2005-11-19 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27#include "defs.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "regcache.h"
31#include "completer.h"
32#include "osabi.h"
33#include "gdb_assert.h"
34#include "arch-utils.h"
35/* For argument passing to the inferior */
36#include "symtab.h"
37#include "dis-asm.h"
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
41
42#include "gdbcore.h"
43#include "gdbcmd.h"
44#include "objfiles.h"
45#include "hppa-tdep.h"
46
47static int hppa_debug = 0;
48
49/* Some local constants. */
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75/* Routines to extract various sized constants out of hppa
76 instructions. */
77
78/* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
81int
82hppa_sign_extend (unsigned val, unsigned bits)
83{
84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
85}
86
87/* For many immediate values the sign bit is the low bit! */
88
89int
90hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
91{
92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93}
94
95/* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
98int
99hppa_get_field (unsigned word, int from, int to)
100{
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102}
103
104/* extract the immediate field from a ld{bhw}s instruction */
105
106int
107hppa_extract_5_load (unsigned word)
108{
109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
110}
111
112/* extract the immediate field from a break instruction */
113
114unsigned
115hppa_extract_5r_store (unsigned word)
116{
117 return (word & MASK_5);
118}
119
120/* extract the immediate field from a {sr}sm instruction */
121
122unsigned
123hppa_extract_5R_store (unsigned word)
124{
125 return (word >> 16 & MASK_5);
126}
127
128/* extract a 14 bit immediate field */
129
130int
131hppa_extract_14 (unsigned word)
132{
133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
134}
135
136/* extract a 21 bit constant */
137
138int
139hppa_extract_21 (unsigned word)
140{
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
145 val = hppa_get_field (word, 20, 20);
146 val <<= 11;
147 val |= hppa_get_field (word, 9, 19);
148 val <<= 2;
149 val |= hppa_get_field (word, 5, 6);
150 val <<= 5;
151 val |= hppa_get_field (word, 0, 4);
152 val <<= 2;
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
155}
156
157/* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
160int
161hppa_extract_17 (unsigned word)
162{
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
166 (word & 0x1) << 16, 17) << 2;
167}
168
169CORE_ADDR
170hppa_symbol_address(const char *sym)
171{
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179}
180
181struct hppa_objfile_private *
182hppa_init_objfile_priv_data (struct objfile *objfile)
183{
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193}
194\f
195
196/* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200static int
201compare_unwind_entries (const void *arg1, const void *arg2)
202{
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212}
213
214static void
215record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
216{
217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
226}
227
228static void
229internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
232{
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
235
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
241 CORE_ADDR low_text_segment_address;
242
243 /* For ELF targets, then unwinds are supposed to
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
250 {
251 low_text_segment_address = -1;
252
253 bfd_map_over_sections (objfile->obfd,
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
256
257 text_offset = low_text_segment_address;
258 }
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
263
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
267 endian issues. */
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
271 (bfd_byte *) buf);
272 table[i].region_start += text_offset;
273 buf += 4;
274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
275 table[i].region_end += text_offset;
276 buf += 4;
277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
283 table[i].reserved1 = (tmp >> 26) & 0x1;
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
293 table[i].Ada_Region = (tmp >> 9) & 0x1;
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
297 table[i].reserved2 = (tmp >> 5) & 0x1;
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
301 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
302 table[i].Cleanup_defined = tmp & 0x1;
303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
308 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
309 table[i].reserved4 = (tmp >> 27) & 0x1;
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
312 /* Stub unwinds are handled elsewhere. */
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317}
318
319/* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325static void
326read_unwind_info (struct objfile *objfile)
327{
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
348
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
355 {
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
361
362 total_entries += unwind_entries;
363 }
364 }
365
366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
367 use stub unwinds at the current time. */
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
382 total_entries += stub_entries;
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
387 obstack_alloc (&objfile->objfile_obstack, total_size);
388 ui->last = total_entries - 1;
389
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
392 index = 0;
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
432 (bfd_byte *) buf);
433 buf += 2;
434 ui->table[index].region_end
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
452 obj_private->unwind_info = ui;
453}
454
455/* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460struct unwind_table_entry *
461find_unwind_entry (CORE_ADDR pc)
462{
463 int first, middle, last;
464 struct objfile *objfile;
465 struct hppa_objfile_private *priv;
466
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
478
479 ALL_OBJFILES (objfile)
480 {
481 struct hppa_unwind_info *ui;
482 ui = NULL;
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
486
487 if (!ui)
488 {
489 read_unwind_info (objfile);
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
492 error (_("Internal error reading unwind information."));
493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
494 }
495
496 /* First, check the cache */
497
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
504 paddr_nz ((CORE_ADDR) ui->cache));
505 return ui->cache;
506 }
507
508 /* Not in the cache, do a binary search */
509
510 first = 0;
511 last = ui->last;
512
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
522 paddr_nz ((CORE_ADDR) ui->cache));
523 return &ui->table[middle];
524 }
525
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
536 return NULL;
537}
538
539/* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544static int
545hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546{
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
552 status = deprecated_read_memory_nobpt (pc, buf, 4);
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575}
576
577static const unsigned char *
578hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579{
580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583}
584
585/* Return the name of a register. */
586
587static const char *
588hppa32_register_name (int i)
589{
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628}
629
630static const char *
631hppa64_register_name (int i)
632{
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663}
664
665/* This function pushes a stack frame with arguments as part of the
666 inferior function calling mechanism.
667
668 This is the version of the function for the 32-bit PA machines, in
669 which later arguments appear at lower addresses. (The stack always
670 grows towards higher addresses.)
671
672 We simply allocate the appropriate amount of stack space and put
673 arguments into their proper slots. */
674
675static CORE_ADDR
676hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
677 struct regcache *regcache, CORE_ADDR bp_addr,
678 int nargs, struct value **args, CORE_ADDR sp,
679 int struct_return, CORE_ADDR struct_addr)
680{
681 /* Stack base address at which any pass-by-reference parameters are
682 stored. */
683 CORE_ADDR struct_end = 0;
684 /* Stack base address at which the first parameter is stored. */
685 CORE_ADDR param_end = 0;
686
687 /* The inner most end of the stack after all the parameters have
688 been pushed. */
689 CORE_ADDR new_sp = 0;
690
691 /* Two passes. First pass computes the location of everything,
692 second pass writes the bytes out. */
693 int write_pass;
694
695 /* Global pointer (r19) of the function we are trying to call. */
696 CORE_ADDR gp;
697
698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
699
700 for (write_pass = 0; write_pass < 2; write_pass++)
701 {
702 CORE_ADDR struct_ptr = 0;
703 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
704 struct_ptr is adjusted for each argument below, so the first
705 argument will end up at sp-36. */
706 CORE_ADDR param_ptr = 32;
707 int i;
708 int small_struct = 0;
709
710 for (i = 0; i < nargs; i++)
711 {
712 struct value *arg = args[i];
713 struct type *type = check_typedef (value_type (arg));
714 /* The corresponding parameter that is pushed onto the
715 stack, and [possibly] passed in a register. */
716 char param_val[8];
717 int param_len;
718 memset (param_val, 0, sizeof param_val);
719 if (TYPE_LENGTH (type) > 8)
720 {
721 /* Large parameter, pass by reference. Store the value
722 in "struct" area and then pass its address. */
723 param_len = 4;
724 struct_ptr += align_up (TYPE_LENGTH (type), 8);
725 if (write_pass)
726 write_memory (struct_end - struct_ptr, value_contents (arg),
727 TYPE_LENGTH (type));
728 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
729 }
730 else if (TYPE_CODE (type) == TYPE_CODE_INT
731 || TYPE_CODE (type) == TYPE_CODE_ENUM)
732 {
733 /* Integer value store, right aligned. "unpack_long"
734 takes care of any sign-extension problems. */
735 param_len = align_up (TYPE_LENGTH (type), 4);
736 store_unsigned_integer (param_val, param_len,
737 unpack_long (type,
738 value_contents (arg)));
739 }
740 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
741 {
742 /* Floating point value store, right aligned. */
743 param_len = align_up (TYPE_LENGTH (type), 4);
744 memcpy (param_val, value_contents (arg), param_len);
745 }
746 else
747 {
748 param_len = align_up (TYPE_LENGTH (type), 4);
749
750 /* Small struct value are stored right-aligned. */
751 memcpy (param_val + param_len - TYPE_LENGTH (type),
752 value_contents (arg), TYPE_LENGTH (type));
753
754 /* Structures of size 5, 6 and 7 bytes are special in that
755 the higher-ordered word is stored in the lower-ordered
756 argument, and even though it is a 8-byte quantity the
757 registers need not be 8-byte aligned. */
758 if (param_len > 4 && param_len < 8)
759 small_struct = 1;
760 }
761
762 param_ptr += param_len;
763 if (param_len == 8 && !small_struct)
764 param_ptr = align_up (param_ptr, 8);
765
766 /* First 4 non-FP arguments are passed in gr26-gr23.
767 First 4 32-bit FP arguments are passed in fr4L-fr7L.
768 First 2 64-bit FP arguments are passed in fr5 and fr7.
769
770 The rest go on the stack, starting at sp-36, towards lower
771 addresses. 8-byte arguments must be aligned to a 8-byte
772 stack boundary. */
773 if (write_pass)
774 {
775 write_memory (param_end - param_ptr, param_val, param_len);
776
777 /* There are some cases when we don't know the type
778 expected by the callee (e.g. for variadic functions), so
779 pass the parameters in both general and fp regs. */
780 if (param_ptr <= 48)
781 {
782 int grreg = 26 - (param_ptr - 36) / 4;
783 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
784 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
785
786 regcache_cooked_write (regcache, grreg, param_val);
787 regcache_cooked_write (regcache, fpLreg, param_val);
788
789 if (param_len > 4)
790 {
791 regcache_cooked_write (regcache, grreg + 1,
792 param_val + 4);
793
794 regcache_cooked_write (regcache, fpreg, param_val);
795 regcache_cooked_write (regcache, fpreg + 1,
796 param_val + 4);
797 }
798 }
799 }
800 }
801
802 /* Update the various stack pointers. */
803 if (!write_pass)
804 {
805 struct_end = sp + align_up (struct_ptr, 64);
806 /* PARAM_PTR already accounts for all the arguments passed
807 by the user. However, the ABI mandates minimum stack
808 space allocations for outgoing arguments. The ABI also
809 mandates minimum stack alignments which we must
810 preserve. */
811 param_end = struct_end + align_up (param_ptr, 64);
812 }
813 }
814
815 /* If a structure has to be returned, set up register 28 to hold its
816 address */
817 if (struct_return)
818 write_register (28, struct_addr);
819
820 gp = tdep->find_global_pointer (function);
821
822 if (gp != 0)
823 write_register (19, gp);
824
825 /* Set the return address. */
826 if (!gdbarch_push_dummy_code_p (gdbarch))
827 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
828
829 /* Update the Stack Pointer. */
830 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
831
832 return param_end;
833}
834
835/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
836 Runtime Architecture for PA-RISC 2.0", which is distributed as part
837 as of the HP-UX Software Transition Kit (STK). This implementation
838 is based on version 3.3, dated October 6, 1997. */
839
840/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
841
842static int
843hppa64_integral_or_pointer_p (const struct type *type)
844{
845 switch (TYPE_CODE (type))
846 {
847 case TYPE_CODE_INT:
848 case TYPE_CODE_BOOL:
849 case TYPE_CODE_CHAR:
850 case TYPE_CODE_ENUM:
851 case TYPE_CODE_RANGE:
852 {
853 int len = TYPE_LENGTH (type);
854 return (len == 1 || len == 2 || len == 4 || len == 8);
855 }
856 case TYPE_CODE_PTR:
857 case TYPE_CODE_REF:
858 return (TYPE_LENGTH (type) == 8);
859 default:
860 break;
861 }
862
863 return 0;
864}
865
866/* Check whether TYPE is a "Floating Scalar Type". */
867
868static int
869hppa64_floating_p (const struct type *type)
870{
871 switch (TYPE_CODE (type))
872 {
873 case TYPE_CODE_FLT:
874 {
875 int len = TYPE_LENGTH (type);
876 return (len == 4 || len == 8 || len == 16);
877 }
878 default:
879 break;
880 }
881
882 return 0;
883}
884
885static CORE_ADDR
886hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
887 struct regcache *regcache, CORE_ADDR bp_addr,
888 int nargs, struct value **args, CORE_ADDR sp,
889 int struct_return, CORE_ADDR struct_addr)
890{
891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
892 int i, offset = 0;
893 CORE_ADDR gp;
894
895 /* "The outgoing parameter area [...] must be aligned at a 16-byte
896 boundary." */
897 sp = align_up (sp, 16);
898
899 for (i = 0; i < nargs; i++)
900 {
901 struct value *arg = args[i];
902 struct type *type = value_type (arg);
903 int len = TYPE_LENGTH (type);
904 const bfd_byte *valbuf;
905 int regnum;
906
907 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
908 offset = align_up (offset, 8);
909
910 if (hppa64_integral_or_pointer_p (type))
911 {
912 /* "Integral scalar parameters smaller than 64 bits are
913 padded on the left (i.e., the value is in the
914 least-significant bits of the 64-bit storage unit, and
915 the high-order bits are undefined)." Therefore we can
916 safely sign-extend them. */
917 if (len < 8)
918 {
919 arg = value_cast (builtin_type_int64, arg);
920 len = 8;
921 }
922 }
923 else if (hppa64_floating_p (type))
924 {
925 if (len > 8)
926 {
927 /* "Quad-precision (128-bit) floating-point scalar
928 parameters are aligned on a 16-byte boundary." */
929 offset = align_up (offset, 16);
930
931 /* "Double-extended- and quad-precision floating-point
932 parameters within the first 64 bytes of the parameter
933 list are always passed in general registers." */
934 }
935 else
936 {
937 if (len == 4)
938 {
939 /* "Single-precision (32-bit) floating-point scalar
940 parameters are padded on the left with 32 bits of
941 garbage (i.e., the floating-point value is in the
942 least-significant 32 bits of a 64-bit storage
943 unit)." */
944 offset += 4;
945 }
946
947 /* "Single- and double-precision floating-point
948 parameters in this area are passed according to the
949 available formal parameter information in a function
950 prototype. [...] If no prototype is in scope,
951 floating-point parameters must be passed both in the
952 corresponding general registers and in the
953 corresponding floating-point registers." */
954 regnum = HPPA64_FP4_REGNUM + offset / 8;
955
956 if (regnum < HPPA64_FP4_REGNUM + 8)
957 {
958 /* "Single-precision floating-point parameters, when
959 passed in floating-point registers, are passed in
960 the right halves of the floating point registers;
961 the left halves are unused." */
962 regcache_cooked_write_part (regcache, regnum, offset % 8,
963 len, value_contents (arg));
964 }
965 }
966 }
967 else
968 {
969 if (len > 8)
970 {
971 /* "Aggregates larger than 8 bytes are aligned on a
972 16-byte boundary, possibly leaving an unused argument
973 slot, which is filled with garbage. If necessary,
974 they are padded on the right (with garbage), to a
975 multiple of 8 bytes." */
976 offset = align_up (offset, 16);
977 }
978 }
979
980 /* Always store the argument in memory. */
981 write_memory (sp + offset, value_contents (arg), len);
982
983 valbuf = value_contents (arg);
984 regnum = HPPA_ARG0_REGNUM - offset / 8;
985 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
986 {
987 regcache_cooked_write_part (regcache, regnum,
988 offset % 8, min (len, 8), valbuf);
989 offset += min (len, 8);
990 valbuf += min (len, 8);
991 len -= min (len, 8);
992 regnum--;
993 }
994
995 offset += len;
996 }
997
998 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
999 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1000
1001 /* Allocate the outgoing parameter area. Make sure the outgoing
1002 parameter area is multiple of 16 bytes in length. */
1003 sp += max (align_up (offset, 16), 64);
1004
1005 /* Allocate 32-bytes of scratch space. The documentation doesn't
1006 mention this, but it seems to be needed. */
1007 sp += 32;
1008
1009 /* Allocate the frame marker area. */
1010 sp += 16;
1011
1012 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1013 its address. */
1014 if (struct_return)
1015 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1016
1017 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1018 gp = tdep->find_global_pointer (function);
1019 if (gp != 0)
1020 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1021
1022 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1023 if (!gdbarch_push_dummy_code_p (gdbarch))
1024 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1025
1026 /* Set up GR30 to hold the stack pointer (sp). */
1027 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1028
1029 return sp;
1030}
1031\f
1032
1033/* Handle 32/64-bit struct return conventions. */
1034
1035static enum return_value_convention
1036hppa32_return_value (struct gdbarch *gdbarch,
1037 struct type *type, struct regcache *regcache,
1038 gdb_byte *readbuf, const gdb_byte *writebuf)
1039{
1040 if (TYPE_LENGTH (type) <= 2 * 4)
1041 {
1042 /* The value always lives in the right hand end of the register
1043 (or register pair)? */
1044 int b;
1045 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1046 int part = TYPE_LENGTH (type) % 4;
1047 /* The left hand register contains only part of the value,
1048 transfer that first so that the rest can be xfered as entire
1049 4-byte registers. */
1050 if (part > 0)
1051 {
1052 if (readbuf != NULL)
1053 regcache_cooked_read_part (regcache, reg, 4 - part,
1054 part, readbuf);
1055 if (writebuf != NULL)
1056 regcache_cooked_write_part (regcache, reg, 4 - part,
1057 part, writebuf);
1058 reg++;
1059 }
1060 /* Now transfer the remaining register values. */
1061 for (b = part; b < TYPE_LENGTH (type); b += 4)
1062 {
1063 if (readbuf != NULL)
1064 regcache_cooked_read (regcache, reg, readbuf + b);
1065 if (writebuf != NULL)
1066 regcache_cooked_write (regcache, reg, writebuf + b);
1067 reg++;
1068 }
1069 return RETURN_VALUE_REGISTER_CONVENTION;
1070 }
1071 else
1072 return RETURN_VALUE_STRUCT_CONVENTION;
1073}
1074
1075static enum return_value_convention
1076hppa64_return_value (struct gdbarch *gdbarch,
1077 struct type *type, struct regcache *regcache,
1078 gdb_byte *readbuf, const gdb_byte *writebuf)
1079{
1080 int len = TYPE_LENGTH (type);
1081 int regnum, offset;
1082
1083 if (len > 16)
1084 {
1085 /* All return values larget than 128 bits must be aggregate
1086 return values. */
1087 gdb_assert (!hppa64_integral_or_pointer_p (type));
1088 gdb_assert (!hppa64_floating_p (type));
1089
1090 /* "Aggregate return values larger than 128 bits are returned in
1091 a buffer allocated by the caller. The address of the buffer
1092 must be passed in GR 28." */
1093 return RETURN_VALUE_STRUCT_CONVENTION;
1094 }
1095
1096 if (hppa64_integral_or_pointer_p (type))
1097 {
1098 /* "Integral return values are returned in GR 28. Values
1099 smaller than 64 bits are padded on the left (with garbage)." */
1100 regnum = HPPA_RET0_REGNUM;
1101 offset = 8 - len;
1102 }
1103 else if (hppa64_floating_p (type))
1104 {
1105 if (len > 8)
1106 {
1107 /* "Double-extended- and quad-precision floating-point
1108 values are returned in GRs 28 and 29. The sign,
1109 exponent, and most-significant bits of the mantissa are
1110 returned in GR 28; the least-significant bits of the
1111 mantissa are passed in GR 29. For double-extended
1112 precision values, GR 29 is padded on the right with 48
1113 bits of garbage." */
1114 regnum = HPPA_RET0_REGNUM;
1115 offset = 0;
1116 }
1117 else
1118 {
1119 /* "Single-precision and double-precision floating-point
1120 return values are returned in FR 4R (single precision) or
1121 FR 4 (double-precision)." */
1122 regnum = HPPA64_FP4_REGNUM;
1123 offset = 8 - len;
1124 }
1125 }
1126 else
1127 {
1128 /* "Aggregate return values up to 64 bits in size are returned
1129 in GR 28. Aggregates smaller than 64 bits are left aligned
1130 in the register; the pad bits on the right are undefined."
1131
1132 "Aggregate return values between 65 and 128 bits are returned
1133 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1134 the remaining bits are placed, left aligned, in GR 29. The
1135 pad bits on the right of GR 29 (if any) are undefined." */
1136 regnum = HPPA_RET0_REGNUM;
1137 offset = 0;
1138 }
1139
1140 if (readbuf)
1141 {
1142 while (len > 0)
1143 {
1144 regcache_cooked_read_part (regcache, regnum, offset,
1145 min (len, 8), readbuf);
1146 readbuf += min (len, 8);
1147 len -= min (len, 8);
1148 regnum++;
1149 }
1150 }
1151
1152 if (writebuf)
1153 {
1154 while (len > 0)
1155 {
1156 regcache_cooked_write_part (regcache, regnum, offset,
1157 min (len, 8), writebuf);
1158 writebuf += min (len, 8);
1159 len -= min (len, 8);
1160 regnum++;
1161 }
1162 }
1163
1164 return RETURN_VALUE_REGISTER_CONVENTION;
1165}
1166\f
1167
1168static CORE_ADDR
1169hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1170 struct target_ops *targ)
1171{
1172 if (addr & 2)
1173 {
1174 CORE_ADDR plabel = addr & ~3;
1175 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1176 }
1177
1178 return addr;
1179}
1180
1181static CORE_ADDR
1182hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1183{
1184 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1185 and not _bit_)! */
1186 return align_up (addr, 64);
1187}
1188
1189/* Force all frames to 16-byte alignment. Better safe than sorry. */
1190
1191static CORE_ADDR
1192hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1193{
1194 /* Just always 16-byte align. */
1195 return align_up (addr, 16);
1196}
1197
1198CORE_ADDR
1199hppa_read_pc (ptid_t ptid)
1200{
1201 ULONGEST ipsw;
1202 CORE_ADDR pc;
1203
1204 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1205 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1206
1207 /* If the current instruction is nullified, then we are effectively
1208 still executing the previous instruction. Pretend we are still
1209 there. This is needed when single stepping; if the nullified
1210 instruction is on a different line, we don't want GDB to think
1211 we've stepped onto that line. */
1212 if (ipsw & 0x00200000)
1213 pc -= 4;
1214
1215 return pc & ~0x3;
1216}
1217
1218void
1219hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1220{
1221 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1222 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1223}
1224
1225/* return the alignment of a type in bytes. Structures have the maximum
1226 alignment required by their fields. */
1227
1228static int
1229hppa_alignof (struct type *type)
1230{
1231 int max_align, align, i;
1232 CHECK_TYPEDEF (type);
1233 switch (TYPE_CODE (type))
1234 {
1235 case TYPE_CODE_PTR:
1236 case TYPE_CODE_INT:
1237 case TYPE_CODE_FLT:
1238 return TYPE_LENGTH (type);
1239 case TYPE_CODE_ARRAY:
1240 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1241 case TYPE_CODE_STRUCT:
1242 case TYPE_CODE_UNION:
1243 max_align = 1;
1244 for (i = 0; i < TYPE_NFIELDS (type); i++)
1245 {
1246 /* Bit fields have no real alignment. */
1247 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1248 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1249 {
1250 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1251 max_align = max (max_align, align);
1252 }
1253 }
1254 return max_align;
1255 default:
1256 return 4;
1257 }
1258}
1259
1260/* For the given instruction (INST), return any adjustment it makes
1261 to the stack pointer or zero for no adjustment.
1262
1263 This only handles instructions commonly found in prologues. */
1264
1265static int
1266prologue_inst_adjust_sp (unsigned long inst)
1267{
1268 /* This must persist across calls. */
1269 static int save_high21;
1270
1271 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1272 if ((inst & 0xffffc000) == 0x37de0000)
1273 return hppa_extract_14 (inst);
1274
1275 /* stwm X,D(sp) */
1276 if ((inst & 0xffe00000) == 0x6fc00000)
1277 return hppa_extract_14 (inst);
1278
1279 /* std,ma X,D(sp) */
1280 if ((inst & 0xffe00008) == 0x73c00008)
1281 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1282
1283 /* addil high21,%r30; ldo low11,(%r1),%r30)
1284 save high bits in save_high21 for later use. */
1285 if ((inst & 0xffe00000) == 0x2bc00000)
1286 {
1287 save_high21 = hppa_extract_21 (inst);
1288 return 0;
1289 }
1290
1291 if ((inst & 0xffff0000) == 0x343e0000)
1292 return save_high21 + hppa_extract_14 (inst);
1293
1294 /* fstws as used by the HP compilers. */
1295 if ((inst & 0xffffffe0) == 0x2fd01220)
1296 return hppa_extract_5_load (inst);
1297
1298 /* No adjustment. */
1299 return 0;
1300}
1301
1302/* Return nonzero if INST is a branch of some kind, else return zero. */
1303
1304static int
1305is_branch (unsigned long inst)
1306{
1307 switch (inst >> 26)
1308 {
1309 case 0x20:
1310 case 0x21:
1311 case 0x22:
1312 case 0x23:
1313 case 0x27:
1314 case 0x28:
1315 case 0x29:
1316 case 0x2a:
1317 case 0x2b:
1318 case 0x2f:
1319 case 0x30:
1320 case 0x31:
1321 case 0x32:
1322 case 0x33:
1323 case 0x38:
1324 case 0x39:
1325 case 0x3a:
1326 case 0x3b:
1327 return 1;
1328
1329 default:
1330 return 0;
1331 }
1332}
1333
1334/* Return the register number for a GR which is saved by INST or
1335 zero it INST does not save a GR. */
1336
1337static int
1338inst_saves_gr (unsigned long inst)
1339{
1340 /* Does it look like a stw? */
1341 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1342 || (inst >> 26) == 0x1f
1343 || ((inst >> 26) == 0x1f
1344 && ((inst >> 6) == 0xa)))
1345 return hppa_extract_5R_store (inst);
1346
1347 /* Does it look like a std? */
1348 if ((inst >> 26) == 0x1c
1349 || ((inst >> 26) == 0x03
1350 && ((inst >> 6) & 0xf) == 0xb))
1351 return hppa_extract_5R_store (inst);
1352
1353 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1354 if ((inst >> 26) == 0x1b)
1355 return hppa_extract_5R_store (inst);
1356
1357 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1358 too. */
1359 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1360 || ((inst >> 26) == 0x3
1361 && (((inst >> 6) & 0xf) == 0x8
1362 || (inst >> 6) & 0xf) == 0x9))
1363 return hppa_extract_5R_store (inst);
1364
1365 return 0;
1366}
1367
1368/* Return the register number for a FR which is saved by INST or
1369 zero it INST does not save a FR.
1370
1371 Note we only care about full 64bit register stores (that's the only
1372 kind of stores the prologue will use).
1373
1374 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1375
1376static int
1377inst_saves_fr (unsigned long inst)
1378{
1379 /* is this an FSTD ? */
1380 if ((inst & 0xfc00dfc0) == 0x2c001200)
1381 return hppa_extract_5r_store (inst);
1382 if ((inst & 0xfc000002) == 0x70000002)
1383 return hppa_extract_5R_store (inst);
1384 /* is this an FSTW ? */
1385 if ((inst & 0xfc00df80) == 0x24001200)
1386 return hppa_extract_5r_store (inst);
1387 if ((inst & 0xfc000002) == 0x7c000000)
1388 return hppa_extract_5R_store (inst);
1389 return 0;
1390}
1391
1392/* Advance PC across any function entry prologue instructions
1393 to reach some "real" code.
1394
1395 Use information in the unwind table to determine what exactly should
1396 be in the prologue. */
1397
1398
1399static CORE_ADDR
1400skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1401{
1402 char buf[4];
1403 CORE_ADDR orig_pc = pc;
1404 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1405 unsigned long args_stored, status, i, restart_gr, restart_fr;
1406 struct unwind_table_entry *u;
1407 int final_iteration;
1408
1409 restart_gr = 0;
1410 restart_fr = 0;
1411
1412restart:
1413 u = find_unwind_entry (pc);
1414 if (!u)
1415 return pc;
1416
1417 /* If we are not at the beginning of a function, then return now. */
1418 if ((pc & ~0x3) != u->region_start)
1419 return pc;
1420
1421 /* This is how much of a frame adjustment we need to account for. */
1422 stack_remaining = u->Total_frame_size << 3;
1423
1424 /* Magic register saves we want to know about. */
1425 save_rp = u->Save_RP;
1426 save_sp = u->Save_SP;
1427
1428 /* An indication that args may be stored into the stack. Unfortunately
1429 the HPUX compilers tend to set this in cases where no args were
1430 stored too!. */
1431 args_stored = 1;
1432
1433 /* Turn the Entry_GR field into a bitmask. */
1434 save_gr = 0;
1435 for (i = 3; i < u->Entry_GR + 3; i++)
1436 {
1437 /* Frame pointer gets saved into a special location. */
1438 if (u->Save_SP && i == HPPA_FP_REGNUM)
1439 continue;
1440
1441 save_gr |= (1 << i);
1442 }
1443 save_gr &= ~restart_gr;
1444
1445 /* Turn the Entry_FR field into a bitmask too. */
1446 save_fr = 0;
1447 for (i = 12; i < u->Entry_FR + 12; i++)
1448 save_fr |= (1 << i);
1449 save_fr &= ~restart_fr;
1450
1451 final_iteration = 0;
1452
1453 /* Loop until we find everything of interest or hit a branch.
1454
1455 For unoptimized GCC code and for any HP CC code this will never ever
1456 examine any user instructions.
1457
1458 For optimzied GCC code we're faced with problems. GCC will schedule
1459 its prologue and make prologue instructions available for delay slot
1460 filling. The end result is user code gets mixed in with the prologue
1461 and a prologue instruction may be in the delay slot of the first branch
1462 or call.
1463
1464 Some unexpected things are expected with debugging optimized code, so
1465 we allow this routine to walk past user instructions in optimized
1466 GCC code. */
1467 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1468 || args_stored)
1469 {
1470 unsigned int reg_num;
1471 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1472 unsigned long old_save_rp, old_save_sp, next_inst;
1473
1474 /* Save copies of all the triggers so we can compare them later
1475 (only for HPC). */
1476 old_save_gr = save_gr;
1477 old_save_fr = save_fr;
1478 old_save_rp = save_rp;
1479 old_save_sp = save_sp;
1480 old_stack_remaining = stack_remaining;
1481
1482 status = deprecated_read_memory_nobpt (pc, buf, 4);
1483 inst = extract_unsigned_integer (buf, 4);
1484
1485 /* Yow! */
1486 if (status != 0)
1487 return pc;
1488
1489 /* Note the interesting effects of this instruction. */
1490 stack_remaining -= prologue_inst_adjust_sp (inst);
1491
1492 /* There are limited ways to store the return pointer into the
1493 stack. */
1494 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1495 save_rp = 0;
1496
1497 /* These are the only ways we save SP into the stack. At this time
1498 the HP compilers never bother to save SP into the stack. */
1499 if ((inst & 0xffffc000) == 0x6fc10000
1500 || (inst & 0xffffc00c) == 0x73c10008)
1501 save_sp = 0;
1502
1503 /* Are we loading some register with an offset from the argument
1504 pointer? */
1505 if ((inst & 0xffe00000) == 0x37a00000
1506 || (inst & 0xffffffe0) == 0x081d0240)
1507 {
1508 pc += 4;
1509 continue;
1510 }
1511
1512 /* Account for general and floating-point register saves. */
1513 reg_num = inst_saves_gr (inst);
1514 save_gr &= ~(1 << reg_num);
1515
1516 /* Ugh. Also account for argument stores into the stack.
1517 Unfortunately args_stored only tells us that some arguments
1518 where stored into the stack. Not how many or what kind!
1519
1520 This is a kludge as on the HP compiler sets this bit and it
1521 never does prologue scheduling. So once we see one, skip past
1522 all of them. We have similar code for the fp arg stores below.
1523
1524 FIXME. Can still die if we have a mix of GR and FR argument
1525 stores! */
1526 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1527 {
1528 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1529 {
1530 pc += 4;
1531 status = deprecated_read_memory_nobpt (pc, buf, 4);
1532 inst = extract_unsigned_integer (buf, 4);
1533 if (status != 0)
1534 return pc;
1535 reg_num = inst_saves_gr (inst);
1536 }
1537 args_stored = 0;
1538 continue;
1539 }
1540
1541 reg_num = inst_saves_fr (inst);
1542 save_fr &= ~(1 << reg_num);
1543
1544 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1545 next_inst = extract_unsigned_integer (buf, 4);
1546
1547 /* Yow! */
1548 if (status != 0)
1549 return pc;
1550
1551 /* We've got to be read to handle the ldo before the fp register
1552 save. */
1553 if ((inst & 0xfc000000) == 0x34000000
1554 && inst_saves_fr (next_inst) >= 4
1555 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1556 {
1557 /* So we drop into the code below in a reasonable state. */
1558 reg_num = inst_saves_fr (next_inst);
1559 pc -= 4;
1560 }
1561
1562 /* Ugh. Also account for argument stores into the stack.
1563 This is a kludge as on the HP compiler sets this bit and it
1564 never does prologue scheduling. So once we see one, skip past
1565 all of them. */
1566 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1567 {
1568 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1569 {
1570 pc += 8;
1571 status = deprecated_read_memory_nobpt (pc, buf, 4);
1572 inst = extract_unsigned_integer (buf, 4);
1573 if (status != 0)
1574 return pc;
1575 if ((inst & 0xfc000000) != 0x34000000)
1576 break;
1577 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1578 next_inst = extract_unsigned_integer (buf, 4);
1579 if (status != 0)
1580 return pc;
1581 reg_num = inst_saves_fr (next_inst);
1582 }
1583 args_stored = 0;
1584 continue;
1585 }
1586
1587 /* Quit if we hit any kind of branch. This can happen if a prologue
1588 instruction is in the delay slot of the first call/branch. */
1589 if (is_branch (inst) && stop_before_branch)
1590 break;
1591
1592 /* What a crock. The HP compilers set args_stored even if no
1593 arguments were stored into the stack (boo hiss). This could
1594 cause this code to then skip a bunch of user insns (up to the
1595 first branch).
1596
1597 To combat this we try to identify when args_stored was bogusly
1598 set and clear it. We only do this when args_stored is nonzero,
1599 all other resources are accounted for, and nothing changed on
1600 this pass. */
1601 if (args_stored
1602 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1603 && old_save_gr == save_gr && old_save_fr == save_fr
1604 && old_save_rp == save_rp && old_save_sp == save_sp
1605 && old_stack_remaining == stack_remaining)
1606 break;
1607
1608 /* Bump the PC. */
1609 pc += 4;
1610
1611 /* !stop_before_branch, so also look at the insn in the delay slot
1612 of the branch. */
1613 if (final_iteration)
1614 break;
1615 if (is_branch (inst))
1616 final_iteration = 1;
1617 }
1618
1619 /* We've got a tenative location for the end of the prologue. However
1620 because of limitations in the unwind descriptor mechanism we may
1621 have went too far into user code looking for the save of a register
1622 that does not exist. So, if there registers we expected to be saved
1623 but never were, mask them out and restart.
1624
1625 This should only happen in optimized code, and should be very rare. */
1626 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1627 {
1628 pc = orig_pc;
1629 restart_gr = save_gr;
1630 restart_fr = save_fr;
1631 goto restart;
1632 }
1633
1634 return pc;
1635}
1636
1637
1638/* Return the address of the PC after the last prologue instruction if
1639 we can determine it from the debug symbols. Else return zero. */
1640
1641static CORE_ADDR
1642after_prologue (CORE_ADDR pc)
1643{
1644 struct symtab_and_line sal;
1645 CORE_ADDR func_addr, func_end;
1646 struct symbol *f;
1647
1648 /* If we can not find the symbol in the partial symbol table, then
1649 there is no hope we can determine the function's start address
1650 with this code. */
1651 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1652 return 0;
1653
1654 /* Get the line associated with FUNC_ADDR. */
1655 sal = find_pc_line (func_addr, 0);
1656
1657 /* There are only two cases to consider. First, the end of the source line
1658 is within the function bounds. In that case we return the end of the
1659 source line. Second is the end of the source line extends beyond the
1660 bounds of the current function. We need to use the slow code to
1661 examine instructions in that case.
1662
1663 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1664 the wrong thing to do. In fact, it should be entirely possible for this
1665 function to always return zero since the slow instruction scanning code
1666 is supposed to *always* work. If it does not, then it is a bug. */
1667 if (sal.end < func_end)
1668 return sal.end;
1669 else
1670 return 0;
1671}
1672
1673/* To skip prologues, I use this predicate. Returns either PC itself
1674 if the code at PC does not look like a function prologue; otherwise
1675 returns an address that (if we're lucky) follows the prologue.
1676
1677 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1678 It doesn't necessarily skips all the insns in the prologue. In fact
1679 we might not want to skip all the insns because a prologue insn may
1680 appear in the delay slot of the first branch, and we don't want to
1681 skip over the branch in that case. */
1682
1683static CORE_ADDR
1684hppa_skip_prologue (CORE_ADDR pc)
1685{
1686 unsigned long inst;
1687 int offset;
1688 CORE_ADDR post_prologue_pc;
1689 char buf[4];
1690
1691 /* See if we can determine the end of the prologue via the symbol table.
1692 If so, then return either PC, or the PC after the prologue, whichever
1693 is greater. */
1694
1695 post_prologue_pc = after_prologue (pc);
1696
1697 /* If after_prologue returned a useful address, then use it. Else
1698 fall back on the instruction skipping code.
1699
1700 Some folks have claimed this causes problems because the breakpoint
1701 may be the first instruction of the prologue. If that happens, then
1702 the instruction skipping code has a bug that needs to be fixed. */
1703 if (post_prologue_pc != 0)
1704 return max (pc, post_prologue_pc);
1705 else
1706 return (skip_prologue_hard_way (pc, 1));
1707}
1708
1709struct hppa_frame_cache
1710{
1711 CORE_ADDR base;
1712 struct trad_frame_saved_reg *saved_regs;
1713};
1714
1715static struct hppa_frame_cache *
1716hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1717{
1718 struct hppa_frame_cache *cache;
1719 long saved_gr_mask;
1720 long saved_fr_mask;
1721 CORE_ADDR this_sp;
1722 long frame_size;
1723 struct unwind_table_entry *u;
1724 CORE_ADDR prologue_end;
1725 int fp_in_r1 = 0;
1726 int i;
1727
1728 if (hppa_debug)
1729 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1730 frame_relative_level(next_frame));
1731
1732 if ((*this_cache) != NULL)
1733 {
1734 if (hppa_debug)
1735 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1736 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1737 return (*this_cache);
1738 }
1739 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1740 (*this_cache) = cache;
1741 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1742
1743 /* Yow! */
1744 u = find_unwind_entry (frame_pc_unwind (next_frame));
1745 if (!u)
1746 {
1747 if (hppa_debug)
1748 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1749 return (*this_cache);
1750 }
1751
1752 /* Turn the Entry_GR field into a bitmask. */
1753 saved_gr_mask = 0;
1754 for (i = 3; i < u->Entry_GR + 3; i++)
1755 {
1756 /* Frame pointer gets saved into a special location. */
1757 if (u->Save_SP && i == HPPA_FP_REGNUM)
1758 continue;
1759
1760 saved_gr_mask |= (1 << i);
1761 }
1762
1763 /* Turn the Entry_FR field into a bitmask too. */
1764 saved_fr_mask = 0;
1765 for (i = 12; i < u->Entry_FR + 12; i++)
1766 saved_fr_mask |= (1 << i);
1767
1768 /* Loop until we find everything of interest or hit a branch.
1769
1770 For unoptimized GCC code and for any HP CC code this will never ever
1771 examine any user instructions.
1772
1773 For optimized GCC code we're faced with problems. GCC will schedule
1774 its prologue and make prologue instructions available for delay slot
1775 filling. The end result is user code gets mixed in with the prologue
1776 and a prologue instruction may be in the delay slot of the first branch
1777 or call.
1778
1779 Some unexpected things are expected with debugging optimized code, so
1780 we allow this routine to walk past user instructions in optimized
1781 GCC code. */
1782 {
1783 int final_iteration = 0;
1784 CORE_ADDR pc, end_pc;
1785 int looking_for_sp = u->Save_SP;
1786 int looking_for_rp = u->Save_RP;
1787 int fp_loc = -1;
1788
1789 /* We have to use skip_prologue_hard_way instead of just
1790 skip_prologue_using_sal, in case we stepped into a function without
1791 symbol information. hppa_skip_prologue also bounds the returned
1792 pc by the passed in pc, so it will not return a pc in the next
1793 function.
1794
1795 We used to call hppa_skip_prologue to find the end of the prologue,
1796 but if some non-prologue instructions get scheduled into the prologue,
1797 and the program is compiled with debug information, the "easy" way
1798 in hppa_skip_prologue will return a prologue end that is too early
1799 for us to notice any potential frame adjustments. */
1800
1801 /* We used to use frame_func_unwind () to locate the beginning of the
1802 function to pass to skip_prologue (). However, when objects are
1803 compiled without debug symbols, frame_func_unwind can return the wrong
1804 function (or 0). We can do better than that by using unwind records. */
1805
1806 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1807 end_pc = frame_pc_unwind (next_frame);
1808
1809 if (prologue_end != 0 && end_pc > prologue_end)
1810 end_pc = prologue_end;
1811
1812 frame_size = 0;
1813
1814 for (pc = u->region_start;
1815 ((saved_gr_mask || saved_fr_mask
1816 || looking_for_sp || looking_for_rp
1817 || frame_size < (u->Total_frame_size << 3))
1818 && pc < end_pc);
1819 pc += 4)
1820 {
1821 int reg;
1822 char buf4[4];
1823 long inst;
1824
1825 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1826 sizeof buf4))
1827 {
1828 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1829 return (*this_cache);
1830 }
1831
1832 inst = extract_unsigned_integer (buf4, sizeof buf4);
1833
1834 /* Note the interesting effects of this instruction. */
1835 frame_size += prologue_inst_adjust_sp (inst);
1836
1837 /* There are limited ways to store the return pointer into the
1838 stack. */
1839 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1840 {
1841 looking_for_rp = 0;
1842 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1843 }
1844 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1845 {
1846 looking_for_rp = 0;
1847 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1848 }
1849 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1850 {
1851 looking_for_rp = 0;
1852 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1853 }
1854
1855 /* Check to see if we saved SP into the stack. This also
1856 happens to indicate the location of the saved frame
1857 pointer. */
1858 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1859 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1860 {
1861 looking_for_sp = 0;
1862 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1863 }
1864 else if (inst == 0x08030241) /* copy %r3, %r1 */
1865 {
1866 fp_in_r1 = 1;
1867 }
1868
1869 /* Account for general and floating-point register saves. */
1870 reg = inst_saves_gr (inst);
1871 if (reg >= 3 && reg <= 18
1872 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1873 {
1874 saved_gr_mask &= ~(1 << reg);
1875 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1876 /* stwm with a positive displacement is a _post_
1877 _modify_. */
1878 cache->saved_regs[reg].addr = 0;
1879 else if ((inst & 0xfc00000c) == 0x70000008)
1880 /* A std has explicit post_modify forms. */
1881 cache->saved_regs[reg].addr = 0;
1882 else
1883 {
1884 CORE_ADDR offset;
1885
1886 if ((inst >> 26) == 0x1c)
1887 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1888 else if ((inst >> 26) == 0x03)
1889 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1890 else
1891 offset = hppa_extract_14 (inst);
1892
1893 /* Handle code with and without frame pointers. */
1894 if (u->Save_SP)
1895 cache->saved_regs[reg].addr = offset;
1896 else
1897 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1898 }
1899 }
1900
1901 /* GCC handles callee saved FP regs a little differently.
1902
1903 It emits an instruction to put the value of the start of
1904 the FP store area into %r1. It then uses fstds,ma with a
1905 basereg of %r1 for the stores.
1906
1907 HP CC emits them at the current stack pointer modifying the
1908 stack pointer as it stores each register. */
1909
1910 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1911 if ((inst & 0xffffc000) == 0x34610000
1912 || (inst & 0xffffc000) == 0x37c10000)
1913 fp_loc = hppa_extract_14 (inst);
1914
1915 reg = inst_saves_fr (inst);
1916 if (reg >= 12 && reg <= 21)
1917 {
1918 /* Note +4 braindamage below is necessary because the FP
1919 status registers are internally 8 registers rather than
1920 the expected 4 registers. */
1921 saved_fr_mask &= ~(1 << reg);
1922 if (fp_loc == -1)
1923 {
1924 /* 1st HP CC FP register store. After this
1925 instruction we've set enough state that the GCC and
1926 HPCC code are both handled in the same manner. */
1927 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1928 fp_loc = 8;
1929 }
1930 else
1931 {
1932 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1933 fp_loc += 8;
1934 }
1935 }
1936
1937 /* Quit if we hit any kind of branch the previous iteration. */
1938 if (final_iteration)
1939 break;
1940 /* We want to look precisely one instruction beyond the branch
1941 if we have not found everything yet. */
1942 if (is_branch (inst))
1943 final_iteration = 1;
1944 }
1945 }
1946
1947 {
1948 /* The frame base always represents the value of %sp at entry to
1949 the current function (and is thus equivalent to the "saved"
1950 stack pointer. */
1951 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1952 CORE_ADDR fp;
1953
1954 if (hppa_debug)
1955 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1956 "prologue_end=0x%s) ",
1957 paddr_nz (this_sp),
1958 paddr_nz (frame_pc_unwind (next_frame)),
1959 paddr_nz (prologue_end));
1960
1961 /* Check to see if a frame pointer is available, and use it for
1962 frame unwinding if it is.
1963
1964 There are some situations where we need to rely on the frame
1965 pointer to do stack unwinding. For example, if a function calls
1966 alloca (), the stack pointer can get adjusted inside the body of
1967 the function. In this case, the ABI requires that the compiler
1968 maintain a frame pointer for the function.
1969
1970 The unwind record has a flag (alloca_frame) that indicates that
1971 a function has a variable frame; unfortunately, gcc/binutils
1972 does not set this flag. Instead, whenever a frame pointer is used
1973 and saved on the stack, the Save_SP flag is set. We use this to
1974 decide whether to use the frame pointer for unwinding.
1975
1976 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1977 instead of Save_SP. */
1978
1979 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1980
1981 if (frame_pc_unwind (next_frame) >= prologue_end
1982 && u->Save_SP && fp != 0)
1983 {
1984 cache->base = fp;
1985
1986 if (hppa_debug)
1987 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
1988 paddr_nz (cache->base));
1989 }
1990 else if (u->Save_SP
1991 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1992 {
1993 /* Both we're expecting the SP to be saved and the SP has been
1994 saved. The entry SP value is saved at this frame's SP
1995 address. */
1996 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1997
1998 if (hppa_debug)
1999 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2000 paddr_nz (cache->base));
2001 }
2002 else
2003 {
2004 /* The prologue has been slowly allocating stack space. Adjust
2005 the SP back. */
2006 cache->base = this_sp - frame_size;
2007 if (hppa_debug)
2008 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2009 paddr_nz (cache->base));
2010
2011 }
2012 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2013 }
2014
2015 /* The PC is found in the "return register", "Millicode" uses "r31"
2016 as the return register while normal code uses "rp". */
2017 if (u->Millicode)
2018 {
2019 if (trad_frame_addr_p (cache->saved_regs, 31))
2020 {
2021 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2022 if (hppa_debug)
2023 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2024 }
2025 else
2026 {
2027 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2028 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2029 if (hppa_debug)
2030 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2031 }
2032 }
2033 else
2034 {
2035 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2036 {
2037 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2038 cache->saved_regs[HPPA_RP_REGNUM];
2039 if (hppa_debug)
2040 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2041 }
2042 else
2043 {
2044 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2045 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2046 if (hppa_debug)
2047 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2048 }
2049 }
2050
2051 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2052 frame. However, there is a one-insn window where we haven't saved it
2053 yet, but we've already clobbered it. Detect this case and fix it up.
2054
2055 The prologue sequence for frame-pointer functions is:
2056 0: stw %rp, -20(%sp)
2057 4: copy %r3, %r1
2058 8: copy %sp, %r3
2059 c: stw,ma %r1, XX(%sp)
2060
2061 So if we are at offset c, the r3 value that we want is not yet saved
2062 on the stack, but it's been overwritten. The prologue analyzer will
2063 set fp_in_r1 when it sees the copy insn so we know to get the value
2064 from r1 instead. */
2065 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2066 && fp_in_r1)
2067 {
2068 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2069 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2070 }
2071
2072 {
2073 /* Convert all the offsets into addresses. */
2074 int reg;
2075 for (reg = 0; reg < NUM_REGS; reg++)
2076 {
2077 if (trad_frame_addr_p (cache->saved_regs, reg))
2078 cache->saved_regs[reg].addr += cache->base;
2079 }
2080 }
2081
2082 {
2083 struct gdbarch *gdbarch;
2084 struct gdbarch_tdep *tdep;
2085
2086 gdbarch = get_frame_arch (next_frame);
2087 tdep = gdbarch_tdep (gdbarch);
2088
2089 if (tdep->unwind_adjust_stub)
2090 {
2091 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2092 }
2093 }
2094
2095 if (hppa_debug)
2096 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2097 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2098 return (*this_cache);
2099}
2100
2101static void
2102hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2103 struct frame_id *this_id)
2104{
2105 struct hppa_frame_cache *info;
2106 CORE_ADDR pc = frame_pc_unwind (next_frame);
2107 struct unwind_table_entry *u;
2108
2109 info = hppa_frame_cache (next_frame, this_cache);
2110 u = find_unwind_entry (pc);
2111
2112 (*this_id) = frame_id_build (info->base, u->region_start);
2113}
2114
2115static void
2116hppa_frame_prev_register (struct frame_info *next_frame,
2117 void **this_cache,
2118 int regnum, int *optimizedp,
2119 enum lval_type *lvalp, CORE_ADDR *addrp,
2120 int *realnump, gdb_byte *valuep)
2121{
2122 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2123 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2124 optimizedp, lvalp, addrp, realnump, valuep);
2125}
2126
2127static const struct frame_unwind hppa_frame_unwind =
2128{
2129 NORMAL_FRAME,
2130 hppa_frame_this_id,
2131 hppa_frame_prev_register
2132};
2133
2134static const struct frame_unwind *
2135hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2136{
2137 CORE_ADDR pc = frame_pc_unwind (next_frame);
2138
2139 if (find_unwind_entry (pc))
2140 return &hppa_frame_unwind;
2141
2142 return NULL;
2143}
2144
2145/* This is a generic fallback frame unwinder that kicks in if we fail all
2146 the other ones. Normally we would expect the stub and regular unwinder
2147 to work, but in some cases we might hit a function that just doesn't
2148 have any unwind information available. In this case we try to do
2149 unwinding solely based on code reading. This is obviously going to be
2150 slow, so only use this as a last resort. Currently this will only
2151 identify the stack and pc for the frame. */
2152
2153static struct hppa_frame_cache *
2154hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2155{
2156 struct hppa_frame_cache *cache;
2157 unsigned int frame_size = 0;
2158 int found_rp = 0;
2159 CORE_ADDR start_pc;
2160
2161 if (hppa_debug)
2162 fprintf_unfiltered (gdb_stdlog,
2163 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2164 frame_relative_level (next_frame));
2165
2166 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2167 (*this_cache) = cache;
2168 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2169
2170 start_pc = frame_func_unwind (next_frame);
2171 if (start_pc)
2172 {
2173 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2174 CORE_ADDR pc;
2175
2176 for (pc = start_pc; pc < cur_pc; pc += 4)
2177 {
2178 unsigned int insn;
2179
2180 insn = read_memory_unsigned_integer (pc, 4);
2181 frame_size += prologue_inst_adjust_sp (insn);
2182
2183 /* There are limited ways to store the return pointer into the
2184 stack. */
2185 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2186 {
2187 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2188 found_rp = 1;
2189 }
2190 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2191 {
2192 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2193 found_rp = 1;
2194 }
2195 }
2196 }
2197
2198 if (hppa_debug)
2199 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2200 frame_size, found_rp);
2201
2202 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2203 cache->base -= frame_size;
2204 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2205
2206 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2207 {
2208 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2209 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2210 cache->saved_regs[HPPA_RP_REGNUM];
2211 }
2212 else
2213 {
2214 ULONGEST rp;
2215 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2216 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2217 }
2218
2219 return cache;
2220}
2221
2222static void
2223hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2224 struct frame_id *this_id)
2225{
2226 struct hppa_frame_cache *info =
2227 hppa_fallback_frame_cache (next_frame, this_cache);
2228 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2229}
2230
2231static void
2232hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2233 void **this_cache,
2234 int regnum, int *optimizedp,
2235 enum lval_type *lvalp, CORE_ADDR *addrp,
2236 int *realnump, gdb_byte *valuep)
2237{
2238 struct hppa_frame_cache *info =
2239 hppa_fallback_frame_cache (next_frame, this_cache);
2240 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2241 optimizedp, lvalp, addrp, realnump, valuep);
2242}
2243
2244static const struct frame_unwind hppa_fallback_frame_unwind =
2245{
2246 NORMAL_FRAME,
2247 hppa_fallback_frame_this_id,
2248 hppa_fallback_frame_prev_register
2249};
2250
2251static const struct frame_unwind *
2252hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2253{
2254 return &hppa_fallback_frame_unwind;
2255}
2256
2257/* Stub frames, used for all kinds of call stubs. */
2258struct hppa_stub_unwind_cache
2259{
2260 CORE_ADDR base;
2261 struct trad_frame_saved_reg *saved_regs;
2262};
2263
2264static struct hppa_stub_unwind_cache *
2265hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2266 void **this_cache)
2267{
2268 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2269 struct hppa_stub_unwind_cache *info;
2270 struct unwind_table_entry *u;
2271
2272 if (*this_cache)
2273 return *this_cache;
2274
2275 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2276 *this_cache = info;
2277 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2278
2279 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2280
2281 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2282 {
2283 /* HPUX uses export stubs in function calls; the export stub clobbers
2284 the return value of the caller, and, later restores it from the
2285 stack. */
2286 u = find_unwind_entry (frame_pc_unwind (next_frame));
2287
2288 if (u && u->stub_unwind.stub_type == EXPORT)
2289 {
2290 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2291
2292 return info;
2293 }
2294 }
2295
2296 /* By default we assume that stubs do not change the rp. */
2297 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2298
2299 return info;
2300}
2301
2302static void
2303hppa_stub_frame_this_id (struct frame_info *next_frame,
2304 void **this_prologue_cache,
2305 struct frame_id *this_id)
2306{
2307 struct hppa_stub_unwind_cache *info
2308 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2309
2310 if (info)
2311 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2312 else
2313 *this_id = null_frame_id;
2314}
2315
2316static void
2317hppa_stub_frame_prev_register (struct frame_info *next_frame,
2318 void **this_prologue_cache,
2319 int regnum, int *optimizedp,
2320 enum lval_type *lvalp, CORE_ADDR *addrp,
2321 int *realnump, gdb_byte *valuep)
2322{
2323 struct hppa_stub_unwind_cache *info
2324 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2325
2326 if (info)
2327 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2328 optimizedp, lvalp, addrp, realnump,
2329 valuep);
2330 else
2331 error (_("Requesting registers from null frame."));
2332}
2333
2334static const struct frame_unwind hppa_stub_frame_unwind = {
2335 NORMAL_FRAME,
2336 hppa_stub_frame_this_id,
2337 hppa_stub_frame_prev_register
2338};
2339
2340static const struct frame_unwind *
2341hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2342{
2343 CORE_ADDR pc = frame_pc_unwind (next_frame);
2344 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2346
2347 if (pc == 0
2348 || (tdep->in_solib_call_trampoline != NULL
2349 && tdep->in_solib_call_trampoline (pc, NULL))
2350 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2351 return &hppa_stub_frame_unwind;
2352 return NULL;
2353}
2354
2355static struct frame_id
2356hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2357{
2358 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2359 HPPA_SP_REGNUM),
2360 frame_pc_unwind (next_frame));
2361}
2362
2363CORE_ADDR
2364hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2365{
2366 ULONGEST ipsw;
2367 CORE_ADDR pc;
2368
2369 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2370 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2371
2372 /* If the current instruction is nullified, then we are effectively
2373 still executing the previous instruction. Pretend we are still
2374 there. This is needed when single stepping; if the nullified
2375 instruction is on a different line, we don't want GDB to think
2376 we've stepped onto that line. */
2377 if (ipsw & 0x00200000)
2378 pc -= 4;
2379
2380 return pc & ~0x3;
2381}
2382
2383/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2384 Return NULL if no such symbol was found. */
2385
2386struct minimal_symbol *
2387hppa_lookup_stub_minimal_symbol (const char *name,
2388 enum unwind_stub_types stub_type)
2389{
2390 struct objfile *objfile;
2391 struct minimal_symbol *msym;
2392
2393 ALL_MSYMBOLS (objfile, msym)
2394 {
2395 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2396 {
2397 struct unwind_table_entry *u;
2398
2399 u = find_unwind_entry (SYMBOL_VALUE (msym));
2400 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2401 return msym;
2402 }
2403 }
2404
2405 return NULL;
2406}
2407
2408static void
2409unwind_command (char *exp, int from_tty)
2410{
2411 CORE_ADDR address;
2412 struct unwind_table_entry *u;
2413
2414 /* If we have an expression, evaluate it and use it as the address. */
2415
2416 if (exp != 0 && *exp != 0)
2417 address = parse_and_eval_address (exp);
2418 else
2419 return;
2420
2421 u = find_unwind_entry (address);
2422
2423 if (!u)
2424 {
2425 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2426 return;
2427 }
2428
2429 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2430
2431 printf_unfiltered ("\tregion_start = ");
2432 print_address (u->region_start, gdb_stdout);
2433 gdb_flush (gdb_stdout);
2434
2435 printf_unfiltered ("\n\tregion_end = ");
2436 print_address (u->region_end, gdb_stdout);
2437 gdb_flush (gdb_stdout);
2438
2439#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2440
2441 printf_unfiltered ("\n\tflags =");
2442 pif (Cannot_unwind);
2443 pif (Millicode);
2444 pif (Millicode_save_sr0);
2445 pif (Entry_SR);
2446 pif (Args_stored);
2447 pif (Variable_Frame);
2448 pif (Separate_Package_Body);
2449 pif (Frame_Extension_Millicode);
2450 pif (Stack_Overflow_Check);
2451 pif (Two_Instruction_SP_Increment);
2452 pif (Ada_Region);
2453 pif (Save_SP);
2454 pif (Save_RP);
2455 pif (Save_MRP_in_frame);
2456 pif (extn_ptr_defined);
2457 pif (Cleanup_defined);
2458 pif (MPE_XL_interrupt_marker);
2459 pif (HP_UX_interrupt_marker);
2460 pif (Large_frame);
2461
2462 putchar_unfiltered ('\n');
2463
2464#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2465
2466 pin (Region_description);
2467 pin (Entry_FR);
2468 pin (Entry_GR);
2469 pin (Total_frame_size);
2470
2471 if (u->stub_unwind.stub_type)
2472 {
2473 printf_unfiltered ("\tstub type = ");
2474 switch (u->stub_unwind.stub_type)
2475 {
2476 case LONG_BRANCH:
2477 printf_unfiltered ("long branch\n");
2478 break;
2479 case PARAMETER_RELOCATION:
2480 printf_unfiltered ("parameter relocation\n");
2481 break;
2482 case EXPORT:
2483 printf_unfiltered ("export\n");
2484 break;
2485 case IMPORT:
2486 printf_unfiltered ("import\n");
2487 break;
2488 case IMPORT_SHLIB:
2489 printf_unfiltered ("import shlib\n");
2490 break;
2491 default:
2492 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2493 }
2494 }
2495}
2496
2497int
2498hppa_pc_requires_run_before_use (CORE_ADDR pc)
2499{
2500 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2501
2502 An example of this occurs when an a.out is linked against a foo.sl.
2503 The foo.sl defines a global bar(), and the a.out declares a signature
2504 for bar(). However, the a.out doesn't directly call bar(), but passes
2505 its address in another call.
2506
2507 If you have this scenario and attempt to "break bar" before running,
2508 gdb will find a minimal symbol for bar() in the a.out. But that
2509 symbol's address will be negative. What this appears to denote is
2510 an index backwards from the base of the procedure linkage table (PLT)
2511 into the data linkage table (DLT), the end of which is contiguous
2512 with the start of the PLT. This is clearly not a valid address for
2513 us to set a breakpoint on.
2514
2515 Note that one must be careful in how one checks for a negative address.
2516 0xc0000000 is a legitimate address of something in a shared text
2517 segment, for example. Since I don't know what the possible range
2518 is of these "really, truly negative" addresses that come from the
2519 minimal symbols, I'm resorting to the gross hack of checking the
2520 top byte of the address for all 1's. Sigh. */
2521
2522 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
2523}
2524
2525/* Return the GDB type object for the "standard" data type of data in
2526 register REGNUM. */
2527
2528static struct type *
2529hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2530{
2531 if (regnum < HPPA_FP4_REGNUM)
2532 return builtin_type_uint32;
2533 else
2534 return builtin_type_ieee_single_big;
2535}
2536
2537static struct type *
2538hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2539{
2540 if (regnum < HPPA64_FP4_REGNUM)
2541 return builtin_type_uint64;
2542 else
2543 return builtin_type_ieee_double_big;
2544}
2545
2546/* Return non-zero if REGNUM is not a register available to the user
2547 through ptrace/ttrace. */
2548
2549static int
2550hppa32_cannot_store_register (int regnum)
2551{
2552 return (regnum == 0
2553 || regnum == HPPA_PCSQ_HEAD_REGNUM
2554 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2555 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2556}
2557
2558static int
2559hppa64_cannot_store_register (int regnum)
2560{
2561 return (regnum == 0
2562 || regnum == HPPA_PCSQ_HEAD_REGNUM
2563 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2564 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2565}
2566
2567static CORE_ADDR
2568hppa_smash_text_address (CORE_ADDR addr)
2569{
2570 /* The low two bits of the PC on the PA contain the privilege level.
2571 Some genius implementing a (non-GCC) compiler apparently decided
2572 this means that "addresses" in a text section therefore include a
2573 privilege level, and thus symbol tables should contain these bits.
2574 This seems like a bonehead thing to do--anyway, it seems to work
2575 for our purposes to just ignore those bits. */
2576
2577 return (addr &= ~0x3);
2578}
2579
2580/* Get the ARGIth function argument for the current function. */
2581
2582static CORE_ADDR
2583hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2584 struct type *type)
2585{
2586 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2587}
2588
2589static void
2590hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2591 int regnum, gdb_byte *buf)
2592{
2593 ULONGEST tmp;
2594
2595 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2596 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2597 tmp &= ~0x3;
2598 store_unsigned_integer (buf, sizeof tmp, tmp);
2599}
2600
2601static CORE_ADDR
2602hppa_find_global_pointer (struct value *function)
2603{
2604 return 0;
2605}
2606
2607void
2608hppa_frame_prev_register_helper (struct frame_info *next_frame,
2609 struct trad_frame_saved_reg saved_regs[],
2610 int regnum, int *optimizedp,
2611 enum lval_type *lvalp, CORE_ADDR *addrp,
2612 int *realnump, gdb_byte *valuep)
2613{
2614 struct gdbarch *arch = get_frame_arch (next_frame);
2615
2616 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2617 {
2618 if (valuep)
2619 {
2620 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2621 CORE_ADDR pc;
2622
2623 trad_frame_get_prev_register (next_frame, saved_regs,
2624 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2625 lvalp, addrp, realnump, valuep);
2626
2627 pc = extract_unsigned_integer (valuep, size);
2628 store_unsigned_integer (valuep, size, pc + 4);
2629 }
2630
2631 /* It's a computed value. */
2632 *optimizedp = 0;
2633 *lvalp = not_lval;
2634 *addrp = 0;
2635 *realnump = -1;
2636 return;
2637 }
2638
2639 /* Make sure the "flags" register is zero in all unwound frames.
2640 The "flags" registers is a HP-UX specific wart, and only the code
2641 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2642 with it here. This shouldn't affect other systems since those
2643 should provide zero for the "flags" register anyway. */
2644 if (regnum == HPPA_FLAGS_REGNUM)
2645 {
2646 if (valuep)
2647 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2648
2649 /* It's a computed value. */
2650 *optimizedp = 0;
2651 *lvalp = not_lval;
2652 *addrp = 0;
2653 *realnump = -1;
2654 return;
2655 }
2656
2657 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2658 optimizedp, lvalp, addrp, realnump, valuep);
2659}
2660\f
2661
2662/* Here is a table of C type sizes on hppa with various compiles
2663 and options. I measured this on PA 9000/800 with HP-UX 11.11
2664 and these compilers:
2665
2666 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2667 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2668 /opt/aCC/bin/aCC B3910B A.03.45
2669 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2670
2671 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2672 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2673 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2674 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2675 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2676 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2677 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2678 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2679
2680 Each line is:
2681
2682 compiler and options
2683 char, short, int, long, long long
2684 float, double, long double
2685 char *, void (*)()
2686
2687 So all these compilers use either ILP32 or LP64 model.
2688 TODO: gcc has more options so it needs more investigation.
2689
2690 For floating point types, see:
2691
2692 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2693 HP-UX floating-point guide, hpux 11.00
2694
2695 -- chastain 2003-12-18 */
2696
2697static struct gdbarch *
2698hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2699{
2700 struct gdbarch_tdep *tdep;
2701 struct gdbarch *gdbarch;
2702
2703 /* Try to determine the ABI of the object we are loading. */
2704 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2705 {
2706 /* If it's a SOM file, assume it's HP/UX SOM. */
2707 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2708 info.osabi = GDB_OSABI_HPUX_SOM;
2709 }
2710
2711 /* find a candidate among the list of pre-declared architectures. */
2712 arches = gdbarch_list_lookup_by_info (arches, &info);
2713 if (arches != NULL)
2714 return (arches->gdbarch);
2715
2716 /* If none found, then allocate and initialize one. */
2717 tdep = XZALLOC (struct gdbarch_tdep);
2718 gdbarch = gdbarch_alloc (&info, tdep);
2719
2720 /* Determine from the bfd_arch_info structure if we are dealing with
2721 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2722 then default to a 32bit machine. */
2723 if (info.bfd_arch_info != NULL)
2724 tdep->bytes_per_address =
2725 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2726 else
2727 tdep->bytes_per_address = 4;
2728
2729 tdep->find_global_pointer = hppa_find_global_pointer;
2730
2731 /* Some parts of the gdbarch vector depend on whether we are running
2732 on a 32 bits or 64 bits target. */
2733 switch (tdep->bytes_per_address)
2734 {
2735 case 4:
2736 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2737 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2738 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2739 set_gdbarch_cannot_store_register (gdbarch,
2740 hppa32_cannot_store_register);
2741 set_gdbarch_cannot_fetch_register (gdbarch,
2742 hppa32_cannot_store_register);
2743 break;
2744 case 8:
2745 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2746 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2747 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2748 set_gdbarch_cannot_store_register (gdbarch,
2749 hppa64_cannot_store_register);
2750 set_gdbarch_cannot_fetch_register (gdbarch,
2751 hppa64_cannot_store_register);
2752 break;
2753 default:
2754 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
2755 tdep->bytes_per_address);
2756 }
2757
2758 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2759 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2760
2761 /* The following gdbarch vector elements are the same in both ILP32
2762 and LP64, but might show differences some day. */
2763 set_gdbarch_long_long_bit (gdbarch, 64);
2764 set_gdbarch_long_double_bit (gdbarch, 128);
2765 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2766
2767 /* The following gdbarch vector elements do not depend on the address
2768 size, or in any other gdbarch element previously set. */
2769 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2770 set_gdbarch_in_function_epilogue_p (gdbarch,
2771 hppa_in_function_epilogue_p);
2772 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2773 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2774 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2775 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2776 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2777 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2778 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
2779 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
2780
2781 /* Helper for function argument information. */
2782 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2783
2784 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2785
2786 /* When a hardware watchpoint triggers, we'll move the inferior past
2787 it by removing all eventpoints; stepping past the instruction
2788 that caused the trigger; reinserting eventpoints; and checking
2789 whether any watched location changed. */
2790 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2791
2792 /* Inferior function call methods. */
2793 switch (tdep->bytes_per_address)
2794 {
2795 case 4:
2796 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2797 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2798 set_gdbarch_convert_from_func_ptr_addr
2799 (gdbarch, hppa32_convert_from_func_ptr_addr);
2800 break;
2801 case 8:
2802 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2803 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2804 break;
2805 default:
2806 internal_error (__FILE__, __LINE__, _("bad switch"));
2807 }
2808
2809 /* Struct return methods. */
2810 switch (tdep->bytes_per_address)
2811 {
2812 case 4:
2813 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2814 break;
2815 case 8:
2816 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2817 break;
2818 default:
2819 internal_error (__FILE__, __LINE__, _("bad switch"));
2820 }
2821
2822 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2823 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2824
2825 /* Frame unwind methods. */
2826 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2827 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2828
2829 /* Hook in ABI-specific overrides, if they have been registered. */
2830 gdbarch_init_osabi (info, gdbarch);
2831
2832 /* Hook in the default unwinders. */
2833 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2834 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2835 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2836
2837 return gdbarch;
2838}
2839
2840static void
2841hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2842{
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2844
2845 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2846 tdep->bytes_per_address);
2847 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2848}
2849
2850void
2851_initialize_hppa_tdep (void)
2852{
2853 struct cmd_list_element *c;
2854
2855 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2856
2857 hppa_objfile_priv_data = register_objfile_data ();
2858
2859 add_cmd ("unwind", class_maintenance, unwind_command,
2860 _("Print unwind table entry at given address."),
2861 &maintenanceprintlist);
2862
2863 /* Debug this files internals. */
2864 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
2865Set whether hppa target specific debugging information should be displayed."),
2866 _("\
2867Show whether hppa target specific debugging information is displayed."), _("\
2868This flag controls whether hppa target specific debugging information is\n\
2869displayed. This information is particularly useful for debugging frame\n\
2870unwinding problems."),
2871 NULL,
2872 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2873 &setdebuglist, &showdebuglist);
2874}
This page took 0.031841 seconds and 4 git commands to generate.