psymtab = pst;
3272
3273 dwarf2_find_base_address (comp_unit_die, &cu);
3274
3275 /* Possibly set the default values of LOWPC and HIGHPC from
3276 `DW_AT_ranges'. */
3277 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3278 &best_highpc, &cu, pst);
3279 if (has_pc_info == 1 && best_lowpc < best_highpc)
3280 /* Store the contiguous range if it is not empty; it can be empty for
3281 CUs with no code. */
3282 addrmap_set_empty (objfile->psymtabs_addrmap,
3283 best_lowpc + baseaddr,
3284 best_highpc + baseaddr - 1, pst);
3285
3286 /* Check if comp unit has_children.
3287 If so, read the rest of the partial symbols from this comp unit.
3288 If not, there's no more debug_info for this comp unit. */
3289 if (has_children)
3290 {
3291 struct partial_die_info *first_die;
3292 CORE_ADDR lowpc, highpc;
3293
3294 lowpc = ((CORE_ADDR) -1);
3295 highpc = ((CORE_ADDR) 0);
3296
3297 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3298
3299 scan_partial_symbols (first_die, &lowpc, &highpc,
3300 ! has_pc_info, &cu);
3301
3302 /* If we didn't find a lowpc, set it to highpc to avoid
3303 complaints from `maint check'. */
3304 if (lowpc == ((CORE_ADDR) -1))
3305 lowpc = highpc;
3306
3307 /* If the compilation unit didn't have an explicit address range,
3308 then use the information extracted from its child dies. */
3309 if (! has_pc_info)
3310 {
3311 best_lowpc = lowpc;
3312 best_highpc = highpc;
3313 }
3314 }
3315 pst->textlow = best_lowpc + baseaddr;
3316 pst->texthigh = best_highpc + baseaddr;
3317
3318 pst->n_global_syms = objfile->global_psymbols.next -
3319 (objfile->global_psymbols.list + pst->globals_offset);
3320 pst->n_static_syms = objfile->static_psymbols.next -
3321 (objfile->static_psymbols.list + pst->statics_offset);
3322 sort_pst_symbols (pst);
3323
3324 info_ptr = (beg_of_comp_unit + cu.header.length
3325 + cu.header.initial_length_size);
3326
3327 if (this_cu->from_debug_types)
3328 {
3329 /* It's not clear we want to do anything with stmt lists here.
3330 Waiting to see what gcc ultimately does. */
3331 }
3332 else
3333 {
3334 /* Get the list of files included in the current compilation unit,
3335 and build a psymtab for each of them. */
3336 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3337 }
3338
3339 do_cleanups (back_to_inner);
3340
3341 return info_ptr;
3342}
3343
3344/* Traversal function for htab_traverse_noresize.
3345 Process one .debug_types comp-unit. */
3346
3347static int
3348process_type_comp_unit (void **slot, void *info)
3349{
3350 struct signatured_type *entry = (struct signatured_type *) *slot;
3351 struct objfile *objfile = (struct objfile *) info;
3352 struct dwarf2_per_cu_data *this_cu;
3353
3354 this_cu = &entry->per_cu;
3355
3356 gdb_assert (dwarf2_per_objfile->types.readin);
3357 process_psymtab_comp_unit (objfile, this_cu,
3358 dwarf2_per_objfile->types.buffer,
3359 dwarf2_per_objfile->types.buffer + entry->offset,
3360 dwarf2_per_objfile->types.size);
3361
3362 return 1;
3363}
3364
3365/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3366 Build partial symbol tables for the .debug_types comp-units. */
3367
3368static void
3369build_type_psymtabs (struct objfile *objfile)
3370{
3371 if (! create_debug_types_hash_table (objfile))
3372 return;
3373
3374 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3375 process_type_comp_unit, objfile);
3376}
3377
3378/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3379
3380static void
3381psymtabs_addrmap_cleanup (void *o)
3382{
3383 struct objfile *objfile = o;
3384
3385 objfile->psymtabs_addrmap = NULL;
3386}
3387
3388/* Build the partial symbol table by doing a quick pass through the
3389 .debug_info and .debug_abbrev sections. */
3390
3391static void
3392dwarf2_build_psymtabs_hard (struct objfile *objfile)
3393{
3394 gdb_byte *info_ptr;
3395 struct cleanup *back_to, *addrmap_cleanup;
3396 struct obstack temp_obstack;
3397
3398 dwarf2_per_objfile->reading_partial_symbols = 1;
3399
3400 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3401 info_ptr = dwarf2_per_objfile->info.buffer;
3402
3403 /* Any cached compilation units will be linked by the per-objfile
3404 read_in_chain. Make sure to free them when we're done. */
3405 back_to = make_cleanup (free_cached_comp_units, NULL);
3406
3407 build_type_psymtabs (objfile);
3408
3409 create_all_comp_units (objfile);
3410
3411 /* Create a temporary address map on a temporary obstack. We later
3412 copy this to the final obstack. */
3413 obstack_init (&temp_obstack);
3414 make_cleanup_obstack_free (&temp_obstack);
3415 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3416 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3417
3418 /* Since the objects we're extracting from .debug_info vary in
3419 length, only the individual functions to extract them (like
3420 read_comp_unit_head and load_partial_die) can really know whether
3421 the buffer is large enough to hold another complete object.
3422
3423 At the moment, they don't actually check that. If .debug_info
3424 holds just one extra byte after the last compilation unit's dies,
3425 then read_comp_unit_head will happily read off the end of the
3426 buffer. read_partial_die is similarly casual. Those functions
3427 should be fixed.
3428
3429 For this loop condition, simply checking whether there's any data
3430 left at all should be sufficient. */
3431
3432 while (info_ptr < (dwarf2_per_objfile->info.buffer
3433 + dwarf2_per_objfile->info.size))
3434 {
3435 struct dwarf2_per_cu_data *this_cu;
3436
3437 this_cu = dwarf2_find_comp_unit (info_ptr
3438 - dwarf2_per_objfile->info.buffer,
3439 objfile);
3440
3441 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3442 dwarf2_per_objfile->info.buffer,
3443 info_ptr,
3444 dwarf2_per_objfile->info.size);
3445 }
3446
3447 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3448 &objfile->objfile_obstack);
3449 discard_cleanups (addrmap_cleanup);
3450
3451 do_cleanups (back_to);
3452}
3453
3454/* Load the partial DIEs for a secondary CU into memory. */
3455
3456static void
3457load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3458 struct objfile *objfile)
3459{
3460 bfd *abfd = objfile->obfd;
3461 gdb_byte *info_ptr, *beg_of_comp_unit;
3462 struct die_info *comp_unit_die;
3463 struct dwarf2_cu *cu;
3464 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3465 int has_children;
3466 struct die_reader_specs reader_specs;
3467 int read_cu = 0;
3468
3469 gdb_assert (! this_cu->from_debug_types);
3470
3471 gdb_assert (dwarf2_per_objfile->info.readin);
3472 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3473 beg_of_comp_unit = info_ptr;
3474
3475 if (this_cu->cu == NULL)
3476 {
3477 cu = xmalloc (sizeof (*cu));
3478 init_one_comp_unit (cu, objfile);
3479
3480 read_cu = 1;
3481
3482 /* If an error occurs while loading, release our storage. */
3483 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3484
3485 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3486 dwarf2_per_objfile->info.buffer,
3487 dwarf2_per_objfile->info.size,
3488 abfd);
3489
3490 /* Complete the cu_header. */
3491 cu->header.offset = this_cu->offset;
3492 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3493
3494 /* Link this compilation unit into the compilation unit tree. */
3495 this_cu->cu = cu;
3496 cu->per_cu = this_cu;
3497
3498 /* Link this CU into read_in_chain. */
3499 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3500 dwarf2_per_objfile->read_in_chain = this_cu;
3501 }
3502 else
3503 {
3504 cu = this_cu->cu;
3505 info_ptr += cu->header.first_die_offset;
3506 }
3507
3508 /* Read the abbrevs for this compilation unit into a table. */
3509 gdb_assert (cu->dwarf2_abbrevs == NULL);
3510 dwarf2_read_abbrevs (abfd, cu);
3511 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3512
3513 /* Read the compilation unit die. */
3514 init_cu_die_reader (&reader_specs, cu);
3515 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3516 &has_children);
3517
3518 prepare_one_comp_unit (cu, comp_unit_die);
3519
3520 /* Check if comp unit has_children.
3521 If so, read the rest of the partial symbols from this comp unit.
3522 If not, there's no more debug_info for this comp unit. */
3523 if (has_children)
3524 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3525
3526 do_cleanups (free_abbrevs_cleanup);
3527
3528 if (read_cu)
3529 {
3530 /* We've successfully allocated this compilation unit. Let our
3531 caller clean it up when finished with it. */
3532 discard_cleanups (free_cu_cleanup);
3533 }
3534}
3535
3536/* Create a list of all compilation units in OBJFILE. We do this only
3537 if an inter-comp-unit reference is found; presumably if there is one,
3538 there will be many, and one will occur early in the .debug_info section.
3539 So there's no point in building this list incrementally. */
3540
3541static void
3542create_all_comp_units (struct objfile *objfile)
3543{
3544 int n_allocated;
3545 int n_comp_units;
3546 struct dwarf2_per_cu_data **all_comp_units;
3547 gdb_byte *info_ptr;
3548
3549 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3550 info_ptr = dwarf2_per_objfile->info.buffer;
3551
3552 n_comp_units = 0;
3553 n_allocated = 10;
3554 all_comp_units = xmalloc (n_allocated
3555 * sizeof (struct dwarf2_per_cu_data *));
3556
3557 while (info_ptr < dwarf2_per_objfile->info.buffer
3558 + dwarf2_per_objfile->info.size)
3559 {
3560 unsigned int length, initial_length_size;
3561 struct dwarf2_per_cu_data *this_cu;
3562 unsigned int offset;
3563
3564 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3565
3566 /* Read just enough information to find out where the next
3567 compilation unit is. */
3568 length = read_initial_length (objfile->obfd, info_ptr,
3569 &initial_length_size);
3570
3571 /* Save the compilation unit for later lookup. */
3572 this_cu = obstack_alloc (&objfile->objfile_obstack,
3573 sizeof (struct dwarf2_per_cu_data));
3574 memset (this_cu, 0, sizeof (*this_cu));
3575 this_cu->offset = offset;
3576 this_cu->length = length + initial_length_size;
3577 this_cu->objfile = objfile;
3578
3579 if (n_comp_units == n_allocated)
3580 {
3581 n_allocated *= 2;
3582 all_comp_units = xrealloc (all_comp_units,
3583 n_allocated
3584 * sizeof (struct dwarf2_per_cu_data *));
3585 }
3586 all_comp_units[n_comp_units++] = this_cu;
3587
3588 info_ptr = info_ptr + this_cu->length;
3589 }
3590
3591 dwarf2_per_objfile->all_comp_units
3592 = obstack_alloc (&objfile->objfile_obstack,
3593 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3594 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3595 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3596 xfree (all_comp_units);
3597 dwarf2_per_objfile->n_comp_units = n_comp_units;
3598}
3599
3600/* Process all loaded DIEs for compilation unit CU, starting at
3601 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3602 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3603 DW_AT_ranges). If NEED_PC is set, then this function will set
3604 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3605 and record the covered ranges in the addrmap. */
3606
3607static void
3608scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3609 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3610{
3611 struct partial_die_info *pdi;
3612
3613 /* Now, march along the PDI's, descending into ones which have
3614 interesting children but skipping the children of the other ones,
3615 until we reach the end of the compilation unit. */
3616
3617 pdi = first_die;
3618
3619 while (pdi != NULL)
3620 {
3621 fixup_partial_die (pdi, cu);
3622
3623 /* Anonymous namespaces or modules have no name but have interesting
3624 children, so we need to look at them. Ditto for anonymous
3625 enums. */
3626
3627 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3628 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3629 {
3630 switch (pdi->tag)
3631 {
3632 case DW_TAG_subprogram:
3633 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3634 break;
3635 case DW_TAG_constant:
3636 case DW_TAG_variable:
3637 case DW_TAG_typedef:
3638 case DW_TAG_union_type:
3639 if (!pdi->is_declaration)
3640 {
3641 add_partial_symbol (pdi, cu);
3642 }
3643 break;
3644 case DW_TAG_class_type:
3645 case DW_TAG_interface_type:
3646 case DW_TAG_structure_type:
3647 if (!pdi->is_declaration)
3648 {
3649 add_partial_symbol (pdi, cu);
3650 }
3651 break;
3652 case DW_TAG_enumeration_type:
3653 if (!pdi->is_declaration)
3654 add_partial_enumeration (pdi, cu);
3655 break;
3656 case DW_TAG_base_type:
3657 case DW_TAG_subrange_type:
3658 /* File scope base type definitions are added to the partial
3659 symbol table. */
3660 add_partial_symbol (pdi, cu);
3661 break;
3662 case DW_TAG_namespace:
3663 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3664 break;
3665 case DW_TAG_module:
3666 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3667 break;
3668 default:
3669 break;
3670 }
3671 }
3672
3673 /* If the die has a sibling, skip to the sibling. */
3674
3675 pdi = pdi->die_sibling;
3676 }
3677}
3678
3679/* Functions used to compute the fully scoped name of a partial DIE.
3680
3681 Normally, this is simple. For C++, the parent DIE's fully scoped
3682 name is concatenated with "::" and the partial DIE's name. For
3683 Java, the same thing occurs except that "." is used instead of "::".
3684 Enumerators are an exception; they use the scope of their parent
3685 enumeration type, i.e. the name of the enumeration type is not
3686 prepended to the enumerator.
3687
3688 There are two complexities. One is DW_AT_specification; in this
3689 case "parent" means the parent of the target of the specification,
3690 instead of the direct parent of the DIE. The other is compilers
3691 which do not emit DW_TAG_namespace; in this case we try to guess
3692 the fully qualified name of structure types from their members'
3693 linkage names. This must be done using the DIE's children rather
3694 than the children of any DW_AT_specification target. We only need
3695 to do this for structures at the top level, i.e. if the target of
3696 any DW_AT_specification (if any; otherwise the DIE itself) does not
3697 have a parent. */
3698
3699/* Compute the scope prefix associated with PDI's parent, in
3700 compilation unit CU. The result will be allocated on CU's
3701 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3702 field. NULL is returned if no prefix is necessary. */
3703static char *
3704partial_die_parent_scope (struct partial_die_info *pdi,
3705 struct dwarf2_cu *cu)
3706{
3707 char *grandparent_scope;
3708 struct partial_die_info *parent, *real_pdi;
3709
3710 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3711 then this means the parent of the specification DIE. */
3712
3713 real_pdi = pdi;
3714 while (real_pdi->has_specification)
3715 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3716
3717 parent = real_pdi->die_parent;
3718 if (parent == NULL)
3719 return NULL;
3720
3721 if (parent->scope_set)
3722 return parent->scope;
3723
3724 fixup_partial_die (parent, cu);
3725
3726 grandparent_scope = partial_die_parent_scope (parent, cu);
3727
3728 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3729 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3730 Work around this problem here. */
3731 if (cu->language == language_cplus
3732 && parent->tag == DW_TAG_namespace
3733 && strcmp (parent->name, "::") == 0
3734 && grandparent_scope == NULL)
3735 {
3736 parent->scope = NULL;
3737 parent->scope_set = 1;
3738 return NULL;
3739 }
3740
3741 if (parent->tag == DW_TAG_namespace
3742 || parent->tag == DW_TAG_module
3743 || parent->tag == DW_TAG_structure_type
3744 || parent->tag == DW_TAG_class_type
3745 || parent->tag == DW_TAG_interface_type
3746 || parent->tag == DW_TAG_union_type
3747 || parent->tag == DW_TAG_enumeration_type)
3748 {
3749 if (grandparent_scope == NULL)
3750 parent->scope = parent->name;
3751 else
3752 parent->scope = typename_concat (&cu->comp_unit_obstack,
3753 grandparent_scope,
3754 parent->name, 0, cu);
3755 }
3756 else if (parent->tag == DW_TAG_enumerator)
3757 /* Enumerators should not get the name of the enumeration as a prefix. */
3758 parent->scope = grandparent_scope;
3759 else
3760 {
3761 /* FIXME drow/2004-04-01: What should we be doing with
3762 function-local names? For partial symbols, we should probably be
3763 ignoring them. */
3764 complaint (&symfile_complaints,
3765 _("unhandled containing DIE tag %d for DIE at %d"),
3766 parent->tag, pdi->offset);
3767 parent->scope = grandparent_scope;
3768 }
3769
3770 parent->scope_set = 1;
3771 return parent->scope;
3772}
3773
3774/* Return the fully scoped name associated with PDI, from compilation unit
3775 CU. The result will be allocated with malloc. */
3776static char *
3777partial_die_full_name (struct partial_die_info *pdi,
3778 struct dwarf2_cu *cu)
3779{
3780 char *parent_scope;
3781
3782 /* If this is a template instantiation, we can not work out the
3783 template arguments from partial DIEs. So, unfortunately, we have
3784 to go through the full DIEs. At least any work we do building
3785 types here will be reused if full symbols are loaded later. */
3786 if (pdi->has_template_arguments)
3787 {
3788 fixup_partial_die (pdi, cu);
3789
3790 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3791 {
3792 struct die_info *die;
3793 struct attribute attr;
3794 struct dwarf2_cu *ref_cu = cu;
3795
3796 attr.name = 0;
3797 attr.form = DW_FORM_ref_addr;
3798 attr.u.addr = pdi->offset;
3799 die = follow_die_ref (NULL, &attr, &ref_cu);
3800
3801 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3802 }
3803 }
3804
3805 parent_scope = partial_die_parent_scope (pdi, cu);
3806 if (parent_scope == NULL)
3807 return NULL;
3808 else
3809 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3810}
3811
3812static void
3813add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3814{
3815 struct objfile *objfile = cu->objfile;
3816 CORE_ADDR addr = 0;
3817 char *actual_name = NULL;
3818 const struct partial_symbol *psym = NULL;
3819 CORE_ADDR baseaddr;
3820 int built_actual_name = 0;
3821
3822 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3823
3824 actual_name = partial_die_full_name (pdi, cu);
3825 if (actual_name)
3826 built_actual_name = 1;
3827
3828 if (actual_name == NULL)
3829 actual_name = pdi->name;
3830
3831 switch (pdi->tag)
3832 {
3833 case DW_TAG_subprogram:
3834 if (pdi->is_external || cu->language == language_ada)
3835 {
3836 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3837 of the global scope. But in Ada, we want to be able to access
3838 nested procedures globally. So all Ada subprograms are stored
3839 in the global scope. */
3840 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3841 mst_text, objfile); */
3842 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3843 built_actual_name,
3844 VAR_DOMAIN, LOC_BLOCK,
3845 &objfile->global_psymbols,
3846 0, pdi->lowpc + baseaddr,
3847 cu->language, objfile);
3848 }
3849 else
3850 {
3851 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3852 mst_file_text, objfile); */
3853 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3854 built_actual_name,
3855 VAR_DOMAIN, LOC_BLOCK,
3856 &objfile->static_psymbols,
3857 0, pdi->lowpc + baseaddr,
3858 cu->language, objfile);
3859 }
3860 break;
3861 case DW_TAG_constant:
3862 {
3863 struct psymbol_allocation_list *list;
3864
3865 if (pdi->is_external)
3866 list = &objfile->global_psymbols;
3867 else
3868 list = &objfile->static_psymbols;
3869 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3870 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3871 list, 0, 0, cu->language, objfile);
3872
3873 }
3874 break;
3875 case DW_TAG_variable:
3876 if (pdi->locdesc)
3877 addr = decode_locdesc (pdi->locdesc, cu);
3878
3879 if (pdi->locdesc
3880 && addr == 0
3881 && !dwarf2_per_objfile->has_section_at_zero)
3882 {
3883 /* A global or static variable may also have been stripped
3884 out by the linker if unused, in which case its address
3885 will be nullified; do not add such variables into partial
3886 symbol table then. */
3887 }
3888 else if (pdi->is_external)
3889 {
3890 /* Global Variable.
3891 Don't enter into the minimal symbol tables as there is
3892 a minimal symbol table entry from the ELF symbols already.
3893 Enter into partial symbol table if it has a location
3894 descriptor or a type.
3895 If the location descriptor is missing, new_symbol will create
3896 a LOC_UNRESOLVED symbol, the address of the variable will then
3897 be determined from the minimal symbol table whenever the variable
3898 is referenced.
3899 The address for the partial symbol table entry is not
3900 used by GDB, but it comes in handy for debugging partial symbol
3901 table building. */
3902
3903 if (pdi->locdesc || pdi->has_type)
3904 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3905 built_actual_name,
3906 VAR_DOMAIN, LOC_STATIC,
3907 &objfile->global_psymbols,
3908 0, addr + baseaddr,
3909 cu->language, objfile);
3910 }
3911 else
3912 {
3913 /* Static Variable. Skip symbols without location descriptors. */
3914 if (pdi->locdesc == NULL)
3915 {
3916 if (built_actual_name)
3917 xfree (actual_name);
3918 return;
3919 }
3920 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3921 mst_file_data, objfile); */
3922 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3923 built_actual_name,
3924 VAR_DOMAIN, LOC_STATIC,
3925 &objfile->static_psymbols,
3926 0, addr + baseaddr,
3927 cu->language, objfile);
3928 }
3929 break;
3930 case DW_TAG_typedef:
3931 case DW_TAG_base_type:
3932 case DW_TAG_subrange_type:
3933 add_psymbol_to_list (actual_name, strlen (actual_name),
3934 built_actual_name,
3935 VAR_DOMAIN, LOC_TYPEDEF,
3936 &objfile->static_psymbols,
3937 0, (CORE_ADDR) 0, cu->language, objfile);
3938 break;
3939 case DW_TAG_namespace:
3940 add_psymbol_to_list (actual_name, strlen (actual_name),
3941 built_actual_name,
3942 VAR_DOMAIN, LOC_TYPEDEF,
3943 &objfile->global_psymbols,
3944 0, (CORE_ADDR) 0, cu->language, objfile);
3945 break;
3946 case DW_TAG_class_type:
3947 case DW_TAG_interface_type:
3948 case DW_TAG_structure_type:
3949 case DW_TAG_union_type:
3950 case DW_TAG_enumeration_type:
3951 /* Skip external references. The DWARF standard says in the section
3952 about "Structure, Union, and Class Type Entries": "An incomplete
3953 structure, union or class type is represented by a structure,
3954 union or class entry that does not have a byte size attribute
3955 and that has a DW_AT_declaration attribute." */
3956 if (!pdi->has_byte_size && pdi->is_declaration)
3957 {
3958 if (built_actual_name)
3959 xfree (actual_name);
3960 return;
3961 }
3962
3963 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3964 static vs. global. */
3965 add_psymbol_to_list (actual_name, strlen (actual_name),
3966 built_actual_name,
3967 STRUCT_DOMAIN, LOC_TYPEDEF,
3968 (cu->language == language_cplus
3969 || cu->language == language_java)
3970 ? &objfile->global_psymbols
3971 : &objfile->static_psymbols,
3972 0, (CORE_ADDR) 0, cu->language, objfile);
3973
3974 break;
3975 case DW_TAG_enumerator:
3976 add_psymbol_to_list (actual_name, strlen (actual_name),
3977 built_actual_name,
3978 VAR_DOMAIN, LOC_CONST,
3979 (cu->language == language_cplus
3980 || cu->language == language_java)
3981 ? &objfile->global_psymbols
3982 : &objfile->static_psymbols,
3983 0, (CORE_ADDR) 0, cu->language, objfile);
3984 break;
3985 default:
3986 break;
3987 }
3988
3989 if (built_actual_name)
3990 xfree (actual_name);
3991}
3992
3993/* Read a partial die corresponding to a namespace; also, add a symbol
3994 corresponding to that namespace to the symbol table. NAMESPACE is
3995 the name of the enclosing namespace. */
3996
3997static void
3998add_partial_namespace (struct partial_die_info *pdi,
3999 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4000 int need_pc, struct dwarf2_cu *cu)
4001{
4002 /* Add a symbol for the namespace. */
4003
4004 add_partial_symbol (pdi, cu);
4005
4006 /* Now scan partial symbols in that namespace. */
4007
4008 if (pdi->has_children)
4009 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4010}
4011
4012/* Read a partial die corresponding to a Fortran module. */
4013
4014static void
4015add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4016 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4017{
4018 /* Now scan partial symbols in that module. */
4019
4020 if (pdi->has_children)
4021 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4022}
4023
4024/* Read a partial die corresponding to a subprogram and create a partial
4025 symbol for that subprogram. When the CU language allows it, this
4026 routine also defines a partial symbol for each nested subprogram
4027 that this subprogram contains.
4028
4029 DIE my also be a lexical block, in which case we simply search
4030 recursively for suprograms defined inside that lexical block.
4031 Again, this is only performed when the CU language allows this
4032 type of definitions. */
4033
4034static void
4035add_partial_subprogram (struct partial_die_info *pdi,
4036 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4037 int need_pc, struct dwarf2_cu *cu)
4038{
4039 if (pdi->tag == DW_TAG_subprogram)
4040 {
4041 if (pdi->has_pc_info)
4042 {
4043 if (pdi->lowpc < *lowpc)
4044 *lowpc = pdi->lowpc;
4045 if (pdi->highpc > *highpc)
4046 *highpc = pdi->highpc;
4047 if (need_pc)
4048 {
4049 CORE_ADDR baseaddr;
4050 struct objfile *objfile = cu->objfile;
4051
4052 baseaddr = ANOFFSET (objfile->section_offsets,
4053 SECT_OFF_TEXT (objfile));
4054 addrmap_set_empty (objfile->psymtabs_addrmap,
4055 pdi->lowpc + baseaddr,
4056 pdi->highpc - 1 + baseaddr,
4057 cu->per_cu->v.psymtab);
4058 }
4059 if (!pdi->is_declaration)
4060 /* Ignore subprogram DIEs that do not have a name, they are
4061 illegal. Do not emit a complaint at this point, we will
4062 do so when we convert this psymtab into a symtab. */
4063 if (pdi->name)
4064 add_partial_symbol (pdi, cu);
4065 }
4066 }
4067
4068 if (! pdi->has_children)
4069 return;
4070
4071 if (cu->language == language_ada)
4072 {
4073 pdi = pdi->die_child;
4074 while (pdi != NULL)
4075 {
4076 fixup_partial_die (pdi, cu);
4077 if (pdi->tag == DW_TAG_subprogram
4078 || pdi->tag == DW_TAG_lexical_block)
4079 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4080 pdi = pdi->die_sibling;
4081 }
4082 }
4083}
4084
4085/* Read a partial die corresponding to an enumeration type. */
4086
4087static void
4088add_partial_enumeration (struct partial_die_info *enum_pdi,
4089 struct dwarf2_cu *cu)
4090{
4091 struct partial_die_info *pdi;
4092
4093 if (enum_pdi->name != NULL)
4094 add_partial_symbol (enum_pdi, cu);
4095
4096 pdi = enum_pdi->die_child;
4097 while (pdi)
4098 {
4099 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4100 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4101 else
4102 add_partial_symbol (pdi, cu);
4103 pdi = pdi->die_sibling;
4104 }
4105}
4106
4107/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4108 Return the corresponding abbrev, or NULL if the number is zero (indicating
4109 an empty DIE). In either case *BYTES_READ will be set to the length of
4110 the initial number. */
4111
4112static struct abbrev_info *
4113peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4114 struct dwarf2_cu *cu)
4115{
4116 bfd *abfd = cu->objfile->obfd;
4117 unsigned int abbrev_number;
4118 struct abbrev_info *abbrev;
4119
4120 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4121
4122 if (abbrev_number == 0)
4123 return NULL;
4124
4125 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4126 if (!abbrev)
4127 {
4128 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4129 abbrev_number, bfd_get_filename (abfd));
4130 }
4131
4132 return abbrev;
4133}
4134
4135/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4136 Returns a pointer to the end of a series of DIEs, terminated by an empty
4137 DIE. Any children of the skipped DIEs will also be skipped. */
4138
4139static gdb_byte *
4140skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4141{
4142 struct abbrev_info *abbrev;
4143 unsigned int bytes_read;
4144
4145 while (1)
4146 {
4147 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4148 if (abbrev == NULL)
4149 return info_ptr + bytes_read;
4150 else
4151 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4152 }
4153}
4154
4155/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4156 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4157 abbrev corresponding to that skipped uleb128 should be passed in
4158 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4159 children. */
4160
4161static gdb_byte *
4162skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4163 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4164{
4165 unsigned int bytes_read;
4166 struct attribute attr;
4167 bfd *abfd = cu->objfile->obfd;
4168 unsigned int form, i;
4169
4170 for (i = 0; i < abbrev->num_attrs; i++)
4171 {
4172 /* The only abbrev we care about is DW_AT_sibling. */
4173 if (abbrev->attrs[i].name == DW_AT_sibling)
4174 {
4175 read_attribute (&attr, &abbrev->attrs[i],
4176 abfd, info_ptr, cu);
4177 if (attr.form == DW_FORM_ref_addr)
4178 complaint (&symfile_complaints,
4179 _("ignoring absolute DW_AT_sibling"));
4180 else
4181 return buffer + dwarf2_get_ref_die_offset (&attr);
4182 }
4183
4184 /* If it isn't DW_AT_sibling, skip this attribute. */
4185 form = abbrev->attrs[i].form;
4186 skip_attribute:
4187 switch (form)
4188 {
4189 case DW_FORM_ref_addr:
4190 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4191 and later it is offset sized. */
4192 if (cu->header.version == 2)
4193 info_ptr += cu->header.addr_size;
4194 else
4195 info_ptr += cu->header.offset_size;
4196 break;
4197 case DW_FORM_addr:
4198 info_ptr += cu->header.addr_size;
4199 break;
4200 case DW_FORM_data1:
4201 case DW_FORM_ref1:
4202 case DW_FORM_flag:
4203 info_ptr += 1;
4204 break;
4205 case DW_FORM_flag_present:
4206 break;
4207 case DW_FORM_data2:
4208 case DW_FORM_ref2:
4209 info_ptr += 2;
4210 break;
4211 case DW_FORM_data4:
4212 case DW_FORM_ref4:
4213 info_ptr += 4;
4214 break;
4215 case DW_FORM_data8:
4216 case DW_FORM_ref8:
4217 case DW_FORM_sig8:
4218 info_ptr += 8;
4219 break;
4220 case DW_FORM_string:
4221 read_direct_string (abfd, info_ptr, &bytes_read);
4222 info_ptr += bytes_read;
4223 break;
4224 case DW_FORM_sec_offset:
4225 case DW_FORM_strp:
4226 info_ptr += cu->header.offset_size;
4227 break;
4228 case DW_FORM_exprloc:
4229 case DW_FORM_block:
4230 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4231 info_ptr += bytes_read;
4232 break;
4233 case DW_FORM_block1:
4234 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4235 break;
4236 case DW_FORM_block2:
4237 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4238 break;
4239 case DW_FORM_block4:
4240 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4241 break;
4242 case DW_FORM_sdata:
4243 case DW_FORM_udata:
4244 case DW_FORM_ref_udata:
4245 info_ptr = skip_leb128 (abfd, info_ptr);
4246 break;
4247 case DW_FORM_indirect:
4248 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4249 info_ptr += bytes_read;
4250 /* We need to continue parsing from here, so just go back to
4251 the top. */
4252 goto skip_attribute;
4253
4254 default:
4255 error (_("Dwarf Error: Cannot handle %s "
4256 "in DWARF reader [in module %s]"),
4257 dwarf_form_name (form),
4258 bfd_get_filename (abfd));
4259 }
4260 }
4261
4262 if (abbrev->has_children)
4263 return skip_children (buffer, info_ptr, cu);
4264 else
4265 return info_ptr;
4266}
4267
4268/* Locate ORIG_PDI's sibling.
4269 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4270 in BUFFER. */
4271
4272static gdb_byte *
4273locate_pdi_sibling (struct partial_die_info *orig_pdi,
4274 gdb_byte *buffer, gdb_byte *info_ptr,
4275 bfd *abfd, struct dwarf2_cu *cu)
4276{
4277 /* Do we know the sibling already? */
4278
4279 if (orig_pdi->sibling)
4280 return orig_pdi->sibling;
4281
4282 /* Are there any children to deal with? */
4283
4284 if (!orig_pdi->has_children)
4285 return info_ptr;
4286
4287 /* Skip the children the long way. */
4288
4289 return skip_children (buffer, info_ptr, cu);
4290}
4291
4292/* Expand this partial symbol table into a full symbol table. */
4293
4294static void
4295dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4296{
4297 if (pst != NULL)
4298 {
4299 if (pst->readin)
4300 {
4301 warning (_("bug: psymtab for %s is already read in."),
4302 pst->filename);
4303 }
4304 else
4305 {
4306 if (info_verbose)
4307 {
4308 printf_filtered (_("Reading in symbols for %s..."),
4309 pst->filename);
4310 gdb_flush (gdb_stdout);
4311 }
4312
4313 /* Restore our global data. */
4314 dwarf2_per_objfile = objfile_data (pst->objfile,
4315 dwarf2_objfile_data_key);
4316
4317 /* If this psymtab is constructed from a debug-only objfile, the
4318 has_section_at_zero flag will not necessarily be correct. We
4319 can get the correct value for this flag by looking at the data
4320 associated with the (presumably stripped) associated objfile. */
4321 if (pst->objfile->separate_debug_objfile_backlink)
4322 {
4323 struct dwarf2_per_objfile *dpo_backlink
4324 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4325 dwarf2_objfile_data_key);
4326
4327 dwarf2_per_objfile->has_section_at_zero
4328 = dpo_backlink->has_section_at_zero;
4329 }
4330
4331 dwarf2_per_objfile->reading_partial_symbols = 0;
4332
4333 psymtab_to_symtab_1 (pst);
4334
4335 /* Finish up the debug error message. */
4336 if (info_verbose)
4337 printf_filtered (_("done.\n"));
4338 }
4339 }
4340}
4341
4342/* Add PER_CU to the queue. */
4343
4344static void
4345queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4346{
4347 struct dwarf2_queue_item *item;
4348
4349 per_cu->queued = 1;
4350 item = xmalloc (sizeof (*item));
4351 item->per_cu = per_cu;
4352 item->next = NULL;
4353
4354 if (dwarf2_queue == NULL)
4355 dwarf2_queue = item;
4356 else
4357 dwarf2_queue_tail->next = item;
4358
4359 dwarf2_queue_tail = item;
4360}
4361
4362/* Process the queue. */
4363
4364static void
4365process_queue (struct objfile *objfile)
4366{
4367 struct dwarf2_queue_item *item, *next_item;
4368
4369 /* The queue starts out with one item, but following a DIE reference
4370 may load a new CU, adding it to the end of the queue. */
4371 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4372 {
4373 if (dwarf2_per_objfile->using_index
4374 ? !item->per_cu->v.quick->symtab
4375 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4376 process_full_comp_unit (item->per_cu);
4377
4378 item->per_cu->queued = 0;
4379 next_item = item->next;
4380 xfree (item);
4381 }
4382
4383 dwarf2_queue_tail = NULL;
4384}
4385
4386/* Free all allocated queue entries. This function only releases anything if
4387 an error was thrown; if the queue was processed then it would have been
4388 freed as we went along. */
4389
4390static void
4391dwarf2_release_queue (void *dummy)
4392{
4393 struct dwarf2_queue_item *item, *last;
4394
4395 item = dwarf2_queue;
4396 while (item)
4397 {
4398 /* Anything still marked queued is likely to be in an
4399 inconsistent state, so discard it. */
4400 if (item->per_cu->queued)
4401 {
4402 if (item->per_cu->cu != NULL)
4403 free_one_cached_comp_unit (item->per_cu->cu);
4404 item->per_cu->queued = 0;
4405 }
4406
4407 last = item;
4408 item = item->next;
4409 xfree (last);
4410 }
4411
4412 dwarf2_queue = dwarf2_queue_tail = NULL;
4413}
4414
4415/* Read in full symbols for PST, and anything it depends on. */
4416
4417static void
4418psymtab_to_symtab_1 (struct partial_symtab *pst)
4419{
4420 struct dwarf2_per_cu_data *per_cu;
4421 struct cleanup *back_to;
4422 int i;
4423
4424 for (i = 0; i < pst->number_of_dependencies; i++)
4425 if (!pst->dependencies[i]->readin)
4426 {
4427 /* Inform about additional files that need to be read in. */
4428 if (info_verbose)
4429 {
4430 /* FIXME: i18n: Need to make this a single string. */
4431 fputs_filtered (" ", gdb_stdout);
4432 wrap_here ("");
4433 fputs_filtered ("and ", gdb_stdout);
4434 wrap_here ("");
4435 printf_filtered ("%s...", pst->dependencies[i]->filename);
4436 wrap_here (""); /* Flush output. */
4437 gdb_flush (gdb_stdout);
4438 }
4439 psymtab_to_symtab_1 (pst->dependencies[i]);
4440 }
4441
4442 per_cu = pst->read_symtab_private;
4443
4444 if (per_cu == NULL)
4445 {
4446 /* It's an include file, no symbols to read for it.
4447 Everything is in the parent symtab. */
4448 pst->readin = 1;
4449 return;
4450 }
4451
4452 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4453}
4454
4455/* Load the DIEs associated with PER_CU into memory. */
4456
4457static void
4458load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4459 struct objfile *objfile)
4460{
4461 bfd *abfd = objfile->obfd;
4462 struct dwarf2_cu *cu;
4463 unsigned int offset;
4464 gdb_byte *info_ptr, *beg_of_comp_unit;
4465 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4466 struct attribute *attr;
4467 int read_cu = 0;
4468
4469 gdb_assert (! per_cu->from_debug_types);
4470
4471 /* Set local variables from the partial symbol table info. */
4472 offset = per_cu->offset;
4473
4474 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4475 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4476 beg_of_comp_unit = info_ptr;
4477
4478 if (per_cu->cu == NULL)
4479 {
4480 cu = xmalloc (sizeof (*cu));
4481 init_one_comp_unit (cu, objfile);
4482
4483 read_cu = 1;
4484
4485 /* If an error occurs while loading, release our storage. */
4486 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4487
4488 /* Read in the comp_unit header. */
4489 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4490
4491 /* Complete the cu_header. */
4492 cu->header.offset = offset;
4493 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4494
4495 /* Read the abbrevs for this compilation unit. */
4496 dwarf2_read_abbrevs (abfd, cu);
4497 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4498
4499 /* Link this compilation unit into the compilation unit tree. */
4500 per_cu->cu = cu;
4501 cu->per_cu = per_cu;
4502
4503 /* Link this CU into read_in_chain. */
4504 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4505 dwarf2_per_objfile->read_in_chain = per_cu;
4506 }
4507 else
4508 {
4509 cu = per_cu->cu;
4510 info_ptr += cu->header.first_die_offset;
4511 }
4512
4513 cu->dies = read_comp_unit (info_ptr, cu);
4514
4515 /* We try not to read any attributes in this function, because not
4516 all objfiles needed for references have been loaded yet, and symbol
4517 table processing isn't initialized. But we have to set the CU language,
4518 or we won't be able to build types correctly. */
4519 prepare_one_comp_unit (cu, cu->dies);
4520
4521 /* Similarly, if we do not read the producer, we can not apply
4522 producer-specific interpretation. */
4523 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4524 if (attr)
4525 cu->producer = DW_STRING (attr);
4526
4527 if (read_cu)
4528 {
4529 do_cleanups (free_abbrevs_cleanup);
4530
4531 /* We've successfully allocated this compilation unit. Let our
4532 caller clean it up when finished with it. */
4533 discard_cleanups (free_cu_cleanup);
4534 }
4535}
4536
4537/* Add a DIE to the delayed physname list. */
4538
4539static void
4540add_to_method_list (struct type *type, int fnfield_index, int index,
4541 const char *name, struct die_info *die,
4542 struct dwarf2_cu *cu)
4543{
4544 struct delayed_method_info mi;
4545 mi.type = type;
4546 mi.fnfield_index = fnfield_index;
4547 mi.index = index;
4548 mi.name = name;
4549 mi.die = die;
4550 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4551}
4552
4553/* A cleanup for freeing the delayed method list. */
4554
4555static void
4556free_delayed_list (void *ptr)
4557{
4558 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4559 if (cu->method_list != NULL)
4560 {
4561 VEC_free (delayed_method_info, cu->method_list);
4562 cu->method_list = NULL;
4563 }
4564}
4565
4566/* Compute the physnames of any methods on the CU's method list.
4567
4568 The computation of method physnames is delayed in order to avoid the
4569 (bad) condition that one of the method's formal parameters is of an as yet
4570 incomplete type. */
4571
4572static void
4573compute_delayed_physnames (struct dwarf2_cu *cu)
4574{
4575 int i;
4576 struct delayed_method_info *mi;
4577 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4578 {
4579 char *physname;
4580 struct fn_fieldlist *fn_flp
4581 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4582 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4583 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4584 }
4585}
4586
4587/* Generate full symbol information for PST and CU, whose DIEs have
4588 already been loaded into memory. */
4589
4590static void
4591process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4592{
4593 struct dwarf2_cu *cu = per_cu->cu;
4594 struct objfile *objfile = per_cu->objfile;
4595 CORE_ADDR lowpc, highpc;
4596 struct symtab *symtab;
4597 struct cleanup *back_to, *delayed_list_cleanup;
4598 CORE_ADDR baseaddr;
4599
4600 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4601
4602 buildsym_init ();
4603 back_to = make_cleanup (really_free_pendings, NULL);
4604 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4605
4606 cu->list_in_scope = &file_symbols;
4607
4608 dwarf2_find_base_address (cu->dies, cu);
4609
4610 /* Do line number decoding in read_file_scope () */
4611 process_die (cu->dies, cu);
4612
4613 /* Now that we have processed all the DIEs in the CU, all the types
4614 should be complete, and it should now be safe to compute all of the
4615 physnames. */
4616 compute_delayed_physnames (cu);
4617 do_cleanups (delayed_list_cleanup);
4618
4619 /* Some compilers don't define a DW_AT_high_pc attribute for the
4620 compilation unit. If the DW_AT_high_pc is missing, synthesize
4621 it, by scanning the DIE's below the compilation unit. */
4622 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4623
4624 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4625
4626 /* Set symtab language to language from DW_AT_language.
4627 If the compilation is from a C file generated by language preprocessors,
4628 do not set the language if it was already deduced by start_subfile. */
4629 if (symtab != NULL
4630 && !(cu->language == language_c && symtab->language != language_c))
4631 {
4632 symtab->language = cu->language;
4633 }
4634
4635 if (dwarf2_per_objfile->using_index)
4636 per_cu->v.quick->symtab = symtab;
4637 else
4638 {
4639 struct partial_symtab *pst = per_cu->v.psymtab;
4640 pst->symtab = symtab;
4641 pst->readin = 1;
4642 }
4643
4644 do_cleanups (back_to);
4645}
4646
4647/* Process a die and its children. */
4648
4649static void
4650process_die (struct die_info *die, struct dwarf2_cu *cu)
4651{
4652 switch (die->tag)
4653 {
4654 case DW_TAG_padding:
4655 break;
4656 case DW_TAG_compile_unit:
4657 read_file_scope (die, cu);
4658 break;
4659 case DW_TAG_type_unit:
4660 read_type_unit_scope (die, cu);
4661 break;
4662 case DW_TAG_subprogram:
4663 case DW_TAG_inlined_subroutine:
4664 read_func_scope (die, cu);
4665 break;
4666 case DW_TAG_lexical_block:
4667 case DW_TAG_try_block:
4668 case DW_TAG_catch_block:
4669 read_lexical_block_scope (die, cu);
4670 break;
4671 case DW_TAG_class_type:
4672 case DW_TAG_interface_type:
4673 case DW_TAG_structure_type:
4674 case DW_TAG_union_type:
4675 process_structure_scope (die, cu);
4676 break;
4677 case DW_TAG_enumeration_type:
4678 process_enumeration_scope (die, cu);
4679 break;
4680
4681 /* These dies have a type, but processing them does not create
4682 a symbol or recurse to process the children. Therefore we can
4683 read them on-demand through read_type_die. */
4684 case DW_TAG_subroutine_type:
4685 case DW_TAG_set_type:
4686 case DW_TAG_array_type:
4687 case DW_TAG_pointer_type:
4688 case DW_TAG_ptr_to_member_type:
4689 case DW_TAG_reference_type:
4690 case DW_TAG_string_type:
4691 break;
4692
4693 case DW_TAG_base_type:
4694 case DW_TAG_subrange_type:
4695 case DW_TAG_typedef:
4696 /* Add a typedef symbol for the type definition, if it has a
4697 DW_AT_name. */
4698 new_symbol (die, read_type_die (die, cu), cu);
4699 break;
4700 case DW_TAG_common_block:
4701 read_common_block (die, cu);
4702 break;
4703 case DW_TAG_common_inclusion:
4704 break;
4705 case DW_TAG_namespace:
4706 processing_has_namespace_info = 1;
4707 read_namespace (die, cu);
4708 break;
4709 case DW_TAG_module:
4710 processing_has_namespace_info = 1;
4711 read_module (die, cu);
4712 break;
4713 case DW_TAG_imported_declaration:
4714 case DW_TAG_imported_module:
4715 processing_has_namespace_info = 1;
4716 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4717 || cu->language != language_fortran))
4718 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4719 dwarf_tag_name (die->tag));
4720 read_import_statement (die, cu);
4721 break;
4722 default:
4723 new_symbol (die, NULL, cu);
4724 break;
4725 }
4726}
4727
4728/* A helper function for dwarf2_compute_name which determines whether DIE
4729 needs to have the name of the scope prepended to the name listed in the
4730 die. */
4731
4732static int
4733die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4734{
4735 struct attribute *attr;
4736
4737 switch (die->tag)
4738 {
4739 case DW_TAG_namespace:
4740 case DW_TAG_typedef:
4741 case DW_TAG_class_type:
4742 case DW_TAG_interface_type:
4743 case DW_TAG_structure_type:
4744 case DW_TAG_union_type:
4745 case DW_TAG_enumeration_type:
4746 case DW_TAG_enumerator:
4747 case DW_TAG_subprogram:
4748 case DW_TAG_member:
4749 return 1;
4750
4751 case DW_TAG_variable:
4752 case DW_TAG_constant:
4753 /* We only need to prefix "globally" visible variables. These include
4754 any variable marked with DW_AT_external or any variable that
4755 lives in a namespace. [Variables in anonymous namespaces
4756 require prefixing, but they are not DW_AT_external.] */
4757
4758 if (dwarf2_attr (die, DW_AT_specification, cu))
4759 {
4760 struct dwarf2_cu *spec_cu = cu;
4761
4762 return die_needs_namespace (die_specification (die, &spec_cu),
4763 spec_cu);
4764 }
4765
4766 attr = dwarf2_attr (die, DW_AT_external, cu);
4767 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4768 && die->parent->tag != DW_TAG_module)
4769 return 0;
4770 /* A variable in a lexical block of some kind does not need a
4771 namespace, even though in C++ such variables may be external
4772 and have a mangled name. */
4773 if (die->parent->tag == DW_TAG_lexical_block
4774 || die->parent->tag == DW_TAG_try_block
4775 || die->parent->tag == DW_TAG_catch_block
4776 || die->parent->tag == DW_TAG_subprogram)
4777 return 0;
4778 return 1;
4779
4780 default:
4781 return 0;
4782 }
4783}
4784
4785/* Retrieve the last character from a mem_file. */
4786
4787static void
4788do_ui_file_peek_last (void *object, const char *buffer, long length)
4789{
4790 char *last_char_p = (char *) object;
4791
4792 if (length > 0)
4793 *last_char_p = buffer[length - 1];
4794}
4795
4796/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4797 compute the physname for the object, which include a method's
4798 formal parameters (C++/Java) and return type (Java).
4799
4800 For Ada, return the DIE's linkage name rather than the fully qualified
4801 name. PHYSNAME is ignored..
4802
4803 The result is allocated on the objfile_obstack and canonicalized. */
4804
4805static const char *
4806dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4807 int physname)
4808{
4809 if (name == NULL)
4810 name = dwarf2_name (die, cu);
4811
4812 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4813 compute it by typename_concat inside GDB. */
4814 if (cu->language == language_ada
4815 || (cu->language == language_fortran && physname))
4816 {
4817 /* For Ada unit, we prefer the linkage name over the name, as
4818 the former contains the exported name, which the user expects
4819 to be able to reference. Ideally, we want the user to be able
4820 to reference this entity using either natural or linkage name,
4821 but we haven't started looking at this enhancement yet. */
4822 struct attribute *attr;
4823
4824 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4825 if (attr == NULL)
4826 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4827 if (attr && DW_STRING (attr))
4828 return DW_STRING (attr);
4829 }
4830
4831 /* These are the only languages we know how to qualify names in. */
4832 if (name != NULL
4833 && (cu->language == language_cplus || cu->language == language_java
4834 || cu->language == language_fortran))
4835 {
4836 if (die_needs_namespace (die, cu))
4837 {
4838 long length;
4839 char *prefix;
4840 struct ui_file *buf;
4841
4842 prefix = determine_prefix (die, cu);
4843 buf = mem_fileopen ();
4844 if (*prefix != '\0')
4845 {
4846 char *prefixed_name = typename_concat (NULL, prefix, name,
4847 physname, cu);
4848
4849 fputs_unfiltered (prefixed_name, buf);
4850 xfree (prefixed_name);
4851 }
4852 else
4853 fputs_unfiltered (name ? name : "", buf);
4854
4855 /* Template parameters may be specified in the DIE's DW_AT_name, or
4856 as children with DW_TAG_template_type_param or
4857 DW_TAG_value_type_param. If the latter, add them to the name
4858 here. If the name already has template parameters, then
4859 skip this step; some versions of GCC emit both, and
4860 it is more efficient to use the pre-computed name.
4861
4862 Something to keep in mind about this process: it is very
4863 unlikely, or in some cases downright impossible, to produce
4864 something that will match the mangled name of a function.
4865 If the definition of the function has the same debug info,
4866 we should be able to match up with it anyway. But fallbacks
4867 using the minimal symbol, for instance to find a method
4868 implemented in a stripped copy of libstdc++, will not work.
4869 If we do not have debug info for the definition, we will have to
4870 match them up some other way.
4871
4872 When we do name matching there is a related problem with function
4873 templates; two instantiated function templates are allowed to
4874 differ only by their return types, which we do not add here. */
4875
4876 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4877 {
4878 struct attribute *attr;
4879 struct die_info *child;
4880 int first = 1;
4881
4882 die->building_fullname = 1;
4883
4884 for (child = die->child; child != NULL; child = child->sibling)
4885 {
4886 struct type *type;
4887 long value;
4888 gdb_byte *bytes;
4889 struct dwarf2_locexpr_baton *baton;
4890 struct value *v;
4891
4892 if (child->tag != DW_TAG_template_type_param
4893 && child->tag != DW_TAG_template_value_param)
4894 continue;
4895
4896 if (first)
4897 {
4898 fputs_unfiltered ("<", buf);
4899 first = 0;
4900 }
4901 else
4902 fputs_unfiltered (", ", buf);
4903
4904 attr = dwarf2_attr (child, DW_AT_type, cu);
4905 if (attr == NULL)
4906 {
4907 complaint (&symfile_complaints,
4908 _("template parameter missing DW_AT_type"));
4909 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4910 continue;
4911 }
4912 type = die_type (child, cu);
4913
4914 if (child->tag == DW_TAG_template_type_param)
4915 {
4916 c_print_type (type, "", buf, -1, 0);
4917 continue;
4918 }
4919
4920 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4921 if (attr == NULL)
4922 {
4923 complaint (&symfile_complaints,
4924 _("template parameter missing "
4925 "DW_AT_const_value"));
4926 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4927 continue;
4928 }
4929
4930 dwarf2_const_value_attr (attr, type, name,
4931 &cu->comp_unit_obstack, cu,
4932 &value, &bytes, &baton);
4933
4934 if (TYPE_NOSIGN (type))
4935 /* GDB prints characters as NUMBER 'CHAR'. If that's
4936 changed, this can use value_print instead. */
4937 c_printchar (value, type, buf);
4938 else
4939 {
4940 struct value_print_options opts;
4941
4942 if (baton != NULL)
4943 v = dwarf2_evaluate_loc_desc (type, NULL,
4944 baton->data,
4945 baton->size,
4946 baton->per_cu);
4947 else if (bytes != NULL)
4948 {
4949 v = allocate_value (type);
4950 memcpy (value_contents_writeable (v), bytes,
4951 TYPE_LENGTH (type));
4952 }
4953 else
4954 v = value_from_longest (type, value);
4955
4956 /* Specify decimal so that we do not depend on
4957 the radix. */
4958 get_formatted_print_options (&opts, 'd');
4959 opts.raw = 1;
4960 value_print (v, buf, &opts);
4961 release_value (v);
4962 value_free (v);
4963 }
4964 }
4965
4966 die->building_fullname = 0;
4967
4968 if (!first)
4969 {
4970 /* Close the argument list, with a space if necessary
4971 (nested templates). */
4972 char last_char = '\0';
4973 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4974 if (last_char == '>')
4975 fputs_unfiltered (" >", buf);
4976 else
4977 fputs_unfiltered (">", buf);
4978 }
4979 }
4980
4981 /* For Java and C++ methods, append formal parameter type
4982 information, if PHYSNAME. */
4983
4984 if (physname && die->tag == DW_TAG_subprogram
4985 && (cu->language == language_cplus
4986 || cu->language == language_java))
4987 {
4988 struct type *type = read_type_die (die, cu);
4989
4990 c_type_print_args (type, buf, 0, cu->language);
4991
4992 if (cu->language == language_java)
4993 {
4994 /* For java, we must append the return type to method
4995 names. */
4996 if (die->tag == DW_TAG_subprogram)
4997 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4998 0, 0);
4999 }
5000 else if (cu->language == language_cplus)
5001 {
5002 /* Assume that an artificial first parameter is
5003 "this", but do not crash if it is not. RealView
5004 marks unnamed (and thus unused) parameters as
5005 artificial; there is no way to differentiate
5006 the two cases. */
5007 if (TYPE_NFIELDS (type) > 0
5008 && TYPE_FIELD_ARTIFICIAL (type, 0)
5009 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5010 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5011 0))))
5012 fputs_unfiltered (" const", buf);
5013 }
5014 }
5015
5016 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5017 &length);
5018 ui_file_delete (buf);
5019
5020 if (cu->language == language_cplus)
5021 {
5022 char *cname
5023 = dwarf2_canonicalize_name (name, cu,
5024 &cu->objfile->objfile_obstack);
5025
5026 if (cname != NULL)
5027 name = cname;
5028 }
5029 }
5030 }
5031
5032 return name;
5033}
5034
5035/* Return the fully qualified name of DIE, based on its DW_AT_name.
5036 If scope qualifiers are appropriate they will be added. The result
5037 will be allocated on the objfile_obstack, or NULL if the DIE does
5038 not have a name. NAME may either be from a previous call to
5039 dwarf2_name or NULL.
5040
5041 The output string will be canonicalized (if C++/Java). */
5042
5043static const char *
5044dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5045{
5046 return dwarf2_compute_name (name, die, cu, 0);
5047}
5048
5049/* Construct a physname for the given DIE in CU. NAME may either be
5050 from a previous call to dwarf2_name or NULL. The result will be
5051 allocated on the objfile_objstack or NULL if the DIE does not have a
5052 name.
5053
5054 The output string will be canonicalized (if C++/Java). */
5055
5056static const char *
5057dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5058{
5059 return dwarf2_compute_name (name, die, cu, 1);
5060}
5061
5062/* Read the import statement specified by the given die and record it. */
5063
5064static void
5065read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5066{
5067 struct attribute *import_attr;
5068 struct die_info *imported_die;
5069 struct dwarf2_cu *imported_cu;
5070 const char *imported_name;
5071 const char *imported_name_prefix;
5072 const char *canonical_name;
5073 const char *import_alias;
5074 const char *imported_declaration = NULL;
5075 const char *import_prefix;
5076
5077 char *temp;
5078
5079 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5080 if (import_attr == NULL)
5081 {
5082 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5083 dwarf_tag_name (die->tag));
5084 return;
5085 }
5086
5087 imported_cu = cu;
5088 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5089 imported_name = dwarf2_name (imported_die, imported_cu);
5090 if (imported_name == NULL)
5091 {
5092 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5093
5094 The import in the following code:
5095 namespace A
5096 {
5097 typedef int B;
5098 }
5099
5100 int main ()
5101 {
5102 using A::B;
5103 B b;
5104 return b;
5105 }
5106
5107 ...
5108 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5109 <52> DW_AT_decl_file : 1
5110 <53> DW_AT_decl_line : 6
5111 <54> DW_AT_import : <0x75>
5112 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5113 <59> DW_AT_name : B
5114 <5b> DW_AT_decl_file : 1
5115 <5c> DW_AT_decl_line : 2
5116 <5d> DW_AT_type : <0x6e>
5117 ...
5118 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5119 <76> DW_AT_byte_size : 4
5120 <77> DW_AT_encoding : 5 (signed)
5121
5122 imports the wrong die ( 0x75 instead of 0x58 ).
5123 This case will be ignored until the gcc bug is fixed. */
5124 return;
5125 }
5126
5127 /* Figure out the local name after import. */
5128 import_alias = dwarf2_name (die, cu);
5129
5130 /* Figure out where the statement is being imported to. */
5131 import_prefix = determine_prefix (die, cu);
5132
5133 /* Figure out what the scope of the imported die is and prepend it
5134 to the name of the imported die. */
5135 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5136
5137 if (imported_die->tag != DW_TAG_namespace
5138 && imported_die->tag != DW_TAG_module)
5139 {
5140 imported_declaration = imported_name;
5141 canonical_name = imported_name_prefix;
5142 }
5143 else if (strlen (imported_name_prefix) > 0)
5144 {
5145 temp = alloca (strlen (imported_name_prefix)
5146 + 2 + strlen (imported_name) + 1);
5147 strcpy (temp, imported_name_prefix);
5148 strcat (temp, "::");
5149 strcat (temp, imported_name);
5150 canonical_name = temp;
5151 }
5152 else
5153 canonical_name = imported_name;
5154
5155 cp_add_using_directive (import_prefix,
5156 canonical_name,
5157 import_alias,
5158 imported_declaration,
5159 &cu->objfile->objfile_obstack);
5160}
5161
5162static void
5163initialize_cu_func_list (struct dwarf2_cu *cu)
5164{
5165 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5166}
5167
5168/* Cleanup function for read_file_scope. */
5169
5170static void
5171free_cu_line_header (void *arg)
5172{
5173 struct dwarf2_cu *cu = arg;
5174
5175 free_line_header (cu->line_header);
5176 cu->line_header = NULL;
5177}
5178
5179static void
5180find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5181 char **name, char **comp_dir)
5182{
5183 struct attribute *attr;
5184
5185 *name = NULL;
5186 *comp_dir = NULL;
5187
5188 /* Find the filename. Do not use dwarf2_name here, since the filename
5189 is not a source language identifier. */
5190 attr = dwarf2_attr (die, DW_AT_name, cu);
5191 if (attr)
5192 {
5193 *name = DW_STRING (attr);
5194 }
5195
5196 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5197 if (attr)
5198 *comp_dir = DW_STRING (attr);
5199 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5200 {
5201 *comp_dir = ldirname (*name);
5202 if (*comp_dir != NULL)
5203 make_cleanup (xfree, *comp_dir);
5204 }
5205 if (*comp_dir != NULL)
5206 {
5207 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5208 directory, get rid of it. */
5209 char *cp = strchr (*comp_dir, ':');
5210
5211 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5212 *comp_dir = cp + 1;
5213 }
5214
5215 if (*name == NULL)
5216 *name = "<unknown>";
5217}
5218
5219/* Process DW_TAG_compile_unit. */
5220
5221static void
5222read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5223{
5224 struct objfile *objfile = cu->objfile;
5225 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5226 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5227 CORE_ADDR highpc = ((CORE_ADDR) 0);
5228 struct attribute *attr;
5229 char *name = NULL;
5230 char *comp_dir = NULL;
5231 struct die_info *child_die;
5232 bfd *abfd = objfile->obfd;
5233 struct line_header *line_header = 0;
5234 CORE_ADDR baseaddr;
5235
5236 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5237
5238 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5239
5240 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5241 from finish_block. */
5242 if (lowpc == ((CORE_ADDR) -1))
5243 lowpc = highpc;
5244 lowpc += baseaddr;
5245 highpc += baseaddr;
5246
5247 find_file_and_directory (die, cu, &name, &comp_dir);
5248
5249 attr = dwarf2_attr (die, DW_AT_language, cu);
5250 if (attr)
5251 {
5252 set_cu_language (DW_UNSND (attr), cu);
5253 }
5254
5255 attr = dwarf2_attr (die, DW_AT_producer, cu);
5256 if (attr)
5257 cu->producer = DW_STRING (attr);
5258
5259 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5260 standardised yet. As a workaround for the language detection we fall
5261 back to the DW_AT_producer string. */
5262 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5263 cu->language = language_opencl;
5264
5265 /* We assume that we're processing GCC output. */
5266 processing_gcc_compilation = 2;
5267
5268 processing_has_namespace_info = 0;
5269
5270 start_symtab (name, comp_dir, lowpc);
5271 record_debugformat ("DWARF 2");
5272 record_producer (cu->producer);
5273
5274 initialize_cu_func_list (cu);
5275
5276 /* Decode line number information if present. We do this before
5277 processing child DIEs, so that the line header table is available
5278 for DW_AT_decl_file. */
5279 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5280 if (attr)
5281 {
5282 unsigned int line_offset = DW_UNSND (attr);
5283 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5284 if (line_header)
5285 {
5286 cu->line_header = line_header;
5287 make_cleanup (free_cu_line_header, cu);
5288 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5289 }
5290 }
5291
5292 /* Process all dies in compilation unit. */
5293 if (die->child != NULL)
5294 {
5295 child_die = die->child;
5296 while (child_die && child_die->tag)
5297 {
5298 process_die (child_die, cu);
5299 child_die = sibling_die (child_die);
5300 }
5301 }
5302
5303 /* Decode macro information, if present. Dwarf 2 macro information
5304 refers to information in the line number info statement program
5305 header, so we can only read it if we've read the header
5306 successfully. */
5307 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5308 if (attr && line_header)
5309 {
5310 unsigned int macro_offset = DW_UNSND (attr);
5311
5312 dwarf_decode_macros (line_header, macro_offset,
5313 comp_dir, abfd, cu);
5314 }
5315 do_cleanups (back_to);
5316}
5317
5318/* Process DW_TAG_type_unit.
5319 For TUs we want to skip the first top level sibling if it's not the
5320 actual type being defined by this TU. In this case the first top
5321 level sibling is there to provide context only. */
5322
5323static void
5324read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5325{
5326 struct objfile *objfile = cu->objfile;
5327 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5328 CORE_ADDR lowpc;
5329 struct attribute *attr;
5330 char *name = NULL;
5331 char *comp_dir = NULL;
5332 struct die_info *child_die;
5333 bfd *abfd = objfile->obfd;
5334
5335 /* start_symtab needs a low pc, but we don't really have one.
5336 Do what read_file_scope would do in the absence of such info. */
5337 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5338
5339 /* Find the filename. Do not use dwarf2_name here, since the filename
5340 is not a source language identifier. */
5341 attr = dwarf2_attr (die, DW_AT_name, cu);
5342 if (attr)
5343 name = DW_STRING (attr);
5344
5345 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5346 if (attr)
5347 comp_dir = DW_STRING (attr);
5348 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5349 {
5350 comp_dir = ldirname (name);
5351 if (comp_dir != NULL)
5352 make_cleanup (xfree, comp_dir);
5353 }
5354
5355 if (name == NULL)
5356 name = "<unknown>";
5357
5358 attr = dwarf2_attr (die, DW_AT_language, cu);
5359 if (attr)
5360 set_cu_language (DW_UNSND (attr), cu);
5361
5362 /* This isn't technically needed today. It is done for symmetry
5363 with read_file_scope. */
5364 attr = dwarf2_attr (die, DW_AT_producer, cu);
5365 if (attr)
5366 cu->producer = DW_STRING (attr);
5367
5368 /* We assume that we're processing GCC output. */
5369 processing_gcc_compilation = 2;
5370
5371 processing_has_namespace_info = 0;
5372
5373 start_symtab (name, comp_dir, lowpc);
5374 record_debugformat ("DWARF 2");
5375 record_producer (cu->producer);
5376
5377 /* Process the dies in the type unit. */
5378 if (die->child == NULL)
5379 {
5380 dump_die_for_error (die);
5381 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5382 bfd_get_filename (abfd));
5383 }
5384
5385 child_die = die->child;
5386
5387 while (child_die && child_die->tag)
5388 {
5389 process_die (child_die, cu);
5390
5391 child_die = sibling_die (child_die);
5392 }
5393
5394 do_cleanups (back_to);
5395}
5396
5397static void
5398add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5399 struct dwarf2_cu *cu)
5400{
5401 struct function_range *thisfn;
5402
5403 thisfn = (struct function_range *)
5404 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5405 thisfn->name = name;
5406 thisfn->lowpc = lowpc;
5407 thisfn->highpc = highpc;
5408 thisfn->seen_line = 0;
5409 thisfn->next = NULL;
5410
5411 if (cu->last_fn == NULL)
5412 cu->first_fn = thisfn;
5413 else
5414 cu->last_fn->next = thisfn;
5415
5416 cu->last_fn = thisfn;
5417}
5418
5419/* qsort helper for inherit_abstract_dies. */
5420
5421static int
5422unsigned_int_compar (const void *ap, const void *bp)
5423{
5424 unsigned int a = *(unsigned int *) ap;
5425 unsigned int b = *(unsigned int *) bp;
5426
5427 return (a > b) - (b > a);
5428}
5429
5430/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5431 Inherit only the children of the DW_AT_abstract_origin DIE not being
5432 already referenced by DW_AT_abstract_origin from the children of the
5433 current DIE. */
5434
5435static void
5436inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5437{
5438 struct die_info *child_die;
5439 unsigned die_children_count;
5440 /* CU offsets which were referenced by children of the current DIE. */
5441 unsigned *offsets;
5442 unsigned *offsets_end, *offsetp;
5443 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5444 struct die_info *origin_die;
5445 /* Iterator of the ORIGIN_DIE children. */
5446 struct die_info *origin_child_die;
5447 struct cleanup *cleanups;
5448 struct attribute *attr;
5449 struct dwarf2_cu *origin_cu;
5450 struct pending **origin_previous_list_in_scope;
5451
5452 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5453 if (!attr)
5454 return;
5455
5456 /* Note that following die references may follow to a die in a
5457 different cu. */
5458
5459 origin_cu = cu;
5460 origin_die = follow_die_ref (die, attr, &origin_cu);
5461
5462 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5463 symbols in. */
5464 origin_previous_list_in_scope = origin_cu->list_in_scope;
5465 origin_cu->list_in_scope = cu->list_in_scope;
5466
5467 if (die->tag != origin_die->tag
5468 && !(die->tag == DW_TAG_inlined_subroutine
5469 && origin_die->tag == DW_TAG_subprogram))
5470 complaint (&symfile_complaints,
5471 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5472 die->offset, origin_die->offset);
5473
5474 child_die = die->child;
5475 die_children_count = 0;
5476 while (child_die && child_die->tag)
5477 {
5478 child_die = sibling_die (child_die);
5479 die_children_count++;
5480 }
5481 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5482 cleanups = make_cleanup (xfree, offsets);
5483
5484 offsets_end = offsets;
5485 child_die = die->child;
5486 while (child_die && child_die->tag)
5487 {
5488 /* For each CHILD_DIE, find the corresponding child of
5489 ORIGIN_DIE. If there is more than one layer of
5490 DW_AT_abstract_origin, follow them all; there shouldn't be,
5491 but GCC versions at least through 4.4 generate this (GCC PR
5492 40573). */
5493 struct die_info *child_origin_die = child_die;
5494 struct dwarf2_cu *child_origin_cu = cu;
5495
5496 while (1)
5497 {
5498 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5499 child_origin_cu);
5500 if (attr == NULL)
5501 break;
5502 child_origin_die = follow_die_ref (child_origin_die, attr,
5503 &child_origin_cu);
5504 }
5505
5506 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5507 counterpart may exist. */
5508 if (child_origin_die != child_die)
5509 {
5510 if (child_die->tag != child_origin_die->tag
5511 && !(child_die->tag == DW_TAG_inlined_subroutine
5512 && child_origin_die->tag == DW_TAG_subprogram))
5513 complaint (&symfile_complaints,
5514 _("Child DIE 0x%x and its abstract origin 0x%x have "
5515 "different tags"), child_die->offset,
5516 child_origin_die->offset);
5517 if (child_origin_die->parent != origin_die)
5518 complaint (&symfile_complaints,
5519 _("Child DIE 0x%x and its abstract origin 0x%x have "
5520 "different parents"), child_die->offset,
5521 child_origin_die->offset);
5522 else
5523 *offsets_end++ = child_origin_die->offset;
5524 }
5525 child_die = sibling_die (child_die);
5526 }
5527 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5528 unsigned_int_compar);
5529 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5530 if (offsetp[-1] == *offsetp)
5531 complaint (&symfile_complaints,
5532 _("Multiple children of DIE 0x%x refer "
5533 "to DIE 0x%x as their abstract origin"),
5534 die->offset, *offsetp);
5535
5536 offsetp = offsets;
5537 origin_child_die = origin_die->child;
5538 while (origin_child_die && origin_child_die->tag)
5539 {
5540 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5541 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5542 offsetp++;
5543 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5544 {
5545 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5546 process_die (origin_child_die, origin_cu);
5547 }
5548 origin_child_die = sibling_die (origin_child_die);
5549 }
5550 origin_cu->list_in_scope = origin_previous_list_in_scope;
5551
5552 do_cleanups (cleanups);
5553}
5554
5555static void
5556read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5557{
5558 struct objfile *objfile = cu->objfile;
5559 struct context_stack *new;
5560 CORE_ADDR lowpc;
5561 CORE_ADDR highpc;
5562 struct die_info *child_die;
5563 struct attribute *attr, *call_line, *call_file;
5564 char *name;
5565 CORE_ADDR baseaddr;
5566 struct block *block;
5567 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5568 VEC (symbolp) *template_args = NULL;
5569 struct template_symbol *templ_func = NULL;
5570
5571 if (inlined_func)
5572 {
5573 /* If we do not have call site information, we can't show the
5574 caller of this inlined function. That's too confusing, so
5575 only use the scope for local variables. */
5576 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5577 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5578 if (call_line == NULL || call_file == NULL)
5579 {
5580 read_lexical_block_scope (die, cu);
5581 return;
5582 }
5583 }
5584
5585 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5586
5587 name = dwarf2_name (die, cu);
5588
5589 /* Ignore functions with missing or empty names. These are actually
5590 illegal according to the DWARF standard. */
5591 if (name == NULL)
5592 {
5593 complaint (&symfile_complaints,
5594 _("missing name for subprogram DIE at %d"), die->offset);
5595 return;
5596 }
5597
5598 /* Ignore functions with missing or invalid low and high pc attributes. */
5599 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5600 {
5601 attr = dwarf2_attr (die, DW_AT_external, cu);
5602 if (!attr || !DW_UNSND (attr))
5603 complaint (&symfile_complaints,
5604 _("cannot get low and high bounds "
5605 "for subprogram DIE at %d"),
5606 die->offset);
5607 return;
5608 }
5609
5610 lowpc += baseaddr;
5611 highpc += baseaddr;
5612
5613 /* Record the function range for dwarf_decode_lines. */
5614 add_to_cu_func_list (name, lowpc, highpc, cu);
5615
5616 /* If we have any template arguments, then we must allocate a
5617 different sort of symbol. */
5618 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5619 {
5620 if (child_die->tag == DW_TAG_template_type_param
5621 || child_die->tag == DW_TAG_template_value_param)
5622 {
5623 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5624 struct template_symbol);
5625 templ_func->base.is_cplus_template_function = 1;
5626 break;
5627 }
5628 }
5629
5630 new = push_context (0, lowpc);
5631 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5632 (struct symbol *) templ_func);
5633
5634 /* If there is a location expression for DW_AT_frame_base, record
5635 it. */
5636 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5637 if (attr)
5638 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5639 expression is being recorded directly in the function's symbol
5640 and not in a separate frame-base object. I guess this hack is
5641 to avoid adding some sort of frame-base adjunct/annex to the
5642 function's symbol :-(. The problem with doing this is that it
5643 results in a function symbol with a location expression that
5644 has nothing to do with the location of the function, ouch! The
5645 relationship should be: a function's symbol has-a frame base; a
5646 frame-base has-a location expression. */
5647 dwarf2_symbol_mark_computed (attr, new->name, cu);
5648
5649 cu->list_in_scope = &local_symbols;
5650
5651 if (die->child != NULL)
5652 {
5653 child_die = die->child;
5654 while (child_die && child_die->tag)
5655 {
5656 if (child_die->tag == DW_TAG_template_type_param
5657 || child_die->tag == DW_TAG_template_value_param)
5658 {
5659 struct symbol *arg = new_symbol (child_die, NULL, cu);
5660
5661 if (arg != NULL)
5662 VEC_safe_push (symbolp, template_args, arg);
5663 }
5664 else
5665 process_die (child_die, cu);
5666 child_die = sibling_die (child_die);
5667 }
5668 }
5669
5670 inherit_abstract_dies (die, cu);
5671
5672 /* If we have a DW_AT_specification, we might need to import using
5673 directives from the context of the specification DIE. See the
5674 comment in determine_prefix. */
5675 if (cu->language == language_cplus
5676 && dwarf2_attr (die, DW_AT_specification, cu))
5677 {
5678 struct dwarf2_cu *spec_cu = cu;
5679 struct die_info *spec_die = die_specification (die, &spec_cu);
5680
5681 while (spec_die)
5682 {
5683 child_die = spec_die->child;
5684 while (child_die && child_die->tag)
5685 {
5686 if (child_die->tag == DW_TAG_imported_module)
5687 process_die (child_die, spec_cu);
5688 child_die = sibling_die (child_die);
5689 }
5690
5691 /* In some cases, GCC generates specification DIEs that
5692 themselves contain DW_AT_specification attributes. */
5693 spec_die = die_specification (spec_die, &spec_cu);
5694 }
5695 }
5696
5697 new = pop_context ();
5698 /* Make a block for the local symbols within. */
5699 block = finish_block (new->name, &local_symbols, new->old_blocks,
5700 lowpc, highpc, objfile);
5701
5702 /* For C++, set the block's scope. */
5703 if (cu->language == language_cplus || cu->language == language_fortran)
5704 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5705 determine_prefix (die, cu),
5706 processing_has_namespace_info);
5707
5708 /* If we have address ranges, record them. */
5709 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5710
5711 /* Attach template arguments to function. */
5712 if (! VEC_empty (symbolp, template_args))
5713 {
5714 gdb_assert (templ_func != NULL);
5715
5716 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5717 templ_func->template_arguments
5718 = obstack_alloc (&objfile->objfile_obstack,
5719 (templ_func->n_template_arguments
5720 * sizeof (struct symbol *)));
5721 memcpy (templ_func->template_arguments,
5722 VEC_address (symbolp, template_args),
5723 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5724 VEC_free (symbolp, template_args);
5725 }
5726
5727 /* In C++, we can have functions nested inside functions (e.g., when
5728 a function declares a class that has methods). This means that
5729 when we finish processing a function scope, we may need to go
5730 back to building a containing block's symbol lists. */
5731 local_symbols = new->locals;
5732 param_symbols = new->params;
5733 using_directives = new->using_directives;
5734
5735 /* If we've finished processing a top-level function, subsequent
5736 symbols go in the file symbol list. */
5737 if (outermost_context_p ())
5738 cu->list_in_scope = &file_symbols;
5739}
5740
5741/* Process all the DIES contained within a lexical block scope. Start
5742 a new scope, process the dies, and then close the scope. */
5743
5744static void
5745read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5746{
5747 struct objfile *objfile = cu->objfile;
5748 struct context_stack *new;
5749 CORE_ADDR lowpc, highpc;
5750 struct die_info *child_die;
5751 CORE_ADDR baseaddr;
5752
5753 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5754
5755 /* Ignore blocks with missing or invalid low and high pc attributes. */
5756 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5757 as multiple lexical blocks? Handling children in a sane way would
5758 be nasty. Might be easier to properly extend generic blocks to
5759 describe ranges. */
5760 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5761 return;
5762 lowpc += baseaddr;
5763 highpc += baseaddr;
5764
5765 push_context (0, lowpc);
5766 if (die->child != NULL)
5767 {
5768 child_die = die->child;
5769 while (child_die && child_die->tag)
5770 {
5771 process_die (child_die, cu);
5772 child_die = sibling_die (child_die);
5773 }
5774 }
5775 new = pop_context ();
5776
5777 if (local_symbols != NULL || using_directives != NULL)
5778 {
5779 struct block *block
5780 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5781 highpc, objfile);
5782
5783 /* Note that recording ranges after traversing children, as we
5784 do here, means that recording a parent's ranges entails
5785 walking across all its children's ranges as they appear in
5786 the address map, which is quadratic behavior.
5787
5788 It would be nicer to record the parent's ranges before
5789 traversing its children, simply overriding whatever you find
5790 there. But since we don't even decide whether to create a
5791 block until after we've traversed its children, that's hard
5792 to do. */
5793 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5794 }
5795 local_symbols = new->locals;
5796 using_directives = new->using_directives;
5797}
5798
5799/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5800 Return 1 if the attributes are present and valid, otherwise, return 0.
5801 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5802
5803static int
5804dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5805 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5806 struct partial_symtab *ranges_pst)
5807{
5808 struct objfile *objfile = cu->objfile;
5809 struct comp_unit_head *cu_header = &cu->header;
5810 bfd *obfd = objfile->obfd;
5811 unsigned int addr_size = cu_header->addr_size;
5812 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5813 /* Base address selection entry. */
5814 CORE_ADDR base;
5815 int found_base;
5816 unsigned int dummy;
5817 gdb_byte *buffer;
5818 CORE_ADDR marker;
5819 int low_set;
5820 CORE_ADDR low = 0;
5821 CORE_ADDR high = 0;
5822 CORE_ADDR baseaddr;
5823
5824 found_base = cu->base_known;
5825 base = cu->base_address;
5826
5827 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5828 if (offset >= dwarf2_per_objfile->ranges.size)
5829 {
5830 complaint (&symfile_complaints,
5831 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5832 offset);
5833 return 0;
5834 }
5835 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5836
5837 /* Read in the largest possible address. */
5838 marker = read_address (obfd, buffer, cu, &dummy);
5839 if ((marker & mask) == mask)
5840 {
5841 /* If we found the largest possible address, then
5842 read the base address. */
5843 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5844 buffer += 2 * addr_size;
5845 offset += 2 * addr_size;
5846 found_base = 1;
5847 }
5848
5849 low_set = 0;
5850
5851 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5852
5853 while (1)
5854 {
5855 CORE_ADDR range_beginning, range_end;
5856
5857 range_beginning = read_address (obfd, buffer, cu, &dummy);
5858 buffer += addr_size;
5859 range_end = read_address (obfd, buffer, cu, &dummy);
5860 buffer += addr_size;
5861 offset += 2 * addr_size;
5862
5863 /* An end of list marker is a pair of zero addresses. */
5864 if (range_beginning == 0 && range_end == 0)
5865 /* Found the end of list entry. */
5866 break;
5867
5868 /* Each base address selection entry is a pair of 2 values.
5869 The first is the largest possible address, the second is
5870 the base address. Check for a base address here. */
5871 if ((range_beginning & mask) == mask)
5872 {
5873 /* If we found the largest possible address, then
5874 read the base address. */
5875 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5876 found_base = 1;
5877 continue;
5878 }
5879
5880 if (!found_base)
5881 {
5882 /* We have no valid base address for the ranges
5883 data. */
5884 complaint (&symfile_complaints,
5885 _("Invalid .debug_ranges data (no base address)"));
5886 return 0;
5887 }
5888
5889 if (range_beginning > range_end)
5890 {
5891 /* Inverted range entries are invalid. */
5892 complaint (&symfile_complaints,
5893 _("Invalid .debug_ranges data (inverted range)"));
5894 return 0;
5895 }
5896
5897 /* Empty range entries have no effect. */
5898 if (range_beginning == range_end)
5899 continue;
5900
5901 range_beginning += base;
5902 range_end += base;
5903
5904 if (ranges_pst != NULL)
5905 addrmap_set_empty (objfile->psymtabs_addrmap,
5906 range_beginning + baseaddr,
5907 range_end - 1 + baseaddr,
5908 ranges_pst);
5909
5910 /* FIXME: This is recording everything as a low-high
5911 segment of consecutive addresses. We should have a
5912 data structure for discontiguous block ranges
5913 instead. */
5914 if (! low_set)
5915 {
5916 low = range_beginning;
5917 high = range_end;
5918 low_set = 1;
5919 }
5920 else
5921 {
5922 if (range_beginning < low)
5923 low = range_beginning;
5924 if (range_end > high)
5925 high = range_end;
5926 }
5927 }
5928
5929 if (! low_set)
5930 /* If the first entry is an end-of-list marker, the range
5931 describes an empty scope, i.e. no instructions. */
5932 return 0;
5933
5934 if (low_return)
5935 *low_return = low;
5936 if (high_return)
5937 *high_return = high;
5938 return 1;
5939}
5940
5941/* Get low and high pc attributes from a die. Return 1 if the attributes
5942 are present and valid, otherwise, return 0. Return -1 if the range is
5943 discontinuous, i.e. derived from DW_AT_ranges information. */
5944static int
5945dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5946 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5947 struct partial_symtab *pst)
5948{
5949 struct attribute *attr;
5950 CORE_ADDR low = 0;
5951 CORE_ADDR high = 0;
5952 int ret = 0;
5953
5954 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5955 if (attr)
5956 {
5957 high = DW_ADDR (attr);
5958 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5959 if (attr)
5960 low = DW_ADDR (attr);
5961 else
5962 /* Found high w/o low attribute. */
5963 return 0;
5964
5965 /* Found consecutive range of addresses. */
5966 ret = 1;
5967 }
5968 else
5969 {
5970 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5971 if (attr != NULL)
5972 {
5973 /* Value of the DW_AT_ranges attribute is the offset in the
5974 .debug_ranges section. */
5975 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5976 return 0;
5977 /* Found discontinuous range of addresses. */
5978 ret = -1;
5979 }
5980 }
5981
5982 if (high < low)
5983 return 0;
5984
5985 /* When using the GNU linker, .gnu.linkonce. sections are used to
5986 eliminate duplicate copies of functions and vtables and such.
5987 The linker will arbitrarily choose one and discard the others.
5988 The AT_*_pc values for such functions refer to local labels in
5989 these sections. If the section from that file was discarded, the
5990 labels are not in the output, so the relocs get a value of 0.
5991 If this is a discarded function, mark the pc bounds as invalid,
5992 so that GDB will ignore it. */
5993 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5994 return 0;
5995
5996 *lowpc = low;
5997 *highpc = high;
5998 return ret;
5999}
6000
6001/* Assuming that DIE represents a subprogram DIE or a lexical block, get
6002 its low and high PC addresses. Do nothing if these addresses could not
6003 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6004 and HIGHPC to the high address if greater than HIGHPC. */
6005
6006static void
6007dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 struct dwarf2_cu *cu)
6010{
6011 CORE_ADDR low, high;
6012 struct die_info *child = die->child;
6013
6014 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6015 {
6016 *lowpc = min (*lowpc, low);
6017 *highpc = max (*highpc, high);
6018 }
6019
6020 /* If the language does not allow nested subprograms (either inside
6021 subprograms or lexical blocks), we're done. */
6022 if (cu->language != language_ada)
6023 return;
6024
6025 /* Check all the children of the given DIE. If it contains nested
6026 subprograms, then check their pc bounds. Likewise, we need to
6027 check lexical blocks as well, as they may also contain subprogram
6028 definitions. */
6029 while (child && child->tag)
6030 {
6031 if (child->tag == DW_TAG_subprogram
6032 || child->tag == DW_TAG_lexical_block)
6033 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6034 child = sibling_die (child);
6035 }
6036}
6037
6038/* Get the low and high pc's represented by the scope DIE, and store
6039 them in *LOWPC and *HIGHPC. If the correct values can't be
6040 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6041
6042static void
6043get_scope_pc_bounds (struct die_info *die,
6044 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6045 struct dwarf2_cu *cu)
6046{
6047 CORE_ADDR best_low = (CORE_ADDR) -1;
6048 CORE_ADDR best_high = (CORE_ADDR) 0;
6049 CORE_ADDR current_low, current_high;
6050
6051 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6052 {
6053 best_low = current_low;
6054 best_high = current_high;
6055 }
6056 else
6057 {
6058 struct die_info *child = die->child;
6059
6060 while (child && child->tag)
6061 {
6062 switch (child->tag) {
6063 case DW_TAG_subprogram:
6064 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6065 break;
6066 case DW_TAG_namespace:
6067 case DW_TAG_module:
6068 /* FIXME: carlton/2004-01-16: Should we do this for
6069 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6070 that current GCC's always emit the DIEs corresponding
6071 to definitions of methods of classes as children of a
6072 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6073 the DIEs giving the declarations, which could be
6074 anywhere). But I don't see any reason why the
6075 standards says that they have to be there. */
6076 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6077
6078 if (current_low != ((CORE_ADDR) -1))
6079 {
6080 best_low = min (best_low, current_low);
6081 best_high = max (best_high, current_high);
6082 }
6083 break;
6084 default:
6085 /* Ignore. */
6086 break;
6087 }
6088
6089 child = sibling_die (child);
6090 }
6091 }
6092
6093 *lowpc = best_low;
6094 *highpc = best_high;
6095}
6096
6097/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6098 in DIE. */
6099static void
6100dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6101 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6102{
6103 struct attribute *attr;
6104
6105 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6106 if (attr)
6107 {
6108 CORE_ADDR high = DW_ADDR (attr);
6109
6110 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6111 if (attr)
6112 {
6113 CORE_ADDR low = DW_ADDR (attr);
6114
6115 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6116 }
6117 }
6118
6119 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6120 if (attr)
6121 {
6122 bfd *obfd = cu->objfile->obfd;
6123
6124 /* The value of the DW_AT_ranges attribute is the offset of the
6125 address range list in the .debug_ranges section. */
6126 unsigned long offset = DW_UNSND (attr);
6127 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6128
6129 /* For some target architectures, but not others, the
6130 read_address function sign-extends the addresses it returns.
6131 To recognize base address selection entries, we need a
6132 mask. */
6133 unsigned int addr_size = cu->header.addr_size;
6134 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6135
6136 /* The base address, to which the next pair is relative. Note
6137 that this 'base' is a DWARF concept: most entries in a range
6138 list are relative, to reduce the number of relocs against the
6139 debugging information. This is separate from this function's
6140 'baseaddr' argument, which GDB uses to relocate debugging
6141 information from a shared library based on the address at
6142 which the library was loaded. */
6143 CORE_ADDR base = cu->base_address;
6144 int base_known = cu->base_known;
6145
6146 gdb_assert (dwarf2_per_objfile->ranges.readin);
6147 if (offset >= dwarf2_per_objfile->ranges.size)
6148 {
6149 complaint (&symfile_complaints,
6150 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6151 offset);
6152 return;
6153 }
6154
6155 for (;;)
6156 {
6157 unsigned int bytes_read;
6158 CORE_ADDR start, end;
6159
6160 start = read_address (obfd, buffer, cu, &bytes_read);
6161 buffer += bytes_read;
6162 end = read_address (obfd, buffer, cu, &bytes_read);
6163 buffer += bytes_read;
6164
6165 /* Did we find the end of the range list? */
6166 if (start == 0 && end == 0)
6167 break;
6168
6169 /* Did we find a base address selection entry? */
6170 else if ((start & base_select_mask) == base_select_mask)
6171 {
6172 base = end;
6173 base_known = 1;
6174 }
6175
6176 /* We found an ordinary address range. */
6177 else
6178 {
6179 if (!base_known)
6180 {
6181 complaint (&symfile_complaints,
6182 _("Invalid .debug_ranges data "
6183 "(no base address)"));
6184 return;
6185 }
6186
6187 if (start > end)
6188 {
6189 /* Inverted range entries are invalid. */
6190 complaint (&symfile_complaints,
6191 _("Invalid .debug_ranges data "
6192 "(inverted range)"));
6193 return;
6194 }
6195
6196 /* Empty range entries have no effect. */
6197 if (start == end)
6198 continue;
6199
6200 record_block_range (block,
6201 baseaddr + base + start,
6202 baseaddr + base + end - 1);
6203 }
6204 }
6205 }
6206}
6207
6208/* Add an aggregate field to the field list. */
6209
6210static void
6211dwarf2_add_field (struct field_info *fip, struct die_info *die,
6212 struct dwarf2_cu *cu)
6213{
6214 struct objfile *objfile = cu->objfile;
6215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6216 struct nextfield *new_field;
6217 struct attribute *attr;
6218 struct field *fp;
6219 char *fieldname = "";
6220
6221 /* Allocate a new field list entry and link it in. */
6222 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6223 make_cleanup (xfree, new_field);
6224 memset (new_field, 0, sizeof (struct nextfield));
6225
6226 if (die->tag == DW_TAG_inheritance)
6227 {
6228 new_field->next = fip->baseclasses;
6229 fip->baseclasses = new_field;
6230 }
6231 else
6232 {
6233 new_field->next = fip->fields;
6234 fip->fields = new_field;
6235 }
6236 fip->nfields++;
6237
6238 /* Handle accessibility and virtuality of field.
6239 The default accessibility for members is public, the default
6240 accessibility for inheritance is private. */
6241 if (die->tag != DW_TAG_inheritance)
6242 new_field->accessibility = DW_ACCESS_public;
6243 else
6244 new_field->accessibility = DW_ACCESS_private;
6245 new_field->virtuality = DW_VIRTUALITY_none;
6246
6247 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6248 if (attr)
6249 new_field->accessibility = DW_UNSND (attr);
6250 if (new_field->accessibility != DW_ACCESS_public)
6251 fip->non_public_fields = 1;
6252 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6253 if (attr)
6254 new_field->virtuality = DW_UNSND (attr);
6255
6256 fp = &new_field->field;
6257
6258 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6259 {
6260 /* Data member other than a C++ static data member. */
6261
6262 /* Get type of field. */
6263 fp->type = die_type (die, cu);
6264
6265 SET_FIELD_BITPOS (*fp, 0);
6266
6267 /* Get bit size of field (zero if none). */
6268 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6269 if (attr)
6270 {
6271 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6272 }
6273 else
6274 {
6275 FIELD_BITSIZE (*fp) = 0;
6276 }
6277
6278 /* Get bit offset of field. */
6279 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6280 if (attr)
6281 {
6282 int byte_offset = 0;
6283
6284 if (attr_form_is_section_offset (attr))
6285 dwarf2_complex_location_expr_complaint ();
6286 else if (attr_form_is_constant (attr))
6287 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6288 else if (attr_form_is_block (attr))
6289 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6290 else
6291 dwarf2_complex_location_expr_complaint ();
6292
6293 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6294 }
6295 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6296 if (attr)
6297 {
6298 if (gdbarch_bits_big_endian (gdbarch))
6299 {
6300 /* For big endian bits, the DW_AT_bit_offset gives the
6301 additional bit offset from the MSB of the containing
6302 anonymous object to the MSB of the field. We don't
6303 have to do anything special since we don't need to
6304 know the size of the anonymous object. */
6305 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6306 }
6307 else
6308 {
6309 /* For little endian bits, compute the bit offset to the
6310 MSB of the anonymous object, subtract off the number of
6311 bits from the MSB of the field to the MSB of the
6312 object, and then subtract off the number of bits of
6313 the field itself. The result is the bit offset of
6314 the LSB of the field. */
6315 int anonymous_size;
6316 int bit_offset = DW_UNSND (attr);
6317
6318 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6319 if (attr)
6320 {
6321 /* The size of the anonymous object containing
6322 the bit field is explicit, so use the
6323 indicated size (in bytes). */
6324 anonymous_size = DW_UNSND (attr);
6325 }
6326 else
6327 {
6328 /* The size of the anonymous object containing
6329 the bit field must be inferred from the type
6330 attribute of the data member containing the
6331 bit field. */
6332 anonymous_size = TYPE_LENGTH (fp->type);
6333 }
6334 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6335 - bit_offset - FIELD_BITSIZE (*fp);
6336 }
6337 }
6338
6339 /* Get name of field. */
6340 fieldname = dwarf2_name (die, cu);
6341 if (fieldname == NULL)
6342 fieldname = "";
6343
6344 /* The name is already allocated along with this objfile, so we don't
6345 need to duplicate it for the type. */
6346 fp->name = fieldname;
6347
6348 /* Change accessibility for artificial fields (e.g. virtual table
6349 pointer or virtual base class pointer) to private. */
6350 if (dwarf2_attr (die, DW_AT_artificial, cu))
6351 {
6352 FIELD_ARTIFICIAL (*fp) = 1;
6353 new_field->accessibility = DW_ACCESS_private;
6354 fip->non_public_fields = 1;
6355 }
6356 }
6357 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6358 {
6359 /* C++ static member. */
6360
6361 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6362 is a declaration, but all versions of G++ as of this writing
6363 (so through at least 3.2.1) incorrectly generate
6364 DW_TAG_variable tags. */
6365
6366 char *physname;
6367
6368 /* Get name of field. */
6369 fieldname = dwarf2_name (die, cu);
6370 if (fieldname == NULL)
6371 return;
6372
6373 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6374 if (attr
6375 /* Only create a symbol if this is an external value.
6376 new_symbol checks this and puts the value in the global symbol
6377 table, which we want. If it is not external, new_symbol
6378 will try to put the value in cu->list_in_scope which is wrong. */
6379 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6380 {
6381 /* A static const member, not much different than an enum as far as
6382 we're concerned, except that we can support more types. */
6383 new_symbol (die, NULL, cu);
6384 }
6385
6386 /* Get physical name. */
6387 physname = (char *) dwarf2_physname (fieldname, die, cu);
6388
6389 /* The name is already allocated along with this objfile, so we don't
6390 need to duplicate it for the type. */
6391 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6392 FIELD_TYPE (*fp) = die_type (die, cu);
6393 FIELD_NAME (*fp) = fieldname;
6394 }
6395 else if (die->tag == DW_TAG_inheritance)
6396 {
6397 /* C++ base class field. */
6398 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6399 if (attr)
6400 {
6401 int byte_offset = 0;
6402
6403 if (attr_form_is_section_offset (attr))
6404 dwarf2_complex_location_expr_complaint ();
6405 else if (attr_form_is_constant (attr))
6406 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6407 else if (attr_form_is_block (attr))
6408 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6409 else
6410 dwarf2_complex_location_expr_complaint ();
6411
6412 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6413 }
6414 FIELD_BITSIZE (*fp) = 0;
6415 FIELD_TYPE (*fp) = die_type (die, cu);
6416 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6417 fip->nbaseclasses++;
6418 }
6419}
6420
6421/* Add a typedef defined in the scope of the FIP's class. */
6422
6423static void
6424dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6425 struct dwarf2_cu *cu)
6426{
6427 struct objfile *objfile = cu->objfile;
6428 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6429 struct typedef_field_list *new_field;
6430 struct attribute *attr;
6431 struct typedef_field *fp;
6432 char *fieldname = "";
6433
6434 /* Allocate a new field list entry and link it in. */
6435 new_field = xzalloc (sizeof (*new_field));
6436 make_cleanup (xfree, new_field);
6437
6438 gdb_assert (die->tag == DW_TAG_typedef);
6439
6440 fp = &new_field->field;
6441
6442 /* Get name of field. */
6443 fp->name = dwarf2_name (die, cu);
6444 if (fp->name == NULL)
6445 return;
6446
6447 fp->type = read_type_die (die, cu);
6448
6449 new_field->next = fip->typedef_field_list;
6450 fip->typedef_field_list = new_field;
6451 fip->typedef_field_list_count++;
6452}
6453
6454/* Create the vector of fields, and attach it to the type. */
6455
6456static void
6457dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6458 struct dwarf2_cu *cu)
6459{
6460 int nfields = fip->nfields;
6461
6462 /* Record the field count, allocate space for the array of fields,
6463 and create blank accessibility bitfields if necessary. */
6464 TYPE_NFIELDS (type) = nfields;
6465 TYPE_FIELDS (type) = (struct field *)
6466 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6467 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6468
6469 if (fip->non_public_fields && cu->language != language_ada)
6470 {
6471 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6472
6473 TYPE_FIELD_PRIVATE_BITS (type) =
6474 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6475 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6476
6477 TYPE_FIELD_PROTECTED_BITS (type) =
6478 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6479 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6480
6481 TYPE_FIELD_IGNORE_BITS (type) =
6482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6483 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6484 }
6485
6486 /* If the type has baseclasses, allocate and clear a bit vector for
6487 TYPE_FIELD_VIRTUAL_BITS. */
6488 if (fip->nbaseclasses && cu->language != language_ada)
6489 {
6490 int num_bytes = B_BYTES (fip->nbaseclasses);
6491 unsigned char *pointer;
6492
6493 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6494 pointer = TYPE_ALLOC (type, num_bytes);
6495 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6496 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6497 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6498 }
6499
6500 /* Copy the saved-up fields into the field vector. Start from the head of
6501 the list, adding to the tail of the field array, so that they end up in
6502 the same order in the array in which they were added to the list. */
6503 while (nfields-- > 0)
6504 {
6505 struct nextfield *fieldp;
6506
6507 if (fip->fields)
6508 {
6509 fieldp = fip->fields;
6510 fip->fields = fieldp->next;
6511 }
6512 else
6513 {
6514 fieldp = fip->baseclasses;
6515 fip->baseclasses = fieldp->next;
6516 }
6517
6518 TYPE_FIELD (type, nfields) = fieldp->field;
6519 switch (fieldp->accessibility)
6520 {
6521 case DW_ACCESS_private:
6522 if (cu->language != language_ada)
6523 SET_TYPE_FIELD_PRIVATE (type, nfields);
6524 break;
6525
6526 case DW_ACCESS_protected:
6527 if (cu->language != language_ada)
6528 SET_TYPE_FIELD_PROTECTED (type, nfields);
6529 break;
6530
6531 case DW_ACCESS_public:
6532 break;
6533
6534 default:
6535 /* Unknown accessibility. Complain and treat it as public. */
6536 {
6537 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6538 fieldp->accessibility);
6539 }
6540 break;
6541 }
6542 if (nfields < fip->nbaseclasses)
6543 {
6544 switch (fieldp->virtuality)
6545 {
6546 case DW_VIRTUALITY_virtual:
6547 case DW_VIRTUALITY_pure_virtual:
6548 if (cu->language == language_ada)
6549 error (_("unexpected virtuality in component of Ada type"));
6550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6551 break;
6552 }
6553 }
6554 }
6555}
6556
6557/* Add a member function to the proper fieldlist. */
6558
6559static void
6560dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6561 struct type *type, struct dwarf2_cu *cu)
6562{
6563 struct objfile *objfile = cu->objfile;
6564 struct attribute *attr;
6565 struct fnfieldlist *flp;
6566 int i;
6567 struct fn_field *fnp;
6568 char *fieldname;
6569 struct nextfnfield *new_fnfield;
6570 struct type *this_type;
6571
6572 if (cu->language == language_ada)
6573 error (_("unexpected member function in Ada type"));
6574
6575 /* Get name of member function. */
6576 fieldname = dwarf2_name (die, cu);
6577 if (fieldname == NULL)
6578 return;
6579
6580 /* Look up member function name in fieldlist. */
6581 for (i = 0; i < fip->nfnfields; i++)
6582 {
6583 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6584 break;
6585 }
6586
6587 /* Create new list element if necessary. */
6588 if (i < fip->nfnfields)
6589 flp = &fip->fnfieldlists[i];
6590 else
6591 {
6592 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6593 {
6594 fip->fnfieldlists = (struct fnfieldlist *)
6595 xrealloc (fip->fnfieldlists,
6596 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6597 * sizeof (struct fnfieldlist));
6598 if (fip->nfnfields == 0)
6599 make_cleanup (free_current_contents, &fip->fnfieldlists);
6600 }
6601 flp = &fip->fnfieldlists[fip->nfnfields];
6602 flp->name = fieldname;
6603 flp->length = 0;
6604 flp->head = NULL;
6605 i = fip->nfnfields++;
6606 }
6607
6608 /* Create a new member function field and chain it to the field list
6609 entry. */
6610 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6611 make_cleanup (xfree, new_fnfield);
6612 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6613 new_fnfield->next = flp->head;
6614 flp->head = new_fnfield;
6615 flp->length++;
6616
6617 /* Fill in the member function field info. */
6618 fnp = &new_fnfield->fnfield;
6619
6620 /* Delay processing of the physname until later. */
6621 if (cu->language == language_cplus || cu->language == language_java)
6622 {
6623 add_to_method_list (type, i, flp->length - 1, fieldname,
6624 die, cu);
6625 }
6626 else
6627 {
6628 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6629 fnp->physname = physname ? physname : "";
6630 }
6631
6632 fnp->type = alloc_type (objfile);
6633 this_type = read_type_die (die, cu);
6634 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6635 {
6636 int nparams = TYPE_NFIELDS (this_type);
6637
6638 /* TYPE is the domain of this method, and THIS_TYPE is the type
6639 of the method itself (TYPE_CODE_METHOD). */
6640 smash_to_method_type (fnp->type, type,
6641 TYPE_TARGET_TYPE (this_type),
6642 TYPE_FIELDS (this_type),
6643 TYPE_NFIELDS (this_type),
6644 TYPE_VARARGS (this_type));
6645
6646 /* Handle static member functions.
6647 Dwarf2 has no clean way to discern C++ static and non-static
6648 member functions. G++ helps GDB by marking the first
6649 parameter for non-static member functions (which is the this
6650 pointer) as artificial. We obtain this information from
6651 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6652 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6653 fnp->voffset = VOFFSET_STATIC;
6654 }
6655 else
6656 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6657 dwarf2_full_name (fieldname, die, cu));
6658
6659 /* Get fcontext from DW_AT_containing_type if present. */
6660 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6661 fnp->fcontext = die_containing_type (die, cu);
6662
6663 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6664 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6665
6666 /* Get accessibility. */
6667 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6668 if (attr)
6669 {
6670 switch (DW_UNSND (attr))
6671 {
6672 case DW_ACCESS_private:
6673 fnp->is_private = 1;
6674 break;
6675 case DW_ACCESS_protected:
6676 fnp->is_protected = 1;
6677 break;
6678 }
6679 }
6680
6681 /* Check for artificial methods. */
6682 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6683 if (attr && DW_UNSND (attr) != 0)
6684 fnp->is_artificial = 1;
6685
6686 /* Get index in virtual function table if it is a virtual member
6687 function. For older versions of GCC, this is an offset in the
6688 appropriate virtual table, as specified by DW_AT_containing_type.
6689 For everyone else, it is an expression to be evaluated relative
6690 to the object address. */
6691
6692 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6693 if (attr)
6694 {
6695 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6696 {
6697 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6698 {
6699 /* Old-style GCC. */
6700 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6701 }
6702 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6703 || (DW_BLOCK (attr)->size > 1
6704 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6705 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6706 {
6707 struct dwarf_block blk;
6708 int offset;
6709
6710 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6711 ? 1 : 2);
6712 blk.size = DW_BLOCK (attr)->size - offset;
6713 blk.data = DW_BLOCK (attr)->data + offset;
6714 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6715 if ((fnp->voffset % cu->header.addr_size) != 0)
6716 dwarf2_complex_location_expr_complaint ();
6717 else
6718 fnp->voffset /= cu->header.addr_size;
6719 fnp->voffset += 2;
6720 }
6721 else
6722 dwarf2_complex_location_expr_complaint ();
6723
6724 if (!fnp->fcontext)
6725 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6726 }
6727 else if (attr_form_is_section_offset (attr))
6728 {
6729 dwarf2_complex_location_expr_complaint ();
6730 }
6731 else
6732 {
6733 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6734 fieldname);
6735 }
6736 }
6737 else
6738 {
6739 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6740 if (attr && DW_UNSND (attr))
6741 {
6742 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6743 complaint (&symfile_complaints,
6744 _("Member function \"%s\" (offset %d) is virtual "
6745 "but the vtable offset is not specified"),
6746 fieldname, die->offset);
6747 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6748 TYPE_CPLUS_DYNAMIC (type) = 1;
6749 }
6750 }
6751}
6752
6753/* Create the vector of member function fields, and attach it to the type. */
6754
6755static void
6756dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6757 struct dwarf2_cu *cu)
6758{
6759 struct fnfieldlist *flp;
6760 int total_length = 0;
6761 int i;
6762
6763 if (cu->language == language_ada)
6764 error (_("unexpected member functions in Ada type"));
6765
6766 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6767 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6768 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6769
6770 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6771 {
6772 struct nextfnfield *nfp = flp->head;
6773 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6774 int k;
6775
6776 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6777 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6778 fn_flp->fn_fields = (struct fn_field *)
6779 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6780 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6781 fn_flp->fn_fields[k] = nfp->fnfield;
6782
6783 total_length += flp->length;
6784 }
6785
6786 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6787 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6788}
6789
6790/* Returns non-zero if NAME is the name of a vtable member in CU's
6791 language, zero otherwise. */
6792static int
6793is_vtable_name (const char *name, struct dwarf2_cu *cu)
6794{
6795 static const char vptr[] = "_vptr";
6796 static const char vtable[] = "vtable";
6797
6798 /* Look for the C++ and Java forms of the vtable. */
6799 if ((cu->language == language_java
6800 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6801 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6802 && is_cplus_marker (name[sizeof (vptr) - 1])))
6803 return 1;
6804
6805 return 0;
6806}
6807
6808/* GCC outputs unnamed structures that are really pointers to member
6809 functions, with the ABI-specified layout. If TYPE describes
6810 such a structure, smash it into a member function type.
6811
6812 GCC shouldn't do this; it should just output pointer to member DIEs.
6813 This is GCC PR debug/28767. */
6814
6815static void
6816quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6817{
6818 struct type *pfn_type, *domain_type, *new_type;
6819
6820 /* Check for a structure with no name and two children. */
6821 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6822 return;
6823
6824 /* Check for __pfn and __delta members. */
6825 if (TYPE_FIELD_NAME (type, 0) == NULL
6826 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6827 || TYPE_FIELD_NAME (type, 1) == NULL
6828 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6829 return;
6830
6831 /* Find the type of the method. */
6832 pfn_type = TYPE_FIELD_TYPE (type, 0);
6833 if (pfn_type == NULL
6834 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6835 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6836 return;
6837
6838 /* Look for the "this" argument. */
6839 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6840 if (TYPE_NFIELDS (pfn_type) == 0
6841 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6842 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6843 return;
6844
6845 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6846 new_type = alloc_type (objfile);
6847 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6848 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6849 TYPE_VARARGS (pfn_type));
6850 smash_to_methodptr_type (type, new_type);
6851}
6852
6853/* Called when we find the DIE that starts a structure or union scope
6854 (definition) to create a type for the structure or union. Fill in
6855 the type's name and general properties; the members will not be
6856 processed until process_structure_type.
6857
6858 NOTE: we need to call these functions regardless of whether or not the
6859 DIE has a DW_AT_name attribute, since it might be an anonymous
6860 structure or union. This gets the type entered into our set of
6861 user defined types.
6862
6863 However, if the structure is incomplete (an opaque struct/union)
6864 then suppress creating a symbol table entry for it since gdb only
6865 wants to find the one with the complete definition. Note that if
6866 it is complete, we just call new_symbol, which does it's own
6867 checking about whether the struct/union is anonymous or not (and
6868 suppresses creating a symbol table entry itself). */
6869
6870static struct type *
6871read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6872{
6873 struct objfile *objfile = cu->objfile;
6874 struct type *type;
6875 struct attribute *attr;
6876 char *name;
6877
6878 /* If the definition of this type lives in .debug_types, read that type.
6879 Don't follow DW_AT_specification though, that will take us back up
6880 the chain and we want to go down. */
6881 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6882 if (attr)
6883 {
6884 struct dwarf2_cu *type_cu = cu;
6885 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6886
6887 /* We could just recurse on read_structure_type, but we need to call
6888 get_die_type to ensure only one type for this DIE is created.
6889 This is important, for example, because for c++ classes we need
6890 TYPE_NAME set which is only done by new_symbol. Blech. */
6891 type = read_type_die (type_die, type_cu);
6892
6893 /* TYPE_CU may not be the same as CU.
6894 Ensure TYPE is recorded in CU's type_hash table. */
6895 return set_die_type (die, type, cu);
6896 }
6897
6898 type = alloc_type (objfile);
6899 INIT_CPLUS_SPECIFIC (type);
6900
6901 name = dwarf2_name (die, cu);
6902 if (name != NULL)
6903 {
6904 if (cu->language == language_cplus
6905 || cu->language == language_java)
6906 {
6907 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6908
6909 /* dwarf2_full_name might have already finished building the DIE's
6910 type. If so, there is no need to continue. */
6911 if (get_die_type (die, cu) != NULL)
6912 return get_die_type (die, cu);
6913
6914 TYPE_TAG_NAME (type) = full_name;
6915 if (die->tag == DW_TAG_structure_type
6916 || die->tag == DW_TAG_class_type)
6917 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6918 }
6919 else
6920 {
6921 /* The name is already allocated along with this objfile, so
6922 we don't need to duplicate it for the type. */
6923 TYPE_TAG_NAME (type) = (char *) name;
6924 if (die->tag == DW_TAG_class_type)
6925 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6926 }
6927 }
6928
6929 if (die->tag == DW_TAG_structure_type)
6930 {
6931 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6932 }
6933 else if (die->tag == DW_TAG_union_type)
6934 {
6935 TYPE_CODE (type) = TYPE_CODE_UNION;
6936 }
6937 else
6938 {
6939 TYPE_CODE (type) = TYPE_CODE_CLASS;
6940 }
6941
6942 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6943 TYPE_DECLARED_CLASS (type) = 1;
6944
6945 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6946 if (attr)
6947 {
6948 TYPE_LENGTH (type) = DW_UNSND (attr);
6949 }
6950 else
6951 {
6952 TYPE_LENGTH (type) = 0;
6953 }
6954
6955 TYPE_STUB_SUPPORTED (type) = 1;
6956 if (die_is_declaration (die, cu))
6957 TYPE_STUB (type) = 1;
6958 else if (attr == NULL && die->child == NULL
6959 && producer_is_realview (cu->producer))
6960 /* RealView does not output the required DW_AT_declaration
6961 on incomplete types. */
6962 TYPE_STUB (type) = 1;
6963
6964 /* We need to add the type field to the die immediately so we don't
6965 infinitely recurse when dealing with pointers to the structure
6966 type within the structure itself. */
6967 set_die_type (die, type, cu);
6968
6969 /* set_die_type should be already done. */
6970 set_descriptive_type (type, die, cu);
6971
6972 return type;
6973}
6974
6975/* Finish creating a structure or union type, including filling in
6976 its members and creating a symbol for it. */
6977
6978static void
6979process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6980{
6981 struct objfile *objfile = cu->objfile;
6982 struct die_info *child_die = die->child;
6983 struct type *type;
6984
6985 type = get_die_type (die, cu);
6986 if (type == NULL)
6987 type = read_structure_type (die, cu);
6988
6989 if (die->child != NULL && ! die_is_declaration (die, cu))
6990 {
6991 struct field_info fi;
6992 struct die_info *child_die;
6993 VEC (symbolp) *template_args = NULL;
6994 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6995
6996 memset (&fi, 0, sizeof (struct field_info));
6997
6998 child_die = die->child;
6999
7000 while (child_die && child_die->tag)
7001 {
7002 if (child_die->tag == DW_TAG_member
7003 || child_die->tag == DW_TAG_variable)
7004 {
7005 /* NOTE: carlton/2002-11-05: A C++ static data member
7006 should be a DW_TAG_member that is a declaration, but
7007 all versions of G++ as of this writing (so through at
7008 least 3.2.1) incorrectly generate DW_TAG_variable
7009 tags for them instead. */
7010 dwarf2_add_field (&fi, child_die, cu);
7011 }
7012 else if (child_die->tag == DW_TAG_subprogram)
7013 {
7014 /* C++ member function. */
7015 dwarf2_add_member_fn (&fi, child_die, type, cu);
7016 }
7017 else if (child_die->tag == DW_TAG_inheritance)
7018 {
7019 /* C++ base class field. */
7020 dwarf2_add_field (&fi, child_die, cu);
7021 }
7022 else if (child_die->tag == DW_TAG_typedef)
7023 dwarf2_add_typedef (&fi, child_die, cu);
7024 else if (child_die->tag == DW_TAG_template_type_param
7025 || child_die->tag == DW_TAG_template_value_param)
7026 {
7027 struct symbol *arg = new_symbol (child_die, NULL, cu);
7028
7029 if (arg != NULL)
7030 VEC_safe_push (symbolp, template_args, arg);
7031 }
7032
7033 child_die = sibling_die (child_die);
7034 }
7035
7036 /* Attach template arguments to type. */
7037 if (! VEC_empty (symbolp, template_args))
7038 {
7039 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7040 TYPE_N_TEMPLATE_ARGUMENTS (type)
7041 = VEC_length (symbolp, template_args);
7042 TYPE_TEMPLATE_ARGUMENTS (type)
7043 = obstack_alloc (&objfile->objfile_obstack,
7044 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7045 * sizeof (struct symbol *)));
7046 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7047 VEC_address (symbolp, template_args),
7048 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7049 * sizeof (struct symbol *)));
7050 VEC_free (symbolp, template_args);
7051 }
7052
7053 /* Attach fields and member functions to the type. */
7054 if (fi.nfields)
7055 dwarf2_attach_fields_to_type (&fi, type, cu);
7056 if (fi.nfnfields)
7057 {
7058 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7059
7060 /* Get the type which refers to the base class (possibly this
7061 class itself) which contains the vtable pointer for the current
7062 class from the DW_AT_containing_type attribute. This use of
7063 DW_AT_containing_type is a GNU extension. */
7064
7065 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7066 {
7067 struct type *t = die_containing_type (die, cu);
7068
7069 TYPE_VPTR_BASETYPE (type) = t;
7070 if (type == t)
7071 {
7072 int i;
7073
7074 /* Our own class provides vtbl ptr. */
7075 for (i = TYPE_NFIELDS (t) - 1;
7076 i >= TYPE_N_BASECLASSES (t);
7077 --i)
7078 {
7079 char *fieldname = TYPE_FIELD_NAME (t, i);
7080
7081 if (is_vtable_name (fieldname, cu))
7082 {
7083 TYPE_VPTR_FIELDNO (type) = i;
7084 break;
7085 }
7086 }
7087
7088 /* Complain if virtual function table field not found. */
7089 if (i < TYPE_N_BASECLASSES (t))
7090 complaint (&symfile_complaints,
7091 _("virtual function table pointer "
7092 "not found when defining class '%s'"),
7093 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7094 "");
7095 }
7096 else
7097 {
7098 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7099 }
7100 }
7101 else if (cu->producer
7102 && strncmp (cu->producer,
7103 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7104 {
7105 /* The IBM XLC compiler does not provide direct indication
7106 of the containing type, but the vtable pointer is
7107 always named __vfp. */
7108
7109 int i;
7110
7111 for (i = TYPE_NFIELDS (type) - 1;
7112 i >= TYPE_N_BASECLASSES (type);
7113 --i)
7114 {
7115 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7116 {
7117 TYPE_VPTR_FIELDNO (type) = i;
7118 TYPE_VPTR_BASETYPE (type) = type;
7119 break;
7120 }
7121 }
7122 }
7123 }
7124
7125 /* Copy fi.typedef_field_list linked list elements content into the
7126 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7127 if (fi.typedef_field_list)
7128 {
7129 int i = fi.typedef_field_list_count;
7130
7131 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7132 TYPE_TYPEDEF_FIELD_ARRAY (type)
7133 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7134 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7135
7136 /* Reverse the list order to keep the debug info elements order. */
7137 while (--i >= 0)
7138 {
7139 struct typedef_field *dest, *src;
7140
7141 dest = &TYPE_TYPEDEF_FIELD (type, i);
7142 src = &fi.typedef_field_list->field;
7143 fi.typedef_field_list = fi.typedef_field_list->next;
7144 *dest = *src;
7145 }
7146 }
7147
7148 do_cleanups (back_to);
7149 }
7150
7151 quirk_gcc_member_function_pointer (type, cu->objfile);
7152
7153 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7154 snapshots) has been known to create a die giving a declaration
7155 for a class that has, as a child, a die giving a definition for a
7156 nested class. So we have to process our children even if the
7157 current die is a declaration. Normally, of course, a declaration
7158 won't have any children at all. */
7159
7160 while (child_die != NULL && child_die->tag)
7161 {
7162 if (child_die->tag == DW_TAG_member
7163 || child_die->tag == DW_TAG_variable
7164 || child_die->tag == DW_TAG_inheritance
7165 || child_die->tag == DW_TAG_template_value_param
7166 || child_die->tag == DW_TAG_template_type_param)
7167 {
7168 /* Do nothing. */
7169 }
7170 else
7171 process_die (child_die, cu);
7172
7173 child_die = sibling_die (child_die);
7174 }
7175
7176 /* Do not consider external references. According to the DWARF standard,
7177 these DIEs are identified by the fact that they have no byte_size
7178 attribute, and a declaration attribute. */
7179 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7180 || !die_is_declaration (die, cu))
7181 new_symbol (die, type, cu);
7182}
7183
7184/* Given a DW_AT_enumeration_type die, set its type. We do not
7185 complete the type's fields yet, or create any symbols. */
7186
7187static struct type *
7188read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7189{
7190 struct objfile *objfile = cu->objfile;
7191 struct type *type;
7192 struct attribute *attr;
7193 const char *name;
7194
7195 /* If the definition of this type lives in .debug_types, read that type.
7196 Don't follow DW_AT_specification though, that will take us back up
7197 the chain and we want to go down. */
7198 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7199 if (attr)
7200 {
7201 struct dwarf2_cu *type_cu = cu;
7202 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7203
7204 type = read_type_die (type_die, type_cu);
7205
7206 /* TYPE_CU may not be the same as CU.
7207 Ensure TYPE is recorded in CU's type_hash table. */
7208 return set_die_type (die, type, cu);
7209 }
7210
7211 type = alloc_type (objfile);
7212
7213 TYPE_CODE (type) = TYPE_CODE_ENUM;
7214 name = dwarf2_full_name (NULL, die, cu);
7215 if (name != NULL)
7216 TYPE_TAG_NAME (type) = (char *) name;
7217
7218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7219 if (attr)
7220 {
7221 TYPE_LENGTH (type) = DW_UNSND (attr);
7222 }
7223 else
7224 {
7225 TYPE_LENGTH (type) = 0;
7226 }
7227
7228 /* The enumeration DIE can be incomplete. In Ada, any type can be
7229 declared as private in the package spec, and then defined only
7230 inside the package body. Such types are known as Taft Amendment
7231 Types. When another package uses such a type, an incomplete DIE
7232 may be generated by the compiler. */
7233 if (die_is_declaration (die, cu))
7234 TYPE_STUB (type) = 1;
7235
7236 return set_die_type (die, type, cu);
7237}
7238
7239/* Given a pointer to a die which begins an enumeration, process all
7240 the dies that define the members of the enumeration, and create the
7241 symbol for the enumeration type.
7242
7243 NOTE: We reverse the order of the element list. */
7244
7245static void
7246process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7247{
7248 struct type *this_type;
7249
7250 this_type = get_die_type (die, cu);
7251 if (this_type == NULL)
7252 this_type = read_enumeration_type (die, cu);
7253
7254 if (die->child != NULL)
7255 {
7256 struct die_info *child_die;
7257 struct symbol *sym;
7258 struct field *fields = NULL;
7259 int num_fields = 0;
7260 int unsigned_enum = 1;
7261 char *name;
7262
7263 child_die = die->child;
7264 while (child_die && child_die->tag)
7265 {
7266 if (child_die->tag != DW_TAG_enumerator)
7267 {
7268 process_die (child_die, cu);
7269 }
7270 else
7271 {
7272 name = dwarf2_name (child_die, cu);
7273 if (name)
7274 {
7275 sym = new_symbol (child_die, this_type, cu);
7276 if (SYMBOL_VALUE (sym) < 0)
7277 unsigned_enum = 0;
7278
7279 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7280 {
7281 fields = (struct field *)
7282 xrealloc (fields,
7283 (num_fields + DW_FIELD_ALLOC_CHUNK)
7284 * sizeof (struct field));
7285 }
7286
7287 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7288 FIELD_TYPE (fields[num_fields]) = NULL;
7289 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7290 FIELD_BITSIZE (fields[num_fields]) = 0;
7291
7292 num_fields++;
7293 }
7294 }
7295
7296 child_die = sibling_die (child_die);
7297 }
7298
7299 if (num_fields)
7300 {
7301 TYPE_NFIELDS (this_type) = num_fields;
7302 TYPE_FIELDS (this_type) = (struct field *)
7303 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7304 memcpy (TYPE_FIELDS (this_type), fields,
7305 sizeof (struct field) * num_fields);
7306 xfree (fields);
7307 }
7308 if (unsigned_enum)
7309 TYPE_UNSIGNED (this_type) = 1;
7310 }
7311
7312 new_symbol (die, this_type, cu);
7313}
7314
7315/* Extract all information from a DW_TAG_array_type DIE and put it in
7316 the DIE's type field. For now, this only handles one dimensional
7317 arrays. */
7318
7319static struct type *
7320read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7321{
7322 struct objfile *objfile = cu->objfile;
7323 struct die_info *child_die;
7324 struct type *type;
7325 struct type *element_type, *range_type, *index_type;
7326 struct type **range_types = NULL;
7327 struct attribute *attr;
7328 int ndim = 0;
7329 struct cleanup *back_to;
7330 char *name;
7331
7332 element_type = die_type (die, cu);
7333
7334 /* The die_type call above may have already set the type for this DIE. */
7335 type = get_die_type (die, cu);
7336 if (type)
7337 return type;
7338
7339 /* Irix 6.2 native cc creates array types without children for
7340 arrays with unspecified length. */
7341 if (die->child == NULL)
7342 {
7343 index_type = objfile_type (objfile)->builtin_int;
7344 range_type = create_range_type (NULL, index_type, 0, -1);
7345 type = create_array_type (NULL, element_type, range_type);
7346 return set_die_type (die, type, cu);
7347 }
7348
7349 back_to = make_cleanup (null_cleanup, NULL);
7350 child_die = die->child;
7351 while (child_die && child_die->tag)
7352 {
7353 if (child_die->tag == DW_TAG_subrange_type)
7354 {
7355 struct type *child_type = read_type_die (child_die, cu);
7356
7357 if (child_type != NULL)
7358 {
7359 /* The range type was succesfully read. Save it for the
7360 array type creation. */
7361 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7362 {
7363 range_types = (struct type **)
7364 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7365 * sizeof (struct type *));
7366 if (ndim == 0)
7367 make_cleanup (free_current_contents, &range_types);
7368 }
7369 range_types[ndim++] = child_type;
7370 }
7371 }
7372 child_die = sibling_die (child_die);
7373 }
7374
7375 /* Dwarf2 dimensions are output from left to right, create the
7376 necessary array types in backwards order. */
7377
7378 type = element_type;
7379
7380 if (read_array_order (die, cu) == DW_ORD_col_major)
7381 {
7382 int i = 0;
7383
7384 while (i < ndim)
7385 type = create_array_type (NULL, type, range_types[i++]);
7386 }
7387 else
7388 {
7389 while (ndim-- > 0)
7390 type = create_array_type (NULL, type, range_types[ndim]);
7391 }
7392
7393 /* Understand Dwarf2 support for vector types (like they occur on
7394 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7395 array type. This is not part of the Dwarf2/3 standard yet, but a
7396 custom vendor extension. The main difference between a regular
7397 array and the vector variant is that vectors are passed by value
7398 to functions. */
7399 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7400 if (attr)
7401 make_vector_type (type);
7402
7403 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7404 implementation may choose to implement triple vectors using this
7405 attribute. */
7406 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7407 if (attr)
7408 {
7409 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7410 TYPE_LENGTH (type) = DW_UNSND (attr);
7411 else
7412 complaint (&symfile_complaints,
7413 _("DW_AT_byte_size for array type smaller "
7414 "than the total size of elements"));
7415 }
7416
7417 name = dwarf2_name (die, cu);
7418 if (name)
7419 TYPE_NAME (type) = name;
7420
7421 /* Install the type in the die. */
7422 set_die_type (die, type, cu);
7423
7424 /* set_die_type should be already done. */
7425 set_descriptive_type (type, die, cu);
7426
7427 do_cleanups (back_to);
7428
7429 return type;
7430}
7431
7432static enum dwarf_array_dim_ordering
7433read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7434{
7435 struct attribute *attr;
7436
7437 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7438
7439 if (attr) return DW_SND (attr);
7440
7441 /* GNU F77 is a special case, as at 08/2004 array type info is the
7442 opposite order to the dwarf2 specification, but data is still
7443 laid out as per normal fortran.
7444
7445 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7446 version checking. */
7447
7448 if (cu->language == language_fortran
7449 && cu->producer && strstr (cu->producer, "GNU F77"))
7450 {
7451 return DW_ORD_row_major;
7452 }
7453
7454 switch (cu->language_defn->la_array_ordering)
7455 {
7456 case array_column_major:
7457 return DW_ORD_col_major;
7458 case array_row_major:
7459 default:
7460 return DW_ORD_row_major;
7461 };
7462}
7463
7464/* Extract all information from a DW_TAG_set_type DIE and put it in
7465 the DIE's type field. */
7466
7467static struct type *
7468read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7469{
7470 struct type *domain_type, *set_type;
7471 struct attribute *attr;
7472
7473 domain_type = die_type (die, cu);
7474
7475 /* The die_type call above may have already set the type for this DIE. */
7476 set_type = get_die_type (die, cu);
7477 if (set_type)
7478 return set_type;
7479
7480 set_type = create_set_type (NULL, domain_type);
7481
7482 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7483 if (attr)
7484 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7485
7486 return set_die_type (die, set_type, cu);
7487}
7488
7489/* First cut: install each common block member as a global variable. */
7490
7491static void
7492read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7493{
7494 struct die_info *child_die;
7495 struct attribute *attr;
7496 struct symbol *sym;
7497 CORE_ADDR base = (CORE_ADDR) 0;
7498
7499 attr = dwarf2_attr (die, DW_AT_location, cu);
7500 if (attr)
7501 {
7502 /* Support the .debug_loc offsets. */
7503 if (attr_form_is_block (attr))
7504 {
7505 base = decode_locdesc (DW_BLOCK (attr), cu);
7506 }
7507 else if (attr_form_is_section_offset (attr))
7508 {
7509 dwarf2_complex_location_expr_complaint ();
7510 }
7511 else
7512 {
7513 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7514 "common block member");
7515 }
7516 }
7517 if (die->child != NULL)
7518 {
7519 child_die = die->child;
7520 while (child_die && child_die->tag)
7521 {
7522 sym = new_symbol (child_die, NULL, cu);
7523 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7524 if (sym != NULL && attr != NULL)
7525 {
7526 CORE_ADDR byte_offset = 0;
7527
7528 if (attr_form_is_section_offset (attr))
7529 dwarf2_complex_location_expr_complaint ();
7530 else if (attr_form_is_constant (attr))
7531 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7532 else if (attr_form_is_block (attr))
7533 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7534 else
7535 dwarf2_complex_location_expr_complaint ();
7536
7537 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7538 add_symbol_to_list (sym, &global_symbols);
7539 }
7540 child_die = sibling_die (child_die);
7541 }
7542 }
7543}
7544
7545/* Create a type for a C++ namespace. */
7546
7547static struct type *
7548read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7549{
7550 struct objfile *objfile = cu->objfile;
7551 const char *previous_prefix, *name;
7552 int is_anonymous;
7553 struct type *type;
7554
7555 /* For extensions, reuse the type of the original namespace. */
7556 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7557 {
7558 struct die_info *ext_die;
7559 struct dwarf2_cu *ext_cu = cu;
7560
7561 ext_die = dwarf2_extension (die, &ext_cu);
7562 type = read_type_die (ext_die, ext_cu);
7563
7564 /* EXT_CU may not be the same as CU.
7565 Ensure TYPE is recorded in CU's type_hash table. */
7566 return set_die_type (die, type, cu);
7567 }
7568
7569 name = namespace_name (die, &is_anonymous, cu);
7570
7571 /* Now build the name of the current namespace. */
7572
7573 previous_prefix = determine_prefix (die, cu);
7574 if (previous_prefix[0] != '\0')
7575 name = typename_concat (&objfile->objfile_obstack,
7576 previous_prefix, name, 0, cu);
7577
7578 /* Create the type. */
7579 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7580 objfile);
7581 TYPE_NAME (type) = (char *) name;
7582 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7583
7584 return set_die_type (die, type, cu);
7585}
7586
7587/* Read a C++ namespace. */
7588
7589static void
7590read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7591{
7592 struct objfile *objfile = cu->objfile;
7593 const char *name;
7594 int is_anonymous;
7595
7596 /* Add a symbol associated to this if we haven't seen the namespace
7597 before. Also, add a using directive if it's an anonymous
7598 namespace. */
7599
7600 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7601 {
7602 struct type *type;
7603
7604 type = read_type_die (die, cu);
7605 new_symbol (die, type, cu);
7606
7607 name = namespace_name (die, &is_anonymous, cu);
7608 if (is_anonymous)
7609 {
7610 const char *previous_prefix = determine_prefix (die, cu);
7611
7612 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7613 NULL, &objfile->objfile_obstack);
7614 }
7615 }
7616
7617 if (die->child != NULL)
7618 {
7619 struct die_info *child_die = die->child;
7620
7621 while (child_die && child_die->tag)
7622 {
7623 process_die (child_die, cu);
7624 child_die = sibling_die (child_die);
7625 }
7626 }
7627}
7628
7629/* Read a Fortran module as type. This DIE can be only a declaration used for
7630 imported module. Still we need that type as local Fortran "use ... only"
7631 declaration imports depend on the created type in determine_prefix. */
7632
7633static struct type *
7634read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7635{
7636 struct objfile *objfile = cu->objfile;
7637 char *module_name;
7638 struct type *type;
7639
7640 module_name = dwarf2_name (die, cu);
7641 if (!module_name)
7642 complaint (&symfile_complaints,
7643 _("DW_TAG_module has no name, offset 0x%x"),
7644 die->offset);
7645 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7646
7647 /* determine_prefix uses TYPE_TAG_NAME. */
7648 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7649
7650 return set_die_type (die, type, cu);
7651}
7652
7653/* Read a Fortran module. */
7654
7655static void
7656read_module (struct die_info *die, struct dwarf2_cu *cu)
7657{
7658 struct die_info *child_die = die->child;
7659
7660 while (child_die && child_die->tag)
7661 {
7662 process_die (child_die, cu);
7663 child_die = sibling_die (child_die);
7664 }
7665}
7666
7667/* Return the name of the namespace represented by DIE. Set
7668 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7669 namespace. */
7670
7671static const char *
7672namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7673{
7674 struct die_info *current_die;
7675 const char *name = NULL;
7676
7677 /* Loop through the extensions until we find a name. */
7678
7679 for (current_die = die;
7680 current_die != NULL;
7681 current_die = dwarf2_extension (die, &cu))
7682 {
7683 name = dwarf2_name (current_die, cu);
7684 if (name != NULL)
7685 break;
7686 }
7687
7688 /* Is it an anonymous namespace? */
7689
7690 *is_anonymous = (name == NULL);
7691 if (*is_anonymous)
7692 name = "(anonymous namespace)";
7693
7694 return name;
7695}
7696
7697/* Extract all information from a DW_TAG_pointer_type DIE and add to
7698 the user defined type vector. */
7699
7700static struct type *
7701read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7702{
7703 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7704 struct comp_unit_head *cu_header = &cu->header;
7705 struct type *type;
7706 struct attribute *attr_byte_size;
7707 struct attribute *attr_address_class;
7708 int byte_size, addr_class;
7709 struct type *target_type;
7710
7711 target_type = die_type (die, cu);
7712
7713 /* The die_type call above may have already set the type for this DIE. */
7714 type = get_die_type (die, cu);
7715 if (type)
7716 return type;
7717
7718 type = lookup_pointer_type (target_type);
7719
7720 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7721 if (attr_byte_size)
7722 byte_size = DW_UNSND (attr_byte_size);
7723 else
7724 byte_size = cu_header->addr_size;
7725
7726 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7727 if (attr_address_class)
7728 addr_class = DW_UNSND (attr_address_class);
7729 else
7730 addr_class = DW_ADDR_none;
7731
7732 /* If the pointer size or address class is different than the
7733 default, create a type variant marked as such and set the
7734 length accordingly. */
7735 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7736 {
7737 if (gdbarch_address_class_type_flags_p (gdbarch))
7738 {
7739 int type_flags;
7740
7741 type_flags = gdbarch_address_class_type_flags
7742 (gdbarch, byte_size, addr_class);
7743 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7744 == 0);
7745 type = make_type_with_address_space (type, type_flags);
7746 }
7747 else if (TYPE_LENGTH (type) != byte_size)
7748 {
7749 complaint (&symfile_complaints,
7750 _("invalid pointer size %d"), byte_size);
7751 }
7752 else
7753 {
7754 /* Should we also complain about unhandled address classes? */
7755 }
7756 }
7757
7758 TYPE_LENGTH (type) = byte_size;
7759 return set_die_type (die, type, cu);
7760}
7761
7762/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7763 the user defined type vector. */
7764
7765static struct type *
7766read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7767{
7768 struct type *type;
7769 struct type *to_type;
7770 struct type *domain;
7771
7772 to_type = die_type (die, cu);
7773 domain = die_containing_type (die, cu);
7774
7775 /* The calls above may have already set the type for this DIE. */
7776 type = get_die_type (die, cu);
7777 if (type)
7778 return type;
7779
7780 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7781 type = lookup_methodptr_type (to_type);
7782 else
7783 type = lookup_memberptr_type (to_type, domain);
7784
7785 return set_die_type (die, type, cu);
7786}
7787
7788/* Extract all information from a DW_TAG_reference_type DIE and add to
7789 the user defined type vector. */
7790
7791static struct type *
7792read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7793{
7794 struct comp_unit_head *cu_header = &cu->header;
7795 struct type *type, *target_type;
7796 struct attribute *attr;
7797
7798 target_type = die_type (die, cu);
7799
7800 /* The die_type call above may have already set the type for this DIE. */
7801 type = get_die_type (die, cu);
7802 if (type)
7803 return type;
7804
7805 type = lookup_reference_type (target_type);
7806 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7807 if (attr)
7808 {
7809 TYPE_LENGTH (type) = DW_UNSND (attr);
7810 }
7811 else
7812 {
7813 TYPE_LENGTH (type) = cu_header->addr_size;
7814 }
7815 return set_die_type (die, type, cu);
7816}
7817
7818static struct type *
7819read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7820{
7821 struct type *base_type, *cv_type;
7822
7823 base_type = die_type (die, cu);
7824
7825 /* The die_type call above may have already set the type for this DIE. */
7826 cv_type = get_die_type (die, cu);
7827 if (cv_type)
7828 return cv_type;
7829
7830 /* In case the const qualifier is applied to an array type, the element type
7831 is so qualified, not the array type (section 6.7.3 of C99). */
7832 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7833 {
7834 struct type *el_type, *inner_array;
7835
7836 base_type = copy_type (base_type);
7837 inner_array = base_type;
7838
7839 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7840 {
7841 TYPE_TARGET_TYPE (inner_array) =
7842 copy_type (TYPE_TARGET_TYPE (inner_array));
7843 inner_array = TYPE_TARGET_TYPE (inner_array);
7844 }
7845
7846 el_type = TYPE_TARGET_TYPE (inner_array);
7847 TYPE_TARGET_TYPE (inner_array) =
7848 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7849
7850 return set_die_type (die, base_type, cu);
7851 }
7852
7853 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7854 return set_die_type (die, cv_type, cu);
7855}
7856
7857static struct type *
7858read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7859{
7860 struct type *base_type, *cv_type;
7861
7862 base_type = die_type (die, cu);
7863
7864 /* The die_type call above may have already set the type for this DIE. */
7865 cv_type = get_die_type (die, cu);
7866 if (cv_type)
7867 return cv_type;
7868
7869 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7870 return set_die_type (die, cv_type, cu);
7871}
7872
7873/* Extract all information from a DW_TAG_string_type DIE and add to
7874 the user defined type vector. It isn't really a user defined type,
7875 but it behaves like one, with other DIE's using an AT_user_def_type
7876 attribute to reference it. */
7877
7878static struct type *
7879read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7880{
7881 struct objfile *objfile = cu->objfile;
7882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7883 struct type *type, *range_type, *index_type, *char_type;
7884 struct attribute *attr;
7885 unsigned int length;
7886
7887 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7888 if (attr)
7889 {
7890 length = DW_UNSND (attr);
7891 }
7892 else
7893 {
7894 /* Check for the DW_AT_byte_size attribute. */
7895 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7896 if (attr)
7897 {
7898 length = DW_UNSND (attr);
7899 }
7900 else
7901 {
7902 length = 1;
7903 }
7904 }
7905
7906 index_type = objfile_type (objfile)->builtin_int;
7907 range_type = create_range_type (NULL, index_type, 1, length);
7908 char_type = language_string_char_type (cu->language_defn, gdbarch);
7909 type = create_string_type (NULL, char_type, range_type);
7910
7911 return set_die_type (die, type, cu);
7912}
7913
7914/* Handle DIES due to C code like:
7915
7916 struct foo
7917 {
7918 int (*funcp)(int a, long l);
7919 int b;
7920 };
7921
7922 ('funcp' generates a DW_TAG_subroutine_type DIE). */
7923
7924static struct type *
7925read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7926{
7927 struct type *type; /* Type that this function returns. */
7928 struct type *ftype; /* Function that returns above type. */
7929 struct attribute *attr;
7930
7931 type = die_type (die, cu);
7932
7933 /* The die_type call above may have already set the type for this DIE. */
7934 ftype = get_die_type (die, cu);
7935 if (ftype)
7936 return ftype;
7937
7938 ftype = lookup_function_type (type);
7939
7940 /* All functions in C++, Pascal and Java have prototypes. */
7941 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7942 if ((attr && (DW_UNSND (attr) != 0))
7943 || cu->language == language_cplus
7944 || cu->language == language_java
7945 || cu->language == language_pascal)
7946 TYPE_PROTOTYPED (ftype) = 1;
7947 else if (producer_is_realview (cu->producer))
7948 /* RealView does not emit DW_AT_prototyped. We can not
7949 distinguish prototyped and unprototyped functions; default to
7950 prototyped, since that is more common in modern code (and
7951 RealView warns about unprototyped functions). */
7952 TYPE_PROTOTYPED (ftype) = 1;
7953
7954 /* Store the calling convention in the type if it's available in
7955 the subroutine die. Otherwise set the calling convention to
7956 the default value DW_CC_normal. */
7957 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7958 if (attr)
7959 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
7960 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
7961 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
7962 else
7963 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
7964
7965 /* We need to add the subroutine type to the die immediately so
7966 we don't infinitely recurse when dealing with parameters
7967 declared as the same subroutine type. */
7968 set_die_type (die, ftype, cu);
7969
7970 if (die->child != NULL)
7971 {
7972 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7973 struct die_info *child_die;
7974 int nparams, iparams;
7975
7976 /* Count the number of parameters.
7977 FIXME: GDB currently ignores vararg functions, but knows about
7978 vararg member functions. */
7979 nparams = 0;
7980 child_die = die->child;
7981 while (child_die && child_die->tag)
7982 {
7983 if (child_die->tag == DW_TAG_formal_parameter)
7984 nparams++;
7985 else if (child_die->tag == DW_TAG_unspecified_parameters)
7986 TYPE_VARARGS (ftype) = 1;
7987 child_die = sibling_die (child_die);
7988 }
7989
7990 /* Allocate storage for parameters and fill them in. */
7991 TYPE_NFIELDS (ftype) = nparams;
7992 TYPE_FIELDS (ftype) = (struct field *)
7993 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7994
7995 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7996 even if we error out during the parameters reading below. */
7997 for (iparams = 0; iparams < nparams; iparams++)
7998 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7999
8000 iparams = 0;
8001 child_die = die->child;
8002 while (child_die && child_die->tag)
8003 {
8004 if (child_die->tag == DW_TAG_formal_parameter)
8005 {
8006 struct type *arg_type;
8007
8008 /* DWARF version 2 has no clean way to discern C++
8009 static and non-static member functions. G++ helps
8010 GDB by marking the first parameter for non-static
8011 member functions (which is the this pointer) as
8012 artificial. We pass this information to
8013 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8014
8015 DWARF version 3 added DW_AT_object_pointer, which GCC
8016 4.5 does not yet generate. */
8017 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8018 if (attr)
8019 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8020 else
8021 {
8022 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8023
8024 /* GCC/43521: In java, the formal parameter
8025 "this" is sometimes not marked with DW_AT_artificial. */
8026 if (cu->language == language_java)
8027 {
8028 const char *name = dwarf2_name (child_die, cu);
8029
8030 if (name && !strcmp (name, "this"))
8031 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8032 }
8033 }
8034 arg_type = die_type (child_die, cu);
8035
8036 /* RealView does not mark THIS as const, which the testsuite
8037 expects. GCC marks THIS as const in method definitions,
8038 but not in the class specifications (GCC PR 43053). */
8039 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8040 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8041 {
8042 int is_this = 0;
8043 struct dwarf2_cu *arg_cu = cu;
8044 const char *name = dwarf2_name (child_die, cu);
8045
8046 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8047 if (attr)
8048 {
8049 /* If the compiler emits this, use it. */
8050 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8051 is_this = 1;
8052 }
8053 else if (name && strcmp (name, "this") == 0)
8054 /* Function definitions will have the argument names. */
8055 is_this = 1;
8056 else if (name == NULL && iparams == 0)
8057 /* Declarations may not have the names, so like
8058 elsewhere in GDB, assume an artificial first
8059 argument is "this". */
8060 is_this = 1;
8061
8062 if (is_this)
8063 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8064 arg_type, 0);
8065 }
8066
8067 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8068 iparams++;
8069 }
8070 child_die = sibling_die (child_die);
8071 }
8072 }
8073
8074 return ftype;
8075}
8076
8077static struct type *
8078read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8079{
8080 struct objfile *objfile = cu->objfile;
8081 const char *name = NULL;
8082 struct type *this_type;
8083
8084 name = dwarf2_full_name (NULL, die, cu);
8085 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8086 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8087 TYPE_NAME (this_type) = (char *) name;
8088 set_die_type (die, this_type, cu);
8089 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8090 return this_type;
8091}
8092
8093/* Find a representation of a given base type and install
8094 it in the TYPE field of the die. */
8095
8096static struct type *
8097read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8098{
8099 struct objfile *objfile = cu->objfile;
8100 struct type *type;
8101 struct attribute *attr;
8102 int encoding = 0, size = 0;
8103 char *name;
8104 enum type_code code = TYPE_CODE_INT;
8105 int type_flags = 0;
8106 struct type *target_type = NULL;
8107
8108 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8109 if (attr)
8110 {
8111 encoding = DW_UNSND (attr);
8112 }
8113 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8114 if (attr)
8115 {
8116 size = DW_UNSND (attr);
8117 }
8118 name = dwarf2_name (die, cu);
8119 if (!name)
8120 {
8121 complaint (&symfile_complaints,
8122 _("DW_AT_name missing from DW_TAG_base_type"));
8123 }
8124
8125 switch (encoding)
8126 {
8127 case DW_ATE_address:
8128 /* Turn DW_ATE_address into a void * pointer. */
8129 code = TYPE_CODE_PTR;
8130 type_flags |= TYPE_FLAG_UNSIGNED;
8131 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8132 break;
8133 case DW_ATE_boolean:
8134 code = TYPE_CODE_BOOL;
8135 type_flags |= TYPE_FLAG_UNSIGNED;
8136 break;
8137 case DW_ATE_complex_float:
8138 code = TYPE_CODE_COMPLEX;
8139 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8140 break;
8141 case DW_ATE_decimal_float:
8142 code = TYPE_CODE_DECFLOAT;
8143 break;
8144 case DW_ATE_float:
8145 code = TYPE_CODE_FLT;
8146 break;
8147 case DW_ATE_signed:
8148 break;
8149 case DW_ATE_unsigned:
8150 type_flags |= TYPE_FLAG_UNSIGNED;
8151 break;
8152 case DW_ATE_signed_char:
8153 if (cu->language == language_ada || cu->language == language_m2
8154 || cu->language == language_pascal)
8155 code = TYPE_CODE_CHAR;
8156 break;
8157 case DW_ATE_unsigned_char:
8158 if (cu->language == language_ada || cu->language == language_m2
8159 || cu->language == language_pascal)
8160 code = TYPE_CODE_CHAR;
8161 type_flags |= TYPE_FLAG_UNSIGNED;
8162 break;
8163 case DW_ATE_UTF:
8164 /* We just treat this as an integer and then recognize the
8165 type by name elsewhere. */
8166 break;
8167
8168 default:
8169 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8170 dwarf_type_encoding_name (encoding));
8171 break;
8172 }
8173
8174 type = init_type (code, size, type_flags, NULL, objfile);
8175 TYPE_NAME (type) = name;
8176 TYPE_TARGET_TYPE (type) = target_type;
8177
8178 if (name && strcmp (name, "char") == 0)
8179 TYPE_NOSIGN (type) = 1;
8180
8181 return set_die_type (die, type, cu);
8182}
8183
8184/* Read the given DW_AT_subrange DIE. */
8185
8186static struct type *
8187read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8188{
8189 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8190 struct type *base_type;
8191 struct type *range_type;
8192 struct attribute *attr;
8193 LONGEST low = 0;
8194 LONGEST high = -1;
8195 char *name;
8196 LONGEST negative_mask;
8197
8198 base_type = die_type (die, cu);
8199 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8200 check_typedef (base_type);
8201
8202 /* The die_type call above may have already set the type for this DIE. */
8203 range_type = get_die_type (die, cu);
8204 if (range_type)
8205 return range_type;
8206
8207 if (cu->language == language_fortran)
8208 {
8209 /* FORTRAN implies a lower bound of 1, if not given. */
8210 low = 1;
8211 }
8212
8213 /* FIXME: For variable sized arrays either of these could be
8214 a variable rather than a constant value. We'll allow it,
8215 but we don't know how to handle it. */
8216 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8217 if (attr)
8218 low = dwarf2_get_attr_constant_value (attr, 0);
8219
8220 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8221 if (attr)
8222 {
8223 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8224 {
8225 /* GCC encodes arrays with unspecified or dynamic length
8226 with a DW_FORM_block1 attribute or a reference attribute.
8227 FIXME: GDB does not yet know how to handle dynamic
8228 arrays properly, treat them as arrays with unspecified
8229 length for now.
8230
8231 FIXME: jimb/2003-09-22: GDB does not really know
8232 how to handle arrays of unspecified length
8233 either; we just represent them as zero-length
8234 arrays. Choose an appropriate upper bound given
8235 the lower bound we've computed above. */
8236 high = low - 1;
8237 }
8238 else
8239 high = dwarf2_get_attr_constant_value (attr, 1);
8240 }
8241 else
8242 {
8243 attr = dwarf2_attr (die, DW_AT_count, cu);
8244 if (attr)
8245 {
8246 int count = dwarf2_get_attr_constant_value (attr, 1);
8247 high = low + count - 1;
8248 }
8249 else
8250 {
8251 /* Unspecified array length. */
8252 high = low - 1;
8253 }
8254 }
8255
8256 /* Dwarf-2 specifications explicitly allows to create subrange types
8257 without specifying a base type.
8258 In that case, the base type must be set to the type of
8259 the lower bound, upper bound or count, in that order, if any of these
8260 three attributes references an object that has a type.
8261 If no base type is found, the Dwarf-2 specifications say that
8262 a signed integer type of size equal to the size of an address should
8263 be used.
8264 For the following C code: `extern char gdb_int [];'
8265 GCC produces an empty range DIE.
8266 FIXME: muller/2010-05-28: Possible references to object for low bound,
8267 high bound or count are not yet handled by this code. */
8268 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8269 {
8270 struct objfile *objfile = cu->objfile;
8271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8272 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8273 struct type *int_type = objfile_type (objfile)->builtin_int;
8274
8275 /* Test "int", "long int", and "long long int" objfile types,
8276 and select the first one having a size above or equal to the
8277 architecture address size. */
8278 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8279 base_type = int_type;
8280 else
8281 {
8282 int_type = objfile_type (objfile)->builtin_long;
8283 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8284 base_type = int_type;
8285 else
8286 {
8287 int_type = objfile_type (objfile)->builtin_long_long;
8288 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8289 base_type = int_type;
8290 }
8291 }
8292 }
8293
8294 negative_mask =
8295 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8296 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8297 low |= negative_mask;
8298 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8299 high |= negative_mask;
8300
8301 range_type = create_range_type (NULL, base_type, low, high);
8302
8303 /* Mark arrays with dynamic length at least as an array of unspecified
8304 length. GDB could check the boundary but before it gets implemented at
8305 least allow accessing the array elements. */
8306 if (attr && attr->form == DW_FORM_block1)
8307 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8308
8309 /* Ada expects an empty array on no boundary attributes. */
8310 if (attr == NULL && cu->language != language_ada)
8311 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8312
8313 name = dwarf2_name (die, cu);
8314 if (name)
8315 TYPE_NAME (range_type) = name;
8316
8317 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8318 if (attr)
8319 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8320
8321 set_die_type (die, range_type, cu);
8322
8323 /* set_die_type should be already done. */
8324 set_descriptive_type (range_type, die, cu);
8325
8326 return range_type;
8327}
8328
8329static struct type *
8330read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8331{
8332 struct type *type;
8333
8334 /* For now, we only support the C meaning of an unspecified type: void. */
8335
8336 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8337 TYPE_NAME (type) = dwarf2_name (die, cu);
8338
8339 return set_die_type (die, type, cu);
8340}
8341
8342/* Trivial hash function for die_info: the hash value of a DIE
8343 is its offset in .debug_info for this objfile. */
8344
8345static hashval_t
8346die_hash (const void *item)
8347{
8348 const struct die_info *die = item;
8349
8350 return die->offset;
8351}
8352
8353/* Trivial comparison function for die_info structures: two DIEs
8354 are equal if they have the same offset. */
8355
8356static int
8357die_eq (const void *item_lhs, const void *item_rhs)
8358{
8359 const struct die_info *die_lhs = item_lhs;
8360 const struct die_info *die_rhs = item_rhs;
8361
8362 return die_lhs->offset == die_rhs->offset;
8363}
8364
8365/* Read a whole compilation unit into a linked list of dies. */
8366
8367static struct die_info *
8368read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8369{
8370 struct die_reader_specs reader_specs;
8371 int read_abbrevs = 0;
8372 struct cleanup *back_to = NULL;
8373 struct die_info *die;
8374
8375 if (cu->dwarf2_abbrevs == NULL)
8376 {
8377 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8378 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8379 read_abbrevs = 1;
8380 }
8381
8382 gdb_assert (cu->die_hash == NULL);
8383 cu->die_hash
8384 = htab_create_alloc_ex (cu->header.length / 12,
8385 die_hash,
8386 die_eq,
8387 NULL,
8388 &cu->comp_unit_obstack,
8389 hashtab_obstack_allocate,
8390 dummy_obstack_deallocate);
8391
8392 init_cu_die_reader (&reader_specs, cu);
8393
8394 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8395
8396 if (read_abbrevs)
8397 do_cleanups (back_to);
8398
8399 return die;
8400}
8401
8402/* Main entry point for reading a DIE and all children.
8403 Read the DIE and dump it if requested. */
8404
8405static struct die_info *
8406read_die_and_children (const struct die_reader_specs *reader,
8407 gdb_byte *info_ptr,
8408 gdb_byte **new_info_ptr,
8409 struct die_info *parent)
8410{
8411 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8412 new_info_ptr, parent);
8413
8414 if (dwarf2_die_debug)
8415 {
8416 fprintf_unfiltered (gdb_stdlog,
8417 "\nRead die from %s of %s:\n",
8418 reader->buffer == dwarf2_per_objfile->info.buffer
8419 ? ".debug_info"
8420 : reader->buffer == dwarf2_per_objfile->types.buffer
8421 ? ".debug_types"
8422 : "unknown section",
8423 reader->abfd->filename);
8424 dump_die (result, dwarf2_die_debug);
8425 }
8426
8427 return result;
8428}
8429
8430/* Read a single die and all its descendents. Set the die's sibling
8431 field to NULL; set other fields in the die correctly, and set all
8432 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8433 location of the info_ptr after reading all of those dies. PARENT
8434 is the parent of the die in question. */
8435
8436static struct die_info *
8437read_die_and_children_1 (const struct die_reader_specs *reader,
8438 gdb_byte *info_ptr,
8439 gdb_byte **new_info_ptr,
8440 struct die_info *parent)
8441{
8442 struct die_info *die;
8443 gdb_byte *cur_ptr;
8444 int has_children;
8445
8446 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8447 if (die == NULL)
8448 {
8449 *new_info_ptr = cur_ptr;
8450 return NULL;
8451 }
8452 store_in_ref_table (die, reader->cu);
8453
8454 if (has_children)
8455 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8456 else
8457 {
8458 die->child = NULL;
8459 *new_info_ptr = cur_ptr;
8460 }
8461
8462 die->sibling = NULL;
8463 die->parent = parent;
8464 return die;
8465}
8466
8467/* Read a die, all of its descendents, and all of its siblings; set
8468 all of the fields of all of the dies correctly. Arguments are as
8469 in read_die_and_children. */
8470
8471static struct die_info *
8472read_die_and_siblings (const struct die_reader_specs *reader,
8473 gdb_byte *info_ptr,
8474 gdb_byte **new_info_ptr,
8475 struct die_info *parent)
8476{
8477 struct die_info *first_die, *last_sibling;
8478 gdb_byte *cur_ptr;
8479
8480 cur_ptr = info_ptr;
8481 first_die = last_sibling = NULL;
8482
8483 while (1)
8484 {
8485 struct die_info *die
8486 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8487
8488 if (die == NULL)
8489 {
8490 *new_info_ptr = cur_ptr;
8491 return first_die;
8492 }
8493
8494 if (!first_die)
8495 first_die = die;
8496 else
8497 last_sibling->sibling = die;
8498
8499 last_sibling = die;
8500 }
8501}
8502
8503/* Read the die from the .debug_info section buffer. Set DIEP to
8504 point to a newly allocated die with its information, except for its
8505 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8506 whether the die has children or not. */
8507
8508static gdb_byte *
8509read_full_die (const struct die_reader_specs *reader,
8510 struct die_info **diep, gdb_byte *info_ptr,
8511 int *has_children)
8512{
8513 unsigned int abbrev_number, bytes_read, i, offset;
8514 struct abbrev_info *abbrev;
8515 struct die_info *die;
8516 struct dwarf2_cu *cu = reader->cu;
8517 bfd *abfd = reader->abfd;
8518
8519 offset = info_ptr - reader->buffer;
8520 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8521 info_ptr += bytes_read;
8522 if (!abbrev_number)
8523 {
8524 *diep = NULL;
8525 *has_children = 0;
8526 return info_ptr;
8527 }
8528
8529 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8530 if (!abbrev)
8531 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8532 abbrev_number,
8533 bfd_get_filename (abfd));
8534
8535 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8536 die->offset = offset;
8537 die->tag = abbrev->tag;
8538 die->abbrev = abbrev_number;
8539
8540 die->num_attrs = abbrev->num_attrs;
8541
8542 for (i = 0; i < abbrev->num_attrs; ++i)
8543 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8544 abfd, info_ptr, cu);
8545
8546 *diep = die;
8547 *has_children = abbrev->has_children;
8548 return info_ptr;
8549}
8550
8551/* In DWARF version 2, the description of the debugging information is
8552 stored in a separate .debug_abbrev section. Before we read any
8553 dies from a section we read in all abbreviations and install them
8554 in a hash table. This function also sets flags in CU describing
8555 the data found in the abbrev table. */
8556
8557static void
8558dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8559{
8560 struct comp_unit_head *cu_header = &cu->header;
8561 gdb_byte *abbrev_ptr;
8562 struct abbrev_info *cur_abbrev;
8563 unsigned int abbrev_number, bytes_read, abbrev_name;
8564 unsigned int abbrev_form, hash_number;
8565 struct attr_abbrev *cur_attrs;
8566 unsigned int allocated_attrs;
8567
8568 /* Initialize dwarf2 abbrevs. */
8569 obstack_init (&cu->abbrev_obstack);
8570 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8571 (ABBREV_HASH_SIZE
8572 * sizeof (struct abbrev_info *)));
8573 memset (cu->dwarf2_abbrevs, 0,
8574 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8575
8576 dwarf2_read_section (dwarf2_per_objfile->objfile,
8577 &dwarf2_per_objfile->abbrev);
8578 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8579 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8580 abbrev_ptr += bytes_read;
8581
8582 allocated_attrs = ATTR_ALLOC_CHUNK;
8583 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8584
8585 /* Loop until we reach an abbrev number of 0. */
8586 while (abbrev_number)
8587 {
8588 cur_abbrev = dwarf_alloc_abbrev (cu);
8589
8590 /* read in abbrev header */
8591 cur_abbrev->number = abbrev_number;
8592 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8593 abbrev_ptr += bytes_read;
8594 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8595 abbrev_ptr += 1;
8596
8597 if (cur_abbrev->tag == DW_TAG_namespace)
8598 cu->has_namespace_info = 1;
8599
8600 /* now read in declarations */
8601 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8602 abbrev_ptr += bytes_read;
8603 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8604 abbrev_ptr += bytes_read;
8605 while (abbrev_name)
8606 {
8607 if (cur_abbrev->num_attrs == allocated_attrs)
8608 {
8609 allocated_attrs += ATTR_ALLOC_CHUNK;
8610 cur_attrs
8611 = xrealloc (cur_attrs, (allocated_attrs
8612 * sizeof (struct attr_abbrev)));
8613 }
8614
8615 /* Record whether this compilation unit might have
8616 inter-compilation-unit references. If we don't know what form
8617 this attribute will have, then it might potentially be a
8618 DW_FORM_ref_addr, so we conservatively expect inter-CU
8619 references. */
8620
8621 if (abbrev_form == DW_FORM_ref_addr
8622 || abbrev_form == DW_FORM_indirect)
8623 cu->has_form_ref_addr = 1;
8624
8625 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8626 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8627 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8628 abbrev_ptr += bytes_read;
8629 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8630 abbrev_ptr += bytes_read;
8631 }
8632
8633 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8634 (cur_abbrev->num_attrs
8635 * sizeof (struct attr_abbrev)));
8636 memcpy (cur_abbrev->attrs, cur_attrs,
8637 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8638
8639 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8640 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8641 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8642
8643 /* Get next abbreviation.
8644 Under Irix6 the abbreviations for a compilation unit are not
8645 always properly terminated with an abbrev number of 0.
8646 Exit loop if we encounter an abbreviation which we have
8647 already read (which means we are about to read the abbreviations
8648 for the next compile unit) or if the end of the abbreviation
8649 table is reached. */
8650 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8651 >= dwarf2_per_objfile->abbrev.size)
8652 break;
8653 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8654 abbrev_ptr += bytes_read;
8655 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8656 break;
8657 }
8658
8659 xfree (cur_attrs);
8660}
8661
8662/* Release the memory used by the abbrev table for a compilation unit. */
8663
8664static void
8665dwarf2_free_abbrev_table (void *ptr_to_cu)
8666{
8667 struct dwarf2_cu *cu = ptr_to_cu;
8668
8669 obstack_free (&cu->abbrev_obstack, NULL);
8670 cu->dwarf2_abbrevs = NULL;
8671}
8672
8673/* Lookup an abbrev_info structure in the abbrev hash table. */
8674
8675static struct abbrev_info *
8676dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8677{
8678 unsigned int hash_number;
8679 struct abbrev_info *abbrev;
8680
8681 hash_number = number % ABBREV_HASH_SIZE;
8682 abbrev = cu->dwarf2_abbrevs[hash_number];
8683
8684 while (abbrev)
8685 {
8686 if (abbrev->number == number)
8687 return abbrev;
8688 else
8689 abbrev = abbrev->next;
8690 }
8691 return NULL;
8692}
8693
8694/* Returns nonzero if TAG represents a type that we might generate a partial
8695 symbol for. */
8696
8697static int
8698is_type_tag_for_partial (int tag)
8699{
8700 switch (tag)
8701 {
8702#if 0
8703 /* Some types that would be reasonable to generate partial symbols for,
8704 that we don't at present. */
8705 case DW_TAG_array_type:
8706 case DW_TAG_file_type:
8707 case DW_TAG_ptr_to_member_type:
8708 case DW_TAG_set_type:
8709 case DW_TAG_string_type:
8710 case DW_TAG_subroutine_type:
8711#endif
8712 case DW_TAG_base_type:
8713 case DW_TAG_class_type:
8714 case DW_TAG_interface_type:
8715 case DW_TAG_enumeration_type:
8716 case DW_TAG_structure_type:
8717 case DW_TAG_subrange_type:
8718 case DW_TAG_typedef:
8719 case DW_TAG_union_type:
8720 return 1;
8721 default:
8722 return 0;
8723 }
8724}
8725
8726/* Load all DIEs that are interesting for partial symbols into memory. */
8727
8728static struct partial_die_info *
8729load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8730 int building_psymtab, struct dwarf2_cu *cu)
8731{
8732 struct partial_die_info *part_die;
8733 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8734 struct abbrev_info *abbrev;
8735 unsigned int bytes_read;
8736 unsigned int load_all = 0;
8737
8738 int nesting_level = 1;
8739
8740 parent_die = NULL;
8741 last_die = NULL;
8742
8743 if (cu->per_cu && cu->per_cu->load_all_dies)
8744 load_all = 1;
8745
8746 cu->partial_dies
8747 = htab_create_alloc_ex (cu->header.length / 12,
8748 partial_die_hash,
8749 partial_die_eq,
8750 NULL,
8751 &cu->comp_unit_obstack,
8752 hashtab_obstack_allocate,
8753 dummy_obstack_deallocate);
8754
8755 part_die = obstack_alloc (&cu->comp_unit_obstack,
8756 sizeof (struct partial_die_info));
8757
8758 while (1)
8759 {
8760 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8761
8762 /* A NULL abbrev means the end of a series of children. */
8763 if (abbrev == NULL)
8764 {
8765 if (--nesting_level == 0)
8766 {
8767 /* PART_DIE was probably the last thing allocated on the
8768 comp_unit_obstack, so we could call obstack_free
8769 here. We don't do that because the waste is small,
8770 and will be cleaned up when we're done with this
8771 compilation unit. This way, we're also more robust
8772 against other users of the comp_unit_obstack. */
8773 return first_die;
8774 }
8775 info_ptr += bytes_read;
8776 last_die = parent_die;
8777 parent_die = parent_die->die_parent;
8778 continue;
8779 }
8780
8781 /* Check for template arguments. We never save these; if
8782 they're seen, we just mark the parent, and go on our way. */
8783 if (parent_die != NULL
8784 && cu->language == language_cplus
8785 && (abbrev->tag == DW_TAG_template_type_param
8786 || abbrev->tag == DW_TAG_template_value_param))
8787 {
8788 parent_die->has_template_arguments = 1;
8789
8790 if (!load_all)
8791 {
8792 /* We don't need a partial DIE for the template argument. */
8793 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8794 cu);
8795 continue;
8796 }
8797 }
8798
8799 /* We only recurse into subprograms looking for template arguments.
8800 Skip their other children. */
8801 if (!load_all
8802 && cu->language == language_cplus
8803 && parent_die != NULL
8804 && parent_die->tag == DW_TAG_subprogram)
8805 {
8806 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8807 continue;
8808 }
8809
8810 /* Check whether this DIE is interesting enough to save. Normally
8811 we would not be interested in members here, but there may be
8812 later variables referencing them via DW_AT_specification (for
8813 static members). */
8814 if (!load_all
8815 && !is_type_tag_for_partial (abbrev->tag)
8816 && abbrev->tag != DW_TAG_constant
8817 && abbrev->tag != DW_TAG_enumerator
8818 && abbrev->tag != DW_TAG_subprogram
8819 && abbrev->tag != DW_TAG_lexical_block
8820 && abbrev->tag != DW_TAG_variable
8821 && abbrev->tag != DW_TAG_namespace
8822 && abbrev->tag != DW_TAG_module
8823 && abbrev->tag != DW_TAG_member)
8824 {
8825 /* Otherwise we skip to the next sibling, if any. */
8826 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8827 continue;
8828 }
8829
8830 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8831 buffer, info_ptr, cu);
8832
8833 /* This two-pass algorithm for processing partial symbols has a
8834 high cost in cache pressure. Thus, handle some simple cases
8835 here which cover the majority of C partial symbols. DIEs
8836 which neither have specification tags in them, nor could have
8837 specification tags elsewhere pointing at them, can simply be
8838 processed and discarded.
8839
8840 This segment is also optional; scan_partial_symbols and
8841 add_partial_symbol will handle these DIEs if we chain
8842 them in normally. When compilers which do not emit large
8843 quantities of duplicate debug information are more common,
8844 this code can probably be removed. */
8845
8846 /* Any complete simple types at the top level (pretty much all
8847 of them, for a language without namespaces), can be processed
8848 directly. */
8849 if (parent_die == NULL
8850 && part_die->has_specification == 0
8851 && part_die->is_declaration == 0
8852 && (part_die->tag == DW_TAG_typedef
8853 || part_die->tag == DW_TAG_base_type
8854 || part_die->tag == DW_TAG_subrange_type))
8855 {
8856 if (building_psymtab && part_die->name != NULL)
8857 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8858 VAR_DOMAIN, LOC_TYPEDEF,
8859 &cu->objfile->static_psymbols,
8860 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8861 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8862 continue;
8863 }
8864
8865 /* If we're at the second level, and we're an enumerator, and
8866 our parent has no specification (meaning possibly lives in a
8867 namespace elsewhere), then we can add the partial symbol now
8868 instead of queueing it. */
8869 if (part_die->tag == DW_TAG_enumerator
8870 && parent_die != NULL
8871 && parent_die->die_parent == NULL
8872 && parent_die->tag == DW_TAG_enumeration_type
8873 && parent_die->has_specification == 0)
8874 {
8875 if (part_die->name == NULL)
8876 complaint (&symfile_complaints,
8877 _("malformed enumerator DIE ignored"));
8878 else if (building_psymtab)
8879 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8880 VAR_DOMAIN, LOC_CONST,
8881 (cu->language == language_cplus
8882 || cu->language == language_java)
8883 ? &cu->objfile->global_psymbols
8884 : &cu->objfile->static_psymbols,
8885 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8886
8887 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8888 continue;
8889 }
8890
8891 /* We'll save this DIE so link it in. */
8892 part_die->die_parent = parent_die;
8893 part_die->die_sibling = NULL;
8894 part_die->die_child = NULL;
8895
8896 if (last_die && last_die == parent_die)
8897 last_die->die_child = part_die;
8898 else if (last_die)
8899 last_die->die_sibling = part_die;
8900
8901 last_die = part_die;
8902
8903 if (first_die == NULL)
8904 first_die = part_die;
8905
8906 /* Maybe add the DIE to the hash table. Not all DIEs that we
8907 find interesting need to be in the hash table, because we
8908 also have the parent/sibling/child chains; only those that we
8909 might refer to by offset later during partial symbol reading.
8910
8911 For now this means things that might have be the target of a
8912 DW_AT_specification, DW_AT_abstract_origin, or
8913 DW_AT_extension. DW_AT_extension will refer only to
8914 namespaces; DW_AT_abstract_origin refers to functions (and
8915 many things under the function DIE, but we do not recurse
8916 into function DIEs during partial symbol reading) and
8917 possibly variables as well; DW_AT_specification refers to
8918 declarations. Declarations ought to have the DW_AT_declaration
8919 flag. It happens that GCC forgets to put it in sometimes, but
8920 only for functions, not for types.
8921
8922 Adding more things than necessary to the hash table is harmless
8923 except for the performance cost. Adding too few will result in
8924 wasted time in find_partial_die, when we reread the compilation
8925 unit with load_all_dies set. */
8926
8927 if (load_all
8928 || abbrev->tag == DW_TAG_constant
8929 || abbrev->tag == DW_TAG_subprogram
8930 || abbrev->tag == DW_TAG_variable
8931 || abbrev->tag == DW_TAG_namespace
8932 || part_die->is_declaration)
8933 {
8934 void **slot;
8935
8936 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8937 part_die->offset, INSERT);
8938 *slot = part_die;
8939 }
8940
8941 part_die = obstack_alloc (&cu->comp_unit_obstack,
8942 sizeof (struct partial_die_info));
8943
8944 /* For some DIEs we want to follow their children (if any). For C
8945 we have no reason to follow the children of structures; for other
8946 languages we have to, so that we can get at method physnames
8947 to infer fully qualified class names, for DW_AT_specification,
8948 and for C++ template arguments. For C++, we also look one level
8949 inside functions to find template arguments (if the name of the
8950 function does not already contain the template arguments).
8951
8952 For Ada, we need to scan the children of subprograms and lexical
8953 blocks as well because Ada allows the definition of nested
8954 entities that could be interesting for the debugger, such as
8955 nested subprograms for instance. */
8956 if (last_die->has_children
8957 && (load_all
8958 || last_die->tag == DW_TAG_namespace
8959 || last_die->tag == DW_TAG_module
8960 || last_die->tag == DW_TAG_enumeration_type
8961 || (cu->language == language_cplus
8962 && last_die->tag == DW_TAG_subprogram
8963 && (last_die->name == NULL
8964 || strchr (last_die->name, '<') == NULL))
8965 || (cu->language != language_c
8966 && (last_die->tag == DW_TAG_class_type
8967 || last_die->tag == DW_TAG_interface_type
8968 || last_die->tag == DW_TAG_structure_type
8969 || last_die->tag == DW_TAG_union_type))
8970 || (cu->language == language_ada
8971 && (last_die->tag == DW_TAG_subprogram
8972 || last_die->tag == DW_TAG_lexical_block))))
8973 {
8974 nesting_level++;
8975 parent_die = last_die;
8976 continue;
8977 }
8978
8979 /* Otherwise we skip to the next sibling, if any. */
8980 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8981
8982 /* Back to the top, do it again. */
8983 }
8984}
8985
8986/* Read a minimal amount of information into the minimal die structure. */
8987
8988static gdb_byte *
8989read_partial_die (struct partial_die_info *part_die,
8990 struct abbrev_info *abbrev,
8991 unsigned int abbrev_len, bfd *abfd,
8992 gdb_byte *buffer, gdb_byte *info_ptr,
8993 struct dwarf2_cu *cu)
8994{
8995 unsigned int i;
8996 struct attribute attr;
8997 int has_low_pc_attr = 0;
8998 int has_high_pc_attr = 0;
8999
9000 memset (part_die, 0, sizeof (struct partial_die_info));
9001
9002 part_die->offset = info_ptr - buffer;
9003
9004 info_ptr += abbrev_len;
9005
9006 if (abbrev == NULL)
9007 return info_ptr;
9008
9009 part_die->tag = abbrev->tag;
9010 part_die->has_children = abbrev->has_children;
9011
9012 for (i = 0; i < abbrev->num_attrs; ++i)
9013 {
9014 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9015
9016 /* Store the data if it is of an attribute we want to keep in a
9017 partial symbol table. */
9018 switch (attr.name)
9019 {
9020 case DW_AT_name:
9021 switch (part_die->tag)
9022 {
9023 case DW_TAG_compile_unit:
9024 case DW_TAG_type_unit:
9025 /* Compilation units have a DW_AT_name that is a filename, not
9026 a source language identifier. */
9027 case DW_TAG_enumeration_type:
9028 case DW_TAG_enumerator:
9029 /* These tags always have simple identifiers already; no need
9030 to canonicalize them. */
9031 part_die->name = DW_STRING (&attr);
9032 break;
9033 default:
9034 part_die->name
9035 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9036 &cu->objfile->objfile_obstack);
9037 break;
9038 }
9039 break;
9040 case DW_AT_linkage_name:
9041 case DW_AT_MIPS_linkage_name:
9042 /* Note that both forms of linkage name might appear. We
9043 assume they will be the same, and we only store the last
9044 one we see. */
9045 if (cu->language == language_ada)
9046 part_die->name = DW_STRING (&attr);
9047 part_die->linkage_name = DW_STRING (&attr);
9048 break;
9049 case DW_AT_low_pc:
9050 has_low_pc_attr = 1;
9051 part_die->lowpc = DW_ADDR (&attr);
9052 break;
9053 case DW_AT_high_pc:
9054 has_high_pc_attr = 1;
9055 part_die->highpc = DW_ADDR (&attr);
9056 break;
9057 case DW_AT_location:
9058 /* Support the .debug_loc offsets. */
9059 if (attr_form_is_block (&attr))
9060 {
9061 part_die->locdesc = DW_BLOCK (&attr);
9062 }
9063 else if (attr_form_is_section_offset (&attr))
9064 {
9065 dwarf2_complex_location_expr_complaint ();
9066 }
9067 else
9068 {
9069 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9070 "partial symbol information");
9071 }
9072 break;
9073 case DW_AT_external:
9074 part_die->is_external = DW_UNSND (&attr);
9075 break;
9076 case DW_AT_declaration:
9077 part_die->is_declaration = DW_UNSND (&attr);
9078 break;
9079 case DW_AT_type:
9080 part_die->has_type = 1;
9081 break;
9082 case DW_AT_abstract_origin:
9083 case DW_AT_specification:
9084 case DW_AT_extension:
9085 part_die->has_specification = 1;
9086 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9087 break;
9088 case DW_AT_sibling:
9089 /* Ignore absolute siblings, they might point outside of
9090 the current compile unit. */
9091 if (attr.form == DW_FORM_ref_addr)
9092 complaint (&symfile_complaints,
9093 _("ignoring absolute DW_AT_sibling"));
9094 else
9095 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9096 break;
9097 case DW_AT_byte_size:
9098 part_die->has_byte_size = 1;
9099 break;
9100 case DW_AT_calling_convention:
9101 /* DWARF doesn't provide a way to identify a program's source-level
9102 entry point. DW_AT_calling_convention attributes are only meant
9103 to describe functions' calling conventions.
9104
9105 However, because it's a necessary piece of information in
9106 Fortran, and because DW_CC_program is the only piece of debugging
9107 information whose definition refers to a 'main program' at all,
9108 several compilers have begun marking Fortran main programs with
9109 DW_CC_program --- even when those functions use the standard
9110 calling conventions.
9111
9112 So until DWARF specifies a way to provide this information and
9113 compilers pick up the new representation, we'll support this
9114 practice. */
9115 if (DW_UNSND (&attr) == DW_CC_program
9116 && cu->language == language_fortran)
9117 {
9118 set_main_name (part_die->name);
9119
9120 /* As this DIE has a static linkage the name would be difficult
9121 to look up later. */
9122 language_of_main = language_fortran;
9123 }
9124 break;
9125 default:
9126 break;
9127 }
9128 }
9129
9130 /* When using the GNU linker, .gnu.linkonce. sections are used to
9131 eliminate duplicate copies of functions and vtables and such.
9132 The linker will arbitrarily choose one and discard the others.
9133 The AT_*_pc values for such functions refer to local labels in
9134 these sections. If the section from that file was discarded, the
9135 labels are not in the output, so the relocs get a value of 0.
9136 If this is a discarded function, mark the pc bounds as invalid,
9137 so that GDB will ignore it. */
9138 if (has_low_pc_attr && has_high_pc_attr
9139 && part_die->lowpc < part_die->highpc
9140 && (part_die->lowpc != 0
9141 || dwarf2_per_objfile->has_section_at_zero))
9142 part_die->has_pc_info = 1;
9143
9144 return info_ptr;
9145}
9146
9147/* Find a cached partial DIE at OFFSET in CU. */
9148
9149static struct partial_die_info *
9150find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9151{
9152 struct partial_die_info *lookup_die = NULL;
9153 struct partial_die_info part_die;
9154
9155 part_die.offset = offset;
9156 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9157
9158 return lookup_die;
9159}
9160
9161/* Find a partial DIE at OFFSET, which may or may not be in CU,
9162 except in the case of .debug_types DIEs which do not reference
9163 outside their CU (they do however referencing other types via
9164 DW_FORM_sig8). */
9165
9166static struct partial_die_info *
9167find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9168{
9169 struct dwarf2_per_cu_data *per_cu = NULL;
9170 struct partial_die_info *pd = NULL;
9171
9172 if (cu->per_cu->from_debug_types)
9173 {
9174 pd = find_partial_die_in_comp_unit (offset, cu);
9175 if (pd != NULL)
9176 return pd;
9177 goto not_found;
9178 }
9179
9180 if (offset_in_cu_p (&cu->header, offset))
9181 {
9182 pd = find_partial_die_in_comp_unit (offset, cu);
9183 if (pd != NULL)
9184 return pd;
9185 }
9186
9187 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9188
9189 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9190 load_partial_comp_unit (per_cu, cu->objfile);
9191
9192 per_cu->cu->last_used = 0;
9193 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9194
9195 if (pd == NULL && per_cu->load_all_dies == 0)
9196 {
9197 struct cleanup *back_to;
9198 struct partial_die_info comp_unit_die;
9199 struct abbrev_info *abbrev;
9200 unsigned int bytes_read;
9201 char *info_ptr;
9202
9203 per_cu->load_all_dies = 1;
9204
9205 /* Re-read the DIEs. */
9206 back_to = make_cleanup (null_cleanup, 0);
9207 if (per_cu->cu->dwarf2_abbrevs == NULL)
9208 {
9209 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
9210 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9211 }
9212 info_ptr = (dwarf2_per_objfile->info.buffer
9213 + per_cu->cu->header.offset
9214 + per_cu->cu->header.first_die_offset);
9215 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9216 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9217 per_cu->cu->objfile->obfd,
9218 dwarf2_per_objfile->info.buffer, info_ptr,
9219 per_cu->cu);
9220 if (comp_unit_die.has_children)
9221 load_partial_dies (per_cu->cu->objfile->obfd,
9222 dwarf2_per_objfile->info.buffer, info_ptr,
9223 0, per_cu->cu);
9224 do_cleanups (back_to);
9225
9226 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9227 }
9228
9229 not_found:
9230
9231 if (pd == NULL)
9232 internal_error (__FILE__, __LINE__,
9233 _("could not find partial DIE 0x%x "
9234 "in cache [from module %s]\n"),
9235 offset, bfd_get_filename (cu->objfile->obfd));
9236 return pd;
9237}
9238
9239/* See if we can figure out if the class lives in a namespace. We do
9240 this by looking for a member function; its demangled name will
9241 contain namespace info, if there is any. */
9242
9243static void
9244guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9245 struct dwarf2_cu *cu)
9246{
9247 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9248 what template types look like, because the demangler
9249 frequently doesn't give the same name as the debug info. We
9250 could fix this by only using the demangled name to get the
9251 prefix (but see comment in read_structure_type). */
9252
9253 struct partial_die_info *real_pdi;
9254 struct partial_die_info *child_pdi;
9255
9256 /* If this DIE (this DIE's specification, if any) has a parent, then
9257 we should not do this. We'll prepend the parent's fully qualified
9258 name when we create the partial symbol. */
9259
9260 real_pdi = struct_pdi;
9261 while (real_pdi->has_specification)
9262 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9263
9264 if (real_pdi->die_parent != NULL)
9265 return;
9266
9267 for (child_pdi = struct_pdi->die_child;
9268 child_pdi != NULL;
9269 child_pdi = child_pdi->die_sibling)
9270 {
9271 if (child_pdi->tag == DW_TAG_subprogram
9272 && child_pdi->linkage_name != NULL)
9273 {
9274 char *actual_class_name
9275 = language_class_name_from_physname (cu->language_defn,
9276 child_pdi->linkage_name);
9277 if (actual_class_name != NULL)
9278 {
9279 struct_pdi->name
9280 = obsavestring (actual_class_name,
9281 strlen (actual_class_name),
9282 &cu->objfile->objfile_obstack);
9283 xfree (actual_class_name);
9284 }
9285 break;
9286 }
9287 }
9288}
9289
9290/* Adjust PART_DIE before generating a symbol for it. This function
9291 may set the is_external flag or change the DIE's name. */
9292
9293static void
9294fixup_partial_die (struct partial_die_info *part_die,
9295 struct dwarf2_cu *cu)
9296{
9297 /* Once we've fixed up a die, there's no point in doing so again.
9298 This also avoids a memory leak if we were to call
9299 guess_partial_die_structure_name multiple times. */
9300 if (part_die->fixup_called)
9301 return;
9302
9303 /* If we found a reference attribute and the DIE has no name, try
9304 to find a name in the referred to DIE. */
9305
9306 if (part_die->name == NULL && part_die->has_specification)
9307 {
9308 struct partial_die_info *spec_die;
9309
9310 spec_die = find_partial_die (part_die->spec_offset, cu);
9311
9312 fixup_partial_die (spec_die, cu);
9313
9314 if (spec_die->name)
9315 {
9316 part_die->name = spec_die->name;
9317
9318 /* Copy DW_AT_external attribute if it is set. */
9319 if (spec_die->is_external)
9320 part_die->is_external = spec_die->is_external;
9321 }
9322 }
9323
9324 /* Set default names for some unnamed DIEs. */
9325
9326 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9327 part_die->name = "(anonymous namespace)";
9328
9329 /* If there is no parent die to provide a namespace, and there are
9330 children, see if we can determine the namespace from their linkage
9331 name.
9332 NOTE: We need to do this even if cu->has_namespace_info != 0.
9333 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9334 if (cu->language == language_cplus
9335 && dwarf2_per_objfile->types.asection != NULL
9336 && part_die->die_parent == NULL
9337 && part_die->has_children
9338 && (part_die->tag == DW_TAG_class_type
9339 || part_die->tag == DW_TAG_structure_type
9340 || part_die->tag == DW_TAG_union_type))
9341 guess_partial_die_structure_name (part_die, cu);
9342
9343 part_die->fixup_called = 1;
9344}
9345
9346/* Read an attribute value described by an attribute form. */
9347
9348static gdb_byte *
9349read_attribute_value (struct attribute *attr, unsigned form,
9350 bfd *abfd, gdb_byte *info_ptr,
9351 struct dwarf2_cu *cu)
9352{
9353 struct comp_unit_head *cu_header = &cu->header;
9354 unsigned int bytes_read;
9355 struct dwarf_block *blk;
9356
9357 attr->form = form;
9358 switch (form)
9359 {
9360 case DW_FORM_ref_addr:
9361 if (cu->header.version == 2)
9362 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9363 else
9364 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9365 &cu->header, &bytes_read);
9366 info_ptr += bytes_read;
9367 break;
9368 case DW_FORM_addr:
9369 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9370 info_ptr += bytes_read;
9371 break;
9372 case DW_FORM_block2:
9373 blk = dwarf_alloc_block (cu);
9374 blk->size = read_2_bytes (abfd, info_ptr);
9375 info_ptr += 2;
9376 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9377 info_ptr += blk->size;
9378 DW_BLOCK (attr) = blk;
9379 break;
9380 case DW_FORM_block4:
9381 blk = dwarf_alloc_block (cu);
9382 blk->size = read_4_bytes (abfd, info_ptr);
9383 info_ptr += 4;
9384 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9385 info_ptr += blk->size;
9386 DW_BLOCK (attr) = blk;
9387 break;
9388 case DW_FORM_data2:
9389 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9390 info_ptr += 2;
9391 break;
9392 case DW_FORM_data4:
9393 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9394 info_ptr += 4;
9395 break;
9396 case DW_FORM_data8:
9397 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9398 info_ptr += 8;
9399 break;
9400 case DW_FORM_sec_offset:
9401 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9402 info_ptr += bytes_read;
9403 break;
9404 case DW_FORM_string:
9405 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9406 DW_STRING_IS_CANONICAL (attr) = 0;
9407 info_ptr += bytes_read;
9408 break;
9409 case DW_FORM_strp:
9410 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9411 &bytes_read);
9412 DW_STRING_IS_CANONICAL (attr) = 0;
9413 info_ptr += bytes_read;
9414 break;
9415 case DW_FORM_exprloc:
9416 case DW_FORM_block:
9417 blk = dwarf_alloc_block (cu);
9418 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9419 info_ptr += bytes_read;
9420 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9421 info_ptr += blk->size;
9422 DW_BLOCK (attr) = blk;
9423 break;
9424 case DW_FORM_block1:
9425 blk = dwarf_alloc_block (cu);
9426 blk->size = read_1_byte (abfd, info_ptr);
9427 info_ptr += 1;
9428 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9429 info_ptr += blk->size;
9430 DW_BLOCK (attr) = blk;
9431 break;
9432 case DW_FORM_data1:
9433 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9434 info_ptr += 1;
9435 break;
9436 case DW_FORM_flag:
9437 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9438 info_ptr += 1;
9439 break;
9440 case DW_FORM_flag_present:
9441 DW_UNSND (attr) = 1;
9442 break;
9443 case DW_FORM_sdata:
9444 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9445 info_ptr += bytes_read;
9446 break;
9447 case DW_FORM_udata:
9448 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9449 info_ptr += bytes_read;
9450 break;
9451 case DW_FORM_ref1:
9452 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9453 info_ptr += 1;
9454 break;
9455 case DW_FORM_ref2:
9456 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9457 info_ptr += 2;
9458 break;
9459 case DW_FORM_ref4:
9460 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9461 info_ptr += 4;
9462 break;
9463 case DW_FORM_ref8:
9464 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9465 info_ptr += 8;
9466 break;
9467 case DW_FORM_sig8:
9468 /* Convert the signature to something we can record in DW_UNSND
9469 for later lookup.
9470 NOTE: This is NULL if the type wasn't found. */
9471 DW_SIGNATURED_TYPE (attr) =
9472 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9473 info_ptr += 8;
9474 break;
9475 case DW_FORM_ref_udata:
9476 DW_ADDR (attr) = (cu->header.offset
9477 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9478 info_ptr += bytes_read;
9479 break;
9480 case DW_FORM_indirect:
9481 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9482 info_ptr += bytes_read;
9483 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9484 break;
9485 default:
9486 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9487 dwarf_form_name (form),
9488 bfd_get_filename (abfd));
9489 }
9490
9491 /* We have seen instances where the compiler tried to emit a byte
9492 size attribute of -1 which ended up being encoded as an unsigned
9493 0xffffffff. Although 0xffffffff is technically a valid size value,
9494 an object of this size seems pretty unlikely so we can relatively
9495 safely treat these cases as if the size attribute was invalid and
9496 treat them as zero by default. */
9497 if (attr->name == DW_AT_byte_size
9498 && form == DW_FORM_data4
9499 && DW_UNSND (attr) >= 0xffffffff)
9500 {
9501 complaint
9502 (&symfile_complaints,
9503 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9504 hex_string (DW_UNSND (attr)));
9505 DW_UNSND (attr) = 0;
9506 }
9507
9508 return info_ptr;
9509}
9510
9511/* Read an attribute described by an abbreviated attribute. */
9512
9513static gdb_byte *
9514read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9515 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9516{
9517 attr->name = abbrev->name;
9518 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9519}
9520
9521/* Read dwarf information from a buffer. */
9522
9523static unsigned int
9524read_1_byte (bfd *abfd, gdb_byte *buf)
9525{
9526 return bfd_get_8 (abfd, buf);
9527}
9528
9529static int
9530read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9531{
9532 return bfd_get_signed_8 (abfd, buf);
9533}
9534
9535static unsigned int
9536read_2_bytes (bfd *abfd, gdb_byte *buf)
9537{
9538 return bfd_get_16 (abfd, buf);
9539}
9540
9541static int
9542read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9543{
9544 return bfd_get_signed_16 (abfd, buf);
9545}
9546
9547static unsigned int
9548read_4_bytes (bfd *abfd, gdb_byte *buf)
9549{
9550 return bfd_get_32 (abfd, buf);
9551}
9552
9553static int
9554read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9555{
9556 return bfd_get_signed_32 (abfd, buf);
9557}
9558
9559static ULONGEST
9560read_8_bytes (bfd *abfd, gdb_byte *buf)
9561{
9562 return bfd_get_64 (abfd, buf);
9563}
9564
9565static CORE_ADDR
9566read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9567 unsigned int *bytes_read)
9568{
9569 struct comp_unit_head *cu_header = &cu->header;
9570 CORE_ADDR retval = 0;
9571
9572 if (cu_header->signed_addr_p)
9573 {
9574 switch (cu_header->addr_size)
9575 {
9576 case 2:
9577 retval = bfd_get_signed_16 (abfd, buf);
9578 break;
9579 case 4:
9580 retval = bfd_get_signed_32 (abfd, buf);
9581 break;
9582 case 8:
9583 retval = bfd_get_signed_64 (abfd, buf);
9584 break;
9585 default:
9586 internal_error (__FILE__, __LINE__,
9587 _("read_address: bad switch, signed [in module %s]"),
9588 bfd_get_filename (abfd));
9589 }
9590 }
9591 else
9592 {
9593 switch (cu_header->addr_size)
9594 {
9595 case 2:
9596 retval = bfd_get_16 (abfd, buf);
9597 break;
9598 case 4:
9599 retval = bfd_get_32 (abfd, buf);
9600 break;
9601 case 8:
9602 retval = bfd_get_64 (abfd, buf);
9603 break;
9604 default:
9605 internal_error (__FILE__, __LINE__,
9606 _("read_address: bad switch, "
9607 "unsigned [in module %s]"),
9608 bfd_get_filename (abfd));
9609 }
9610 }
9611
9612 *bytes_read = cu_header->addr_size;
9613 return retval;
9614}
9615
9616/* Read the initial length from a section. The (draft) DWARF 3
9617 specification allows the initial length to take up either 4 bytes
9618 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9619 bytes describe the length and all offsets will be 8 bytes in length
9620 instead of 4.
9621
9622 An older, non-standard 64-bit format is also handled by this
9623 function. The older format in question stores the initial length
9624 as an 8-byte quantity without an escape value. Lengths greater
9625 than 2^32 aren't very common which means that the initial 4 bytes
9626 is almost always zero. Since a length value of zero doesn't make
9627 sense for the 32-bit format, this initial zero can be considered to
9628 be an escape value which indicates the presence of the older 64-bit
9629 format. As written, the code can't detect (old format) lengths
9630 greater than 4GB. If it becomes necessary to handle lengths
9631 somewhat larger than 4GB, we could allow other small values (such
9632 as the non-sensical values of 1, 2, and 3) to also be used as
9633 escape values indicating the presence of the old format.
9634
9635 The value returned via bytes_read should be used to increment the
9636 relevant pointer after calling read_initial_length().
9637
9638 [ Note: read_initial_length() and read_offset() are based on the
9639 document entitled "DWARF Debugging Information Format", revision
9640 3, draft 8, dated November 19, 2001. This document was obtained
9641 from:
9642
9643 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9644
9645 This document is only a draft and is subject to change. (So beware.)
9646
9647 Details regarding the older, non-standard 64-bit format were
9648 determined empirically by examining 64-bit ELF files produced by
9649 the SGI toolchain on an IRIX 6.5 machine.
9650
9651 - Kevin, July 16, 2002
9652 ] */
9653
9654static LONGEST
9655read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9656{
9657 LONGEST length = bfd_get_32 (abfd, buf);
9658
9659 if (length == 0xffffffff)
9660 {
9661 length = bfd_get_64 (abfd, buf + 4);
9662 *bytes_read = 12;
9663 }
9664 else if (length == 0)
9665 {
9666 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9667 length = bfd_get_64 (abfd, buf);
9668 *bytes_read = 8;
9669 }
9670 else
9671 {
9672 *bytes_read = 4;
9673 }
9674
9675 return length;
9676}
9677
9678/* Cover function for read_initial_length.
9679 Returns the length of the object at BUF, and stores the size of the
9680 initial length in *BYTES_READ and stores the size that offsets will be in
9681 *OFFSET_SIZE.
9682 If the initial length size is not equivalent to that specified in
9683 CU_HEADER then issue a complaint.
9684 This is useful when reading non-comp-unit headers. */
9685
9686static LONGEST
9687read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9688 const struct comp_unit_head *cu_header,
9689 unsigned int *bytes_read,
9690 unsigned int *offset_size)
9691{
9692 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9693
9694 gdb_assert (cu_header->initial_length_size == 4
9695 || cu_header->initial_length_size == 8
9696 || cu_header->initial_length_size == 12);
9697
9698 if (cu_header->initial_length_size != *bytes_read)
9699 complaint (&symfile_complaints,
9700 _("intermixed 32-bit and 64-bit DWARF sections"));
9701
9702 *offset_size = (*bytes_read == 4) ? 4 : 8;
9703 return length;
9704}
9705
9706/* Read an offset from the data stream. The size of the offset is
9707 given by cu_header->offset_size. */
9708
9709static LONGEST
9710read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9711 unsigned int *bytes_read)
9712{
9713 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9714
9715 *bytes_read = cu_header->offset_size;
9716 return offset;
9717}
9718
9719/* Read an offset from the data stream. */
9720
9721static LONGEST
9722read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9723{
9724 LONGEST retval = 0;
9725
9726 switch (offset_size)
9727 {
9728 case 4:
9729 retval = bfd_get_32 (abfd, buf);
9730 break;
9731 case 8:
9732 retval = bfd_get_64 (abfd, buf);
9733 break;
9734 default:
9735 internal_error (__FILE__, __LINE__,
9736 _("read_offset_1: bad switch [in module %s]"),
9737 bfd_get_filename (abfd));
9738 }
9739
9740 return retval;
9741}
9742
9743static gdb_byte *
9744read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9745{
9746 /* If the size of a host char is 8 bits, we can return a pointer
9747 to the buffer, otherwise we have to copy the data to a buffer
9748 allocated on the temporary obstack. */
9749 gdb_assert (HOST_CHAR_BIT == 8);
9750 return buf;
9751}
9752
9753static char *
9754read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9755{
9756 /* If the size of a host char is 8 bits, we can return a pointer
9757 to the string, otherwise we have to copy the string to a buffer
9758 allocated on the temporary obstack. */
9759 gdb_assert (HOST_CHAR_BIT == 8);
9760 if (*buf == '\0')
9761 {
9762 *bytes_read_ptr = 1;
9763 return NULL;
9764 }
9765 *bytes_read_ptr = strlen ((char *) buf) + 1;
9766 return (char *) buf;
9767}
9768
9769static char *
9770read_indirect_string (bfd *abfd, gdb_byte *buf,
9771 const struct comp_unit_head *cu_header,
9772 unsigned int *bytes_read_ptr)
9773{
9774 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9775
9776 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9777 if (dwarf2_per_objfile->str.buffer == NULL)
9778 {
9779 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9780 bfd_get_filename (abfd));
9781 return NULL;
9782 }
9783 if (str_offset >= dwarf2_per_objfile->str.size)
9784 {
9785 error (_("DW_FORM_strp pointing outside of "
9786 ".debug_str section [in module %s]"),
9787 bfd_get_filename (abfd));
9788 return NULL;
9789 }
9790 gdb_assert (HOST_CHAR_BIT == 8);
9791 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9792 return NULL;
9793 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9794}
9795
9796static unsigned long
9797read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9798{
9799 unsigned long result;
9800 unsigned int num_read;
9801 int i, shift;
9802 unsigned char byte;
9803
9804 result = 0;
9805 shift = 0;
9806 num_read = 0;
9807 i = 0;
9808 while (1)
9809 {
9810 byte = bfd_get_8 (abfd, buf);
9811 buf++;
9812 num_read++;
9813 result |= ((unsigned long)(byte & 127) << shift);
9814 if ((byte & 128) == 0)
9815 {
9816 break;
9817 }
9818 shift += 7;
9819 }
9820 *bytes_read_ptr = num_read;
9821 return result;
9822}
9823
9824static long
9825read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9826{
9827 long result;
9828 int i, shift, num_read;
9829 unsigned char byte;
9830
9831 result = 0;
9832 shift = 0;
9833 num_read = 0;
9834 i = 0;
9835 while (1)
9836 {
9837 byte = bfd_get_8 (abfd, buf);
9838 buf++;
9839 num_read++;
9840 result |= ((long)(byte & 127) << shift);
9841 shift += 7;
9842 if ((byte & 128) == 0)
9843 {
9844 break;
9845 }
9846 }
9847 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9848 result |= -(((long)1) << shift);
9849 *bytes_read_ptr = num_read;
9850 return result;
9851}
9852
9853/* Return a pointer to just past the end of an LEB128 number in BUF. */
9854
9855static gdb_byte *
9856skip_leb128 (bfd *abfd, gdb_byte *buf)
9857{
9858 int byte;
9859
9860 while (1)
9861 {
9862 byte = bfd_get_8 (abfd, buf);
9863 buf++;
9864 if ((byte & 128) == 0)
9865 return buf;
9866 }
9867}
9868
9869static void
9870set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9871{
9872 switch (lang)
9873 {
9874 case DW_LANG_C89:
9875 case DW_LANG_C99:
9876 case DW_LANG_C:
9877 cu->language = language_c;
9878 break;
9879 case DW_LANG_C_plus_plus:
9880 cu->language = language_cplus;
9881 break;
9882 case DW_LANG_D:
9883 cu->language = language_d;
9884 break;
9885 case DW_LANG_Fortran77:
9886 case DW_LANG_Fortran90:
9887 case DW_LANG_Fortran95:
9888 cu->language = language_fortran;
9889 break;
9890 case DW_LANG_Mips_Assembler:
9891 cu->language = language_asm;
9892 break;
9893 case DW_LANG_Java:
9894 cu->language = language_java;
9895 break;
9896 case DW_LANG_Ada83:
9897 case DW_LANG_Ada95:
9898 cu->language = language_ada;
9899 break;
9900 case DW_LANG_Modula2:
9901 cu->language = language_m2;
9902 break;
9903 case DW_LANG_Pascal83:
9904 cu->language = language_pascal;
9905 break;
9906 case DW_LANG_ObjC:
9907 cu->language = language_objc;
9908 break;
9909 case DW_LANG_Cobol74:
9910 case DW_LANG_Cobol85:
9911 default:
9912 cu->language = language_minimal;
9913 break;
9914 }
9915 cu->language_defn = language_def (cu->language);
9916}
9917
9918/* Return the named attribute or NULL if not there. */
9919
9920static struct attribute *
9921dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9922{
9923 unsigned int i;
9924 struct attribute *spec = NULL;
9925
9926 for (i = 0; i < die->num_attrs; ++i)
9927 {
9928 if (die->attrs[i].name == name)
9929 return &die->attrs[i];
9930 if (die->attrs[i].name == DW_AT_specification
9931 || die->attrs[i].name == DW_AT_abstract_origin)
9932 spec = &die->attrs[i];
9933 }
9934
9935 if (spec)
9936 {
9937 die = follow_die_ref (die, spec, &cu);
9938 return dwarf2_attr (die, name, cu);
9939 }
9940
9941 return NULL;
9942}
9943
9944/* Return the named attribute or NULL if not there,
9945 but do not follow DW_AT_specification, etc.
9946 This is for use in contexts where we're reading .debug_types dies.
9947 Following DW_AT_specification, DW_AT_abstract_origin will take us
9948 back up the chain, and we want to go down. */
9949
9950static struct attribute *
9951dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9952 struct dwarf2_cu *cu)
9953{
9954 unsigned int i;
9955
9956 for (i = 0; i < die->num_attrs; ++i)
9957 if (die->attrs[i].name == name)
9958 return &die->attrs[i];
9959
9960 return NULL;
9961}
9962
9963/* Return non-zero iff the attribute NAME is defined for the given DIE,
9964 and holds a non-zero value. This function should only be used for
9965 DW_FORM_flag or DW_FORM_flag_present attributes. */
9966
9967static int
9968dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9969{
9970 struct attribute *attr = dwarf2_attr (die, name, cu);
9971
9972 return (attr && DW_UNSND (attr));
9973}
9974
9975static int
9976die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9977{
9978 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9979 which value is non-zero. However, we have to be careful with
9980 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9981 (via dwarf2_flag_true_p) follows this attribute. So we may
9982 end up accidently finding a declaration attribute that belongs
9983 to a different DIE referenced by the specification attribute,
9984 even though the given DIE does not have a declaration attribute. */
9985 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9986 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9987}
9988
9989/* Return the die giving the specification for DIE, if there is
9990 one. *SPEC_CU is the CU containing DIE on input, and the CU
9991 containing the return value on output. If there is no
9992 specification, but there is an abstract origin, that is
9993 returned. */
9994
9995static struct die_info *
9996die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9997{
9998 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9999 *spec_cu);
10000
10001 if (spec_attr == NULL)
10002 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10003
10004 if (spec_attr == NULL)
10005 return NULL;
10006 else
10007 return follow_die_ref (die, spec_attr, spec_cu);
10008}
10009
10010/* Free the line_header structure *LH, and any arrays and strings it
10011 refers to.
10012 NOTE: This is also used as a "cleanup" function. */
10013
10014static void
10015free_line_header (struct line_header *lh)
10016{
10017 if (lh->standard_opcode_lengths)
10018 xfree (lh->standard_opcode_lengths);
10019
10020 /* Remember that all the lh->file_names[i].name pointers are
10021 pointers into debug_line_buffer, and don't need to be freed. */
10022 if (lh->file_names)
10023 xfree (lh->file_names);
10024
10025 /* Similarly for the include directory names. */
10026 if (lh->include_dirs)
10027 xfree (lh->include_dirs);
10028
10029 xfree (lh);
10030}
10031
10032/* Add an entry to LH's include directory table. */
10033
10034static void
10035add_include_dir (struct line_header *lh, char *include_dir)
10036{
10037 /* Grow the array if necessary. */
10038 if (lh->include_dirs_size == 0)
10039 {
10040 lh->include_dirs_size = 1; /* for testing */
10041 lh->include_dirs = xmalloc (lh->include_dirs_size
10042 * sizeof (*lh->include_dirs));
10043 }
10044 else if (lh->num_include_dirs >= lh->include_dirs_size)
10045 {
10046 lh->include_dirs_size *= 2;
10047 lh->include_dirs = xrealloc (lh->include_dirs,
10048 (lh->include_dirs_size
10049 * sizeof (*lh->include_dirs)));
10050 }
10051
10052 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10053}
10054
10055/* Add an entry to LH's file name table. */
10056
10057static void
10058add_file_name (struct line_header *lh,
10059 char *name,
10060 unsigned int dir_index,
10061 unsigned int mod_time,
10062 unsigned int length)
10063{
10064 struct file_entry *fe;
10065
10066 /* Grow the array if necessary. */
10067 if (lh->file_names_size == 0)
10068 {
10069 lh->file_names_size = 1; /* for testing */
10070 lh->file_names = xmalloc (lh->file_names_size
10071 * sizeof (*lh->file_names));
10072 }
10073 else if (lh->num_file_names >= lh->file_names_size)
10074 {
10075 lh->file_names_size *= 2;
10076 lh->file_names = xrealloc (lh->file_names,
10077 (lh->file_names_size
10078 * sizeof (*lh->file_names)));
10079 }
10080
10081 fe = &lh->file_names[lh->num_file_names++];
10082 fe->name = name;
10083 fe->dir_index = dir_index;
10084 fe->mod_time = mod_time;
10085 fe->length = length;
10086 fe->included_p = 0;
10087 fe->symtab = NULL;
10088}
10089
10090/* Read the statement program header starting at OFFSET in
10091 .debug_line, according to the endianness of ABFD. Return a pointer
10092 to a struct line_header, allocated using xmalloc.
10093
10094 NOTE: the strings in the include directory and file name tables of
10095 the returned object point into debug_line_buffer, and must not be
10096 freed. */
10097
10098static struct line_header *
10099dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10100 struct dwarf2_cu *cu)
10101{
10102 struct cleanup *back_to;
10103 struct line_header *lh;
10104 gdb_byte *line_ptr;
10105 unsigned int bytes_read, offset_size;
10106 int i;
10107 char *cur_dir, *cur_file;
10108
10109 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10110 if (dwarf2_per_objfile->line.buffer == NULL)
10111 {
10112 complaint (&symfile_complaints, _("missing .debug_line section"));
10113 return 0;
10114 }
10115
10116 /* Make sure that at least there's room for the total_length field.
10117 That could be 12 bytes long, but we're just going to fudge that. */
10118 if (offset + 4 >= dwarf2_per_objfile->line.size)
10119 {
10120 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10121 return 0;
10122 }
10123
10124 lh = xmalloc (sizeof (*lh));
10125 memset (lh, 0, sizeof (*lh));
10126 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10127 (void *) lh);
10128
10129 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10130
10131 /* Read in the header. */
10132 lh->total_length =
10133 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10134 &bytes_read, &offset_size);
10135 line_ptr += bytes_read;
10136 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10137 + dwarf2_per_objfile->line.size))
10138 {
10139 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10140 return 0;
10141 }
10142 lh->statement_program_end = line_ptr + lh->total_length;
10143 lh->version = read_2_bytes (abfd, line_ptr);
10144 line_ptr += 2;
10145 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10146 line_ptr += offset_size;
10147 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10148 line_ptr += 1;
10149 if (lh->version >= 4)
10150 {
10151 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10152 line_ptr += 1;
10153 }
10154 else
10155 lh->maximum_ops_per_instruction = 1;
10156
10157 if (lh->maximum_ops_per_instruction == 0)
10158 {
10159 lh->maximum_ops_per_instruction = 1;
10160 complaint (&symfile_complaints,
10161 _("invalid maximum_ops_per_instruction "
10162 "in `.debug_line' section"));
10163 }
10164
10165 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10166 line_ptr += 1;
10167 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10168 line_ptr += 1;
10169 lh->line_range = read_1_byte (abfd, line_ptr);
10170 line_ptr += 1;
10171 lh->opcode_base = read_1_byte (abfd, line_ptr);
10172 line_ptr += 1;
10173 lh->standard_opcode_lengths
10174 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10175
10176 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10177 for (i = 1; i < lh->opcode_base; ++i)
10178 {
10179 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10180 line_ptr += 1;
10181 }
10182
10183 /* Read directory table. */
10184 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10185 {
10186 line_ptr += bytes_read;
10187 add_include_dir (lh, cur_dir);
10188 }
10189 line_ptr += bytes_read;
10190
10191 /* Read file name table. */
10192 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10193 {
10194 unsigned int dir_index, mod_time, length;
10195
10196 line_ptr += bytes_read;
10197 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10198 line_ptr += bytes_read;
10199 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10200 line_ptr += bytes_read;
10201 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10202 line_ptr += bytes_read;
10203
10204 add_file_name (lh, cur_file, dir_index, mod_time, length);
10205 }
10206 line_ptr += bytes_read;
10207 lh->statement_program_start = line_ptr;
10208
10209 if (line_ptr > (dwarf2_per_objfile->line.buffer
10210 + dwarf2_per_objfile->line.size))
10211 complaint (&symfile_complaints,
10212 _("line number info header doesn't "
10213 "fit in `.debug_line' section"));
10214
10215 discard_cleanups (back_to);
10216 return lh;
10217}
10218
10219/* This function exists to work around a bug in certain compilers
10220 (particularly GCC 2.95), in which the first line number marker of a
10221 function does not show up until after the prologue, right before
10222 the second line number marker. This function shifts ADDRESS down
10223 to the beginning of the function if necessary, and is called on
10224 addresses passed to record_line. */
10225
10226static CORE_ADDR
10227check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
10228{
10229 struct function_range *fn;
10230
10231 /* Find the function_range containing address. */
10232 if (!cu->first_fn)
10233 return address;
10234
10235 if (!cu->cached_fn)
10236 cu->cached_fn = cu->first_fn;
10237
10238 fn = cu->cached_fn;
10239 while (fn)
10240 if (fn->lowpc <= address && fn->highpc > address)
10241 goto found;
10242 else
10243 fn = fn->next;
10244
10245 fn = cu->first_fn;
10246 while (fn && fn != cu->cached_fn)
10247 if (fn->lowpc <= address && fn->highpc > address)
10248 goto found;
10249 else
10250 fn = fn->next;
10251
10252 return address;
10253
10254 found:
10255 if (fn->seen_line)
10256 return address;
10257 if (address != fn->lowpc)
10258 complaint (&symfile_complaints,
10259 _("misplaced first line number at 0x%lx for '%s'"),
10260 (unsigned long) address, fn->name);
10261 fn->seen_line = 1;
10262 return fn->lowpc;
10263}
10264
10265/* Subroutine of dwarf_decode_lines to simplify it.
10266 Return the file name of the psymtab for included file FILE_INDEX
10267 in line header LH of PST.
10268 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10269 If space for the result is malloc'd, it will be freed by a cleanup.
10270 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10271
10272static char *
10273psymtab_include_file_name (const struct line_header *lh, int file_index,
10274 const struct partial_symtab *pst,
10275 const char *comp_dir)
10276{
10277 const struct file_entry fe = lh->file_names [file_index];
10278 char *include_name = fe.name;
10279 char *include_name_to_compare = include_name;
10280 char *dir_name = NULL;
10281 const char *pst_filename;
10282 char *copied_name = NULL;
10283 int file_is_pst;
10284
10285 if (fe.dir_index)
10286 dir_name = lh->include_dirs[fe.dir_index - 1];
10287
10288 if (!IS_ABSOLUTE_PATH (include_name)
10289 && (dir_name != NULL || comp_dir != NULL))
10290 {
10291 /* Avoid creating a duplicate psymtab for PST.
10292 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10293 Before we do the comparison, however, we need to account
10294 for DIR_NAME and COMP_DIR.
10295 First prepend dir_name (if non-NULL). If we still don't
10296 have an absolute path prepend comp_dir (if non-NULL).
10297 However, the directory we record in the include-file's
10298 psymtab does not contain COMP_DIR (to match the
10299 corresponding symtab(s)).
10300
10301 Example:
10302
10303 bash$ cd /tmp
10304 bash$ gcc -g ./hello.c
10305 include_name = "hello.c"
10306 dir_name = "."
10307 DW_AT_comp_dir = comp_dir = "/tmp"
10308 DW_AT_name = "./hello.c" */
10309
10310 if (dir_name != NULL)
10311 {
10312 include_name = concat (dir_name, SLASH_STRING,
10313 include_name, (char *)NULL);
10314 include_name_to_compare = include_name;
10315 make_cleanup (xfree, include_name);
10316 }
10317 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10318 {
10319 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10320 include_name, (char *)NULL);
10321 }
10322 }
10323
10324 pst_filename = pst->filename;
10325 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10326 {
10327 copied_name = concat (pst->dirname, SLASH_STRING,
10328 pst_filename, (char *)NULL);
10329 pst_filename = copied_name;
10330 }
10331
10332 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10333
10334 if (include_name_to_compare != include_name)
10335 xfree (include_name_to_compare);
10336 if (copied_name != NULL)
10337 xfree (copied_name);
10338
10339 if (file_is_pst)
10340 return NULL;
10341 return include_name;
10342}
10343
10344/* Decode the Line Number Program (LNP) for the given line_header
10345 structure and CU. The actual information extracted and the type
10346 of structures created from the LNP depends on the value of PST.
10347
10348 1. If PST is NULL, then this procedure uses the data from the program
10349 to create all necessary symbol tables, and their linetables.
10350
10351 2. If PST is not NULL, this procedure reads the program to determine
10352 the list of files included by the unit represented by PST, and
10353 builds all the associated partial symbol tables.
10354
10355 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10356 It is used for relative paths in the line table.
10357 NOTE: When processing partial symtabs (pst != NULL),
10358 comp_dir == pst->dirname.
10359
10360 NOTE: It is important that psymtabs have the same file name (via strcmp)
10361 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10362 symtab we don't use it in the name of the psymtabs we create.
10363 E.g. expand_line_sal requires this when finding psymtabs to expand.
10364 A good testcase for this is mb-inline.exp. */
10365
10366static void
10367dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10368 struct dwarf2_cu *cu, struct partial_symtab *pst)
10369{
10370 gdb_byte *line_ptr, *extended_end;
10371 gdb_byte *line_end;
10372 unsigned int bytes_read, extended_len;
10373 unsigned char op_code, extended_op, adj_opcode;
10374 CORE_ADDR baseaddr;
10375 struct objfile *objfile = cu->objfile;
10376 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10377 const int decode_for_pst_p = (pst != NULL);
10378 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10379
10380 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10381
10382 line_ptr = lh->statement_program_start;
10383 line_end = lh->statement_program_end;
10384
10385 /* Read the statement sequences until there's nothing left. */
10386 while (line_ptr < line_end)
10387 {
10388 /* state machine registers */
10389 CORE_ADDR address = 0;
10390 unsigned int file = 1;
10391 unsigned int line = 1;
10392 unsigned int column = 0;
10393 int is_stmt = lh->default_is_stmt;
10394 int basic_block = 0;
10395 int end_sequence = 0;
10396 CORE_ADDR addr;
10397 unsigned char op_index = 0;
10398
10399 if (!decode_for_pst_p && lh->num_file_names >= file)
10400 {
10401 /* Start a subfile for the current file of the state machine. */
10402 /* lh->include_dirs and lh->file_names are 0-based, but the
10403 directory and file name numbers in the statement program
10404 are 1-based. */
10405 struct file_entry *fe = &lh->file_names[file - 1];
10406 char *dir = NULL;
10407
10408 if (fe->dir_index)
10409 dir = lh->include_dirs[fe->dir_index - 1];
10410
10411 dwarf2_start_subfile (fe->name, dir, comp_dir);
10412 }
10413
10414 /* Decode the table. */
10415 while (!end_sequence)
10416 {
10417 op_code = read_1_byte (abfd, line_ptr);
10418 line_ptr += 1;
10419 if (line_ptr > line_end)
10420 {
10421 dwarf2_debug_line_missing_end_sequence_complaint ();
10422 break;
10423 }
10424
10425 if (op_code >= lh->opcode_base)
10426 {
10427 /* Special operand. */
10428 adj_opcode = op_code - lh->opcode_base;
10429 address += (((op_index + (adj_opcode / lh->line_range))
10430 / lh->maximum_ops_per_instruction)
10431 * lh->minimum_instruction_length);
10432 op_index = ((op_index + (adj_opcode / lh->line_range))
10433 % lh->maximum_ops_per_instruction);
10434 line += lh->line_base + (adj_opcode % lh->line_range);
10435 if (lh->num_file_names < file || file == 0)
10436 dwarf2_debug_line_missing_file_complaint ();
10437 /* For now we ignore lines not starting on an
10438 instruction boundary. */
10439 else if (op_index == 0)
10440 {
10441 lh->file_names[file - 1].included_p = 1;
10442 if (!decode_for_pst_p && is_stmt)
10443 {
10444 if (last_subfile != current_subfile)
10445 {
10446 addr = gdbarch_addr_bits_remove (gdbarch, address);
10447 if (last_subfile)
10448 record_line (last_subfile, 0, addr);
10449 last_subfile = current_subfile;
10450 }
10451 /* Append row to matrix using current values. */
10452 addr = check_cu_functions (address, cu);
10453 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10454 record_line (current_subfile, line, addr);
10455 }
10456 }
10457 basic_block = 0;
10458 }
10459 else switch (op_code)
10460 {
10461 case DW_LNS_extended_op:
10462 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10463 &bytes_read);
10464 line_ptr += bytes_read;
10465 extended_end = line_ptr + extended_len;
10466 extended_op = read_1_byte (abfd, line_ptr);
10467 line_ptr += 1;
10468 switch (extended_op)
10469 {
10470 case DW_LNE_end_sequence:
10471 end_sequence = 1;
10472 break;
10473 case DW_LNE_set_address:
10474 address = read_address (abfd, line_ptr, cu, &bytes_read);
10475 op_index = 0;
10476 line_ptr += bytes_read;
10477 address += baseaddr;
10478 break;
10479 case DW_LNE_define_file:
10480 {
10481 char *cur_file;
10482 unsigned int dir_index, mod_time, length;
10483
10484 cur_file = read_direct_string (abfd, line_ptr,
10485 &bytes_read);
10486 line_ptr += bytes_read;
10487 dir_index =
10488 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10489 line_ptr += bytes_read;
10490 mod_time =
10491 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10492 line_ptr += bytes_read;
10493 length =
10494 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10495 line_ptr += bytes_read;
10496 add_file_name (lh, cur_file, dir_index, mod_time, length);
10497 }
10498 break;
10499 case DW_LNE_set_discriminator:
10500 /* The discriminator is not interesting to the debugger;
10501 just ignore it. */
10502 line_ptr = extended_end;
10503 break;
10504 default:
10505 complaint (&symfile_complaints,
10506 _("mangled .debug_line section"));
10507 return;
10508 }
10509 /* Make sure that we parsed the extended op correctly. If e.g.
10510 we expected a different address size than the producer used,
10511 we may have read the wrong number of bytes. */
10512 if (line_ptr != extended_end)
10513 {
10514 complaint (&symfile_complaints,
10515 _("mangled .debug_line section"));
10516 return;
10517 }
10518 break;
10519 case DW_LNS_copy:
10520 if (lh->num_file_names < file || file == 0)
10521 dwarf2_debug_line_missing_file_complaint ();
10522 else
10523 {
10524 lh->file_names[file - 1].included_p = 1;
10525 if (!decode_for_pst_p && is_stmt)
10526 {
10527 if (last_subfile != current_subfile)
10528 {
10529 addr = gdbarch_addr_bits_remove (gdbarch, address);
10530 if (last_subfile)
10531 record_line (last_subfile, 0, addr);
10532 last_subfile = current_subfile;
10533 }
10534 addr = check_cu_functions (address, cu);
10535 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10536 record_line (current_subfile, line, addr);
10537 }
10538 }
10539 basic_block = 0;
10540 break;
10541 case DW_LNS_advance_pc:
10542 {
10543 CORE_ADDR adjust
10544 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10545
10546 address += (((op_index + adjust)
10547 / lh->maximum_ops_per_instruction)
10548 * lh->minimum_instruction_length);
10549 op_index = ((op_index + adjust)
10550 % lh->maximum_ops_per_instruction);
10551 line_ptr += bytes_read;
10552 }
10553 break;
10554 case DW_LNS_advance_line:
10555 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10556 line_ptr += bytes_read;
10557 break;
10558 case DW_LNS_set_file:
10559 {
10560 /* The arrays lh->include_dirs and lh->file_names are
10561 0-based, but the directory and file name numbers in
10562 the statement program are 1-based. */
10563 struct file_entry *fe;
10564 char *dir = NULL;
10565
10566 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10567 line_ptr += bytes_read;
10568 if (lh->num_file_names < file || file == 0)
10569 dwarf2_debug_line_missing_file_complaint ();
10570 else
10571 {
10572 fe = &lh->file_names[file - 1];
10573 if (fe->dir_index)
10574 dir = lh->include_dirs[fe->dir_index - 1];
10575 if (!decode_for_pst_p)
10576 {
10577 last_subfile = current_subfile;
10578 dwarf2_start_subfile (fe->name, dir, comp_dir);
10579 }
10580 }
10581 }
10582 break;
10583 case DW_LNS_set_column:
10584 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10585 line_ptr += bytes_read;
10586 break;
10587 case DW_LNS_negate_stmt:
10588 is_stmt = (!is_stmt);
10589 break;
10590 case DW_LNS_set_basic_block:
10591 basic_block = 1;
10592 break;
10593 /* Add to the address register of the state machine the
10594 address increment value corresponding to special opcode
10595 255. I.e., this value is scaled by the minimum
10596 instruction length since special opcode 255 would have
10597 scaled the the increment. */
10598 case DW_LNS_const_add_pc:
10599 {
10600 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10601
10602 address += (((op_index + adjust)
10603 / lh->maximum_ops_per_instruction)
10604 * lh->minimum_instruction_length);
10605 op_index = ((op_index + adjust)
10606 % lh->maximum_ops_per_instruction);
10607 }
10608 break;
10609 case DW_LNS_fixed_advance_pc:
10610 address += read_2_bytes (abfd, line_ptr);
10611 op_index = 0;
10612 line_ptr += 2;
10613 break;
10614 default:
10615 {
10616 /* Unknown standard opcode, ignore it. */
10617 int i;
10618
10619 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10620 {
10621 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10622 line_ptr += bytes_read;
10623 }
10624 }
10625 }
10626 }
10627 if (lh->num_file_names < file || file == 0)
10628 dwarf2_debug_line_missing_file_complaint ();
10629 else
10630 {
10631 lh->file_names[file - 1].included_p = 1;
10632 if (!decode_for_pst_p)
10633 {
10634 addr = gdbarch_addr_bits_remove (gdbarch, address);
10635 record_line (current_subfile, 0, addr);
10636 }
10637 }
10638 }
10639
10640 if (decode_for_pst_p)
10641 {
10642 int file_index;
10643
10644 /* Now that we're done scanning the Line Header Program, we can
10645 create the psymtab of each included file. */
10646 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10647 if (lh->file_names[file_index].included_p == 1)
10648 {
10649 char *include_name =
10650 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10651 if (include_name != NULL)
10652 dwarf2_create_include_psymtab (include_name, pst, objfile);
10653 }
10654 }
10655 else
10656 {
10657 /* Make sure a symtab is created for every file, even files
10658 which contain only variables (i.e. no code with associated
10659 line numbers). */
10660
10661 int i;
10662 struct file_entry *fe;
10663
10664 for (i = 0; i < lh->num_file_names; i++)
10665 {
10666 char *dir = NULL;
10667
10668 fe = &lh->file_names[i];
10669 if (fe->dir_index)
10670 dir = lh->include_dirs[fe->dir_index - 1];
10671 dwarf2_start_subfile (fe->name, dir, comp_dir);
10672
10673 /* Skip the main file; we don't need it, and it must be
10674 allocated last, so that it will show up before the
10675 non-primary symtabs in the objfile's symtab list. */
10676 if (current_subfile == first_subfile)
10677 continue;
10678
10679 if (current_subfile->symtab == NULL)
10680 current_subfile->symtab = allocate_symtab (current_subfile->name,
10681 cu->objfile);
10682 fe->symtab = current_subfile->symtab;
10683 }
10684 }
10685}
10686
10687/* Start a subfile for DWARF. FILENAME is the name of the file and
10688 DIRNAME the name of the source directory which contains FILENAME
10689 or NULL if not known. COMP_DIR is the compilation directory for the
10690 linetable's compilation unit or NULL if not known.
10691 This routine tries to keep line numbers from identical absolute and
10692 relative file names in a common subfile.
10693
10694 Using the `list' example from the GDB testsuite, which resides in
10695 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10696 of /srcdir/list0.c yields the following debugging information for list0.c:
10697
10698 DW_AT_name: /srcdir/list0.c
10699 DW_AT_comp_dir: /compdir
10700 files.files[0].name: list0.h
10701 files.files[0].dir: /srcdir
10702 files.files[1].name: list0.c
10703 files.files[1].dir: /srcdir
10704
10705 The line number information for list0.c has to end up in a single
10706 subfile, so that `break /srcdir/list0.c:1' works as expected.
10707 start_subfile will ensure that this happens provided that we pass the
10708 concatenation of files.files[1].dir and files.files[1].name as the
10709 subfile's name. */
10710
10711static void
10712dwarf2_start_subfile (char *filename, const char *dirname,
10713 const char *comp_dir)
10714{
10715 char *fullname;
10716
10717 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10718 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10719 second argument to start_subfile. To be consistent, we do the
10720 same here. In order not to lose the line information directory,
10721 we concatenate it to the filename when it makes sense.
10722 Note that the Dwarf3 standard says (speaking of filenames in line
10723 information): ``The directory index is ignored for file names
10724 that represent full path names''. Thus ignoring dirname in the
10725 `else' branch below isn't an issue. */
10726
10727 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10728 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10729 else
10730 fullname = filename;
10731
10732 start_subfile (fullname, comp_dir);
10733
10734 if (fullname != filename)
10735 xfree (fullname);
10736}
10737
10738static void
10739var_decode_location (struct attribute *attr, struct symbol *sym,
10740 struct dwarf2_cu *cu)
10741{
10742 struct objfile *objfile = cu->objfile;
10743 struct comp_unit_head *cu_header = &cu->header;
10744
10745 /* NOTE drow/2003-01-30: There used to be a comment and some special
10746 code here to turn a symbol with DW_AT_external and a
10747 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10748 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10749 with some versions of binutils) where shared libraries could have
10750 relocations against symbols in their debug information - the
10751 minimal symbol would have the right address, but the debug info
10752 would not. It's no longer necessary, because we will explicitly
10753 apply relocations when we read in the debug information now. */
10754
10755 /* A DW_AT_location attribute with no contents indicates that a
10756 variable has been optimized away. */
10757 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10758 {
10759 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10760 return;
10761 }
10762
10763 /* Handle one degenerate form of location expression specially, to
10764 preserve GDB's previous behavior when section offsets are
10765 specified. If this is just a DW_OP_addr then mark this symbol
10766 as LOC_STATIC. */
10767
10768 if (attr_form_is_block (attr)
10769 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10770 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10771 {
10772 unsigned int dummy;
10773
10774 SYMBOL_VALUE_ADDRESS (sym) =
10775 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10776 SYMBOL_CLASS (sym) = LOC_STATIC;
10777 fixup_symbol_section (sym, objfile);
10778 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10779 SYMBOL_SECTION (sym));
10780 return;
10781 }
10782
10783 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10784 expression evaluator, and use LOC_COMPUTED only when necessary
10785 (i.e. when the value of a register or memory location is
10786 referenced, or a thread-local block, etc.). Then again, it might
10787 not be worthwhile. I'm assuming that it isn't unless performance
10788 or memory numbers show me otherwise. */
10789
10790 dwarf2_symbol_mark_computed (attr, sym, cu);
10791 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10792}
10793
10794/* Given a pointer to a DWARF information entry, figure out if we need
10795 to make a symbol table entry for it, and if so, create a new entry
10796 and return a pointer to it.
10797 If TYPE is NULL, determine symbol type from the die, otherwise
10798 used the passed type.
10799 If SPACE is not NULL, use it to hold the new symbol. If it is
10800 NULL, allocate a new symbol on the objfile's obstack. */
10801
10802static struct symbol *
10803new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10804 struct symbol *space)
10805{
10806 struct objfile *objfile = cu->objfile;
10807 struct symbol *sym = NULL;
10808 char *name;
10809 struct attribute *attr = NULL;
10810 struct attribute *attr2 = NULL;
10811 CORE_ADDR baseaddr;
10812 struct pending **list_to_add = NULL;
10813
10814 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10815
10816 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10817
10818 name = dwarf2_name (die, cu);
10819 if (name)
10820 {
10821 const char *linkagename;
10822 int suppress_add = 0;
10823
10824 if (space)
10825 sym = space;
10826 else
10827 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10828 OBJSTAT (objfile, n_syms++);
10829
10830 /* Cache this symbol's name and the name's demangled form (if any). */
10831 SYMBOL_SET_LANGUAGE (sym, cu->language);
10832 linkagename = dwarf2_physname (name, die, cu);
10833 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10834
10835 /* Fortran does not have mangling standard and the mangling does differ
10836 between gfortran, iFort etc. */
10837 if (cu->language == language_fortran
10838 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10839 symbol_set_demangled_name (&(sym->ginfo),
10840 (char *) dwarf2_full_name (name, die, cu),
10841 NULL);
10842
10843 /* Default assumptions.
10844 Use the passed type or decode it from the die. */
10845 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10846 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10847 if (type != NULL)
10848 SYMBOL_TYPE (sym) = type;
10849 else
10850 SYMBOL_TYPE (sym) = die_type (die, cu);
10851 attr = dwarf2_attr (die,
10852 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10853 cu);
10854 if (attr)
10855 {
10856 SYMBOL_LINE (sym) = DW_UNSND (attr);
10857 }
10858
10859 attr = dwarf2_attr (die,
10860 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10861 cu);
10862 if (attr)
10863 {
10864 int file_index = DW_UNSND (attr);
10865
10866 if (cu->line_header == NULL
10867 || file_index > cu->line_header->num_file_names)
10868 complaint (&symfile_complaints,
10869 _("file index out of range"));
10870 else if (file_index > 0)
10871 {
10872 struct file_entry *fe;
10873
10874 fe = &cu->line_header->file_names[file_index - 1];
10875 SYMBOL_SYMTAB (sym) = fe->symtab;
10876 }
10877 }
10878
10879 switch (die->tag)
10880 {
10881 case DW_TAG_label:
10882 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10883 if (attr)
10884 {
10885 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10886 }
10887 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10888 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10889 SYMBOL_CLASS (sym) = LOC_LABEL;
10890 add_symbol_to_list (sym, cu->list_in_scope);
10891 break;
10892 case DW_TAG_subprogram:
10893 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10894 finish_block. */
10895 SYMBOL_CLASS (sym) = LOC_BLOCK;
10896 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10897 if ((attr2 && (DW_UNSND (attr2) != 0))
10898 || cu->language == language_ada)
10899 {
10900 /* Subprograms marked external are stored as a global symbol.
10901 Ada subprograms, whether marked external or not, are always
10902 stored as a global symbol, because we want to be able to
10903 access them globally. For instance, we want to be able
10904 to break on a nested subprogram without having to
10905 specify the context. */
10906 list_to_add = &global_symbols;
10907 }
10908 else
10909 {
10910 list_to_add = cu->list_in_scope;
10911 }
10912 break;
10913 case DW_TAG_inlined_subroutine:
10914 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10915 finish_block. */
10916 SYMBOL_CLASS (sym) = LOC_BLOCK;
10917 SYMBOL_INLINED (sym) = 1;
10918 /* Do not add the symbol to any lists. It will be found via
10919 BLOCK_FUNCTION from the blockvector. */
10920 break;
10921 case DW_TAG_template_value_param:
10922 suppress_add = 1;
10923 /* Fall through. */
10924 case DW_TAG_constant:
10925 case DW_TAG_variable:
10926 case DW_TAG_member:
10927 /* Compilation with minimal debug info may result in
10928 variables with missing type entries. Change the
10929 misleading `void' type to something sensible. */
10930 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10931 SYMBOL_TYPE (sym)
10932 = objfile_type (objfile)->nodebug_data_symbol;
10933
10934 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10935 /* In the case of DW_TAG_member, we should only be called for
10936 static const members. */
10937 if (die->tag == DW_TAG_member)
10938 {
10939 /* dwarf2_add_field uses die_is_declaration,
10940 so we do the same. */
10941 gdb_assert (die_is_declaration (die, cu));
10942 gdb_assert (attr);
10943 }
10944 if (attr)
10945 {
10946 dwarf2_const_value (attr, sym, cu);
10947 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10948 if (!suppress_add)
10949 {
10950 if (attr2 && (DW_UNSND (attr2) != 0))
10951 list_to_add = &global_symbols;
10952 else
10953 list_to_add = cu->list_in_scope;
10954 }
10955 break;
10956 }
10957 attr = dwarf2_attr (die, DW_AT_location, cu);
10958 if (attr)
10959 {
10960 var_decode_location (attr, sym, cu);
10961 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10962 if (SYMBOL_CLASS (sym) == LOC_STATIC
10963 && SYMBOL_VALUE_ADDRESS (sym) == 0
10964 && !dwarf2_per_objfile->has_section_at_zero)
10965 {
10966 /* When a static variable is eliminated by the linker,
10967 the corresponding debug information is not stripped
10968 out, but the variable address is set to null;
10969 do not add such variables into symbol table. */
10970 }
10971 else if (attr2 && (DW_UNSND (attr2) != 0))
10972 {
10973 /* Workaround gfortran PR debug/40040 - it uses
10974 DW_AT_location for variables in -fPIC libraries which may
10975 get overriden by other libraries/executable and get
10976 a different address. Resolve it by the minimal symbol
10977 which may come from inferior's executable using copy
10978 relocation. Make this workaround only for gfortran as for
10979 other compilers GDB cannot guess the minimal symbol
10980 Fortran mangling kind. */
10981 if (cu->language == language_fortran && die->parent
10982 && die->parent->tag == DW_TAG_module
10983 && cu->producer
10984 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10985 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10986
10987 /* A variable with DW_AT_external is never static,
10988 but it may be block-scoped. */
10989 list_to_add = (cu->list_in_scope == &file_symbols
10990 ? &global_symbols : cu->list_in_scope);
10991 }
10992 else
10993 list_to_add = cu->list_in_scope;
10994 }
10995 else
10996 {
10997 /* We do not know the address of this symbol.
10998 If it is an external symbol and we have type information
10999 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11000 The address of the variable will then be determined from
11001 the minimal symbol table whenever the variable is
11002 referenced. */
11003 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11004 if (attr2 && (DW_UNSND (attr2) != 0)
11005 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11006 {
11007 /* A variable with DW_AT_external is never static, but it
11008 may be block-scoped. */
11009 list_to_add = (cu->list_in_scope == &file_symbols
11010 ? &global_symbols : cu->list_in_scope);
11011
11012 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11013 }
11014 else if (!die_is_declaration (die, cu))
11015 {
11016 /* Use the default LOC_OPTIMIZED_OUT class. */
11017 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11018 if (!suppress_add)
11019 list_to_add = cu->list_in_scope;
11020 }
11021 }
11022 break;
11023 case DW_TAG_formal_parameter:
11024 /* If we are inside a function, mark this as an argument. If
11025 not, we might be looking at an argument to an inlined function
11026 when we do not have enough information to show inlined frames;
11027 pretend it's a local variable in that case so that the user can
11028 still see it. */
11029 if (context_stack_depth > 0
11030 && context_stack[context_stack_depth - 1].name != NULL)
11031 SYMBOL_IS_ARGUMENT (sym) = 1;
11032 attr = dwarf2_attr (die, DW_AT_location, cu);
11033 if (attr)
11034 {
11035 var_decode_location (attr, sym, cu);
11036 }
11037 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11038 if (attr)
11039 {
11040 dwarf2_const_value (attr, sym, cu);
11041 }
11042 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
11043 if (attr && DW_UNSND (attr))
11044 {
11045 struct type *ref_type;
11046
11047 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
11048 SYMBOL_TYPE (sym) = ref_type;
11049 }
11050
11051 list_to_add = cu->list_in_scope;
11052 break;
11053 case DW_TAG_unspecified_parameters:
11054 /* From varargs functions; gdb doesn't seem to have any
11055 interest in this information, so just ignore it for now.
11056 (FIXME?) */
11057 break;
11058 case DW_TAG_template_type_param:
11059 suppress_add = 1;
11060 /* Fall through. */
11061 case DW_TAG_class_type:
11062 case DW_TAG_interface_type:
11063 case DW_TAG_structure_type:
11064 case DW_TAG_union_type:
11065 case DW_TAG_set_type:
11066 case DW_TAG_enumeration_type:
11067 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11068 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11069
11070 {
11071 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11072 really ever be static objects: otherwise, if you try
11073 to, say, break of a class's method and you're in a file
11074 which doesn't mention that class, it won't work unless
11075 the check for all static symbols in lookup_symbol_aux
11076 saves you. See the OtherFileClass tests in
11077 gdb.c++/namespace.exp. */
11078
11079 if (!suppress_add)
11080 {
11081 list_to_add = (cu->list_in_scope == &file_symbols
11082 && (cu->language == language_cplus
11083 || cu->language == language_java)
11084 ? &global_symbols : cu->list_in_scope);
11085
11086 /* The semantics of C++ state that "struct foo {
11087 ... }" also defines a typedef for "foo". A Java
11088 class declaration also defines a typedef for the
11089 class. */
11090 if (cu->language == language_cplus
11091 || cu->language == language_java
11092 || cu->language == language_ada)
11093 {
11094 /* The symbol's name is already allocated along
11095 with this objfile, so we don't need to
11096 duplicate it for the type. */
11097 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11098 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11099 }
11100 }
11101 }
11102 break;
11103 case DW_TAG_typedef:
11104 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11105 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11106 list_to_add = cu->list_in_scope;
11107 break;
11108 case DW_TAG_base_type:
11109 case DW_TAG_subrange_type:
11110 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11112 list_to_add = cu->list_in_scope;
11113 break;
11114 case DW_TAG_enumerator:
11115 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11116 if (attr)
11117 {
11118 dwarf2_const_value (attr, sym, cu);
11119 }
11120 {
11121 /* NOTE: carlton/2003-11-10: See comment above in the
11122 DW_TAG_class_type, etc. block. */
11123
11124 list_to_add = (cu->list_in_scope == &file_symbols
11125 && (cu->language == language_cplus
11126 || cu->language == language_java)
11127 ? &global_symbols : cu->list_in_scope);
11128 }
11129 break;
11130 case DW_TAG_namespace:
11131 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11132 list_to_add = &global_symbols;
11133 break;
11134 default:
11135 /* Not a tag we recognize. Hopefully we aren't processing
11136 trash data, but since we must specifically ignore things
11137 we don't recognize, there is nothing else we should do at
11138 this point. */
11139 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11140 dwarf_tag_name (die->tag));
11141 break;
11142 }
11143
11144 if (suppress_add)
11145 {
11146 sym->hash_next = objfile->template_symbols;
11147 objfile->template_symbols = sym;
11148 list_to_add = NULL;
11149 }
11150
11151 if (list_to_add != NULL)
11152 add_symbol_to_list (sym, list_to_add);
11153
11154 /* For the benefit of old versions of GCC, check for anonymous
11155 namespaces based on the demangled name. */
11156 if (!processing_has_namespace_info
11157 && cu->language == language_cplus)
11158 cp_scan_for_anonymous_namespaces (sym);
11159 }
11160 return (sym);
11161}
11162
11163/* A wrapper for new_symbol_full that always allocates a new symbol. */
11164
11165static struct symbol *
11166new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11167{
11168 return new_symbol_full (die, type, cu, NULL);
11169}
11170
11171/* Given an attr with a DW_FORM_dataN value in host byte order,
11172 zero-extend it as appropriate for the symbol's type. The DWARF
11173 standard (v4) is not entirely clear about the meaning of using
11174 DW_FORM_dataN for a constant with a signed type, where the type is
11175 wider than the data. The conclusion of a discussion on the DWARF
11176 list was that this is unspecified. We choose to always zero-extend
11177 because that is the interpretation long in use by GCC. */
11178
11179static gdb_byte *
11180dwarf2_const_value_data (struct attribute *attr, struct type *type,
11181 const char *name, struct obstack *obstack,
11182 struct dwarf2_cu *cu, long *value, int bits)
11183{
11184 struct objfile *objfile = cu->objfile;
11185 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11186 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11187 LONGEST l = DW_UNSND (attr);
11188
11189 if (bits < sizeof (*value) * 8)
11190 {
11191 l &= ((LONGEST) 1 << bits) - 1;
11192 *value = l;
11193 }
11194 else if (bits == sizeof (*value) * 8)
11195 *value = l;
11196 else
11197 {
11198 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11199 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11200 return bytes;
11201 }
11202
11203 return NULL;
11204}
11205
11206/* Read a constant value from an attribute. Either set *VALUE, or if
11207 the value does not fit in *VALUE, set *BYTES - either already
11208 allocated on the objfile obstack, or newly allocated on OBSTACK,
11209 or, set *BATON, if we translated the constant to a location
11210 expression. */
11211
11212static void
11213dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11214 const char *name, struct obstack *obstack,
11215 struct dwarf2_cu *cu,
11216 long *value, gdb_byte **bytes,
11217 struct dwarf2_locexpr_baton **baton)
11218{
11219 struct objfile *objfile = cu->objfile;
11220 struct comp_unit_head *cu_header = &cu->header;
11221 struct dwarf_block *blk;
11222 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11223 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11224
11225 *value = 0;
11226 *bytes = NULL;
11227 *baton = NULL;
11228
11229 switch (attr->form)
11230 {
11231 case DW_FORM_addr:
11232 {
11233 gdb_byte *data;
11234
11235 if (TYPE_LENGTH (type) != cu_header->addr_size)
11236 dwarf2_const_value_length_mismatch_complaint (name,
11237 cu_header->addr_size,
11238 TYPE_LENGTH (type));
11239 /* Symbols of this form are reasonably rare, so we just
11240 piggyback on the existing location code rather than writing
11241 a new implementation of symbol_computed_ops. */
11242 *baton = obstack_alloc (&objfile->objfile_obstack,
11243 sizeof (struct dwarf2_locexpr_baton));
11244 (*baton)->per_cu = cu->per_cu;
11245 gdb_assert ((*baton)->per_cu);
11246
11247 (*baton)->size = 2 + cu_header->addr_size;
11248 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11249 (*baton)->data = data;
11250
11251 data[0] = DW_OP_addr;
11252 store_unsigned_integer (&data[1], cu_header->addr_size,
11253 byte_order, DW_ADDR (attr));
11254 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11255 }
11256 break;
11257 case DW_FORM_string:
11258 case DW_FORM_strp:
11259 /* DW_STRING is already allocated on the objfile obstack, point
11260 directly to it. */
11261 *bytes = (gdb_byte *) DW_STRING (attr);
11262 break;
11263 case DW_FORM_block1:
11264 case DW_FORM_block2:
11265 case DW_FORM_block4:
11266 case DW_FORM_block:
11267 case DW_FORM_exprloc:
11268 blk = DW_BLOCK (attr);
11269 if (TYPE_LENGTH (type) != blk->size)
11270 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11271 TYPE_LENGTH (type));
11272 *bytes = blk->data;
11273 break;
11274
11275 /* The DW_AT_const_value attributes are supposed to carry the
11276 symbol's value "represented as it would be on the target
11277 architecture." By the time we get here, it's already been
11278 converted to host endianness, so we just need to sign- or
11279 zero-extend it as appropriate. */
11280 case DW_FORM_data1:
11281 *bytes = dwarf2_const_value_data (attr, type, name,
11282 obstack, cu, value, 8);
11283 break;
11284 case DW_FORM_data2:
11285 *bytes = dwarf2_const_value_data (attr, type, name,
11286 obstack, cu, value, 16);
11287 break;
11288 case DW_FORM_data4:
11289 *bytes = dwarf2_const_value_data (attr, type, name,
11290 obstack, cu, value, 32);
11291 break;
11292 case DW_FORM_data8:
11293 *bytes = dwarf2_const_value_data (attr, type, name,
11294 obstack, cu, value, 64);
11295 break;
11296
11297 case DW_FORM_sdata:
11298 *value = DW_SND (attr);
11299 break;
11300
11301 case DW_FORM_udata:
11302 *value = DW_UNSND (attr);
11303 break;
11304
11305 default:
11306 complaint (&symfile_complaints,
11307 _("unsupported const value attribute form: '%s'"),
11308 dwarf_form_name (attr->form));
11309 *value = 0;
11310 break;
11311 }
11312}
11313
11314
11315/* Copy constant value from an attribute to a symbol. */
11316
11317static void
11318dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11319 struct dwarf2_cu *cu)
11320{
11321 struct objfile *objfile = cu->objfile;
11322 struct comp_unit_head *cu_header = &cu->header;
11323 long value;
11324 gdb_byte *bytes;
11325 struct dwarf2_locexpr_baton *baton;
11326
11327 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11328 SYMBOL_PRINT_NAME (sym),
11329 &objfile->objfile_obstack, cu,
11330 &value, &bytes, &baton);
11331
11332 if (baton != NULL)
11333 {
11334 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11335 SYMBOL_LOCATION_BATON (sym) = baton;
11336 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11337 }
11338 else if (bytes != NULL)
11339 {
11340 SYMBOL_VALUE_BYTES (sym) = bytes;
11341 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11342 }
11343 else
11344 {
11345 SYMBOL_VALUE (sym) = value;
11346 SYMBOL_CLASS (sym) = LOC_CONST;
11347 }
11348}
11349
11350/* Return the type of the die in question using its DW_AT_type attribute. */
11351
11352static struct type *
11353die_type (struct die_info *die, struct dwarf2_cu *cu)
11354{
11355 struct attribute *type_attr;
11356
11357 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11358 if (!type_attr)
11359 {
11360 /* A missing DW_AT_type represents a void type. */
11361 return objfile_type (cu->objfile)->builtin_void;
11362 }
11363
11364 return lookup_die_type (die, type_attr, cu);
11365}
11366
11367/* True iff CU's producer generates GNAT Ada auxiliary information
11368 that allows to find parallel types through that information instead
11369 of having to do expensive parallel lookups by type name. */
11370
11371static int
11372need_gnat_info (struct dwarf2_cu *cu)
11373{
11374 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11375 of GNAT produces this auxiliary information, without any indication
11376 that it is produced. Part of enhancing the FSF version of GNAT
11377 to produce that information will be to put in place an indicator
11378 that we can use in order to determine whether the descriptive type
11379 info is available or not. One suggestion that has been made is
11380 to use a new attribute, attached to the CU die. For now, assume
11381 that the descriptive type info is not available. */
11382 return 0;
11383}
11384
11385/* Return the auxiliary type of the die in question using its
11386 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11387 attribute is not present. */
11388
11389static struct type *
11390die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11391{
11392 struct attribute *type_attr;
11393
11394 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11395 if (!type_attr)
11396 return NULL;
11397
11398 return lookup_die_type (die, type_attr, cu);
11399}
11400
11401/* If DIE has a descriptive_type attribute, then set the TYPE's
11402 descriptive type accordingly. */
11403
11404static void
11405set_descriptive_type (struct type *type, struct die_info *die,
11406 struct dwarf2_cu *cu)
11407{
11408 struct type *descriptive_type = die_descriptive_type (die, cu);
11409
11410 if (descriptive_type)
11411 {
11412 ALLOCATE_GNAT_AUX_TYPE (type);
11413 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11414 }
11415}
11416
11417/* Return the containing type of the die in question using its
11418 DW_AT_containing_type attribute. */
11419
11420static struct type *
11421die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11422{
11423 struct attribute *type_attr;
11424
11425 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11426 if (!type_attr)
11427 error (_("Dwarf Error: Problem turning containing type into gdb type "
11428 "[in module %s]"), cu->objfile->name);
11429
11430 return lookup_die_type (die, type_attr, cu);
11431}
11432
11433/* Look up the type of DIE in CU using its type attribute ATTR.
11434 If there is no type substitute an error marker. */
11435
11436static struct type *
11437lookup_die_type (struct die_info *die, struct attribute *attr,
11438 struct dwarf2_cu *cu)
11439{
11440 struct type *this_type;
11441
11442 /* First see if we have it cached. */
11443
11444 if (is_ref_attr (attr))
11445 {
11446 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11447
11448 this_type = get_die_type_at_offset (offset, cu->per_cu);
11449 }
11450 else if (attr->form == DW_FORM_sig8)
11451 {
11452 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11453 struct dwarf2_cu *sig_cu;
11454 unsigned int offset;
11455
11456 /* sig_type will be NULL if the signatured type is missing from
11457 the debug info. */
11458 if (sig_type == NULL)
11459 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11460 "at 0x%x [in module %s]"),
11461 die->offset, cu->objfile->name);
11462
11463 gdb_assert (sig_type->per_cu.from_debug_types);
11464 offset = sig_type->offset + sig_type->type_offset;
11465 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11466 }
11467 else
11468 {
11469 dump_die_for_error (die);
11470 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11471 dwarf_attr_name (attr->name), cu->objfile->name);
11472 }
11473
11474 /* If not cached we need to read it in. */
11475
11476 if (this_type == NULL)
11477 {
11478 struct die_info *type_die;
11479 struct dwarf2_cu *type_cu = cu;
11480
11481 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11482 /* If the type is cached, we should have found it above. */
11483 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11484 this_type = read_type_die_1 (type_die, type_cu);
11485 }
11486
11487 /* If we still don't have a type use an error marker. */
11488
11489 if (this_type == NULL)
11490 {
11491 char *message, *saved;
11492
11493 /* read_type_die already issued a complaint. */
11494 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11495 cu->objfile->name,
11496 cu->header.offset,
11497 die->offset);
11498 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11499 message, strlen (message));
11500 xfree (message);
11501
11502 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11503 }
11504
11505 return this_type;
11506}
11507
11508/* Return the type in DIE, CU.
11509 Returns NULL for invalid types.
11510
11511 This first does a lookup in the appropriate type_hash table,
11512 and only reads the die in if necessary.
11513
11514 NOTE: This can be called when reading in partial or full symbols. */
11515
11516static struct type *
11517read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11518{
11519 struct type *this_type;
11520
11521 this_type = get_die_type (die, cu);
11522 if (this_type)
11523 return this_type;
11524
11525 return read_type_die_1 (die, cu);
11526}
11527
11528/* Read the type in DIE, CU.
11529 Returns NULL for invalid types. */
11530
11531static struct type *
11532read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11533{
11534 struct type *this_type = NULL;
11535
11536 switch (die->tag)
11537 {
11538 case DW_TAG_class_type:
11539 case DW_TAG_interface_type:
11540 case DW_TAG_structure_type:
11541 case DW_TAG_union_type:
11542 this_type = read_structure_type (die, cu);
11543 break;
11544 case DW_TAG_enumeration_type:
11545 this_type = read_enumeration_type (die, cu);
11546 break;
11547 case DW_TAG_subprogram:
11548 case DW_TAG_subroutine_type:
11549 case DW_TAG_inlined_subroutine:
11550 this_type = read_subroutine_type (die, cu);
11551 break;
11552 case DW_TAG_array_type:
11553 this_type = read_array_type (die, cu);
11554 break;
11555 case DW_TAG_set_type:
11556 this_type = read_set_type (die, cu);
11557 break;
11558 case DW_TAG_pointer_type:
11559 this_type = read_tag_pointer_type (die, cu);
11560 break;
11561 case DW_TAG_ptr_to_member_type:
11562 this_type = read_tag_ptr_to_member_type (die, cu);
11563 break;
11564 case DW_TAG_reference_type:
11565 this_type = read_tag_reference_type (die, cu);
11566 break;
11567 case DW_TAG_const_type:
11568 this_type = read_tag_const_type (die, cu);
11569 break;
11570 case DW_TAG_volatile_type:
11571 this_type = read_tag_volatile_type (die, cu);
11572 break;
11573 case DW_TAG_string_type:
11574 this_type = read_tag_string_type (die, cu);
11575 break;
11576 case DW_TAG_typedef:
11577 this_type = read_typedef (die, cu);
11578 break;
11579 case DW_TAG_subrange_type:
11580 this_type = read_subrange_type (die, cu);
11581 break;
11582 case DW_TAG_base_type:
11583 this_type = read_base_type (die, cu);
11584 break;
11585 case DW_TAG_unspecified_type:
11586 this_type = read_unspecified_type (die, cu);
11587 break;
11588 case DW_TAG_namespace:
11589 this_type = read_namespace_type (die, cu);
11590 break;
11591 case DW_TAG_module:
11592 this_type = read_module_type (die, cu);
11593 break;
11594 default:
11595 complaint (&symfile_complaints,
11596 _("unexpected tag in read_type_die: '%s'"),
11597 dwarf_tag_name (die->tag));
11598 break;
11599 }
11600
11601 return this_type;
11602}
11603
11604/* See if we can figure out if the class lives in a namespace. We do
11605 this by looking for a member function; its demangled name will
11606 contain namespace info, if there is any.
11607 Return the computed name or NULL.
11608 Space for the result is allocated on the objfile's obstack.
11609 This is the full-die version of guess_partial_die_structure_name.
11610 In this case we know DIE has no useful parent. */
11611
11612static char *
11613guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11614{
11615 struct die_info *spec_die;
11616 struct dwarf2_cu *spec_cu;
11617 struct die_info *child;
11618
11619 spec_cu = cu;
11620 spec_die = die_specification (die, &spec_cu);
11621 if (spec_die != NULL)
11622 {
11623 die = spec_die;
11624 cu = spec_cu;
11625 }
11626
11627 for (child = die->child;
11628 child != NULL;
11629 child = child->sibling)
11630 {
11631 if (child->tag == DW_TAG_subprogram)
11632 {
11633 struct attribute *attr;
11634
11635 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11636 if (attr == NULL)
11637 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11638 if (attr != NULL)
11639 {
11640 char *actual_name
11641 = language_class_name_from_physname (cu->language_defn,
11642 DW_STRING (attr));
11643 char *name = NULL;
11644
11645 if (actual_name != NULL)
11646 {
11647 char *die_name = dwarf2_name (die, cu);
11648
11649 if (die_name != NULL
11650 && strcmp (die_name, actual_name) != 0)
11651 {
11652 /* Strip off the class name from the full name.
11653 We want the prefix. */
11654 int die_name_len = strlen (die_name);
11655 int actual_name_len = strlen (actual_name);
11656
11657 /* Test for '::' as a sanity check. */
11658 if (actual_name_len > die_name_len + 2
11659 && actual_name[actual_name_len
11660 - die_name_len - 1] == ':')
11661 name =
11662 obsavestring (actual_name,
11663 actual_name_len - die_name_len - 2,
11664 &cu->objfile->objfile_obstack);
11665 }
11666 }
11667 xfree (actual_name);
11668 return name;
11669 }
11670 }
11671 }
11672
11673 return NULL;
11674}
11675
11676/* Return the name of the namespace/class that DIE is defined within,
11677 or "" if we can't tell. The caller should not xfree the result.
11678
11679 For example, if we're within the method foo() in the following
11680 code:
11681
11682 namespace N {
11683 class C {
11684 void foo () {
11685 }
11686 };
11687 }
11688
11689 then determine_prefix on foo's die will return "N::C". */
11690
11691static char *
11692determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11693{
11694 struct die_info *parent, *spec_die;
11695 struct dwarf2_cu *spec_cu;
11696 struct type *parent_type;
11697
11698 if (cu->language != language_cplus && cu->language != language_java
11699 && cu->language != language_fortran)
11700 return "";
11701
11702 /* We have to be careful in the presence of DW_AT_specification.
11703 For example, with GCC 3.4, given the code
11704
11705 namespace N {
11706 void foo() {
11707 // Definition of N::foo.
11708 }
11709 }
11710
11711 then we'll have a tree of DIEs like this:
11712
11713 1: DW_TAG_compile_unit
11714 2: DW_TAG_namespace // N
11715 3: DW_TAG_subprogram // declaration of N::foo
11716 4: DW_TAG_subprogram // definition of N::foo
11717 DW_AT_specification // refers to die #3
11718
11719 Thus, when processing die #4, we have to pretend that we're in
11720 the context of its DW_AT_specification, namely the contex of die
11721 #3. */
11722 spec_cu = cu;
11723 spec_die = die_specification (die, &spec_cu);
11724 if (spec_die == NULL)
11725 parent = die->parent;
11726 else
11727 {
11728 parent = spec_die->parent;
11729 cu = spec_cu;
11730 }
11731
11732 if (parent == NULL)
11733 return "";
11734 else if (parent->building_fullname)
11735 {
11736 const char *name;
11737 const char *parent_name;
11738
11739 /* It has been seen on RealView 2.2 built binaries,
11740 DW_TAG_template_type_param types actually _defined_ as
11741 children of the parent class:
11742
11743 enum E {};
11744 template class <class Enum> Class{};
11745 Class<enum E> class_e;
11746
11747 1: DW_TAG_class_type (Class)
11748 2: DW_TAG_enumeration_type (E)
11749 3: DW_TAG_enumerator (enum1:0)
11750 3: DW_TAG_enumerator (enum2:1)
11751 ...
11752 2: DW_TAG_template_type_param
11753 DW_AT_type DW_FORM_ref_udata (E)
11754
11755 Besides being broken debug info, it can put GDB into an
11756 infinite loop. Consider:
11757
11758 When we're building the full name for Class<E>, we'll start
11759 at Class, and go look over its template type parameters,
11760 finding E. We'll then try to build the full name of E, and
11761 reach here. We're now trying to build the full name of E,
11762 and look over the parent DIE for containing scope. In the
11763 broken case, if we followed the parent DIE of E, we'd again
11764 find Class, and once again go look at its template type
11765 arguments, etc., etc. Simply don't consider such parent die
11766 as source-level parent of this die (it can't be, the language
11767 doesn't allow it), and break the loop here. */
11768 name = dwarf2_name (die, cu);
11769 parent_name = dwarf2_name (parent, cu);
11770 complaint (&symfile_complaints,
11771 _("template param type '%s' defined within parent '%s'"),
11772 name ? name : "<unknown>",
11773 parent_name ? parent_name : "<unknown>");
11774 return "";
11775 }
11776 else
11777 switch (parent->tag)
11778 {
11779 case DW_TAG_namespace:
11780 parent_type = read_type_die (parent, cu);
11781 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11782 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11783 Work around this problem here. */
11784 if (cu->language == language_cplus
11785 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11786 return "";
11787 /* We give a name to even anonymous namespaces. */
11788 return TYPE_TAG_NAME (parent_type);
11789 case DW_TAG_class_type:
11790 case DW_TAG_interface_type:
11791 case DW_TAG_structure_type:
11792 case DW_TAG_union_type:
11793 case DW_TAG_module:
11794 parent_type = read_type_die (parent, cu);
11795 if (TYPE_TAG_NAME (parent_type) != NULL)
11796 return TYPE_TAG_NAME (parent_type);
11797 else
11798 /* An anonymous structure is only allowed non-static data
11799 members; no typedefs, no member functions, et cetera.
11800 So it does not need a prefix. */
11801 return "";
11802 case DW_TAG_compile_unit:
11803 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11804 if (cu->language == language_cplus
11805 && dwarf2_per_objfile->types.asection != NULL
11806 && die->child != NULL
11807 && (die->tag == DW_TAG_class_type
11808 || die->tag == DW_TAG_structure_type
11809 || die->tag == DW_TAG_union_type))
11810 {
11811 char *name = guess_full_die_structure_name (die, cu);
11812 if (name != NULL)
11813 return name;
11814 }
11815 return "";
11816 default:
11817 return determine_prefix (parent, cu);
11818 }
11819}
11820
11821/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11822 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11823 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11824 an obconcat, otherwise allocate storage for the result. The CU argument is
11825 used to determine the language and hence, the appropriate separator. */
11826
11827#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11828
11829static char *
11830typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11831 int physname, struct dwarf2_cu *cu)
11832{
11833 const char *lead = "";
11834 const char *sep;
11835
11836 if (suffix == NULL || suffix[0] == '\0'
11837 || prefix == NULL || prefix[0] == '\0')
11838 sep = "";
11839 else if (cu->language == language_java)
11840 sep = ".";
11841 else if (cu->language == language_fortran && physname)
11842 {
11843 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11844 DW_AT_MIPS_linkage_name is preferred and used instead. */
11845
11846 lead = "__";
11847 sep = "_MOD_";
11848 }
11849 else
11850 sep = "::";
11851
11852 if (prefix == NULL)
11853 prefix = "";
11854 if (suffix == NULL)
11855 suffix = "";
11856
11857 if (obs == NULL)
11858 {
11859 char *retval
11860 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11861
11862 strcpy (retval, lead);
11863 strcat (retval, prefix);
11864 strcat (retval, sep);
11865 strcat (retval, suffix);
11866 return retval;
11867 }
11868 else
11869 {
11870 /* We have an obstack. */
11871 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11872 }
11873}
11874
11875/* Return sibling of die, NULL if no sibling. */
11876
11877static struct die_info *
11878sibling_die (struct die_info *die)
11879{
11880 return die->sibling;
11881}
11882
11883/* Get name of a die, return NULL if not found. */
11884
11885static char *
11886dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11887 struct obstack *obstack)
11888{
11889 if (name && cu->language == language_cplus)
11890 {
11891 char *canon_name = cp_canonicalize_string (name);
11892
11893 if (canon_name != NULL)
11894 {
11895 if (strcmp (canon_name, name) != 0)
11896 name = obsavestring (canon_name, strlen (canon_name),
11897 obstack);
11898 xfree (canon_name);
11899 }
11900 }
11901
11902 return name;
11903}
11904
11905/* Get name of a die, return NULL if not found. */
11906
11907static char *
11908dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11909{
11910 struct attribute *attr;
11911
11912 attr = dwarf2_attr (die, DW_AT_name, cu);
11913 if (!attr || !DW_STRING (attr))
11914 return NULL;
11915
11916 switch (die->tag)
11917 {
11918 case DW_TAG_compile_unit:
11919 /* Compilation units have a DW_AT_name that is a filename, not
11920 a source language identifier. */
11921 case DW_TAG_enumeration_type:
11922 case DW_TAG_enumerator:
11923 /* These tags always have simple identifiers already; no need
11924 to canonicalize them. */
11925 return DW_STRING (attr);
11926
11927 case DW_TAG_subprogram:
11928 /* Java constructors will all be named "<init>", so return
11929 the class name when we see this special case. */
11930 if (cu->language == language_java
11931 && DW_STRING (attr) != NULL
11932 && strcmp (DW_STRING (attr), "<init>") == 0)
11933 {
11934 struct dwarf2_cu *spec_cu = cu;
11935 struct die_info *spec_die;
11936
11937 /* GCJ will output '<init>' for Java constructor names.
11938 For this special case, return the name of the parent class. */
11939
11940 /* GCJ may output suprogram DIEs with AT_specification set.
11941 If so, use the name of the specified DIE. */
11942 spec_die = die_specification (die, &spec_cu);
11943 if (spec_die != NULL)
11944 return dwarf2_name (spec_die, spec_cu);
11945
11946 do
11947 {
11948 die = die->parent;
11949 if (die->tag == DW_TAG_class_type)
11950 return dwarf2_name (die, cu);
11951 }
11952 while (die->tag != DW_TAG_compile_unit);
11953 }
11954 break;
11955
11956 case DW_TAG_class_type:
11957 case DW_TAG_interface_type:
11958 case DW_TAG_structure_type:
11959 case DW_TAG_union_type:
11960 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11961 structures or unions. These were of the form "._%d" in GCC 4.1,
11962 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11963 and GCC 4.4. We work around this problem by ignoring these. */
11964 if (strncmp (DW_STRING (attr), "._", 2) == 0
11965 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11966 return NULL;
11967 break;
11968
11969 default:
11970 break;
11971 }
11972
11973 if (!DW_STRING_IS_CANONICAL (attr))
11974 {
11975 DW_STRING (attr)
11976 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11977 &cu->objfile->objfile_obstack);
11978 DW_STRING_IS_CANONICAL (attr) = 1;
11979 }
11980 return DW_STRING (attr);
11981}
11982
11983/* Return the die that this die in an extension of, or NULL if there
11984 is none. *EXT_CU is the CU containing DIE on input, and the CU
11985 containing the return value on output. */
11986
11987static struct die_info *
11988dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11989{
11990 struct attribute *attr;
11991
11992 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11993 if (attr == NULL)
11994 return NULL;
11995
11996 return follow_die_ref (die, attr, ext_cu);
11997}
11998
11999/* Convert a DIE tag into its string name. */
12000
12001static char *
12002dwarf_tag_name (unsigned tag)
12003{
12004 switch (tag)
12005 {
12006 case DW_TAG_padding:
12007 return "DW_TAG_padding";
12008 case DW_TAG_array_type:
12009 return "DW_TAG_array_type";
12010 case DW_TAG_class_type:
12011 return "DW_TAG_class_type";
12012 case DW_TAG_entry_point:
12013 return "DW_TAG_entry_point";
12014 case DW_TAG_enumeration_type:
12015 return "DW_TAG_enumeration_type";
12016 case DW_TAG_formal_parameter:
12017 return "DW_TAG_formal_parameter";
12018 case DW_TAG_imported_declaration:
12019 return "DW_TAG_imported_declaration";
12020 case DW_TAG_label:
12021 return "DW_TAG_label";
12022 case DW_TAG_lexical_block:
12023 return "DW_TAG_lexical_block";
12024 case DW_TAG_member:
12025 return "DW_TAG_member";
12026 case DW_TAG_pointer_type:
12027 return "DW_TAG_pointer_type";
12028 case DW_TAG_reference_type:
12029 return "DW_TAG_reference_type";
12030 case DW_TAG_compile_unit:
12031 return "DW_TAG_compile_unit";
12032 case DW_TAG_string_type:
12033 return "DW_TAG_string_type";
12034 case DW_TAG_structure_type:
12035 return "DW_TAG_structure_type";
12036 case DW_TAG_subroutine_type:
12037 return "DW_TAG_subroutine_type";
12038 case DW_TAG_typedef:
12039 return "DW_TAG_typedef";
12040 case DW_TAG_union_type:
12041 return "DW_TAG_union_type";
12042 case DW_TAG_unspecified_parameters:
12043 return "DW_TAG_unspecified_parameters";
12044 case DW_TAG_variant:
12045 return "DW_TAG_variant";
12046 case DW_TAG_common_block:
12047 return "DW_TAG_common_block";
12048 case DW_TAG_common_inclusion:
12049 return "DW_TAG_common_inclusion";
12050 case DW_TAG_inheritance:
12051 return "DW_TAG_inheritance";
12052 case DW_TAG_inlined_subroutine:
12053 return "DW_TAG_inlined_subroutine";
12054 case DW_TAG_module:
12055 return "DW_TAG_module";
12056 case DW_TAG_ptr_to_member_type:
12057 return "DW_TAG_ptr_to_member_type";
12058 case DW_TAG_set_type:
12059 return "DW_TAG_set_type";
12060 case DW_TAG_subrange_type:
12061 return "DW_TAG_subrange_type";
12062 case DW_TAG_with_stmt:
12063 return "DW_TAG_with_stmt";
12064 case DW_TAG_access_declaration:
12065 return "DW_TAG_access_declaration";
12066 case DW_TAG_base_type:
12067 return "DW_TAG_base_type";
12068 case DW_TAG_catch_block:
12069 return "DW_TAG_catch_block";
12070 case DW_TAG_const_type:
12071 return "DW_TAG_const_type";
12072 case DW_TAG_constant:
12073 return "DW_TAG_constant";
12074 case DW_TAG_enumerator:
12075 return "DW_TAG_enumerator";
12076 case DW_TAG_file_type:
12077 return "DW_TAG_file_type";
12078 case DW_TAG_friend:
12079 return "DW_TAG_friend";
12080 case DW_TAG_namelist:
12081 return "DW_TAG_namelist";
12082 case DW_TAG_namelist_item:
12083 return "DW_TAG_namelist_item";
12084 case DW_TAG_packed_type:
12085 return "DW_TAG_packed_type";
12086 case DW_TAG_subprogram:
12087 return "DW_TAG_subprogram";
12088 case DW_TAG_template_type_param:
12089 return "DW_TAG_template_type_param";
12090 case DW_TAG_template_value_param:
12091 return "DW_TAG_template_value_param";
12092 case DW_TAG_thrown_type:
12093 return "DW_TAG_thrown_type";
12094 case DW_TAG_try_block:
12095 return "DW_TAG_try_block";
12096 case DW_TAG_variant_part:
12097 return "DW_TAG_variant_part";
12098 case DW_TAG_variable:
12099 return "DW_TAG_variable";
12100 case DW_TAG_volatile_type:
12101 return "DW_TAG_volatile_type";
12102 case DW_TAG_dwarf_procedure:
12103 return "DW_TAG_dwarf_procedure";
12104 case DW_TAG_restrict_type:
12105 return "DW_TAG_restrict_type";
12106 case DW_TAG_interface_type:
12107 return "DW_TAG_interface_type";
12108 case DW_TAG_namespace:
12109 return "DW_TAG_namespace";
12110 case DW_TAG_imported_module:
12111 return "DW_TAG_imported_module";
12112 case DW_TAG_unspecified_type:
12113 return "DW_TAG_unspecified_type";
12114 case DW_TAG_partial_unit:
12115 return "DW_TAG_partial_unit";
12116 case DW_TAG_imported_unit:
12117 return "DW_TAG_imported_unit";
12118 case DW_TAG_condition:
12119 return "DW_TAG_condition";
12120 case DW_TAG_shared_type:
12121 return "DW_TAG_shared_type";
12122 case DW_TAG_type_unit:
12123 return "DW_TAG_type_unit";
12124 case DW_TAG_MIPS_loop:
12125 return "DW_TAG_MIPS_loop";
12126 case DW_TAG_HP_array_descriptor:
12127 return "DW_TAG_HP_array_descriptor";
12128 case DW_TAG_format_label:
12129 return "DW_TAG_format_label";
12130 case DW_TAG_function_template:
12131 return "DW_TAG_function_template";
12132 case DW_TAG_class_template:
12133 return "DW_TAG_class_template";
12134 case DW_TAG_GNU_BINCL:
12135 return "DW_TAG_GNU_BINCL";
12136 case DW_TAG_GNU_EINCL:
12137 return "DW_TAG_GNU_EINCL";
12138 case DW_TAG_upc_shared_type:
12139 return "DW_TAG_upc_shared_type";
12140 case DW_TAG_upc_strict_type:
12141 return "DW_TAG_upc_strict_type";
12142 case DW_TAG_upc_relaxed_type:
12143 return "DW_TAG_upc_relaxed_type";
12144 case DW_TAG_PGI_kanji_type:
12145 return "DW_TAG_PGI_kanji_type";
12146 case DW_TAG_PGI_interface_block:
12147 return "DW_TAG_PGI_interface_block";
12148 default:
12149 return "DW_TAG_<unknown>";
12150 }
12151}
12152
12153/* Convert a DWARF attribute code into its string name. */
12154
12155static char *
12156dwarf_attr_name (unsigned attr)
12157{
12158 switch (attr)
12159 {
12160 case DW_AT_sibling:
12161 return "DW_AT_sibling";
12162 case DW_AT_location:
12163 return "DW_AT_location";
12164 case DW_AT_name:
12165 return "DW_AT_name";
12166 case DW_AT_ordering:
12167 return "DW_AT_ordering";
12168 case DW_AT_subscr_data:
12169 return "DW_AT_subscr_data";
12170 case DW_AT_byte_size:
12171 return "DW_AT_byte_size";
12172 case DW_AT_bit_offset:
12173 return "DW_AT_bit_offset";
12174 case DW_AT_bit_size:
12175 return "DW_AT_bit_size";
12176 case DW_AT_element_list:
12177 return "DW_AT_element_list";
12178 case DW_AT_stmt_list:
12179 return "DW_AT_stmt_list";
12180 case DW_AT_low_pc:
12181 return "DW_AT_low_pc";
12182 case DW_AT_high_pc:
12183 return "DW_AT_high_pc";
12184 case DW_AT_language:
12185 return "DW_AT_language";
12186 case DW_AT_member:
12187 return "DW_AT_member";
12188 case DW_AT_discr:
12189 return "DW_AT_discr";
12190 case DW_AT_discr_value:
12191 return "DW_AT_discr_value";
12192 case DW_AT_visibility:
12193 return "DW_AT_visibility";
12194 case DW_AT_import:
12195 return "DW_AT_import";
12196 case DW_AT_string_length:
12197 return "DW_AT_string_length";
12198 case DW_AT_common_reference:
12199 return "DW_AT_common_reference";
12200 case DW_AT_comp_dir:
12201 return "DW_AT_comp_dir";
12202 case DW_AT_const_value:
12203 return "DW_AT_const_value";
12204 case DW_AT_containing_type:
12205 return "DW_AT_containing_type";
12206 case DW_AT_default_value:
12207 return "DW_AT_default_value";
12208 case DW_AT_inline:
12209 return "DW_AT_inline";
12210 case DW_AT_is_optional:
12211 return "DW_AT_is_optional";
12212 case DW_AT_lower_bound:
12213 return "DW_AT_lower_bound";
12214 case DW_AT_producer:
12215 return "DW_AT_producer";
12216 case DW_AT_prototyped:
12217 return "DW_AT_prototyped";
12218 case DW_AT_return_addr:
12219 return "DW_AT_return_addr";
12220 case DW_AT_start_scope:
12221 return "DW_AT_start_scope";
12222 case DW_AT_bit_stride:
12223 return "DW_AT_bit_stride";
12224 case DW_AT_upper_bound:
12225 return "DW_AT_upper_bound";
12226 case DW_AT_abstract_origin:
12227 return "DW_AT_abstract_origin";
12228 case DW_AT_accessibility:
12229 return "DW_AT_accessibility";
12230 case DW_AT_address_class:
12231 return "DW_AT_address_class";
12232 case DW_AT_artificial:
12233 return "DW_AT_artificial";
12234 case DW_AT_base_types:
12235 return "DW_AT_base_types";
12236 case DW_AT_calling_convention:
12237 return "DW_AT_calling_convention";
12238 case DW_AT_count:
12239 return "DW_AT_count";
12240 case DW_AT_data_member_location:
12241 return "DW_AT_data_member_location";
12242 case DW_AT_decl_column:
12243 return "DW_AT_decl_column";
12244 case DW_AT_decl_file:
12245 return "DW_AT_decl_file";
12246 case DW_AT_decl_line:
12247 return "DW_AT_decl_line";
12248 case DW_AT_declaration:
12249 return "DW_AT_declaration";
12250 case DW_AT_discr_list:
12251 return "DW_AT_discr_list";
12252 case DW_AT_encoding:
12253 return "DW_AT_encoding";
12254 case DW_AT_external:
12255 return "DW_AT_external";
12256 case DW_AT_frame_base:
12257 return "DW_AT_frame_base";
12258 case DW_AT_friend:
12259 return "DW_AT_friend";
12260 case DW_AT_identifier_case:
12261 return "DW_AT_identifier_case";
12262 case DW_AT_macro_info:
12263 return "DW_AT_macro_info";
12264 case DW_AT_namelist_items:
12265 return "DW_AT_namelist_items";
12266 case DW_AT_priority:
12267 return "DW_AT_priority";
12268 case DW_AT_segment:
12269 return "DW_AT_segment";
12270 case DW_AT_specification:
12271 return "DW_AT_specification";
12272 case DW_AT_static_link:
12273 return "DW_AT_static_link";
12274 case DW_AT_type:
12275 return "DW_AT_type";
12276 case DW_AT_use_location:
12277 return "DW_AT_use_location";
12278 case DW_AT_variable_parameter:
12279 return "DW_AT_variable_parameter";
12280 case DW_AT_virtuality:
12281 return "DW_AT_virtuality";
12282 case DW_AT_vtable_elem_location:
12283 return "DW_AT_vtable_elem_location";
12284 /* DWARF 3 values. */
12285 case DW_AT_allocated:
12286 return "DW_AT_allocated";
12287 case DW_AT_associated:
12288 return "DW_AT_associated";
12289 case DW_AT_data_location:
12290 return "DW_AT_data_location";
12291 case DW_AT_byte_stride:
12292 return "DW_AT_byte_stride";
12293 case DW_AT_entry_pc:
12294 return "DW_AT_entry_pc";
12295 case DW_AT_use_UTF8:
12296 return "DW_AT_use_UTF8";
12297 case DW_AT_extension:
12298 return "DW_AT_extension";
12299 case DW_AT_ranges:
12300 return "DW_AT_ranges";
12301 case DW_AT_trampoline:
12302 return "DW_AT_trampoline";
12303 case DW_AT_call_column:
12304 return "DW_AT_call_column";
12305 case DW_AT_call_file:
12306 return "DW_AT_call_file";
12307 case DW_AT_call_line:
12308 return "DW_AT_call_line";
12309 case DW_AT_description:
12310 return "DW_AT_description";
12311 case DW_AT_binary_scale:
12312 return "DW_AT_binary_scale";
12313 case DW_AT_decimal_scale:
12314 return "DW_AT_decimal_scale";
12315 case DW_AT_small:
12316 return "DW_AT_small";
12317 case DW_AT_decimal_sign:
12318 return "DW_AT_decimal_sign";
12319 case DW_AT_digit_count:
12320 return "DW_AT_digit_count";
12321 case DW_AT_picture_string:
12322 return "DW_AT_picture_string";
12323 case DW_AT_mutable:
12324 return "DW_AT_mutable";
12325 case DW_AT_threads_scaled:
12326 return "DW_AT_threads_scaled";
12327 case DW_AT_explicit:
12328 return "DW_AT_explicit";
12329 case DW_AT_object_pointer:
12330 return "DW_AT_object_pointer";
12331 case DW_AT_endianity:
12332 return "DW_AT_endianity";
12333 case DW_AT_elemental:
12334 return "DW_AT_elemental";
12335 case DW_AT_pure:
12336 return "DW_AT_pure";
12337 case DW_AT_recursive:
12338 return "DW_AT_recursive";
12339 /* DWARF 4 values. */
12340 case DW_AT_signature:
12341 return "DW_AT_signature";
12342 case DW_AT_linkage_name:
12343 return "DW_AT_linkage_name";
12344 /* SGI/MIPS extensions. */
12345#ifdef MIPS /* collides with DW_AT_HP_block_index */
12346 case DW_AT_MIPS_fde:
12347 return "DW_AT_MIPS_fde";
12348#endif
12349 case DW_AT_MIPS_loop_begin:
12350 return "DW_AT_MIPS_loop_begin";
12351 case DW_AT_MIPS_tail_loop_begin:
12352 return "DW_AT_MIPS_tail_loop_begin";
12353 case DW_AT_MIPS_epilog_begin:
12354 return "DW_AT_MIPS_epilog_begin";
12355 case DW_AT_MIPS_loop_unroll_factor:
12356 return "DW_AT_MIPS_loop_unroll_factor";
12357 case DW_AT_MIPS_software_pipeline_depth:
12358 return "DW_AT_MIPS_software_pipeline_depth";
12359 case DW_AT_MIPS_linkage_name:
12360 return "DW_AT_MIPS_linkage_name";
12361 case DW_AT_MIPS_stride:
12362 return "DW_AT_MIPS_stride";
12363 case DW_AT_MIPS_abstract_name:
12364 return "DW_AT_MIPS_abstract_name";
12365 case DW_AT_MIPS_clone_origin:
12366 return "DW_AT_MIPS_clone_origin";
12367 case DW_AT_MIPS_has_inlines:
12368 return "DW_AT_MIPS_has_inlines";
12369 /* HP extensions. */
12370#ifndef MIPS /* collides with DW_AT_MIPS_fde */
12371 case DW_AT_HP_block_index:
12372 return "DW_AT_HP_block_index";
12373#endif
12374 case DW_AT_HP_unmodifiable:
12375 return "DW_AT_HP_unmodifiable";
12376 case DW_AT_HP_actuals_stmt_list:
12377 return "DW_AT_HP_actuals_stmt_list";
12378 case DW_AT_HP_proc_per_section:
12379 return "DW_AT_HP_proc_per_section";
12380 case DW_AT_HP_raw_data_ptr:
12381 return "DW_AT_HP_raw_data_ptr";
12382 case DW_AT_HP_pass_by_reference:
12383 return "DW_AT_HP_pass_by_reference";
12384 case DW_AT_HP_opt_level:
12385 return "DW_AT_HP_opt_level";
12386 case DW_AT_HP_prof_version_id:
12387 return "DW_AT_HP_prof_version_id";
12388 case DW_AT_HP_opt_flags:
12389 return "DW_AT_HP_opt_flags";
12390 case DW_AT_HP_cold_region_low_pc:
12391 return "DW_AT_HP_cold_region_low_pc";
12392 case DW_AT_HP_cold_region_high_pc:
12393 return "DW_AT_HP_cold_region_high_pc";
12394 case DW_AT_HP_all_variables_modifiable:
12395 return "DW_AT_HP_all_variables_modifiable";
12396 case DW_AT_HP_linkage_name:
12397 return "DW_AT_HP_linkage_name";
12398 case DW_AT_HP_prof_flags:
12399 return "DW_AT_HP_prof_flags";
12400 /* GNU extensions. */
12401 case DW_AT_sf_names:
12402 return "DW_AT_sf_names";
12403 case DW_AT_src_info:
12404 return "DW_AT_src_info";
12405 case DW_AT_mac_info:
12406 return "DW_AT_mac_info";
12407 case DW_AT_src_coords:
12408 return "DW_AT_src_coords";
12409 case DW_AT_body_begin:
12410 return "DW_AT_body_begin";
12411 case DW_AT_body_end:
12412 return "DW_AT_body_end";
12413 case DW_AT_GNU_vector:
12414 return "DW_AT_GNU_vector";
12415 case DW_AT_GNU_odr_signature:
12416 return "DW_AT_GNU_odr_signature";
12417 /* VMS extensions. */
12418 case DW_AT_VMS_rtnbeg_pd_address:
12419 return "DW_AT_VMS_rtnbeg_pd_address";
12420 /* UPC extension. */
12421 case DW_AT_upc_threads_scaled:
12422 return "DW_AT_upc_threads_scaled";
12423 /* PGI (STMicroelectronics) extensions. */
12424 case DW_AT_PGI_lbase:
12425 return "DW_AT_PGI_lbase";
12426 case DW_AT_PGI_soffset:
12427 return "DW_AT_PGI_soffset";
12428 case DW_AT_PGI_lstride:
12429 return "DW_AT_PGI_lstride";
12430 default:
12431 return "DW_AT_<unknown>";
12432 }
12433}
12434
12435/* Convert a DWARF value form code into its string name. */
12436
12437static char *
12438dwarf_form_name (unsigned form)
12439{
12440 switch (form)
12441 {
12442 case DW_FORM_addr:
12443 return "DW_FORM_addr";
12444 case DW_FORM_block2:
12445 return "DW_FORM_block2";
12446 case DW_FORM_block4:
12447 return "DW_FORM_block4";
12448 case DW_FORM_data2:
12449 return "DW_FORM_data2";
12450 case DW_FORM_data4:
12451 return "DW_FORM_data4";
12452 case DW_FORM_data8:
12453 return "DW_FORM_data8";
12454 case DW_FORM_string:
12455 return "DW_FORM_string";
12456 case DW_FORM_block:
12457 return "DW_FORM_block";
12458 case DW_FORM_block1:
12459 return "DW_FORM_block1";
12460 case DW_FORM_data1:
12461 return "DW_FORM_data1";
12462 case DW_FORM_flag:
12463 return "DW_FORM_flag";
12464 case DW_FORM_sdata:
12465 return "DW_FORM_sdata";
12466 case DW_FORM_strp:
12467 return "DW_FORM_strp";
12468 case DW_FORM_udata:
12469 return "DW_FORM_udata";
12470 case DW_FORM_ref_addr:
12471 return "DW_FORM_ref_addr";
12472 case DW_FORM_ref1:
12473 return "DW_FORM_ref1";
12474 case DW_FORM_ref2:
12475 return "DW_FORM_ref2";
12476 case DW_FORM_ref4:
12477 return "DW_FORM_ref4";
12478 case DW_FORM_ref8:
12479 return "DW_FORM_ref8";
12480 case DW_FORM_ref_udata:
12481 return "DW_FORM_ref_udata";
12482 case DW_FORM_indirect:
12483 return "DW_FORM_indirect";
12484 case DW_FORM_sec_offset:
12485 return "DW_FORM_sec_offset";
12486 case DW_FORM_exprloc:
12487 return "DW_FORM_exprloc";
12488 case DW_FORM_flag_present:
12489 return "DW_FORM_flag_present";
12490 case DW_FORM_sig8:
12491 return "DW_FORM_sig8";
12492 default:
12493 return "DW_FORM_<unknown>";
12494 }
12495}
12496
12497/* Convert a DWARF stack opcode into its string name. */
12498
12499const char *
12500dwarf_stack_op_name (unsigned op)
12501{
12502 switch (op)
12503 {
12504 case DW_OP_addr:
12505 return "DW_OP_addr";
12506 case DW_OP_deref:
12507 return "DW_OP_deref";
12508 case DW_OP_const1u:
12509 return "DW_OP_const1u";
12510 case DW_OP_const1s:
12511 return "DW_OP_const1s";
12512 case DW_OP_const2u:
12513 return "DW_OP_const2u";
12514 case DW_OP_const2s:
12515 return "DW_OP_const2s";
12516 case DW_OP_const4u:
12517 return "DW_OP_const4u";
12518 case DW_OP_const4s:
12519 return "DW_OP_const4s";
12520 case DW_OP_const8u:
12521 return "DW_OP_const8u";
12522 case DW_OP_const8s:
12523 return "DW_OP_const8s";
12524 case DW_OP_constu:
12525 return "DW_OP_constu";
12526 case DW_OP_consts:
12527 return "DW_OP_consts";
12528 case DW_OP_dup:
12529 return "DW_OP_dup";
12530 case DW_OP_drop:
12531 return "DW_OP_drop";
12532 case DW_OP_over:
12533 return "DW_OP_over";
12534 case DW_OP_pick:
12535 return "DW_OP_pick";
12536 case DW_OP_swap:
12537 return "DW_OP_swap";
12538 case DW_OP_rot:
12539 return "DW_OP_rot";
12540 case DW_OP_xderef:
12541 return "DW_OP_xderef";
12542 case DW_OP_abs:
12543 return "DW_OP_abs";
12544 case DW_OP_and:
12545 return "DW_OP_and";
12546 case DW_OP_div:
12547 return "DW_OP_div";
12548 case DW_OP_minus:
12549 return "DW_OP_minus";
12550 case DW_OP_mod:
12551 return "DW_OP_mod";
12552 case DW_OP_mul:
12553 return "DW_OP_mul";
12554 case DW_OP_neg:
12555 return "DW_OP_neg";
12556 case DW_OP_not:
12557 return "DW_OP_not";
12558 case DW_OP_or:
12559 return "DW_OP_or";
12560 case DW_OP_plus:
12561 return "DW_OP_plus";
12562 case DW_OP_plus_uconst:
12563 return "DW_OP_plus_uconst";
12564 case DW_OP_shl:
12565 return "DW_OP_shl";
12566 case DW_OP_shr:
12567 return "DW_OP_shr";
12568 case DW_OP_shra:
12569 return "DW_OP_shra";
12570 case DW_OP_xor:
12571 return "DW_OP_xor";
12572 case DW_OP_bra:
12573 return "DW_OP_bra";
12574 case DW_OP_eq:
12575 return "DW_OP_eq";
12576 case DW_OP_ge:
12577 return "DW_OP_ge";
12578 case DW_OP_gt:
12579 return "DW_OP_gt";
12580 case DW_OP_le:
12581 return "DW_OP_le";
12582 case DW_OP_lt:
12583 return "DW_OP_lt";
12584 case DW_OP_ne:
12585 return "DW_OP_ne";
12586 case DW_OP_skip:
12587 return "DW_OP_skip";
12588 case DW_OP_lit0:
12589 return "DW_OP_lit0";
12590 case DW_OP_lit1:
12591 return "DW_OP_lit1";
12592 case DW_OP_lit2:
12593 return "DW_OP_lit2";
12594 case DW_OP_lit3:
12595 return "DW_OP_lit3";
12596 case DW_OP_lit4:
12597 return "DW_OP_lit4";
12598 case DW_OP_lit5:
12599 return "DW_OP_lit5";
12600 case DW_OP_lit6:
12601 return "DW_OP_lit6";
12602 case DW_OP_lit7:
12603 return "DW_OP_lit7";
12604 case DW_OP_lit8:
12605 return "DW_OP_lit8";
12606 case DW_OP_lit9:
12607 return "DW_OP_lit9";
12608 case DW_OP_lit10:
12609 return "DW_OP_lit10";
12610 case DW_OP_lit11:
12611 return "DW_OP_lit11";
12612 case DW_OP_lit12:
12613 return "DW_OP_lit12";
12614 case DW_OP_lit13:
12615 return "DW_OP_lit13";
12616 case DW_OP_lit14:
12617 return "DW_OP_lit14";
12618 case DW_OP_lit15:
12619 return "DW_OP_lit15";
12620 case DW_OP_lit16:
12621 return "DW_OP_lit16";
12622 case DW_OP_lit17:
12623 return "DW_OP_lit17";
12624 case DW_OP_lit18:
12625 return "DW_OP_lit18";
12626 case DW_OP_lit19:
12627 return "DW_OP_lit19";
12628 case DW_OP_lit20:
12629 return "DW_OP_lit20";
12630 case DW_OP_lit21:
12631 return "DW_OP_lit21";
12632 case DW_OP_lit22:
12633 return "DW_OP_lit22";
12634 case DW_OP_lit23:
12635 return "DW_OP_lit23";
12636 case DW_OP_lit24:
12637 return "DW_OP_lit24";
12638 case DW_OP_lit25:
12639 return "DW_OP_lit25";
12640 case DW_OP_lit26:
12641 return "DW_OP_lit26";
12642 case DW_OP_lit27:
12643 return "DW_OP_lit27";
12644 case DW_OP_lit28:
12645 return "DW_OP_lit28";
12646 case DW_OP_lit29:
12647 return "DW_OP_lit29";
12648 case DW_OP_lit30:
12649 return "DW_OP_lit30";
12650 case DW_OP_lit31:
12651 return "DW_OP_lit31";
12652 case DW_OP_reg0:
12653 return "DW_OP_reg0";
12654 case DW_OP_reg1:
12655 return "DW_OP_reg1";
12656 case DW_OP_reg2:
12657 return "DW_OP_reg2";
12658 case DW_OP_reg3:
12659 return "DW_OP_reg3";
12660 case DW_OP_reg4:
12661 return "DW_OP_reg4";
12662 case DW_OP_reg5:
12663 return "DW_OP_reg5";
12664 case DW_OP_reg6:
12665 return "DW_OP_reg6";
12666 case DW_OP_reg7:
12667 return "DW_OP_reg7";
12668 case DW_OP_reg8:
12669 return "DW_OP_reg8";
12670 case DW_OP_reg9:
12671 return "DW_OP_reg9";
12672 case DW_OP_reg10:
12673 return "DW_OP_reg10";
12674 case DW_OP_reg11:
12675 return "DW_OP_reg11";
12676 case DW_OP_reg12:
12677 return "DW_OP_reg12";
12678 case DW_OP_reg13:
12679 return "DW_OP_reg13";
12680 case DW_OP_reg14:
12681 return "DW_OP_reg14";
12682 case DW_OP_reg15:
12683 return "DW_OP_reg15";
12684 case DW_OP_reg16:
12685 return "DW_OP_reg16";
12686 case DW_OP_reg17:
12687 return "DW_OP_reg17";
12688 case DW_OP_reg18:
12689 return "DW_OP_reg18";
12690 case DW_OP_reg19:
12691 return "DW_OP_reg19";
12692 case DW_OP_reg20:
12693 return "DW_OP_reg20";
12694 case DW_OP_reg21:
12695 return "DW_OP_reg21";
12696 case DW_OP_reg22:
12697 return "DW_OP_reg22";
12698 case DW_OP_reg23:
12699 return "DW_OP_reg23";
12700 case DW_OP_reg24:
12701 return "DW_OP_reg24";
12702 case DW_OP_reg25:
12703 return "DW_OP_reg25";
12704 case DW_OP_reg26:
12705 return "DW_OP_reg26";
12706 case DW_OP_reg27:
12707 return "DW_OP_reg27";
12708 case DW_OP_reg28:
12709 return "DW_OP_reg28";
12710 case DW_OP_reg29:
12711 return "DW_OP_reg29";
12712 case DW_OP_reg30:
12713 return "DW_OP_reg30";
12714 case DW_OP_reg31:
12715 return "DW_OP_reg31";
12716 case DW_OP_breg0:
12717 return "DW_OP_breg0";
12718 case DW_OP_breg1:
12719 return "DW_OP_breg1";
12720 case DW_OP_breg2:
12721 return "DW_OP_breg2";
12722 case DW_OP_breg3:
12723 return "DW_OP_breg3";
12724 case DW_OP_breg4:
12725 return "DW_OP_breg4";
12726 case DW_OP_breg5:
12727 return "DW_OP_breg5";
12728 case DW_OP_breg6:
12729 return "DW_OP_breg6";
12730 case DW_OP_breg7:
12731 return "DW_OP_breg7";
12732 case DW_OP_breg8:
12733 return "DW_OP_breg8";
12734 case DW_OP_breg9:
12735 return "DW_OP_breg9";
12736 case DW_OP_breg10:
12737 return "DW_OP_breg10";
12738 case DW_OP_breg11:
12739 return "DW_OP_breg11";
12740 case DW_OP_breg12:
12741 return "DW_OP_breg12";
12742 case DW_OP_breg13:
12743 return "DW_OP_breg13";
12744 case DW_OP_breg14:
12745 return "DW_OP_breg14";
12746 case DW_OP_breg15:
12747 return "DW_OP_breg15";
12748 case DW_OP_breg16:
12749 return "DW_OP_breg16";
12750 case DW_OP_breg17:
12751 return "DW_OP_breg17";
12752 case DW_OP_breg18:
12753 return "DW_OP_breg18";
12754 case DW_OP_breg19:
12755 return "DW_OP_breg19";
12756 case DW_OP_breg20:
12757 return "DW_OP_breg20";
12758 case DW_OP_breg21:
12759 return "DW_OP_breg21";
12760 case DW_OP_breg22:
12761 return "DW_OP_breg22";
12762 case DW_OP_breg23:
12763 return "DW_OP_breg23";
12764 case DW_OP_breg24:
12765 return "DW_OP_breg24";
12766 case DW_OP_breg25:
12767 return "DW_OP_breg25";
12768 case DW_OP_breg26:
12769 return "DW_OP_breg26";
12770 case DW_OP_breg27:
12771 return "DW_OP_breg27";
12772 case DW_OP_breg28:
12773 return "DW_OP_breg28";
12774 case DW_OP_breg29:
12775 return "DW_OP_breg29";
12776 case DW_OP_breg30:
12777 return "DW_OP_breg30";
12778 case DW_OP_breg31:
12779 return "DW_OP_breg31";
12780 case DW_OP_regx:
12781 return "DW_OP_regx";
12782 case DW_OP_fbreg:
12783 return "DW_OP_fbreg";
12784 case DW_OP_bregx:
12785 return "DW_OP_bregx";
12786 case DW_OP_piece:
12787 return "DW_OP_piece";
12788 case DW_OP_deref_size:
12789 return "DW_OP_deref_size";
12790 case DW_OP_xderef_size:
12791 return "DW_OP_xderef_size";
12792 case DW_OP_nop:
12793 return "DW_OP_nop";
12794 /* DWARF 3 extensions. */
12795 case DW_OP_push_object_address:
12796 return "DW_OP_push_object_address";
12797 case DW_OP_call2:
12798 return "DW_OP_call2";
12799 case DW_OP_call4:
12800 return "DW_OP_call4";
12801 case DW_OP_call_ref:
12802 return "DW_OP_call_ref";
12803 case DW_OP_form_tls_address:
12804 return "DW_OP_form_tls_address";
12805 case DW_OP_call_frame_cfa:
12806 return "DW_OP_call_frame_cfa";
12807 case DW_OP_bit_piece:
12808 return "DW_OP_bit_piece";
12809 /* DWARF 4 extensions. */
12810 case DW_OP_implicit_value:
12811 return "DW_OP_implicit_value";
12812 case DW_OP_stack_value:
12813 return "DW_OP_stack_value";
12814 /* GNU extensions. */
12815 case DW_OP_GNU_push_tls_address:
12816 return "DW_OP_GNU_push_tls_address";
12817 case DW_OP_GNU_uninit:
12818 return "DW_OP_GNU_uninit";
12819 case DW_OP_GNU_implicit_pointer:
12820 return "DW_OP_GNU_implicit_pointer";
12821 default:
12822 return NULL;
12823 }
12824}
12825
12826static char *
12827dwarf_bool_name (unsigned mybool)
12828{
12829 if (mybool)
12830 return "TRUE";
12831 else
12832 return "FALSE";
12833}
12834
12835/* Convert a DWARF type code into its string name. */
12836
12837static char *
12838dwarf_type_encoding_name (unsigned enc)
12839{
12840 switch (enc)
12841 {
12842 case DW_ATE_void:
12843 return "DW_ATE_void";
12844 case DW_ATE_address:
12845 return "DW_ATE_address";
12846 case DW_ATE_boolean:
12847 return "DW_ATE_boolean";
12848 case DW_ATE_complex_float:
12849 return "DW_ATE_complex_float";
12850 case DW_ATE_float:
12851 return "DW_ATE_float";
12852 case DW_ATE_signed:
12853 return "DW_ATE_signed";
12854 case DW_ATE_signed_char:
12855 return "DW_ATE_signed_char";
12856 case DW_ATE_unsigned:
12857 return "DW_ATE_unsigned";
12858 case DW_ATE_unsigned_char:
12859 return "DW_ATE_unsigned_char";
12860 /* DWARF 3. */
12861 case DW_ATE_imaginary_float:
12862 return "DW_ATE_imaginary_float";
12863 case DW_ATE_packed_decimal:
12864 return "DW_ATE_packed_decimal";
12865 case DW_ATE_numeric_string:
12866 return "DW_ATE_numeric_string";
12867 case DW_ATE_edited:
12868 return "DW_ATE_edited";
12869 case DW_ATE_signed_fixed:
12870 return "DW_ATE_signed_fixed";
12871 case DW_ATE_unsigned_fixed:
12872 return "DW_ATE_unsigned_fixed";
12873 case DW_ATE_decimal_float:
12874 return "DW_ATE_decimal_float";
12875 /* DWARF 4. */
12876 case DW_ATE_UTF:
12877 return "DW_ATE_UTF";
12878 /* HP extensions. */
12879 case DW_ATE_HP_float80:
12880 return "DW_ATE_HP_float80";
12881 case DW_ATE_HP_complex_float80:
12882 return "DW_ATE_HP_complex_float80";
12883 case DW_ATE_HP_float128:
12884 return "DW_ATE_HP_float128";
12885 case DW_ATE_HP_complex_float128:
12886 return "DW_ATE_HP_complex_float128";
12887 case DW_ATE_HP_floathpintel:
12888 return "DW_ATE_HP_floathpintel";
12889 case DW_ATE_HP_imaginary_float80:
12890 return "DW_ATE_HP_imaginary_float80";
12891 case DW_ATE_HP_imaginary_float128:
12892 return "DW_ATE_HP_imaginary_float128";
12893 default:
12894 return "DW_ATE_<unknown>";
12895 }
12896}
12897
12898/* Convert a DWARF call frame info operation to its string name. */
12899
12900#if 0
12901static char *
12902dwarf_cfi_name (unsigned cfi_opc)
12903{
12904 switch (cfi_opc)
12905 {
12906 case DW_CFA_advance_loc:
12907 return "DW_CFA_advance_loc";
12908 case DW_CFA_offset:
12909 return "DW_CFA_offset";
12910 case DW_CFA_restore:
12911 return "DW_CFA_restore";
12912 case DW_CFA_nop:
12913 return "DW_CFA_nop";
12914 case DW_CFA_set_loc:
12915 return "DW_CFA_set_loc";
12916 case DW_CFA_advance_loc1:
12917 return "DW_CFA_advance_loc1";
12918 case DW_CFA_advance_loc2:
12919 return "DW_CFA_advance_loc2";
12920 case DW_CFA_advance_loc4:
12921 return "DW_CFA_advance_loc4";
12922 case DW_CFA_offset_extended:
12923 return "DW_CFA_offset_extended";
12924 case DW_CFA_restore_extended:
12925 return "DW_CFA_restore_extended";
12926 case DW_CFA_undefined:
12927 return "DW_CFA_undefined";
12928 case DW_CFA_same_value:
12929 return "DW_CFA_same_value";
12930 case DW_CFA_register:
12931 return "DW_CFA_register";
12932 case DW_CFA_remember_state:
12933 return "DW_CFA_remember_state";
12934 case DW_CFA_restore_state:
12935 return "DW_CFA_restore_state";
12936 case DW_CFA_def_cfa:
12937 return "DW_CFA_def_cfa";
12938 case DW_CFA_def_cfa_register:
12939 return "DW_CFA_def_cfa_register";
12940 case DW_CFA_def_cfa_offset:
12941 return "DW_CFA_def_cfa_offset";
12942 /* DWARF 3. */
12943 case DW_CFA_def_cfa_expression:
12944 return "DW_CFA_def_cfa_expression";
12945 case DW_CFA_expression:
12946 return "DW_CFA_expression";
12947 case DW_CFA_offset_extended_sf:
12948 return "DW_CFA_offset_extended_sf";
12949 case DW_CFA_def_cfa_sf:
12950 return "DW_CFA_def_cfa_sf";
12951 case DW_CFA_def_cfa_offset_sf:
12952 return "DW_CFA_def_cfa_offset_sf";
12953 case DW_CFA_val_offset:
12954 return "DW_CFA_val_offset";
12955 case DW_CFA_val_offset_sf:
12956 return "DW_CFA_val_offset_sf";
12957 case DW_CFA_val_expression:
12958 return "DW_CFA_val_expression";
12959 /* SGI/MIPS specific. */
12960 case DW_CFA_MIPS_advance_loc8:
12961 return "DW_CFA_MIPS_advance_loc8";
12962 /* GNU extensions. */
12963 case DW_CFA_GNU_window_save:
12964 return "DW_CFA_GNU_window_save";
12965 case DW_CFA_GNU_args_size:
12966 return "DW_CFA_GNU_args_size";
12967 case DW_CFA_GNU_negative_offset_extended:
12968 return "DW_CFA_GNU_negative_offset_extended";
12969 default:
12970 return "DW_CFA_<unknown>";
12971 }
12972}
12973#endif
12974
12975static void
12976dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12977{
12978 unsigned int i;
12979
12980 print_spaces (indent, f);
12981 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12982 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12983
12984 if (die->parent != NULL)
12985 {
12986 print_spaces (indent, f);
12987 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12988 die->parent->offset);
12989 }
12990
12991 print_spaces (indent, f);
12992 fprintf_unfiltered (f, " has children: %s\n",
12993 dwarf_bool_name (die->child != NULL));
12994
12995 print_spaces (indent, f);
12996 fprintf_unfiltered (f, " attributes:\n");
12997
12998 for (i = 0; i < die->num_attrs; ++i)
12999 {
13000 print_spaces (indent, f);
13001 fprintf_unfiltered (f, " %s (%s) ",
13002 dwarf_attr_name (die->attrs[i].name),
13003 dwarf_form_name (die->attrs[i].form));
13004
13005 switch (die->attrs[i].form)
13006 {
13007 case DW_FORM_ref_addr:
13008 case DW_FORM_addr:
13009 fprintf_unfiltered (f, "address: ");
13010 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13011 break;
13012 case DW_FORM_block2:
13013 case DW_FORM_block4:
13014 case DW_FORM_block:
13015 case DW_FORM_block1:
13016 fprintf_unfiltered (f, "block: size %d",
13017 DW_BLOCK (&die->attrs[i])->size);
13018 break;
13019 case DW_FORM_exprloc:
13020 fprintf_unfiltered (f, "expression: size %u",
13021 DW_BLOCK (&die->attrs[i])->size);
13022 break;
13023 case DW_FORM_ref1:
13024 case DW_FORM_ref2:
13025 case DW_FORM_ref4:
13026 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13027 (long) (DW_ADDR (&die->attrs[i])));
13028 break;
13029 case DW_FORM_data1:
13030 case DW_FORM_data2:
13031 case DW_FORM_data4:
13032 case DW_FORM_data8:
13033 case DW_FORM_udata:
13034 case DW_FORM_sdata:
13035 fprintf_unfiltered (f, "constant: %s",
13036 pulongest (DW_UNSND (&die->attrs[i])));
13037 break;
13038 case DW_FORM_sec_offset:
13039 fprintf_unfiltered (f, "section offset: %s",
13040 pulongest (DW_UNSND (&die->attrs[i])));
13041 break;
13042 case DW_FORM_sig8:
13043 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13044 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13045 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
13046 else
13047 fprintf_unfiltered (f, "signatured type, offset: unknown");
13048 break;
13049 case DW_FORM_string:
13050 case DW_FORM_strp:
13051 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13052 DW_STRING (&die->attrs[i])
13053 ? DW_STRING (&die->attrs[i]) : "",
13054 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13055 break;
13056 case DW_FORM_flag:
13057 if (DW_UNSND (&die->attrs[i]))
13058 fprintf_unfiltered (f, "flag: TRUE");
13059 else
13060 fprintf_unfiltered (f, "flag: FALSE");
13061 break;
13062 case DW_FORM_flag_present:
13063 fprintf_unfiltered (f, "flag: TRUE");
13064 break;
13065 case DW_FORM_indirect:
13066 /* The reader will have reduced the indirect form to
13067 the "base form" so this form should not occur. */
13068 fprintf_unfiltered (f,
13069 "unexpected attribute form: DW_FORM_indirect");
13070 break;
13071 default:
13072 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13073 die->attrs[i].form);
13074 break;
13075 }
13076 fprintf_unfiltered (f, "\n");
13077 }
13078}
13079
13080static void
13081dump_die_for_error (struct die_info *die)
13082{
13083 dump_die_shallow (gdb_stderr, 0, die);
13084}
13085
13086static void
13087dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13088{
13089 int indent = level * 4;
13090
13091 gdb_assert (die != NULL);
13092
13093 if (level >= max_level)
13094 return;
13095
13096 dump_die_shallow (f, indent, die);
13097
13098 if (die->child != NULL)
13099 {
13100 print_spaces (indent, f);
13101 fprintf_unfiltered (f, " Children:");
13102 if (level + 1 < max_level)
13103 {
13104 fprintf_unfiltered (f, "\n");
13105 dump_die_1 (f, level + 1, max_level, die->child);
13106 }
13107 else
13108 {
13109 fprintf_unfiltered (f,
13110 " [not printed, max nesting level reached]\n");
13111 }
13112 }
13113
13114 if (die->sibling != NULL && level > 0)
13115 {
13116 dump_die_1 (f, level, max_level, die->sibling);
13117 }
13118}
13119
13120/* This is called from the pdie macro in gdbinit.in.
13121 It's not static so gcc will keep a copy callable from gdb. */
13122
13123void
13124dump_die (struct die_info *die, int max_level)
13125{
13126 dump_die_1 (gdb_stdlog, 0, max_level, die);
13127}
13128
13129static void
13130store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
13131{
13132 void **slot;
13133
13134 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13135
13136 *slot = die;
13137}
13138
13139static int
13140is_ref_attr (struct attribute *attr)
13141{
13142 switch (attr->form)
13143 {
13144 case DW_FORM_ref_addr:
13145 case DW_FORM_ref1:
13146 case DW_FORM_ref2:
13147 case DW_FORM_ref4:
13148 case DW_FORM_ref8:
13149 case DW_FORM_ref_udata:
13150 return 1;
13151 default:
13152 return 0;
13153 }
13154}
13155
13156static unsigned int
13157dwarf2_get_ref_die_offset (struct attribute *attr)
13158{
13159 if (is_ref_attr (attr))
13160 return DW_ADDR (attr);
13161
13162 complaint (&symfile_complaints,
13163 _("unsupported die ref attribute form: '%s'"),
13164 dwarf_form_name (attr->form));
13165 return 0;
13166}
13167
13168/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13169 * the value held by the attribute is not constant. */
13170
13171static LONGEST
13172dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13173{
13174 if (attr->form == DW_FORM_sdata)
13175 return DW_SND (attr);
13176 else if (attr->form == DW_FORM_udata
13177 || attr->form == DW_FORM_data1
13178 || attr->form == DW_FORM_data2
13179 || attr->form == DW_FORM_data4
13180 || attr->form == DW_FORM_data8)
13181 return DW_UNSND (attr);
13182 else
13183 {
13184 complaint (&symfile_complaints,
13185 _("Attribute value is not a constant (%s)"),
13186 dwarf_form_name (attr->form));
13187 return default_value;
13188 }
13189}
13190
13191/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
13192 unit and add it to our queue.
13193 The result is non-zero if PER_CU was queued, otherwise the result is zero
13194 meaning either PER_CU is already queued or it is already loaded. */
13195
13196static int
13197maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13198 struct dwarf2_per_cu_data *per_cu)
13199{
13200 /* We may arrive here during partial symbol reading, if we need full
13201 DIEs to process an unusual case (e.g. template arguments). Do
13202 not queue PER_CU, just tell our caller to load its DIEs. */
13203 if (dwarf2_per_objfile->reading_partial_symbols)
13204 {
13205 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13206 return 1;
13207 return 0;
13208 }
13209
13210 /* Mark the dependence relation so that we don't flush PER_CU
13211 too early. */
13212 dwarf2_add_dependence (this_cu, per_cu);
13213
13214 /* If it's already on the queue, we have nothing to do. */
13215 if (per_cu->queued)
13216 return 0;
13217
13218 /* If the compilation unit is already loaded, just mark it as
13219 used. */
13220 if (per_cu->cu != NULL)
13221 {
13222 per_cu->cu->last_used = 0;
13223 return 0;
13224 }
13225
13226 /* Add it to the queue. */
13227 queue_comp_unit (per_cu, this_cu->objfile);
13228
13229 return 1;
13230}
13231
13232/* Follow reference or signature attribute ATTR of SRC_DIE.
13233 On entry *REF_CU is the CU of SRC_DIE.
13234 On exit *REF_CU is the CU of the result. */
13235
13236static struct die_info *
13237follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13238 struct dwarf2_cu **ref_cu)
13239{
13240 struct die_info *die;
13241
13242 if (is_ref_attr (attr))
13243 die = follow_die_ref (src_die, attr, ref_cu);
13244 else if (attr->form == DW_FORM_sig8)
13245 die = follow_die_sig (src_die, attr, ref_cu);
13246 else
13247 {
13248 dump_die_for_error (src_die);
13249 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13250 (*ref_cu)->objfile->name);
13251 }
13252
13253 return die;
13254}
13255
13256/* Follow reference OFFSET.
13257 On entry *REF_CU is the CU of the source die referencing OFFSET.
13258 On exit *REF_CU is the CU of the result.
13259 Returns NULL if OFFSET is invalid. */
13260
13261static struct die_info *
13262follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13263{
13264 struct die_info temp_die;
13265 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13266
13267 gdb_assert (cu->per_cu != NULL);
13268
13269 target_cu = cu;
13270
13271 if (cu->per_cu->from_debug_types)
13272 {
13273 /* .debug_types CUs cannot reference anything outside their CU.
13274 If they need to, they have to reference a signatured type via
13275 DW_FORM_sig8. */
13276 if (! offset_in_cu_p (&cu->header, offset))
13277 return NULL;
13278 }
13279 else if (! offset_in_cu_p (&cu->header, offset))
13280 {
13281 struct dwarf2_per_cu_data *per_cu;
13282
13283 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13284
13285 /* If necessary, add it to the queue and load its DIEs. */
13286 if (maybe_queue_comp_unit (cu, per_cu))
13287 load_full_comp_unit (per_cu, cu->objfile);
13288
13289 target_cu = per_cu->cu;
13290 }
13291 else if (cu->dies == NULL)
13292 {
13293 /* We're loading full DIEs during partial symbol reading. */
13294 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13295 load_full_comp_unit (cu->per_cu, cu->objfile);
13296 }
13297
13298 *ref_cu = target_cu;
13299 temp_die.offset = offset;
13300 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13301}
13302
13303/* Follow reference attribute ATTR of SRC_DIE.
13304 On entry *REF_CU is the CU of SRC_DIE.
13305 On exit *REF_CU is the CU of the result. */
13306
13307static struct die_info *
13308follow_die_ref (struct die_info *src_die, struct attribute *attr,
13309 struct dwarf2_cu **ref_cu)
13310{
13311 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13312 struct dwarf2_cu *cu = *ref_cu;
13313 struct die_info *die;
13314
13315 die = follow_die_offset (offset, ref_cu);
13316 if (!die)
13317 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13318 "at 0x%x [in module %s]"),
13319 offset, src_die->offset, cu->objfile->name);
13320
13321 return die;
13322}
13323
13324/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13325 value is intended for DW_OP_call*. */
13326
13327struct dwarf2_locexpr_baton
13328dwarf2_fetch_die_location_block (unsigned int offset,
13329 struct dwarf2_per_cu_data *per_cu,
13330 CORE_ADDR (*get_frame_pc) (void *baton),
13331 void *baton)
13332{
13333 struct dwarf2_cu *cu = per_cu->cu;
13334 struct die_info *die;
13335 struct attribute *attr;
13336 struct dwarf2_locexpr_baton retval;
13337
13338 dw2_setup (per_cu->objfile);
13339
13340 die = follow_die_offset (offset, &cu);
13341 if (!die)
13342 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13343 offset, per_cu->cu->objfile->name);
13344
13345 attr = dwarf2_attr (die, DW_AT_location, cu);
13346 if (!attr)
13347 {
13348 /* DWARF: "If there is no such attribute, then there is no effect.". */
13349
13350 retval.data = NULL;
13351 retval.size = 0;
13352 }
13353 else if (attr_form_is_section_offset (attr))
13354 {
13355 struct dwarf2_loclist_baton loclist_baton;
13356 CORE_ADDR pc = (*get_frame_pc) (baton);
13357 size_t size;
13358
13359 fill_in_loclist_baton (cu, &loclist_baton, attr);
13360
13361 retval.data = dwarf2_find_location_expression (&loclist_baton,
13362 &size, pc);
13363 retval.size = size;
13364 }
13365 else
13366 {
13367 if (!attr_form_is_block (attr))
13368 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13369 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13370 offset, per_cu->cu->objfile->name);
13371
13372 retval.data = DW_BLOCK (attr)->data;
13373 retval.size = DW_BLOCK (attr)->size;
13374 }
13375 retval.per_cu = cu->per_cu;
13376 return retval;
13377}
13378
13379/* Follow the signature attribute ATTR in SRC_DIE.
13380 On entry *REF_CU is the CU of SRC_DIE.
13381 On exit *REF_CU is the CU of the result. */
13382
13383static struct die_info *
13384follow_die_sig (struct die_info *src_die, struct attribute *attr,
13385 struct dwarf2_cu **ref_cu)
13386{
13387 struct objfile *objfile = (*ref_cu)->objfile;
13388 struct die_info temp_die;
13389 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13390 struct dwarf2_cu *sig_cu;
13391 struct die_info *die;
13392
13393 /* sig_type will be NULL if the signatured type is missing from
13394 the debug info. */
13395 if (sig_type == NULL)
13396 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13397 "at 0x%x [in module %s]"),
13398 src_die->offset, objfile->name);
13399
13400 /* If necessary, add it to the queue and load its DIEs. */
13401
13402 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13403 read_signatured_type (objfile, sig_type);
13404
13405 gdb_assert (sig_type->per_cu.cu != NULL);
13406
13407 sig_cu = sig_type->per_cu.cu;
13408 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13409 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13410 if (die)
13411 {
13412 *ref_cu = sig_cu;
13413 return die;
13414 }
13415
13416 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13417 "from DIE at 0x%x [in module %s]"),
13418 sig_type->type_offset, src_die->offset, objfile->name);
13419}
13420
13421/* Given an offset of a signatured type, return its signatured_type. */
13422
13423static struct signatured_type *
13424lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13425{
13426 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13427 unsigned int length, initial_length_size;
13428 unsigned int sig_offset;
13429 struct signatured_type find_entry, *type_sig;
13430
13431 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13432 sig_offset = (initial_length_size
13433 + 2 /*version*/
13434 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13435 + 1 /*address_size*/);
13436 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13437 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13438
13439 /* This is only used to lookup previously recorded types.
13440 If we didn't find it, it's our bug. */
13441 gdb_assert (type_sig != NULL);
13442 gdb_assert (offset == type_sig->offset);
13443
13444 return type_sig;
13445}
13446
13447/* Read in signatured type at OFFSET and build its CU and die(s). */
13448
13449static void
13450read_signatured_type_at_offset (struct objfile *objfile,
13451 unsigned int offset)
13452{
13453 struct signatured_type *type_sig;
13454
13455 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13456
13457 /* We have the section offset, but we need the signature to do the
13458 hash table lookup. */
13459 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13460
13461 gdb_assert (type_sig->per_cu.cu == NULL);
13462
13463 read_signatured_type (objfile, type_sig);
13464
13465 gdb_assert (type_sig->per_cu.cu != NULL);
13466}
13467
13468/* Read in a signatured type and build its CU and DIEs. */
13469
13470static void
13471read_signatured_type (struct objfile *objfile,
13472 struct signatured_type *type_sig)
13473{
13474 gdb_byte *types_ptr;
13475 struct die_reader_specs reader_specs;
13476 struct dwarf2_cu *cu;
13477 ULONGEST signature;
13478 struct cleanup *back_to, *free_cu_cleanup;
13479
13480 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13481 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13482
13483 gdb_assert (type_sig->per_cu.cu == NULL);
13484
13485 cu = xmalloc (sizeof (*cu));
13486 init_one_comp_unit (cu, objfile);
13487
13488 type_sig->per_cu.cu = cu;
13489 cu->per_cu = &type_sig->per_cu;
13490
13491 /* If an error occurs while loading, release our storage. */
13492 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13493
13494 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13495 types_ptr, objfile->obfd);
13496 gdb_assert (signature == type_sig->signature);
13497
13498 cu->die_hash
13499 = htab_create_alloc_ex (cu->header.length / 12,
13500 die_hash,
13501 die_eq,
13502 NULL,
13503 &cu->comp_unit_obstack,
13504 hashtab_obstack_allocate,
13505 dummy_obstack_deallocate);
13506
13507 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13508 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13509
13510 init_cu_die_reader (&reader_specs, cu);
13511
13512 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13513 NULL /*parent*/);
13514
13515 /* We try not to read any attributes in this function, because not
13516 all objfiles needed for references have been loaded yet, and symbol
13517 table processing isn't initialized. But we have to set the CU language,
13518 or we won't be able to build types correctly. */
13519 prepare_one_comp_unit (cu, cu->dies);
13520
13521 do_cleanups (back_to);
13522
13523 /* We've successfully allocated this compilation unit. Let our caller
13524 clean it up when finished with it. */
13525 discard_cleanups (free_cu_cleanup);
13526
13527 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13528 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13529}
13530
13531/* Decode simple location descriptions.
13532 Given a pointer to a dwarf block that defines a location, compute
13533 the location and return the value.
13534
13535 NOTE drow/2003-11-18: This function is called in two situations
13536 now: for the address of static or global variables (partial symbols
13537 only) and for offsets into structures which are expected to be
13538 (more or less) constant. The partial symbol case should go away,
13539 and only the constant case should remain. That will let this
13540 function complain more accurately. A few special modes are allowed
13541 without complaint for global variables (for instance, global
13542 register values and thread-local values).
13543
13544 A location description containing no operations indicates that the
13545 object is optimized out. The return value is 0 for that case.
13546 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13547 callers will only want a very basic result and this can become a
13548 complaint.
13549
13550 Note that stack[0] is unused except as a default error return. */
13551
13552static CORE_ADDR
13553decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13554{
13555 struct objfile *objfile = cu->objfile;
13556 int i;
13557 int size = blk->size;
13558 gdb_byte *data = blk->data;
13559 CORE_ADDR stack[64];
13560 int stacki;
13561 unsigned int bytes_read, unsnd;
13562 gdb_byte op;
13563
13564 i = 0;
13565 stacki = 0;
13566 stack[stacki] = 0;
13567 stack[++stacki] = 0;
13568
13569 while (i < size)
13570 {
13571 op = data[i++];
13572 switch (op)
13573 {
13574 case DW_OP_lit0:
13575 case DW_OP_lit1:
13576 case DW_OP_lit2:
13577 case DW_OP_lit3:
13578 case DW_OP_lit4:
13579 case DW_OP_lit5:
13580 case DW_OP_lit6:
13581 case DW_OP_lit7:
13582 case DW_OP_lit8:
13583 case DW_OP_lit9:
13584 case DW_OP_lit10:
13585 case DW_OP_lit11:
13586 case DW_OP_lit12:
13587 case DW_OP_lit13:
13588 case DW_OP_lit14:
13589 case DW_OP_lit15:
13590 case DW_OP_lit16:
13591 case DW_OP_lit17:
13592 case DW_OP_lit18:
13593 case DW_OP_lit19:
13594 case DW_OP_lit20:
13595 case DW_OP_lit21:
13596 case DW_OP_lit22:
13597 case DW_OP_lit23:
13598 case DW_OP_lit24:
13599 case DW_OP_lit25:
13600 case DW_OP_lit26:
13601 case DW_OP_lit27:
13602 case DW_OP_lit28:
13603 case DW_OP_lit29:
13604 case DW_OP_lit30:
13605 case DW_OP_lit31:
13606 stack[++stacki] = op - DW_OP_lit0;
13607 break;
13608
13609 case DW_OP_reg0:
13610 case DW_OP_reg1:
13611 case DW_OP_reg2:
13612 case DW_OP_reg3:
13613 case DW_OP_reg4:
13614 case DW_OP_reg5:
13615 case DW_OP_reg6:
13616 case DW_OP_reg7:
13617 case DW_OP_reg8:
13618 case DW_OP_reg9:
13619 case DW_OP_reg10:
13620 case DW_OP_reg11:
13621 case DW_OP_reg12:
13622 case DW_OP_reg13:
13623 case DW_OP_reg14:
13624 case DW_OP_reg15:
13625 case DW_OP_reg16:
13626 case DW_OP_reg17:
13627 case DW_OP_reg18:
13628 case DW_OP_reg19:
13629 case DW_OP_reg20:
13630 case DW_OP_reg21:
13631 case DW_OP_reg22:
13632 case DW_OP_reg23:
13633 case DW_OP_reg24:
13634 case DW_OP_reg25:
13635 case DW_OP_reg26:
13636 case DW_OP_reg27:
13637 case DW_OP_reg28:
13638 case DW_OP_reg29:
13639 case DW_OP_reg30:
13640 case DW_OP_reg31:
13641 stack[++stacki] = op - DW_OP_reg0;
13642 if (i < size)
13643 dwarf2_complex_location_expr_complaint ();
13644 break;
13645
13646 case DW_OP_regx:
13647 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13648 i += bytes_read;
13649 stack[++stacki] = unsnd;
13650 if (i < size)
13651 dwarf2_complex_location_expr_complaint ();
13652 break;
13653
13654 case DW_OP_addr:
13655 stack[++stacki] = read_address (objfile->obfd, &data[i],
13656 cu, &bytes_read);
13657 i += bytes_read;
13658 break;
13659
13660 case DW_OP_const1u:
13661 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13662 i += 1;
13663 break;
13664
13665 case DW_OP_const1s:
13666 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13667 i += 1;
13668 break;
13669
13670 case DW_OP_const2u:
13671 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13672 i += 2;
13673 break;
13674
13675 case DW_OP_const2s:
13676 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13677 i += 2;
13678 break;
13679
13680 case DW_OP_const4u:
13681 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13682 i += 4;
13683 break;
13684
13685 case DW_OP_const4s:
13686 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13687 i += 4;
13688 break;
13689
13690 case DW_OP_constu:
13691 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13692 &bytes_read);
13693 i += bytes_read;
13694 break;
13695
13696 case DW_OP_consts:
13697 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13698 i += bytes_read;
13699 break;
13700
13701 case DW_OP_dup:
13702 stack[stacki + 1] = stack[stacki];
13703 stacki++;
13704 break;
13705
13706 case DW_OP_plus:
13707 stack[stacki - 1] += stack[stacki];
13708 stacki--;
13709 break;
13710
13711 case DW_OP_plus_uconst:
13712 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13713 &bytes_read);
13714 i += bytes_read;
13715 break;
13716
13717 case DW_OP_minus:
13718 stack[stacki - 1] -= stack[stacki];
13719 stacki--;
13720 break;
13721
13722 case DW_OP_deref:
13723 /* If we're not the last op, then we definitely can't encode
13724 this using GDB's address_class enum. This is valid for partial
13725 global symbols, although the variable's address will be bogus
13726 in the psymtab. */
13727 if (i < size)
13728 dwarf2_complex_location_expr_complaint ();
13729 break;
13730
13731 case DW_OP_GNU_push_tls_address:
13732 /* The top of the stack has the offset from the beginning
13733 of the thread control block at which the variable is located. */
13734 /* Nothing should follow this operator, so the top of stack would
13735 be returned. */
13736 /* This is valid for partial global symbols, but the variable's
13737 address will be bogus in the psymtab. */
13738 if (i < size)
13739 dwarf2_complex_location_expr_complaint ();
13740 break;
13741
13742 case DW_OP_GNU_uninit:
13743 break;
13744
13745 default:
13746 {
13747 const char *name = dwarf_stack_op_name (op);
13748
13749 if (name)
13750 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13751 name);
13752 else
13753 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
13754 op);
13755 }
13756
13757 return (stack[stacki]);
13758 }
13759
13760 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13761 outside of the allocated space. Also enforce minimum>0. */
13762 if (stacki >= ARRAY_SIZE (stack) - 1)
13763 {
13764 complaint (&symfile_complaints,
13765 _("location description stack overflow"));
13766 return 0;
13767 }
13768
13769 if (stacki <= 0)
13770 {
13771 complaint (&symfile_complaints,
13772 _("location description stack underflow"));
13773 return 0;
13774 }
13775 }
13776 return (stack[stacki]);
13777}
13778
13779/* memory allocation interface */
13780
13781static struct dwarf_block *
13782dwarf_alloc_block (struct dwarf2_cu *cu)
13783{
13784 struct dwarf_block *blk;
13785
13786 blk = (struct dwarf_block *)
13787 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13788 return (blk);
13789}
13790
13791static struct abbrev_info *
13792dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13793{
13794 struct abbrev_info *abbrev;
13795
13796 abbrev = (struct abbrev_info *)
13797 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13798 memset (abbrev, 0, sizeof (struct abbrev_info));
13799 return (abbrev);
13800}
13801
13802static struct die_info *
13803dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13804{
13805 struct die_info *die;
13806 size_t size = sizeof (struct die_info);
13807
13808 if (num_attrs > 1)
13809 size += (num_attrs - 1) * sizeof (struct attribute);
13810
13811 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13812 memset (die, 0, sizeof (struct die_info));
13813 return (die);
13814}
13815
13816\f
13817/* Macro support. */
13818
13819/* Return the full name of file number I in *LH's file name table.
13820 Use COMP_DIR as the name of the current directory of the
13821 compilation. The result is allocated using xmalloc; the caller is
13822 responsible for freeing it. */
13823static char *
13824file_full_name (int file, struct line_header *lh, const char *comp_dir)
13825{
13826 /* Is the file number a valid index into the line header's file name
13827 table? Remember that file numbers start with one, not zero. */
13828 if (1 <= file && file <= lh->num_file_names)
13829 {
13830 struct file_entry *fe = &lh->file_names[file - 1];
13831
13832 if (IS_ABSOLUTE_PATH (fe->name))
13833 return xstrdup (fe->name);
13834 else
13835 {
13836 const char *dir;
13837 int dir_len;
13838 char *full_name;
13839
13840 if (fe->dir_index)
13841 dir = lh->include_dirs[fe->dir_index - 1];
13842 else
13843 dir = comp_dir;
13844
13845 if (dir)
13846 {
13847 dir_len = strlen (dir);
13848 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13849 strcpy (full_name, dir);
13850 full_name[dir_len] = '/';
13851 strcpy (full_name + dir_len + 1, fe->name);
13852 return full_name;
13853 }
13854 else
13855 return xstrdup (fe->name);
13856 }
13857 }
13858 else
13859 {
13860 /* The compiler produced a bogus file number. We can at least
13861 record the macro definitions made in the file, even if we
13862 won't be able to find the file by name. */
13863 char fake_name[80];
13864
13865 sprintf (fake_name, "<bad macro file number %d>", file);
13866
13867 complaint (&symfile_complaints,
13868 _("bad file number in macro information (%d)"),
13869 file);
13870
13871 return xstrdup (fake_name);
13872 }
13873}
13874
13875
13876static struct macro_source_file *
13877macro_start_file (int file, int line,
13878 struct macro_source_file *current_file,
13879 const char *comp_dir,
13880 struct line_header *lh, struct objfile *objfile)
13881{
13882 /* The full name of this source file. */
13883 char *full_name = file_full_name (file, lh, comp_dir);
13884
13885 /* We don't create a macro table for this compilation unit
13886 at all until we actually get a filename. */
13887 if (! pending_macros)
13888 pending_macros = new_macro_table (&objfile->objfile_obstack,
13889 objfile->macro_cache);
13890
13891 if (! current_file)
13892 /* If we have no current file, then this must be the start_file
13893 directive for the compilation unit's main source file. */
13894 current_file = macro_set_main (pending_macros, full_name);
13895 else
13896 current_file = macro_include (current_file, line, full_name);
13897
13898 xfree (full_name);
13899
13900 return current_file;
13901}
13902
13903
13904/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13905 followed by a null byte. */
13906static char *
13907copy_string (const char *buf, int len)
13908{
13909 char *s = xmalloc (len + 1);
13910
13911 memcpy (s, buf, len);
13912 s[len] = '\0';
13913 return s;
13914}
13915
13916
13917static const char *
13918consume_improper_spaces (const char *p, const char *body)
13919{
13920 if (*p == ' ')
13921 {
13922 complaint (&symfile_complaints,
13923 _("macro definition contains spaces "
13924 "in formal argument list:\n`%s'"),
13925 body);
13926
13927 while (*p == ' ')
13928 p++;
13929 }
13930
13931 return p;
13932}
13933
13934
13935static void
13936parse_macro_definition (struct macro_source_file *file, int line,
13937 const char *body)
13938{
13939 const char *p;
13940
13941 /* The body string takes one of two forms. For object-like macro
13942 definitions, it should be:
13943
13944 <macro name> " " <definition>
13945
13946 For function-like macro definitions, it should be:
13947
13948 <macro name> "() " <definition>
13949 or
13950 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13951
13952 Spaces may appear only where explicitly indicated, and in the
13953 <definition>.
13954
13955 The Dwarf 2 spec says that an object-like macro's name is always
13956 followed by a space, but versions of GCC around March 2002 omit
13957 the space when the macro's definition is the empty string.
13958
13959 The Dwarf 2 spec says that there should be no spaces between the
13960 formal arguments in a function-like macro's formal argument list,
13961 but versions of GCC around March 2002 include spaces after the
13962 commas. */
13963
13964
13965 /* Find the extent of the macro name. The macro name is terminated
13966 by either a space or null character (for an object-like macro) or
13967 an opening paren (for a function-like macro). */
13968 for (p = body; *p; p++)
13969 if (*p == ' ' || *p == '(')
13970 break;
13971
13972 if (*p == ' ' || *p == '\0')
13973 {
13974 /* It's an object-like macro. */
13975 int name_len = p - body;
13976 char *name = copy_string (body, name_len);
13977 const char *replacement;
13978
13979 if (*p == ' ')
13980 replacement = body + name_len + 1;
13981 else
13982 {
13983 dwarf2_macro_malformed_definition_complaint (body);
13984 replacement = body + name_len;
13985 }
13986
13987 macro_define_object (file, line, name, replacement);
13988
13989 xfree (name);
13990 }
13991 else if (*p == '(')
13992 {
13993 /* It's a function-like macro. */
13994 char *name = copy_string (body, p - body);
13995 int argc = 0;
13996 int argv_size = 1;
13997 char **argv = xmalloc (argv_size * sizeof (*argv));
13998
13999 p++;
14000
14001 p = consume_improper_spaces (p, body);
14002
14003 /* Parse the formal argument list. */
14004 while (*p && *p != ')')
14005 {
14006 /* Find the extent of the current argument name. */
14007 const char *arg_start = p;
14008
14009 while (*p && *p != ',' && *p != ')' && *p != ' ')
14010 p++;
14011
14012 if (! *p || p == arg_start)
14013 dwarf2_macro_malformed_definition_complaint (body);
14014 else
14015 {
14016 /* Make sure argv has room for the new argument. */
14017 if (argc >= argv_size)
14018 {
14019 argv_size *= 2;
14020 argv = xrealloc (argv, argv_size * sizeof (*argv));
14021 }
14022
14023 argv[argc++] = copy_string (arg_start, p - arg_start);
14024 }
14025
14026 p = consume_improper_spaces (p, body);
14027
14028 /* Consume the comma, if present. */
14029 if (*p == ',')
14030 {
14031 p++;
14032
14033 p = consume_improper_spaces (p, body);
14034 }
14035 }
14036
14037 if (*p == ')')
14038 {
14039 p++;
14040
14041 if (*p == ' ')
14042 /* Perfectly formed definition, no complaints. */
14043 macro_define_function (file, line, name,
14044 argc, (const char **) argv,
14045 p + 1);
14046 else if (*p == '\0')
14047 {
14048 /* Complain, but do define it. */
14049 dwarf2_macro_malformed_definition_complaint (body);
14050 macro_define_function (file, line, name,
14051 argc, (const char **) argv,
14052 p);
14053 }
14054 else
14055 /* Just complain. */
14056 dwarf2_macro_malformed_definition_complaint (body);
14057 }
14058 else
14059 /* Just complain. */
14060 dwarf2_macro_malformed_definition_complaint (body);
14061
14062 xfree (name);
14063 {
14064 int i;
14065
14066 for (i = 0; i < argc; i++)
14067 xfree (argv[i]);
14068 }
14069 xfree (argv);
14070 }
14071 else
14072 dwarf2_macro_malformed_definition_complaint (body);
14073}
14074
14075
14076static void
14077dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14078 char *comp_dir, bfd *abfd,
14079 struct dwarf2_cu *cu)
14080{
14081 gdb_byte *mac_ptr, *mac_end;
14082 struct macro_source_file *current_file = 0;
14083 enum dwarf_macinfo_record_type macinfo_type;
14084 int at_commandline;
14085
14086 dwarf2_read_section (dwarf2_per_objfile->objfile,
14087 &dwarf2_per_objfile->macinfo);
14088 if (dwarf2_per_objfile->macinfo.buffer == NULL)
14089 {
14090 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
14091 return;
14092 }
14093
14094 /* First pass: Find the name of the base filename.
14095 This filename is needed in order to process all macros whose definition
14096 (or undefinition) comes from the command line. These macros are defined
14097 before the first DW_MACINFO_start_file entry, and yet still need to be
14098 associated to the base file.
14099
14100 To determine the base file name, we scan the macro definitions until we
14101 reach the first DW_MACINFO_start_file entry. We then initialize
14102 CURRENT_FILE accordingly so that any macro definition found before the
14103 first DW_MACINFO_start_file can still be associated to the base file. */
14104
14105 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14106 mac_end = dwarf2_per_objfile->macinfo.buffer
14107 + dwarf2_per_objfile->macinfo.size;
14108
14109 do
14110 {
14111 /* Do we at least have room for a macinfo type byte? */
14112 if (mac_ptr >= mac_end)
14113 {
14114 /* Complaint is printed during the second pass as GDB will probably
14115 stop the first pass earlier upon finding
14116 DW_MACINFO_start_file. */
14117 break;
14118 }
14119
14120 macinfo_type = read_1_byte (abfd, mac_ptr);
14121 mac_ptr++;
14122
14123 switch (macinfo_type)
14124 {
14125 /* A zero macinfo type indicates the end of the macro
14126 information. */
14127 case 0:
14128 break;
14129
14130 case DW_MACINFO_define:
14131 case DW_MACINFO_undef:
14132 /* Only skip the data by MAC_PTR. */
14133 {
14134 unsigned int bytes_read;
14135
14136 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14137 mac_ptr += bytes_read;
14138 read_direct_string (abfd, mac_ptr, &bytes_read);
14139 mac_ptr += bytes_read;
14140 }
14141 break;
14142
14143 case DW_MACINFO_start_file:
14144 {
14145 unsigned int bytes_read;
14146 int line, file;
14147
14148 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14149 mac_ptr += bytes_read;
14150 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14151 mac_ptr += bytes_read;
14152
14153 current_file = macro_start_file (file, line, current_file,
14154 comp_dir, lh, cu->objfile);
14155 }
14156 break;
14157
14158 case DW_MACINFO_end_file:
14159 /* No data to skip by MAC_PTR. */
14160 break;
14161
14162 case DW_MACINFO_vendor_ext:
14163 /* Only skip the data by MAC_PTR. */
14164 {
14165 unsigned int bytes_read;
14166
14167 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14168 mac_ptr += bytes_read;
14169 read_direct_string (abfd, mac_ptr, &bytes_read);
14170 mac_ptr += bytes_read;
14171 }
14172 break;
14173
14174 default:
14175 break;
14176 }
14177 } while (macinfo_type != 0 && current_file == NULL);
14178
14179 /* Second pass: Process all entries.
14180
14181 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14182 command-line macro definitions/undefinitions. This flag is unset when we
14183 reach the first DW_MACINFO_start_file entry. */
14184
14185 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14186
14187 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14188 GDB is still reading the definitions from command line. First
14189 DW_MACINFO_start_file will need to be ignored as it was already executed
14190 to create CURRENT_FILE for the main source holding also the command line
14191 definitions. On first met DW_MACINFO_start_file this flag is reset to
14192 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14193
14194 at_commandline = 1;
14195
14196 do
14197 {
14198 /* Do we at least have room for a macinfo type byte? */
14199 if (mac_ptr >= mac_end)
14200 {
14201 dwarf2_macros_too_long_complaint ();
14202 break;
14203 }
14204
14205 macinfo_type = read_1_byte (abfd, mac_ptr);
14206 mac_ptr++;
14207
14208 switch (macinfo_type)
14209 {
14210 /* A zero macinfo type indicates the end of the macro
14211 information. */
14212 case 0:
14213 break;
14214
14215 case DW_MACINFO_define:
14216 case DW_MACINFO_undef:
14217 {
14218 unsigned int bytes_read;
14219 int line;
14220 char *body;
14221
14222 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14223 mac_ptr += bytes_read;
14224 body = read_direct_string (abfd, mac_ptr, &bytes_read);
14225 mac_ptr += bytes_read;
14226
14227 if (! current_file)
14228 {
14229 /* DWARF violation as no main source is present. */
14230 complaint (&symfile_complaints,
14231 _("debug info with no main source gives macro %s "
14232 "on line %d: %s"),
14233 macinfo_type == DW_MACINFO_define ?
14234 _("definition") :
14235 macinfo_type == DW_MACINFO_undef ?
14236 _("undefinition") :
14237 _("something-or-other"), line, body);
14238 break;
14239 }
14240 if ((line == 0 && !at_commandline)
14241 || (line != 0 && at_commandline))
14242 complaint (&symfile_complaints,
14243 _("debug info gives %s macro %s with %s line %d: %s"),
14244 at_commandline ? _("command-line") : _("in-file"),
14245 macinfo_type == DW_MACINFO_define ?
14246 _("definition") :
14247 macinfo_type == DW_MACINFO_undef ?
14248 _("undefinition") :
14249 _("something-or-other"),
14250 line == 0 ? _("zero") : _("non-zero"), line, body);
14251
14252 if (macinfo_type == DW_MACINFO_define)
14253 parse_macro_definition (current_file, line, body);
14254 else if (macinfo_type == DW_MACINFO_undef)
14255 macro_undef (current_file, line, body);
14256 }
14257 break;
14258
14259 case DW_MACINFO_start_file:
14260 {
14261 unsigned int bytes_read;
14262 int line, file;
14263
14264 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14265 mac_ptr += bytes_read;
14266 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14267 mac_ptr += bytes_read;
14268
14269 if ((line == 0 && !at_commandline)
14270 || (line != 0 && at_commandline))
14271 complaint (&symfile_complaints,
14272 _("debug info gives source %d included "
14273 "from %s at %s line %d"),
14274 file, at_commandline ? _("command-line") : _("file"),
14275 line == 0 ? _("zero") : _("non-zero"), line);
14276
14277 if (at_commandline)
14278 {
14279 /* This DW_MACINFO_start_file was executed in the pass one. */
14280 at_commandline = 0;
14281 }
14282 else
14283 current_file = macro_start_file (file, line,
14284 current_file, comp_dir,
14285 lh, cu->objfile);
14286 }
14287 break;
14288
14289 case DW_MACINFO_end_file:
14290 if (! current_file)
14291 complaint (&symfile_complaints,
14292 _("macro debug info has an unmatched "
14293 "`close_file' directive"));
14294 else
14295 {
14296 current_file = current_file->included_by;
14297 if (! current_file)
14298 {
14299 enum dwarf_macinfo_record_type next_type;
14300
14301 /* GCC circa March 2002 doesn't produce the zero
14302 type byte marking the end of the compilation
14303 unit. Complain if it's not there, but exit no
14304 matter what. */
14305
14306 /* Do we at least have room for a macinfo type byte? */
14307 if (mac_ptr >= mac_end)
14308 {
14309 dwarf2_macros_too_long_complaint ();
14310 return;
14311 }
14312
14313 /* We don't increment mac_ptr here, so this is just
14314 a look-ahead. */
14315 next_type = read_1_byte (abfd, mac_ptr);
14316 if (next_type != 0)
14317 complaint (&symfile_complaints,
14318 _("no terminating 0-type entry for "
14319 "macros in `.debug_macinfo' section"));
14320
14321 return;
14322 }
14323 }
14324 break;
14325
14326 case DW_MACINFO_vendor_ext:
14327 {
14328 unsigned int bytes_read;
14329 int constant;
14330 char *string;
14331
14332 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14333 mac_ptr += bytes_read;
14334 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14335 mac_ptr += bytes_read;
14336
14337 /* We don't recognize any vendor extensions. */
14338 }
14339 break;
14340 }
14341 } while (macinfo_type != 0);
14342}
14343
14344/* Check if the attribute's form is a DW_FORM_block*
14345 if so return true else false. */
14346static int
14347attr_form_is_block (struct attribute *attr)
14348{
14349 return (attr == NULL ? 0 :
14350 attr->form == DW_FORM_block1
14351 || attr->form == DW_FORM_block2
14352 || attr->form == DW_FORM_block4
14353 || attr->form == DW_FORM_block
14354 || attr->form == DW_FORM_exprloc);
14355}
14356
14357/* Return non-zero if ATTR's value is a section offset --- classes
14358 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14359 You may use DW_UNSND (attr) to retrieve such offsets.
14360
14361 Section 7.5.4, "Attribute Encodings", explains that no attribute
14362 may have a value that belongs to more than one of these classes; it
14363 would be ambiguous if we did, because we use the same forms for all
14364 of them. */
14365static int
14366attr_form_is_section_offset (struct attribute *attr)
14367{
14368 return (attr->form == DW_FORM_data4
14369 || attr->form == DW_FORM_data8
14370 || attr->form == DW_FORM_sec_offset);
14371}
14372
14373
14374/* Return non-zero if ATTR's value falls in the 'constant' class, or
14375 zero otherwise. When this function returns true, you can apply
14376 dwarf2_get_attr_constant_value to it.
14377
14378 However, note that for some attributes you must check
14379 attr_form_is_section_offset before using this test. DW_FORM_data4
14380 and DW_FORM_data8 are members of both the constant class, and of
14381 the classes that contain offsets into other debug sections
14382 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14383 that, if an attribute's can be either a constant or one of the
14384 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14385 taken as section offsets, not constants. */
14386static int
14387attr_form_is_constant (struct attribute *attr)
14388{
14389 switch (attr->form)
14390 {
14391 case DW_FORM_sdata:
14392 case DW_FORM_udata:
14393 case DW_FORM_data1:
14394 case DW_FORM_data2:
14395 case DW_FORM_data4:
14396 case DW_FORM_data8:
14397 return 1;
14398 default:
14399 return 0;
14400 }
14401}
14402
14403/* A helper function that fills in a dwarf2_loclist_baton. */
14404
14405static void
14406fill_in_loclist_baton (struct dwarf2_cu *cu,
14407 struct dwarf2_loclist_baton *baton,
14408 struct attribute *attr)
14409{
14410 dwarf2_read_section (dwarf2_per_objfile->objfile,
14411 &dwarf2_per_objfile->loc);
14412
14413 baton->per_cu = cu->per_cu;
14414 gdb_assert (baton->per_cu);
14415 /* We don't know how long the location list is, but make sure we
14416 don't run off the edge of the section. */
14417 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14418 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14419 baton->base_address = cu->base_address;
14420}
14421
14422static void
14423dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14424 struct dwarf2_cu *cu)
14425{
14426 if (attr_form_is_section_offset (attr)
14427 /* ".debug_loc" may not exist at all, or the offset may be outside
14428 the section. If so, fall through to the complaint in the
14429 other branch. */
14430 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
14431 &dwarf2_per_objfile->loc))
14432 {
14433 struct dwarf2_loclist_baton *baton;
14434
14435 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14436 sizeof (struct dwarf2_loclist_baton));
14437
14438 fill_in_loclist_baton (cu, baton, attr);
14439
14440 if (cu->base_known == 0)
14441 complaint (&symfile_complaints,
14442 _("Location list used without "
14443 "specifying the CU base address."));
14444
14445 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14446 SYMBOL_LOCATION_BATON (sym) = baton;
14447 }
14448 else
14449 {
14450 struct dwarf2_locexpr_baton *baton;
14451
14452 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14453 sizeof (struct dwarf2_locexpr_baton));
14454 baton->per_cu = cu->per_cu;
14455 gdb_assert (baton->per_cu);
14456
14457 if (attr_form_is_block (attr))
14458 {
14459 /* Note that we're just copying the block's data pointer
14460 here, not the actual data. We're still pointing into the
14461 info_buffer for SYM's objfile; right now we never release
14462 that buffer, but when we do clean up properly this may
14463 need to change. */
14464 baton->size = DW_BLOCK (attr)->size;
14465 baton->data = DW_BLOCK (attr)->data;
14466 }
14467 else
14468 {
14469 dwarf2_invalid_attrib_class_complaint ("location description",
14470 SYMBOL_NATURAL_NAME (sym));
14471 baton->size = 0;
14472 baton->data = NULL;
14473 }
14474
14475 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14476 SYMBOL_LOCATION_BATON (sym) = baton;
14477 }
14478}
14479
14480/* Return the OBJFILE associated with the compilation unit CU. If CU
14481 came from a separate debuginfo file, then the master objfile is
14482 returned. */
14483
14484struct objfile *
14485dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14486{
14487 struct objfile *objfile = per_cu->objfile;
14488
14489 /* Return the master objfile, so that we can report and look up the
14490 correct file containing this variable. */
14491 if (objfile->separate_debug_objfile_backlink)
14492 objfile = objfile->separate_debug_objfile_backlink;
14493
14494 return objfile;
14495}
14496
14497/* Return the address size given in the compilation unit header for CU. */
14498
14499CORE_ADDR
14500dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14501{
14502 if (per_cu->cu)
14503 return per_cu->cu->header.addr_size;
14504 else
14505 {
14506 /* If the CU is not currently read in, we re-read its header. */
14507 struct objfile *objfile = per_cu->objfile;
14508 struct dwarf2_per_objfile *per_objfile
14509 = objfile_data (objfile, dwarf2_objfile_data_key);
14510 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14511 struct comp_unit_head cu_header;
14512
14513 memset (&cu_header, 0, sizeof cu_header);
14514 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14515 return cu_header.addr_size;
14516 }
14517}
14518
14519/* Return the offset size given in the compilation unit header for CU. */
14520
14521int
14522dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14523{
14524 if (per_cu->cu)
14525 return per_cu->cu->header.offset_size;
14526 else
14527 {
14528 /* If the CU is not currently read in, we re-read its header. */
14529 struct objfile *objfile = per_cu->objfile;
14530 struct dwarf2_per_objfile *per_objfile
14531 = objfile_data (objfile, dwarf2_objfile_data_key);
14532 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14533 struct comp_unit_head cu_header;
14534
14535 memset (&cu_header, 0, sizeof cu_header);
14536 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14537 return cu_header.offset_size;
14538 }
14539}
14540
14541/* Return the text offset of the CU. The returned offset comes from
14542 this CU's objfile. If this objfile came from a separate debuginfo
14543 file, then the offset may be different from the corresponding
14544 offset in the parent objfile. */
14545
14546CORE_ADDR
14547dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14548{
14549 struct objfile *objfile = per_cu->objfile;
14550
14551 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14552}
14553
14554/* Locate the .debug_info compilation unit from CU's objfile which contains
14555 the DIE at OFFSET. Raises an error on failure. */
14556
14557static struct dwarf2_per_cu_data *
14558dwarf2_find_containing_comp_unit (unsigned int offset,
14559 struct objfile *objfile)
14560{
14561 struct dwarf2_per_cu_data *this_cu;
14562 int low, high;
14563
14564 low = 0;
14565 high = dwarf2_per_objfile->n_comp_units - 1;
14566 while (high > low)
14567 {
14568 int mid = low + (high - low) / 2;
14569
14570 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14571 high = mid;
14572 else
14573 low = mid + 1;
14574 }
14575 gdb_assert (low == high);
14576 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14577 {
14578 if (low == 0)
14579 error (_("Dwarf Error: could not find partial DIE containing "
14580 "offset 0x%lx [in module %s]"),
14581 (long) offset, bfd_get_filename (objfile->obfd));
14582
14583 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14584 return dwarf2_per_objfile->all_comp_units[low-1];
14585 }
14586 else
14587 {
14588 this_cu = dwarf2_per_objfile->all_comp_units[low];
14589 if (low == dwarf2_per_objfile->n_comp_units - 1
14590 && offset >= this_cu->offset + this_cu->length)
14591 error (_("invalid dwarf2 offset %u"), offset);
14592 gdb_assert (offset < this_cu->offset + this_cu->length);
14593 return this_cu;
14594 }
14595}
14596
14597/* Locate the compilation unit from OBJFILE which is located at exactly
14598 OFFSET. Raises an error on failure. */
14599
14600static struct dwarf2_per_cu_data *
14601dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14602{
14603 struct dwarf2_per_cu_data *this_cu;
14604
14605 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14606 if (this_cu->offset != offset)
14607 error (_("no compilation unit with offset %u."), offset);
14608 return this_cu;
14609}
14610
14611/* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14612
14613static void
14614init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14615{
14616 memset (cu, 0, sizeof (*cu));
14617 cu->objfile = objfile;
14618 obstack_init (&cu->comp_unit_obstack);
14619}
14620
14621/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14622
14623static void
14624prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14625{
14626 struct attribute *attr;
14627
14628 /* Set the language we're debugging. */
14629 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14630 if (attr)
14631 set_cu_language (DW_UNSND (attr), cu);
14632 else
14633 set_cu_language (language_minimal, cu);
14634}
14635
14636/* Release one cached compilation unit, CU. We unlink it from the tree
14637 of compilation units, but we don't remove it from the read_in_chain;
14638 the caller is responsible for that.
14639 NOTE: DATA is a void * because this function is also used as a
14640 cleanup routine. */
14641
14642static void
14643free_one_comp_unit (void *data)
14644{
14645 struct dwarf2_cu *cu = data;
14646
14647 if (cu->per_cu != NULL)
14648 cu->per_cu->cu = NULL;
14649 cu->per_cu = NULL;
14650
14651 obstack_free (&cu->comp_unit_obstack, NULL);
14652
14653 xfree (cu);
14654}
14655
14656/* This cleanup function is passed the address of a dwarf2_cu on the stack
14657 when we're finished with it. We can't free the pointer itself, but be
14658 sure to unlink it from the cache. Also release any associated storage
14659 and perform cache maintenance.
14660
14661 Only used during partial symbol parsing. */
14662
14663static void
14664free_stack_comp_unit (void *data)
14665{
14666 struct dwarf2_cu *cu = data;
14667
14668 obstack_free (&cu->comp_unit_obstack, NULL);
14669 cu->partial_dies = NULL;
14670
14671 if (cu->per_cu != NULL)
14672 {
14673 /* This compilation unit is on the stack in our caller, so we
14674 should not xfree it. Just unlink it. */
14675 cu->per_cu->cu = NULL;
14676 cu->per_cu = NULL;
14677
14678 /* If we had a per-cu pointer, then we may have other compilation
14679 units loaded, so age them now. */
14680 age_cached_comp_units ();
14681 }
14682}
14683
14684/* Free all cached compilation units. */
14685
14686static void
14687free_cached_comp_units (void *data)
14688{
14689 struct dwarf2_per_cu_data *per_cu, **last_chain;
14690
14691 per_cu = dwarf2_per_objfile->read_in_chain;
14692 last_chain = &dwarf2_per_objfile->read_in_chain;
14693 while (per_cu != NULL)
14694 {
14695 struct dwarf2_per_cu_data *next_cu;
14696
14697 next_cu = per_cu->cu->read_in_chain;
14698
14699 free_one_comp_unit (per_cu->cu);
14700 *last_chain = next_cu;
14701
14702 per_cu = next_cu;
14703 }
14704}
14705
14706/* Increase the age counter on each cached compilation unit, and free
14707 any that are too old. */
14708
14709static void
14710age_cached_comp_units (void)
14711{
14712 struct dwarf2_per_cu_data *per_cu, **last_chain;
14713
14714 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14715 per_cu = dwarf2_per_objfile->read_in_chain;
14716 while (per_cu != NULL)
14717 {
14718 per_cu->cu->last_used ++;
14719 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14720 dwarf2_mark (per_cu->cu);
14721 per_cu = per_cu->cu->read_in_chain;
14722 }
14723
14724 per_cu = dwarf2_per_objfile->read_in_chain;
14725 last_chain = &dwarf2_per_objfile->read_in_chain;
14726 while (per_cu != NULL)
14727 {
14728 struct dwarf2_per_cu_data *next_cu;
14729
14730 next_cu = per_cu->cu->read_in_chain;
14731
14732 if (!per_cu->cu->mark)
14733 {
14734 free_one_comp_unit (per_cu->cu);
14735 *last_chain = next_cu;
14736 }
14737 else
14738 last_chain = &per_cu->cu->read_in_chain;
14739
14740 per_cu = next_cu;
14741 }
14742}
14743
14744/* Remove a single compilation unit from the cache. */
14745
14746static void
14747free_one_cached_comp_unit (void *target_cu)
14748{
14749 struct dwarf2_per_cu_data *per_cu, **last_chain;
14750
14751 per_cu = dwarf2_per_objfile->read_in_chain;
14752 last_chain = &dwarf2_per_objfile->read_in_chain;
14753 while (per_cu != NULL)
14754 {
14755 struct dwarf2_per_cu_data *next_cu;
14756
14757 next_cu = per_cu->cu->read_in_chain;
14758
14759 if (per_cu->cu == target_cu)
14760 {
14761 free_one_comp_unit (per_cu->cu);
14762 *last_chain = next_cu;
14763 break;
14764 }
14765 else
14766 last_chain = &per_cu->cu->read_in_chain;
14767
14768 per_cu = next_cu;
14769 }
14770}
14771
14772/* Release all extra memory associated with OBJFILE. */
14773
14774void
14775dwarf2_free_objfile (struct objfile *objfile)
14776{
14777 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14778
14779 if (dwarf2_per_objfile == NULL)
14780 return;
14781
14782 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14783 free_cached_comp_units (NULL);
14784
14785 if (dwarf2_per_objfile->quick_file_names_table)
14786 htab_delete (dwarf2_per_objfile->quick_file_names_table);
14787
14788 /* Everything else should be on the objfile obstack. */
14789}
14790
14791/* A pair of DIE offset and GDB type pointer. We store these
14792 in a hash table separate from the DIEs, and preserve them
14793 when the DIEs are flushed out of cache. */
14794
14795struct dwarf2_offset_and_type
14796{
14797 unsigned int offset;
14798 struct type *type;
14799};
14800
14801/* Hash function for a dwarf2_offset_and_type. */
14802
14803static hashval_t
14804offset_and_type_hash (const void *item)
14805{
14806 const struct dwarf2_offset_and_type *ofs = item;
14807
14808 return ofs->offset;
14809}
14810
14811/* Equality function for a dwarf2_offset_and_type. */
14812
14813static int
14814offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14815{
14816 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14817 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14818
14819 return ofs_lhs->offset == ofs_rhs->offset;
14820}
14821
14822/* Set the type associated with DIE to TYPE. Save it in CU's hash
14823 table if necessary. For convenience, return TYPE.
14824
14825 The DIEs reading must have careful ordering to:
14826 * Not cause infite loops trying to read in DIEs as a prerequisite for
14827 reading current DIE.
14828 * Not trying to dereference contents of still incompletely read in types
14829 while reading in other DIEs.
14830 * Enable referencing still incompletely read in types just by a pointer to
14831 the type without accessing its fields.
14832
14833 Therefore caller should follow these rules:
14834 * Try to fetch any prerequisite types we may need to build this DIE type
14835 before building the type and calling set_die_type.
14836 * After building type call set_die_type for current DIE as soon as
14837 possible before fetching more types to complete the current type.
14838 * Make the type as complete as possible before fetching more types. */
14839
14840static struct type *
14841set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14842{
14843 struct dwarf2_offset_and_type **slot, ofs;
14844 struct objfile *objfile = cu->objfile;
14845 htab_t *type_hash_ptr;
14846
14847 /* For Ada types, make sure that the gnat-specific data is always
14848 initialized (if not already set). There are a few types where
14849 we should not be doing so, because the type-specific area is
14850 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14851 where the type-specific area is used to store the floatformat).
14852 But this is not a problem, because the gnat-specific information
14853 is actually not needed for these types. */
14854 if (need_gnat_info (cu)
14855 && TYPE_CODE (type) != TYPE_CODE_FUNC
14856 && TYPE_CODE (type) != TYPE_CODE_FLT
14857 && !HAVE_GNAT_AUX_INFO (type))
14858 INIT_GNAT_SPECIFIC (type);
14859
14860 if (cu->per_cu->from_debug_types)
14861 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14862 else
14863 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14864
14865 if (*type_hash_ptr == NULL)
14866 {
14867 *type_hash_ptr
14868 = htab_create_alloc_ex (127,
14869 offset_and_type_hash,
14870 offset_and_type_eq,
14871 NULL,
14872 &objfile->objfile_obstack,
14873 hashtab_obstack_allocate,
14874 dummy_obstack_deallocate);
14875 }
14876
14877 ofs.offset = die->offset;
14878 ofs.type = type;
14879 slot = (struct dwarf2_offset_and_type **)
14880 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14881 if (*slot)
14882 complaint (&symfile_complaints,
14883 _("A problem internal to GDB: DIE 0x%x has type already set"),
14884 die->offset);
14885 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14886 **slot = ofs;
14887 return type;
14888}
14889
14890/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14891 table, or return NULL if the die does not have a saved type. */
14892
14893static struct type *
14894get_die_type_at_offset (unsigned int offset,
14895 struct dwarf2_per_cu_data *per_cu)
14896{
14897 struct dwarf2_offset_and_type *slot, ofs;
14898 htab_t type_hash;
14899
14900 if (per_cu->from_debug_types)
14901 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14902 else
14903 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14904 if (type_hash == NULL)
14905 return NULL;
14906
14907 ofs.offset = offset;
14908 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14909 if (slot)
14910 return slot->type;
14911 else
14912 return NULL;
14913}
14914
14915/* Look up the type for DIE in the appropriate type_hash table,
14916 or return NULL if DIE does not have a saved type. */
14917
14918static struct type *
14919get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14920{
14921 return get_die_type_at_offset (die->offset, cu->per_cu);
14922}
14923
14924/* Add a dependence relationship from CU to REF_PER_CU. */
14925
14926static void
14927dwarf2_add_dependence (struct dwarf2_cu *cu,
14928 struct dwarf2_per_cu_data *ref_per_cu)
14929{
14930 void **slot;
14931
14932 if (cu->dependencies == NULL)
14933 cu->dependencies
14934 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14935 NULL, &cu->comp_unit_obstack,
14936 hashtab_obstack_allocate,
14937 dummy_obstack_deallocate);
14938
14939 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14940 if (*slot == NULL)
14941 *slot = ref_per_cu;
14942}
14943
14944/* Subroutine of dwarf2_mark to pass to htab_traverse.
14945 Set the mark field in every compilation unit in the
14946 cache that we must keep because we are keeping CU. */
14947
14948static int
14949dwarf2_mark_helper (void **slot, void *data)
14950{
14951 struct dwarf2_per_cu_data *per_cu;
14952
14953 per_cu = (struct dwarf2_per_cu_data *) *slot;
14954 if (per_cu->cu->mark)
14955 return 1;
14956 per_cu->cu->mark = 1;
14957
14958 if (per_cu->cu->dependencies != NULL)
14959 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14960
14961 return 1;
14962}
14963
14964/* Set the mark field in CU and in every other compilation unit in the
14965 cache that we must keep because we are keeping CU. */
14966
14967static void
14968dwarf2_mark (struct dwarf2_cu *cu)
14969{
14970 if (cu->mark)
14971 return;
14972 cu->mark = 1;
14973 if (cu->dependencies != NULL)
14974 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14975}
14976
14977static void
14978dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14979{
14980 while (per_cu)
14981 {
14982 per_cu->cu->mark = 0;
14983 per_cu = per_cu->cu->read_in_chain;
14984 }
14985}
14986
14987/* Trivial hash function for partial_die_info: the hash value of a DIE
14988 is its offset in .debug_info for this objfile. */
14989
14990static hashval_t
14991partial_die_hash (const void *item)
14992{
14993 const struct partial_die_info *part_die = item;
14994
14995 return part_die->offset;
14996}
14997
14998/* Trivial comparison function for partial_die_info structures: two DIEs
14999 are equal if they have the same offset. */
15000
15001static int
15002partial_die_eq (const void *item_lhs, const void *item_rhs)
15003{
15004 const struct partial_die_info *part_die_lhs = item_lhs;
15005 const struct partial_die_info *part_die_rhs = item_rhs;
15006
15007 return part_die_lhs->offset == part_die_rhs->offset;
15008}
15009
15010static struct cmd_list_element *set_dwarf2_cmdlist;
15011static struct cmd_list_element *show_dwarf2_cmdlist;
15012
15013static void
15014set_dwarf2_cmd (char *args, int from_tty)
15015{
15016 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
15017}
15018
15019static void
15020show_dwarf2_cmd (char *args, int from_tty)
15021{
15022 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
15023}
15024
15025/* If section described by INFO was mmapped, munmap it now. */
15026
15027static void
15028munmap_section_buffer (struct dwarf2_section_info *info)
15029{
15030 if (info->was_mmapped)
15031 {
15032#ifdef HAVE_MMAP
15033 intptr_t begin = (intptr_t) info->buffer;
15034 intptr_t map_begin = begin & ~(pagesize - 1);
15035 size_t map_length = info->size + begin - map_begin;
15036
15037 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
15038#else
15039 /* Without HAVE_MMAP, we should never be here to begin with. */
15040 gdb_assert_not_reached ("no mmap support");
15041#endif
15042 }
15043}
15044
15045/* munmap debug sections for OBJFILE, if necessary. */
15046
15047static void
15048dwarf2_per_objfile_free (struct objfile *objfile, void *d)
15049{
15050 struct dwarf2_per_objfile *data = d;
15051
15052 /* This is sorted according to the order they're defined in to make it easier
15053 to keep in sync. */
15054 munmap_section_buffer (&data->info);
15055 munmap_section_buffer (&data->abbrev);
15056 munmap_section_buffer (&data->line);
15057 munmap_section_buffer (&data->loc);
15058 munmap_section_buffer (&data->macinfo);
15059 munmap_section_buffer (&data->str);
15060 munmap_section_buffer (&data->ranges);
15061 munmap_section_buffer (&data->types);
15062 munmap_section_buffer (&data->frame);
15063 munmap_section_buffer (&data->eh_frame);
15064 munmap_section_buffer (&data->gdb_index);
15065}
15066
15067\f
15068/* The "save gdb-index" command. */
15069
15070/* The contents of the hash table we create when building the string
15071 table. */
15072struct strtab_entry
15073{
15074 offset_type offset;
15075 const char *str;
15076};
15077
15078/* Hash function for a strtab_entry. */
15079
15080static hashval_t
15081hash_strtab_entry (const void *e)
15082{
15083 const struct strtab_entry *entry = e;
15084 return mapped_index_string_hash (entry->str);
15085}
15086
15087/* Equality function for a strtab_entry. */
15088
15089static int
15090eq_strtab_entry (const void *a, const void *b)
15091{
15092 const struct strtab_entry *ea = a;
15093 const struct strtab_entry *eb = b;
15094 return !strcmp (ea->str, eb->str);
15095}
15096
15097/* Create a strtab_entry hash table. */
15098
15099static htab_t
15100create_strtab (void)
15101{
15102 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15103 xfree, xcalloc, xfree);
15104}
15105
15106/* Add a string to the constant pool. Return the string's offset in
15107 host order. */
15108
15109static offset_type
15110add_string (htab_t table, struct obstack *cpool, const char *str)
15111{
15112 void **slot;
15113 struct strtab_entry entry;
15114 struct strtab_entry *result;
15115
15116 entry.str = str;
15117 slot = htab_find_slot (table, &entry, INSERT);
15118 if (*slot)
15119 result = *slot;
15120 else
15121 {
15122 result = XNEW (struct strtab_entry);
15123 result->offset = obstack_object_size (cpool);
15124 result->str = str;
15125 obstack_grow_str0 (cpool, str);
15126 *slot = result;
15127 }
15128 return result->offset;
15129}
15130
15131/* An entry in the symbol table. */
15132struct symtab_index_entry
15133{
15134 /* The name of the symbol. */
15135 const char *name;
15136 /* The offset of the name in the constant pool. */
15137 offset_type index_offset;
15138 /* A sorted vector of the indices of all the CUs that hold an object
15139 of this name. */
15140 VEC (offset_type) *cu_indices;
15141};
15142
15143/* The symbol table. This is a power-of-2-sized hash table. */
15144struct mapped_symtab
15145{
15146 offset_type n_elements;
15147 offset_type size;
15148 struct symtab_index_entry **data;
15149};
15150
15151/* Hash function for a symtab_index_entry. */
15152
15153static hashval_t
15154hash_symtab_entry (const void *e)
15155{
15156 const struct symtab_index_entry *entry = e;
15157 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15158 sizeof (offset_type) * VEC_length (offset_type,
15159 entry->cu_indices),
15160 0);
15161}
15162
15163/* Equality function for a symtab_index_entry. */
15164
15165static int
15166eq_symtab_entry (const void *a, const void *b)
15167{
15168 const struct symtab_index_entry *ea = a;
15169 const struct symtab_index_entry *eb = b;
15170 int len = VEC_length (offset_type, ea->cu_indices);
15171 if (len != VEC_length (offset_type, eb->cu_indices))
15172 return 0;
15173 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15174 VEC_address (offset_type, eb->cu_indices),
15175 sizeof (offset_type) * len);
15176}
15177
15178/* Destroy a symtab_index_entry. */
15179
15180static void
15181delete_symtab_entry (void *p)
15182{
15183 struct symtab_index_entry *entry = p;
15184 VEC_free (offset_type, entry->cu_indices);
15185 xfree (entry);
15186}
15187
15188/* Create a hash table holding symtab_index_entry objects. */
15189
15190static htab_t
15191create_symbol_hash_table (void)
15192{
15193 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15194 delete_symtab_entry, xcalloc, xfree);
15195}
15196
15197/* Create a new mapped symtab object. */
15198
15199static struct mapped_symtab *
15200create_mapped_symtab (void)
15201{
15202 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15203 symtab->n_elements = 0;
15204 symtab->size = 1024;
15205 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15206 return symtab;
15207}
15208
15209/* Destroy a mapped_symtab. */
15210
15211static void
15212cleanup_mapped_symtab (void *p)
15213{
15214 struct mapped_symtab *symtab = p;
15215 /* The contents of the array are freed when the other hash table is
15216 destroyed. */
15217 xfree (symtab->data);
15218 xfree (symtab);
15219}
15220
15221/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15222 the slot. */
15223
15224static struct symtab_index_entry **
15225find_slot (struct mapped_symtab *symtab, const char *name)
15226{
15227 offset_type index, step, hash = mapped_index_string_hash (name);
15228
15229 index = hash & (symtab->size - 1);
15230 step = ((hash * 17) & (symtab->size - 1)) | 1;
15231
15232 for (;;)
15233 {
15234 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15235 return &symtab->data[index];
15236 index = (index + step) & (symtab->size - 1);
15237 }
15238}
15239
15240/* Expand SYMTAB's hash table. */
15241
15242static void
15243hash_expand (struct mapped_symtab *symtab)
15244{
15245 offset_type old_size = symtab->size;
15246 offset_type i;
15247 struct symtab_index_entry **old_entries = symtab->data;
15248
15249 symtab->size *= 2;
15250 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15251
15252 for (i = 0; i < old_size; ++i)
15253 {
15254 if (old_entries[i])
15255 {
15256 struct symtab_index_entry **slot = find_slot (symtab,
15257 old_entries[i]->name);
15258 *slot = old_entries[i];
15259 }
15260 }
15261
15262 xfree (old_entries);
15263}
15264
15265/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15266 is the index of the CU in which the symbol appears. */
15267
15268static void
15269add_index_entry (struct mapped_symtab *symtab, const char *name,
15270 offset_type cu_index)
15271{
15272 struct symtab_index_entry **slot;
15273
15274 ++symtab->n_elements;
15275 if (4 * symtab->n_elements / 3 >= symtab->size)
15276 hash_expand (symtab);
15277
15278 slot = find_slot (symtab, name);
15279 if (!*slot)
15280 {
15281 *slot = XNEW (struct symtab_index_entry);
15282 (*slot)->name = name;
15283 (*slot)->cu_indices = NULL;
15284 }
15285 /* Don't push an index twice. Due to how we add entries we only
15286 have to check the last one. */
15287 if (VEC_empty (offset_type, (*slot)->cu_indices)
15288 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15289 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15290}
15291
15292/* Add a vector of indices to the constant pool. */
15293
15294static offset_type
15295add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15296 struct symtab_index_entry *entry)
15297{
15298 void **slot;
15299
15300 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15301 if (!*slot)
15302 {
15303 offset_type len = VEC_length (offset_type, entry->cu_indices);
15304 offset_type val = MAYBE_SWAP (len);
15305 offset_type iter;
15306 int i;
15307
15308 *slot = entry;
15309 entry->index_offset = obstack_object_size (cpool);
15310
15311 obstack_grow (cpool, &val, sizeof (val));
15312 for (i = 0;
15313 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15314 ++i)
15315 {
15316 val = MAYBE_SWAP (iter);
15317 obstack_grow (cpool, &val, sizeof (val));
15318 }
15319 }
15320 else
15321 {
15322 struct symtab_index_entry *old_entry = *slot;
15323 entry->index_offset = old_entry->index_offset;
15324 entry = old_entry;
15325 }
15326 return entry->index_offset;
15327}
15328
15329/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15330 constant pool entries going into the obstack CPOOL. */
15331
15332static void
15333write_hash_table (struct mapped_symtab *symtab,
15334 struct obstack *output, struct obstack *cpool)
15335{
15336 offset_type i;
15337 htab_t symbol_hash_table;
15338 htab_t str_table;
15339
15340 symbol_hash_table = create_symbol_hash_table ();
15341 str_table = create_strtab ();
15342
15343 /* We add all the index vectors to the constant pool first, to
15344 ensure alignment is ok. */
15345 for (i = 0; i < symtab->size; ++i)
15346 {
15347 if (symtab->data[i])
15348 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15349 }
15350
15351 /* Now write out the hash table. */
15352 for (i = 0; i < symtab->size; ++i)
15353 {
15354 offset_type str_off, vec_off;
15355
15356 if (symtab->data[i])
15357 {
15358 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15359 vec_off = symtab->data[i]->index_offset;
15360 }
15361 else
15362 {
15363 /* While 0 is a valid constant pool index, it is not valid
15364 to have 0 for both offsets. */
15365 str_off = 0;
15366 vec_off = 0;
15367 }
15368
15369 str_off = MAYBE_SWAP (str_off);
15370 vec_off = MAYBE_SWAP (vec_off);
15371
15372 obstack_grow (output, &str_off, sizeof (str_off));
15373 obstack_grow (output, &vec_off, sizeof (vec_off));
15374 }
15375
15376 htab_delete (str_table);
15377 htab_delete (symbol_hash_table);
15378}
15379
15380/* Struct to map psymtab to CU index in the index file. */
15381struct psymtab_cu_index_map
15382{
15383 struct partial_symtab *psymtab;
15384 unsigned int cu_index;
15385};
15386
15387static hashval_t
15388hash_psymtab_cu_index (const void *item)
15389{
15390 const struct psymtab_cu_index_map *map = item;
15391
15392 return htab_hash_pointer (map->psymtab);
15393}
15394
15395static int
15396eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15397{
15398 const struct psymtab_cu_index_map *lhs = item_lhs;
15399 const struct psymtab_cu_index_map *rhs = item_rhs;
15400
15401 return lhs->psymtab == rhs->psymtab;
15402}
15403
15404/* Helper struct for building the address table. */
15405struct addrmap_index_data
15406{
15407 struct objfile *objfile;
15408 struct obstack *addr_obstack;
15409 htab_t cu_index_htab;
15410
15411 /* Non-zero if the previous_* fields are valid.
15412 We can't write an entry until we see the next entry (since it is only then
15413 that we know the end of the entry). */
15414 int previous_valid;
15415 /* Index of the CU in the table of all CUs in the index file. */
15416 unsigned int previous_cu_index;
15417 /* Start address of the CU. */
15418 CORE_ADDR previous_cu_start;
15419};
15420
15421/* Write an address entry to OBSTACK. */
15422
15423static void
15424add_address_entry (struct objfile *objfile, struct obstack *obstack,
15425 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
15426{
15427 offset_type cu_index_to_write;
15428 char addr[8];
15429 CORE_ADDR baseaddr;
15430
15431 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15432
15433 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15434 obstack_grow (obstack, addr, 8);
15435 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15436 obstack_grow (obstack, addr, 8);
15437 cu_index_to_write = MAYBE_SWAP (cu_index);
15438 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15439}
15440
15441/* Worker function for traversing an addrmap to build the address table. */
15442
15443static int
15444add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15445{
15446 struct addrmap_index_data *data = datap;
15447 struct partial_symtab *pst = obj;
15448 offset_type cu_index;
15449 void **slot;
15450
15451 if (data->previous_valid)
15452 add_address_entry (data->objfile, data->addr_obstack,
15453 data->previous_cu_start, start_addr,
15454 data->previous_cu_index);
15455
15456 data->previous_cu_start = start_addr;
15457 if (pst != NULL)
15458 {
15459 struct psymtab_cu_index_map find_map, *map;
15460 find_map.psymtab = pst;
15461 map = htab_find (data->cu_index_htab, &find_map);
15462 gdb_assert (map != NULL);
15463 data->previous_cu_index = map->cu_index;
15464 data->previous_valid = 1;
15465 }
15466 else
15467 data->previous_valid = 0;
15468
15469 return 0;
15470}
15471
15472/* Write OBJFILE's address map to OBSTACK.
15473 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15474 in the index file. */
15475
15476static void
15477write_address_map (struct objfile *objfile, struct obstack *obstack,
15478 htab_t cu_index_htab)
15479{
15480 struct addrmap_index_data addrmap_index_data;
15481
15482 /* When writing the address table, we have to cope with the fact that
15483 the addrmap iterator only provides the start of a region; we have to
15484 wait until the next invocation to get the start of the next region. */
15485
15486 addrmap_index_data.objfile = objfile;
15487 addrmap_index_data.addr_obstack = obstack;
15488 addrmap_index_data.cu_index_htab = cu_index_htab;
15489 addrmap_index_data.previous_valid = 0;
15490
15491 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15492 &addrmap_index_data);
15493
15494 /* It's highly unlikely the last entry (end address = 0xff...ff)
15495 is valid, but we should still handle it.
15496 The end address is recorded as the start of the next region, but that
15497 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15498 anyway. */
15499 if (addrmap_index_data.previous_valid)
15500 add_address_entry (objfile, obstack,
15501 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15502 addrmap_index_data.previous_cu_index);
15503}
15504
15505/* Add a list of partial symbols to SYMTAB. */
15506
15507static void
15508write_psymbols (struct mapped_symtab *symtab,
15509 htab_t psyms_seen,
15510 struct partial_symbol **psymp,
15511 int count,
15512 offset_type cu_index,
15513 int is_static)
15514{
15515 for (; count-- > 0; ++psymp)
15516 {
15517 void **slot, *lookup;
15518
15519 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15520 error (_("Ada is not currently supported by the index"));
15521
15522 /* We only want to add a given psymbol once. However, we also
15523 want to account for whether it is global or static. So, we
15524 may add it twice, using slightly different values. */
15525 if (is_static)
15526 {
15527 uintptr_t val = 1 | (uintptr_t) *psymp;
15528
15529 lookup = (void *) val;
15530 }
15531 else
15532 lookup = *psymp;
15533
15534 /* Only add a given psymbol once. */
15535 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15536 if (!*slot)
15537 {
15538 *slot = lookup;
15539 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15540 }
15541 }
15542}
15543
15544/* Write the contents of an ("unfinished") obstack to FILE. Throw an
15545 exception if there is an error. */
15546
15547static void
15548write_obstack (FILE *file, struct obstack *obstack)
15549{
15550 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15551 file)
15552 != obstack_object_size (obstack))
15553 error (_("couldn't data write to file"));
15554}
15555
15556/* Unlink a file if the argument is not NULL. */
15557
15558static void
15559unlink_if_set (void *p)
15560{
15561 char **filename = p;
15562 if (*filename)
15563 unlink (*filename);
15564}
15565
15566/* A helper struct used when iterating over debug_types. */
15567struct signatured_type_index_data
15568{
15569 struct objfile *objfile;
15570 struct mapped_symtab *symtab;
15571 struct obstack *types_list;
15572 htab_t psyms_seen;
15573 int cu_index;
15574};
15575
15576/* A helper function that writes a single signatured_type to an
15577 obstack. */
15578
15579static int
15580write_one_signatured_type (void **slot, void *d)
15581{
15582 struct signatured_type_index_data *info = d;
15583 struct signatured_type *entry = (struct signatured_type *) *slot;
15584 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15585 struct partial_symtab *psymtab = per_cu->v.psymtab;
15586 gdb_byte val[8];
15587
15588 write_psymbols (info->symtab,
15589 info->psyms_seen,
15590 info->objfile->global_psymbols.list
15591 + psymtab->globals_offset,
15592 psymtab->n_global_syms, info->cu_index,
15593 0);
15594 write_psymbols (info->symtab,
15595 info->psyms_seen,
15596 info->objfile->static_psymbols.list
15597 + psymtab->statics_offset,
15598 psymtab->n_static_syms, info->cu_index,
15599 1);
15600
15601 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15602 obstack_grow (info->types_list, val, 8);
15603 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15604 obstack_grow (info->types_list, val, 8);
15605 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15606 obstack_grow (info->types_list, val, 8);
15607
15608 ++info->cu_index;
15609
15610 return 1;
15611}
15612
15613/* A cleanup function for an htab_t. */
15614
15615static void
15616cleanup_htab (void *arg)
15617{
15618 htab_delete (arg);
15619}
15620
15621/* Create an index file for OBJFILE in the directory DIR. */
15622
15623static void
15624write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15625{
15626 struct cleanup *cleanup;
15627 char *filename, *cleanup_filename;
15628 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15629 struct obstack cu_list, types_cu_list;
15630 int i;
15631 FILE *out_file;
15632 struct mapped_symtab *symtab;
15633 offset_type val, size_of_contents, total_len;
15634 struct stat st;
15635 char buf[8];
15636 htab_t psyms_seen;
15637 htab_t cu_index_htab;
15638 struct psymtab_cu_index_map *psymtab_cu_index_map;
15639
15640 if (!objfile->psymtabs)
15641 return;
15642 if (dwarf2_per_objfile->using_index)
15643 error (_("Cannot use an index to create the index"));
15644
15645 if (stat (objfile->name, &st) < 0)
15646 perror_with_name (objfile->name);
15647
15648 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15649 INDEX_SUFFIX, (char *) NULL);
15650 cleanup = make_cleanup (xfree, filename);
15651
15652 out_file = fopen (filename, "wb");
15653 if (!out_file)
15654 error (_("Can't open `%s' for writing"), filename);
15655
15656 cleanup_filename = filename;
15657 make_cleanup (unlink_if_set, &cleanup_filename);
15658
15659 symtab = create_mapped_symtab ();
15660 make_cleanup (cleanup_mapped_symtab, symtab);
15661
15662 obstack_init (&addr_obstack);
15663 make_cleanup_obstack_free (&addr_obstack);
15664
15665 obstack_init (&cu_list);
15666 make_cleanup_obstack_free (&cu_list);
15667
15668 obstack_init (&types_cu_list);
15669 make_cleanup_obstack_free (&types_cu_list);
15670
15671 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15672 NULL, xcalloc, xfree);
15673 make_cleanup (cleanup_htab, psyms_seen);
15674
15675 /* While we're scanning CU's create a table that maps a psymtab pointer
15676 (which is what addrmap records) to its index (which is what is recorded
15677 in the index file). This will later be needed to write the address
15678 table. */
15679 cu_index_htab = htab_create_alloc (100,
15680 hash_psymtab_cu_index,
15681 eq_psymtab_cu_index,
15682 NULL, xcalloc, xfree);
15683 make_cleanup (cleanup_htab, cu_index_htab);
15684 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15685 xmalloc (sizeof (struct psymtab_cu_index_map)
15686 * dwarf2_per_objfile->n_comp_units);
15687 make_cleanup (xfree, psymtab_cu_index_map);
15688
15689 /* The CU list is already sorted, so we don't need to do additional
15690 work here. Also, the debug_types entries do not appear in
15691 all_comp_units, but only in their own hash table. */
15692 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15693 {
15694 struct dwarf2_per_cu_data *per_cu
15695 = dwarf2_per_objfile->all_comp_units[i];
15696 struct partial_symtab *psymtab = per_cu->v.psymtab;
15697 gdb_byte val[8];
15698 struct psymtab_cu_index_map *map;
15699 void **slot;
15700
15701 write_psymbols (symtab,
15702 psyms_seen,
15703 objfile->global_psymbols.list + psymtab->globals_offset,
15704 psymtab->n_global_syms, i,
15705 0);
15706 write_psymbols (symtab,
15707 psyms_seen,
15708 objfile->static_psymbols.list + psymtab->statics_offset,
15709 psymtab->n_static_syms, i,
15710 1);
15711
15712 map = &psymtab_cu_index_map[i];
15713 map->psymtab = psymtab;
15714 map->cu_index = i;
15715 slot = htab_find_slot (cu_index_htab, map, INSERT);
15716 gdb_assert (slot != NULL);
15717 gdb_assert (*slot == NULL);
15718 *slot = map;
15719
15720 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15721 obstack_grow (&cu_list, val, 8);
15722 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15723 obstack_grow (&cu_list, val, 8);
15724 }
15725
15726 /* Dump the address map. */
15727 write_address_map (objfile, &addr_obstack, cu_index_htab);
15728
15729 /* Write out the .debug_type entries, if any. */
15730 if (dwarf2_per_objfile->signatured_types)
15731 {
15732 struct signatured_type_index_data sig_data;
15733
15734 sig_data.objfile = objfile;
15735 sig_data.symtab = symtab;
15736 sig_data.types_list = &types_cu_list;
15737 sig_data.psyms_seen = psyms_seen;
15738 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15739 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15740 write_one_signatured_type, &sig_data);
15741 }
15742
15743 obstack_init (&constant_pool);
15744 make_cleanup_obstack_free (&constant_pool);
15745 obstack_init (&symtab_obstack);
15746 make_cleanup_obstack_free (&symtab_obstack);
15747 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15748
15749 obstack_init (&contents);
15750 make_cleanup_obstack_free (&contents);
15751 size_of_contents = 6 * sizeof (offset_type);
15752 total_len = size_of_contents;
15753
15754 /* The version number. */
15755 val = MAYBE_SWAP (4);
15756 obstack_grow (&contents, &val, sizeof (val));
15757
15758 /* The offset of the CU list from the start of the file. */
15759 val = MAYBE_SWAP (total_len);
15760 obstack_grow (&contents, &val, sizeof (val));
15761 total_len += obstack_object_size (&cu_list);
15762
15763 /* The offset of the types CU list from the start of the file. */
15764 val = MAYBE_SWAP (total_len);
15765 obstack_grow (&contents, &val, sizeof (val));
15766 total_len += obstack_object_size (&types_cu_list);
15767
15768 /* The offset of the address table from the start of the file. */
15769 val = MAYBE_SWAP (total_len);
15770 obstack_grow (&contents, &val, sizeof (val));
15771 total_len += obstack_object_size (&addr_obstack);
15772
15773 /* The offset of the symbol table from the start of the file. */
15774 val = MAYBE_SWAP (total_len);
15775 obstack_grow (&contents, &val, sizeof (val));
15776 total_len += obstack_object_size (&symtab_obstack);
15777
15778 /* The offset of the constant pool from the start of the file. */
15779 val = MAYBE_SWAP (total_len);
15780 obstack_grow (&contents, &val, sizeof (val));
15781 total_len += obstack_object_size (&constant_pool);
15782
15783 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15784
15785 write_obstack (out_file, &contents);
15786 write_obstack (out_file, &cu_list);
15787 write_obstack (out_file, &types_cu_list);
15788 write_obstack (out_file, &addr_obstack);
15789 write_obstack (out_file, &symtab_obstack);
15790 write_obstack (out_file, &constant_pool);
15791
15792 fclose (out_file);
15793
15794 /* We want to keep the file, so we set cleanup_filename to NULL
15795 here. See unlink_if_set. */
15796 cleanup_filename = NULL;
15797
15798 do_cleanups (cleanup);
15799}
15800
15801/* The mapped index file format is designed to be directly mmap()able
15802 on any architecture. In most cases, a datum is represented using a
15803 little-endian 32-bit integer value, called an offset_type. Big
15804 endian machines must byte-swap the values before using them.
15805 Exceptions to this rule are noted. The data is laid out such that
15806 alignment is always respected.
15807
15808 A mapped index consists of several sections.
15809
15810 1. The file header. This is a sequence of values, of offset_type
15811 unless otherwise noted:
15812
15813 [0] The version number, currently 4. Versions 1, 2 and 3 are
15814 obsolete.
15815 [1] The offset, from the start of the file, of the CU list.
15816 [2] The offset, from the start of the file, of the types CU list.
15817 Note that this section can be empty, in which case this offset will
15818 be equal to the next offset.
15819 [3] The offset, from the start of the file, of the address section.
15820 [4] The offset, from the start of the file, of the symbol table.
15821 [5] The offset, from the start of the file, of the constant pool.
15822
15823 2. The CU list. This is a sequence of pairs of 64-bit
15824 little-endian values, sorted by the CU offset. The first element
15825 in each pair is the offset of a CU in the .debug_info section. The
15826 second element in each pair is the length of that CU. References
15827 to a CU elsewhere in the map are done using a CU index, which is
15828 just the 0-based index into this table. Note that if there are
15829 type CUs, then conceptually CUs and type CUs form a single list for
15830 the purposes of CU indices.
15831
15832 3. The types CU list. This is a sequence of triplets of 64-bit
15833 little-endian values. In a triplet, the first value is the CU
15834 offset, the second value is the type offset in the CU, and the
15835 third value is the type signature. The types CU list is not
15836 sorted.
15837
15838 4. The address section. The address section consists of a sequence
15839 of address entries. Each address entry has three elements.
15840 [0] The low address. This is a 64-bit little-endian value.
15841 [1] The high address. This is a 64-bit little-endian value.
15842 Like DW_AT_high_pc, the value is one byte beyond the end.
15843 [2] The CU index. This is an offset_type value.
15844
15845 5. The symbol table. This is a hash table. The size of the hash
15846 table is always a power of 2. The initial hash and the step are
15847 currently defined by the `find_slot' function.
15848
15849 Each slot in the hash table consists of a pair of offset_type
15850 values. The first value is the offset of the symbol's name in the
15851 constant pool. The second value is the offset of the CU vector in
15852 the constant pool.
15853
15854 If both values are 0, then this slot in the hash table is empty.
15855 This is ok because while 0 is a valid constant pool index, it
15856 cannot be a valid index for both a string and a CU vector.
15857
15858 A string in the constant pool is stored as a \0-terminated string,
15859 as you'd expect.
15860
15861 A CU vector in the constant pool is a sequence of offset_type
15862 values. The first value is the number of CU indices in the vector.
15863 Each subsequent value is the index of a CU in the CU list. This
15864 element in the hash table is used to indicate which CUs define the
15865 symbol.
15866
15867 6. The constant pool. This is simply a bunch of bytes. It is
15868 organized so that alignment is correct: CU vectors are stored
15869 first, followed by strings. */
15870
15871static void
15872save_gdb_index_command (char *arg, int from_tty)
15873{
15874 struct objfile *objfile;
15875
15876 if (!arg || !*arg)
15877 error (_("usage: save gdb-index DIRECTORY"));
15878
15879 ALL_OBJFILES (objfile)
15880 {
15881 struct stat st;
15882
15883 /* If the objfile does not correspond to an actual file, skip it. */
15884 if (stat (objfile->name, &st) < 0)
15885 continue;
15886
15887 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15888 if (dwarf2_per_objfile)
15889 {
15890 volatile struct gdb_exception except;
15891
15892 TRY_CATCH (except, RETURN_MASK_ERROR)
15893 {
15894 write_psymtabs_to_index (objfile, arg);
15895 }
15896 if (except.reason < 0)
15897 exception_fprintf (gdb_stderr, except,
15898 _("Error while writing index for `%s': "),
15899 objfile->name);
15900 }
15901 }
15902}
15903
15904\f
15905
15906int dwarf2_always_disassemble;
15907
15908static void
15909show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15910 struct cmd_list_element *c, const char *value)
15911{
15912 fprintf_filtered (file,
15913 _("Whether to always disassemble "
15914 "DWARF expressions is %s.\n"),
15915 value);
15916}
15917
15918void _initialize_dwarf2_read (void);
15919
15920void
15921_initialize_dwarf2_read (void)
15922{
15923 struct cmd_list_element *c;
15924
15925 dwarf2_objfile_data_key
15926 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15927
15928 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15929Set DWARF 2 specific variables.\n\
15930Configure DWARF 2 variables such as the cache size"),
15931 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15932 0/*allow-unknown*/, &maintenance_set_cmdlist);
15933
15934 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15935Show DWARF 2 specific variables\n\
15936Show DWARF 2 variables such as the cache size"),
15937 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15938 0/*allow-unknown*/, &maintenance_show_cmdlist);
15939
15940 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15941 &dwarf2_max_cache_age, _("\
15942Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15943Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15944A higher limit means that cached compilation units will be stored\n\
15945in memory longer, and more total memory will be used. Zero disables\n\
15946caching, which can slow down startup."),
15947 NULL,
15948 show_dwarf2_max_cache_age,
15949 &set_dwarf2_cmdlist,
15950 &show_dwarf2_cmdlist);
15951
15952 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15953 &dwarf2_always_disassemble, _("\
15954Set whether `info address' always disassembles DWARF expressions."), _("\
15955Show whether `info address' always disassembles DWARF expressions."), _("\
15956When enabled, DWARF expressions are always printed in an assembly-like\n\
15957syntax. When disabled, expressions will be printed in a more\n\
15958conversational style, when possible."),
15959 NULL,
15960 show_dwarf2_always_disassemble,
15961 &set_dwarf2_cmdlist,
15962 &show_dwarf2_cmdlist);
15963
15964 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15965Set debugging of the dwarf2 DIE reader."), _("\
15966Show debugging of the dwarf2 DIE reader."), _("\
15967When enabled (non-zero), DIEs are dumped after they are read in.\n\
15968The value is the maximum depth to print."),
15969 NULL,
15970 NULL,
15971 &setdebuglist, &showdebuglist);
15972
15973 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15974 _("\
15975Save a gdb-index file.\n\
15976Usage: save gdb-index DIRECTORY"),
15977 &save_cmdlist);
15978 set_cmd_completer (c, filename_completer);
15979}
This page took 0.107901 seconds and 4 git commands to generate.