* gdb.texinfo (Command Syntax): Document C-o binding.
[deliverable/binutils-gdb.git] / gdb / event-top.c
... / ...
CommitLineData
1/* Top level stuff for GDB, the GNU debugger.
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#include "defs.h"
23#include "top.h"
24#include "inferior.h"
25#include "target.h"
26#include "terminal.h" /* for job_control */
27#include "event-loop.h"
28#include "event-top.h"
29#include <signal.h>
30
31/* For dont_repeat() */
32#include "gdbcmd.h"
33
34/* readline include files */
35#include <readline/readline.h>
36#include <readline/history.h>
37
38/* readline defines this. */
39#undef savestring
40
41extern void _initialize_event_loop (void);
42
43static void rl_callback_read_char_wrapper (gdb_client_data client_data);
44static void command_line_handler (char *rl);
45static void command_line_handler_continuation (struct continuation_arg *arg);
46static void change_line_handler (void);
47static void change_annotation_level (void);
48static void command_handler (char *command);
49void cli_command_loop (void);
50static void async_do_nothing (gdb_client_data arg);
51static void async_disconnect (gdb_client_data arg);
52static void async_stop_sig (gdb_client_data arg);
53static void async_float_handler (gdb_client_data arg);
54
55/* Signal handlers. */
56static void handle_sigquit (int sig);
57static void handle_sighup (int sig);
58static void handle_sigfpe (int sig);
59#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
60static void handle_sigwinch (int sig);
61#endif
62
63/* Functions to be invoked by the event loop in response to
64 signals. */
65static void async_do_nothing (gdb_client_data);
66static void async_disconnect (gdb_client_data);
67static void async_float_handler (gdb_client_data);
68static void async_stop_sig (gdb_client_data);
69
70/* Readline offers an alternate interface, via callback
71 functions. These are all included in the file callback.c in the
72 readline distribution. This file provides (mainly) a function, which
73 the event loop uses as callback (i.e. event handler) whenever an event
74 is detected on the standard input file descriptor.
75 readline_callback_read_char is called (by the GDB event loop) whenever
76 there is a new character ready on the input stream. This function
77 incrementally builds a buffer internal to readline where it
78 accumulates the line read up to the point of invocation. In the
79 special case in which the character read is newline, the function
80 invokes a GDB supplied callback routine, which does the processing of
81 a full command line. This latter routine is the asynchronous analog
82 of the old command_line_input in gdb. Instead of invoking (and waiting
83 for) readline to read the command line and pass it back to
84 command_loop for processing, the new command_line_handler function has
85 the command line already available as its parameter. INPUT_HANDLER is
86 to be set to the function that readline will invoke when a complete
87 line of input is ready. CALL_READLINE is to be set to the function
88 that readline offers as callback to the event_loop. */
89
90void (*input_handler) (char *);
91void (*call_readline) (gdb_client_data);
92
93/* Important variables for the event loop. */
94
95/* This is used to determine if GDB is using the readline library or
96 its own simplified form of readline. It is used by the asynchronous
97 form of the set editing command.
98 ezannoni: as of 1999-04-29 I expect that this
99 variable will not be used after gdb is changed to use the event
100 loop as default engine, and event-top.c is merged into top.c. */
101int async_command_editing_p;
102
103/* This variable contains the new prompt that the user sets with the
104 set prompt command. */
105char *new_async_prompt;
106
107/* This is the annotation suffix that will be used when the
108 annotation_level is 2. */
109char *async_annotation_suffix;
110
111/* This is used to display the notification of the completion of an
112 asynchronous execution command. */
113int exec_done_display_p = 0;
114
115/* This is the file descriptor for the input stream that GDB uses to
116 read commands from. */
117int input_fd;
118
119/* This is the prompt stack. Prompts will be pushed on the stack as
120 needed by the different 'kinds' of user inputs GDB is asking
121 for. See event-loop.h. */
122struct prompts the_prompts;
123
124/* signal handling variables */
125/* Each of these is a pointer to a function that the event loop will
126 invoke if the corresponding signal has received. The real signal
127 handlers mark these functions as ready to be executed and the event
128 loop, in a later iteration, calls them. See the function
129 invoke_async_signal_handler. */
130void *sigint_token;
131#ifdef SIGHUP
132void *sighup_token;
133#endif
134void *sigquit_token;
135void *sigfpe_token;
136#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
137void *sigwinch_token;
138#endif
139#ifdef STOP_SIGNAL
140void *sigtstp_token;
141#endif
142
143/* Structure to save a partially entered command. This is used when
144 the user types '\' at the end of a command line. This is necessary
145 because each line of input is handled by a different call to
146 command_line_handler, and normally there is no state retained
147 between different calls. */
148int more_to_come = 0;
149
150struct readline_input_state
151 {
152 char *linebuffer;
153 char *linebuffer_ptr;
154 }
155readline_input_state;
156\f
157
158/* Wrapper function for calling into the readline library. The event
159 loop expects the callback function to have a paramter, while readline
160 expects none. */
161static void
162rl_callback_read_char_wrapper (gdb_client_data client_data)
163{
164 rl_callback_read_char ();
165}
166
167/* Initialize all the necessary variables, start the event loop,
168 register readline, and stdin, start the loop. */
169void
170cli_command_loop (void)
171{
172 int length;
173 char *a_prompt;
174 char *gdb_prompt = get_prompt ();
175
176 /* If we are using readline, set things up and display the first
177 prompt, otherwise just print the prompt. */
178 if (async_command_editing_p)
179 {
180 /* Tell readline what the prompt to display is and what function it
181 will need to call after a whole line is read. This also displays
182 the first prompt. */
183 length = strlen (PREFIX (0)) + strlen (gdb_prompt) + strlen (SUFFIX (0)) + 1;
184 a_prompt = (char *) xmalloc (length);
185 strcpy (a_prompt, PREFIX (0));
186 strcat (a_prompt, gdb_prompt);
187 strcat (a_prompt, SUFFIX (0));
188 rl_callback_handler_install (a_prompt, input_handler);
189 }
190 else
191 display_gdb_prompt (0);
192
193 /* Now it's time to start the event loop. */
194 start_event_loop ();
195}
196
197/* Change the function to be invoked every time there is a character
198 ready on stdin. This is used when the user sets the editing off,
199 therefore bypassing readline, and letting gdb handle the input
200 itself, via gdb_readline2. Also it is used in the opposite case in
201 which the user sets editing on again, by restoring readline
202 handling of the input. */
203static void
204change_line_handler (void)
205{
206 /* NOTE: this operates on input_fd, not instream. If we are reading
207 commands from a file, instream will point to the file. However in
208 async mode, we always read commands from a file with editing
209 off. This means that the 'set editing on/off' will have effect
210 only on the interactive session. */
211
212 if (async_command_editing_p)
213 {
214 /* Turn on editing by using readline. */
215 call_readline = rl_callback_read_char_wrapper;
216 input_handler = command_line_handler;
217 }
218 else
219 {
220 /* Turn off editing by using gdb_readline2. */
221 rl_callback_handler_remove ();
222 call_readline = gdb_readline2;
223
224 /* Set up the command handler as well, in case we are called as
225 first thing from .gdbinit. */
226 input_handler = command_line_handler;
227 }
228}
229
230/* Displays the prompt. The prompt that is displayed is the current
231 top of the prompt stack, if the argument NEW_PROMPT is
232 0. Otherwise, it displays whatever NEW_PROMPT is. This is used
233 after each gdb command has completed, and in the following cases:
234 1. when the user enters a command line which is ended by '\'
235 indicating that the command will continue on the next line.
236 In that case the prompt that is displayed is the empty string.
237 2. When the user is entering 'commands' for a breakpoint, or
238 actions for a tracepoint. In this case the prompt will be '>'
239 3. Other????
240 FIXME: 2. & 3. not implemented yet for async. */
241void
242display_gdb_prompt (char *new_prompt)
243{
244 int prompt_length = 0;
245 char *gdb_prompt = get_prompt ();
246
247#ifdef UI_OUT
248 /* When an alternative interpreter has been installed, do not
249 display the comand prompt. */
250 if (interpreter_p)
251 return;
252#endif
253
254 if (target_executing && sync_execution)
255 {
256 /* This is to trick readline into not trying to display the
257 prompt. Even though we display the prompt using this
258 function, readline still tries to do its own display if we
259 don't call rl_callback_handler_install and
260 rl_callback_handler_remove (which readline detects because a
261 global variable is not set). If readline did that, it could
262 mess up gdb signal handlers for SIGINT. Readline assumes
263 that between calls to rl_set_signals and rl_clear_signals gdb
264 doesn't do anything with the signal handlers. Well, that's
265 not the case, because when the target executes we change the
266 SIGINT signal handler. If we allowed readline to display the
267 prompt, the signal handler change would happen exactly
268 between the calls to the above two functions.
269 Calling rl_callback_handler_remove(), does the job. */
270
271 rl_callback_handler_remove ();
272 return;
273 }
274
275 if (!new_prompt)
276 {
277 /* Just use the top of the prompt stack. */
278 prompt_length = strlen (PREFIX (0)) +
279 strlen (SUFFIX (0)) +
280 strlen (gdb_prompt) + 1;
281
282 new_prompt = (char *) alloca (prompt_length);
283
284 /* Prefix needs to have new line at end. */
285 strcpy (new_prompt, PREFIX (0));
286 strcat (new_prompt, gdb_prompt);
287 /* Suffix needs to have a new line at end and \032 \032 at
288 beginning. */
289 strcat (new_prompt, SUFFIX (0));
290 }
291
292 if (async_command_editing_p)
293 {
294 rl_callback_handler_remove ();
295 rl_callback_handler_install (new_prompt, input_handler);
296 }
297 /* new_prompt at this point can be the top of the stack or the one passed in */
298 else if (new_prompt)
299 {
300 /* Don't use a _filtered function here. It causes the assumed
301 character position to be off, since the newline we read from
302 the user is not accounted for. */
303 fputs_unfiltered (new_prompt, gdb_stdout);
304
305 /* OBSOLETE #ifdef MPW */
306 /* OBSOLETE *//* Move to a new line so the entered line doesn't have a prompt */
307 /* OBSOLETE on the front of it. */
308 /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */
309 /* OBSOLETE #endif *//* MPW */
310 gdb_flush (gdb_stdout);
311 }
312}
313
314/* Used when the user requests a different annotation level, with
315 'set annotate'. It pushes a new prompt (with prefix and suffix) on top
316 of the prompt stack, if the annotation level desired is 2, otherwise
317 it pops the top of the prompt stack when we want the annotation level
318 to be the normal ones (1 or 0). */
319static void
320change_annotation_level (void)
321{
322 char *prefix, *suffix;
323
324 if (!PREFIX (0) || !PROMPT (0) || !SUFFIX (0))
325 {
326 /* The prompt stack has not been initialized to "", we are
327 using gdb w/o the --async switch */
328 warning ("Command has same effect as set annotate");
329 return;
330 }
331
332 if (annotation_level > 1)
333 {
334 if (!strcmp (PREFIX (0), "") && !strcmp (SUFFIX (0), ""))
335 {
336 /* Push a new prompt if the previous annotation_level was not >1. */
337 prefix = (char *) alloca (strlen (async_annotation_suffix) + 10);
338 strcpy (prefix, "\n\032\032pre-");
339 strcat (prefix, async_annotation_suffix);
340 strcat (prefix, "\n");
341
342 suffix = (char *) alloca (strlen (async_annotation_suffix) + 6);
343 strcpy (suffix, "\n\032\032");
344 strcat (suffix, async_annotation_suffix);
345 strcat (suffix, "\n");
346
347 push_prompt (prefix, (char *) 0, suffix);
348 }
349 }
350 else
351 {
352 if (strcmp (PREFIX (0), "") && strcmp (SUFFIX (0), ""))
353 {
354 /* Pop the top of the stack, we are going back to annotation < 1. */
355 pop_prompt ();
356 }
357 }
358}
359
360/* Pushes a new prompt on the prompt stack. Each prompt has three
361 parts: prefix, prompt, suffix. Usually prefix and suffix are empty
362 strings, except when the annotation level is 2. Memory is allocated
363 within savestring for the new prompt. */
364void
365push_prompt (char *prefix, char *prompt, char *suffix)
366{
367 the_prompts.top++;
368 PREFIX (0) = savestring (prefix, strlen (prefix));
369
370 /* Note that this function is used by the set annotate 2
371 command. This is why we take care of saving the old prompt
372 in case a new one is not specified. */
373 if (prompt)
374 PROMPT (0) = savestring (prompt, strlen (prompt));
375 else
376 PROMPT (0) = savestring (PROMPT (-1), strlen (PROMPT (-1)));
377
378 SUFFIX (0) = savestring (suffix, strlen (suffix));
379}
380
381/* Pops the top of the prompt stack, and frees the memory allocated for it. */
382void
383pop_prompt (void)
384{
385 /* If we are not during a 'synchronous' execution command, in which
386 case, the top prompt would be empty. */
387 if (strcmp (PROMPT (0), ""))
388 /* This is for the case in which the prompt is set while the
389 annotation level is 2. The top prompt will be changed, but when
390 we return to annotation level < 2, we want that new prompt to be
391 in effect, until the user does another 'set prompt'. */
392 if (strcmp (PROMPT (0), PROMPT (-1)))
393 {
394 xfree (PROMPT (-1));
395 PROMPT (-1) = savestring (PROMPT (0), strlen (PROMPT (0)));
396 }
397
398 xfree (PREFIX (0));
399 xfree (PROMPT (0));
400 xfree (SUFFIX (0));
401 the_prompts.top--;
402}
403
404/* When there is an event ready on the stdin file desriptor, instead
405 of calling readline directly throught the callback function, or
406 instead of calling gdb_readline2, give gdb a chance to detect
407 errors and do something. */
408void
409stdin_event_handler (int error, gdb_client_data client_data)
410{
411 if (error)
412 {
413 printf_unfiltered ("error detected on stdin\n");
414 delete_file_handler (input_fd);
415 discard_all_continuations ();
416 /* If stdin died, we may as well kill gdb. */
417 quit_command ((char *) 0, stdin == instream);
418 }
419 else
420 (*call_readline) (client_data);
421}
422
423/* Re-enable stdin after the end of an execution command in
424 synchronous mode, or after an error from the target, and we aborted
425 the exec operation. */
426
427void
428async_enable_stdin (void *dummy)
429{
430 /* See NOTE in async_disable_stdin() */
431 /* FIXME: cagney/1999-09-27: Call this before clearing
432 sync_execution. Current target_terminal_ours() implementations
433 check for sync_execution before switching the terminal. */
434 target_terminal_ours ();
435 pop_prompt ();
436 sync_execution = 0;
437}
438
439/* Disable reads from stdin (the console) marking the command as
440 synchronous. */
441
442void
443async_disable_stdin (void)
444{
445 sync_execution = 1;
446 push_prompt ("", "", "");
447 /* FIXME: cagney/1999-09-27: At present this call is technically
448 redundant since infcmd.c and infrun.c both already call
449 target_terminal_inferior(). As the terminal handling (in
450 sync/async mode) is refined, the duplicate calls can be
451 eliminated (Here or in infcmd.c/infrun.c). */
452 target_terminal_inferior ();
453 /* Add the reinstate of stdin to the list of cleanups to be done
454 in case the target errors out and dies. These cleanups are also
455 done in case of normal successful termination of the execution
456 command, by complete_execution(). */
457 make_exec_error_cleanup (async_enable_stdin, NULL);
458}
459\f
460
461/* Handles a gdb command. This function is called by
462 command_line_handler, which has processed one or more input lines
463 into COMMAND. */
464/* NOTE: 1999-04-30 This is the asynchronous version of the command_loop
465 function. The command_loop function will be obsolete when we
466 switch to use the event loop at every execution of gdb. */
467static void
468command_handler (char *command)
469{
470 struct cleanup *old_chain;
471 int stdin_is_tty = ISATTY (stdin);
472 struct continuation_arg *arg1;
473 struct continuation_arg *arg2;
474 long time_at_cmd_start;
475#ifdef HAVE_SBRK
476 long space_at_cmd_start = 0;
477#endif
478 extern int display_time;
479 extern int display_space;
480
481 quit_flag = 0;
482 if (instream == stdin && stdin_is_tty)
483 reinitialize_more_filter ();
484 old_chain = make_cleanup (null_cleanup, 0);
485
486 /* If readline returned a NULL command, it means that the
487 connection with the terminal is gone. This happens at the
488 end of a testsuite run, after Expect has hung up
489 but GDB is still alive. In such a case, we just quit gdb
490 killing the inferior program too. */
491 if (command == 0)
492 quit_command ((char *) 0, stdin == instream);
493
494 time_at_cmd_start = get_run_time ();
495
496 if (display_space)
497 {
498#ifdef HAVE_SBRK
499 extern char **environ;
500 char *lim = (char *) sbrk (0);
501
502 space_at_cmd_start = (long) (lim - (char *) &environ);
503#endif
504 }
505
506 execute_command (command, instream == stdin);
507
508 /* Set things up for this function to be compete later, once the
509 execution has completed, if we are doing an execution command,
510 otherwise, just go ahead and finish. */
511 if (target_can_async_p () && target_executing)
512 {
513 arg1 =
514 (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
515 arg2 =
516 (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
517 arg1->next = arg2;
518 arg2->next = NULL;
519 arg1->data.integer = time_at_cmd_start;
520 arg2->data.integer = space_at_cmd_start;
521 add_continuation (command_line_handler_continuation, arg1);
522 }
523
524 /* Do any commands attached to breakpoint we stopped at. Only if we
525 are always running synchronously. Or if we have just executed a
526 command that doesn't start the target. */
527 if (!target_can_async_p () || !target_executing)
528 {
529 bpstat_do_actions (&stop_bpstat);
530 do_cleanups (old_chain);
531
532 if (display_time)
533 {
534 long cmd_time = get_run_time () - time_at_cmd_start;
535
536 printf_unfiltered ("Command execution time: %ld.%06ld\n",
537 cmd_time / 1000000, cmd_time % 1000000);
538 }
539
540 if (display_space)
541 {
542#ifdef HAVE_SBRK
543 extern char **environ;
544 char *lim = (char *) sbrk (0);
545 long space_now = lim - (char *) &environ;
546 long space_diff = space_now - space_at_cmd_start;
547
548 printf_unfiltered ("Space used: %ld (%c%ld for this command)\n",
549 space_now,
550 (space_diff >= 0 ? '+' : '-'),
551 space_diff);
552#endif
553 }
554 }
555}
556
557/* Do any commands attached to breakpoint we stopped at. Only if we
558 are always running synchronously. Or if we have just executed a
559 command that doesn't start the target. */
560void
561command_line_handler_continuation (struct continuation_arg *arg)
562{
563 extern int display_time;
564 extern int display_space;
565
566 long time_at_cmd_start = arg->data.longint;
567 long space_at_cmd_start = arg->next->data.longint;
568
569 bpstat_do_actions (&stop_bpstat);
570 /*do_cleanups (old_chain); *//*?????FIXME????? */
571
572 if (display_time)
573 {
574 long cmd_time = get_run_time () - time_at_cmd_start;
575
576 printf_unfiltered ("Command execution time: %ld.%06ld\n",
577 cmd_time / 1000000, cmd_time % 1000000);
578 }
579 if (display_space)
580 {
581#ifdef HAVE_SBRK
582 extern char **environ;
583 char *lim = (char *) sbrk (0);
584 long space_now = lim - (char *) &environ;
585 long space_diff = space_now - space_at_cmd_start;
586
587 printf_unfiltered ("Space used: %ld (%c%ld for this command)\n",
588 space_now,
589 (space_diff >= 0 ? '+' : '-'),
590 space_diff);
591#endif
592 }
593}
594
595/* Handle a complete line of input. This is called by the callback
596 mechanism within the readline library. Deal with incomplete commands
597 as well, by saving the partial input in a global buffer. */
598
599/* NOTE: 1999-04-30 This is the asynchronous version of the
600 command_line_input function. command_line_input will become
601 obsolete once we use the event loop as the default mechanism in
602 GDB. */
603static void
604command_line_handler (char *rl)
605{
606 static char *linebuffer = 0;
607 static unsigned linelength = 0;
608 register char *p;
609 char *p1;
610 extern char *line;
611 extern int linesize;
612 char *nline;
613 char got_eof = 0;
614
615
616 int repeat = (instream == stdin);
617
618 if (annotation_level > 1 && instream == stdin)
619 {
620 printf_unfiltered ("\n\032\032post-");
621 printf_unfiltered (async_annotation_suffix);
622 printf_unfiltered ("\n");
623 }
624
625 if (linebuffer == 0)
626 {
627 linelength = 80;
628 linebuffer = (char *) xmalloc (linelength);
629 }
630
631 p = linebuffer;
632
633 if (more_to_come)
634 {
635 strcpy (linebuffer, readline_input_state.linebuffer);
636 p = readline_input_state.linebuffer_ptr;
637 xfree (readline_input_state.linebuffer);
638 more_to_come = 0;
639 pop_prompt ();
640 }
641
642#ifdef STOP_SIGNAL
643 if (job_control)
644 signal (STOP_SIGNAL, handle_stop_sig);
645#endif
646
647 /* Make sure that all output has been output. Some machines may let
648 you get away with leaving out some of the gdb_flush, but not all. */
649 wrap_here ("");
650 gdb_flush (gdb_stdout);
651 gdb_flush (gdb_stderr);
652
653 if (source_file_name != NULL)
654 {
655 ++source_line_number;
656 sprintf (source_error,
657 "%s%s:%d: Error in sourced command file:\n",
658 source_pre_error,
659 source_file_name,
660 source_line_number);
661 error_pre_print = source_error;
662 }
663
664 /* If we are in this case, then command_handler will call quit
665 and exit from gdb. */
666 if (!rl || rl == (char *) EOF)
667 {
668 got_eof = 1;
669 command_handler (0);
670 }
671 if (strlen (rl) + 1 + (p - linebuffer) > linelength)
672 {
673 linelength = strlen (rl) + 1 + (p - linebuffer);
674 nline = (char *) xrealloc (linebuffer, linelength);
675 p += nline - linebuffer;
676 linebuffer = nline;
677 }
678 p1 = rl;
679 /* Copy line. Don't copy null at end. (Leaves line alone
680 if this was just a newline) */
681 while (*p1)
682 *p++ = *p1++;
683
684 xfree (rl); /* Allocated in readline. */
685
686 if (*(p - 1) == '\\')
687 {
688 p--; /* Put on top of '\'. */
689
690 if (*p == '\\')
691 {
692 readline_input_state.linebuffer = savestring (linebuffer,
693 strlen (linebuffer));
694 readline_input_state.linebuffer_ptr = p;
695
696 /* We will not invoke a execute_command if there is more
697 input expected to complete the command. So, we need to
698 print an empty prompt here. */
699 more_to_come = 1;
700 push_prompt ("", "", "");
701 display_gdb_prompt (0);
702 return;
703 }
704 }
705
706#ifdef STOP_SIGNAL
707 if (job_control)
708 signal (STOP_SIGNAL, SIG_DFL);
709#endif
710
711#define SERVER_COMMAND_LENGTH 7
712 server_command =
713 (p - linebuffer > SERVER_COMMAND_LENGTH)
714 && STREQN (linebuffer, "server ", SERVER_COMMAND_LENGTH);
715 if (server_command)
716 {
717 /* Note that we don't set `line'. Between this and the check in
718 dont_repeat, this insures that repeating will still do the
719 right thing. */
720 *p = '\0';
721 command_handler (linebuffer + SERVER_COMMAND_LENGTH);
722 display_gdb_prompt (0);
723 return;
724 }
725
726 /* Do history expansion if that is wished. */
727 if (history_expansion_p && instream == stdin
728 && ISATTY (instream))
729 {
730 char *history_value;
731 int expanded;
732
733 *p = '\0'; /* Insert null now. */
734 expanded = history_expand (linebuffer, &history_value);
735 if (expanded)
736 {
737 /* Print the changes. */
738 printf_unfiltered ("%s\n", history_value);
739
740 /* If there was an error, call this function again. */
741 if (expanded < 0)
742 {
743 xfree (history_value);
744 return;
745 }
746 if (strlen (history_value) > linelength)
747 {
748 linelength = strlen (history_value) + 1;
749 linebuffer = (char *) xrealloc (linebuffer, linelength);
750 }
751 strcpy (linebuffer, history_value);
752 p = linebuffer + strlen (linebuffer);
753 xfree (history_value);
754 }
755 }
756
757 /* If we just got an empty line, and that is supposed
758 to repeat the previous command, return the value in the
759 global buffer. */
760 if (repeat && p == linebuffer && *p != '\\')
761 {
762 command_handler (line);
763 display_gdb_prompt (0);
764 return;
765 }
766
767 for (p1 = linebuffer; *p1 == ' ' || *p1 == '\t'; p1++);
768 if (repeat && !*p1)
769 {
770 command_handler (line);
771 display_gdb_prompt (0);
772 return;
773 }
774
775 *p = 0;
776
777 /* Add line to history if appropriate. */
778 if (instream == stdin
779 && ISATTY (stdin) && *linebuffer)
780 add_history (linebuffer);
781
782 /* Note: lines consisting solely of comments are added to the command
783 history. This is useful when you type a command, and then
784 realize you don't want to execute it quite yet. You can comment
785 out the command and then later fetch it from the value history
786 and remove the '#'. The kill ring is probably better, but some
787 people are in the habit of commenting things out. */
788 if (*p1 == '#')
789 *p1 = '\0'; /* Found a comment. */
790
791 /* Save into global buffer if appropriate. */
792 if (repeat)
793 {
794 if (linelength > linesize)
795 {
796 line = xrealloc (line, linelength);
797 linesize = linelength;
798 }
799 strcpy (line, linebuffer);
800 if (!more_to_come)
801 {
802 command_handler (line);
803 display_gdb_prompt (0);
804 }
805 return;
806 }
807
808 command_handler (linebuffer);
809 display_gdb_prompt (0);
810 return;
811}
812
813/* Does reading of input from terminal w/o the editing features
814 provided by the readline library. */
815
816/* NOTE: 1999-04-30 Asynchronous version of gdb_readline. gdb_readline
817 will become obsolete when the event loop is made the default
818 execution for gdb. */
819void
820gdb_readline2 (gdb_client_data client_data)
821{
822 int c;
823 char *result;
824 int input_index = 0;
825 int result_size = 80;
826 static int done_once = 0;
827
828 /* Unbuffer the input stream, so that, later on, the calls to fgetc
829 fetch only one char at the time from the stream. The fgetc's will
830 get up to the first newline, but there may be more chars in the
831 stream after '\n'. If we buffer the input and fgetc drains the
832 stream, getting stuff beyond the newline as well, a select, done
833 afterwards will not trigger. */
834 if (!done_once && !ISATTY (instream))
835 {
836 setbuf (instream, NULL);
837 done_once = 1;
838 }
839
840 result = (char *) xmalloc (result_size);
841
842 /* We still need the while loop here, even though it would seem
843 obvious to invoke gdb_readline2 at every character entered. If
844 not using the readline library, the terminal is in cooked mode,
845 which sends the characters all at once. Poll will notice that the
846 input fd has changed state only after enter is pressed. At this
847 point we still need to fetch all the chars entered. */
848
849 while (1)
850 {
851 /* Read from stdin if we are executing a user defined command.
852 This is the right thing for prompt_for_continue, at least. */
853 c = fgetc (instream ? instream : stdin);
854
855 if (c == EOF)
856 {
857 if (input_index > 0)
858 /* The last line does not end with a newline. Return it, and
859 if we are called again fgetc will still return EOF and
860 we'll return NULL then. */
861 break;
862 xfree (result);
863 (*input_handler) (0);
864 }
865
866 if (c == '\n')
867#ifndef CRLF_SOURCE_FILES
868 break;
869#else
870 {
871 if (input_index > 0 && result[input_index - 1] == '\r')
872 input_index--;
873 break;
874 }
875#endif
876
877 result[input_index++] = c;
878 while (input_index >= result_size)
879 {
880 result_size *= 2;
881 result = (char *) xrealloc (result, result_size);
882 }
883 }
884
885 result[input_index++] = '\0';
886 (*input_handler) (result);
887}
888\f
889
890/* Initialization of signal handlers and tokens. There is a function
891 handle_sig* for each of the signals GDB cares about. Specifically:
892 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
893 functions are the actual signal handlers associated to the signals
894 via calls to signal(). The only job for these functions is to
895 enqueue the appropriate event/procedure with the event loop. Such
896 procedures are the old signal handlers. The event loop will take
897 care of invoking the queued procedures to perform the usual tasks
898 associated with the reception of the signal. */
899/* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
900 init_signals will become obsolete as we move to have to event loop
901 as the default for gdb. */
902void
903async_init_signals (void)
904{
905 signal (SIGINT, handle_sigint);
906 sigint_token =
907 create_async_signal_handler (async_request_quit, NULL);
908
909 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
910 to the inferior and breakpoints will be ignored. */
911#ifdef SIGTRAP
912 signal (SIGTRAP, SIG_DFL);
913#endif
914
915 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
916 passed to the inferior, which we don't want. It would be
917 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
918 on BSD4.3 systems using vfork, that can affect the
919 GDB process as well as the inferior (the signal handling tables
920 might be in memory, shared between the two). Since we establish
921 a handler for SIGQUIT, when we call exec it will set the signal
922 to SIG_DFL for us. */
923 signal (SIGQUIT, handle_sigquit);
924 sigquit_token =
925 create_async_signal_handler (async_do_nothing, NULL);
926#ifdef SIGHUP
927 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
928 sighup_token =
929 create_async_signal_handler (async_disconnect, NULL);
930 else
931 sighup_token =
932 create_async_signal_handler (async_do_nothing, NULL);
933#endif
934 signal (SIGFPE, handle_sigfpe);
935 sigfpe_token =
936 create_async_signal_handler (async_float_handler, NULL);
937
938#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
939 signal (SIGWINCH, handle_sigwinch);
940 sigwinch_token =
941 create_async_signal_handler (SIGWINCH_HANDLER, NULL);
942#endif
943#ifdef STOP_SIGNAL
944 sigtstp_token =
945 create_async_signal_handler (async_stop_sig, NULL);
946#endif
947
948}
949
950void
951mark_async_signal_handler_wrapper (void *token)
952{
953 mark_async_signal_handler ((struct async_signal_handler *) token);
954}
955
956/* Tell the event loop what to do if SIGINT is received.
957 See event-signal.c. */
958void
959handle_sigint (int sig)
960{
961 signal (sig, handle_sigint);
962
963 /* If immediate_quit is set, we go ahead and process the SIGINT right
964 away, even if we usually would defer this to the event loop. The
965 assumption here is that it is safe to process ^C immediately if
966 immediate_quit is set. If we didn't, SIGINT would be really
967 processed only the next time through the event loop. To get to
968 that point, though, the command that we want to interrupt needs to
969 finish first, which is unacceptable. */
970 if (immediate_quit)
971 async_request_quit (0);
972 else
973 /* If immediate quit is not set, we process SIGINT the next time
974 through the loop, which is fine. */
975 mark_async_signal_handler_wrapper (sigint_token);
976}
977
978/* Do the quit. All the checks have been done by the caller. */
979void
980async_request_quit (gdb_client_data arg)
981{
982 quit_flag = 1;
983#ifdef REQUEST_QUIT
984 REQUEST_QUIT;
985#else
986 quit ();
987#endif
988}
989
990/* Tell the event loop what to do if SIGQUIT is received.
991 See event-signal.c. */
992static void
993handle_sigquit (int sig)
994{
995 mark_async_signal_handler_wrapper (sigquit_token);
996 signal (sig, handle_sigquit);
997}
998
999/* Called by the event loop in response to a SIGQUIT. */
1000static void
1001async_do_nothing (gdb_client_data arg)
1002{
1003 /* Empty function body. */
1004}
1005
1006#ifdef SIGHUP
1007/* Tell the event loop what to do if SIGHUP is received.
1008 See event-signal.c. */
1009static void
1010handle_sighup (int sig)
1011{
1012 mark_async_signal_handler_wrapper (sighup_token);
1013 signal (sig, handle_sighup);
1014}
1015
1016/* Called by the event loop to process a SIGHUP */
1017static void
1018async_disconnect (gdb_client_data arg)
1019{
1020 catch_errors (quit_cover, NULL,
1021 "Could not kill the program being debugged",
1022 RETURN_MASK_ALL);
1023 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1024 kill (getpid (), SIGHUP);
1025}
1026#endif
1027
1028#ifdef STOP_SIGNAL
1029void
1030handle_stop_sig (int sig)
1031{
1032 mark_async_signal_handler_wrapper (sigtstp_token);
1033 signal (sig, handle_stop_sig);
1034}
1035
1036static void
1037async_stop_sig (gdb_client_data arg)
1038{
1039 char *prompt = get_prompt ();
1040#if STOP_SIGNAL == SIGTSTP
1041 signal (SIGTSTP, SIG_DFL);
1042#if HAVE_SIGPROCMASK
1043 {
1044 sigset_t zero;
1045
1046 sigemptyset (&zero);
1047 sigprocmask (SIG_SETMASK, &zero, 0);
1048 }
1049#elif HAVE_SIGSETMASK
1050 sigsetmask (0);
1051#endif
1052 kill (getpid (), SIGTSTP);
1053 signal (SIGTSTP, handle_stop_sig);
1054#else
1055 signal (STOP_SIGNAL, handle_stop_sig);
1056#endif
1057 printf_unfiltered ("%s", prompt);
1058 gdb_flush (gdb_stdout);
1059
1060 /* Forget about any previous command -- null line now will do nothing. */
1061 dont_repeat ();
1062}
1063#endif /* STOP_SIGNAL */
1064
1065/* Tell the event loop what to do if SIGFPE is received.
1066 See event-signal.c. */
1067static void
1068handle_sigfpe (int sig)
1069{
1070 mark_async_signal_handler_wrapper (sigfpe_token);
1071 signal (sig, handle_sigfpe);
1072}
1073
1074/* Event loop will call this functin to process a SIGFPE. */
1075static void
1076async_float_handler (gdb_client_data arg)
1077{
1078 /* This message is based on ANSI C, section 4.7. Note that integer
1079 divide by zero causes this, so "float" is a misnomer. */
1080 error ("Erroneous arithmetic operation.");
1081}
1082
1083/* Tell the event loop what to do if SIGWINCH is received.
1084 See event-signal.c. */
1085#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1086static void
1087handle_sigwinch (int sig)
1088{
1089 mark_async_signal_handler_wrapper (sigwinch_token);
1090 signal (sig, handle_sigwinch);
1091}
1092#endif
1093\f
1094
1095/* Called by do_setshow_command. */
1096/* ARGSUSED */
1097void
1098set_async_editing_command (char *args, int from_tty, struct cmd_list_element *c)
1099{
1100 change_line_handler ();
1101}
1102
1103/* Called by do_setshow_command. */
1104/* ARGSUSED */
1105void
1106set_async_annotation_level (char *args, int from_tty, struct cmd_list_element *c)
1107{
1108 change_annotation_level ();
1109}
1110
1111/* Called by do_setshow_command. */
1112/* ARGSUSED */
1113void
1114set_async_prompt (char *args, int from_tty, struct cmd_list_element *c)
1115{
1116 PROMPT (0) = savestring (new_async_prompt, strlen (new_async_prompt));
1117}
1118
1119/* Set things up for readline to be invoked via the alternate
1120 interface, i.e. via a callback function (rl_callback_read_char),
1121 and hook up instream to the event loop. */
1122void
1123_initialize_event_loop (void)
1124{
1125 if (event_loop_p)
1126 {
1127 /* If the input stream is connected to a terminal, turn on
1128 editing. */
1129 if (ISATTY (instream))
1130 {
1131 /* Tell gdb that we will be using the readline library. This
1132 could be overwritten by a command in .gdbinit like 'set
1133 editing on' or 'off'. */
1134 async_command_editing_p = 1;
1135
1136 /* When a character is detected on instream by select or
1137 poll, readline will be invoked via this callback
1138 function. */
1139 call_readline = rl_callback_read_char_wrapper;
1140 }
1141 else
1142 {
1143 async_command_editing_p = 0;
1144 call_readline = gdb_readline2;
1145 }
1146
1147 /* When readline has read an end-of-line character, it passes
1148 the complete line to gdb for processing. command_line_handler
1149 is the function that does this. */
1150 input_handler = command_line_handler;
1151
1152 /* Tell readline to use the same input stream that gdb uses. */
1153 rl_instream = instream;
1154
1155 /* Get a file descriptor for the input stream, so that we can
1156 register it with the event loop. */
1157 input_fd = fileno (instream);
1158
1159 /* Tell gdb to use the cli_command_loop as the main loop. */
1160 command_loop_hook = cli_command_loop;
1161
1162 /* Now we need to create the event sources for the input file
1163 descriptor. */
1164 /* At this point in time, this is the only event source that we
1165 register with the even loop. Another source is going to be
1166 the target program (inferior), but that must be registered
1167 only when it actually exists (I.e. after we say 'run' or
1168 after we connect to a remote target. */
1169 add_file_handler (input_fd, stdin_event_handler, 0);
1170 }
1171}
This page took 0.027401 seconds and 4 git commands to generate.