Disable displaced stepping if trying it fails
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "infrun.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
28#include "gdb_wait.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "cli/cli-script.h"
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
35#include "symfile.h"
36#include "top.h"
37#include <signal.h>
38#include "inf-loop.h"
39#include "regcache.h"
40#include "value.h"
41#include "observer.h"
42#include "language.h"
43#include "solib.h"
44#include "main.h"
45#include "dictionary.h"
46#include "block.h"
47#include "mi/mi-common.h"
48#include "event-top.h"
49#include "record.h"
50#include "record-full.h"
51#include "inline-frame.h"
52#include "jit.h"
53#include "tracepoint.h"
54#include "continuations.h"
55#include "interps.h"
56#include "skip.h"
57#include "probe.h"
58#include "objfiles.h"
59#include "completer.h"
60#include "target-descriptions.h"
61#include "target-dcache.h"
62#include "terminal.h"
63#include "solist.h"
64#include "event-loop.h"
65
66/* Prototypes for local functions */
67
68static void signals_info (char *, int);
69
70static void handle_command (char *, int);
71
72static void sig_print_info (enum gdb_signal);
73
74static void sig_print_header (void);
75
76static void resume_cleanups (void *);
77
78static int hook_stop_stub (void *);
79
80static int restore_selected_frame (void *);
81
82static int follow_fork (void);
83
84static int follow_fork_inferior (int follow_child, int detach_fork);
85
86static void follow_inferior_reset_breakpoints (void);
87
88static void set_schedlock_func (char *args, int from_tty,
89 struct cmd_list_element *c);
90
91static int currently_stepping (struct thread_info *tp);
92
93void _initialize_infrun (void);
94
95void nullify_last_target_wait_ptid (void);
96
97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
103static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
104
105/* Asynchronous signal handler registered as event loop source for
106 when we have pending events ready to be passed to the core. */
107static struct async_event_handler *infrun_async_inferior_event_token;
108
109/* Stores whether infrun_async was previously enabled or disabled.
110 Starts off as -1, indicating "never enabled/disabled". */
111static int infrun_is_async = -1;
112
113/* See infrun.h. */
114
115void
116infrun_async (int enable)
117{
118 if (infrun_is_async != enable)
119 {
120 infrun_is_async = enable;
121
122 if (debug_infrun)
123 fprintf_unfiltered (gdb_stdlog,
124 "infrun: infrun_async(%d)\n",
125 enable);
126
127 if (enable)
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 else
130 clear_async_event_handler (infrun_async_inferior_event_token);
131 }
132}
133
134/* When set, stop the 'step' command if we enter a function which has
135 no line number information. The normal behavior is that we step
136 over such function. */
137int step_stop_if_no_debug = 0;
138static void
139show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
143}
144
145/* In asynchronous mode, but simulating synchronous execution. */
146
147int sync_execution = 0;
148
149/* proceed and normal_stop use this to notify the user when the
150 inferior stopped in a different thread than it had been running
151 in. */
152
153static ptid_t previous_inferior_ptid;
154
155/* If set (default for legacy reasons), when following a fork, GDB
156 will detach from one of the fork branches, child or parent.
157 Exactly which branch is detached depends on 'set follow-fork-mode'
158 setting. */
159
160static int detach_fork = 1;
161
162int debug_displaced = 0;
163static void
164show_debug_displaced (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
168}
169
170unsigned int debug_infrun = 0;
171static void
172show_debug_infrun (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174{
175 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
176}
177
178
179/* Support for disabling address space randomization. */
180
181int disable_randomization = 1;
182
183static void
184show_disable_randomization (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186{
187 if (target_supports_disable_randomization ())
188 fprintf_filtered (file,
189 _("Disabling randomization of debuggee's "
190 "virtual address space is %s.\n"),
191 value);
192 else
193 fputs_filtered (_("Disabling randomization of debuggee's "
194 "virtual address space is unsupported on\n"
195 "this platform.\n"), file);
196}
197
198static void
199set_disable_randomization (char *args, int from_tty,
200 struct cmd_list_element *c)
201{
202 if (!target_supports_disable_randomization ())
203 error (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform."));
206}
207
208/* User interface for non-stop mode. */
209
210int non_stop = 0;
211static int non_stop_1 = 0;
212
213static void
214set_non_stop (char *args, int from_tty,
215 struct cmd_list_element *c)
216{
217 if (target_has_execution)
218 {
219 non_stop_1 = non_stop;
220 error (_("Cannot change this setting while the inferior is running."));
221 }
222
223 non_stop = non_stop_1;
224}
225
226static void
227show_non_stop (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229{
230 fprintf_filtered (file,
231 _("Controlling the inferior in non-stop mode is %s.\n"),
232 value);
233}
234
235/* "Observer mode" is somewhat like a more extreme version of
236 non-stop, in which all GDB operations that might affect the
237 target's execution have been disabled. */
238
239int observer_mode = 0;
240static int observer_mode_1 = 0;
241
242static void
243set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245{
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 pagination_enabled = 0;
270 non_stop = non_stop_1 = 1;
271 }
272
273 if (from_tty)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (observer_mode ? "on" : "off"));
276}
277
278static void
279show_observer_mode (struct ui_file *file, int from_tty,
280 struct cmd_list_element *c, const char *value)
281{
282 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
283}
284
285/* This updates the value of observer mode based on changes in
286 permissions. Note that we are deliberately ignoring the values of
287 may-write-registers and may-write-memory, since the user may have
288 reason to enable these during a session, for instance to turn on a
289 debugging-related global. */
290
291void
292update_observer_mode (void)
293{
294 int newval;
295
296 newval = (!may_insert_breakpoints
297 && !may_insert_tracepoints
298 && may_insert_fast_tracepoints
299 && !may_stop
300 && non_stop);
301
302 /* Let the user know if things change. */
303 if (newval != observer_mode)
304 printf_filtered (_("Observer mode is now %s.\n"),
305 (newval ? "on" : "off"));
306
307 observer_mode = observer_mode_1 = newval;
308}
309
310/* Tables of how to react to signals; the user sets them. */
311
312static unsigned char *signal_stop;
313static unsigned char *signal_print;
314static unsigned char *signal_program;
315
316/* Table of signals that are registered with "catch signal". A
317 non-zero entry indicates that the signal is caught by some "catch
318 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
319 signals. */
320static unsigned char *signal_catch;
321
322/* Table of signals that the target may silently handle.
323 This is automatically determined from the flags above,
324 and simply cached here. */
325static unsigned char *signal_pass;
326
327#define SET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 1; \
333 } while (0)
334
335#define UNSET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 0; \
341 } while (0)
342
343/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
344 this function is to avoid exporting `signal_program'. */
345
346void
347update_signals_program_target (void)
348{
349 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
350}
351
352/* Value to pass to target_resume() to cause all threads to resume. */
353
354#define RESUME_ALL minus_one_ptid
355
356/* Command list pointer for the "stop" placeholder. */
357
358static struct cmd_list_element *stop_command;
359
360/* Nonzero if we want to give control to the user when we're notified
361 of shared library events by the dynamic linker. */
362int stop_on_solib_events;
363
364/* Enable or disable optional shared library event breakpoints
365 as appropriate when the above flag is changed. */
366
367static void
368set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
369{
370 update_solib_breakpoints ();
371}
372
373static void
374show_stop_on_solib_events (struct ui_file *file, int from_tty,
375 struct cmd_list_element *c, const char *value)
376{
377 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
378 value);
379}
380
381/* Nonzero means expecting a trace trap
382 and should stop the inferior and return silently when it happens. */
383
384int stop_after_trap;
385
386/* Nonzero after stop if current stack frame should be printed. */
387
388static int stop_print_frame;
389
390/* This is a cached copy of the pid/waitstatus of the last event
391 returned by target_wait()/deprecated_target_wait_hook(). This
392 information is returned by get_last_target_status(). */
393static ptid_t target_last_wait_ptid;
394static struct target_waitstatus target_last_waitstatus;
395
396static void context_switch (ptid_t ptid);
397
398void init_thread_stepping_state (struct thread_info *tss);
399
400static const char follow_fork_mode_child[] = "child";
401static const char follow_fork_mode_parent[] = "parent";
402
403static const char *const follow_fork_mode_kind_names[] = {
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
407};
408
409static const char *follow_fork_mode_string = follow_fork_mode_parent;
410static void
411show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413{
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
417 value);
418}
419\f
420
421/* Handle changes to the inferior list based on the type of fork,
422 which process is being followed, and whether the other process
423 should be detached. On entry inferior_ptid must be the ptid of
424 the fork parent. At return inferior_ptid is the ptid of the
425 followed inferior. */
426
427static int
428follow_fork_inferior (int follow_child, int detach_fork)
429{
430 int has_vforked;
431 ptid_t parent_ptid, child_ptid;
432
433 has_vforked = (inferior_thread ()->pending_follow.kind
434 == TARGET_WAITKIND_VFORKED);
435 parent_ptid = inferior_ptid;
436 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
437
438 if (has_vforked
439 && !non_stop /* Non-stop always resumes both branches. */
440 && (!target_is_async_p () || sync_execution)
441 && !(follow_child || detach_fork || sched_multi))
442 {
443 /* The parent stays blocked inside the vfork syscall until the
444 child execs or exits. If we don't let the child run, then
445 the parent stays blocked. If we're telling the parent to run
446 in the foreground, the user will not be able to ctrl-c to get
447 back the terminal, effectively hanging the debug session. */
448 fprintf_filtered (gdb_stderr, _("\
449Can not resume the parent process over vfork in the foreground while\n\
450holding the child stopped. Try \"set detach-on-fork\" or \
451\"set schedule-multiple\".\n"));
452 /* FIXME output string > 80 columns. */
453 return 1;
454 }
455
456 if (!follow_child)
457 {
458 /* Detach new forked process? */
459 if (detach_fork)
460 {
461 struct cleanup *old_chain;
462
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
474 }
475
476 if (info_verbose || debug_infrun)
477 {
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
480
481 target_terminal_ours_for_output ();
482 fprintf_filtered (gdb_stdlog,
483 _("Detaching after %s from child %s.\n"),
484 has_vforked ? "vfork" : "fork",
485 target_pid_to_str (process_ptid));
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491 struct cleanup *old_chain;
492
493 /* Add process to GDB's tables. */
494 child_inf = add_inferior (ptid_get_pid (child_ptid));
495
496 parent_inf = current_inferior ();
497 child_inf->attach_flag = parent_inf->attach_flag;
498 copy_terminal_info (child_inf, parent_inf);
499 child_inf->gdbarch = parent_inf->gdbarch;
500 copy_inferior_target_desc_info (child_inf, parent_inf);
501
502 old_chain = save_inferior_ptid ();
503 save_current_program_space ();
504
505 inferior_ptid = child_ptid;
506 add_thread (inferior_ptid);
507 child_inf->symfile_flags = SYMFILE_NO_READ;
508
509 /* If this is a vfork child, then the address-space is
510 shared with the parent. */
511 if (has_vforked)
512 {
513 child_inf->pspace = parent_inf->pspace;
514 child_inf->aspace = parent_inf->aspace;
515
516 /* The parent will be frozen until the child is done
517 with the shared region. Keep track of the
518 parent. */
519 child_inf->vfork_parent = parent_inf;
520 child_inf->pending_detach = 0;
521 parent_inf->vfork_child = child_inf;
522 parent_inf->pending_detach = 0;
523 }
524 else
525 {
526 child_inf->aspace = new_address_space ();
527 child_inf->pspace = add_program_space (child_inf->aspace);
528 child_inf->removable = 1;
529 set_current_program_space (child_inf->pspace);
530 clone_program_space (child_inf->pspace, parent_inf->pspace);
531
532 /* Let the shared library layer (e.g., solib-svr4) learn
533 about this new process, relocate the cloned exec, pull
534 in shared libraries, and install the solib event
535 breakpoint. If a "cloned-VM" event was propagated
536 better throughout the core, this wouldn't be
537 required. */
538 solib_create_inferior_hook (0);
539 }
540
541 do_cleanups (old_chain);
542 }
543
544 if (has_vforked)
545 {
546 struct inferior *parent_inf;
547
548 parent_inf = current_inferior ();
549
550 /* If we detached from the child, then we have to be careful
551 to not insert breakpoints in the parent until the child
552 is done with the shared memory region. However, if we're
553 staying attached to the child, then we can and should
554 insert breakpoints, so that we can debug it. A
555 subsequent child exec or exit is enough to know when does
556 the child stops using the parent's address space. */
557 parent_inf->waiting_for_vfork_done = detach_fork;
558 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
559 }
560 }
561 else
562 {
563 /* Follow the child. */
564 struct inferior *parent_inf, *child_inf;
565 struct program_space *parent_pspace;
566
567 if (info_verbose || debug_infrun)
568 {
569 target_terminal_ours_for_output ();
570 fprintf_filtered (gdb_stdlog,
571 _("Attaching after %s %s to child %s.\n"),
572 target_pid_to_str (parent_ptid),
573 has_vforked ? "vfork" : "fork",
574 target_pid_to_str (child_ptid));
575 }
576
577 /* Add the new inferior first, so that the target_detach below
578 doesn't unpush the target. */
579
580 child_inf = add_inferior (ptid_get_pid (child_ptid));
581
582 parent_inf = current_inferior ();
583 child_inf->attach_flag = parent_inf->attach_flag;
584 copy_terminal_info (child_inf, parent_inf);
585 child_inf->gdbarch = parent_inf->gdbarch;
586 copy_inferior_target_desc_info (child_inf, parent_inf);
587
588 parent_pspace = parent_inf->pspace;
589
590 /* If we're vforking, we want to hold on to the parent until the
591 child exits or execs. At child exec or exit time we can
592 remove the old breakpoints from the parent and detach or
593 resume debugging it. Otherwise, detach the parent now; we'll
594 want to reuse it's program/address spaces, but we can't set
595 them to the child before removing breakpoints from the
596 parent, otherwise, the breakpoints module could decide to
597 remove breakpoints from the wrong process (since they'd be
598 assigned to the same address space). */
599
600 if (has_vforked)
601 {
602 gdb_assert (child_inf->vfork_parent == NULL);
603 gdb_assert (parent_inf->vfork_child == NULL);
604 child_inf->vfork_parent = parent_inf;
605 child_inf->pending_detach = 0;
606 parent_inf->vfork_child = child_inf;
607 parent_inf->pending_detach = detach_fork;
608 parent_inf->waiting_for_vfork_done = 0;
609 }
610 else if (detach_fork)
611 {
612 if (info_verbose || debug_infrun)
613 {
614 /* Ensure that we have a process ptid. */
615 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
616
617 target_terminal_ours_for_output ();
618 fprintf_filtered (gdb_stdlog,
619 _("Detaching after fork from "
620 "child %s.\n"),
621 target_pid_to_str (process_ptid));
622 }
623
624 target_detach (NULL, 0);
625 }
626
627 /* Note that the detach above makes PARENT_INF dangling. */
628
629 /* Add the child thread to the appropriate lists, and switch to
630 this new thread, before cloning the program space, and
631 informing the solib layer about this new process. */
632
633 inferior_ptid = child_ptid;
634 add_thread (inferior_ptid);
635
636 /* If this is a vfork child, then the address-space is shared
637 with the parent. If we detached from the parent, then we can
638 reuse the parent's program/address spaces. */
639 if (has_vforked || detach_fork)
640 {
641 child_inf->pspace = parent_pspace;
642 child_inf->aspace = child_inf->pspace->aspace;
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
647 child_inf->pspace = add_program_space (child_inf->aspace);
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663}
664
665/* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
669static int
670follow_fork (void)
671{
672 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 int should_resume = 1;
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
681 struct breakpoint *exception_resume_breakpoint = NULL;
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
685 struct interp *command_interp = NULL;
686
687 if (!non_stop)
688 {
689 ptid_t wait_ptid;
690 struct target_waitstatus wait_status;
691
692 /* Get the last target status returned by target_wait(). */
693 get_last_target_status (&wait_ptid, &wait_status);
694
695 /* If not stopped at a fork event, then there's nothing else to
696 do. */
697 if (wait_status.kind != TARGET_WAITKIND_FORKED
698 && wait_status.kind != TARGET_WAITKIND_VFORKED)
699 return 1;
700
701 /* Check if we switched over from WAIT_PTID, since the event was
702 reported. */
703 if (!ptid_equal (wait_ptid, minus_one_ptid)
704 && !ptid_equal (inferior_ptid, wait_ptid))
705 {
706 /* We did. Switch back to WAIT_PTID thread, to tell the
707 target to follow it (in either direction). We'll
708 afterwards refuse to resume, and inform the user what
709 happened. */
710 switch_to_thread (wait_ptid);
711 should_resume = 0;
712 }
713 }
714
715 tp = inferior_thread ();
716
717 /* If there were any forks/vforks that were caught and are now to be
718 followed, then do so now. */
719 switch (tp->pending_follow.kind)
720 {
721 case TARGET_WAITKIND_FORKED:
722 case TARGET_WAITKIND_VFORKED:
723 {
724 ptid_t parent, child;
725
726 /* If the user did a next/step, etc, over a fork call,
727 preserve the stepping state in the fork child. */
728 if (follow_child && should_resume)
729 {
730 step_resume_breakpoint = clone_momentary_breakpoint
731 (tp->control.step_resume_breakpoint);
732 step_range_start = tp->control.step_range_start;
733 step_range_end = tp->control.step_range_end;
734 step_frame_id = tp->control.step_frame_id;
735 exception_resume_breakpoint
736 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
737 command_interp = tp->control.command_interp;
738
739 /* For now, delete the parent's sr breakpoint, otherwise,
740 parent/child sr breakpoints are considered duplicates,
741 and the child version will not be installed. Remove
742 this when the breakpoints module becomes aware of
743 inferiors and address spaces. */
744 delete_step_resume_breakpoint (tp);
745 tp->control.step_range_start = 0;
746 tp->control.step_range_end = 0;
747 tp->control.step_frame_id = null_frame_id;
748 delete_exception_resume_breakpoint (tp);
749 tp->control.command_interp = NULL;
750 }
751
752 parent = inferior_ptid;
753 child = tp->pending_follow.value.related_pid;
754
755 /* Set up inferior(s) as specified by the caller, and tell the
756 target to do whatever is necessary to follow either parent
757 or child. */
758 if (follow_fork_inferior (follow_child, detach_fork))
759 {
760 /* Target refused to follow, or there's some other reason
761 we shouldn't resume. */
762 should_resume = 0;
763 }
764 else
765 {
766 /* This pending follow fork event is now handled, one way
767 or another. The previous selected thread may be gone
768 from the lists by now, but if it is still around, need
769 to clear the pending follow request. */
770 tp = find_thread_ptid (parent);
771 if (tp)
772 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
773
774 /* This makes sure we don't try to apply the "Switched
775 over from WAIT_PID" logic above. */
776 nullify_last_target_wait_ptid ();
777
778 /* If we followed the child, switch to it... */
779 if (follow_child)
780 {
781 switch_to_thread (child);
782
783 /* ... and preserve the stepping state, in case the
784 user was stepping over the fork call. */
785 if (should_resume)
786 {
787 tp = inferior_thread ();
788 tp->control.step_resume_breakpoint
789 = step_resume_breakpoint;
790 tp->control.step_range_start = step_range_start;
791 tp->control.step_range_end = step_range_end;
792 tp->control.step_frame_id = step_frame_id;
793 tp->control.exception_resume_breakpoint
794 = exception_resume_breakpoint;
795 tp->control.command_interp = command_interp;
796 }
797 else
798 {
799 /* If we get here, it was because we're trying to
800 resume from a fork catchpoint, but, the user
801 has switched threads away from the thread that
802 forked. In that case, the resume command
803 issued is most likely not applicable to the
804 child, so just warn, and refuse to resume. */
805 warning (_("Not resuming: switched threads "
806 "before following fork child.\n"));
807 }
808
809 /* Reset breakpoints in the child as appropriate. */
810 follow_inferior_reset_breakpoints ();
811 }
812 else
813 switch_to_thread (parent);
814 }
815 }
816 break;
817 case TARGET_WAITKIND_SPURIOUS:
818 /* Nothing to follow. */
819 break;
820 default:
821 internal_error (__FILE__, __LINE__,
822 "Unexpected pending_follow.kind %d\n",
823 tp->pending_follow.kind);
824 break;
825 }
826
827 return should_resume;
828}
829
830static void
831follow_inferior_reset_breakpoints (void)
832{
833 struct thread_info *tp = inferior_thread ();
834
835 /* Was there a step_resume breakpoint? (There was if the user
836 did a "next" at the fork() call.) If so, explicitly reset its
837 thread number. Cloned step_resume breakpoints are disabled on
838 creation, so enable it here now that it is associated with the
839 correct thread.
840
841 step_resumes are a form of bp that are made to be per-thread.
842 Since we created the step_resume bp when the parent process
843 was being debugged, and now are switching to the child process,
844 from the breakpoint package's viewpoint, that's a switch of
845 "threads". We must update the bp's notion of which thread
846 it is for, or it'll be ignored when it triggers. */
847
848 if (tp->control.step_resume_breakpoint)
849 {
850 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
851 tp->control.step_resume_breakpoint->loc->enabled = 1;
852 }
853
854 /* Treat exception_resume breakpoints like step_resume breakpoints. */
855 if (tp->control.exception_resume_breakpoint)
856 {
857 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
858 tp->control.exception_resume_breakpoint->loc->enabled = 1;
859 }
860
861 /* Reinsert all breakpoints in the child. The user may have set
862 breakpoints after catching the fork, in which case those
863 were never set in the child, but only in the parent. This makes
864 sure the inserted breakpoints match the breakpoint list. */
865
866 breakpoint_re_set ();
867 insert_breakpoints ();
868}
869
870/* The child has exited or execed: resume threads of the parent the
871 user wanted to be executing. */
872
873static int
874proceed_after_vfork_done (struct thread_info *thread,
875 void *arg)
876{
877 int pid = * (int *) arg;
878
879 if (ptid_get_pid (thread->ptid) == pid
880 && is_running (thread->ptid)
881 && !is_executing (thread->ptid)
882 && !thread->stop_requested
883 && thread->suspend.stop_signal == GDB_SIGNAL_0)
884 {
885 if (debug_infrun)
886 fprintf_unfiltered (gdb_stdlog,
887 "infrun: resuming vfork parent thread %s\n",
888 target_pid_to_str (thread->ptid));
889
890 switch_to_thread (thread->ptid);
891 clear_proceed_status (0);
892 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
893 }
894
895 return 0;
896}
897
898/* Called whenever we notice an exec or exit event, to handle
899 detaching or resuming a vfork parent. */
900
901static void
902handle_vfork_child_exec_or_exit (int exec)
903{
904 struct inferior *inf = current_inferior ();
905
906 if (inf->vfork_parent)
907 {
908 int resume_parent = -1;
909
910 /* This exec or exit marks the end of the shared memory region
911 between the parent and the child. If the user wanted to
912 detach from the parent, now is the time. */
913
914 if (inf->vfork_parent->pending_detach)
915 {
916 struct thread_info *tp;
917 struct cleanup *old_chain;
918 struct program_space *pspace;
919 struct address_space *aspace;
920
921 /* follow-fork child, detach-on-fork on. */
922
923 inf->vfork_parent->pending_detach = 0;
924
925 if (!exec)
926 {
927 /* If we're handling a child exit, then inferior_ptid
928 points at the inferior's pid, not to a thread. */
929 old_chain = save_inferior_ptid ();
930 save_current_program_space ();
931 save_current_inferior ();
932 }
933 else
934 old_chain = save_current_space_and_thread ();
935
936 /* We're letting loose of the parent. */
937 tp = any_live_thread_of_process (inf->vfork_parent->pid);
938 switch_to_thread (tp->ptid);
939
940 /* We're about to detach from the parent, which implicitly
941 removes breakpoints from its address space. There's a
942 catch here: we want to reuse the spaces for the child,
943 but, parent/child are still sharing the pspace at this
944 point, although the exec in reality makes the kernel give
945 the child a fresh set of new pages. The problem here is
946 that the breakpoints module being unaware of this, would
947 likely chose the child process to write to the parent
948 address space. Swapping the child temporarily away from
949 the spaces has the desired effect. Yes, this is "sort
950 of" a hack. */
951
952 pspace = inf->pspace;
953 aspace = inf->aspace;
954 inf->aspace = NULL;
955 inf->pspace = NULL;
956
957 if (debug_infrun || info_verbose)
958 {
959 target_terminal_ours_for_output ();
960
961 if (exec)
962 {
963 fprintf_filtered (gdb_stdlog,
964 _("Detaching vfork parent process "
965 "%d after child exec.\n"),
966 inf->vfork_parent->pid);
967 }
968 else
969 {
970 fprintf_filtered (gdb_stdlog,
971 _("Detaching vfork parent process "
972 "%d after child exit.\n"),
973 inf->vfork_parent->pid);
974 }
975 }
976
977 target_detach (NULL, 0);
978
979 /* Put it back. */
980 inf->pspace = pspace;
981 inf->aspace = aspace;
982
983 do_cleanups (old_chain);
984 }
985 else if (exec)
986 {
987 /* We're staying attached to the parent, so, really give the
988 child a new address space. */
989 inf->pspace = add_program_space (maybe_new_address_space ());
990 inf->aspace = inf->pspace->aspace;
991 inf->removable = 1;
992 set_current_program_space (inf->pspace);
993
994 resume_parent = inf->vfork_parent->pid;
995
996 /* Break the bonds. */
997 inf->vfork_parent->vfork_child = NULL;
998 }
999 else
1000 {
1001 struct cleanup *old_chain;
1002 struct program_space *pspace;
1003
1004 /* If this is a vfork child exiting, then the pspace and
1005 aspaces were shared with the parent. Since we're
1006 reporting the process exit, we'll be mourning all that is
1007 found in the address space, and switching to null_ptid,
1008 preparing to start a new inferior. But, since we don't
1009 want to clobber the parent's address/program spaces, we
1010 go ahead and create a new one for this exiting
1011 inferior. */
1012
1013 /* Switch to null_ptid, so that clone_program_space doesn't want
1014 to read the selected frame of a dead process. */
1015 old_chain = save_inferior_ptid ();
1016 inferior_ptid = null_ptid;
1017
1018 /* This inferior is dead, so avoid giving the breakpoints
1019 module the option to write through to it (cloning a
1020 program space resets breakpoints). */
1021 inf->aspace = NULL;
1022 inf->pspace = NULL;
1023 pspace = add_program_space (maybe_new_address_space ());
1024 set_current_program_space (pspace);
1025 inf->removable = 1;
1026 inf->symfile_flags = SYMFILE_NO_READ;
1027 clone_program_space (pspace, inf->vfork_parent->pspace);
1028 inf->pspace = pspace;
1029 inf->aspace = pspace->aspace;
1030
1031 /* Put back inferior_ptid. We'll continue mourning this
1032 inferior. */
1033 do_cleanups (old_chain);
1034
1035 resume_parent = inf->vfork_parent->pid;
1036 /* Break the bonds. */
1037 inf->vfork_parent->vfork_child = NULL;
1038 }
1039
1040 inf->vfork_parent = NULL;
1041
1042 gdb_assert (current_program_space == inf->pspace);
1043
1044 if (non_stop && resume_parent != -1)
1045 {
1046 /* If the user wanted the parent to be running, let it go
1047 free now. */
1048 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1049
1050 if (debug_infrun)
1051 fprintf_unfiltered (gdb_stdlog,
1052 "infrun: resuming vfork parent process %d\n",
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056
1057 do_cleanups (old_chain);
1058 }
1059 }
1060}
1061
1062/* Enum strings for "set|show follow-exec-mode". */
1063
1064static const char follow_exec_mode_new[] = "new";
1065static const char follow_exec_mode_same[] = "same";
1066static const char *const follow_exec_mode_names[] =
1067{
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071};
1072
1073static const char *follow_exec_mode_string = follow_exec_mode_same;
1074static void
1075show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079}
1080
1081/* EXECD_PATHNAME is assumed to be non-NULL. */
1082
1083static void
1084follow_exec (ptid_t ptid, char *execd_pathname)
1085{
1086 struct thread_info *th, *tmp;
1087 struct inferior *inf = current_inferior ();
1088 int pid = ptid_get_pid (ptid);
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 ALL_THREADS_SAFE (th, tmp)
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 printf_unfiltered (_("%s is executing new program: %s\n"),
1156 target_pid_to_str (inferior_ptid),
1157 execd_pathname);
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1160 inferior has essentially been killed & reborn. */
1161
1162 gdb_flush (gdb_stdout);
1163
1164 breakpoint_init_inferior (inf_execd);
1165
1166 if (*gdb_sysroot != '\0')
1167 {
1168 char *name = exec_file_find (execd_pathname, NULL);
1169
1170 execd_pathname = alloca (strlen (name) + 1);
1171 strcpy (execd_pathname, name);
1172 xfree (name);
1173 }
1174
1175 /* Reset the shared library package. This ensures that we get a
1176 shlib event when the child reaches "_start", at which point the
1177 dld will have had a chance to initialize the child. */
1178 /* Also, loading a symbol file below may trigger symbol lookups, and
1179 we don't want those to be satisfied by the libraries of the
1180 previous incarnation of this process. */
1181 no_shared_libraries (NULL, 0);
1182
1183 if (follow_exec_mode_string == follow_exec_mode_new)
1184 {
1185 struct program_space *pspace;
1186
1187 /* The user wants to keep the old inferior and program spaces
1188 around. Create a new fresh one, and switch to it. */
1189
1190 inf = add_inferior (current_inferior ()->pid);
1191 pspace = add_program_space (maybe_new_address_space ());
1192 inf->pspace = pspace;
1193 inf->aspace = pspace->aspace;
1194
1195 exit_inferior_num_silent (current_inferior ()->num);
1196
1197 set_current_inferior (inf);
1198 set_current_program_space (pspace);
1199 }
1200 else
1201 {
1202 /* The old description may no longer be fit for the new image.
1203 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1204 old description; we'll read a new one below. No need to do
1205 this on "follow-exec-mode new", as the old inferior stays
1206 around (its description is later cleared/refetched on
1207 restart). */
1208 target_clear_description ();
1209 }
1210
1211 gdb_assert (current_program_space == inf->pspace);
1212
1213 /* That a.out is now the one to use. */
1214 exec_file_attach (execd_pathname, 0);
1215
1216 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1217 (Position Independent Executable) main symbol file will get applied by
1218 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1219 the breakpoints with the zero displacement. */
1220
1221 symbol_file_add (execd_pathname,
1222 (inf->symfile_flags
1223 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1224 NULL, 0);
1225
1226 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1227 set_initial_language ();
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook ();
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252}
1253
1254/* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261struct thread_info *step_over_queue_head;
1262
1263/* Bit flags indicating what the thread needs to step over. */
1264
1265enum step_over_what
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275
1276/* Info about an instruction that is being stepped over. */
1277
1278struct step_over_info
1279{
1280 /* If we're stepping past a breakpoint, this is the address space
1281 and address of the instruction the breakpoint is set at. We'll
1282 skip inserting all breakpoints here. Valid iff ASPACE is
1283 non-NULL. */
1284 struct address_space *aspace;
1285 CORE_ADDR address;
1286
1287 /* The instruction being stepped over triggers a nonsteppable
1288 watchpoint. If true, we'll skip inserting watchpoints. */
1289 int nonsteppable_watchpoint_p;
1290};
1291
1292/* The step-over info of the location that is being stepped over.
1293
1294 Note that with async/breakpoint always-inserted mode, a user might
1295 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1296 being stepped over. As setting a new breakpoint inserts all
1297 breakpoints, we need to make sure the breakpoint being stepped over
1298 isn't inserted then. We do that by only clearing the step-over
1299 info when the step-over is actually finished (or aborted).
1300
1301 Presently GDB can only step over one breakpoint at any given time.
1302 Given threads that can't run code in the same address space as the
1303 breakpoint's can't really miss the breakpoint, GDB could be taught
1304 to step-over at most one breakpoint per address space (so this info
1305 could move to the address space object if/when GDB is extended).
1306 The set of breakpoints being stepped over will normally be much
1307 smaller than the set of all breakpoints, so a flag in the
1308 breakpoint location structure would be wasteful. A separate list
1309 also saves complexity and run-time, as otherwise we'd have to go
1310 through all breakpoint locations clearing their flag whenever we
1311 start a new sequence. Similar considerations weigh against storing
1312 this info in the thread object. Plus, not all step overs actually
1313 have breakpoint locations -- e.g., stepping past a single-step
1314 breakpoint, or stepping to complete a non-continuable
1315 watchpoint. */
1316static struct step_over_info step_over_info;
1317
1318/* Record the address of the breakpoint/instruction we're currently
1319 stepping over. */
1320
1321static void
1322set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1323 int nonsteppable_watchpoint_p)
1324{
1325 step_over_info.aspace = aspace;
1326 step_over_info.address = address;
1327 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1328}
1329
1330/* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333static void
1334clear_step_over_info (void)
1335{
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
1341 step_over_info.nonsteppable_watchpoint_p = 0;
1342}
1343
1344/* See infrun.h. */
1345
1346int
1347stepping_past_instruction_at (struct address_space *aspace,
1348 CORE_ADDR address)
1349{
1350 return (step_over_info.aspace != NULL
1351 && breakpoint_address_match (aspace, address,
1352 step_over_info.aspace,
1353 step_over_info.address));
1354}
1355
1356/* See infrun.h. */
1357
1358int
1359stepping_past_nonsteppable_watchpoint (void)
1360{
1361 return step_over_info.nonsteppable_watchpoint_p;
1362}
1363
1364/* Returns true if step-over info is valid. */
1365
1366static int
1367step_over_info_valid_p (void)
1368{
1369 return (step_over_info.aspace != NULL
1370 || stepping_past_nonsteppable_watchpoint ());
1371}
1372
1373\f
1374/* Displaced stepping. */
1375
1376/* In non-stop debugging mode, we must take special care to manage
1377 breakpoints properly; in particular, the traditional strategy for
1378 stepping a thread past a breakpoint it has hit is unsuitable.
1379 'Displaced stepping' is a tactic for stepping one thread past a
1380 breakpoint it has hit while ensuring that other threads running
1381 concurrently will hit the breakpoint as they should.
1382
1383 The traditional way to step a thread T off a breakpoint in a
1384 multi-threaded program in all-stop mode is as follows:
1385
1386 a0) Initially, all threads are stopped, and breakpoints are not
1387 inserted.
1388 a1) We single-step T, leaving breakpoints uninserted.
1389 a2) We insert breakpoints, and resume all threads.
1390
1391 In non-stop debugging, however, this strategy is unsuitable: we
1392 don't want to have to stop all threads in the system in order to
1393 continue or step T past a breakpoint. Instead, we use displaced
1394 stepping:
1395
1396 n0) Initially, T is stopped, other threads are running, and
1397 breakpoints are inserted.
1398 n1) We copy the instruction "under" the breakpoint to a separate
1399 location, outside the main code stream, making any adjustments
1400 to the instruction, register, and memory state as directed by
1401 T's architecture.
1402 n2) We single-step T over the instruction at its new location.
1403 n3) We adjust the resulting register and memory state as directed
1404 by T's architecture. This includes resetting T's PC to point
1405 back into the main instruction stream.
1406 n4) We resume T.
1407
1408 This approach depends on the following gdbarch methods:
1409
1410 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1411 indicate where to copy the instruction, and how much space must
1412 be reserved there. We use these in step n1.
1413
1414 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1415 address, and makes any necessary adjustments to the instruction,
1416 register contents, and memory. We use this in step n1.
1417
1418 - gdbarch_displaced_step_fixup adjusts registers and memory after
1419 we have successfuly single-stepped the instruction, to yield the
1420 same effect the instruction would have had if we had executed it
1421 at its original address. We use this in step n3.
1422
1423 - gdbarch_displaced_step_free_closure provides cleanup.
1424
1425 The gdbarch_displaced_step_copy_insn and
1426 gdbarch_displaced_step_fixup functions must be written so that
1427 copying an instruction with gdbarch_displaced_step_copy_insn,
1428 single-stepping across the copied instruction, and then applying
1429 gdbarch_displaced_insn_fixup should have the same effects on the
1430 thread's memory and registers as stepping the instruction in place
1431 would have. Exactly which responsibilities fall to the copy and
1432 which fall to the fixup is up to the author of those functions.
1433
1434 See the comments in gdbarch.sh for details.
1435
1436 Note that displaced stepping and software single-step cannot
1437 currently be used in combination, although with some care I think
1438 they could be made to. Software single-step works by placing
1439 breakpoints on all possible subsequent instructions; if the
1440 displaced instruction is a PC-relative jump, those breakpoints
1441 could fall in very strange places --- on pages that aren't
1442 executable, or at addresses that are not proper instruction
1443 boundaries. (We do generally let other threads run while we wait
1444 to hit the software single-step breakpoint, and they might
1445 encounter such a corrupted instruction.) One way to work around
1446 this would be to have gdbarch_displaced_step_copy_insn fully
1447 simulate the effect of PC-relative instructions (and return NULL)
1448 on architectures that use software single-stepping.
1449
1450 In non-stop mode, we can have independent and simultaneous step
1451 requests, so more than one thread may need to simultaneously step
1452 over a breakpoint. The current implementation assumes there is
1453 only one scratch space per process. In this case, we have to
1454 serialize access to the scratch space. If thread A wants to step
1455 over a breakpoint, but we are currently waiting for some other
1456 thread to complete a displaced step, we leave thread A stopped and
1457 place it in the displaced_step_request_queue. Whenever a displaced
1458 step finishes, we pick the next thread in the queue and start a new
1459 displaced step operation on it. See displaced_step_prepare and
1460 displaced_step_fixup for details. */
1461
1462/* Per-inferior displaced stepping state. */
1463struct displaced_step_inferior_state
1464{
1465 /* Pointer to next in linked list. */
1466 struct displaced_step_inferior_state *next;
1467
1468 /* The process this displaced step state refers to. */
1469 int pid;
1470
1471 /* True if preparing a displaced step ever failed. If so, we won't
1472 try displaced stepping for this inferior again. */
1473 int failed_before;
1474
1475 /* If this is not null_ptid, this is the thread carrying out a
1476 displaced single-step in process PID. This thread's state will
1477 require fixing up once it has completed its step. */
1478 ptid_t step_ptid;
1479
1480 /* The architecture the thread had when we stepped it. */
1481 struct gdbarch *step_gdbarch;
1482
1483 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1484 for post-step cleanup. */
1485 struct displaced_step_closure *step_closure;
1486
1487 /* The address of the original instruction, and the copy we
1488 made. */
1489 CORE_ADDR step_original, step_copy;
1490
1491 /* Saved contents of copy area. */
1492 gdb_byte *step_saved_copy;
1493};
1494
1495/* The list of states of processes involved in displaced stepping
1496 presently. */
1497static struct displaced_step_inferior_state *displaced_step_inferior_states;
1498
1499/* Get the displaced stepping state of process PID. */
1500
1501static struct displaced_step_inferior_state *
1502get_displaced_stepping_state (int pid)
1503{
1504 struct displaced_step_inferior_state *state;
1505
1506 for (state = displaced_step_inferior_states;
1507 state != NULL;
1508 state = state->next)
1509 if (state->pid == pid)
1510 return state;
1511
1512 return NULL;
1513}
1514
1515/* Returns true if any inferior has a thread doing a displaced
1516 step. */
1517
1518static int
1519displaced_step_in_progress_any_inferior (void)
1520{
1521 struct displaced_step_inferior_state *state;
1522
1523 for (state = displaced_step_inferior_states;
1524 state != NULL;
1525 state = state->next)
1526 if (!ptid_equal (state->step_ptid, null_ptid))
1527 return 1;
1528
1529 return 0;
1530}
1531
1532/* Return true if process PID has a thread doing a displaced step. */
1533
1534static int
1535displaced_step_in_progress (int pid)
1536{
1537 struct displaced_step_inferior_state *displaced;
1538
1539 displaced = get_displaced_stepping_state (pid);
1540 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1541 return 1;
1542
1543 return 0;
1544}
1545
1546/* Add a new displaced stepping state for process PID to the displaced
1547 stepping state list, or return a pointer to an already existing
1548 entry, if it already exists. Never returns NULL. */
1549
1550static struct displaced_step_inferior_state *
1551add_displaced_stepping_state (int pid)
1552{
1553 struct displaced_step_inferior_state *state;
1554
1555 for (state = displaced_step_inferior_states;
1556 state != NULL;
1557 state = state->next)
1558 if (state->pid == pid)
1559 return state;
1560
1561 state = xcalloc (1, sizeof (*state));
1562 state->pid = pid;
1563 state->next = displaced_step_inferior_states;
1564 displaced_step_inferior_states = state;
1565
1566 return state;
1567}
1568
1569/* If inferior is in displaced stepping, and ADDR equals to starting address
1570 of copy area, return corresponding displaced_step_closure. Otherwise,
1571 return NULL. */
1572
1573struct displaced_step_closure*
1574get_displaced_step_closure_by_addr (CORE_ADDR addr)
1575{
1576 struct displaced_step_inferior_state *displaced
1577 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1578
1579 /* If checking the mode of displaced instruction in copy area. */
1580 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1581 && (displaced->step_copy == addr))
1582 return displaced->step_closure;
1583
1584 return NULL;
1585}
1586
1587/* Remove the displaced stepping state of process PID. */
1588
1589static void
1590remove_displaced_stepping_state (int pid)
1591{
1592 struct displaced_step_inferior_state *it, **prev_next_p;
1593
1594 gdb_assert (pid != 0);
1595
1596 it = displaced_step_inferior_states;
1597 prev_next_p = &displaced_step_inferior_states;
1598 while (it)
1599 {
1600 if (it->pid == pid)
1601 {
1602 *prev_next_p = it->next;
1603 xfree (it);
1604 return;
1605 }
1606
1607 prev_next_p = &it->next;
1608 it = *prev_next_p;
1609 }
1610}
1611
1612static void
1613infrun_inferior_exit (struct inferior *inf)
1614{
1615 remove_displaced_stepping_state (inf->pid);
1616}
1617
1618/* If ON, and the architecture supports it, GDB will use displaced
1619 stepping to step over breakpoints. If OFF, or if the architecture
1620 doesn't support it, GDB will instead use the traditional
1621 hold-and-step approach. If AUTO (which is the default), GDB will
1622 decide which technique to use to step over breakpoints depending on
1623 which of all-stop or non-stop mode is active --- displaced stepping
1624 in non-stop mode; hold-and-step in all-stop mode. */
1625
1626static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1627
1628static void
1629show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1630 struct cmd_list_element *c,
1631 const char *value)
1632{
1633 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1634 fprintf_filtered (file,
1635 _("Debugger's willingness to use displaced stepping "
1636 "to step over breakpoints is %s (currently %s).\n"),
1637 value, target_is_non_stop_p () ? "on" : "off");
1638 else
1639 fprintf_filtered (file,
1640 _("Debugger's willingness to use displaced stepping "
1641 "to step over breakpoints is %s.\n"), value);
1642}
1643
1644/* Return non-zero if displaced stepping can/should be used to step
1645 over breakpoints of thread TP. */
1646
1647static int
1648use_displaced_stepping (struct thread_info *tp)
1649{
1650 struct regcache *regcache = get_thread_regcache (tp->ptid);
1651 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1652 struct displaced_step_inferior_state *displaced_state;
1653
1654 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1655
1656 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1657 && target_is_non_stop_p ())
1658 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1659 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1660 && find_record_target () == NULL
1661 && (displaced_state == NULL
1662 || !displaced_state->failed_before));
1663}
1664
1665/* Clean out any stray displaced stepping state. */
1666static void
1667displaced_step_clear (struct displaced_step_inferior_state *displaced)
1668{
1669 /* Indicate that there is no cleanup pending. */
1670 displaced->step_ptid = null_ptid;
1671
1672 if (displaced->step_closure)
1673 {
1674 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1675 displaced->step_closure);
1676 displaced->step_closure = NULL;
1677 }
1678}
1679
1680static void
1681displaced_step_clear_cleanup (void *arg)
1682{
1683 struct displaced_step_inferior_state *state = arg;
1684
1685 displaced_step_clear (state);
1686}
1687
1688/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1689void
1690displaced_step_dump_bytes (struct ui_file *file,
1691 const gdb_byte *buf,
1692 size_t len)
1693{
1694 int i;
1695
1696 for (i = 0; i < len; i++)
1697 fprintf_unfiltered (file, "%02x ", buf[i]);
1698 fputs_unfiltered ("\n", file);
1699}
1700
1701/* Prepare to single-step, using displaced stepping.
1702
1703 Note that we cannot use displaced stepping when we have a signal to
1704 deliver. If we have a signal to deliver and an instruction to step
1705 over, then after the step, there will be no indication from the
1706 target whether the thread entered a signal handler or ignored the
1707 signal and stepped over the instruction successfully --- both cases
1708 result in a simple SIGTRAP. In the first case we mustn't do a
1709 fixup, and in the second case we must --- but we can't tell which.
1710 Comments in the code for 'random signals' in handle_inferior_event
1711 explain how we handle this case instead.
1712
1713 Returns 1 if preparing was successful -- this thread is going to be
1714 stepped now; or 0 if displaced stepping this thread got queued. */
1715static int
1716displaced_step_prepare_throw (ptid_t ptid)
1717{
1718 struct cleanup *old_cleanups, *ignore_cleanups;
1719 struct thread_info *tp = find_thread_ptid (ptid);
1720 struct regcache *regcache = get_thread_regcache (ptid);
1721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1722 CORE_ADDR original, copy;
1723 ULONGEST len;
1724 struct displaced_step_closure *closure;
1725 struct displaced_step_inferior_state *displaced;
1726 int status;
1727
1728 /* We should never reach this function if the architecture does not
1729 support displaced stepping. */
1730 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1731
1732 /* Nor if the thread isn't meant to step over a breakpoint. */
1733 gdb_assert (tp->control.trap_expected);
1734
1735 /* Disable range stepping while executing in the scratch pad. We
1736 want a single-step even if executing the displaced instruction in
1737 the scratch buffer lands within the stepping range (e.g., a
1738 jump/branch). */
1739 tp->control.may_range_step = 0;
1740
1741 /* We have to displaced step one thread at a time, as we only have
1742 access to a single scratch space per inferior. */
1743
1744 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1745
1746 if (!ptid_equal (displaced->step_ptid, null_ptid))
1747 {
1748 /* Already waiting for a displaced step to finish. Defer this
1749 request and place in queue. */
1750
1751 if (debug_displaced)
1752 fprintf_unfiltered (gdb_stdlog,
1753 "displaced: deferring step of %s\n",
1754 target_pid_to_str (ptid));
1755
1756 thread_step_over_chain_enqueue (tp);
1757 return 0;
1758 }
1759 else
1760 {
1761 if (debug_displaced)
1762 fprintf_unfiltered (gdb_stdlog,
1763 "displaced: stepping %s now\n",
1764 target_pid_to_str (ptid));
1765 }
1766
1767 displaced_step_clear (displaced);
1768
1769 old_cleanups = save_inferior_ptid ();
1770 inferior_ptid = ptid;
1771
1772 original = regcache_read_pc (regcache);
1773
1774 copy = gdbarch_displaced_step_location (gdbarch);
1775 len = gdbarch_max_insn_length (gdbarch);
1776
1777 /* Save the original contents of the copy area. */
1778 displaced->step_saved_copy = xmalloc (len);
1779 ignore_cleanups = make_cleanup (free_current_contents,
1780 &displaced->step_saved_copy);
1781 status = target_read_memory (copy, displaced->step_saved_copy, len);
1782 if (status != 0)
1783 throw_error (MEMORY_ERROR,
1784 _("Error accessing memory address %s (%s) for "
1785 "displaced-stepping scratch space."),
1786 paddress (gdbarch, copy), safe_strerror (status));
1787 if (debug_displaced)
1788 {
1789 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1790 paddress (gdbarch, copy));
1791 displaced_step_dump_bytes (gdb_stdlog,
1792 displaced->step_saved_copy,
1793 len);
1794 };
1795
1796 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1797 original, copy, regcache);
1798
1799 /* We don't support the fully-simulated case at present. */
1800 gdb_assert (closure);
1801
1802 /* Save the information we need to fix things up if the step
1803 succeeds. */
1804 displaced->step_ptid = ptid;
1805 displaced->step_gdbarch = gdbarch;
1806 displaced->step_closure = closure;
1807 displaced->step_original = original;
1808 displaced->step_copy = copy;
1809
1810 make_cleanup (displaced_step_clear_cleanup, displaced);
1811
1812 /* Resume execution at the copy. */
1813 regcache_write_pc (regcache, copy);
1814
1815 discard_cleanups (ignore_cleanups);
1816
1817 do_cleanups (old_cleanups);
1818
1819 if (debug_displaced)
1820 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1821 paddress (gdbarch, copy));
1822
1823 return 1;
1824}
1825
1826/* Wrapper for displaced_step_prepare_throw that disabled further
1827 attempts at displaced stepping if we get a memory error. */
1828
1829static int
1830displaced_step_prepare (ptid_t ptid)
1831{
1832 int prepared = -1;
1833
1834 TRY
1835 {
1836 prepared = displaced_step_prepare_throw (ptid);
1837 }
1838 CATCH (ex, RETURN_MASK_ERROR)
1839 {
1840 struct displaced_step_inferior_state *displaced_state;
1841
1842 if (ex.error != MEMORY_ERROR)
1843 throw_exception (ex);
1844
1845 if (debug_infrun)
1846 {
1847 fprintf_unfiltered (gdb_stdlog,
1848 "infrun: disabling displaced stepping: %s\n",
1849 ex.message);
1850 }
1851
1852 /* Be verbose if "set displaced-stepping" is "on", silent if
1853 "auto". */
1854 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1855 {
1856 warning (_("disabling displaced stepping: %s\n"),
1857 ex.message);
1858 }
1859
1860 /* Disable further displaced stepping attempts. */
1861 displaced_state
1862 = get_displaced_stepping_state (ptid_get_pid (ptid));
1863 displaced_state->failed_before = 1;
1864 }
1865 END_CATCH
1866
1867 return prepared;
1868}
1869
1870static void
1871write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1872 const gdb_byte *myaddr, int len)
1873{
1874 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1875
1876 inferior_ptid = ptid;
1877 write_memory (memaddr, myaddr, len);
1878 do_cleanups (ptid_cleanup);
1879}
1880
1881/* Restore the contents of the copy area for thread PTID. */
1882
1883static void
1884displaced_step_restore (struct displaced_step_inferior_state *displaced,
1885 ptid_t ptid)
1886{
1887 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1888
1889 write_memory_ptid (ptid, displaced->step_copy,
1890 displaced->step_saved_copy, len);
1891 if (debug_displaced)
1892 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1893 target_pid_to_str (ptid),
1894 paddress (displaced->step_gdbarch,
1895 displaced->step_copy));
1896}
1897
1898/* If we displaced stepped an instruction successfully, adjust
1899 registers and memory to yield the same effect the instruction would
1900 have had if we had executed it at its original address, and return
1901 1. If the instruction didn't complete, relocate the PC and return
1902 -1. If the thread wasn't displaced stepping, return 0. */
1903
1904static int
1905displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1906{
1907 struct cleanup *old_cleanups;
1908 struct displaced_step_inferior_state *displaced
1909 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1910 int ret;
1911
1912 /* Was any thread of this process doing a displaced step? */
1913 if (displaced == NULL)
1914 return 0;
1915
1916 /* Was this event for the pid we displaced? */
1917 if (ptid_equal (displaced->step_ptid, null_ptid)
1918 || ! ptid_equal (displaced->step_ptid, event_ptid))
1919 return 0;
1920
1921 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1922
1923 displaced_step_restore (displaced, displaced->step_ptid);
1924
1925 /* Fixup may need to read memory/registers. Switch to the thread
1926 that we're fixing up. Also, target_stopped_by_watchpoint checks
1927 the current thread. */
1928 switch_to_thread (event_ptid);
1929
1930 /* Did the instruction complete successfully? */
1931 if (signal == GDB_SIGNAL_TRAP
1932 && !(target_stopped_by_watchpoint ()
1933 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1934 || target_have_steppable_watchpoint)))
1935 {
1936 /* Fix up the resulting state. */
1937 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1938 displaced->step_closure,
1939 displaced->step_original,
1940 displaced->step_copy,
1941 get_thread_regcache (displaced->step_ptid));
1942 ret = 1;
1943 }
1944 else
1945 {
1946 /* Since the instruction didn't complete, all we can do is
1947 relocate the PC. */
1948 struct regcache *regcache = get_thread_regcache (event_ptid);
1949 CORE_ADDR pc = regcache_read_pc (regcache);
1950
1951 pc = displaced->step_original + (pc - displaced->step_copy);
1952 regcache_write_pc (regcache, pc);
1953 ret = -1;
1954 }
1955
1956 do_cleanups (old_cleanups);
1957
1958 displaced->step_ptid = null_ptid;
1959
1960 return ret;
1961}
1962
1963/* Data to be passed around while handling an event. This data is
1964 discarded between events. */
1965struct execution_control_state
1966{
1967 ptid_t ptid;
1968 /* The thread that got the event, if this was a thread event; NULL
1969 otherwise. */
1970 struct thread_info *event_thread;
1971
1972 struct target_waitstatus ws;
1973 int stop_func_filled_in;
1974 CORE_ADDR stop_func_start;
1975 CORE_ADDR stop_func_end;
1976 const char *stop_func_name;
1977 int wait_some_more;
1978
1979 /* True if the event thread hit the single-step breakpoint of
1980 another thread. Thus the event doesn't cause a stop, the thread
1981 needs to be single-stepped past the single-step breakpoint before
1982 we can switch back to the original stepping thread. */
1983 int hit_singlestep_breakpoint;
1984};
1985
1986/* Clear ECS and set it to point at TP. */
1987
1988static void
1989reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1990{
1991 memset (ecs, 0, sizeof (*ecs));
1992 ecs->event_thread = tp;
1993 ecs->ptid = tp->ptid;
1994}
1995
1996static void keep_going_pass_signal (struct execution_control_state *ecs);
1997static void prepare_to_wait (struct execution_control_state *ecs);
1998static int keep_going_stepped_thread (struct thread_info *tp);
1999static int thread_still_needs_step_over (struct thread_info *tp);
2000static void stop_all_threads (void);
2001
2002/* Are there any pending step-over requests? If so, run all we can
2003 now and return true. Otherwise, return false. */
2004
2005static int
2006start_step_over (void)
2007{
2008 struct thread_info *tp, *next;
2009
2010 /* Don't start a new step-over if we already have an in-line
2011 step-over operation ongoing. */
2012 if (step_over_info_valid_p ())
2013 return 0;
2014
2015 for (tp = step_over_queue_head; tp != NULL; tp = next)
2016 {
2017 struct execution_control_state ecss;
2018 struct execution_control_state *ecs = &ecss;
2019 enum step_over_what step_what;
2020 int must_be_in_line;
2021
2022 next = thread_step_over_chain_next (tp);
2023
2024 /* If this inferior already has a displaced step in process,
2025 don't start a new one. */
2026 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2027 continue;
2028
2029 step_what = thread_still_needs_step_over (tp);
2030 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2031 || ((step_what & STEP_OVER_BREAKPOINT)
2032 && !use_displaced_stepping (tp)));
2033
2034 /* We currently stop all threads of all processes to step-over
2035 in-line. If we need to start a new in-line step-over, let
2036 any pending displaced steps finish first. */
2037 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2038 return 0;
2039
2040 thread_step_over_chain_remove (tp);
2041
2042 if (step_over_queue_head == NULL)
2043 {
2044 if (debug_infrun)
2045 fprintf_unfiltered (gdb_stdlog,
2046 "infrun: step-over queue now empty\n");
2047 }
2048
2049 if (tp->control.trap_expected
2050 || tp->resumed
2051 || tp->executing)
2052 {
2053 internal_error (__FILE__, __LINE__,
2054 "[%s] has inconsistent state: "
2055 "trap_expected=%d, resumed=%d, executing=%d\n",
2056 target_pid_to_str (tp->ptid),
2057 tp->control.trap_expected,
2058 tp->resumed,
2059 tp->executing);
2060 }
2061
2062 if (debug_infrun)
2063 fprintf_unfiltered (gdb_stdlog,
2064 "infrun: resuming [%s] for step-over\n",
2065 target_pid_to_str (tp->ptid));
2066
2067 /* keep_going_pass_signal skips the step-over if the breakpoint
2068 is no longer inserted. In all-stop, we want to keep looking
2069 for a thread that needs a step-over instead of resuming TP,
2070 because we wouldn't be able to resume anything else until the
2071 target stops again. In non-stop, the resume always resumes
2072 only TP, so it's OK to let the thread resume freely. */
2073 if (!target_is_non_stop_p () && !step_what)
2074 continue;
2075
2076 switch_to_thread (tp->ptid);
2077 reset_ecs (ecs, tp);
2078 keep_going_pass_signal (ecs);
2079
2080 if (!ecs->wait_some_more)
2081 error (_("Command aborted."));
2082
2083 gdb_assert (tp->resumed);
2084
2085 /* If we started a new in-line step-over, we're done. */
2086 if (step_over_info_valid_p ())
2087 {
2088 gdb_assert (tp->control.trap_expected);
2089 return 1;
2090 }
2091
2092 if (!target_is_non_stop_p ())
2093 {
2094 /* On all-stop, shouldn't have resumed unless we needed a
2095 step over. */
2096 gdb_assert (tp->control.trap_expected
2097 || tp->step_after_step_resume_breakpoint);
2098
2099 /* With remote targets (at least), in all-stop, we can't
2100 issue any further remote commands until the program stops
2101 again. */
2102 return 1;
2103 }
2104
2105 /* Either the thread no longer needed a step-over, or a new
2106 displaced stepping sequence started. Even in the latter
2107 case, continue looking. Maybe we can also start another
2108 displaced step on a thread of other process. */
2109 }
2110
2111 return 0;
2112}
2113
2114/* Update global variables holding ptids to hold NEW_PTID if they were
2115 holding OLD_PTID. */
2116static void
2117infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2118{
2119 struct displaced_step_request *it;
2120 struct displaced_step_inferior_state *displaced;
2121
2122 if (ptid_equal (inferior_ptid, old_ptid))
2123 inferior_ptid = new_ptid;
2124
2125 for (displaced = displaced_step_inferior_states;
2126 displaced;
2127 displaced = displaced->next)
2128 {
2129 if (ptid_equal (displaced->step_ptid, old_ptid))
2130 displaced->step_ptid = new_ptid;
2131 }
2132}
2133
2134\f
2135/* Resuming. */
2136
2137/* Things to clean up if we QUIT out of resume (). */
2138static void
2139resume_cleanups (void *ignore)
2140{
2141 if (!ptid_equal (inferior_ptid, null_ptid))
2142 delete_single_step_breakpoints (inferior_thread ());
2143
2144 normal_stop ();
2145}
2146
2147static const char schedlock_off[] = "off";
2148static const char schedlock_on[] = "on";
2149static const char schedlock_step[] = "step";
2150static const char *const scheduler_enums[] = {
2151 schedlock_off,
2152 schedlock_on,
2153 schedlock_step,
2154 NULL
2155};
2156static const char *scheduler_mode = schedlock_off;
2157static void
2158show_scheduler_mode (struct ui_file *file, int from_tty,
2159 struct cmd_list_element *c, const char *value)
2160{
2161 fprintf_filtered (file,
2162 _("Mode for locking scheduler "
2163 "during execution is \"%s\".\n"),
2164 value);
2165}
2166
2167static void
2168set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2169{
2170 if (!target_can_lock_scheduler)
2171 {
2172 scheduler_mode = schedlock_off;
2173 error (_("Target '%s' cannot support this command."), target_shortname);
2174 }
2175}
2176
2177/* True if execution commands resume all threads of all processes by
2178 default; otherwise, resume only threads of the current inferior
2179 process. */
2180int sched_multi = 0;
2181
2182/* Try to setup for software single stepping over the specified location.
2183 Return 1 if target_resume() should use hardware single step.
2184
2185 GDBARCH the current gdbarch.
2186 PC the location to step over. */
2187
2188static int
2189maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2190{
2191 int hw_step = 1;
2192
2193 if (execution_direction == EXEC_FORWARD
2194 && gdbarch_software_single_step_p (gdbarch)
2195 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2196 {
2197 hw_step = 0;
2198 }
2199 return hw_step;
2200}
2201
2202/* See infrun.h. */
2203
2204ptid_t
2205user_visible_resume_ptid (int step)
2206{
2207 ptid_t resume_ptid;
2208
2209 if (non_stop)
2210 {
2211 /* With non-stop mode on, threads are always handled
2212 individually. */
2213 resume_ptid = inferior_ptid;
2214 }
2215 else if ((scheduler_mode == schedlock_on)
2216 || (scheduler_mode == schedlock_step && step))
2217 {
2218 /* User-settable 'scheduler' mode requires solo thread
2219 resume. */
2220 resume_ptid = inferior_ptid;
2221 }
2222 else if (!sched_multi && target_supports_multi_process ())
2223 {
2224 /* Resume all threads of the current process (and none of other
2225 processes). */
2226 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2227 }
2228 else
2229 {
2230 /* Resume all threads of all processes. */
2231 resume_ptid = RESUME_ALL;
2232 }
2233
2234 return resume_ptid;
2235}
2236
2237/* Return a ptid representing the set of threads that we will resume,
2238 in the perspective of the target, assuming run control handling
2239 does not require leaving some threads stopped (e.g., stepping past
2240 breakpoint). USER_STEP indicates whether we're about to start the
2241 target for a stepping command. */
2242
2243static ptid_t
2244internal_resume_ptid (int user_step)
2245{
2246 /* In non-stop, we always control threads individually. Note that
2247 the target may always work in non-stop mode even with "set
2248 non-stop off", in which case user_visible_resume_ptid could
2249 return a wildcard ptid. */
2250 if (target_is_non_stop_p ())
2251 return inferior_ptid;
2252 else
2253 return user_visible_resume_ptid (user_step);
2254}
2255
2256/* Wrapper for target_resume, that handles infrun-specific
2257 bookkeeping. */
2258
2259static void
2260do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2261{
2262 struct thread_info *tp = inferior_thread ();
2263
2264 /* Install inferior's terminal modes. */
2265 target_terminal_inferior ();
2266
2267 /* Avoid confusing the next resume, if the next stop/resume
2268 happens to apply to another thread. */
2269 tp->suspend.stop_signal = GDB_SIGNAL_0;
2270
2271 /* Advise target which signals may be handled silently.
2272
2273 If we have removed breakpoints because we are stepping over one
2274 in-line (in any thread), we need to receive all signals to avoid
2275 accidentally skipping a breakpoint during execution of a signal
2276 handler.
2277
2278 Likewise if we're displaced stepping, otherwise a trap for a
2279 breakpoint in a signal handler might be confused with the
2280 displaced step finishing. We don't make the displaced_step_fixup
2281 step distinguish the cases instead, because:
2282
2283 - a backtrace while stopped in the signal handler would show the
2284 scratch pad as frame older than the signal handler, instead of
2285 the real mainline code.
2286
2287 - when the thread is later resumed, the signal handler would
2288 return to the scratch pad area, which would no longer be
2289 valid. */
2290 if (step_over_info_valid_p ()
2291 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2292 target_pass_signals (0, NULL);
2293 else
2294 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2295
2296 target_resume (resume_ptid, step, sig);
2297}
2298
2299/* Resume the inferior, but allow a QUIT. This is useful if the user
2300 wants to interrupt some lengthy single-stepping operation
2301 (for child processes, the SIGINT goes to the inferior, and so
2302 we get a SIGINT random_signal, but for remote debugging and perhaps
2303 other targets, that's not true).
2304
2305 SIG is the signal to give the inferior (zero for none). */
2306void
2307resume (enum gdb_signal sig)
2308{
2309 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2310 struct regcache *regcache = get_current_regcache ();
2311 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2312 struct thread_info *tp = inferior_thread ();
2313 CORE_ADDR pc = regcache_read_pc (regcache);
2314 struct address_space *aspace = get_regcache_aspace (regcache);
2315 ptid_t resume_ptid;
2316 /* This represents the user's step vs continue request. When
2317 deciding whether "set scheduler-locking step" applies, it's the
2318 user's intention that counts. */
2319 const int user_step = tp->control.stepping_command;
2320 /* This represents what we'll actually request the target to do.
2321 This can decay from a step to a continue, if e.g., we need to
2322 implement single-stepping with breakpoints (software
2323 single-step). */
2324 int step;
2325
2326 gdb_assert (!thread_is_in_step_over_chain (tp));
2327
2328 QUIT;
2329
2330 if (tp->suspend.waitstatus_pending_p)
2331 {
2332 if (debug_infrun)
2333 {
2334 char *statstr;
2335
2336 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2337 fprintf_unfiltered (gdb_stdlog,
2338 "infrun: resume: thread %s has pending wait status %s "
2339 "(currently_stepping=%d).\n",
2340 target_pid_to_str (tp->ptid), statstr,
2341 currently_stepping (tp));
2342 xfree (statstr);
2343 }
2344
2345 tp->resumed = 1;
2346
2347 /* FIXME: What should we do if we are supposed to resume this
2348 thread with a signal? Maybe we should maintain a queue of
2349 pending signals to deliver. */
2350 if (sig != GDB_SIGNAL_0)
2351 {
2352 warning (_("Couldn't deliver signal %s to %s.\n"),
2353 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2354 }
2355
2356 tp->suspend.stop_signal = GDB_SIGNAL_0;
2357 discard_cleanups (old_cleanups);
2358
2359 if (target_can_async_p ())
2360 target_async (1);
2361 return;
2362 }
2363
2364 tp->stepped_breakpoint = 0;
2365
2366 /* Depends on stepped_breakpoint. */
2367 step = currently_stepping (tp);
2368
2369 if (current_inferior ()->waiting_for_vfork_done)
2370 {
2371 /* Don't try to single-step a vfork parent that is waiting for
2372 the child to get out of the shared memory region (by exec'ing
2373 or exiting). This is particularly important on software
2374 single-step archs, as the child process would trip on the
2375 software single step breakpoint inserted for the parent
2376 process. Since the parent will not actually execute any
2377 instruction until the child is out of the shared region (such
2378 are vfork's semantics), it is safe to simply continue it.
2379 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2380 the parent, and tell it to `keep_going', which automatically
2381 re-sets it stepping. */
2382 if (debug_infrun)
2383 fprintf_unfiltered (gdb_stdlog,
2384 "infrun: resume : clear step\n");
2385 step = 0;
2386 }
2387
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: resume (step=%d, signal=%s), "
2391 "trap_expected=%d, current thread [%s] at %s\n",
2392 step, gdb_signal_to_symbol_string (sig),
2393 tp->control.trap_expected,
2394 target_pid_to_str (inferior_ptid),
2395 paddress (gdbarch, pc));
2396
2397 /* Normally, by the time we reach `resume', the breakpoints are either
2398 removed or inserted, as appropriate. The exception is if we're sitting
2399 at a permanent breakpoint; we need to step over it, but permanent
2400 breakpoints can't be removed. So we have to test for it here. */
2401 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2402 {
2403 if (sig != GDB_SIGNAL_0)
2404 {
2405 /* We have a signal to pass to the inferior. The resume
2406 may, or may not take us to the signal handler. If this
2407 is a step, we'll need to stop in the signal handler, if
2408 there's one, (if the target supports stepping into
2409 handlers), or in the next mainline instruction, if
2410 there's no handler. If this is a continue, we need to be
2411 sure to run the handler with all breakpoints inserted.
2412 In all cases, set a breakpoint at the current address
2413 (where the handler returns to), and once that breakpoint
2414 is hit, resume skipping the permanent breakpoint. If
2415 that breakpoint isn't hit, then we've stepped into the
2416 signal handler (or hit some other event). We'll delete
2417 the step-resume breakpoint then. */
2418
2419 if (debug_infrun)
2420 fprintf_unfiltered (gdb_stdlog,
2421 "infrun: resume: skipping permanent breakpoint, "
2422 "deliver signal first\n");
2423
2424 clear_step_over_info ();
2425 tp->control.trap_expected = 0;
2426
2427 if (tp->control.step_resume_breakpoint == NULL)
2428 {
2429 /* Set a "high-priority" step-resume, as we don't want
2430 user breakpoints at PC to trigger (again) when this
2431 hits. */
2432 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2433 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2434
2435 tp->step_after_step_resume_breakpoint = step;
2436 }
2437
2438 insert_breakpoints ();
2439 }
2440 else
2441 {
2442 /* There's no signal to pass, we can go ahead and skip the
2443 permanent breakpoint manually. */
2444 if (debug_infrun)
2445 fprintf_unfiltered (gdb_stdlog,
2446 "infrun: resume: skipping permanent breakpoint\n");
2447 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2448 /* Update pc to reflect the new address from which we will
2449 execute instructions. */
2450 pc = regcache_read_pc (regcache);
2451
2452 if (step)
2453 {
2454 /* We've already advanced the PC, so the stepping part
2455 is done. Now we need to arrange for a trap to be
2456 reported to handle_inferior_event. Set a breakpoint
2457 at the current PC, and run to it. Don't update
2458 prev_pc, because if we end in
2459 switch_back_to_stepped_thread, we want the "expected
2460 thread advanced also" branch to be taken. IOW, we
2461 don't want this thread to step further from PC
2462 (overstep). */
2463 gdb_assert (!step_over_info_valid_p ());
2464 insert_single_step_breakpoint (gdbarch, aspace, pc);
2465 insert_breakpoints ();
2466
2467 resume_ptid = internal_resume_ptid (user_step);
2468 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2469 discard_cleanups (old_cleanups);
2470 tp->resumed = 1;
2471 return;
2472 }
2473 }
2474 }
2475
2476 /* If we have a breakpoint to step over, make sure to do a single
2477 step only. Same if we have software watchpoints. */
2478 if (tp->control.trap_expected || bpstat_should_step ())
2479 tp->control.may_range_step = 0;
2480
2481 /* If enabled, step over breakpoints by executing a copy of the
2482 instruction at a different address.
2483
2484 We can't use displaced stepping when we have a signal to deliver;
2485 the comments for displaced_step_prepare explain why. The
2486 comments in the handle_inferior event for dealing with 'random
2487 signals' explain what we do instead.
2488
2489 We can't use displaced stepping when we are waiting for vfork_done
2490 event, displaced stepping breaks the vfork child similarly as single
2491 step software breakpoint. */
2492 if (tp->control.trap_expected
2493 && use_displaced_stepping (tp)
2494 && !step_over_info_valid_p ()
2495 && sig == GDB_SIGNAL_0
2496 && !current_inferior ()->waiting_for_vfork_done)
2497 {
2498 int prepared = displaced_step_prepare (inferior_ptid);
2499
2500 if (prepared == 0)
2501 {
2502 if (debug_infrun)
2503 fprintf_unfiltered (gdb_stdlog,
2504 "Got placed in step-over queue\n");
2505
2506 tp->control.trap_expected = 0;
2507 discard_cleanups (old_cleanups);
2508 return;
2509 }
2510 else if (prepared < 0)
2511 {
2512 /* Fallback to stepping over the breakpoint in-line. */
2513
2514 if (target_is_non_stop_p ())
2515 stop_all_threads ();
2516
2517 set_step_over_info (get_regcache_aspace (regcache),
2518 regcache_read_pc (regcache), 0);
2519
2520 step = maybe_software_singlestep (gdbarch, pc);
2521
2522 insert_breakpoints ();
2523 }
2524 else if (prepared > 0)
2525 {
2526 struct displaced_step_inferior_state *displaced;
2527
2528 /* Update pc to reflect the new address from which we will
2529 execute instructions due to displaced stepping. */
2530 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2531
2532 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2533 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2534 displaced->step_closure);
2535 }
2536 }
2537
2538 /* Do we need to do it the hard way, w/temp breakpoints? */
2539 else if (step)
2540 step = maybe_software_singlestep (gdbarch, pc);
2541
2542 /* Currently, our software single-step implementation leads to different
2543 results than hardware single-stepping in one situation: when stepping
2544 into delivering a signal which has an associated signal handler,
2545 hardware single-step will stop at the first instruction of the handler,
2546 while software single-step will simply skip execution of the handler.
2547
2548 For now, this difference in behavior is accepted since there is no
2549 easy way to actually implement single-stepping into a signal handler
2550 without kernel support.
2551
2552 However, there is one scenario where this difference leads to follow-on
2553 problems: if we're stepping off a breakpoint by removing all breakpoints
2554 and then single-stepping. In this case, the software single-step
2555 behavior means that even if there is a *breakpoint* in the signal
2556 handler, GDB still would not stop.
2557
2558 Fortunately, we can at least fix this particular issue. We detect
2559 here the case where we are about to deliver a signal while software
2560 single-stepping with breakpoints removed. In this situation, we
2561 revert the decisions to remove all breakpoints and insert single-
2562 step breakpoints, and instead we install a step-resume breakpoint
2563 at the current address, deliver the signal without stepping, and
2564 once we arrive back at the step-resume breakpoint, actually step
2565 over the breakpoint we originally wanted to step over. */
2566 if (thread_has_single_step_breakpoints_set (tp)
2567 && sig != GDB_SIGNAL_0
2568 && step_over_info_valid_p ())
2569 {
2570 /* If we have nested signals or a pending signal is delivered
2571 immediately after a handler returns, might might already have
2572 a step-resume breakpoint set on the earlier handler. We cannot
2573 set another step-resume breakpoint; just continue on until the
2574 original breakpoint is hit. */
2575 if (tp->control.step_resume_breakpoint == NULL)
2576 {
2577 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2578 tp->step_after_step_resume_breakpoint = 1;
2579 }
2580
2581 delete_single_step_breakpoints (tp);
2582
2583 clear_step_over_info ();
2584 tp->control.trap_expected = 0;
2585
2586 insert_breakpoints ();
2587 }
2588
2589 /* If STEP is set, it's a request to use hardware stepping
2590 facilities. But in that case, we should never
2591 use singlestep breakpoint. */
2592 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2593
2594 /* Decide the set of threads to ask the target to resume. */
2595 if ((step || thread_has_single_step_breakpoints_set (tp))
2596 && tp->control.trap_expected)
2597 {
2598 /* We're allowing a thread to run past a breakpoint it has
2599 hit, by single-stepping the thread with the breakpoint
2600 removed. In which case, we need to single-step only this
2601 thread, and keep others stopped, as they can miss this
2602 breakpoint if allowed to run. */
2603 resume_ptid = inferior_ptid;
2604 }
2605 else
2606 resume_ptid = internal_resume_ptid (user_step);
2607
2608 if (execution_direction != EXEC_REVERSE
2609 && step && breakpoint_inserted_here_p (aspace, pc))
2610 {
2611 /* There are two cases where we currently need to step a
2612 breakpoint instruction when we have a signal to deliver:
2613
2614 - See handle_signal_stop where we handle random signals that
2615 could take out us out of the stepping range. Normally, in
2616 that case we end up continuing (instead of stepping) over the
2617 signal handler with a breakpoint at PC, but there are cases
2618 where we should _always_ single-step, even if we have a
2619 step-resume breakpoint, like when a software watchpoint is
2620 set. Assuming single-stepping and delivering a signal at the
2621 same time would takes us to the signal handler, then we could
2622 have removed the breakpoint at PC to step over it. However,
2623 some hardware step targets (like e.g., Mac OS) can't step
2624 into signal handlers, and for those, we need to leave the
2625 breakpoint at PC inserted, as otherwise if the handler
2626 recurses and executes PC again, it'll miss the breakpoint.
2627 So we leave the breakpoint inserted anyway, but we need to
2628 record that we tried to step a breakpoint instruction, so
2629 that adjust_pc_after_break doesn't end up confused.
2630
2631 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2632 in one thread after another thread that was stepping had been
2633 momentarily paused for a step-over. When we re-resume the
2634 stepping thread, it may be resumed from that address with a
2635 breakpoint that hasn't trapped yet. Seen with
2636 gdb.threads/non-stop-fair-events.exp, on targets that don't
2637 do displaced stepping. */
2638
2639 if (debug_infrun)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "infrun: resume: [%s] stepped breakpoint\n",
2642 target_pid_to_str (tp->ptid));
2643
2644 tp->stepped_breakpoint = 1;
2645
2646 /* Most targets can step a breakpoint instruction, thus
2647 executing it normally. But if this one cannot, just
2648 continue and we will hit it anyway. */
2649 if (gdbarch_cannot_step_breakpoint (gdbarch))
2650 step = 0;
2651 }
2652
2653 if (debug_displaced
2654 && tp->control.trap_expected
2655 && use_displaced_stepping (tp)
2656 && !step_over_info_valid_p ())
2657 {
2658 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2659 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2660 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2661 gdb_byte buf[4];
2662
2663 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2664 paddress (resume_gdbarch, actual_pc));
2665 read_memory (actual_pc, buf, sizeof (buf));
2666 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2667 }
2668
2669 if (tp->control.may_range_step)
2670 {
2671 /* If we're resuming a thread with the PC out of the step
2672 range, then we're doing some nested/finer run control
2673 operation, like stepping the thread out of the dynamic
2674 linker or the displaced stepping scratch pad. We
2675 shouldn't have allowed a range step then. */
2676 gdb_assert (pc_in_thread_step_range (pc, tp));
2677 }
2678
2679 do_target_resume (resume_ptid, step, sig);
2680 tp->resumed = 1;
2681 discard_cleanups (old_cleanups);
2682}
2683\f
2684/* Proceeding. */
2685
2686/* Clear out all variables saying what to do when inferior is continued.
2687 First do this, then set the ones you want, then call `proceed'. */
2688
2689static void
2690clear_proceed_status_thread (struct thread_info *tp)
2691{
2692 if (debug_infrun)
2693 fprintf_unfiltered (gdb_stdlog,
2694 "infrun: clear_proceed_status_thread (%s)\n",
2695 target_pid_to_str (tp->ptid));
2696
2697 /* If we're starting a new sequence, then the previous finished
2698 single-step is no longer relevant. */
2699 if (tp->suspend.waitstatus_pending_p)
2700 {
2701 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2702 {
2703 if (debug_infrun)
2704 fprintf_unfiltered (gdb_stdlog,
2705 "infrun: clear_proceed_status: pending "
2706 "event of %s was a finished step. "
2707 "Discarding.\n",
2708 target_pid_to_str (tp->ptid));
2709
2710 tp->suspend.waitstatus_pending_p = 0;
2711 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2712 }
2713 else if (debug_infrun)
2714 {
2715 char *statstr;
2716
2717 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2718 fprintf_unfiltered (gdb_stdlog,
2719 "infrun: clear_proceed_status_thread: thread %s "
2720 "has pending wait status %s "
2721 "(currently_stepping=%d).\n",
2722 target_pid_to_str (tp->ptid), statstr,
2723 currently_stepping (tp));
2724 xfree (statstr);
2725 }
2726 }
2727
2728 /* If this signal should not be seen by program, give it zero.
2729 Used for debugging signals. */
2730 if (!signal_pass_state (tp->suspend.stop_signal))
2731 tp->suspend.stop_signal = GDB_SIGNAL_0;
2732
2733 tp->control.trap_expected = 0;
2734 tp->control.step_range_start = 0;
2735 tp->control.step_range_end = 0;
2736 tp->control.may_range_step = 0;
2737 tp->control.step_frame_id = null_frame_id;
2738 tp->control.step_stack_frame_id = null_frame_id;
2739 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2740 tp->control.step_start_function = NULL;
2741 tp->stop_requested = 0;
2742
2743 tp->control.stop_step = 0;
2744
2745 tp->control.proceed_to_finish = 0;
2746
2747 tp->control.command_interp = NULL;
2748 tp->control.stepping_command = 0;
2749
2750 /* Discard any remaining commands or status from previous stop. */
2751 bpstat_clear (&tp->control.stop_bpstat);
2752}
2753
2754void
2755clear_proceed_status (int step)
2756{
2757 if (!non_stop)
2758 {
2759 struct thread_info *tp;
2760 ptid_t resume_ptid;
2761
2762 resume_ptid = user_visible_resume_ptid (step);
2763
2764 /* In all-stop mode, delete the per-thread status of all threads
2765 we're about to resume, implicitly and explicitly. */
2766 ALL_NON_EXITED_THREADS (tp)
2767 {
2768 if (!ptid_match (tp->ptid, resume_ptid))
2769 continue;
2770 clear_proceed_status_thread (tp);
2771 }
2772 }
2773
2774 if (!ptid_equal (inferior_ptid, null_ptid))
2775 {
2776 struct inferior *inferior;
2777
2778 if (non_stop)
2779 {
2780 /* If in non-stop mode, only delete the per-thread status of
2781 the current thread. */
2782 clear_proceed_status_thread (inferior_thread ());
2783 }
2784
2785 inferior = current_inferior ();
2786 inferior->control.stop_soon = NO_STOP_QUIETLY;
2787 }
2788
2789 stop_after_trap = 0;
2790
2791 observer_notify_about_to_proceed ();
2792}
2793
2794/* Returns true if TP is still stopped at a breakpoint that needs
2795 stepping-over in order to make progress. If the breakpoint is gone
2796 meanwhile, we can skip the whole step-over dance. */
2797
2798static int
2799thread_still_needs_step_over_bp (struct thread_info *tp)
2800{
2801 if (tp->stepping_over_breakpoint)
2802 {
2803 struct regcache *regcache = get_thread_regcache (tp->ptid);
2804
2805 if (breakpoint_here_p (get_regcache_aspace (regcache),
2806 regcache_read_pc (regcache))
2807 == ordinary_breakpoint_here)
2808 return 1;
2809
2810 tp->stepping_over_breakpoint = 0;
2811 }
2812
2813 return 0;
2814}
2815
2816/* Check whether thread TP still needs to start a step-over in order
2817 to make progress when resumed. Returns an bitwise or of enum
2818 step_over_what bits, indicating what needs to be stepped over. */
2819
2820static int
2821thread_still_needs_step_over (struct thread_info *tp)
2822{
2823 struct inferior *inf = find_inferior_ptid (tp->ptid);
2824 int what = 0;
2825
2826 if (thread_still_needs_step_over_bp (tp))
2827 what |= STEP_OVER_BREAKPOINT;
2828
2829 if (tp->stepping_over_watchpoint
2830 && !target_have_steppable_watchpoint)
2831 what |= STEP_OVER_WATCHPOINT;
2832
2833 return what;
2834}
2835
2836/* Returns true if scheduler locking applies. STEP indicates whether
2837 we're about to do a step/next-like command to a thread. */
2838
2839static int
2840schedlock_applies (struct thread_info *tp)
2841{
2842 return (scheduler_mode == schedlock_on
2843 || (scheduler_mode == schedlock_step
2844 && tp->control.stepping_command));
2845}
2846
2847/* Basic routine for continuing the program in various fashions.
2848
2849 ADDR is the address to resume at, or -1 for resume where stopped.
2850 SIGGNAL is the signal to give it, or 0 for none,
2851 or -1 for act according to how it stopped.
2852 STEP is nonzero if should trap after one instruction.
2853 -1 means return after that and print nothing.
2854 You should probably set various step_... variables
2855 before calling here, if you are stepping.
2856
2857 You should call clear_proceed_status before calling proceed. */
2858
2859void
2860proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2861{
2862 struct regcache *regcache;
2863 struct gdbarch *gdbarch;
2864 struct thread_info *tp;
2865 CORE_ADDR pc;
2866 struct address_space *aspace;
2867 ptid_t resume_ptid;
2868 struct execution_control_state ecss;
2869 struct execution_control_state *ecs = &ecss;
2870 struct cleanup *old_chain;
2871 int started;
2872
2873 /* If we're stopped at a fork/vfork, follow the branch set by the
2874 "set follow-fork-mode" command; otherwise, we'll just proceed
2875 resuming the current thread. */
2876 if (!follow_fork ())
2877 {
2878 /* The target for some reason decided not to resume. */
2879 normal_stop ();
2880 if (target_can_async_p ())
2881 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2882 return;
2883 }
2884
2885 /* We'll update this if & when we switch to a new thread. */
2886 previous_inferior_ptid = inferior_ptid;
2887
2888 regcache = get_current_regcache ();
2889 gdbarch = get_regcache_arch (regcache);
2890 aspace = get_regcache_aspace (regcache);
2891 pc = regcache_read_pc (regcache);
2892 tp = inferior_thread ();
2893
2894 /* Fill in with reasonable starting values. */
2895 init_thread_stepping_state (tp);
2896
2897 gdb_assert (!thread_is_in_step_over_chain (tp));
2898
2899 if (addr == (CORE_ADDR) -1)
2900 {
2901 if (pc == stop_pc
2902 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2903 && execution_direction != EXEC_REVERSE)
2904 /* There is a breakpoint at the address we will resume at,
2905 step one instruction before inserting breakpoints so that
2906 we do not stop right away (and report a second hit at this
2907 breakpoint).
2908
2909 Note, we don't do this in reverse, because we won't
2910 actually be executing the breakpoint insn anyway.
2911 We'll be (un-)executing the previous instruction. */
2912 tp->stepping_over_breakpoint = 1;
2913 else if (gdbarch_single_step_through_delay_p (gdbarch)
2914 && gdbarch_single_step_through_delay (gdbarch,
2915 get_current_frame ()))
2916 /* We stepped onto an instruction that needs to be stepped
2917 again before re-inserting the breakpoint, do so. */
2918 tp->stepping_over_breakpoint = 1;
2919 }
2920 else
2921 {
2922 regcache_write_pc (regcache, addr);
2923 }
2924
2925 if (siggnal != GDB_SIGNAL_DEFAULT)
2926 tp->suspend.stop_signal = siggnal;
2927
2928 /* Record the interpreter that issued the execution command that
2929 caused this thread to resume. If the top level interpreter is
2930 MI/async, and the execution command was a CLI command
2931 (next/step/etc.), we'll want to print stop event output to the MI
2932 console channel (the stepped-to line, etc.), as if the user
2933 entered the execution command on a real GDB console. */
2934 tp->control.command_interp = command_interp ();
2935
2936 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
2937
2938 /* If an exception is thrown from this point on, make sure to
2939 propagate GDB's knowledge of the executing state to the
2940 frontend/user running state. */
2941 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
2942
2943 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2944 threads (e.g., we might need to set threads stepping over
2945 breakpoints first), from the user/frontend's point of view, all
2946 threads in RESUME_PTID are now running. Unless we're calling an
2947 inferior function, as in that case we pretend the inferior
2948 doesn't run at all. */
2949 if (!tp->control.in_infcall)
2950 set_running (resume_ptid, 1);
2951
2952 if (debug_infrun)
2953 fprintf_unfiltered (gdb_stdlog,
2954 "infrun: proceed (addr=%s, signal=%s)\n",
2955 paddress (gdbarch, addr),
2956 gdb_signal_to_symbol_string (siggnal));
2957
2958 annotate_starting ();
2959
2960 /* Make sure that output from GDB appears before output from the
2961 inferior. */
2962 gdb_flush (gdb_stdout);
2963
2964 /* In a multi-threaded task we may select another thread and
2965 then continue or step.
2966
2967 But if a thread that we're resuming had stopped at a breakpoint,
2968 it will immediately cause another breakpoint stop without any
2969 execution (i.e. it will report a breakpoint hit incorrectly). So
2970 we must step over it first.
2971
2972 Look for threads other than the current (TP) that reported a
2973 breakpoint hit and haven't been resumed yet since. */
2974
2975 /* If scheduler locking applies, we can avoid iterating over all
2976 threads. */
2977 if (!non_stop && !schedlock_applies (tp))
2978 {
2979 struct thread_info *current = tp;
2980
2981 ALL_NON_EXITED_THREADS (tp)
2982 {
2983 /* Ignore the current thread here. It's handled
2984 afterwards. */
2985 if (tp == current)
2986 continue;
2987
2988 /* Ignore threads of processes we're not resuming. */
2989 if (!ptid_match (tp->ptid, resume_ptid))
2990 continue;
2991
2992 if (!thread_still_needs_step_over (tp))
2993 continue;
2994
2995 gdb_assert (!thread_is_in_step_over_chain (tp));
2996
2997 if (debug_infrun)
2998 fprintf_unfiltered (gdb_stdlog,
2999 "infrun: need to step-over [%s] first\n",
3000 target_pid_to_str (tp->ptid));
3001
3002 thread_step_over_chain_enqueue (tp);
3003 }
3004
3005 tp = current;
3006 }
3007
3008 /* Enqueue the current thread last, so that we move all other
3009 threads over their breakpoints first. */
3010 if (tp->stepping_over_breakpoint)
3011 thread_step_over_chain_enqueue (tp);
3012
3013 /* If the thread isn't started, we'll still need to set its prev_pc,
3014 so that switch_back_to_stepped_thread knows the thread hasn't
3015 advanced. Must do this before resuming any thread, as in
3016 all-stop/remote, once we resume we can't send any other packet
3017 until the target stops again. */
3018 tp->prev_pc = regcache_read_pc (regcache);
3019
3020 started = start_step_over ();
3021
3022 if (step_over_info_valid_p ())
3023 {
3024 /* Either this thread started a new in-line step over, or some
3025 other thread was already doing one. In either case, don't
3026 resume anything else until the step-over is finished. */
3027 }
3028 else if (started && !target_is_non_stop_p ())
3029 {
3030 /* A new displaced stepping sequence was started. In all-stop,
3031 we can't talk to the target anymore until it next stops. */
3032 }
3033 else if (!non_stop && target_is_non_stop_p ())
3034 {
3035 /* In all-stop, but the target is always in non-stop mode.
3036 Start all other threads that are implicitly resumed too. */
3037 ALL_NON_EXITED_THREADS (tp)
3038 {
3039 /* Ignore threads of processes we're not resuming. */
3040 if (!ptid_match (tp->ptid, resume_ptid))
3041 continue;
3042
3043 if (tp->resumed)
3044 {
3045 if (debug_infrun)
3046 fprintf_unfiltered (gdb_stdlog,
3047 "infrun: proceed: [%s] resumed\n",
3048 target_pid_to_str (tp->ptid));
3049 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3050 continue;
3051 }
3052
3053 if (thread_is_in_step_over_chain (tp))
3054 {
3055 if (debug_infrun)
3056 fprintf_unfiltered (gdb_stdlog,
3057 "infrun: proceed: [%s] needs step-over\n",
3058 target_pid_to_str (tp->ptid));
3059 continue;
3060 }
3061
3062 if (debug_infrun)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "infrun: proceed: resuming %s\n",
3065 target_pid_to_str (tp->ptid));
3066
3067 reset_ecs (ecs, tp);
3068 switch_to_thread (tp->ptid);
3069 keep_going_pass_signal (ecs);
3070 if (!ecs->wait_some_more)
3071 error ("Command aborted.");
3072 }
3073 }
3074 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3075 {
3076 /* The thread wasn't started, and isn't queued, run it now. */
3077 reset_ecs (ecs, tp);
3078 switch_to_thread (tp->ptid);
3079 keep_going_pass_signal (ecs);
3080 if (!ecs->wait_some_more)
3081 error ("Command aborted.");
3082 }
3083
3084 discard_cleanups (old_chain);
3085
3086 /* Wait for it to stop (if not standalone)
3087 and in any case decode why it stopped, and act accordingly. */
3088 /* Do this only if we are not using the event loop, or if the target
3089 does not support asynchronous execution. */
3090 if (!target_can_async_p ())
3091 {
3092 wait_for_inferior ();
3093 normal_stop ();
3094 }
3095}
3096\f
3097
3098/* Start remote-debugging of a machine over a serial link. */
3099
3100void
3101start_remote (int from_tty)
3102{
3103 struct inferior *inferior;
3104
3105 inferior = current_inferior ();
3106 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3107
3108 /* Always go on waiting for the target, regardless of the mode. */
3109 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3110 indicate to wait_for_inferior that a target should timeout if
3111 nothing is returned (instead of just blocking). Because of this,
3112 targets expecting an immediate response need to, internally, set
3113 things up so that the target_wait() is forced to eventually
3114 timeout. */
3115 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3116 differentiate to its caller what the state of the target is after
3117 the initial open has been performed. Here we're assuming that
3118 the target has stopped. It should be possible to eventually have
3119 target_open() return to the caller an indication that the target
3120 is currently running and GDB state should be set to the same as
3121 for an async run. */
3122 wait_for_inferior ();
3123
3124 /* Now that the inferior has stopped, do any bookkeeping like
3125 loading shared libraries. We want to do this before normal_stop,
3126 so that the displayed frame is up to date. */
3127 post_create_inferior (&current_target, from_tty);
3128
3129 normal_stop ();
3130}
3131
3132/* Initialize static vars when a new inferior begins. */
3133
3134void
3135init_wait_for_inferior (void)
3136{
3137 /* These are meaningless until the first time through wait_for_inferior. */
3138
3139 breakpoint_init_inferior (inf_starting);
3140
3141 clear_proceed_status (0);
3142
3143 target_last_wait_ptid = minus_one_ptid;
3144
3145 previous_inferior_ptid = inferior_ptid;
3146
3147 /* Discard any skipped inlined frames. */
3148 clear_inline_frame_state (minus_one_ptid);
3149}
3150
3151\f
3152
3153static void handle_inferior_event (struct execution_control_state *ecs);
3154
3155static void handle_step_into_function (struct gdbarch *gdbarch,
3156 struct execution_control_state *ecs);
3157static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3158 struct execution_control_state *ecs);
3159static void handle_signal_stop (struct execution_control_state *ecs);
3160static void check_exception_resume (struct execution_control_state *,
3161 struct frame_info *);
3162
3163static void end_stepping_range (struct execution_control_state *ecs);
3164static void stop_waiting (struct execution_control_state *ecs);
3165static void keep_going (struct execution_control_state *ecs);
3166static void process_event_stop_test (struct execution_control_state *ecs);
3167static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3168
3169/* Callback for iterate over threads. If the thread is stopped, but
3170 the user/frontend doesn't know about that yet, go through
3171 normal_stop, as if the thread had just stopped now. ARG points at
3172 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3173 ptid_is_pid(PTID) is true, applies to all threads of the process
3174 pointed at by PTID. Otherwise, apply only to the thread pointed by
3175 PTID. */
3176
3177static int
3178infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3179{
3180 ptid_t ptid = * (ptid_t *) arg;
3181
3182 if ((ptid_equal (info->ptid, ptid)
3183 || ptid_equal (minus_one_ptid, ptid)
3184 || (ptid_is_pid (ptid)
3185 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3186 && is_running (info->ptid)
3187 && !is_executing (info->ptid))
3188 {
3189 struct cleanup *old_chain;
3190 struct execution_control_state ecss;
3191 struct execution_control_state *ecs = &ecss;
3192
3193 memset (ecs, 0, sizeof (*ecs));
3194
3195 old_chain = make_cleanup_restore_current_thread ();
3196
3197 overlay_cache_invalid = 1;
3198 /* Flush target cache before starting to handle each event.
3199 Target was running and cache could be stale. This is just a
3200 heuristic. Running threads may modify target memory, but we
3201 don't get any event. */
3202 target_dcache_invalidate ();
3203
3204 /* Go through handle_inferior_event/normal_stop, so we always
3205 have consistent output as if the stop event had been
3206 reported. */
3207 ecs->ptid = info->ptid;
3208 ecs->event_thread = find_thread_ptid (info->ptid);
3209 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3210 ecs->ws.value.sig = GDB_SIGNAL_0;
3211
3212 handle_inferior_event (ecs);
3213
3214 if (!ecs->wait_some_more)
3215 {
3216 struct thread_info *tp;
3217
3218 normal_stop ();
3219
3220 /* Finish off the continuations. */
3221 tp = inferior_thread ();
3222 do_all_intermediate_continuations_thread (tp, 1);
3223 do_all_continuations_thread (tp, 1);
3224 }
3225
3226 do_cleanups (old_chain);
3227 }
3228
3229 return 0;
3230}
3231
3232/* This function is attached as a "thread_stop_requested" observer.
3233 Cleanup local state that assumed the PTID was to be resumed, and
3234 report the stop to the frontend. */
3235
3236static void
3237infrun_thread_stop_requested (ptid_t ptid)
3238{
3239 struct thread_info *tp;
3240
3241 /* PTID was requested to stop. Remove matching threads from the
3242 step-over queue, so we don't try to resume them
3243 automatically. */
3244 ALL_NON_EXITED_THREADS (tp)
3245 if (ptid_match (tp->ptid, ptid))
3246 {
3247 if (thread_is_in_step_over_chain (tp))
3248 thread_step_over_chain_remove (tp);
3249 }
3250
3251 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3252}
3253
3254static void
3255infrun_thread_thread_exit (struct thread_info *tp, int silent)
3256{
3257 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3258 nullify_last_target_wait_ptid ();
3259}
3260
3261/* Delete the step resume, single-step and longjmp/exception resume
3262 breakpoints of TP. */
3263
3264static void
3265delete_thread_infrun_breakpoints (struct thread_info *tp)
3266{
3267 delete_step_resume_breakpoint (tp);
3268 delete_exception_resume_breakpoint (tp);
3269 delete_single_step_breakpoints (tp);
3270}
3271
3272/* If the target still has execution, call FUNC for each thread that
3273 just stopped. In all-stop, that's all the non-exited threads; in
3274 non-stop, that's the current thread, only. */
3275
3276typedef void (*for_each_just_stopped_thread_callback_func)
3277 (struct thread_info *tp);
3278
3279static void
3280for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3281{
3282 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3283 return;
3284
3285 if (target_is_non_stop_p ())
3286 {
3287 /* If in non-stop mode, only the current thread stopped. */
3288 func (inferior_thread ());
3289 }
3290 else
3291 {
3292 struct thread_info *tp;
3293
3294 /* In all-stop mode, all threads have stopped. */
3295 ALL_NON_EXITED_THREADS (tp)
3296 {
3297 func (tp);
3298 }
3299 }
3300}
3301
3302/* Delete the step resume and longjmp/exception resume breakpoints of
3303 the threads that just stopped. */
3304
3305static void
3306delete_just_stopped_threads_infrun_breakpoints (void)
3307{
3308 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3309}
3310
3311/* Delete the single-step breakpoints of the threads that just
3312 stopped. */
3313
3314static void
3315delete_just_stopped_threads_single_step_breakpoints (void)
3316{
3317 for_each_just_stopped_thread (delete_single_step_breakpoints);
3318}
3319
3320/* A cleanup wrapper. */
3321
3322static void
3323delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3324{
3325 delete_just_stopped_threads_infrun_breakpoints ();
3326}
3327
3328/* Pretty print the results of target_wait, for debugging purposes. */
3329
3330static void
3331print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3332 const struct target_waitstatus *ws)
3333{
3334 char *status_string = target_waitstatus_to_string (ws);
3335 struct ui_file *tmp_stream = mem_fileopen ();
3336 char *text;
3337
3338 /* The text is split over several lines because it was getting too long.
3339 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3340 output as a unit; we want only one timestamp printed if debug_timestamp
3341 is set. */
3342
3343 fprintf_unfiltered (tmp_stream,
3344 "infrun: target_wait (%d.%ld.%ld",
3345 ptid_get_pid (waiton_ptid),
3346 ptid_get_lwp (waiton_ptid),
3347 ptid_get_tid (waiton_ptid));
3348 if (ptid_get_pid (waiton_ptid) != -1)
3349 fprintf_unfiltered (tmp_stream,
3350 " [%s]", target_pid_to_str (waiton_ptid));
3351 fprintf_unfiltered (tmp_stream, ", status) =\n");
3352 fprintf_unfiltered (tmp_stream,
3353 "infrun: %d.%ld.%ld [%s],\n",
3354 ptid_get_pid (result_ptid),
3355 ptid_get_lwp (result_ptid),
3356 ptid_get_tid (result_ptid),
3357 target_pid_to_str (result_ptid));
3358 fprintf_unfiltered (tmp_stream,
3359 "infrun: %s\n",
3360 status_string);
3361
3362 text = ui_file_xstrdup (tmp_stream, NULL);
3363
3364 /* This uses %s in part to handle %'s in the text, but also to avoid
3365 a gcc error: the format attribute requires a string literal. */
3366 fprintf_unfiltered (gdb_stdlog, "%s", text);
3367
3368 xfree (status_string);
3369 xfree (text);
3370 ui_file_delete (tmp_stream);
3371}
3372
3373/* Select a thread at random, out of those which are resumed and have
3374 had events. */
3375
3376static struct thread_info *
3377random_pending_event_thread (ptid_t waiton_ptid)
3378{
3379 struct thread_info *event_tp;
3380 int num_events = 0;
3381 int random_selector;
3382
3383 /* First see how many events we have. Count only resumed threads
3384 that have an event pending. */
3385 ALL_NON_EXITED_THREADS (event_tp)
3386 if (ptid_match (event_tp->ptid, waiton_ptid)
3387 && event_tp->resumed
3388 && event_tp->suspend.waitstatus_pending_p)
3389 num_events++;
3390
3391 if (num_events == 0)
3392 return NULL;
3393
3394 /* Now randomly pick a thread out of those that have had events. */
3395 random_selector = (int)
3396 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3397
3398 if (debug_infrun && num_events > 1)
3399 fprintf_unfiltered (gdb_stdlog,
3400 "infrun: Found %d events, selecting #%d\n",
3401 num_events, random_selector);
3402
3403 /* Select the Nth thread that has had an event. */
3404 ALL_NON_EXITED_THREADS (event_tp)
3405 if (ptid_match (event_tp->ptid, waiton_ptid)
3406 && event_tp->resumed
3407 && event_tp->suspend.waitstatus_pending_p)
3408 if (random_selector-- == 0)
3409 break;
3410
3411 return event_tp;
3412}
3413
3414/* Wrapper for target_wait that first checks whether threads have
3415 pending statuses to report before actually asking the target for
3416 more events. */
3417
3418static ptid_t
3419do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3420{
3421 ptid_t event_ptid;
3422 struct thread_info *tp;
3423
3424 /* First check if there is a resumed thread with a wait status
3425 pending. */
3426 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3427 {
3428 tp = random_pending_event_thread (ptid);
3429 }
3430 else
3431 {
3432 if (debug_infrun)
3433 fprintf_unfiltered (gdb_stdlog,
3434 "infrun: Waiting for specific thread %s.\n",
3435 target_pid_to_str (ptid));
3436
3437 /* We have a specific thread to check. */
3438 tp = find_thread_ptid (ptid);
3439 gdb_assert (tp != NULL);
3440 if (!tp->suspend.waitstatus_pending_p)
3441 tp = NULL;
3442 }
3443
3444 if (tp != NULL
3445 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3446 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3447 {
3448 struct regcache *regcache = get_thread_regcache (tp->ptid);
3449 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3450 CORE_ADDR pc;
3451 int discard = 0;
3452
3453 pc = regcache_read_pc (regcache);
3454
3455 if (pc != tp->suspend.stop_pc)
3456 {
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "infrun: PC of %s changed. was=%s, now=%s\n",
3460 target_pid_to_str (tp->ptid),
3461 paddress (gdbarch, tp->prev_pc),
3462 paddress (gdbarch, pc));
3463 discard = 1;
3464 }
3465 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3466 {
3467 if (debug_infrun)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "infrun: previous breakpoint of %s, at %s gone\n",
3470 target_pid_to_str (tp->ptid),
3471 paddress (gdbarch, pc));
3472
3473 discard = 1;
3474 }
3475
3476 if (discard)
3477 {
3478 if (debug_infrun)
3479 fprintf_unfiltered (gdb_stdlog,
3480 "infrun: pending event of %s cancelled.\n",
3481 target_pid_to_str (tp->ptid));
3482
3483 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3484 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3485 }
3486 }
3487
3488 if (tp != NULL)
3489 {
3490 if (debug_infrun)
3491 {
3492 char *statstr;
3493
3494 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3495 fprintf_unfiltered (gdb_stdlog,
3496 "infrun: Using pending wait status %s for %s.\n",
3497 statstr,
3498 target_pid_to_str (tp->ptid));
3499 xfree (statstr);
3500 }
3501
3502 /* Now that we've selected our final event LWP, un-adjust its PC
3503 if it was a software breakpoint (and the target doesn't
3504 always adjust the PC itself). */
3505 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3506 && !target_supports_stopped_by_sw_breakpoint ())
3507 {
3508 struct regcache *regcache;
3509 struct gdbarch *gdbarch;
3510 int decr_pc;
3511
3512 regcache = get_thread_regcache (tp->ptid);
3513 gdbarch = get_regcache_arch (regcache);
3514
3515 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3516 if (decr_pc != 0)
3517 {
3518 CORE_ADDR pc;
3519
3520 pc = regcache_read_pc (regcache);
3521 regcache_write_pc (regcache, pc + decr_pc);
3522 }
3523 }
3524
3525 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3526 *status = tp->suspend.waitstatus;
3527 tp->suspend.waitstatus_pending_p = 0;
3528
3529 /* Wake up the event loop again, until all pending events are
3530 processed. */
3531 if (target_is_async_p ())
3532 mark_async_event_handler (infrun_async_inferior_event_token);
3533 return tp->ptid;
3534 }
3535
3536 /* But if we don't find one, we'll have to wait. */
3537
3538 if (deprecated_target_wait_hook)
3539 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3540 else
3541 event_ptid = target_wait (ptid, status, options);
3542
3543 return event_ptid;
3544}
3545
3546/* Prepare and stabilize the inferior for detaching it. E.g.,
3547 detaching while a thread is displaced stepping is a recipe for
3548 crashing it, as nothing would readjust the PC out of the scratch
3549 pad. */
3550
3551void
3552prepare_for_detach (void)
3553{
3554 struct inferior *inf = current_inferior ();
3555 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3556 struct cleanup *old_chain_1;
3557 struct displaced_step_inferior_state *displaced;
3558
3559 displaced = get_displaced_stepping_state (inf->pid);
3560
3561 /* Is any thread of this process displaced stepping? If not,
3562 there's nothing else to do. */
3563 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3564 return;
3565
3566 if (debug_infrun)
3567 fprintf_unfiltered (gdb_stdlog,
3568 "displaced-stepping in-process while detaching");
3569
3570 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3571 inf->detaching = 1;
3572
3573 while (!ptid_equal (displaced->step_ptid, null_ptid))
3574 {
3575 struct cleanup *old_chain_2;
3576 struct execution_control_state ecss;
3577 struct execution_control_state *ecs;
3578
3579 ecs = &ecss;
3580 memset (ecs, 0, sizeof (*ecs));
3581
3582 overlay_cache_invalid = 1;
3583 /* Flush target cache before starting to handle each event.
3584 Target was running and cache could be stale. This is just a
3585 heuristic. Running threads may modify target memory, but we
3586 don't get any event. */
3587 target_dcache_invalidate ();
3588
3589 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3590
3591 if (debug_infrun)
3592 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3593
3594 /* If an error happens while handling the event, propagate GDB's
3595 knowledge of the executing state to the frontend/user running
3596 state. */
3597 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3598 &minus_one_ptid);
3599
3600 /* Now figure out what to do with the result of the result. */
3601 handle_inferior_event (ecs);
3602
3603 /* No error, don't finish the state yet. */
3604 discard_cleanups (old_chain_2);
3605
3606 /* Breakpoints and watchpoints are not installed on the target
3607 at this point, and signals are passed directly to the
3608 inferior, so this must mean the process is gone. */
3609 if (!ecs->wait_some_more)
3610 {
3611 discard_cleanups (old_chain_1);
3612 error (_("Program exited while detaching"));
3613 }
3614 }
3615
3616 discard_cleanups (old_chain_1);
3617}
3618
3619/* Wait for control to return from inferior to debugger.
3620
3621 If inferior gets a signal, we may decide to start it up again
3622 instead of returning. That is why there is a loop in this function.
3623 When this function actually returns it means the inferior
3624 should be left stopped and GDB should read more commands. */
3625
3626void
3627wait_for_inferior (void)
3628{
3629 struct cleanup *old_cleanups;
3630 struct cleanup *thread_state_chain;
3631
3632 if (debug_infrun)
3633 fprintf_unfiltered
3634 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3635
3636 old_cleanups
3637 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3638 NULL);
3639
3640 /* If an error happens while handling the event, propagate GDB's
3641 knowledge of the executing state to the frontend/user running
3642 state. */
3643 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3644
3645 while (1)
3646 {
3647 struct execution_control_state ecss;
3648 struct execution_control_state *ecs = &ecss;
3649 ptid_t waiton_ptid = minus_one_ptid;
3650
3651 memset (ecs, 0, sizeof (*ecs));
3652
3653 overlay_cache_invalid = 1;
3654
3655 /* Flush target cache before starting to handle each event.
3656 Target was running and cache could be stale. This is just a
3657 heuristic. Running threads may modify target memory, but we
3658 don't get any event. */
3659 target_dcache_invalidate ();
3660
3661 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3662
3663 if (debug_infrun)
3664 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3665
3666 /* Now figure out what to do with the result of the result. */
3667 handle_inferior_event (ecs);
3668
3669 if (!ecs->wait_some_more)
3670 break;
3671 }
3672
3673 /* No error, don't finish the state yet. */
3674 discard_cleanups (thread_state_chain);
3675
3676 do_cleanups (old_cleanups);
3677}
3678
3679/* Cleanup that reinstalls the readline callback handler, if the
3680 target is running in the background. If while handling the target
3681 event something triggered a secondary prompt, like e.g., a
3682 pagination prompt, we'll have removed the callback handler (see
3683 gdb_readline_wrapper_line). Need to do this as we go back to the
3684 event loop, ready to process further input. Note this has no
3685 effect if the handler hasn't actually been removed, because calling
3686 rl_callback_handler_install resets the line buffer, thus losing
3687 input. */
3688
3689static void
3690reinstall_readline_callback_handler_cleanup (void *arg)
3691{
3692 if (!interpreter_async)
3693 {
3694 /* We're not going back to the top level event loop yet. Don't
3695 install the readline callback, as it'd prep the terminal,
3696 readline-style (raw, noecho) (e.g., --batch). We'll install
3697 it the next time the prompt is displayed, when we're ready
3698 for input. */
3699 return;
3700 }
3701
3702 if (async_command_editing_p && !sync_execution)
3703 gdb_rl_callback_handler_reinstall ();
3704}
3705
3706/* Asynchronous version of wait_for_inferior. It is called by the
3707 event loop whenever a change of state is detected on the file
3708 descriptor corresponding to the target. It can be called more than
3709 once to complete a single execution command. In such cases we need
3710 to keep the state in a global variable ECSS. If it is the last time
3711 that this function is called for a single execution command, then
3712 report to the user that the inferior has stopped, and do the
3713 necessary cleanups. */
3714
3715void
3716fetch_inferior_event (void *client_data)
3717{
3718 struct execution_control_state ecss;
3719 struct execution_control_state *ecs = &ecss;
3720 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3721 struct cleanup *ts_old_chain;
3722 int was_sync = sync_execution;
3723 int cmd_done = 0;
3724 ptid_t waiton_ptid = minus_one_ptid;
3725
3726 memset (ecs, 0, sizeof (*ecs));
3727
3728 /* End up with readline processing input, if necessary. */
3729 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3730
3731 /* We're handling a live event, so make sure we're doing live
3732 debugging. If we're looking at traceframes while the target is
3733 running, we're going to need to get back to that mode after
3734 handling the event. */
3735 if (non_stop)
3736 {
3737 make_cleanup_restore_current_traceframe ();
3738 set_current_traceframe (-1);
3739 }
3740
3741 if (non_stop)
3742 /* In non-stop mode, the user/frontend should not notice a thread
3743 switch due to internal events. Make sure we reverse to the
3744 user selected thread and frame after handling the event and
3745 running any breakpoint commands. */
3746 make_cleanup_restore_current_thread ();
3747
3748 overlay_cache_invalid = 1;
3749 /* Flush target cache before starting to handle each event. Target
3750 was running and cache could be stale. This is just a heuristic.
3751 Running threads may modify target memory, but we don't get any
3752 event. */
3753 target_dcache_invalidate ();
3754
3755 make_cleanup_restore_integer (&execution_direction);
3756 execution_direction = target_execution_direction ();
3757
3758 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3759
3760 if (debug_infrun)
3761 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3762
3763 /* If an error happens while handling the event, propagate GDB's
3764 knowledge of the executing state to the frontend/user running
3765 state. */
3766 if (!target_is_non_stop_p ())
3767 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3768 else
3769 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3770
3771 /* Get executed before make_cleanup_restore_current_thread above to apply
3772 still for the thread which has thrown the exception. */
3773 make_bpstat_clear_actions_cleanup ();
3774
3775 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3776
3777 /* Now figure out what to do with the result of the result. */
3778 handle_inferior_event (ecs);
3779
3780 if (!ecs->wait_some_more)
3781 {
3782 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3783
3784 delete_just_stopped_threads_infrun_breakpoints ();
3785
3786 /* We may not find an inferior if this was a process exit. */
3787 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3788 normal_stop ();
3789
3790 if (target_has_execution
3791 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3792 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3793 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3794 && ecs->event_thread->step_multi
3795 && ecs->event_thread->control.stop_step)
3796 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3797 else
3798 {
3799 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3800 cmd_done = 1;
3801 }
3802 }
3803
3804 /* No error, don't finish the thread states yet. */
3805 discard_cleanups (ts_old_chain);
3806
3807 /* Revert thread and frame. */
3808 do_cleanups (old_chain);
3809
3810 /* If the inferior was in sync execution mode, and now isn't,
3811 restore the prompt (a synchronous execution command has finished,
3812 and we're ready for input). */
3813 if (interpreter_async && was_sync && !sync_execution)
3814 observer_notify_sync_execution_done ();
3815
3816 if (cmd_done
3817 && !was_sync
3818 && exec_done_display_p
3819 && (ptid_equal (inferior_ptid, null_ptid)
3820 || !is_running (inferior_ptid)))
3821 printf_unfiltered (_("completed.\n"));
3822}
3823
3824/* Record the frame and location we're currently stepping through. */
3825void
3826set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3827{
3828 struct thread_info *tp = inferior_thread ();
3829
3830 tp->control.step_frame_id = get_frame_id (frame);
3831 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3832
3833 tp->current_symtab = sal.symtab;
3834 tp->current_line = sal.line;
3835}
3836
3837/* Clear context switchable stepping state. */
3838
3839void
3840init_thread_stepping_state (struct thread_info *tss)
3841{
3842 tss->stepped_breakpoint = 0;
3843 tss->stepping_over_breakpoint = 0;
3844 tss->stepping_over_watchpoint = 0;
3845 tss->step_after_step_resume_breakpoint = 0;
3846}
3847
3848/* Set the cached copy of the last ptid/waitstatus. */
3849
3850static void
3851set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3852{
3853 target_last_wait_ptid = ptid;
3854 target_last_waitstatus = status;
3855}
3856
3857/* Return the cached copy of the last pid/waitstatus returned by
3858 target_wait()/deprecated_target_wait_hook(). The data is actually
3859 cached by handle_inferior_event(), which gets called immediately
3860 after target_wait()/deprecated_target_wait_hook(). */
3861
3862void
3863get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3864{
3865 *ptidp = target_last_wait_ptid;
3866 *status = target_last_waitstatus;
3867}
3868
3869void
3870nullify_last_target_wait_ptid (void)
3871{
3872 target_last_wait_ptid = minus_one_ptid;
3873}
3874
3875/* Switch thread contexts. */
3876
3877static void
3878context_switch (ptid_t ptid)
3879{
3880 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3881 {
3882 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3883 target_pid_to_str (inferior_ptid));
3884 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3885 target_pid_to_str (ptid));
3886 }
3887
3888 switch_to_thread (ptid);
3889}
3890
3891/* If the target can't tell whether we've hit breakpoints
3892 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3893 check whether that could have been caused by a breakpoint. If so,
3894 adjust the PC, per gdbarch_decr_pc_after_break. */
3895
3896static void
3897adjust_pc_after_break (struct thread_info *thread,
3898 struct target_waitstatus *ws)
3899{
3900 struct regcache *regcache;
3901 struct gdbarch *gdbarch;
3902 struct address_space *aspace;
3903 CORE_ADDR breakpoint_pc, decr_pc;
3904
3905 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3906 we aren't, just return.
3907
3908 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3909 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3910 implemented by software breakpoints should be handled through the normal
3911 breakpoint layer.
3912
3913 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3914 different signals (SIGILL or SIGEMT for instance), but it is less
3915 clear where the PC is pointing afterwards. It may not match
3916 gdbarch_decr_pc_after_break. I don't know any specific target that
3917 generates these signals at breakpoints (the code has been in GDB since at
3918 least 1992) so I can not guess how to handle them here.
3919
3920 In earlier versions of GDB, a target with
3921 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3922 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3923 target with both of these set in GDB history, and it seems unlikely to be
3924 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3925
3926 if (ws->kind != TARGET_WAITKIND_STOPPED)
3927 return;
3928
3929 if (ws->value.sig != GDB_SIGNAL_TRAP)
3930 return;
3931
3932 /* In reverse execution, when a breakpoint is hit, the instruction
3933 under it has already been de-executed. The reported PC always
3934 points at the breakpoint address, so adjusting it further would
3935 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3936 architecture:
3937
3938 B1 0x08000000 : INSN1
3939 B2 0x08000001 : INSN2
3940 0x08000002 : INSN3
3941 PC -> 0x08000003 : INSN4
3942
3943 Say you're stopped at 0x08000003 as above. Reverse continuing
3944 from that point should hit B2 as below. Reading the PC when the
3945 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3946 been de-executed already.
3947
3948 B1 0x08000000 : INSN1
3949 B2 PC -> 0x08000001 : INSN2
3950 0x08000002 : INSN3
3951 0x08000003 : INSN4
3952
3953 We can't apply the same logic as for forward execution, because
3954 we would wrongly adjust the PC to 0x08000000, since there's a
3955 breakpoint at PC - 1. We'd then report a hit on B1, although
3956 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3957 behaviour. */
3958 if (execution_direction == EXEC_REVERSE)
3959 return;
3960
3961 /* If the target can tell whether the thread hit a SW breakpoint,
3962 trust it. Targets that can tell also adjust the PC
3963 themselves. */
3964 if (target_supports_stopped_by_sw_breakpoint ())
3965 return;
3966
3967 /* Note that relying on whether a breakpoint is planted in memory to
3968 determine this can fail. E.g,. the breakpoint could have been
3969 removed since. Or the thread could have been told to step an
3970 instruction the size of a breakpoint instruction, and only
3971 _after_ was a breakpoint inserted at its address. */
3972
3973 /* If this target does not decrement the PC after breakpoints, then
3974 we have nothing to do. */
3975 regcache = get_thread_regcache (thread->ptid);
3976 gdbarch = get_regcache_arch (regcache);
3977
3978 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3979 if (decr_pc == 0)
3980 return;
3981
3982 aspace = get_regcache_aspace (regcache);
3983
3984 /* Find the location where (if we've hit a breakpoint) the
3985 breakpoint would be. */
3986 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3987
3988 /* If the target can't tell whether a software breakpoint triggered,
3989 fallback to figuring it out based on breakpoints we think were
3990 inserted in the target, and on whether the thread was stepped or
3991 continued. */
3992
3993 /* Check whether there actually is a software breakpoint inserted at
3994 that location.
3995
3996 If in non-stop mode, a race condition is possible where we've
3997 removed a breakpoint, but stop events for that breakpoint were
3998 already queued and arrive later. To suppress those spurious
3999 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4000 and retire them after a number of stop events are reported. Note
4001 this is an heuristic and can thus get confused. The real fix is
4002 to get the "stopped by SW BP and needs adjustment" info out of
4003 the target/kernel (and thus never reach here; see above). */
4004 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4005 || (target_is_non_stop_p ()
4006 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4007 {
4008 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4009
4010 if (record_full_is_used ())
4011 record_full_gdb_operation_disable_set ();
4012
4013 /* When using hardware single-step, a SIGTRAP is reported for both
4014 a completed single-step and a software breakpoint. Need to
4015 differentiate between the two, as the latter needs adjusting
4016 but the former does not.
4017
4018 The SIGTRAP can be due to a completed hardware single-step only if
4019 - we didn't insert software single-step breakpoints
4020 - this thread is currently being stepped
4021
4022 If any of these events did not occur, we must have stopped due
4023 to hitting a software breakpoint, and have to back up to the
4024 breakpoint address.
4025
4026 As a special case, we could have hardware single-stepped a
4027 software breakpoint. In this case (prev_pc == breakpoint_pc),
4028 we also need to back up to the breakpoint address. */
4029
4030 if (thread_has_single_step_breakpoints_set (thread)
4031 || !currently_stepping (thread)
4032 || (thread->stepped_breakpoint
4033 && thread->prev_pc == breakpoint_pc))
4034 regcache_write_pc (regcache, breakpoint_pc);
4035
4036 do_cleanups (old_cleanups);
4037 }
4038}
4039
4040static int
4041stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4042{
4043 for (frame = get_prev_frame (frame);
4044 frame != NULL;
4045 frame = get_prev_frame (frame))
4046 {
4047 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4048 return 1;
4049 if (get_frame_type (frame) != INLINE_FRAME)
4050 break;
4051 }
4052
4053 return 0;
4054}
4055
4056/* Auxiliary function that handles syscall entry/return events.
4057 It returns 1 if the inferior should keep going (and GDB
4058 should ignore the event), or 0 if the event deserves to be
4059 processed. */
4060
4061static int
4062handle_syscall_event (struct execution_control_state *ecs)
4063{
4064 struct regcache *regcache;
4065 int syscall_number;
4066
4067 if (!ptid_equal (ecs->ptid, inferior_ptid))
4068 context_switch (ecs->ptid);
4069
4070 regcache = get_thread_regcache (ecs->ptid);
4071 syscall_number = ecs->ws.value.syscall_number;
4072 stop_pc = regcache_read_pc (regcache);
4073
4074 if (catch_syscall_enabled () > 0
4075 && catching_syscall_number (syscall_number) > 0)
4076 {
4077 if (debug_infrun)
4078 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4079 syscall_number);
4080
4081 ecs->event_thread->control.stop_bpstat
4082 = bpstat_stop_status (get_regcache_aspace (regcache),
4083 stop_pc, ecs->ptid, &ecs->ws);
4084
4085 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4086 {
4087 /* Catchpoint hit. */
4088 return 0;
4089 }
4090 }
4091
4092 /* If no catchpoint triggered for this, then keep going. */
4093 keep_going (ecs);
4094 return 1;
4095}
4096
4097/* Lazily fill in the execution_control_state's stop_func_* fields. */
4098
4099static void
4100fill_in_stop_func (struct gdbarch *gdbarch,
4101 struct execution_control_state *ecs)
4102{
4103 if (!ecs->stop_func_filled_in)
4104 {
4105 /* Don't care about return value; stop_func_start and stop_func_name
4106 will both be 0 if it doesn't work. */
4107 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4108 &ecs->stop_func_start, &ecs->stop_func_end);
4109 ecs->stop_func_start
4110 += gdbarch_deprecated_function_start_offset (gdbarch);
4111
4112 if (gdbarch_skip_entrypoint_p (gdbarch))
4113 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4114 ecs->stop_func_start);
4115
4116 ecs->stop_func_filled_in = 1;
4117 }
4118}
4119
4120
4121/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4122
4123static enum stop_kind
4124get_inferior_stop_soon (ptid_t ptid)
4125{
4126 struct inferior *inf = find_inferior_ptid (ptid);
4127
4128 gdb_assert (inf != NULL);
4129 return inf->control.stop_soon;
4130}
4131
4132/* Wait for one event. Store the resulting waitstatus in WS, and
4133 return the event ptid. */
4134
4135static ptid_t
4136wait_one (struct target_waitstatus *ws)
4137{
4138 ptid_t event_ptid;
4139 ptid_t wait_ptid = minus_one_ptid;
4140
4141 overlay_cache_invalid = 1;
4142
4143 /* Flush target cache before starting to handle each event.
4144 Target was running and cache could be stale. This is just a
4145 heuristic. Running threads may modify target memory, but we
4146 don't get any event. */
4147 target_dcache_invalidate ();
4148
4149 if (deprecated_target_wait_hook)
4150 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4151 else
4152 event_ptid = target_wait (wait_ptid, ws, 0);
4153
4154 if (debug_infrun)
4155 print_target_wait_results (wait_ptid, event_ptid, ws);
4156
4157 return event_ptid;
4158}
4159
4160/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4161 instead of the current thread. */
4162#define THREAD_STOPPED_BY(REASON) \
4163static int \
4164thread_stopped_by_ ## REASON (ptid_t ptid) \
4165{ \
4166 struct cleanup *old_chain; \
4167 int res; \
4168 \
4169 old_chain = save_inferior_ptid (); \
4170 inferior_ptid = ptid; \
4171 \
4172 res = target_stopped_by_ ## REASON (); \
4173 \
4174 do_cleanups (old_chain); \
4175 \
4176 return res; \
4177}
4178
4179/* Generate thread_stopped_by_watchpoint. */
4180THREAD_STOPPED_BY (watchpoint)
4181/* Generate thread_stopped_by_sw_breakpoint. */
4182THREAD_STOPPED_BY (sw_breakpoint)
4183/* Generate thread_stopped_by_hw_breakpoint. */
4184THREAD_STOPPED_BY (hw_breakpoint)
4185
4186/* Cleanups that switches to the PTID pointed at by PTID_P. */
4187
4188static void
4189switch_to_thread_cleanup (void *ptid_p)
4190{
4191 ptid_t ptid = *(ptid_t *) ptid_p;
4192
4193 switch_to_thread (ptid);
4194}
4195
4196/* Save the thread's event and stop reason to process it later. */
4197
4198static void
4199save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4200{
4201 struct regcache *regcache;
4202 struct address_space *aspace;
4203
4204 if (debug_infrun)
4205 {
4206 char *statstr;
4207
4208 statstr = target_waitstatus_to_string (ws);
4209 fprintf_unfiltered (gdb_stdlog,
4210 "infrun: saving status %s for %d.%ld.%ld\n",
4211 statstr,
4212 ptid_get_pid (tp->ptid),
4213 ptid_get_lwp (tp->ptid),
4214 ptid_get_tid (tp->ptid));
4215 xfree (statstr);
4216 }
4217
4218 /* Record for later. */
4219 tp->suspend.waitstatus = *ws;
4220 tp->suspend.waitstatus_pending_p = 1;
4221
4222 regcache = get_thread_regcache (tp->ptid);
4223 aspace = get_regcache_aspace (regcache);
4224
4225 if (ws->kind == TARGET_WAITKIND_STOPPED
4226 && ws->value.sig == GDB_SIGNAL_TRAP)
4227 {
4228 CORE_ADDR pc = regcache_read_pc (regcache);
4229
4230 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4231
4232 if (thread_stopped_by_watchpoint (tp->ptid))
4233 {
4234 tp->suspend.stop_reason
4235 = TARGET_STOPPED_BY_WATCHPOINT;
4236 }
4237 else if (target_supports_stopped_by_sw_breakpoint ()
4238 && thread_stopped_by_sw_breakpoint (tp->ptid))
4239 {
4240 tp->suspend.stop_reason
4241 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4242 }
4243 else if (target_supports_stopped_by_hw_breakpoint ()
4244 && thread_stopped_by_hw_breakpoint (tp->ptid))
4245 {
4246 tp->suspend.stop_reason
4247 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4248 }
4249 else if (!target_supports_stopped_by_hw_breakpoint ()
4250 && hardware_breakpoint_inserted_here_p (aspace,
4251 pc))
4252 {
4253 tp->suspend.stop_reason
4254 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4255 }
4256 else if (!target_supports_stopped_by_sw_breakpoint ()
4257 && software_breakpoint_inserted_here_p (aspace,
4258 pc))
4259 {
4260 tp->suspend.stop_reason
4261 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4262 }
4263 else if (!thread_has_single_step_breakpoints_set (tp)
4264 && currently_stepping (tp))
4265 {
4266 tp->suspend.stop_reason
4267 = TARGET_STOPPED_BY_SINGLE_STEP;
4268 }
4269 }
4270}
4271
4272/* Stop all threads. */
4273
4274static void
4275stop_all_threads (void)
4276{
4277 /* We may need multiple passes to discover all threads. */
4278 int pass;
4279 int iterations = 0;
4280 ptid_t entry_ptid;
4281 struct cleanup *old_chain;
4282
4283 gdb_assert (target_is_non_stop_p ());
4284
4285 if (debug_infrun)
4286 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4287
4288 entry_ptid = inferior_ptid;
4289 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4290
4291 /* Request threads to stop, and then wait for the stops. Because
4292 threads we already know about can spawn more threads while we're
4293 trying to stop them, and we only learn about new threads when we
4294 update the thread list, do this in a loop, and keep iterating
4295 until two passes find no threads that need to be stopped. */
4296 for (pass = 0; pass < 2; pass++, iterations++)
4297 {
4298 if (debug_infrun)
4299 fprintf_unfiltered (gdb_stdlog,
4300 "infrun: stop_all_threads, pass=%d, "
4301 "iterations=%d\n", pass, iterations);
4302 while (1)
4303 {
4304 ptid_t event_ptid;
4305 struct target_waitstatus ws;
4306 int need_wait = 0;
4307 struct thread_info *t;
4308
4309 update_thread_list ();
4310
4311 /* Go through all threads looking for threads that we need
4312 to tell the target to stop. */
4313 ALL_NON_EXITED_THREADS (t)
4314 {
4315 if (t->executing)
4316 {
4317 /* If already stopping, don't request a stop again.
4318 We just haven't seen the notification yet. */
4319 if (!t->stop_requested)
4320 {
4321 if (debug_infrun)
4322 fprintf_unfiltered (gdb_stdlog,
4323 "infrun: %s executing, "
4324 "need stop\n",
4325 target_pid_to_str (t->ptid));
4326 target_stop (t->ptid);
4327 t->stop_requested = 1;
4328 }
4329 else
4330 {
4331 if (debug_infrun)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "infrun: %s executing, "
4334 "already stopping\n",
4335 target_pid_to_str (t->ptid));
4336 }
4337
4338 if (t->stop_requested)
4339 need_wait = 1;
4340 }
4341 else
4342 {
4343 if (debug_infrun)
4344 fprintf_unfiltered (gdb_stdlog,
4345 "infrun: %s not executing\n",
4346 target_pid_to_str (t->ptid));
4347
4348 /* The thread may be not executing, but still be
4349 resumed with a pending status to process. */
4350 t->resumed = 0;
4351 }
4352 }
4353
4354 if (!need_wait)
4355 break;
4356
4357 /* If we find new threads on the second iteration, restart
4358 over. We want to see two iterations in a row with all
4359 threads stopped. */
4360 if (pass > 0)
4361 pass = -1;
4362
4363 event_ptid = wait_one (&ws);
4364 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4365 {
4366 /* All resumed threads exited. */
4367 }
4368 else if (ws.kind == TARGET_WAITKIND_EXITED
4369 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4370 {
4371 if (debug_infrun)
4372 {
4373 ptid_t ptid = pid_to_ptid (ws.value.integer);
4374
4375 fprintf_unfiltered (gdb_stdlog,
4376 "infrun: %s exited while "
4377 "stopping threads\n",
4378 target_pid_to_str (ptid));
4379 }
4380 }
4381 else
4382 {
4383 t = find_thread_ptid (event_ptid);
4384 if (t == NULL)
4385 t = add_thread (event_ptid);
4386
4387 t->stop_requested = 0;
4388 t->executing = 0;
4389 t->resumed = 0;
4390 t->control.may_range_step = 0;
4391
4392 if (ws.kind == TARGET_WAITKIND_STOPPED
4393 && ws.value.sig == GDB_SIGNAL_0)
4394 {
4395 /* We caught the event that we intended to catch, so
4396 there's no event pending. */
4397 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4398 t->suspend.waitstatus_pending_p = 0;
4399
4400 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4401 {
4402 /* Add it back to the step-over queue. */
4403 if (debug_infrun)
4404 {
4405 fprintf_unfiltered (gdb_stdlog,
4406 "infrun: displaced-step of %s "
4407 "canceled: adding back to the "
4408 "step-over queue\n",
4409 target_pid_to_str (t->ptid));
4410 }
4411 t->control.trap_expected = 0;
4412 thread_step_over_chain_enqueue (t);
4413 }
4414 }
4415 else
4416 {
4417 enum gdb_signal sig;
4418 struct regcache *regcache;
4419 struct address_space *aspace;
4420
4421 if (debug_infrun)
4422 {
4423 char *statstr;
4424
4425 statstr = target_waitstatus_to_string (&ws);
4426 fprintf_unfiltered (gdb_stdlog,
4427 "infrun: target_wait %s, saving "
4428 "status for %d.%ld.%ld\n",
4429 statstr,
4430 ptid_get_pid (t->ptid),
4431 ptid_get_lwp (t->ptid),
4432 ptid_get_tid (t->ptid));
4433 xfree (statstr);
4434 }
4435
4436 /* Record for later. */
4437 save_waitstatus (t, &ws);
4438
4439 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4440 ? ws.value.sig : GDB_SIGNAL_0);
4441
4442 if (displaced_step_fixup (t->ptid, sig) < 0)
4443 {
4444 /* Add it back to the step-over queue. */
4445 t->control.trap_expected = 0;
4446 thread_step_over_chain_enqueue (t);
4447 }
4448
4449 regcache = get_thread_regcache (t->ptid);
4450 t->suspend.stop_pc = regcache_read_pc (regcache);
4451
4452 if (debug_infrun)
4453 {
4454 fprintf_unfiltered (gdb_stdlog,
4455 "infrun: saved stop_pc=%s for %s "
4456 "(currently_stepping=%d)\n",
4457 paddress (target_gdbarch (),
4458 t->suspend.stop_pc),
4459 target_pid_to_str (t->ptid),
4460 currently_stepping (t));
4461 }
4462 }
4463 }
4464 }
4465 }
4466
4467 do_cleanups (old_chain);
4468
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4471}
4472
4473/* Given an execution control state that has been freshly filled in by
4474 an event from the inferior, figure out what it means and take
4475 appropriate action.
4476
4477 The alternatives are:
4478
4479 1) stop_waiting and return; to really stop and return to the
4480 debugger.
4481
4482 2) keep_going and return; to wait for the next event (set
4483 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4484 once). */
4485
4486static void
4487handle_inferior_event_1 (struct execution_control_state *ecs)
4488{
4489 enum stop_kind stop_soon;
4490
4491 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4492 {
4493 /* We had an event in the inferior, but we are not interested in
4494 handling it at this level. The lower layers have already
4495 done what needs to be done, if anything.
4496
4497 One of the possible circumstances for this is when the
4498 inferior produces output for the console. The inferior has
4499 not stopped, and we are ignoring the event. Another possible
4500 circumstance is any event which the lower level knows will be
4501 reported multiple times without an intervening resume. */
4502 if (debug_infrun)
4503 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4504 prepare_to_wait (ecs);
4505 return;
4506 }
4507
4508 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4509 && target_can_async_p () && !sync_execution)
4510 {
4511 /* There were no unwaited-for children left in the target, but,
4512 we're not synchronously waiting for events either. Just
4513 ignore. Otherwise, if we were running a synchronous
4514 execution command, we need to cancel it and give the user
4515 back the terminal. */
4516 if (debug_infrun)
4517 fprintf_unfiltered (gdb_stdlog,
4518 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4519 prepare_to_wait (ecs);
4520 return;
4521 }
4522
4523 /* Cache the last pid/waitstatus. */
4524 set_last_target_status (ecs->ptid, ecs->ws);
4525
4526 /* Always clear state belonging to the previous time we stopped. */
4527 stop_stack_dummy = STOP_NONE;
4528
4529 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4530 {
4531 /* No unwaited-for children left. IOW, all resumed children
4532 have exited. */
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4535
4536 stop_print_frame = 0;
4537 stop_waiting (ecs);
4538 return;
4539 }
4540
4541 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4542 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4543 {
4544 ecs->event_thread = find_thread_ptid (ecs->ptid);
4545 /* If it's a new thread, add it to the thread database. */
4546 if (ecs->event_thread == NULL)
4547 ecs->event_thread = add_thread (ecs->ptid);
4548
4549 /* Disable range stepping. If the next step request could use a
4550 range, this will be end up re-enabled then. */
4551 ecs->event_thread->control.may_range_step = 0;
4552 }
4553
4554 /* Dependent on valid ECS->EVENT_THREAD. */
4555 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4556
4557 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4558 reinit_frame_cache ();
4559
4560 breakpoint_retire_moribund ();
4561
4562 /* First, distinguish signals caused by the debugger from signals
4563 that have to do with the program's own actions. Note that
4564 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4565 on the operating system version. Here we detect when a SIGILL or
4566 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4567 something similar for SIGSEGV, since a SIGSEGV will be generated
4568 when we're trying to execute a breakpoint instruction on a
4569 non-executable stack. This happens for call dummy breakpoints
4570 for architectures like SPARC that place call dummies on the
4571 stack. */
4572 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4573 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4574 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4575 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4576 {
4577 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4578
4579 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4580 regcache_read_pc (regcache)))
4581 {
4582 if (debug_infrun)
4583 fprintf_unfiltered (gdb_stdlog,
4584 "infrun: Treating signal as SIGTRAP\n");
4585 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4586 }
4587 }
4588
4589 /* Mark the non-executing threads accordingly. In all-stop, all
4590 threads of all processes are stopped when we get any event
4591 reported. In non-stop mode, only the event thread stops. */
4592 {
4593 ptid_t mark_ptid;
4594
4595 if (!target_is_non_stop_p ())
4596 mark_ptid = minus_one_ptid;
4597 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4598 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4599 {
4600 /* If we're handling a process exit in non-stop mode, even
4601 though threads haven't been deleted yet, one would think
4602 that there is nothing to do, as threads of the dead process
4603 will be soon deleted, and threads of any other process were
4604 left running. However, on some targets, threads survive a
4605 process exit event. E.g., for the "checkpoint" command,
4606 when the current checkpoint/fork exits, linux-fork.c
4607 automatically switches to another fork from within
4608 target_mourn_inferior, by associating the same
4609 inferior/thread to another fork. We haven't mourned yet at
4610 this point, but we must mark any threads left in the
4611 process as not-executing so that finish_thread_state marks
4612 them stopped (in the user's perspective) if/when we present
4613 the stop to the user. */
4614 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4615 }
4616 else
4617 mark_ptid = ecs->ptid;
4618
4619 set_executing (mark_ptid, 0);
4620
4621 /* Likewise the resumed flag. */
4622 set_resumed (mark_ptid, 0);
4623 }
4624
4625 switch (ecs->ws.kind)
4626 {
4627 case TARGET_WAITKIND_LOADED:
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4630 if (!ptid_equal (ecs->ptid, inferior_ptid))
4631 context_switch (ecs->ptid);
4632 /* Ignore gracefully during startup of the inferior, as it might
4633 be the shell which has just loaded some objects, otherwise
4634 add the symbols for the newly loaded objects. Also ignore at
4635 the beginning of an attach or remote session; we will query
4636 the full list of libraries once the connection is
4637 established. */
4638
4639 stop_soon = get_inferior_stop_soon (ecs->ptid);
4640 if (stop_soon == NO_STOP_QUIETLY)
4641 {
4642 struct regcache *regcache;
4643
4644 regcache = get_thread_regcache (ecs->ptid);
4645
4646 handle_solib_event ();
4647
4648 ecs->event_thread->control.stop_bpstat
4649 = bpstat_stop_status (get_regcache_aspace (regcache),
4650 stop_pc, ecs->ptid, &ecs->ws);
4651
4652 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4653 {
4654 /* A catchpoint triggered. */
4655 process_event_stop_test (ecs);
4656 return;
4657 }
4658
4659 /* If requested, stop when the dynamic linker notifies
4660 gdb of events. This allows the user to get control
4661 and place breakpoints in initializer routines for
4662 dynamically loaded objects (among other things). */
4663 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4664 if (stop_on_solib_events)
4665 {
4666 /* Make sure we print "Stopped due to solib-event" in
4667 normal_stop. */
4668 stop_print_frame = 1;
4669
4670 stop_waiting (ecs);
4671 return;
4672 }
4673 }
4674
4675 /* If we are skipping through a shell, or through shared library
4676 loading that we aren't interested in, resume the program. If
4677 we're running the program normally, also resume. */
4678 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4679 {
4680 /* Loading of shared libraries might have changed breakpoint
4681 addresses. Make sure new breakpoints are inserted. */
4682 if (stop_soon == NO_STOP_QUIETLY)
4683 insert_breakpoints ();
4684 resume (GDB_SIGNAL_0);
4685 prepare_to_wait (ecs);
4686 return;
4687 }
4688
4689 /* But stop if we're attaching or setting up a remote
4690 connection. */
4691 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4692 || stop_soon == STOP_QUIETLY_REMOTE)
4693 {
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4696 stop_waiting (ecs);
4697 return;
4698 }
4699
4700 internal_error (__FILE__, __LINE__,
4701 _("unhandled stop_soon: %d"), (int) stop_soon);
4702
4703 case TARGET_WAITKIND_SPURIOUS:
4704 if (debug_infrun)
4705 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4706 if (!ptid_equal (ecs->ptid, inferior_ptid))
4707 context_switch (ecs->ptid);
4708 resume (GDB_SIGNAL_0);
4709 prepare_to_wait (ecs);
4710 return;
4711
4712 case TARGET_WAITKIND_EXITED:
4713 case TARGET_WAITKIND_SIGNALLED:
4714 if (debug_infrun)
4715 {
4716 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4717 fprintf_unfiltered (gdb_stdlog,
4718 "infrun: TARGET_WAITKIND_EXITED\n");
4719 else
4720 fprintf_unfiltered (gdb_stdlog,
4721 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4722 }
4723
4724 inferior_ptid = ecs->ptid;
4725 set_current_inferior (find_inferior_ptid (ecs->ptid));
4726 set_current_program_space (current_inferior ()->pspace);
4727 handle_vfork_child_exec_or_exit (0);
4728 target_terminal_ours (); /* Must do this before mourn anyway. */
4729
4730 /* Clearing any previous state of convenience variables. */
4731 clear_exit_convenience_vars ();
4732
4733 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4734 {
4735 /* Record the exit code in the convenience variable $_exitcode, so
4736 that the user can inspect this again later. */
4737 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4738 (LONGEST) ecs->ws.value.integer);
4739
4740 /* Also record this in the inferior itself. */
4741 current_inferior ()->has_exit_code = 1;
4742 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4743
4744 /* Support the --return-child-result option. */
4745 return_child_result_value = ecs->ws.value.integer;
4746
4747 observer_notify_exited (ecs->ws.value.integer);
4748 }
4749 else
4750 {
4751 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4752 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4753
4754 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4755 {
4756 /* Set the value of the internal variable $_exitsignal,
4757 which holds the signal uncaught by the inferior. */
4758 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4759 gdbarch_gdb_signal_to_target (gdbarch,
4760 ecs->ws.value.sig));
4761 }
4762 else
4763 {
4764 /* We don't have access to the target's method used for
4765 converting between signal numbers (GDB's internal
4766 representation <-> target's representation).
4767 Therefore, we cannot do a good job at displaying this
4768 information to the user. It's better to just warn
4769 her about it (if infrun debugging is enabled), and
4770 give up. */
4771 if (debug_infrun)
4772 fprintf_filtered (gdb_stdlog, _("\
4773Cannot fill $_exitsignal with the correct signal number.\n"));
4774 }
4775
4776 observer_notify_signal_exited (ecs->ws.value.sig);
4777 }
4778
4779 gdb_flush (gdb_stdout);
4780 target_mourn_inferior ();
4781 stop_print_frame = 0;
4782 stop_waiting (ecs);
4783 return;
4784
4785 /* The following are the only cases in which we keep going;
4786 the above cases end in a continue or goto. */
4787 case TARGET_WAITKIND_FORKED:
4788 case TARGET_WAITKIND_VFORKED:
4789 if (debug_infrun)
4790 {
4791 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4792 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4793 else
4794 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4795 }
4796
4797 /* Check whether the inferior is displaced stepping. */
4798 {
4799 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4801 struct displaced_step_inferior_state *displaced
4802 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4803
4804 /* If checking displaced stepping is supported, and thread
4805 ecs->ptid is displaced stepping. */
4806 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4807 {
4808 struct inferior *parent_inf
4809 = find_inferior_ptid (ecs->ptid);
4810 struct regcache *child_regcache;
4811 CORE_ADDR parent_pc;
4812
4813 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4814 indicating that the displaced stepping of syscall instruction
4815 has been done. Perform cleanup for parent process here. Note
4816 that this operation also cleans up the child process for vfork,
4817 because their pages are shared. */
4818 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4819 /* Start a new step-over in another thread if there's one
4820 that needs it. */
4821 start_step_over ();
4822
4823 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4824 {
4825 /* Restore scratch pad for child process. */
4826 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4827 }
4828
4829 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4830 the child's PC is also within the scratchpad. Set the child's PC
4831 to the parent's PC value, which has already been fixed up.
4832 FIXME: we use the parent's aspace here, although we're touching
4833 the child, because the child hasn't been added to the inferior
4834 list yet at this point. */
4835
4836 child_regcache
4837 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4838 gdbarch,
4839 parent_inf->aspace);
4840 /* Read PC value of parent process. */
4841 parent_pc = regcache_read_pc (regcache);
4842
4843 if (debug_displaced)
4844 fprintf_unfiltered (gdb_stdlog,
4845 "displaced: write child pc from %s to %s\n",
4846 paddress (gdbarch,
4847 regcache_read_pc (child_regcache)),
4848 paddress (gdbarch, parent_pc));
4849
4850 regcache_write_pc (child_regcache, parent_pc);
4851 }
4852 }
4853
4854 if (!ptid_equal (ecs->ptid, inferior_ptid))
4855 context_switch (ecs->ptid);
4856
4857 /* Immediately detach breakpoints from the child before there's
4858 any chance of letting the user delete breakpoints from the
4859 breakpoint lists. If we don't do this early, it's easy to
4860 leave left over traps in the child, vis: "break foo; catch
4861 fork; c; <fork>; del; c; <child calls foo>". We only follow
4862 the fork on the last `continue', and by that time the
4863 breakpoint at "foo" is long gone from the breakpoint table.
4864 If we vforked, then we don't need to unpatch here, since both
4865 parent and child are sharing the same memory pages; we'll
4866 need to unpatch at follow/detach time instead to be certain
4867 that new breakpoints added between catchpoint hit time and
4868 vfork follow are detached. */
4869 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4870 {
4871 /* This won't actually modify the breakpoint list, but will
4872 physically remove the breakpoints from the child. */
4873 detach_breakpoints (ecs->ws.value.related_pid);
4874 }
4875
4876 delete_just_stopped_threads_single_step_breakpoints ();
4877
4878 /* In case the event is caught by a catchpoint, remember that
4879 the event is to be followed at the next resume of the thread,
4880 and not immediately. */
4881 ecs->event_thread->pending_follow = ecs->ws;
4882
4883 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4884
4885 ecs->event_thread->control.stop_bpstat
4886 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4887 stop_pc, ecs->ptid, &ecs->ws);
4888
4889 /* If no catchpoint triggered for this, then keep going. Note
4890 that we're interested in knowing the bpstat actually causes a
4891 stop, not just if it may explain the signal. Software
4892 watchpoints, for example, always appear in the bpstat. */
4893 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4894 {
4895 ptid_t parent;
4896 ptid_t child;
4897 int should_resume;
4898 int follow_child
4899 = (follow_fork_mode_string == follow_fork_mode_child);
4900
4901 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4902
4903 should_resume = follow_fork ();
4904
4905 parent = ecs->ptid;
4906 child = ecs->ws.value.related_pid;
4907
4908 /* In non-stop mode, also resume the other branch. */
4909 if (!detach_fork && (non_stop
4910 || (sched_multi && target_is_non_stop_p ())))
4911 {
4912 if (follow_child)
4913 switch_to_thread (parent);
4914 else
4915 switch_to_thread (child);
4916
4917 ecs->event_thread = inferior_thread ();
4918 ecs->ptid = inferior_ptid;
4919 keep_going (ecs);
4920 }
4921
4922 if (follow_child)
4923 switch_to_thread (child);
4924 else
4925 switch_to_thread (parent);
4926
4927 ecs->event_thread = inferior_thread ();
4928 ecs->ptid = inferior_ptid;
4929
4930 if (should_resume)
4931 keep_going (ecs);
4932 else
4933 stop_waiting (ecs);
4934 return;
4935 }
4936 process_event_stop_test (ecs);
4937 return;
4938
4939 case TARGET_WAITKIND_VFORK_DONE:
4940 /* Done with the shared memory region. Re-insert breakpoints in
4941 the parent, and keep going. */
4942
4943 if (debug_infrun)
4944 fprintf_unfiltered (gdb_stdlog,
4945 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
4946
4947 if (!ptid_equal (ecs->ptid, inferior_ptid))
4948 context_switch (ecs->ptid);
4949
4950 current_inferior ()->waiting_for_vfork_done = 0;
4951 current_inferior ()->pspace->breakpoints_not_allowed = 0;
4952 /* This also takes care of reinserting breakpoints in the
4953 previously locked inferior. */
4954 keep_going (ecs);
4955 return;
4956
4957 case TARGET_WAITKIND_EXECD:
4958 if (debug_infrun)
4959 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
4960
4961 if (!ptid_equal (ecs->ptid, inferior_ptid))
4962 context_switch (ecs->ptid);
4963
4964 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4965
4966 /* Do whatever is necessary to the parent branch of the vfork. */
4967 handle_vfork_child_exec_or_exit (1);
4968
4969 /* This causes the eventpoints and symbol table to be reset.
4970 Must do this now, before trying to determine whether to
4971 stop. */
4972 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4973
4974 ecs->event_thread->control.stop_bpstat
4975 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4976 stop_pc, ecs->ptid, &ecs->ws);
4977
4978 /* Note that this may be referenced from inside
4979 bpstat_stop_status above, through inferior_has_execd. */
4980 xfree (ecs->ws.value.execd_pathname);
4981 ecs->ws.value.execd_pathname = NULL;
4982
4983 /* If no catchpoint triggered for this, then keep going. */
4984 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4985 {
4986 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4987 keep_going (ecs);
4988 return;
4989 }
4990 process_event_stop_test (ecs);
4991 return;
4992
4993 /* Be careful not to try to gather much state about a thread
4994 that's in a syscall. It's frequently a losing proposition. */
4995 case TARGET_WAITKIND_SYSCALL_ENTRY:
4996 if (debug_infrun)
4997 fprintf_unfiltered (gdb_stdlog,
4998 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4999 /* Getting the current syscall number. */
5000 if (handle_syscall_event (ecs) == 0)
5001 process_event_stop_test (ecs);
5002 return;
5003
5004 /* Before examining the threads further, step this thread to
5005 get it entirely out of the syscall. (We get notice of the
5006 event when the thread is just on the verge of exiting a
5007 syscall. Stepping one instruction seems to get it back
5008 into user code.) */
5009 case TARGET_WAITKIND_SYSCALL_RETURN:
5010 if (debug_infrun)
5011 fprintf_unfiltered (gdb_stdlog,
5012 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5013 if (handle_syscall_event (ecs) == 0)
5014 process_event_stop_test (ecs);
5015 return;
5016
5017 case TARGET_WAITKIND_STOPPED:
5018 if (debug_infrun)
5019 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5020 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5021 handle_signal_stop (ecs);
5022 return;
5023
5024 case TARGET_WAITKIND_NO_HISTORY:
5025 if (debug_infrun)
5026 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5027 /* Reverse execution: target ran out of history info. */
5028
5029 delete_just_stopped_threads_single_step_breakpoints ();
5030 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5031 observer_notify_no_history ();
5032 stop_waiting (ecs);
5033 return;
5034 }
5035}
5036
5037/* A wrapper around handle_inferior_event_1, which also makes sure
5038 that all temporary struct value objects that were created during
5039 the handling of the event get deleted at the end. */
5040
5041static void
5042handle_inferior_event (struct execution_control_state *ecs)
5043{
5044 struct value *mark = value_mark ();
5045
5046 handle_inferior_event_1 (ecs);
5047 /* Purge all temporary values created during the event handling,
5048 as it could be a long time before we return to the command level
5049 where such values would otherwise be purged. */
5050 value_free_to_mark (mark);
5051}
5052
5053/* Restart threads back to what they were trying to do back when we
5054 paused them for an in-line step-over. The EVENT_THREAD thread is
5055 ignored. */
5056
5057static void
5058restart_threads (struct thread_info *event_thread)
5059{
5060 struct thread_info *tp;
5061 struct thread_info *step_over = NULL;
5062
5063 /* In case the instruction just stepped spawned a new thread. */
5064 update_thread_list ();
5065
5066 ALL_NON_EXITED_THREADS (tp)
5067 {
5068 if (tp == event_thread)
5069 {
5070 if (debug_infrun)
5071 fprintf_unfiltered (gdb_stdlog,
5072 "infrun: restart threads: "
5073 "[%s] is event thread\n",
5074 target_pid_to_str (tp->ptid));
5075 continue;
5076 }
5077
5078 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5079 {
5080 if (debug_infrun)
5081 fprintf_unfiltered (gdb_stdlog,
5082 "infrun: restart threads: "
5083 "[%s] not meant to be running\n",
5084 target_pid_to_str (tp->ptid));
5085 continue;
5086 }
5087
5088 if (tp->resumed)
5089 {
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog,
5092 "infrun: restart threads: [%s] resumed\n",
5093 target_pid_to_str (tp->ptid));
5094 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5095 continue;
5096 }
5097
5098 if (thread_is_in_step_over_chain (tp))
5099 {
5100 if (debug_infrun)
5101 fprintf_unfiltered (gdb_stdlog,
5102 "infrun: restart threads: "
5103 "[%s] needs step-over\n",
5104 target_pid_to_str (tp->ptid));
5105 gdb_assert (!tp->resumed);
5106 continue;
5107 }
5108
5109
5110 if (tp->suspend.waitstatus_pending_p)
5111 {
5112 if (debug_infrun)
5113 fprintf_unfiltered (gdb_stdlog,
5114 "infrun: restart threads: "
5115 "[%s] has pending status\n",
5116 target_pid_to_str (tp->ptid));
5117 tp->resumed = 1;
5118 continue;
5119 }
5120
5121 /* If some thread needs to start a step-over at this point, it
5122 should still be in the step-over queue, and thus skipped
5123 above. */
5124 if (thread_still_needs_step_over (tp))
5125 {
5126 internal_error (__FILE__, __LINE__,
5127 "thread [%s] needs a step-over, but not in "
5128 "step-over queue\n",
5129 target_pid_to_str (tp->ptid));
5130 }
5131
5132 if (currently_stepping (tp))
5133 {
5134 if (debug_infrun)
5135 fprintf_unfiltered (gdb_stdlog,
5136 "infrun: restart threads: [%s] was stepping\n",
5137 target_pid_to_str (tp->ptid));
5138 keep_going_stepped_thread (tp);
5139 }
5140 else
5141 {
5142 struct execution_control_state ecss;
5143 struct execution_control_state *ecs = &ecss;
5144
5145 if (debug_infrun)
5146 fprintf_unfiltered (gdb_stdlog,
5147 "infrun: restart threads: [%s] continuing\n",
5148 target_pid_to_str (tp->ptid));
5149 reset_ecs (ecs, tp);
5150 switch_to_thread (tp->ptid);
5151 keep_going_pass_signal (ecs);
5152 }
5153 }
5154}
5155
5156/* Callback for iterate_over_threads. Find a resumed thread that has
5157 a pending waitstatus. */
5158
5159static int
5160resumed_thread_with_pending_status (struct thread_info *tp,
5161 void *arg)
5162{
5163 return (tp->resumed
5164 && tp->suspend.waitstatus_pending_p);
5165}
5166
5167/* Called when we get an event that may finish an in-line or
5168 out-of-line (displaced stepping) step-over started previously.
5169 Return true if the event is processed and we should go back to the
5170 event loop; false if the caller should continue processing the
5171 event. */
5172
5173static int
5174finish_step_over (struct execution_control_state *ecs)
5175{
5176 int had_step_over_info;
5177
5178 displaced_step_fixup (ecs->ptid,
5179 ecs->event_thread->suspend.stop_signal);
5180
5181 had_step_over_info = step_over_info_valid_p ();
5182
5183 if (had_step_over_info)
5184 {
5185 /* If we're stepping over a breakpoint with all threads locked,
5186 then only the thread that was stepped should be reporting
5187 back an event. */
5188 gdb_assert (ecs->event_thread->control.trap_expected);
5189
5190 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5191 clear_step_over_info ();
5192 }
5193
5194 if (!target_is_non_stop_p ())
5195 return 0;
5196
5197 /* Start a new step-over in another thread if there's one that
5198 needs it. */
5199 start_step_over ();
5200
5201 /* If we were stepping over a breakpoint before, and haven't started
5202 a new in-line step-over sequence, then restart all other threads
5203 (except the event thread). We can't do this in all-stop, as then
5204 e.g., we wouldn't be able to issue any other remote packet until
5205 these other threads stop. */
5206 if (had_step_over_info && !step_over_info_valid_p ())
5207 {
5208 struct thread_info *pending;
5209
5210 /* If we only have threads with pending statuses, the restart
5211 below won't restart any thread and so nothing re-inserts the
5212 breakpoint we just stepped over. But we need it inserted
5213 when we later process the pending events, otherwise if
5214 another thread has a pending event for this breakpoint too,
5215 we'd discard its event (because the breakpoint that
5216 originally caused the event was no longer inserted). */
5217 context_switch (ecs->ptid);
5218 insert_breakpoints ();
5219
5220 restart_threads (ecs->event_thread);
5221
5222 /* If we have events pending, go through handle_inferior_event
5223 again, picking up a pending event at random. This avoids
5224 thread starvation. */
5225
5226 /* But not if we just stepped over a watchpoint in order to let
5227 the instruction execute so we can evaluate its expression.
5228 The set of watchpoints that triggered is recorded in the
5229 breakpoint objects themselves (see bp->watchpoint_triggered).
5230 If we processed another event first, that other event could
5231 clobber this info. */
5232 if (ecs->event_thread->stepping_over_watchpoint)
5233 return 0;
5234
5235 pending = iterate_over_threads (resumed_thread_with_pending_status,
5236 NULL);
5237 if (pending != NULL)
5238 {
5239 struct thread_info *tp = ecs->event_thread;
5240 struct regcache *regcache;
5241
5242 if (debug_infrun)
5243 {
5244 fprintf_unfiltered (gdb_stdlog,
5245 "infrun: found resumed threads with "
5246 "pending events, saving status\n");
5247 }
5248
5249 gdb_assert (pending != tp);
5250
5251 /* Record the event thread's event for later. */
5252 save_waitstatus (tp, &ecs->ws);
5253 /* This was cleared early, by handle_inferior_event. Set it
5254 so this pending event is considered by
5255 do_target_wait. */
5256 tp->resumed = 1;
5257
5258 gdb_assert (!tp->executing);
5259
5260 regcache = get_thread_regcache (tp->ptid);
5261 tp->suspend.stop_pc = regcache_read_pc (regcache);
5262
5263 if (debug_infrun)
5264 {
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: saved stop_pc=%s for %s "
5267 "(currently_stepping=%d)\n",
5268 paddress (target_gdbarch (),
5269 tp->suspend.stop_pc),
5270 target_pid_to_str (tp->ptid),
5271 currently_stepping (tp));
5272 }
5273
5274 /* This in-line step-over finished; clear this so we won't
5275 start a new one. This is what handle_signal_stop would
5276 do, if we returned false. */
5277 tp->stepping_over_breakpoint = 0;
5278
5279 /* Wake up the event loop again. */
5280 mark_async_event_handler (infrun_async_inferior_event_token);
5281
5282 prepare_to_wait (ecs);
5283 return 1;
5284 }
5285 }
5286
5287 return 0;
5288}
5289
5290/* Come here when the program has stopped with a signal. */
5291
5292static void
5293handle_signal_stop (struct execution_control_state *ecs)
5294{
5295 struct frame_info *frame;
5296 struct gdbarch *gdbarch;
5297 int stopped_by_watchpoint;
5298 enum stop_kind stop_soon;
5299 int random_signal;
5300
5301 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5302
5303 /* Do we need to clean up the state of a thread that has
5304 completed a displaced single-step? (Doing so usually affects
5305 the PC, so do it here, before we set stop_pc.) */
5306 if (finish_step_over (ecs))
5307 return;
5308
5309 /* If we either finished a single-step or hit a breakpoint, but
5310 the user wanted this thread to be stopped, pretend we got a
5311 SIG0 (generic unsignaled stop). */
5312 if (ecs->event_thread->stop_requested
5313 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5314 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5315
5316 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5317
5318 if (debug_infrun)
5319 {
5320 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5321 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5322 struct cleanup *old_chain = save_inferior_ptid ();
5323
5324 inferior_ptid = ecs->ptid;
5325
5326 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5327 paddress (gdbarch, stop_pc));
5328 if (target_stopped_by_watchpoint ())
5329 {
5330 CORE_ADDR addr;
5331
5332 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5333
5334 if (target_stopped_data_address (&current_target, &addr))
5335 fprintf_unfiltered (gdb_stdlog,
5336 "infrun: stopped data address = %s\n",
5337 paddress (gdbarch, addr));
5338 else
5339 fprintf_unfiltered (gdb_stdlog,
5340 "infrun: (no data address available)\n");
5341 }
5342
5343 do_cleanups (old_chain);
5344 }
5345
5346 /* This is originated from start_remote(), start_inferior() and
5347 shared libraries hook functions. */
5348 stop_soon = get_inferior_stop_soon (ecs->ptid);
5349 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5350 {
5351 if (!ptid_equal (ecs->ptid, inferior_ptid))
5352 context_switch (ecs->ptid);
5353 if (debug_infrun)
5354 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5355 stop_print_frame = 1;
5356 stop_waiting (ecs);
5357 return;
5358 }
5359
5360 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5361 && stop_after_trap)
5362 {
5363 if (!ptid_equal (ecs->ptid, inferior_ptid))
5364 context_switch (ecs->ptid);
5365 if (debug_infrun)
5366 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5367 stop_print_frame = 0;
5368 stop_waiting (ecs);
5369 return;
5370 }
5371
5372 /* This originates from attach_command(). We need to overwrite
5373 the stop_signal here, because some kernels don't ignore a
5374 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5375 See more comments in inferior.h. On the other hand, if we
5376 get a non-SIGSTOP, report it to the user - assume the backend
5377 will handle the SIGSTOP if it should show up later.
5378
5379 Also consider that the attach is complete when we see a
5380 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5381 target extended-remote report it instead of a SIGSTOP
5382 (e.g. gdbserver). We already rely on SIGTRAP being our
5383 signal, so this is no exception.
5384
5385 Also consider that the attach is complete when we see a
5386 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5387 the target to stop all threads of the inferior, in case the
5388 low level attach operation doesn't stop them implicitly. If
5389 they weren't stopped implicitly, then the stub will report a
5390 GDB_SIGNAL_0, meaning: stopped for no particular reason
5391 other than GDB's request. */
5392 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5393 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5394 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5395 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5396 {
5397 stop_print_frame = 1;
5398 stop_waiting (ecs);
5399 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5400 return;
5401 }
5402
5403 /* See if something interesting happened to the non-current thread. If
5404 so, then switch to that thread. */
5405 if (!ptid_equal (ecs->ptid, inferior_ptid))
5406 {
5407 if (debug_infrun)
5408 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5409
5410 context_switch (ecs->ptid);
5411
5412 if (deprecated_context_hook)
5413 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5414 }
5415
5416 /* At this point, get hold of the now-current thread's frame. */
5417 frame = get_current_frame ();
5418 gdbarch = get_frame_arch (frame);
5419
5420 /* Pull the single step breakpoints out of the target. */
5421 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5422 {
5423 struct regcache *regcache;
5424 struct address_space *aspace;
5425 CORE_ADDR pc;
5426
5427 regcache = get_thread_regcache (ecs->ptid);
5428 aspace = get_regcache_aspace (regcache);
5429 pc = regcache_read_pc (regcache);
5430
5431 /* However, before doing so, if this single-step breakpoint was
5432 actually for another thread, set this thread up for moving
5433 past it. */
5434 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5435 aspace, pc))
5436 {
5437 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5438 {
5439 if (debug_infrun)
5440 {
5441 fprintf_unfiltered (gdb_stdlog,
5442 "infrun: [%s] hit another thread's "
5443 "single-step breakpoint\n",
5444 target_pid_to_str (ecs->ptid));
5445 }
5446 ecs->hit_singlestep_breakpoint = 1;
5447 }
5448 }
5449 else
5450 {
5451 if (debug_infrun)
5452 {
5453 fprintf_unfiltered (gdb_stdlog,
5454 "infrun: [%s] hit its "
5455 "single-step breakpoint\n",
5456 target_pid_to_str (ecs->ptid));
5457 }
5458 }
5459 }
5460 delete_just_stopped_threads_single_step_breakpoints ();
5461
5462 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5463 && ecs->event_thread->control.trap_expected
5464 && ecs->event_thread->stepping_over_watchpoint)
5465 stopped_by_watchpoint = 0;
5466 else
5467 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5468
5469 /* If necessary, step over this watchpoint. We'll be back to display
5470 it in a moment. */
5471 if (stopped_by_watchpoint
5472 && (target_have_steppable_watchpoint
5473 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5474 {
5475 /* At this point, we are stopped at an instruction which has
5476 attempted to write to a piece of memory under control of
5477 a watchpoint. The instruction hasn't actually executed
5478 yet. If we were to evaluate the watchpoint expression
5479 now, we would get the old value, and therefore no change
5480 would seem to have occurred.
5481
5482 In order to make watchpoints work `right', we really need
5483 to complete the memory write, and then evaluate the
5484 watchpoint expression. We do this by single-stepping the
5485 target.
5486
5487 It may not be necessary to disable the watchpoint to step over
5488 it. For example, the PA can (with some kernel cooperation)
5489 single step over a watchpoint without disabling the watchpoint.
5490
5491 It is far more common to need to disable a watchpoint to step
5492 the inferior over it. If we have non-steppable watchpoints,
5493 we must disable the current watchpoint; it's simplest to
5494 disable all watchpoints.
5495
5496 Any breakpoint at PC must also be stepped over -- if there's
5497 one, it will have already triggered before the watchpoint
5498 triggered, and we either already reported it to the user, or
5499 it didn't cause a stop and we called keep_going. In either
5500 case, if there was a breakpoint at PC, we must be trying to
5501 step past it. */
5502 ecs->event_thread->stepping_over_watchpoint = 1;
5503 keep_going (ecs);
5504 return;
5505 }
5506
5507 ecs->event_thread->stepping_over_breakpoint = 0;
5508 ecs->event_thread->stepping_over_watchpoint = 0;
5509 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5510 ecs->event_thread->control.stop_step = 0;
5511 stop_print_frame = 1;
5512 stopped_by_random_signal = 0;
5513
5514 /* Hide inlined functions starting here, unless we just performed stepi or
5515 nexti. After stepi and nexti, always show the innermost frame (not any
5516 inline function call sites). */
5517 if (ecs->event_thread->control.step_range_end != 1)
5518 {
5519 struct address_space *aspace =
5520 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5521
5522 /* skip_inline_frames is expensive, so we avoid it if we can
5523 determine that the address is one where functions cannot have
5524 been inlined. This improves performance with inferiors that
5525 load a lot of shared libraries, because the solib event
5526 breakpoint is defined as the address of a function (i.e. not
5527 inline). Note that we have to check the previous PC as well
5528 as the current one to catch cases when we have just
5529 single-stepped off a breakpoint prior to reinstating it.
5530 Note that we're assuming that the code we single-step to is
5531 not inline, but that's not definitive: there's nothing
5532 preventing the event breakpoint function from containing
5533 inlined code, and the single-step ending up there. If the
5534 user had set a breakpoint on that inlined code, the missing
5535 skip_inline_frames call would break things. Fortunately
5536 that's an extremely unlikely scenario. */
5537 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5538 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5539 && ecs->event_thread->control.trap_expected
5540 && pc_at_non_inline_function (aspace,
5541 ecs->event_thread->prev_pc,
5542 &ecs->ws)))
5543 {
5544 skip_inline_frames (ecs->ptid);
5545
5546 /* Re-fetch current thread's frame in case that invalidated
5547 the frame cache. */
5548 frame = get_current_frame ();
5549 gdbarch = get_frame_arch (frame);
5550 }
5551 }
5552
5553 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5554 && ecs->event_thread->control.trap_expected
5555 && gdbarch_single_step_through_delay_p (gdbarch)
5556 && currently_stepping (ecs->event_thread))
5557 {
5558 /* We're trying to step off a breakpoint. Turns out that we're
5559 also on an instruction that needs to be stepped multiple
5560 times before it's been fully executing. E.g., architectures
5561 with a delay slot. It needs to be stepped twice, once for
5562 the instruction and once for the delay slot. */
5563 int step_through_delay
5564 = gdbarch_single_step_through_delay (gdbarch, frame);
5565
5566 if (debug_infrun && step_through_delay)
5567 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5568 if (ecs->event_thread->control.step_range_end == 0
5569 && step_through_delay)
5570 {
5571 /* The user issued a continue when stopped at a breakpoint.
5572 Set up for another trap and get out of here. */
5573 ecs->event_thread->stepping_over_breakpoint = 1;
5574 keep_going (ecs);
5575 return;
5576 }
5577 else if (step_through_delay)
5578 {
5579 /* The user issued a step when stopped at a breakpoint.
5580 Maybe we should stop, maybe we should not - the delay
5581 slot *might* correspond to a line of source. In any
5582 case, don't decide that here, just set
5583 ecs->stepping_over_breakpoint, making sure we
5584 single-step again before breakpoints are re-inserted. */
5585 ecs->event_thread->stepping_over_breakpoint = 1;
5586 }
5587 }
5588
5589 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5590 handles this event. */
5591 ecs->event_thread->control.stop_bpstat
5592 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5593 stop_pc, ecs->ptid, &ecs->ws);
5594
5595 /* Following in case break condition called a
5596 function. */
5597 stop_print_frame = 1;
5598
5599 /* This is where we handle "moribund" watchpoints. Unlike
5600 software breakpoints traps, hardware watchpoint traps are
5601 always distinguishable from random traps. If no high-level
5602 watchpoint is associated with the reported stop data address
5603 anymore, then the bpstat does not explain the signal ---
5604 simply make sure to ignore it if `stopped_by_watchpoint' is
5605 set. */
5606
5607 if (debug_infrun
5608 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5609 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5610 GDB_SIGNAL_TRAP)
5611 && stopped_by_watchpoint)
5612 fprintf_unfiltered (gdb_stdlog,
5613 "infrun: no user watchpoint explains "
5614 "watchpoint SIGTRAP, ignoring\n");
5615
5616 /* NOTE: cagney/2003-03-29: These checks for a random signal
5617 at one stage in the past included checks for an inferior
5618 function call's call dummy's return breakpoint. The original
5619 comment, that went with the test, read:
5620
5621 ``End of a stack dummy. Some systems (e.g. Sony news) give
5622 another signal besides SIGTRAP, so check here as well as
5623 above.''
5624
5625 If someone ever tries to get call dummys on a
5626 non-executable stack to work (where the target would stop
5627 with something like a SIGSEGV), then those tests might need
5628 to be re-instated. Given, however, that the tests were only
5629 enabled when momentary breakpoints were not being used, I
5630 suspect that it won't be the case.
5631
5632 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5633 be necessary for call dummies on a non-executable stack on
5634 SPARC. */
5635
5636 /* See if the breakpoints module can explain the signal. */
5637 random_signal
5638 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5639 ecs->event_thread->suspend.stop_signal);
5640
5641 /* Maybe this was a trap for a software breakpoint that has since
5642 been removed. */
5643 if (random_signal && target_stopped_by_sw_breakpoint ())
5644 {
5645 if (program_breakpoint_here_p (gdbarch, stop_pc))
5646 {
5647 struct regcache *regcache;
5648 int decr_pc;
5649
5650 /* Re-adjust PC to what the program would see if GDB was not
5651 debugging it. */
5652 regcache = get_thread_regcache (ecs->event_thread->ptid);
5653 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5654 if (decr_pc != 0)
5655 {
5656 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5657
5658 if (record_full_is_used ())
5659 record_full_gdb_operation_disable_set ();
5660
5661 regcache_write_pc (regcache, stop_pc + decr_pc);
5662
5663 do_cleanups (old_cleanups);
5664 }
5665 }
5666 else
5667 {
5668 /* A delayed software breakpoint event. Ignore the trap. */
5669 if (debug_infrun)
5670 fprintf_unfiltered (gdb_stdlog,
5671 "infrun: delayed software breakpoint "
5672 "trap, ignoring\n");
5673 random_signal = 0;
5674 }
5675 }
5676
5677 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5678 has since been removed. */
5679 if (random_signal && target_stopped_by_hw_breakpoint ())
5680 {
5681 /* A delayed hardware breakpoint event. Ignore the trap. */
5682 if (debug_infrun)
5683 fprintf_unfiltered (gdb_stdlog,
5684 "infrun: delayed hardware breakpoint/watchpoint "
5685 "trap, ignoring\n");
5686 random_signal = 0;
5687 }
5688
5689 /* If not, perhaps stepping/nexting can. */
5690 if (random_signal)
5691 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5692 && currently_stepping (ecs->event_thread));
5693
5694 /* Perhaps the thread hit a single-step breakpoint of _another_
5695 thread. Single-step breakpoints are transparent to the
5696 breakpoints module. */
5697 if (random_signal)
5698 random_signal = !ecs->hit_singlestep_breakpoint;
5699
5700 /* No? Perhaps we got a moribund watchpoint. */
5701 if (random_signal)
5702 random_signal = !stopped_by_watchpoint;
5703
5704 /* For the program's own signals, act according to
5705 the signal handling tables. */
5706
5707 if (random_signal)
5708 {
5709 /* Signal not for debugging purposes. */
5710 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5711 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5712
5713 if (debug_infrun)
5714 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5715 gdb_signal_to_symbol_string (stop_signal));
5716
5717 stopped_by_random_signal = 1;
5718
5719 /* Always stop on signals if we're either just gaining control
5720 of the program, or the user explicitly requested this thread
5721 to remain stopped. */
5722 if (stop_soon != NO_STOP_QUIETLY
5723 || ecs->event_thread->stop_requested
5724 || (!inf->detaching
5725 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5726 {
5727 stop_waiting (ecs);
5728 return;
5729 }
5730
5731 /* Notify observers the signal has "handle print" set. Note we
5732 returned early above if stopping; normal_stop handles the
5733 printing in that case. */
5734 if (signal_print[ecs->event_thread->suspend.stop_signal])
5735 {
5736 /* The signal table tells us to print about this signal. */
5737 target_terminal_ours_for_output ();
5738 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5739 target_terminal_inferior ();
5740 }
5741
5742 /* Clear the signal if it should not be passed. */
5743 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5744 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5745
5746 if (ecs->event_thread->prev_pc == stop_pc
5747 && ecs->event_thread->control.trap_expected
5748 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5749 {
5750 int was_in_line;
5751
5752 /* We were just starting a new sequence, attempting to
5753 single-step off of a breakpoint and expecting a SIGTRAP.
5754 Instead this signal arrives. This signal will take us out
5755 of the stepping range so GDB needs to remember to, when
5756 the signal handler returns, resume stepping off that
5757 breakpoint. */
5758 /* To simplify things, "continue" is forced to use the same
5759 code paths as single-step - set a breakpoint at the
5760 signal return address and then, once hit, step off that
5761 breakpoint. */
5762 if (debug_infrun)
5763 fprintf_unfiltered (gdb_stdlog,
5764 "infrun: signal arrived while stepping over "
5765 "breakpoint\n");
5766
5767 was_in_line = step_over_info_valid_p ();
5768 clear_step_over_info ();
5769 insert_hp_step_resume_breakpoint_at_frame (frame);
5770 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5771 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5772 ecs->event_thread->control.trap_expected = 0;
5773
5774 if (target_is_non_stop_p ())
5775 {
5776 /* Either "set non-stop" is "on", or the target is
5777 always in non-stop mode. In this case, we have a bit
5778 more work to do. Resume the current thread, and if
5779 we had paused all threads, restart them while the
5780 signal handler runs. */
5781 keep_going (ecs);
5782
5783 if (was_in_line)
5784 {
5785 restart_threads (ecs->event_thread);
5786 }
5787 else if (debug_infrun)
5788 {
5789 fprintf_unfiltered (gdb_stdlog,
5790 "infrun: no need to restart threads\n");
5791 }
5792 return;
5793 }
5794
5795 /* If we were nexting/stepping some other thread, switch to
5796 it, so that we don't continue it, losing control. */
5797 if (!switch_back_to_stepped_thread (ecs))
5798 keep_going (ecs);
5799 return;
5800 }
5801
5802 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5803 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5804 || ecs->event_thread->control.step_range_end == 1)
5805 && frame_id_eq (get_stack_frame_id (frame),
5806 ecs->event_thread->control.step_stack_frame_id)
5807 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5808 {
5809 /* The inferior is about to take a signal that will take it
5810 out of the single step range. Set a breakpoint at the
5811 current PC (which is presumably where the signal handler
5812 will eventually return) and then allow the inferior to
5813 run free.
5814
5815 Note that this is only needed for a signal delivered
5816 while in the single-step range. Nested signals aren't a
5817 problem as they eventually all return. */
5818 if (debug_infrun)
5819 fprintf_unfiltered (gdb_stdlog,
5820 "infrun: signal may take us out of "
5821 "single-step range\n");
5822
5823 clear_step_over_info ();
5824 insert_hp_step_resume_breakpoint_at_frame (frame);
5825 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5826 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5827 ecs->event_thread->control.trap_expected = 0;
5828 keep_going (ecs);
5829 return;
5830 }
5831
5832 /* Note: step_resume_breakpoint may be non-NULL. This occures
5833 when either there's a nested signal, or when there's a
5834 pending signal enabled just as the signal handler returns
5835 (leaving the inferior at the step-resume-breakpoint without
5836 actually executing it). Either way continue until the
5837 breakpoint is really hit. */
5838
5839 if (!switch_back_to_stepped_thread (ecs))
5840 {
5841 if (debug_infrun)
5842 fprintf_unfiltered (gdb_stdlog,
5843 "infrun: random signal, keep going\n");
5844
5845 keep_going (ecs);
5846 }
5847 return;
5848 }
5849
5850 process_event_stop_test (ecs);
5851}
5852
5853/* Come here when we've got some debug event / signal we can explain
5854 (IOW, not a random signal), and test whether it should cause a
5855 stop, or whether we should resume the inferior (transparently).
5856 E.g., could be a breakpoint whose condition evaluates false; we
5857 could be still stepping within the line; etc. */
5858
5859static void
5860process_event_stop_test (struct execution_control_state *ecs)
5861{
5862 struct symtab_and_line stop_pc_sal;
5863 struct frame_info *frame;
5864 struct gdbarch *gdbarch;
5865 CORE_ADDR jmp_buf_pc;
5866 struct bpstat_what what;
5867
5868 /* Handle cases caused by hitting a breakpoint. */
5869
5870 frame = get_current_frame ();
5871 gdbarch = get_frame_arch (frame);
5872
5873 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5874
5875 if (what.call_dummy)
5876 {
5877 stop_stack_dummy = what.call_dummy;
5878 }
5879
5880 /* If we hit an internal event that triggers symbol changes, the
5881 current frame will be invalidated within bpstat_what (e.g., if we
5882 hit an internal solib event). Re-fetch it. */
5883 frame = get_current_frame ();
5884 gdbarch = get_frame_arch (frame);
5885
5886 switch (what.main_action)
5887 {
5888 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5889 /* If we hit the breakpoint at longjmp while stepping, we
5890 install a momentary breakpoint at the target of the
5891 jmp_buf. */
5892
5893 if (debug_infrun)
5894 fprintf_unfiltered (gdb_stdlog,
5895 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
5896
5897 ecs->event_thread->stepping_over_breakpoint = 1;
5898
5899 if (what.is_longjmp)
5900 {
5901 struct value *arg_value;
5902
5903 /* If we set the longjmp breakpoint via a SystemTap probe,
5904 then use it to extract the arguments. The destination PC
5905 is the third argument to the probe. */
5906 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5907 if (arg_value)
5908 {
5909 jmp_buf_pc = value_as_address (arg_value);
5910 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
5911 }
5912 else if (!gdbarch_get_longjmp_target_p (gdbarch)
5913 || !gdbarch_get_longjmp_target (gdbarch,
5914 frame, &jmp_buf_pc))
5915 {
5916 if (debug_infrun)
5917 fprintf_unfiltered (gdb_stdlog,
5918 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
5919 "(!gdbarch_get_longjmp_target)\n");
5920 keep_going (ecs);
5921 return;
5922 }
5923
5924 /* Insert a breakpoint at resume address. */
5925 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
5926 }
5927 else
5928 check_exception_resume (ecs, frame);
5929 keep_going (ecs);
5930 return;
5931
5932 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
5933 {
5934 struct frame_info *init_frame;
5935
5936 /* There are several cases to consider.
5937
5938 1. The initiating frame no longer exists. In this case we
5939 must stop, because the exception or longjmp has gone too
5940 far.
5941
5942 2. The initiating frame exists, and is the same as the
5943 current frame. We stop, because the exception or longjmp
5944 has been caught.
5945
5946 3. The initiating frame exists and is different from the
5947 current frame. This means the exception or longjmp has
5948 been caught beneath the initiating frame, so keep going.
5949
5950 4. longjmp breakpoint has been placed just to protect
5951 against stale dummy frames and user is not interested in
5952 stopping around longjmps. */
5953
5954 if (debug_infrun)
5955 fprintf_unfiltered (gdb_stdlog,
5956 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
5957
5958 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
5959 != NULL);
5960 delete_exception_resume_breakpoint (ecs->event_thread);
5961
5962 if (what.is_longjmp)
5963 {
5964 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
5965
5966 if (!frame_id_p (ecs->event_thread->initiating_frame))
5967 {
5968 /* Case 4. */
5969 keep_going (ecs);
5970 return;
5971 }
5972 }
5973
5974 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
5975
5976 if (init_frame)
5977 {
5978 struct frame_id current_id
5979 = get_frame_id (get_current_frame ());
5980 if (frame_id_eq (current_id,
5981 ecs->event_thread->initiating_frame))
5982 {
5983 /* Case 2. Fall through. */
5984 }
5985 else
5986 {
5987 /* Case 3. */
5988 keep_going (ecs);
5989 return;
5990 }
5991 }
5992
5993 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
5994 exists. */
5995 delete_step_resume_breakpoint (ecs->event_thread);
5996
5997 end_stepping_range (ecs);
5998 }
5999 return;
6000
6001 case BPSTAT_WHAT_SINGLE:
6002 if (debug_infrun)
6003 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6004 ecs->event_thread->stepping_over_breakpoint = 1;
6005 /* Still need to check other stuff, at least the case where we
6006 are stepping and step out of the right range. */
6007 break;
6008
6009 case BPSTAT_WHAT_STEP_RESUME:
6010 if (debug_infrun)
6011 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6012
6013 delete_step_resume_breakpoint (ecs->event_thread);
6014 if (ecs->event_thread->control.proceed_to_finish
6015 && execution_direction == EXEC_REVERSE)
6016 {
6017 struct thread_info *tp = ecs->event_thread;
6018
6019 /* We are finishing a function in reverse, and just hit the
6020 step-resume breakpoint at the start address of the
6021 function, and we're almost there -- just need to back up
6022 by one more single-step, which should take us back to the
6023 function call. */
6024 tp->control.step_range_start = tp->control.step_range_end = 1;
6025 keep_going (ecs);
6026 return;
6027 }
6028 fill_in_stop_func (gdbarch, ecs);
6029 if (stop_pc == ecs->stop_func_start
6030 && execution_direction == EXEC_REVERSE)
6031 {
6032 /* We are stepping over a function call in reverse, and just
6033 hit the step-resume breakpoint at the start address of
6034 the function. Go back to single-stepping, which should
6035 take us back to the function call. */
6036 ecs->event_thread->stepping_over_breakpoint = 1;
6037 keep_going (ecs);
6038 return;
6039 }
6040 break;
6041
6042 case BPSTAT_WHAT_STOP_NOISY:
6043 if (debug_infrun)
6044 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6045 stop_print_frame = 1;
6046
6047 /* Assume the thread stopped for a breapoint. We'll still check
6048 whether a/the breakpoint is there when the thread is next
6049 resumed. */
6050 ecs->event_thread->stepping_over_breakpoint = 1;
6051
6052 stop_waiting (ecs);
6053 return;
6054
6055 case BPSTAT_WHAT_STOP_SILENT:
6056 if (debug_infrun)
6057 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6058 stop_print_frame = 0;
6059
6060 /* Assume the thread stopped for a breapoint. We'll still check
6061 whether a/the breakpoint is there when the thread is next
6062 resumed. */
6063 ecs->event_thread->stepping_over_breakpoint = 1;
6064 stop_waiting (ecs);
6065 return;
6066
6067 case BPSTAT_WHAT_HP_STEP_RESUME:
6068 if (debug_infrun)
6069 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6070
6071 delete_step_resume_breakpoint (ecs->event_thread);
6072 if (ecs->event_thread->step_after_step_resume_breakpoint)
6073 {
6074 /* Back when the step-resume breakpoint was inserted, we
6075 were trying to single-step off a breakpoint. Go back to
6076 doing that. */
6077 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6078 ecs->event_thread->stepping_over_breakpoint = 1;
6079 keep_going (ecs);
6080 return;
6081 }
6082 break;
6083
6084 case BPSTAT_WHAT_KEEP_CHECKING:
6085 break;
6086 }
6087
6088 /* If we stepped a permanent breakpoint and we had a high priority
6089 step-resume breakpoint for the address we stepped, but we didn't
6090 hit it, then we must have stepped into the signal handler. The
6091 step-resume was only necessary to catch the case of _not_
6092 stepping into the handler, so delete it, and fall through to
6093 checking whether the step finished. */
6094 if (ecs->event_thread->stepped_breakpoint)
6095 {
6096 struct breakpoint *sr_bp
6097 = ecs->event_thread->control.step_resume_breakpoint;
6098
6099 if (sr_bp != NULL
6100 && sr_bp->loc->permanent
6101 && sr_bp->type == bp_hp_step_resume
6102 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6103 {
6104 if (debug_infrun)
6105 fprintf_unfiltered (gdb_stdlog,
6106 "infrun: stepped permanent breakpoint, stopped in "
6107 "handler\n");
6108 delete_step_resume_breakpoint (ecs->event_thread);
6109 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6110 }
6111 }
6112
6113 /* We come here if we hit a breakpoint but should not stop for it.
6114 Possibly we also were stepping and should stop for that. So fall
6115 through and test for stepping. But, if not stepping, do not
6116 stop. */
6117
6118 /* In all-stop mode, if we're currently stepping but have stopped in
6119 some other thread, we need to switch back to the stepped thread. */
6120 if (switch_back_to_stepped_thread (ecs))
6121 return;
6122
6123 if (ecs->event_thread->control.step_resume_breakpoint)
6124 {
6125 if (debug_infrun)
6126 fprintf_unfiltered (gdb_stdlog,
6127 "infrun: step-resume breakpoint is inserted\n");
6128
6129 /* Having a step-resume breakpoint overrides anything
6130 else having to do with stepping commands until
6131 that breakpoint is reached. */
6132 keep_going (ecs);
6133 return;
6134 }
6135
6136 if (ecs->event_thread->control.step_range_end == 0)
6137 {
6138 if (debug_infrun)
6139 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6140 /* Likewise if we aren't even stepping. */
6141 keep_going (ecs);
6142 return;
6143 }
6144
6145 /* Re-fetch current thread's frame in case the code above caused
6146 the frame cache to be re-initialized, making our FRAME variable
6147 a dangling pointer. */
6148 frame = get_current_frame ();
6149 gdbarch = get_frame_arch (frame);
6150 fill_in_stop_func (gdbarch, ecs);
6151
6152 /* If stepping through a line, keep going if still within it.
6153
6154 Note that step_range_end is the address of the first instruction
6155 beyond the step range, and NOT the address of the last instruction
6156 within it!
6157
6158 Note also that during reverse execution, we may be stepping
6159 through a function epilogue and therefore must detect when
6160 the current-frame changes in the middle of a line. */
6161
6162 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6163 && (execution_direction != EXEC_REVERSE
6164 || frame_id_eq (get_frame_id (frame),
6165 ecs->event_thread->control.step_frame_id)))
6166 {
6167 if (debug_infrun)
6168 fprintf_unfiltered
6169 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6170 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6171 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6172
6173 /* Tentatively re-enable range stepping; `resume' disables it if
6174 necessary (e.g., if we're stepping over a breakpoint or we
6175 have software watchpoints). */
6176 ecs->event_thread->control.may_range_step = 1;
6177
6178 /* When stepping backward, stop at beginning of line range
6179 (unless it's the function entry point, in which case
6180 keep going back to the call point). */
6181 if (stop_pc == ecs->event_thread->control.step_range_start
6182 && stop_pc != ecs->stop_func_start
6183 && execution_direction == EXEC_REVERSE)
6184 end_stepping_range (ecs);
6185 else
6186 keep_going (ecs);
6187
6188 return;
6189 }
6190
6191 /* We stepped out of the stepping range. */
6192
6193 /* If we are stepping at the source level and entered the runtime
6194 loader dynamic symbol resolution code...
6195
6196 EXEC_FORWARD: we keep on single stepping until we exit the run
6197 time loader code and reach the callee's address.
6198
6199 EXEC_REVERSE: we've already executed the callee (backward), and
6200 the runtime loader code is handled just like any other
6201 undebuggable function call. Now we need only keep stepping
6202 backward through the trampoline code, and that's handled further
6203 down, so there is nothing for us to do here. */
6204
6205 if (execution_direction != EXEC_REVERSE
6206 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6207 && in_solib_dynsym_resolve_code (stop_pc))
6208 {
6209 CORE_ADDR pc_after_resolver =
6210 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6211
6212 if (debug_infrun)
6213 fprintf_unfiltered (gdb_stdlog,
6214 "infrun: stepped into dynsym resolve code\n");
6215
6216 if (pc_after_resolver)
6217 {
6218 /* Set up a step-resume breakpoint at the address
6219 indicated by SKIP_SOLIB_RESOLVER. */
6220 struct symtab_and_line sr_sal;
6221
6222 init_sal (&sr_sal);
6223 sr_sal.pc = pc_after_resolver;
6224 sr_sal.pspace = get_frame_program_space (frame);
6225
6226 insert_step_resume_breakpoint_at_sal (gdbarch,
6227 sr_sal, null_frame_id);
6228 }
6229
6230 keep_going (ecs);
6231 return;
6232 }
6233
6234 if (ecs->event_thread->control.step_range_end != 1
6235 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6236 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6237 && get_frame_type (frame) == SIGTRAMP_FRAME)
6238 {
6239 if (debug_infrun)
6240 fprintf_unfiltered (gdb_stdlog,
6241 "infrun: stepped into signal trampoline\n");
6242 /* The inferior, while doing a "step" or "next", has ended up in
6243 a signal trampoline (either by a signal being delivered or by
6244 the signal handler returning). Just single-step until the
6245 inferior leaves the trampoline (either by calling the handler
6246 or returning). */
6247 keep_going (ecs);
6248 return;
6249 }
6250
6251 /* If we're in the return path from a shared library trampoline,
6252 we want to proceed through the trampoline when stepping. */
6253 /* macro/2012-04-25: This needs to come before the subroutine
6254 call check below as on some targets return trampolines look
6255 like subroutine calls (MIPS16 return thunks). */
6256 if (gdbarch_in_solib_return_trampoline (gdbarch,
6257 stop_pc, ecs->stop_func_name)
6258 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6259 {
6260 /* Determine where this trampoline returns. */
6261 CORE_ADDR real_stop_pc;
6262
6263 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6264
6265 if (debug_infrun)
6266 fprintf_unfiltered (gdb_stdlog,
6267 "infrun: stepped into solib return tramp\n");
6268
6269 /* Only proceed through if we know where it's going. */
6270 if (real_stop_pc)
6271 {
6272 /* And put the step-breakpoint there and go until there. */
6273 struct symtab_and_line sr_sal;
6274
6275 init_sal (&sr_sal); /* initialize to zeroes */
6276 sr_sal.pc = real_stop_pc;
6277 sr_sal.section = find_pc_overlay (sr_sal.pc);
6278 sr_sal.pspace = get_frame_program_space (frame);
6279
6280 /* Do not specify what the fp should be when we stop since
6281 on some machines the prologue is where the new fp value
6282 is established. */
6283 insert_step_resume_breakpoint_at_sal (gdbarch,
6284 sr_sal, null_frame_id);
6285
6286 /* Restart without fiddling with the step ranges or
6287 other state. */
6288 keep_going (ecs);
6289 return;
6290 }
6291 }
6292
6293 /* Check for subroutine calls. The check for the current frame
6294 equalling the step ID is not necessary - the check of the
6295 previous frame's ID is sufficient - but it is a common case and
6296 cheaper than checking the previous frame's ID.
6297
6298 NOTE: frame_id_eq will never report two invalid frame IDs as
6299 being equal, so to get into this block, both the current and
6300 previous frame must have valid frame IDs. */
6301 /* The outer_frame_id check is a heuristic to detect stepping
6302 through startup code. If we step over an instruction which
6303 sets the stack pointer from an invalid value to a valid value,
6304 we may detect that as a subroutine call from the mythical
6305 "outermost" function. This could be fixed by marking
6306 outermost frames as !stack_p,code_p,special_p. Then the
6307 initial outermost frame, before sp was valid, would
6308 have code_addr == &_start. See the comment in frame_id_eq
6309 for more. */
6310 if (!frame_id_eq (get_stack_frame_id (frame),
6311 ecs->event_thread->control.step_stack_frame_id)
6312 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6313 ecs->event_thread->control.step_stack_frame_id)
6314 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6315 outer_frame_id)
6316 || (ecs->event_thread->control.step_start_function
6317 != find_pc_function (stop_pc)))))
6318 {
6319 CORE_ADDR real_stop_pc;
6320
6321 if (debug_infrun)
6322 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6323
6324 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6325 {
6326 /* I presume that step_over_calls is only 0 when we're
6327 supposed to be stepping at the assembly language level
6328 ("stepi"). Just stop. */
6329 /* And this works the same backward as frontward. MVS */
6330 end_stepping_range (ecs);
6331 return;
6332 }
6333
6334 /* Reverse stepping through solib trampolines. */
6335
6336 if (execution_direction == EXEC_REVERSE
6337 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6338 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6339 || (ecs->stop_func_start == 0
6340 && in_solib_dynsym_resolve_code (stop_pc))))
6341 {
6342 /* Any solib trampoline code can be handled in reverse
6343 by simply continuing to single-step. We have already
6344 executed the solib function (backwards), and a few
6345 steps will take us back through the trampoline to the
6346 caller. */
6347 keep_going (ecs);
6348 return;
6349 }
6350
6351 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6352 {
6353 /* We're doing a "next".
6354
6355 Normal (forward) execution: set a breakpoint at the
6356 callee's return address (the address at which the caller
6357 will resume).
6358
6359 Reverse (backward) execution. set the step-resume
6360 breakpoint at the start of the function that we just
6361 stepped into (backwards), and continue to there. When we
6362 get there, we'll need to single-step back to the caller. */
6363
6364 if (execution_direction == EXEC_REVERSE)
6365 {
6366 /* If we're already at the start of the function, we've either
6367 just stepped backward into a single instruction function,
6368 or stepped back out of a signal handler to the first instruction
6369 of the function. Just keep going, which will single-step back
6370 to the caller. */
6371 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6372 {
6373 struct symtab_and_line sr_sal;
6374
6375 /* Normal function call return (static or dynamic). */
6376 init_sal (&sr_sal);
6377 sr_sal.pc = ecs->stop_func_start;
6378 sr_sal.pspace = get_frame_program_space (frame);
6379 insert_step_resume_breakpoint_at_sal (gdbarch,
6380 sr_sal, null_frame_id);
6381 }
6382 }
6383 else
6384 insert_step_resume_breakpoint_at_caller (frame);
6385
6386 keep_going (ecs);
6387 return;
6388 }
6389
6390 /* If we are in a function call trampoline (a stub between the
6391 calling routine and the real function), locate the real
6392 function. That's what tells us (a) whether we want to step
6393 into it at all, and (b) what prologue we want to run to the
6394 end of, if we do step into it. */
6395 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6396 if (real_stop_pc == 0)
6397 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6398 if (real_stop_pc != 0)
6399 ecs->stop_func_start = real_stop_pc;
6400
6401 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6402 {
6403 struct symtab_and_line sr_sal;
6404
6405 init_sal (&sr_sal);
6406 sr_sal.pc = ecs->stop_func_start;
6407 sr_sal.pspace = get_frame_program_space (frame);
6408
6409 insert_step_resume_breakpoint_at_sal (gdbarch,
6410 sr_sal, null_frame_id);
6411 keep_going (ecs);
6412 return;
6413 }
6414
6415 /* If we have line number information for the function we are
6416 thinking of stepping into and the function isn't on the skip
6417 list, step into it.
6418
6419 If there are several symtabs at that PC (e.g. with include
6420 files), just want to know whether *any* of them have line
6421 numbers. find_pc_line handles this. */
6422 {
6423 struct symtab_and_line tmp_sal;
6424
6425 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6426 if (tmp_sal.line != 0
6427 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6428 &tmp_sal))
6429 {
6430 if (execution_direction == EXEC_REVERSE)
6431 handle_step_into_function_backward (gdbarch, ecs);
6432 else
6433 handle_step_into_function (gdbarch, ecs);
6434 return;
6435 }
6436 }
6437
6438 /* If we have no line number and the step-stop-if-no-debug is
6439 set, we stop the step so that the user has a chance to switch
6440 in assembly mode. */
6441 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6442 && step_stop_if_no_debug)
6443 {
6444 end_stepping_range (ecs);
6445 return;
6446 }
6447
6448 if (execution_direction == EXEC_REVERSE)
6449 {
6450 /* If we're already at the start of the function, we've either just
6451 stepped backward into a single instruction function without line
6452 number info, or stepped back out of a signal handler to the first
6453 instruction of the function without line number info. Just keep
6454 going, which will single-step back to the caller. */
6455 if (ecs->stop_func_start != stop_pc)
6456 {
6457 /* Set a breakpoint at callee's start address.
6458 From there we can step once and be back in the caller. */
6459 struct symtab_and_line sr_sal;
6460
6461 init_sal (&sr_sal);
6462 sr_sal.pc = ecs->stop_func_start;
6463 sr_sal.pspace = get_frame_program_space (frame);
6464 insert_step_resume_breakpoint_at_sal (gdbarch,
6465 sr_sal, null_frame_id);
6466 }
6467 }
6468 else
6469 /* Set a breakpoint at callee's return address (the address
6470 at which the caller will resume). */
6471 insert_step_resume_breakpoint_at_caller (frame);
6472
6473 keep_going (ecs);
6474 return;
6475 }
6476
6477 /* Reverse stepping through solib trampolines. */
6478
6479 if (execution_direction == EXEC_REVERSE
6480 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6481 {
6482 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6483 || (ecs->stop_func_start == 0
6484 && in_solib_dynsym_resolve_code (stop_pc)))
6485 {
6486 /* Any solib trampoline code can be handled in reverse
6487 by simply continuing to single-step. We have already
6488 executed the solib function (backwards), and a few
6489 steps will take us back through the trampoline to the
6490 caller. */
6491 keep_going (ecs);
6492 return;
6493 }
6494 else if (in_solib_dynsym_resolve_code (stop_pc))
6495 {
6496 /* Stepped backward into the solib dynsym resolver.
6497 Set a breakpoint at its start and continue, then
6498 one more step will take us out. */
6499 struct symtab_and_line sr_sal;
6500
6501 init_sal (&sr_sal);
6502 sr_sal.pc = ecs->stop_func_start;
6503 sr_sal.pspace = get_frame_program_space (frame);
6504 insert_step_resume_breakpoint_at_sal (gdbarch,
6505 sr_sal, null_frame_id);
6506 keep_going (ecs);
6507 return;
6508 }
6509 }
6510
6511 stop_pc_sal = find_pc_line (stop_pc, 0);
6512
6513 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6514 the trampoline processing logic, however, there are some trampolines
6515 that have no names, so we should do trampoline handling first. */
6516 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6517 && ecs->stop_func_name == NULL
6518 && stop_pc_sal.line == 0)
6519 {
6520 if (debug_infrun)
6521 fprintf_unfiltered (gdb_stdlog,
6522 "infrun: stepped into undebuggable function\n");
6523
6524 /* The inferior just stepped into, or returned to, an
6525 undebuggable function (where there is no debugging information
6526 and no line number corresponding to the address where the
6527 inferior stopped). Since we want to skip this kind of code,
6528 we keep going until the inferior returns from this
6529 function - unless the user has asked us not to (via
6530 set step-mode) or we no longer know how to get back
6531 to the call site. */
6532 if (step_stop_if_no_debug
6533 || !frame_id_p (frame_unwind_caller_id (frame)))
6534 {
6535 /* If we have no line number and the step-stop-if-no-debug
6536 is set, we stop the step so that the user has a chance to
6537 switch in assembly mode. */
6538 end_stepping_range (ecs);
6539 return;
6540 }
6541 else
6542 {
6543 /* Set a breakpoint at callee's return address (the address
6544 at which the caller will resume). */
6545 insert_step_resume_breakpoint_at_caller (frame);
6546 keep_going (ecs);
6547 return;
6548 }
6549 }
6550
6551 if (ecs->event_thread->control.step_range_end == 1)
6552 {
6553 /* It is stepi or nexti. We always want to stop stepping after
6554 one instruction. */
6555 if (debug_infrun)
6556 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6557 end_stepping_range (ecs);
6558 return;
6559 }
6560
6561 if (stop_pc_sal.line == 0)
6562 {
6563 /* We have no line number information. That means to stop
6564 stepping (does this always happen right after one instruction,
6565 when we do "s" in a function with no line numbers,
6566 or can this happen as a result of a return or longjmp?). */
6567 if (debug_infrun)
6568 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6569 end_stepping_range (ecs);
6570 return;
6571 }
6572
6573 /* Look for "calls" to inlined functions, part one. If the inline
6574 frame machinery detected some skipped call sites, we have entered
6575 a new inline function. */
6576
6577 if (frame_id_eq (get_frame_id (get_current_frame ()),
6578 ecs->event_thread->control.step_frame_id)
6579 && inline_skipped_frames (ecs->ptid))
6580 {
6581 struct symtab_and_line call_sal;
6582
6583 if (debug_infrun)
6584 fprintf_unfiltered (gdb_stdlog,
6585 "infrun: stepped into inlined function\n");
6586
6587 find_frame_sal (get_current_frame (), &call_sal);
6588
6589 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6590 {
6591 /* For "step", we're going to stop. But if the call site
6592 for this inlined function is on the same source line as
6593 we were previously stepping, go down into the function
6594 first. Otherwise stop at the call site. */
6595
6596 if (call_sal.line == ecs->event_thread->current_line
6597 && call_sal.symtab == ecs->event_thread->current_symtab)
6598 step_into_inline_frame (ecs->ptid);
6599
6600 end_stepping_range (ecs);
6601 return;
6602 }
6603 else
6604 {
6605 /* For "next", we should stop at the call site if it is on a
6606 different source line. Otherwise continue through the
6607 inlined function. */
6608 if (call_sal.line == ecs->event_thread->current_line
6609 && call_sal.symtab == ecs->event_thread->current_symtab)
6610 keep_going (ecs);
6611 else
6612 end_stepping_range (ecs);
6613 return;
6614 }
6615 }
6616
6617 /* Look for "calls" to inlined functions, part two. If we are still
6618 in the same real function we were stepping through, but we have
6619 to go further up to find the exact frame ID, we are stepping
6620 through a more inlined call beyond its call site. */
6621
6622 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6623 && !frame_id_eq (get_frame_id (get_current_frame ()),
6624 ecs->event_thread->control.step_frame_id)
6625 && stepped_in_from (get_current_frame (),
6626 ecs->event_thread->control.step_frame_id))
6627 {
6628 if (debug_infrun)
6629 fprintf_unfiltered (gdb_stdlog,
6630 "infrun: stepping through inlined function\n");
6631
6632 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6633 keep_going (ecs);
6634 else
6635 end_stepping_range (ecs);
6636 return;
6637 }
6638
6639 if ((stop_pc == stop_pc_sal.pc)
6640 && (ecs->event_thread->current_line != stop_pc_sal.line
6641 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6642 {
6643 /* We are at the start of a different line. So stop. Note that
6644 we don't stop if we step into the middle of a different line.
6645 That is said to make things like for (;;) statements work
6646 better. */
6647 if (debug_infrun)
6648 fprintf_unfiltered (gdb_stdlog,
6649 "infrun: stepped to a different line\n");
6650 end_stepping_range (ecs);
6651 return;
6652 }
6653
6654 /* We aren't done stepping.
6655
6656 Optimize by setting the stepping range to the line.
6657 (We might not be in the original line, but if we entered a
6658 new line in mid-statement, we continue stepping. This makes
6659 things like for(;;) statements work better.) */
6660
6661 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6662 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6663 ecs->event_thread->control.may_range_step = 1;
6664 set_step_info (frame, stop_pc_sal);
6665
6666 if (debug_infrun)
6667 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6668 keep_going (ecs);
6669}
6670
6671/* In all-stop mode, if we're currently stepping but have stopped in
6672 some other thread, we may need to switch back to the stepped
6673 thread. Returns true we set the inferior running, false if we left
6674 it stopped (and the event needs further processing). */
6675
6676static int
6677switch_back_to_stepped_thread (struct execution_control_state *ecs)
6678{
6679 if (!target_is_non_stop_p ())
6680 {
6681 struct thread_info *tp;
6682 struct thread_info *stepping_thread;
6683
6684 /* If any thread is blocked on some internal breakpoint, and we
6685 simply need to step over that breakpoint to get it going
6686 again, do that first. */
6687
6688 /* However, if we see an event for the stepping thread, then we
6689 know all other threads have been moved past their breakpoints
6690 already. Let the caller check whether the step is finished,
6691 etc., before deciding to move it past a breakpoint. */
6692 if (ecs->event_thread->control.step_range_end != 0)
6693 return 0;
6694
6695 /* Check if the current thread is blocked on an incomplete
6696 step-over, interrupted by a random signal. */
6697 if (ecs->event_thread->control.trap_expected
6698 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6699 {
6700 if (debug_infrun)
6701 {
6702 fprintf_unfiltered (gdb_stdlog,
6703 "infrun: need to finish step-over of [%s]\n",
6704 target_pid_to_str (ecs->event_thread->ptid));
6705 }
6706 keep_going (ecs);
6707 return 1;
6708 }
6709
6710 /* Check if the current thread is blocked by a single-step
6711 breakpoint of another thread. */
6712 if (ecs->hit_singlestep_breakpoint)
6713 {
6714 if (debug_infrun)
6715 {
6716 fprintf_unfiltered (gdb_stdlog,
6717 "infrun: need to step [%s] over single-step "
6718 "breakpoint\n",
6719 target_pid_to_str (ecs->ptid));
6720 }
6721 keep_going (ecs);
6722 return 1;
6723 }
6724
6725 /* If this thread needs yet another step-over (e.g., stepping
6726 through a delay slot), do it first before moving on to
6727 another thread. */
6728 if (thread_still_needs_step_over (ecs->event_thread))
6729 {
6730 if (debug_infrun)
6731 {
6732 fprintf_unfiltered (gdb_stdlog,
6733 "infrun: thread [%s] still needs step-over\n",
6734 target_pid_to_str (ecs->event_thread->ptid));
6735 }
6736 keep_going (ecs);
6737 return 1;
6738 }
6739
6740 /* If scheduler locking applies even if not stepping, there's no
6741 need to walk over threads. Above we've checked whether the
6742 current thread is stepping. If some other thread not the
6743 event thread is stepping, then it must be that scheduler
6744 locking is not in effect. */
6745 if (schedlock_applies (ecs->event_thread))
6746 return 0;
6747
6748 /* Otherwise, we no longer expect a trap in the current thread.
6749 Clear the trap_expected flag before switching back -- this is
6750 what keep_going does as well, if we call it. */
6751 ecs->event_thread->control.trap_expected = 0;
6752
6753 /* Likewise, clear the signal if it should not be passed. */
6754 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6755 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6756
6757 /* Do all pending step-overs before actually proceeding with
6758 step/next/etc. */
6759 if (start_step_over ())
6760 {
6761 prepare_to_wait (ecs);
6762 return 1;
6763 }
6764
6765 /* Look for the stepping/nexting thread. */
6766 stepping_thread = NULL;
6767
6768 ALL_NON_EXITED_THREADS (tp)
6769 {
6770 /* Ignore threads of processes the caller is not
6771 resuming. */
6772 if (!sched_multi
6773 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6774 continue;
6775
6776 /* When stepping over a breakpoint, we lock all threads
6777 except the one that needs to move past the breakpoint.
6778 If a non-event thread has this set, the "incomplete
6779 step-over" check above should have caught it earlier. */
6780 if (tp->control.trap_expected)
6781 {
6782 internal_error (__FILE__, __LINE__,
6783 "[%s] has inconsistent state: "
6784 "trap_expected=%d\n",
6785 target_pid_to_str (tp->ptid),
6786 tp->control.trap_expected);
6787 }
6788
6789 /* Did we find the stepping thread? */
6790 if (tp->control.step_range_end)
6791 {
6792 /* Yep. There should only one though. */
6793 gdb_assert (stepping_thread == NULL);
6794
6795 /* The event thread is handled at the top, before we
6796 enter this loop. */
6797 gdb_assert (tp != ecs->event_thread);
6798
6799 /* If some thread other than the event thread is
6800 stepping, then scheduler locking can't be in effect,
6801 otherwise we wouldn't have resumed the current event
6802 thread in the first place. */
6803 gdb_assert (!schedlock_applies (tp));
6804
6805 stepping_thread = tp;
6806 }
6807 }
6808
6809 if (stepping_thread != NULL)
6810 {
6811 if (debug_infrun)
6812 fprintf_unfiltered (gdb_stdlog,
6813 "infrun: switching back to stepped thread\n");
6814
6815 if (keep_going_stepped_thread (stepping_thread))
6816 {
6817 prepare_to_wait (ecs);
6818 return 1;
6819 }
6820 }
6821 }
6822
6823 return 0;
6824}
6825
6826/* Set a previously stepped thread back to stepping. Returns true on
6827 success, false if the resume is not possible (e.g., the thread
6828 vanished). */
6829
6830static int
6831keep_going_stepped_thread (struct thread_info *tp)
6832{
6833 struct frame_info *frame;
6834 struct gdbarch *gdbarch;
6835 struct execution_control_state ecss;
6836 struct execution_control_state *ecs = &ecss;
6837
6838 /* If the stepping thread exited, then don't try to switch back and
6839 resume it, which could fail in several different ways depending
6840 on the target. Instead, just keep going.
6841
6842 We can find a stepping dead thread in the thread list in two
6843 cases:
6844
6845 - The target supports thread exit events, and when the target
6846 tries to delete the thread from the thread list, inferior_ptid
6847 pointed at the exiting thread. In such case, calling
6848 delete_thread does not really remove the thread from the list;
6849 instead, the thread is left listed, with 'exited' state.
6850
6851 - The target's debug interface does not support thread exit
6852 events, and so we have no idea whatsoever if the previously
6853 stepping thread is still alive. For that reason, we need to
6854 synchronously query the target now. */
6855
6856 if (is_exited (tp->ptid)
6857 || !target_thread_alive (tp->ptid))
6858 {
6859 if (debug_infrun)
6860 fprintf_unfiltered (gdb_stdlog,
6861 "infrun: not resuming previously "
6862 "stepped thread, it has vanished\n");
6863
6864 delete_thread (tp->ptid);
6865 return 0;
6866 }
6867
6868 if (debug_infrun)
6869 fprintf_unfiltered (gdb_stdlog,
6870 "infrun: resuming previously stepped thread\n");
6871
6872 reset_ecs (ecs, tp);
6873 switch_to_thread (tp->ptid);
6874
6875 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
6876 frame = get_current_frame ();
6877 gdbarch = get_frame_arch (frame);
6878
6879 /* If the PC of the thread we were trying to single-step has
6880 changed, then that thread has trapped or been signaled, but the
6881 event has not been reported to GDB yet. Re-poll the target
6882 looking for this particular thread's event (i.e. temporarily
6883 enable schedlock) by:
6884
6885 - setting a break at the current PC
6886 - resuming that particular thread, only (by setting trap
6887 expected)
6888
6889 This prevents us continuously moving the single-step breakpoint
6890 forward, one instruction at a time, overstepping. */
6891
6892 if (stop_pc != tp->prev_pc)
6893 {
6894 ptid_t resume_ptid;
6895
6896 if (debug_infrun)
6897 fprintf_unfiltered (gdb_stdlog,
6898 "infrun: expected thread advanced also (%s -> %s)\n",
6899 paddress (target_gdbarch (), tp->prev_pc),
6900 paddress (target_gdbarch (), stop_pc));
6901
6902 /* Clear the info of the previous step-over, as it's no longer
6903 valid (if the thread was trying to step over a breakpoint, it
6904 has already succeeded). It's what keep_going would do too,
6905 if we called it. Do this before trying to insert the sss
6906 breakpoint, otherwise if we were previously trying to step
6907 over this exact address in another thread, the breakpoint is
6908 skipped. */
6909 clear_step_over_info ();
6910 tp->control.trap_expected = 0;
6911
6912 insert_single_step_breakpoint (get_frame_arch (frame),
6913 get_frame_address_space (frame),
6914 stop_pc);
6915
6916 tp->resumed = 1;
6917 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
6918 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
6919 }
6920 else
6921 {
6922 if (debug_infrun)
6923 fprintf_unfiltered (gdb_stdlog,
6924 "infrun: expected thread still hasn't advanced\n");
6925
6926 keep_going_pass_signal (ecs);
6927 }
6928 return 1;
6929}
6930
6931/* Is thread TP in the middle of (software or hardware)
6932 single-stepping? (Note the result of this function must never be
6933 passed directly as target_resume's STEP parameter.) */
6934
6935static int
6936currently_stepping (struct thread_info *tp)
6937{
6938 return ((tp->control.step_range_end
6939 && tp->control.step_resume_breakpoint == NULL)
6940 || tp->control.trap_expected
6941 || tp->stepped_breakpoint
6942 || bpstat_should_step ());
6943}
6944
6945/* Inferior has stepped into a subroutine call with source code that
6946 we should not step over. Do step to the first line of code in
6947 it. */
6948
6949static void
6950handle_step_into_function (struct gdbarch *gdbarch,
6951 struct execution_control_state *ecs)
6952{
6953 struct compunit_symtab *cust;
6954 struct symtab_and_line stop_func_sal, sr_sal;
6955
6956 fill_in_stop_func (gdbarch, ecs);
6957
6958 cust = find_pc_compunit_symtab (stop_pc);
6959 if (cust != NULL && compunit_language (cust) != language_asm)
6960 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
6961 ecs->stop_func_start);
6962
6963 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
6964 /* Use the step_resume_break to step until the end of the prologue,
6965 even if that involves jumps (as it seems to on the vax under
6966 4.2). */
6967 /* If the prologue ends in the middle of a source line, continue to
6968 the end of that source line (if it is still within the function).
6969 Otherwise, just go to end of prologue. */
6970 if (stop_func_sal.end
6971 && stop_func_sal.pc != ecs->stop_func_start
6972 && stop_func_sal.end < ecs->stop_func_end)
6973 ecs->stop_func_start = stop_func_sal.end;
6974
6975 /* Architectures which require breakpoint adjustment might not be able
6976 to place a breakpoint at the computed address. If so, the test
6977 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
6978 ecs->stop_func_start to an address at which a breakpoint may be
6979 legitimately placed.
6980
6981 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
6982 made, GDB will enter an infinite loop when stepping through
6983 optimized code consisting of VLIW instructions which contain
6984 subinstructions corresponding to different source lines. On
6985 FR-V, it's not permitted to place a breakpoint on any but the
6986 first subinstruction of a VLIW instruction. When a breakpoint is
6987 set, GDB will adjust the breakpoint address to the beginning of
6988 the VLIW instruction. Thus, we need to make the corresponding
6989 adjustment here when computing the stop address. */
6990
6991 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6992 {
6993 ecs->stop_func_start
6994 = gdbarch_adjust_breakpoint_address (gdbarch,
6995 ecs->stop_func_start);
6996 }
6997
6998 if (ecs->stop_func_start == stop_pc)
6999 {
7000 /* We are already there: stop now. */
7001 end_stepping_range (ecs);
7002 return;
7003 }
7004 else
7005 {
7006 /* Put the step-breakpoint there and go until there. */
7007 init_sal (&sr_sal); /* initialize to zeroes */
7008 sr_sal.pc = ecs->stop_func_start;
7009 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7010 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7011
7012 /* Do not specify what the fp should be when we stop since on
7013 some machines the prologue is where the new fp value is
7014 established. */
7015 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7016
7017 /* And make sure stepping stops right away then. */
7018 ecs->event_thread->control.step_range_end
7019 = ecs->event_thread->control.step_range_start;
7020 }
7021 keep_going (ecs);
7022}
7023
7024/* Inferior has stepped backward into a subroutine call with source
7025 code that we should not step over. Do step to the beginning of the
7026 last line of code in it. */
7027
7028static void
7029handle_step_into_function_backward (struct gdbarch *gdbarch,
7030 struct execution_control_state *ecs)
7031{
7032 struct compunit_symtab *cust;
7033 struct symtab_and_line stop_func_sal;
7034
7035 fill_in_stop_func (gdbarch, ecs);
7036
7037 cust = find_pc_compunit_symtab (stop_pc);
7038 if (cust != NULL && compunit_language (cust) != language_asm)
7039 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7040 ecs->stop_func_start);
7041
7042 stop_func_sal = find_pc_line (stop_pc, 0);
7043
7044 /* OK, we're just going to keep stepping here. */
7045 if (stop_func_sal.pc == stop_pc)
7046 {
7047 /* We're there already. Just stop stepping now. */
7048 end_stepping_range (ecs);
7049 }
7050 else
7051 {
7052 /* Else just reset the step range and keep going.
7053 No step-resume breakpoint, they don't work for
7054 epilogues, which can have multiple entry paths. */
7055 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7056 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7057 keep_going (ecs);
7058 }
7059 return;
7060}
7061
7062/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7063 This is used to both functions and to skip over code. */
7064
7065static void
7066insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7067 struct symtab_and_line sr_sal,
7068 struct frame_id sr_id,
7069 enum bptype sr_type)
7070{
7071 /* There should never be more than one step-resume or longjmp-resume
7072 breakpoint per thread, so we should never be setting a new
7073 step_resume_breakpoint when one is already active. */
7074 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7075 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7076
7077 if (debug_infrun)
7078 fprintf_unfiltered (gdb_stdlog,
7079 "infrun: inserting step-resume breakpoint at %s\n",
7080 paddress (gdbarch, sr_sal.pc));
7081
7082 inferior_thread ()->control.step_resume_breakpoint
7083 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7084}
7085
7086void
7087insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7088 struct symtab_and_line sr_sal,
7089 struct frame_id sr_id)
7090{
7091 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7092 sr_sal, sr_id,
7093 bp_step_resume);
7094}
7095
7096/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7097 This is used to skip a potential signal handler.
7098
7099 This is called with the interrupted function's frame. The signal
7100 handler, when it returns, will resume the interrupted function at
7101 RETURN_FRAME.pc. */
7102
7103static void
7104insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7105{
7106 struct symtab_and_line sr_sal;
7107 struct gdbarch *gdbarch;
7108
7109 gdb_assert (return_frame != NULL);
7110 init_sal (&sr_sal); /* initialize to zeros */
7111
7112 gdbarch = get_frame_arch (return_frame);
7113 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7114 sr_sal.section = find_pc_overlay (sr_sal.pc);
7115 sr_sal.pspace = get_frame_program_space (return_frame);
7116
7117 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7118 get_stack_frame_id (return_frame),
7119 bp_hp_step_resume);
7120}
7121
7122/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7123 is used to skip a function after stepping into it (for "next" or if
7124 the called function has no debugging information).
7125
7126 The current function has almost always been reached by single
7127 stepping a call or return instruction. NEXT_FRAME belongs to the
7128 current function, and the breakpoint will be set at the caller's
7129 resume address.
7130
7131 This is a separate function rather than reusing
7132 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7133 get_prev_frame, which may stop prematurely (see the implementation
7134 of frame_unwind_caller_id for an example). */
7135
7136static void
7137insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7138{
7139 struct symtab_and_line sr_sal;
7140 struct gdbarch *gdbarch;
7141
7142 /* We shouldn't have gotten here if we don't know where the call site
7143 is. */
7144 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7145
7146 init_sal (&sr_sal); /* initialize to zeros */
7147
7148 gdbarch = frame_unwind_caller_arch (next_frame);
7149 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7150 frame_unwind_caller_pc (next_frame));
7151 sr_sal.section = find_pc_overlay (sr_sal.pc);
7152 sr_sal.pspace = frame_unwind_program_space (next_frame);
7153
7154 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7155 frame_unwind_caller_id (next_frame));
7156}
7157
7158/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7159 new breakpoint at the target of a jmp_buf. The handling of
7160 longjmp-resume uses the same mechanisms used for handling
7161 "step-resume" breakpoints. */
7162
7163static void
7164insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7165{
7166 /* There should never be more than one longjmp-resume breakpoint per
7167 thread, so we should never be setting a new
7168 longjmp_resume_breakpoint when one is already active. */
7169 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7170
7171 if (debug_infrun)
7172 fprintf_unfiltered (gdb_stdlog,
7173 "infrun: inserting longjmp-resume breakpoint at %s\n",
7174 paddress (gdbarch, pc));
7175
7176 inferior_thread ()->control.exception_resume_breakpoint =
7177 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7178}
7179
7180/* Insert an exception resume breakpoint. TP is the thread throwing
7181 the exception. The block B is the block of the unwinder debug hook
7182 function. FRAME is the frame corresponding to the call to this
7183 function. SYM is the symbol of the function argument holding the
7184 target PC of the exception. */
7185
7186static void
7187insert_exception_resume_breakpoint (struct thread_info *tp,
7188 const struct block *b,
7189 struct frame_info *frame,
7190 struct symbol *sym)
7191{
7192 TRY
7193 {
7194 struct symbol *vsym;
7195 struct value *value;
7196 CORE_ADDR handler;
7197 struct breakpoint *bp;
7198
7199 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN,
7200 NULL).symbol;
7201 value = read_var_value (vsym, frame);
7202 /* If the value was optimized out, revert to the old behavior. */
7203 if (! value_optimized_out (value))
7204 {
7205 handler = value_as_address (value);
7206
7207 if (debug_infrun)
7208 fprintf_unfiltered (gdb_stdlog,
7209 "infrun: exception resume at %lx\n",
7210 (unsigned long) handler);
7211
7212 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7213 handler, bp_exception_resume);
7214
7215 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7216 frame = NULL;
7217
7218 bp->thread = tp->num;
7219 inferior_thread ()->control.exception_resume_breakpoint = bp;
7220 }
7221 }
7222 CATCH (e, RETURN_MASK_ERROR)
7223 {
7224 /* We want to ignore errors here. */
7225 }
7226 END_CATCH
7227}
7228
7229/* A helper for check_exception_resume that sets an
7230 exception-breakpoint based on a SystemTap probe. */
7231
7232static void
7233insert_exception_resume_from_probe (struct thread_info *tp,
7234 const struct bound_probe *probe,
7235 struct frame_info *frame)
7236{
7237 struct value *arg_value;
7238 CORE_ADDR handler;
7239 struct breakpoint *bp;
7240
7241 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7242 if (!arg_value)
7243 return;
7244
7245 handler = value_as_address (arg_value);
7246
7247 if (debug_infrun)
7248 fprintf_unfiltered (gdb_stdlog,
7249 "infrun: exception resume at %s\n",
7250 paddress (get_objfile_arch (probe->objfile),
7251 handler));
7252
7253 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7254 handler, bp_exception_resume);
7255 bp->thread = tp->num;
7256 inferior_thread ()->control.exception_resume_breakpoint = bp;
7257}
7258
7259/* This is called when an exception has been intercepted. Check to
7260 see whether the exception's destination is of interest, and if so,
7261 set an exception resume breakpoint there. */
7262
7263static void
7264check_exception_resume (struct execution_control_state *ecs,
7265 struct frame_info *frame)
7266{
7267 struct bound_probe probe;
7268 struct symbol *func;
7269
7270 /* First see if this exception unwinding breakpoint was set via a
7271 SystemTap probe point. If so, the probe has two arguments: the
7272 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7273 set a breakpoint there. */
7274 probe = find_probe_by_pc (get_frame_pc (frame));
7275 if (probe.probe)
7276 {
7277 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7278 return;
7279 }
7280
7281 func = get_frame_function (frame);
7282 if (!func)
7283 return;
7284
7285 TRY
7286 {
7287 const struct block *b;
7288 struct block_iterator iter;
7289 struct symbol *sym;
7290 int argno = 0;
7291
7292 /* The exception breakpoint is a thread-specific breakpoint on
7293 the unwinder's debug hook, declared as:
7294
7295 void _Unwind_DebugHook (void *cfa, void *handler);
7296
7297 The CFA argument indicates the frame to which control is
7298 about to be transferred. HANDLER is the destination PC.
7299
7300 We ignore the CFA and set a temporary breakpoint at HANDLER.
7301 This is not extremely efficient but it avoids issues in gdb
7302 with computing the DWARF CFA, and it also works even in weird
7303 cases such as throwing an exception from inside a signal
7304 handler. */
7305
7306 b = SYMBOL_BLOCK_VALUE (func);
7307 ALL_BLOCK_SYMBOLS (b, iter, sym)
7308 {
7309 if (!SYMBOL_IS_ARGUMENT (sym))
7310 continue;
7311
7312 if (argno == 0)
7313 ++argno;
7314 else
7315 {
7316 insert_exception_resume_breakpoint (ecs->event_thread,
7317 b, frame, sym);
7318 break;
7319 }
7320 }
7321 }
7322 CATCH (e, RETURN_MASK_ERROR)
7323 {
7324 }
7325 END_CATCH
7326}
7327
7328static void
7329stop_waiting (struct execution_control_state *ecs)
7330{
7331 if (debug_infrun)
7332 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7333
7334 clear_step_over_info ();
7335
7336 /* Let callers know we don't want to wait for the inferior anymore. */
7337 ecs->wait_some_more = 0;
7338
7339 /* If all-stop, but the target is always in non-stop mode, stop all
7340 threads now that we're presenting the stop to the user. */
7341 if (!non_stop && target_is_non_stop_p ())
7342 stop_all_threads ();
7343}
7344
7345/* Like keep_going, but passes the signal to the inferior, even if the
7346 signal is set to nopass. */
7347
7348static void
7349keep_going_pass_signal (struct execution_control_state *ecs)
7350{
7351 /* Make sure normal_stop is called if we get a QUIT handled before
7352 reaching resume. */
7353 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7354
7355 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7356 gdb_assert (!ecs->event_thread->resumed);
7357
7358 /* Save the pc before execution, to compare with pc after stop. */
7359 ecs->event_thread->prev_pc
7360 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7361
7362 if (ecs->event_thread->control.trap_expected)
7363 {
7364 struct thread_info *tp = ecs->event_thread;
7365
7366 if (debug_infrun)
7367 fprintf_unfiltered (gdb_stdlog,
7368 "infrun: %s has trap_expected set, "
7369 "resuming to collect trap\n",
7370 target_pid_to_str (tp->ptid));
7371
7372 /* We haven't yet gotten our trap, and either: intercepted a
7373 non-signal event (e.g., a fork); or took a signal which we
7374 are supposed to pass through to the inferior. Simply
7375 continue. */
7376 discard_cleanups (old_cleanups);
7377 resume (ecs->event_thread->suspend.stop_signal);
7378 }
7379 else if (step_over_info_valid_p ())
7380 {
7381 /* Another thread is stepping over a breakpoint in-line. If
7382 this thread needs a step-over too, queue the request. In
7383 either case, this resume must be deferred for later. */
7384 struct thread_info *tp = ecs->event_thread;
7385
7386 if (ecs->hit_singlestep_breakpoint
7387 || thread_still_needs_step_over (tp))
7388 {
7389 if (debug_infrun)
7390 fprintf_unfiltered (gdb_stdlog,
7391 "infrun: step-over already in progress: "
7392 "step-over for %s deferred\n",
7393 target_pid_to_str (tp->ptid));
7394 thread_step_over_chain_enqueue (tp);
7395 }
7396 else
7397 {
7398 if (debug_infrun)
7399 fprintf_unfiltered (gdb_stdlog,
7400 "infrun: step-over in progress: "
7401 "resume of %s deferred\n",
7402 target_pid_to_str (tp->ptid));
7403 }
7404
7405 discard_cleanups (old_cleanups);
7406 }
7407 else
7408 {
7409 struct regcache *regcache = get_current_regcache ();
7410 int remove_bp;
7411 int remove_wps;
7412 enum step_over_what step_what;
7413
7414 /* Either the trap was not expected, but we are continuing
7415 anyway (if we got a signal, the user asked it be passed to
7416 the child)
7417 -- or --
7418 We got our expected trap, but decided we should resume from
7419 it.
7420
7421 We're going to run this baby now!
7422
7423 Note that insert_breakpoints won't try to re-insert
7424 already inserted breakpoints. Therefore, we don't
7425 care if breakpoints were already inserted, or not. */
7426
7427 /* If we need to step over a breakpoint, and we're not using
7428 displaced stepping to do so, insert all breakpoints
7429 (watchpoints, etc.) but the one we're stepping over, step one
7430 instruction, and then re-insert the breakpoint when that step
7431 is finished. */
7432
7433 step_what = thread_still_needs_step_over (ecs->event_thread);
7434
7435 remove_bp = (ecs->hit_singlestep_breakpoint
7436 || (step_what & STEP_OVER_BREAKPOINT));
7437 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7438
7439 /* We can't use displaced stepping if we need to step past a
7440 watchpoint. The instruction copied to the scratch pad would
7441 still trigger the watchpoint. */
7442 if (remove_bp
7443 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7444 {
7445 set_step_over_info (get_regcache_aspace (regcache),
7446 regcache_read_pc (regcache), remove_wps);
7447 }
7448 else if (remove_wps)
7449 set_step_over_info (NULL, 0, remove_wps);
7450
7451 /* If we now need to do an in-line step-over, we need to stop
7452 all other threads. Note this must be done before
7453 insert_breakpoints below, because that removes the breakpoint
7454 we're about to step over, otherwise other threads could miss
7455 it. */
7456 if (step_over_info_valid_p () && target_is_non_stop_p ())
7457 stop_all_threads ();
7458
7459 /* Stop stepping if inserting breakpoints fails. */
7460 TRY
7461 {
7462 insert_breakpoints ();
7463 }
7464 CATCH (e, RETURN_MASK_ERROR)
7465 {
7466 exception_print (gdb_stderr, e);
7467 stop_waiting (ecs);
7468 discard_cleanups (old_cleanups);
7469 return;
7470 }
7471 END_CATCH
7472
7473 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7474
7475 discard_cleanups (old_cleanups);
7476 resume (ecs->event_thread->suspend.stop_signal);
7477 }
7478
7479 prepare_to_wait (ecs);
7480}
7481
7482/* Called when we should continue running the inferior, because the
7483 current event doesn't cause a user visible stop. This does the
7484 resuming part; waiting for the next event is done elsewhere. */
7485
7486static void
7487keep_going (struct execution_control_state *ecs)
7488{
7489 if (ecs->event_thread->control.trap_expected
7490 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7491 ecs->event_thread->control.trap_expected = 0;
7492
7493 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7494 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7495 keep_going_pass_signal (ecs);
7496}
7497
7498/* This function normally comes after a resume, before
7499 handle_inferior_event exits. It takes care of any last bits of
7500 housekeeping, and sets the all-important wait_some_more flag. */
7501
7502static void
7503prepare_to_wait (struct execution_control_state *ecs)
7504{
7505 if (debug_infrun)
7506 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7507
7508 /* This is the old end of the while loop. Let everybody know we
7509 want to wait for the inferior some more and get called again
7510 soon. */
7511 ecs->wait_some_more = 1;
7512}
7513
7514/* We are done with the step range of a step/next/si/ni command.
7515 Called once for each n of a "step n" operation. */
7516
7517static void
7518end_stepping_range (struct execution_control_state *ecs)
7519{
7520 ecs->event_thread->control.stop_step = 1;
7521 stop_waiting (ecs);
7522}
7523
7524/* Several print_*_reason functions to print why the inferior has stopped.
7525 We always print something when the inferior exits, or receives a signal.
7526 The rest of the cases are dealt with later on in normal_stop and
7527 print_it_typical. Ideally there should be a call to one of these
7528 print_*_reason functions functions from handle_inferior_event each time
7529 stop_waiting is called.
7530
7531 Note that we don't call these directly, instead we delegate that to
7532 the interpreters, through observers. Interpreters then call these
7533 with whatever uiout is right. */
7534
7535void
7536print_end_stepping_range_reason (struct ui_out *uiout)
7537{
7538 /* For CLI-like interpreters, print nothing. */
7539
7540 if (ui_out_is_mi_like_p (uiout))
7541 {
7542 ui_out_field_string (uiout, "reason",
7543 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7544 }
7545}
7546
7547void
7548print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7549{
7550 annotate_signalled ();
7551 if (ui_out_is_mi_like_p (uiout))
7552 ui_out_field_string
7553 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7554 ui_out_text (uiout, "\nProgram terminated with signal ");
7555 annotate_signal_name ();
7556 ui_out_field_string (uiout, "signal-name",
7557 gdb_signal_to_name (siggnal));
7558 annotate_signal_name_end ();
7559 ui_out_text (uiout, ", ");
7560 annotate_signal_string ();
7561 ui_out_field_string (uiout, "signal-meaning",
7562 gdb_signal_to_string (siggnal));
7563 annotate_signal_string_end ();
7564 ui_out_text (uiout, ".\n");
7565 ui_out_text (uiout, "The program no longer exists.\n");
7566}
7567
7568void
7569print_exited_reason (struct ui_out *uiout, int exitstatus)
7570{
7571 struct inferior *inf = current_inferior ();
7572 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7573
7574 annotate_exited (exitstatus);
7575 if (exitstatus)
7576 {
7577 if (ui_out_is_mi_like_p (uiout))
7578 ui_out_field_string (uiout, "reason",
7579 async_reason_lookup (EXEC_ASYNC_EXITED));
7580 ui_out_text (uiout, "[Inferior ");
7581 ui_out_text (uiout, plongest (inf->num));
7582 ui_out_text (uiout, " (");
7583 ui_out_text (uiout, pidstr);
7584 ui_out_text (uiout, ") exited with code ");
7585 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7586 ui_out_text (uiout, "]\n");
7587 }
7588 else
7589 {
7590 if (ui_out_is_mi_like_p (uiout))
7591 ui_out_field_string
7592 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7593 ui_out_text (uiout, "[Inferior ");
7594 ui_out_text (uiout, plongest (inf->num));
7595 ui_out_text (uiout, " (");
7596 ui_out_text (uiout, pidstr);
7597 ui_out_text (uiout, ") exited normally]\n");
7598 }
7599}
7600
7601void
7602print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7603{
7604 annotate_signal ();
7605
7606 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7607 {
7608 struct thread_info *t = inferior_thread ();
7609
7610 ui_out_text (uiout, "\n[");
7611 ui_out_field_string (uiout, "thread-name",
7612 target_pid_to_str (t->ptid));
7613 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7614 ui_out_text (uiout, " stopped");
7615 }
7616 else
7617 {
7618 ui_out_text (uiout, "\nProgram received signal ");
7619 annotate_signal_name ();
7620 if (ui_out_is_mi_like_p (uiout))
7621 ui_out_field_string
7622 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7623 ui_out_field_string (uiout, "signal-name",
7624 gdb_signal_to_name (siggnal));
7625 annotate_signal_name_end ();
7626 ui_out_text (uiout, ", ");
7627 annotate_signal_string ();
7628 ui_out_field_string (uiout, "signal-meaning",
7629 gdb_signal_to_string (siggnal));
7630 annotate_signal_string_end ();
7631 }
7632 ui_out_text (uiout, ".\n");
7633}
7634
7635void
7636print_no_history_reason (struct ui_out *uiout)
7637{
7638 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7639}
7640
7641/* Print current location without a level number, if we have changed
7642 functions or hit a breakpoint. Print source line if we have one.
7643 bpstat_print contains the logic deciding in detail what to print,
7644 based on the event(s) that just occurred. */
7645
7646void
7647print_stop_event (struct target_waitstatus *ws)
7648{
7649 int bpstat_ret;
7650 enum print_what source_flag;
7651 int do_frame_printing = 1;
7652 struct thread_info *tp = inferior_thread ();
7653
7654 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7655 switch (bpstat_ret)
7656 {
7657 case PRINT_UNKNOWN:
7658 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7659 should) carry around the function and does (or should) use
7660 that when doing a frame comparison. */
7661 if (tp->control.stop_step
7662 && frame_id_eq (tp->control.step_frame_id,
7663 get_frame_id (get_current_frame ()))
7664 && tp->control.step_start_function == find_pc_function (stop_pc))
7665 {
7666 /* Finished step, just print source line. */
7667 source_flag = SRC_LINE;
7668 }
7669 else
7670 {
7671 /* Print location and source line. */
7672 source_flag = SRC_AND_LOC;
7673 }
7674 break;
7675 case PRINT_SRC_AND_LOC:
7676 /* Print location and source line. */
7677 source_flag = SRC_AND_LOC;
7678 break;
7679 case PRINT_SRC_ONLY:
7680 source_flag = SRC_LINE;
7681 break;
7682 case PRINT_NOTHING:
7683 /* Something bogus. */
7684 source_flag = SRC_LINE;
7685 do_frame_printing = 0;
7686 break;
7687 default:
7688 internal_error (__FILE__, __LINE__, _("Unknown value."));
7689 }
7690
7691 /* The behavior of this routine with respect to the source
7692 flag is:
7693 SRC_LINE: Print only source line
7694 LOCATION: Print only location
7695 SRC_AND_LOC: Print location and source line. */
7696 if (do_frame_printing)
7697 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7698
7699 /* Display the auto-display expressions. */
7700 do_displays ();
7701}
7702
7703/* Here to return control to GDB when the inferior stops for real.
7704 Print appropriate messages, remove breakpoints, give terminal our modes.
7705
7706 STOP_PRINT_FRAME nonzero means print the executing frame
7707 (pc, function, args, file, line number and line text).
7708 BREAKPOINTS_FAILED nonzero means stop was due to error
7709 attempting to insert breakpoints. */
7710
7711void
7712normal_stop (void)
7713{
7714 struct target_waitstatus last;
7715 ptid_t last_ptid;
7716 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
7717 ptid_t pid_ptid;
7718
7719 get_last_target_status (&last_ptid, &last);
7720
7721 /* If an exception is thrown from this point on, make sure to
7722 propagate GDB's knowledge of the executing state to the
7723 frontend/user running state. A QUIT is an easy exception to see
7724 here, so do this before any filtered output. */
7725 if (!non_stop)
7726 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
7727 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7728 || last.kind == TARGET_WAITKIND_EXITED)
7729 {
7730 /* On some targets, we may still have live threads in the
7731 inferior when we get a process exit event. E.g., for
7732 "checkpoint", when the current checkpoint/fork exits,
7733 linux-fork.c automatically switches to another fork from
7734 within target_mourn_inferior. */
7735 if (!ptid_equal (inferior_ptid, null_ptid))
7736 {
7737 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7738 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7739 }
7740 }
7741 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7742 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
7743
7744 /* As we're presenting a stop, and potentially removing breakpoints,
7745 update the thread list so we can tell whether there are threads
7746 running on the target. With target remote, for example, we can
7747 only learn about new threads when we explicitly update the thread
7748 list. Do this before notifying the interpreters about signal
7749 stops, end of stepping ranges, etc., so that the "new thread"
7750 output is emitted before e.g., "Program received signal FOO",
7751 instead of after. */
7752 update_thread_list ();
7753
7754 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7755 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
7756
7757 /* As with the notification of thread events, we want to delay
7758 notifying the user that we've switched thread context until
7759 the inferior actually stops.
7760
7761 There's no point in saying anything if the inferior has exited.
7762 Note that SIGNALLED here means "exited with a signal", not
7763 "received a signal".
7764
7765 Also skip saying anything in non-stop mode. In that mode, as we
7766 don't want GDB to switch threads behind the user's back, to avoid
7767 races where the user is typing a command to apply to thread x,
7768 but GDB switches to thread y before the user finishes entering
7769 the command, fetch_inferior_event installs a cleanup to restore
7770 the current thread back to the thread the user had selected right
7771 after this event is handled, so we're not really switching, only
7772 informing of a stop. */
7773 if (!non_stop
7774 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
7775 && target_has_execution
7776 && last.kind != TARGET_WAITKIND_SIGNALLED
7777 && last.kind != TARGET_WAITKIND_EXITED
7778 && last.kind != TARGET_WAITKIND_NO_RESUMED)
7779 {
7780 target_terminal_ours_for_output ();
7781 printf_filtered (_("[Switching to %s]\n"),
7782 target_pid_to_str (inferior_ptid));
7783 annotate_thread_changed ();
7784 previous_inferior_ptid = inferior_ptid;
7785 }
7786
7787 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
7788 {
7789 gdb_assert (sync_execution || !target_can_async_p ());
7790
7791 target_terminal_ours_for_output ();
7792 printf_filtered (_("No unwaited-for children left.\n"));
7793 }
7794
7795 /* Note: this depends on the update_thread_list call above. */
7796 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7797 {
7798 if (remove_breakpoints ())
7799 {
7800 target_terminal_ours_for_output ();
7801 printf_filtered (_("Cannot remove breakpoints because "
7802 "program is no longer writable.\nFurther "
7803 "execution is probably impossible.\n"));
7804 }
7805 }
7806
7807 /* If an auto-display called a function and that got a signal,
7808 delete that auto-display to avoid an infinite recursion. */
7809
7810 if (stopped_by_random_signal)
7811 disable_current_display ();
7812
7813 /* Notify observers if we finished a "step"-like command, etc. */
7814 if (target_has_execution
7815 && last.kind != TARGET_WAITKIND_SIGNALLED
7816 && last.kind != TARGET_WAITKIND_EXITED
7817 && inferior_thread ()->control.stop_step)
7818 {
7819 /* But not if in the middle of doing a "step n" operation for
7820 n > 1 */
7821 if (inferior_thread ()->step_multi)
7822 goto done;
7823
7824 observer_notify_end_stepping_range ();
7825 }
7826
7827 target_terminal_ours ();
7828 async_enable_stdin ();
7829
7830 /* Set the current source location. This will also happen if we
7831 display the frame below, but the current SAL will be incorrect
7832 during a user hook-stop function. */
7833 if (has_stack_frames () && !stop_stack_dummy)
7834 set_current_sal_from_frame (get_current_frame ());
7835
7836 /* Let the user/frontend see the threads as stopped, but defer to
7837 call_function_by_hand if the thread finished an infcall
7838 successfully. We may be e.g., evaluating a breakpoint condition.
7839 In that case, the thread had state THREAD_RUNNING before the
7840 infcall, and shall remain marked running, all without informing
7841 the user/frontend about state transition changes. */
7842 if (target_has_execution
7843 && inferior_thread ()->control.in_infcall
7844 && stop_stack_dummy == STOP_STACK_DUMMY)
7845 discard_cleanups (old_chain);
7846 else
7847 do_cleanups (old_chain);
7848
7849 /* Look up the hook_stop and run it (CLI internally handles problem
7850 of stop_command's pre-hook not existing). */
7851 if (stop_command)
7852 catch_errors (hook_stop_stub, stop_command,
7853 "Error while running hook_stop:\n", RETURN_MASK_ALL);
7854
7855 if (!has_stack_frames ())
7856 goto done;
7857
7858 if (last.kind == TARGET_WAITKIND_SIGNALLED
7859 || last.kind == TARGET_WAITKIND_EXITED)
7860 goto done;
7861
7862 /* Select innermost stack frame - i.e., current frame is frame 0,
7863 and current location is based on that.
7864 Don't do this on return from a stack dummy routine,
7865 or if the program has exited. */
7866
7867 if (!stop_stack_dummy)
7868 {
7869 select_frame (get_current_frame ());
7870
7871 /* If --batch-silent is enabled then there's no need to print the current
7872 source location, and to try risks causing an error message about
7873 missing source files. */
7874 if (stop_print_frame && !batch_silent)
7875 print_stop_event (&last);
7876 }
7877
7878 if (stop_stack_dummy == STOP_STACK_DUMMY)
7879 {
7880 /* Pop the empty frame that contains the stack dummy.
7881 This also restores inferior state prior to the call
7882 (struct infcall_suspend_state). */
7883 struct frame_info *frame = get_current_frame ();
7884
7885 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
7886 frame_pop (frame);
7887 /* frame_pop() calls reinit_frame_cache as the last thing it
7888 does which means there's currently no selected frame. We
7889 don't need to re-establish a selected frame if the dummy call
7890 returns normally, that will be done by
7891 restore_infcall_control_state. However, we do have to handle
7892 the case where the dummy call is returning after being
7893 stopped (e.g. the dummy call previously hit a breakpoint).
7894 We can't know which case we have so just always re-establish
7895 a selected frame here. */
7896 select_frame (get_current_frame ());
7897 }
7898
7899done:
7900 annotate_stopped ();
7901
7902 /* Suppress the stop observer if we're in the middle of:
7903
7904 - a step n (n > 1), as there still more steps to be done.
7905
7906 - a "finish" command, as the observer will be called in
7907 finish_command_continuation, so it can include the inferior
7908 function's return value.
7909
7910 - calling an inferior function, as we pretend we inferior didn't
7911 run at all. The return value of the call is handled by the
7912 expression evaluator, through call_function_by_hand. */
7913
7914 if (!target_has_execution
7915 || last.kind == TARGET_WAITKIND_SIGNALLED
7916 || last.kind == TARGET_WAITKIND_EXITED
7917 || last.kind == TARGET_WAITKIND_NO_RESUMED
7918 || (!(inferior_thread ()->step_multi
7919 && inferior_thread ()->control.stop_step)
7920 && !(inferior_thread ()->control.stop_bpstat
7921 && inferior_thread ()->control.proceed_to_finish)
7922 && !inferior_thread ()->control.in_infcall))
7923 {
7924 if (!ptid_equal (inferior_ptid, null_ptid))
7925 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
7926 stop_print_frame);
7927 else
7928 observer_notify_normal_stop (NULL, stop_print_frame);
7929 }
7930
7931 if (target_has_execution)
7932 {
7933 if (last.kind != TARGET_WAITKIND_SIGNALLED
7934 && last.kind != TARGET_WAITKIND_EXITED)
7935 /* Delete the breakpoint we stopped at, if it wants to be deleted.
7936 Delete any breakpoint that is to be deleted at the next stop. */
7937 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
7938 }
7939
7940 /* Try to get rid of automatically added inferiors that are no
7941 longer needed. Keeping those around slows down things linearly.
7942 Note that this never removes the current inferior. */
7943 prune_inferiors ();
7944}
7945
7946static int
7947hook_stop_stub (void *cmd)
7948{
7949 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
7950 return (0);
7951}
7952\f
7953int
7954signal_stop_state (int signo)
7955{
7956 return signal_stop[signo];
7957}
7958
7959int
7960signal_print_state (int signo)
7961{
7962 return signal_print[signo];
7963}
7964
7965int
7966signal_pass_state (int signo)
7967{
7968 return signal_program[signo];
7969}
7970
7971static void
7972signal_cache_update (int signo)
7973{
7974 if (signo == -1)
7975 {
7976 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
7977 signal_cache_update (signo);
7978
7979 return;
7980 }
7981
7982 signal_pass[signo] = (signal_stop[signo] == 0
7983 && signal_print[signo] == 0
7984 && signal_program[signo] == 1
7985 && signal_catch[signo] == 0);
7986}
7987
7988int
7989signal_stop_update (int signo, int state)
7990{
7991 int ret = signal_stop[signo];
7992
7993 signal_stop[signo] = state;
7994 signal_cache_update (signo);
7995 return ret;
7996}
7997
7998int
7999signal_print_update (int signo, int state)
8000{
8001 int ret = signal_print[signo];
8002
8003 signal_print[signo] = state;
8004 signal_cache_update (signo);
8005 return ret;
8006}
8007
8008int
8009signal_pass_update (int signo, int state)
8010{
8011 int ret = signal_program[signo];
8012
8013 signal_program[signo] = state;
8014 signal_cache_update (signo);
8015 return ret;
8016}
8017
8018/* Update the global 'signal_catch' from INFO and notify the
8019 target. */
8020
8021void
8022signal_catch_update (const unsigned int *info)
8023{
8024 int i;
8025
8026 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8027 signal_catch[i] = info[i] > 0;
8028 signal_cache_update (-1);
8029 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8030}
8031
8032static void
8033sig_print_header (void)
8034{
8035 printf_filtered (_("Signal Stop\tPrint\tPass "
8036 "to program\tDescription\n"));
8037}
8038
8039static void
8040sig_print_info (enum gdb_signal oursig)
8041{
8042 const char *name = gdb_signal_to_name (oursig);
8043 int name_padding = 13 - strlen (name);
8044
8045 if (name_padding <= 0)
8046 name_padding = 0;
8047
8048 printf_filtered ("%s", name);
8049 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8050 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8051 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8052 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8053 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8054}
8055
8056/* Specify how various signals in the inferior should be handled. */
8057
8058static void
8059handle_command (char *args, int from_tty)
8060{
8061 char **argv;
8062 int digits, wordlen;
8063 int sigfirst, signum, siglast;
8064 enum gdb_signal oursig;
8065 int allsigs;
8066 int nsigs;
8067 unsigned char *sigs;
8068 struct cleanup *old_chain;
8069
8070 if (args == NULL)
8071 {
8072 error_no_arg (_("signal to handle"));
8073 }
8074
8075 /* Allocate and zero an array of flags for which signals to handle. */
8076
8077 nsigs = (int) GDB_SIGNAL_LAST;
8078 sigs = (unsigned char *) alloca (nsigs);
8079 memset (sigs, 0, nsigs);
8080
8081 /* Break the command line up into args. */
8082
8083 argv = gdb_buildargv (args);
8084 old_chain = make_cleanup_freeargv (argv);
8085
8086 /* Walk through the args, looking for signal oursigs, signal names, and
8087 actions. Signal numbers and signal names may be interspersed with
8088 actions, with the actions being performed for all signals cumulatively
8089 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8090
8091 while (*argv != NULL)
8092 {
8093 wordlen = strlen (*argv);
8094 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8095 {;
8096 }
8097 allsigs = 0;
8098 sigfirst = siglast = -1;
8099
8100 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8101 {
8102 /* Apply action to all signals except those used by the
8103 debugger. Silently skip those. */
8104 allsigs = 1;
8105 sigfirst = 0;
8106 siglast = nsigs - 1;
8107 }
8108 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8109 {
8110 SET_SIGS (nsigs, sigs, signal_stop);
8111 SET_SIGS (nsigs, sigs, signal_print);
8112 }
8113 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8114 {
8115 UNSET_SIGS (nsigs, sigs, signal_program);
8116 }
8117 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8118 {
8119 SET_SIGS (nsigs, sigs, signal_print);
8120 }
8121 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8122 {
8123 SET_SIGS (nsigs, sigs, signal_program);
8124 }
8125 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8126 {
8127 UNSET_SIGS (nsigs, sigs, signal_stop);
8128 }
8129 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8130 {
8131 SET_SIGS (nsigs, sigs, signal_program);
8132 }
8133 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8134 {
8135 UNSET_SIGS (nsigs, sigs, signal_print);
8136 UNSET_SIGS (nsigs, sigs, signal_stop);
8137 }
8138 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8139 {
8140 UNSET_SIGS (nsigs, sigs, signal_program);
8141 }
8142 else if (digits > 0)
8143 {
8144 /* It is numeric. The numeric signal refers to our own
8145 internal signal numbering from target.h, not to host/target
8146 signal number. This is a feature; users really should be
8147 using symbolic names anyway, and the common ones like
8148 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8149
8150 sigfirst = siglast = (int)
8151 gdb_signal_from_command (atoi (*argv));
8152 if ((*argv)[digits] == '-')
8153 {
8154 siglast = (int)
8155 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8156 }
8157 if (sigfirst > siglast)
8158 {
8159 /* Bet he didn't figure we'd think of this case... */
8160 signum = sigfirst;
8161 sigfirst = siglast;
8162 siglast = signum;
8163 }
8164 }
8165 else
8166 {
8167 oursig = gdb_signal_from_name (*argv);
8168 if (oursig != GDB_SIGNAL_UNKNOWN)
8169 {
8170 sigfirst = siglast = (int) oursig;
8171 }
8172 else
8173 {
8174 /* Not a number and not a recognized flag word => complain. */
8175 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8176 }
8177 }
8178
8179 /* If any signal numbers or symbol names were found, set flags for
8180 which signals to apply actions to. */
8181
8182 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8183 {
8184 switch ((enum gdb_signal) signum)
8185 {
8186 case GDB_SIGNAL_TRAP:
8187 case GDB_SIGNAL_INT:
8188 if (!allsigs && !sigs[signum])
8189 {
8190 if (query (_("%s is used by the debugger.\n\
8191Are you sure you want to change it? "),
8192 gdb_signal_to_name ((enum gdb_signal) signum)))
8193 {
8194 sigs[signum] = 1;
8195 }
8196 else
8197 {
8198 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8199 gdb_flush (gdb_stdout);
8200 }
8201 }
8202 break;
8203 case GDB_SIGNAL_0:
8204 case GDB_SIGNAL_DEFAULT:
8205 case GDB_SIGNAL_UNKNOWN:
8206 /* Make sure that "all" doesn't print these. */
8207 break;
8208 default:
8209 sigs[signum] = 1;
8210 break;
8211 }
8212 }
8213
8214 argv++;
8215 }
8216
8217 for (signum = 0; signum < nsigs; signum++)
8218 if (sigs[signum])
8219 {
8220 signal_cache_update (-1);
8221 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8222 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8223
8224 if (from_tty)
8225 {
8226 /* Show the results. */
8227 sig_print_header ();
8228 for (; signum < nsigs; signum++)
8229 if (sigs[signum])
8230 sig_print_info ((enum gdb_signal) signum);
8231 }
8232
8233 break;
8234 }
8235
8236 do_cleanups (old_chain);
8237}
8238
8239/* Complete the "handle" command. */
8240
8241static VEC (char_ptr) *
8242handle_completer (struct cmd_list_element *ignore,
8243 const char *text, const char *word)
8244{
8245 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8246 static const char * const keywords[] =
8247 {
8248 "all",
8249 "stop",
8250 "ignore",
8251 "print",
8252 "pass",
8253 "nostop",
8254 "noignore",
8255 "noprint",
8256 "nopass",
8257 NULL,
8258 };
8259
8260 vec_signals = signal_completer (ignore, text, word);
8261 vec_keywords = complete_on_enum (keywords, word, word);
8262
8263 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8264 VEC_free (char_ptr, vec_signals);
8265 VEC_free (char_ptr, vec_keywords);
8266 return return_val;
8267}
8268
8269enum gdb_signal
8270gdb_signal_from_command (int num)
8271{
8272 if (num >= 1 && num <= 15)
8273 return (enum gdb_signal) num;
8274 error (_("Only signals 1-15 are valid as numeric signals.\n\
8275Use \"info signals\" for a list of symbolic signals."));
8276}
8277
8278/* Print current contents of the tables set by the handle command.
8279 It is possible we should just be printing signals actually used
8280 by the current target (but for things to work right when switching
8281 targets, all signals should be in the signal tables). */
8282
8283static void
8284signals_info (char *signum_exp, int from_tty)
8285{
8286 enum gdb_signal oursig;
8287
8288 sig_print_header ();
8289
8290 if (signum_exp)
8291 {
8292 /* First see if this is a symbol name. */
8293 oursig = gdb_signal_from_name (signum_exp);
8294 if (oursig == GDB_SIGNAL_UNKNOWN)
8295 {
8296 /* No, try numeric. */
8297 oursig =
8298 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8299 }
8300 sig_print_info (oursig);
8301 return;
8302 }
8303
8304 printf_filtered ("\n");
8305 /* These ugly casts brought to you by the native VAX compiler. */
8306 for (oursig = GDB_SIGNAL_FIRST;
8307 (int) oursig < (int) GDB_SIGNAL_LAST;
8308 oursig = (enum gdb_signal) ((int) oursig + 1))
8309 {
8310 QUIT;
8311
8312 if (oursig != GDB_SIGNAL_UNKNOWN
8313 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8314 sig_print_info (oursig);
8315 }
8316
8317 printf_filtered (_("\nUse the \"handle\" command "
8318 "to change these tables.\n"));
8319}
8320
8321/* Check if it makes sense to read $_siginfo from the current thread
8322 at this point. If not, throw an error. */
8323
8324static void
8325validate_siginfo_access (void)
8326{
8327 /* No current inferior, no siginfo. */
8328 if (ptid_equal (inferior_ptid, null_ptid))
8329 error (_("No thread selected."));
8330
8331 /* Don't try to read from a dead thread. */
8332 if (is_exited (inferior_ptid))
8333 error (_("The current thread has terminated"));
8334
8335 /* ... or from a spinning thread. */
8336 if (is_running (inferior_ptid))
8337 error (_("Selected thread is running."));
8338}
8339
8340/* The $_siginfo convenience variable is a bit special. We don't know
8341 for sure the type of the value until we actually have a chance to
8342 fetch the data. The type can change depending on gdbarch, so it is
8343 also dependent on which thread you have selected.
8344
8345 1. making $_siginfo be an internalvar that creates a new value on
8346 access.
8347
8348 2. making the value of $_siginfo be an lval_computed value. */
8349
8350/* This function implements the lval_computed support for reading a
8351 $_siginfo value. */
8352
8353static void
8354siginfo_value_read (struct value *v)
8355{
8356 LONGEST transferred;
8357
8358 validate_siginfo_access ();
8359
8360 transferred =
8361 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8362 NULL,
8363 value_contents_all_raw (v),
8364 value_offset (v),
8365 TYPE_LENGTH (value_type (v)));
8366
8367 if (transferred != TYPE_LENGTH (value_type (v)))
8368 error (_("Unable to read siginfo"));
8369}
8370
8371/* This function implements the lval_computed support for writing a
8372 $_siginfo value. */
8373
8374static void
8375siginfo_value_write (struct value *v, struct value *fromval)
8376{
8377 LONGEST transferred;
8378
8379 validate_siginfo_access ();
8380
8381 transferred = target_write (&current_target,
8382 TARGET_OBJECT_SIGNAL_INFO,
8383 NULL,
8384 value_contents_all_raw (fromval),
8385 value_offset (v),
8386 TYPE_LENGTH (value_type (fromval)));
8387
8388 if (transferred != TYPE_LENGTH (value_type (fromval)))
8389 error (_("Unable to write siginfo"));
8390}
8391
8392static const struct lval_funcs siginfo_value_funcs =
8393 {
8394 siginfo_value_read,
8395 siginfo_value_write
8396 };
8397
8398/* Return a new value with the correct type for the siginfo object of
8399 the current thread using architecture GDBARCH. Return a void value
8400 if there's no object available. */
8401
8402static struct value *
8403siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8404 void *ignore)
8405{
8406 if (target_has_stack
8407 && !ptid_equal (inferior_ptid, null_ptid)
8408 && gdbarch_get_siginfo_type_p (gdbarch))
8409 {
8410 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8411
8412 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8413 }
8414
8415 return allocate_value (builtin_type (gdbarch)->builtin_void);
8416}
8417
8418\f
8419/* infcall_suspend_state contains state about the program itself like its
8420 registers and any signal it received when it last stopped.
8421 This state must be restored regardless of how the inferior function call
8422 ends (either successfully, or after it hits a breakpoint or signal)
8423 if the program is to properly continue where it left off. */
8424
8425struct infcall_suspend_state
8426{
8427 struct thread_suspend_state thread_suspend;
8428
8429 /* Other fields: */
8430 CORE_ADDR stop_pc;
8431 struct regcache *registers;
8432
8433 /* Format of SIGINFO_DATA or NULL if it is not present. */
8434 struct gdbarch *siginfo_gdbarch;
8435
8436 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8437 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8438 content would be invalid. */
8439 gdb_byte *siginfo_data;
8440};
8441
8442struct infcall_suspend_state *
8443save_infcall_suspend_state (void)
8444{
8445 struct infcall_suspend_state *inf_state;
8446 struct thread_info *tp = inferior_thread ();
8447 struct regcache *regcache = get_current_regcache ();
8448 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8449 gdb_byte *siginfo_data = NULL;
8450
8451 if (gdbarch_get_siginfo_type_p (gdbarch))
8452 {
8453 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8454 size_t len = TYPE_LENGTH (type);
8455 struct cleanup *back_to;
8456
8457 siginfo_data = xmalloc (len);
8458 back_to = make_cleanup (xfree, siginfo_data);
8459
8460 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8461 siginfo_data, 0, len) == len)
8462 discard_cleanups (back_to);
8463 else
8464 {
8465 /* Errors ignored. */
8466 do_cleanups (back_to);
8467 siginfo_data = NULL;
8468 }
8469 }
8470
8471 inf_state = XCNEW (struct infcall_suspend_state);
8472
8473 if (siginfo_data)
8474 {
8475 inf_state->siginfo_gdbarch = gdbarch;
8476 inf_state->siginfo_data = siginfo_data;
8477 }
8478
8479 inf_state->thread_suspend = tp->suspend;
8480
8481 /* run_inferior_call will not use the signal due to its `proceed' call with
8482 GDB_SIGNAL_0 anyway. */
8483 tp->suspend.stop_signal = GDB_SIGNAL_0;
8484
8485 inf_state->stop_pc = stop_pc;
8486
8487 inf_state->registers = regcache_dup (regcache);
8488
8489 return inf_state;
8490}
8491
8492/* Restore inferior session state to INF_STATE. */
8493
8494void
8495restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8496{
8497 struct thread_info *tp = inferior_thread ();
8498 struct regcache *regcache = get_current_regcache ();
8499 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8500
8501 tp->suspend = inf_state->thread_suspend;
8502
8503 stop_pc = inf_state->stop_pc;
8504
8505 if (inf_state->siginfo_gdbarch == gdbarch)
8506 {
8507 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8508
8509 /* Errors ignored. */
8510 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8511 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8512 }
8513
8514 /* The inferior can be gone if the user types "print exit(0)"
8515 (and perhaps other times). */
8516 if (target_has_execution)
8517 /* NB: The register write goes through to the target. */
8518 regcache_cpy (regcache, inf_state->registers);
8519
8520 discard_infcall_suspend_state (inf_state);
8521}
8522
8523static void
8524do_restore_infcall_suspend_state_cleanup (void *state)
8525{
8526 restore_infcall_suspend_state (state);
8527}
8528
8529struct cleanup *
8530make_cleanup_restore_infcall_suspend_state
8531 (struct infcall_suspend_state *inf_state)
8532{
8533 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8534}
8535
8536void
8537discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8538{
8539 regcache_xfree (inf_state->registers);
8540 xfree (inf_state->siginfo_data);
8541 xfree (inf_state);
8542}
8543
8544struct regcache *
8545get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8546{
8547 return inf_state->registers;
8548}
8549
8550/* infcall_control_state contains state regarding gdb's control of the
8551 inferior itself like stepping control. It also contains session state like
8552 the user's currently selected frame. */
8553
8554struct infcall_control_state
8555{
8556 struct thread_control_state thread_control;
8557 struct inferior_control_state inferior_control;
8558
8559 /* Other fields: */
8560 enum stop_stack_kind stop_stack_dummy;
8561 int stopped_by_random_signal;
8562 int stop_after_trap;
8563
8564 /* ID if the selected frame when the inferior function call was made. */
8565 struct frame_id selected_frame_id;
8566};
8567
8568/* Save all of the information associated with the inferior<==>gdb
8569 connection. */
8570
8571struct infcall_control_state *
8572save_infcall_control_state (void)
8573{
8574 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
8575 struct thread_info *tp = inferior_thread ();
8576 struct inferior *inf = current_inferior ();
8577
8578 inf_status->thread_control = tp->control;
8579 inf_status->inferior_control = inf->control;
8580
8581 tp->control.step_resume_breakpoint = NULL;
8582 tp->control.exception_resume_breakpoint = NULL;
8583
8584 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8585 chain. If caller's caller is walking the chain, they'll be happier if we
8586 hand them back the original chain when restore_infcall_control_state is
8587 called. */
8588 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8589
8590 /* Other fields: */
8591 inf_status->stop_stack_dummy = stop_stack_dummy;
8592 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8593 inf_status->stop_after_trap = stop_after_trap;
8594
8595 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8596
8597 return inf_status;
8598}
8599
8600static int
8601restore_selected_frame (void *args)
8602{
8603 struct frame_id *fid = (struct frame_id *) args;
8604 struct frame_info *frame;
8605
8606 frame = frame_find_by_id (*fid);
8607
8608 /* If inf_status->selected_frame_id is NULL, there was no previously
8609 selected frame. */
8610 if (frame == NULL)
8611 {
8612 warning (_("Unable to restore previously selected frame."));
8613 return 0;
8614 }
8615
8616 select_frame (frame);
8617
8618 return (1);
8619}
8620
8621/* Restore inferior session state to INF_STATUS. */
8622
8623void
8624restore_infcall_control_state (struct infcall_control_state *inf_status)
8625{
8626 struct thread_info *tp = inferior_thread ();
8627 struct inferior *inf = current_inferior ();
8628
8629 if (tp->control.step_resume_breakpoint)
8630 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8631
8632 if (tp->control.exception_resume_breakpoint)
8633 tp->control.exception_resume_breakpoint->disposition
8634 = disp_del_at_next_stop;
8635
8636 /* Handle the bpstat_copy of the chain. */
8637 bpstat_clear (&tp->control.stop_bpstat);
8638
8639 tp->control = inf_status->thread_control;
8640 inf->control = inf_status->inferior_control;
8641
8642 /* Other fields: */
8643 stop_stack_dummy = inf_status->stop_stack_dummy;
8644 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8645 stop_after_trap = inf_status->stop_after_trap;
8646
8647 if (target_has_stack)
8648 {
8649 /* The point of catch_errors is that if the stack is clobbered,
8650 walking the stack might encounter a garbage pointer and
8651 error() trying to dereference it. */
8652 if (catch_errors
8653 (restore_selected_frame, &inf_status->selected_frame_id,
8654 "Unable to restore previously selected frame:\n",
8655 RETURN_MASK_ERROR) == 0)
8656 /* Error in restoring the selected frame. Select the innermost
8657 frame. */
8658 select_frame (get_current_frame ());
8659 }
8660
8661 xfree (inf_status);
8662}
8663
8664static void
8665do_restore_infcall_control_state_cleanup (void *sts)
8666{
8667 restore_infcall_control_state (sts);
8668}
8669
8670struct cleanup *
8671make_cleanup_restore_infcall_control_state
8672 (struct infcall_control_state *inf_status)
8673{
8674 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8675}
8676
8677void
8678discard_infcall_control_state (struct infcall_control_state *inf_status)
8679{
8680 if (inf_status->thread_control.step_resume_breakpoint)
8681 inf_status->thread_control.step_resume_breakpoint->disposition
8682 = disp_del_at_next_stop;
8683
8684 if (inf_status->thread_control.exception_resume_breakpoint)
8685 inf_status->thread_control.exception_resume_breakpoint->disposition
8686 = disp_del_at_next_stop;
8687
8688 /* See save_infcall_control_state for info on stop_bpstat. */
8689 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8690
8691 xfree (inf_status);
8692}
8693\f
8694/* restore_inferior_ptid() will be used by the cleanup machinery
8695 to restore the inferior_ptid value saved in a call to
8696 save_inferior_ptid(). */
8697
8698static void
8699restore_inferior_ptid (void *arg)
8700{
8701 ptid_t *saved_ptid_ptr = arg;
8702
8703 inferior_ptid = *saved_ptid_ptr;
8704 xfree (arg);
8705}
8706
8707/* Save the value of inferior_ptid so that it may be restored by a
8708 later call to do_cleanups(). Returns the struct cleanup pointer
8709 needed for later doing the cleanup. */
8710
8711struct cleanup *
8712save_inferior_ptid (void)
8713{
8714 ptid_t *saved_ptid_ptr;
8715
8716 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
8717 *saved_ptid_ptr = inferior_ptid;
8718 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8719}
8720
8721/* See infrun.h. */
8722
8723void
8724clear_exit_convenience_vars (void)
8725{
8726 clear_internalvar (lookup_internalvar ("_exitsignal"));
8727 clear_internalvar (lookup_internalvar ("_exitcode"));
8728}
8729\f
8730
8731/* User interface for reverse debugging:
8732 Set exec-direction / show exec-direction commands
8733 (returns error unless target implements to_set_exec_direction method). */
8734
8735int execution_direction = EXEC_FORWARD;
8736static const char exec_forward[] = "forward";
8737static const char exec_reverse[] = "reverse";
8738static const char *exec_direction = exec_forward;
8739static const char *const exec_direction_names[] = {
8740 exec_forward,
8741 exec_reverse,
8742 NULL
8743};
8744
8745static void
8746set_exec_direction_func (char *args, int from_tty,
8747 struct cmd_list_element *cmd)
8748{
8749 if (target_can_execute_reverse)
8750 {
8751 if (!strcmp (exec_direction, exec_forward))
8752 execution_direction = EXEC_FORWARD;
8753 else if (!strcmp (exec_direction, exec_reverse))
8754 execution_direction = EXEC_REVERSE;
8755 }
8756 else
8757 {
8758 exec_direction = exec_forward;
8759 error (_("Target does not support this operation."));
8760 }
8761}
8762
8763static void
8764show_exec_direction_func (struct ui_file *out, int from_tty,
8765 struct cmd_list_element *cmd, const char *value)
8766{
8767 switch (execution_direction) {
8768 case EXEC_FORWARD:
8769 fprintf_filtered (out, _("Forward.\n"));
8770 break;
8771 case EXEC_REVERSE:
8772 fprintf_filtered (out, _("Reverse.\n"));
8773 break;
8774 default:
8775 internal_error (__FILE__, __LINE__,
8776 _("bogus execution_direction value: %d"),
8777 (int) execution_direction);
8778 }
8779}
8780
8781static void
8782show_schedule_multiple (struct ui_file *file, int from_tty,
8783 struct cmd_list_element *c, const char *value)
8784{
8785 fprintf_filtered (file, _("Resuming the execution of threads "
8786 "of all processes is %s.\n"), value);
8787}
8788
8789/* Implementation of `siginfo' variable. */
8790
8791static const struct internalvar_funcs siginfo_funcs =
8792{
8793 siginfo_make_value,
8794 NULL,
8795 NULL
8796};
8797
8798/* Callback for infrun's target events source. This is marked when a
8799 thread has a pending status to process. */
8800
8801static void
8802infrun_async_inferior_event_handler (gdb_client_data data)
8803{
8804 /* If the target is closed while this event source is marked, we
8805 will reach here without execution, or a target to call
8806 target_wait on, which is an error. Instead of tracking whether
8807 the target has been popped already, or whether we do have threads
8808 with pending statutes, simply ignore the event. */
8809 if (!target_is_async_p ())
8810 return;
8811
8812 inferior_event_handler (INF_REG_EVENT, NULL);
8813}
8814
8815void
8816_initialize_infrun (void)
8817{
8818 int i;
8819 int numsigs;
8820 struct cmd_list_element *c;
8821
8822 /* Register extra event sources in the event loop. */
8823 infrun_async_inferior_event_token
8824 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8825
8826 add_info ("signals", signals_info, _("\
8827What debugger does when program gets various signals.\n\
8828Specify a signal as argument to print info on that signal only."));
8829 add_info_alias ("handle", "signals", 0);
8830
8831 c = add_com ("handle", class_run, handle_command, _("\
8832Specify how to handle signals.\n\
8833Usage: handle SIGNAL [ACTIONS]\n\
8834Args are signals and actions to apply to those signals.\n\
8835If no actions are specified, the current settings for the specified signals\n\
8836will be displayed instead.\n\
8837\n\
8838Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8839from 1-15 are allowed for compatibility with old versions of GDB.\n\
8840Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8841The special arg \"all\" is recognized to mean all signals except those\n\
8842used by the debugger, typically SIGTRAP and SIGINT.\n\
8843\n\
8844Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8845\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8846Stop means reenter debugger if this signal happens (implies print).\n\
8847Print means print a message if this signal happens.\n\
8848Pass means let program see this signal; otherwise program doesn't know.\n\
8849Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8850Pass and Stop may be combined.\n\
8851\n\
8852Multiple signals may be specified. Signal numbers and signal names\n\
8853may be interspersed with actions, with the actions being performed for\n\
8854all signals cumulatively specified."));
8855 set_cmd_completer (c, handle_completer);
8856
8857 if (!dbx_commands)
8858 stop_command = add_cmd ("stop", class_obscure,
8859 not_just_help_class_command, _("\
8860There is no `stop' command, but you can set a hook on `stop'.\n\
8861This allows you to set a list of commands to be run each time execution\n\
8862of the program stops."), &cmdlist);
8863
8864 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8865Set inferior debugging."), _("\
8866Show inferior debugging."), _("\
8867When non-zero, inferior specific debugging is enabled."),
8868 NULL,
8869 show_debug_infrun,
8870 &setdebuglist, &showdebuglist);
8871
8872 add_setshow_boolean_cmd ("displaced", class_maintenance,
8873 &debug_displaced, _("\
8874Set displaced stepping debugging."), _("\
8875Show displaced stepping debugging."), _("\
8876When non-zero, displaced stepping specific debugging is enabled."),
8877 NULL,
8878 show_debug_displaced,
8879 &setdebuglist, &showdebuglist);
8880
8881 add_setshow_boolean_cmd ("non-stop", no_class,
8882 &non_stop_1, _("\
8883Set whether gdb controls the inferior in non-stop mode."), _("\
8884Show whether gdb controls the inferior in non-stop mode."), _("\
8885When debugging a multi-threaded program and this setting is\n\
8886off (the default, also called all-stop mode), when one thread stops\n\
8887(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8888all other threads in the program while you interact with the thread of\n\
8889interest. When you continue or step a thread, you can allow the other\n\
8890threads to run, or have them remain stopped, but while you inspect any\n\
8891thread's state, all threads stop.\n\
8892\n\
8893In non-stop mode, when one thread stops, other threads can continue\n\
8894to run freely. You'll be able to step each thread independently,\n\
8895leave it stopped or free to run as needed."),
8896 set_non_stop,
8897 show_non_stop,
8898 &setlist,
8899 &showlist);
8900
8901 numsigs = (int) GDB_SIGNAL_LAST;
8902 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
8903 signal_print = (unsigned char *)
8904 xmalloc (sizeof (signal_print[0]) * numsigs);
8905 signal_program = (unsigned char *)
8906 xmalloc (sizeof (signal_program[0]) * numsigs);
8907 signal_catch = (unsigned char *)
8908 xmalloc (sizeof (signal_catch[0]) * numsigs);
8909 signal_pass = (unsigned char *)
8910 xmalloc (sizeof (signal_pass[0]) * numsigs);
8911 for (i = 0; i < numsigs; i++)
8912 {
8913 signal_stop[i] = 1;
8914 signal_print[i] = 1;
8915 signal_program[i] = 1;
8916 signal_catch[i] = 0;
8917 }
8918
8919 /* Signals caused by debugger's own actions should not be given to
8920 the program afterwards.
8921
8922 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8923 explicitly specifies that it should be delivered to the target
8924 program. Typically, that would occur when a user is debugging a
8925 target monitor on a simulator: the target monitor sets a
8926 breakpoint; the simulator encounters this breakpoint and halts
8927 the simulation handing control to GDB; GDB, noting that the stop
8928 address doesn't map to any known breakpoint, returns control back
8929 to the simulator; the simulator then delivers the hardware
8930 equivalent of a GDB_SIGNAL_TRAP to the program being
8931 debugged. */
8932 signal_program[GDB_SIGNAL_TRAP] = 0;
8933 signal_program[GDB_SIGNAL_INT] = 0;
8934
8935 /* Signals that are not errors should not normally enter the debugger. */
8936 signal_stop[GDB_SIGNAL_ALRM] = 0;
8937 signal_print[GDB_SIGNAL_ALRM] = 0;
8938 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8939 signal_print[GDB_SIGNAL_VTALRM] = 0;
8940 signal_stop[GDB_SIGNAL_PROF] = 0;
8941 signal_print[GDB_SIGNAL_PROF] = 0;
8942 signal_stop[GDB_SIGNAL_CHLD] = 0;
8943 signal_print[GDB_SIGNAL_CHLD] = 0;
8944 signal_stop[GDB_SIGNAL_IO] = 0;
8945 signal_print[GDB_SIGNAL_IO] = 0;
8946 signal_stop[GDB_SIGNAL_POLL] = 0;
8947 signal_print[GDB_SIGNAL_POLL] = 0;
8948 signal_stop[GDB_SIGNAL_URG] = 0;
8949 signal_print[GDB_SIGNAL_URG] = 0;
8950 signal_stop[GDB_SIGNAL_WINCH] = 0;
8951 signal_print[GDB_SIGNAL_WINCH] = 0;
8952 signal_stop[GDB_SIGNAL_PRIO] = 0;
8953 signal_print[GDB_SIGNAL_PRIO] = 0;
8954
8955 /* These signals are used internally by user-level thread
8956 implementations. (See signal(5) on Solaris.) Like the above
8957 signals, a healthy program receives and handles them as part of
8958 its normal operation. */
8959 signal_stop[GDB_SIGNAL_LWP] = 0;
8960 signal_print[GDB_SIGNAL_LWP] = 0;
8961 signal_stop[GDB_SIGNAL_WAITING] = 0;
8962 signal_print[GDB_SIGNAL_WAITING] = 0;
8963 signal_stop[GDB_SIGNAL_CANCEL] = 0;
8964 signal_print[GDB_SIGNAL_CANCEL] = 0;
8965
8966 /* Update cached state. */
8967 signal_cache_update (-1);
8968
8969 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
8970 &stop_on_solib_events, _("\
8971Set stopping for shared library events."), _("\
8972Show stopping for shared library events."), _("\
8973If nonzero, gdb will give control to the user when the dynamic linker\n\
8974notifies gdb of shared library events. The most common event of interest\n\
8975to the user would be loading/unloading of a new library."),
8976 set_stop_on_solib_events,
8977 show_stop_on_solib_events,
8978 &setlist, &showlist);
8979
8980 add_setshow_enum_cmd ("follow-fork-mode", class_run,
8981 follow_fork_mode_kind_names,
8982 &follow_fork_mode_string, _("\
8983Set debugger response to a program call of fork or vfork."), _("\
8984Show debugger response to a program call of fork or vfork."), _("\
8985A fork or vfork creates a new process. follow-fork-mode can be:\n\
8986 parent - the original process is debugged after a fork\n\
8987 child - the new process is debugged after a fork\n\
8988The unfollowed process will continue to run.\n\
8989By default, the debugger will follow the parent process."),
8990 NULL,
8991 show_follow_fork_mode_string,
8992 &setlist, &showlist);
8993
8994 add_setshow_enum_cmd ("follow-exec-mode", class_run,
8995 follow_exec_mode_names,
8996 &follow_exec_mode_string, _("\
8997Set debugger response to a program call of exec."), _("\
8998Show debugger response to a program call of exec."), _("\
8999An exec call replaces the program image of a process.\n\
9000\n\
9001follow-exec-mode can be:\n\
9002\n\
9003 new - the debugger creates a new inferior and rebinds the process\n\
9004to this new inferior. The program the process was running before\n\
9005the exec call can be restarted afterwards by restarting the original\n\
9006inferior.\n\
9007\n\
9008 same - the debugger keeps the process bound to the same inferior.\n\
9009The new executable image replaces the previous executable loaded in\n\
9010the inferior. Restarting the inferior after the exec call restarts\n\
9011the executable the process was running after the exec call.\n\
9012\n\
9013By default, the debugger will use the same inferior."),
9014 NULL,
9015 show_follow_exec_mode_string,
9016 &setlist, &showlist);
9017
9018 add_setshow_enum_cmd ("scheduler-locking", class_run,
9019 scheduler_enums, &scheduler_mode, _("\
9020Set mode for locking scheduler during execution."), _("\
9021Show mode for locking scheduler during execution."), _("\
9022off == no locking (threads may preempt at any time)\n\
9023on == full locking (no thread except the current thread may run)\n\
9024step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9025 In this mode, other threads may run during other commands."),
9026 set_schedlock_func, /* traps on target vector */
9027 show_scheduler_mode,
9028 &setlist, &showlist);
9029
9030 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9031Set mode for resuming threads of all processes."), _("\
9032Show mode for resuming threads of all processes."), _("\
9033When on, execution commands (such as 'continue' or 'next') resume all\n\
9034threads of all processes. When off (which is the default), execution\n\
9035commands only resume the threads of the current process. The set of\n\
9036threads that are resumed is further refined by the scheduler-locking\n\
9037mode (see help set scheduler-locking)."),
9038 NULL,
9039 show_schedule_multiple,
9040 &setlist, &showlist);
9041
9042 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9043Set mode of the step operation."), _("\
9044Show mode of the step operation."), _("\
9045When set, doing a step over a function without debug line information\n\
9046will stop at the first instruction of that function. Otherwise, the\n\
9047function is skipped and the step command stops at a different source line."),
9048 NULL,
9049 show_step_stop_if_no_debug,
9050 &setlist, &showlist);
9051
9052 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9053 &can_use_displaced_stepping, _("\
9054Set debugger's willingness to use displaced stepping."), _("\
9055Show debugger's willingness to use displaced stepping."), _("\
9056If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9057supported by the target architecture. If off, gdb will not use displaced\n\
9058stepping to step over breakpoints, even if such is supported by the target\n\
9059architecture. If auto (which is the default), gdb will use displaced stepping\n\
9060if the target architecture supports it and non-stop mode is active, but will not\n\
9061use it in all-stop mode (see help set non-stop)."),
9062 NULL,
9063 show_can_use_displaced_stepping,
9064 &setlist, &showlist);
9065
9066 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9067 &exec_direction, _("Set direction of execution.\n\
9068Options are 'forward' or 'reverse'."),
9069 _("Show direction of execution (forward/reverse)."),
9070 _("Tells gdb whether to execute forward or backward."),
9071 set_exec_direction_func, show_exec_direction_func,
9072 &setlist, &showlist);
9073
9074 /* Set/show detach-on-fork: user-settable mode. */
9075
9076 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9077Set whether gdb will detach the child of a fork."), _("\
9078Show whether gdb will detach the child of a fork."), _("\
9079Tells gdb whether to detach the child of a fork."),
9080 NULL, NULL, &setlist, &showlist);
9081
9082 /* Set/show disable address space randomization mode. */
9083
9084 add_setshow_boolean_cmd ("disable-randomization", class_support,
9085 &disable_randomization, _("\
9086Set disabling of debuggee's virtual address space randomization."), _("\
9087Show disabling of debuggee's virtual address space randomization."), _("\
9088When this mode is on (which is the default), randomization of the virtual\n\
9089address space is disabled. Standalone programs run with the randomization\n\
9090enabled by default on some platforms."),
9091 &set_disable_randomization,
9092 &show_disable_randomization,
9093 &setlist, &showlist);
9094
9095 /* ptid initializations */
9096 inferior_ptid = null_ptid;
9097 target_last_wait_ptid = minus_one_ptid;
9098
9099 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9100 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9101 observer_attach_thread_exit (infrun_thread_thread_exit);
9102 observer_attach_inferior_exit (infrun_inferior_exit);
9103
9104 /* Explicitly create without lookup, since that tries to create a
9105 value with a void typed value, and when we get here, gdbarch
9106 isn't initialized yet. At this point, we're quite sure there
9107 isn't another convenience variable of the same name. */
9108 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9109
9110 add_setshow_boolean_cmd ("observer", no_class,
9111 &observer_mode_1, _("\
9112Set whether gdb controls the inferior in observer mode."), _("\
9113Show whether gdb controls the inferior in observer mode."), _("\
9114In observer mode, GDB can get data from the inferior, but not\n\
9115affect its execution. Registers and memory may not be changed,\n\
9116breakpoints may not be set, and the program cannot be interrupted\n\
9117or signalled."),
9118 set_observer_mode,
9119 show_observer_mode,
9120 &setlist,
9121 &showlist);
9122}
This page took 0.0739340000000001 seconds and 4 git commands to generate.