2011-04-27 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
29#include "exceptions.h"
30#include "breakpoint.h"
31#include "gdb_wait.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "cli/cli-script.h"
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
38#include "symfile.h"
39#include "top.h"
40#include <signal.h>
41#include "inf-loop.h"
42#include "regcache.h"
43#include "value.h"
44#include "observer.h"
45#include "language.h"
46#include "solib.h"
47#include "main.h"
48#include "dictionary.h"
49#include "block.h"
50#include "gdb_assert.h"
51#include "mi/mi-common.h"
52#include "event-top.h"
53#include "record.h"
54#include "inline-frame.h"
55#include "jit.h"
56#include "tracepoint.h"
57
58/* Prototypes for local functions */
59
60static void signals_info (char *, int);
61
62static void handle_command (char *, int);
63
64static void sig_print_info (enum target_signal);
65
66static void sig_print_header (void);
67
68static void resume_cleanups (void *);
69
70static int hook_stop_stub (void *);
71
72static int restore_selected_frame (void *);
73
74static int follow_fork (void);
75
76static void set_schedlock_func (char *args, int from_tty,
77 struct cmd_list_element *c);
78
79static int currently_stepping (struct thread_info *tp);
80
81static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
83
84static void xdb_handle_command (char *args, int from_tty);
85
86static int prepare_to_proceed (int);
87
88static void print_exited_reason (int exitstatus);
89
90static void print_signal_exited_reason (enum target_signal siggnal);
91
92static void print_no_history_reason (void);
93
94static void print_signal_received_reason (enum target_signal siggnal);
95
96static void print_end_stepping_range_reason (void);
97
98void _initialize_infrun (void);
99
100void nullify_last_target_wait_ptid (void);
101
102/* When set, stop the 'step' command if we enter a function which has
103 no line number information. The normal behavior is that we step
104 over such function. */
105int step_stop_if_no_debug = 0;
106static void
107show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109{
110 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
111}
112
113/* In asynchronous mode, but simulating synchronous execution. */
114
115int sync_execution = 0;
116
117/* wait_for_inferior and normal_stop use this to notify the user
118 when the inferior stopped in a different thread than it had been
119 running in. */
120
121static ptid_t previous_inferior_ptid;
122
123/* Default behavior is to detach newly forked processes (legacy). */
124int detach_fork = 1;
125
126int debug_displaced = 0;
127static void
128show_debug_displaced (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130{
131 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
132}
133
134int debug_infrun = 0;
135static void
136show_debug_infrun (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
140}
141
142/* If the program uses ELF-style shared libraries, then calls to
143 functions in shared libraries go through stubs, which live in a
144 table called the PLT (Procedure Linkage Table). The first time the
145 function is called, the stub sends control to the dynamic linker,
146 which looks up the function's real address, patches the stub so
147 that future calls will go directly to the function, and then passes
148 control to the function.
149
150 If we are stepping at the source level, we don't want to see any of
151 this --- we just want to skip over the stub and the dynamic linker.
152 The simple approach is to single-step until control leaves the
153 dynamic linker.
154
155 However, on some systems (e.g., Red Hat's 5.2 distribution) the
156 dynamic linker calls functions in the shared C library, so you
157 can't tell from the PC alone whether the dynamic linker is still
158 running. In this case, we use a step-resume breakpoint to get us
159 past the dynamic linker, as if we were using "next" to step over a
160 function call.
161
162 in_solib_dynsym_resolve_code() says whether we're in the dynamic
163 linker code or not. Normally, this means we single-step. However,
164 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
165 address where we can place a step-resume breakpoint to get past the
166 linker's symbol resolution function.
167
168 in_solib_dynsym_resolve_code() can generally be implemented in a
169 pretty portable way, by comparing the PC against the address ranges
170 of the dynamic linker's sections.
171
172 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
173 it depends on internal details of the dynamic linker. It's usually
174 not too hard to figure out where to put a breakpoint, but it
175 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
176 sanity checking. If it can't figure things out, returning zero and
177 getting the (possibly confusing) stepping behavior is better than
178 signalling an error, which will obscure the change in the
179 inferior's state. */
180
181/* This function returns TRUE if pc is the address of an instruction
182 that lies within the dynamic linker (such as the event hook, or the
183 dld itself).
184
185 This function must be used only when a dynamic linker event has
186 been caught, and the inferior is being stepped out of the hook, or
187 undefined results are guaranteed. */
188
189#ifndef SOLIB_IN_DYNAMIC_LINKER
190#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
191#endif
192
193/* "Observer mode" is somewhat like a more extreme version of
194 non-stop, in which all GDB operations that might affect the
195 target's execution have been disabled. */
196
197static int non_stop_1 = 0;
198
199int observer_mode = 0;
200static int observer_mode_1 = 0;
201
202static void
203set_observer_mode (char *args, int from_tty,
204 struct cmd_list_element *c)
205{
206 extern int pagination_enabled;
207
208 if (target_has_execution)
209 {
210 observer_mode_1 = observer_mode;
211 error (_("Cannot change this setting while the inferior is running."));
212 }
213
214 observer_mode = observer_mode_1;
215
216 may_write_registers = !observer_mode;
217 may_write_memory = !observer_mode;
218 may_insert_breakpoints = !observer_mode;
219 may_insert_tracepoints = !observer_mode;
220 /* We can insert fast tracepoints in or out of observer mode,
221 but enable them if we're going into this mode. */
222 if (observer_mode)
223 may_insert_fast_tracepoints = 1;
224 may_stop = !observer_mode;
225 update_target_permissions ();
226
227 /* Going *into* observer mode we must force non-stop, then
228 going out we leave it that way. */
229 if (observer_mode)
230 {
231 target_async_permitted = 1;
232 pagination_enabled = 0;
233 non_stop = non_stop_1 = 1;
234 }
235
236 if (from_tty)
237 printf_filtered (_("Observer mode is now %s.\n"),
238 (observer_mode ? "on" : "off"));
239}
240
241static void
242show_observer_mode (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
245 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
246}
247
248/* This updates the value of observer mode based on changes in
249 permissions. Note that we are deliberately ignoring the values of
250 may-write-registers and may-write-memory, since the user may have
251 reason to enable these during a session, for instance to turn on a
252 debugging-related global. */
253
254void
255update_observer_mode (void)
256{
257 int newval;
258
259 newval = (!may_insert_breakpoints
260 && !may_insert_tracepoints
261 && may_insert_fast_tracepoints
262 && !may_stop
263 && non_stop);
264
265 /* Let the user know if things change. */
266 if (newval != observer_mode)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (newval ? "on" : "off"));
269
270 observer_mode = observer_mode_1 = newval;
271}
272
273/* Tables of how to react to signals; the user sets them. */
274
275static unsigned char *signal_stop;
276static unsigned char *signal_print;
277static unsigned char *signal_program;
278
279#define SET_SIGS(nsigs,sigs,flags) \
280 do { \
281 int signum = (nsigs); \
282 while (signum-- > 0) \
283 if ((sigs)[signum]) \
284 (flags)[signum] = 1; \
285 } while (0)
286
287#define UNSET_SIGS(nsigs,sigs,flags) \
288 do { \
289 int signum = (nsigs); \
290 while (signum-- > 0) \
291 if ((sigs)[signum]) \
292 (flags)[signum] = 0; \
293 } while (0)
294
295/* Value to pass to target_resume() to cause all threads to resume. */
296
297#define RESUME_ALL minus_one_ptid
298
299/* Command list pointer for the "stop" placeholder. */
300
301static struct cmd_list_element *stop_command;
302
303/* Function inferior was in as of last step command. */
304
305static struct symbol *step_start_function;
306
307/* Nonzero if we want to give control to the user when we're notified
308 of shared library events by the dynamic linker. */
309int stop_on_solib_events;
310static void
311show_stop_on_solib_events (struct ui_file *file, int from_tty,
312 struct cmd_list_element *c, const char *value)
313{
314 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
315 value);
316}
317
318/* Nonzero means expecting a trace trap
319 and should stop the inferior and return silently when it happens. */
320
321int stop_after_trap;
322
323/* Save register contents here when executing a "finish" command or are
324 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
325 Thus this contains the return value from the called function (assuming
326 values are returned in a register). */
327
328struct regcache *stop_registers;
329
330/* Nonzero after stop if current stack frame should be printed. */
331
332static int stop_print_frame;
333
334/* This is a cached copy of the pid/waitstatus of the last event
335 returned by target_wait()/deprecated_target_wait_hook(). This
336 information is returned by get_last_target_status(). */
337static ptid_t target_last_wait_ptid;
338static struct target_waitstatus target_last_waitstatus;
339
340static void context_switch (ptid_t ptid);
341
342void init_thread_stepping_state (struct thread_info *tss);
343
344void init_infwait_state (void);
345
346static const char follow_fork_mode_child[] = "child";
347static const char follow_fork_mode_parent[] = "parent";
348
349static const char *follow_fork_mode_kind_names[] = {
350 follow_fork_mode_child,
351 follow_fork_mode_parent,
352 NULL
353};
354
355static const char *follow_fork_mode_string = follow_fork_mode_parent;
356static void
357show_follow_fork_mode_string (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file,
361 _("Debugger response to a program "
362 "call of fork or vfork is \"%s\".\n"),
363 value);
364}
365\f
366
367/* Tell the target to follow the fork we're stopped at. Returns true
368 if the inferior should be resumed; false, if the target for some
369 reason decided it's best not to resume. */
370
371static int
372follow_fork (void)
373{
374 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
375 int should_resume = 1;
376 struct thread_info *tp;
377
378 /* Copy user stepping state to the new inferior thread. FIXME: the
379 followed fork child thread should have a copy of most of the
380 parent thread structure's run control related fields, not just these.
381 Initialized to avoid "may be used uninitialized" warnings from gcc. */
382 struct breakpoint *step_resume_breakpoint = NULL;
383 struct breakpoint *exception_resume_breakpoint = NULL;
384 CORE_ADDR step_range_start = 0;
385 CORE_ADDR step_range_end = 0;
386 struct frame_id step_frame_id = { 0 };
387
388 if (!non_stop)
389 {
390 ptid_t wait_ptid;
391 struct target_waitstatus wait_status;
392
393 /* Get the last target status returned by target_wait(). */
394 get_last_target_status (&wait_ptid, &wait_status);
395
396 /* If not stopped at a fork event, then there's nothing else to
397 do. */
398 if (wait_status.kind != TARGET_WAITKIND_FORKED
399 && wait_status.kind != TARGET_WAITKIND_VFORKED)
400 return 1;
401
402 /* Check if we switched over from WAIT_PTID, since the event was
403 reported. */
404 if (!ptid_equal (wait_ptid, minus_one_ptid)
405 && !ptid_equal (inferior_ptid, wait_ptid))
406 {
407 /* We did. Switch back to WAIT_PTID thread, to tell the
408 target to follow it (in either direction). We'll
409 afterwards refuse to resume, and inform the user what
410 happened. */
411 switch_to_thread (wait_ptid);
412 should_resume = 0;
413 }
414 }
415
416 tp = inferior_thread ();
417
418 /* If there were any forks/vforks that were caught and are now to be
419 followed, then do so now. */
420 switch (tp->pending_follow.kind)
421 {
422 case TARGET_WAITKIND_FORKED:
423 case TARGET_WAITKIND_VFORKED:
424 {
425 ptid_t parent, child;
426
427 /* If the user did a next/step, etc, over a fork call,
428 preserve the stepping state in the fork child. */
429 if (follow_child && should_resume)
430 {
431 step_resume_breakpoint = clone_momentary_breakpoint
432 (tp->control.step_resume_breakpoint);
433 step_range_start = tp->control.step_range_start;
434 step_range_end = tp->control.step_range_end;
435 step_frame_id = tp->control.step_frame_id;
436 exception_resume_breakpoint
437 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
438
439 /* For now, delete the parent's sr breakpoint, otherwise,
440 parent/child sr breakpoints are considered duplicates,
441 and the child version will not be installed. Remove
442 this when the breakpoints module becomes aware of
443 inferiors and address spaces. */
444 delete_step_resume_breakpoint (tp);
445 tp->control.step_range_start = 0;
446 tp->control.step_range_end = 0;
447 tp->control.step_frame_id = null_frame_id;
448 delete_exception_resume_breakpoint (tp);
449 }
450
451 parent = inferior_ptid;
452 child = tp->pending_follow.value.related_pid;
453
454 /* Tell the target to do whatever is necessary to follow
455 either parent or child. */
456 if (target_follow_fork (follow_child))
457 {
458 /* Target refused to follow, or there's some other reason
459 we shouldn't resume. */
460 should_resume = 0;
461 }
462 else
463 {
464 /* This pending follow fork event is now handled, one way
465 or another. The previous selected thread may be gone
466 from the lists by now, but if it is still around, need
467 to clear the pending follow request. */
468 tp = find_thread_ptid (parent);
469 if (tp)
470 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
471
472 /* This makes sure we don't try to apply the "Switched
473 over from WAIT_PID" logic above. */
474 nullify_last_target_wait_ptid ();
475
476 /* If we followed the child, switch to it... */
477 if (follow_child)
478 {
479 switch_to_thread (child);
480
481 /* ... and preserve the stepping state, in case the
482 user was stepping over the fork call. */
483 if (should_resume)
484 {
485 tp = inferior_thread ();
486 tp->control.step_resume_breakpoint
487 = step_resume_breakpoint;
488 tp->control.step_range_start = step_range_start;
489 tp->control.step_range_end = step_range_end;
490 tp->control.step_frame_id = step_frame_id;
491 tp->control.exception_resume_breakpoint
492 = exception_resume_breakpoint;
493 }
494 else
495 {
496 /* If we get here, it was because we're trying to
497 resume from a fork catchpoint, but, the user
498 has switched threads away from the thread that
499 forked. In that case, the resume command
500 issued is most likely not applicable to the
501 child, so just warn, and refuse to resume. */
502 warning (_("Not resuming: switched threads "
503 "before following fork child.\n"));
504 }
505
506 /* Reset breakpoints in the child as appropriate. */
507 follow_inferior_reset_breakpoints ();
508 }
509 else
510 switch_to_thread (parent);
511 }
512 }
513 break;
514 case TARGET_WAITKIND_SPURIOUS:
515 /* Nothing to follow. */
516 break;
517 default:
518 internal_error (__FILE__, __LINE__,
519 "Unexpected pending_follow.kind %d\n",
520 tp->pending_follow.kind);
521 break;
522 }
523
524 return should_resume;
525}
526
527void
528follow_inferior_reset_breakpoints (void)
529{
530 struct thread_info *tp = inferior_thread ();
531
532 /* Was there a step_resume breakpoint? (There was if the user
533 did a "next" at the fork() call.) If so, explicitly reset its
534 thread number.
535
536 step_resumes are a form of bp that are made to be per-thread.
537 Since we created the step_resume bp when the parent process
538 was being debugged, and now are switching to the child process,
539 from the breakpoint package's viewpoint, that's a switch of
540 "threads". We must update the bp's notion of which thread
541 it is for, or it'll be ignored when it triggers. */
542
543 if (tp->control.step_resume_breakpoint)
544 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
545
546 if (tp->control.exception_resume_breakpoint)
547 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
548
549 /* Reinsert all breakpoints in the child. The user may have set
550 breakpoints after catching the fork, in which case those
551 were never set in the child, but only in the parent. This makes
552 sure the inserted breakpoints match the breakpoint list. */
553
554 breakpoint_re_set ();
555 insert_breakpoints ();
556}
557
558/* The child has exited or execed: resume threads of the parent the
559 user wanted to be executing. */
560
561static int
562proceed_after_vfork_done (struct thread_info *thread,
563 void *arg)
564{
565 int pid = * (int *) arg;
566
567 if (ptid_get_pid (thread->ptid) == pid
568 && is_running (thread->ptid)
569 && !is_executing (thread->ptid)
570 && !thread->stop_requested
571 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
572 {
573 if (debug_infrun)
574 fprintf_unfiltered (gdb_stdlog,
575 "infrun: resuming vfork parent thread %s\n",
576 target_pid_to_str (thread->ptid));
577
578 switch_to_thread (thread->ptid);
579 clear_proceed_status ();
580 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
581 }
582
583 return 0;
584}
585
586/* Called whenever we notice an exec or exit event, to handle
587 detaching or resuming a vfork parent. */
588
589static void
590handle_vfork_child_exec_or_exit (int exec)
591{
592 struct inferior *inf = current_inferior ();
593
594 if (inf->vfork_parent)
595 {
596 int resume_parent = -1;
597
598 /* This exec or exit marks the end of the shared memory region
599 between the parent and the child. If the user wanted to
600 detach from the parent, now is the time. */
601
602 if (inf->vfork_parent->pending_detach)
603 {
604 struct thread_info *tp;
605 struct cleanup *old_chain;
606 struct program_space *pspace;
607 struct address_space *aspace;
608
609 /* follow-fork child, detach-on-fork on. */
610
611 old_chain = make_cleanup_restore_current_thread ();
612
613 /* We're letting loose of the parent. */
614 tp = any_live_thread_of_process (inf->vfork_parent->pid);
615 switch_to_thread (tp->ptid);
616
617 /* We're about to detach from the parent, which implicitly
618 removes breakpoints from its address space. There's a
619 catch here: we want to reuse the spaces for the child,
620 but, parent/child are still sharing the pspace at this
621 point, although the exec in reality makes the kernel give
622 the child a fresh set of new pages. The problem here is
623 that the breakpoints module being unaware of this, would
624 likely chose the child process to write to the parent
625 address space. Swapping the child temporarily away from
626 the spaces has the desired effect. Yes, this is "sort
627 of" a hack. */
628
629 pspace = inf->pspace;
630 aspace = inf->aspace;
631 inf->aspace = NULL;
632 inf->pspace = NULL;
633
634 if (debug_infrun || info_verbose)
635 {
636 target_terminal_ours ();
637
638 if (exec)
639 fprintf_filtered (gdb_stdlog,
640 "Detaching vfork parent process "
641 "%d after child exec.\n",
642 inf->vfork_parent->pid);
643 else
644 fprintf_filtered (gdb_stdlog,
645 "Detaching vfork parent process "
646 "%d after child exit.\n",
647 inf->vfork_parent->pid);
648 }
649
650 target_detach (NULL, 0);
651
652 /* Put it back. */
653 inf->pspace = pspace;
654 inf->aspace = aspace;
655
656 do_cleanups (old_chain);
657 }
658 else if (exec)
659 {
660 /* We're staying attached to the parent, so, really give the
661 child a new address space. */
662 inf->pspace = add_program_space (maybe_new_address_space ());
663 inf->aspace = inf->pspace->aspace;
664 inf->removable = 1;
665 set_current_program_space (inf->pspace);
666
667 resume_parent = inf->vfork_parent->pid;
668
669 /* Break the bonds. */
670 inf->vfork_parent->vfork_child = NULL;
671 }
672 else
673 {
674 struct cleanup *old_chain;
675 struct program_space *pspace;
676
677 /* If this is a vfork child exiting, then the pspace and
678 aspaces were shared with the parent. Since we're
679 reporting the process exit, we'll be mourning all that is
680 found in the address space, and switching to null_ptid,
681 preparing to start a new inferior. But, since we don't
682 want to clobber the parent's address/program spaces, we
683 go ahead and create a new one for this exiting
684 inferior. */
685
686 /* Switch to null_ptid, so that clone_program_space doesn't want
687 to read the selected frame of a dead process. */
688 old_chain = save_inferior_ptid ();
689 inferior_ptid = null_ptid;
690
691 /* This inferior is dead, so avoid giving the breakpoints
692 module the option to write through to it (cloning a
693 program space resets breakpoints). */
694 inf->aspace = NULL;
695 inf->pspace = NULL;
696 pspace = add_program_space (maybe_new_address_space ());
697 set_current_program_space (pspace);
698 inf->removable = 1;
699 clone_program_space (pspace, inf->vfork_parent->pspace);
700 inf->pspace = pspace;
701 inf->aspace = pspace->aspace;
702
703 /* Put back inferior_ptid. We'll continue mourning this
704 inferior. */
705 do_cleanups (old_chain);
706
707 resume_parent = inf->vfork_parent->pid;
708 /* Break the bonds. */
709 inf->vfork_parent->vfork_child = NULL;
710 }
711
712 inf->vfork_parent = NULL;
713
714 gdb_assert (current_program_space == inf->pspace);
715
716 if (non_stop && resume_parent != -1)
717 {
718 /* If the user wanted the parent to be running, let it go
719 free now. */
720 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
721
722 if (debug_infrun)
723 fprintf_unfiltered (gdb_stdlog,
724 "infrun: resuming vfork parent process %d\n",
725 resume_parent);
726
727 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
728
729 do_cleanups (old_chain);
730 }
731 }
732}
733
734/* Enum strings for "set|show displaced-stepping". */
735
736static const char follow_exec_mode_new[] = "new";
737static const char follow_exec_mode_same[] = "same";
738static const char *follow_exec_mode_names[] =
739{
740 follow_exec_mode_new,
741 follow_exec_mode_same,
742 NULL,
743};
744
745static const char *follow_exec_mode_string = follow_exec_mode_same;
746static void
747show_follow_exec_mode_string (struct ui_file *file, int from_tty,
748 struct cmd_list_element *c, const char *value)
749{
750 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
751}
752
753/* EXECD_PATHNAME is assumed to be non-NULL. */
754
755static void
756follow_exec (ptid_t pid, char *execd_pathname)
757{
758 struct thread_info *th = inferior_thread ();
759 struct inferior *inf = current_inferior ();
760
761 /* This is an exec event that we actually wish to pay attention to.
762 Refresh our symbol table to the newly exec'd program, remove any
763 momentary bp's, etc.
764
765 If there are breakpoints, they aren't really inserted now,
766 since the exec() transformed our inferior into a fresh set
767 of instructions.
768
769 We want to preserve symbolic breakpoints on the list, since
770 we have hopes that they can be reset after the new a.out's
771 symbol table is read.
772
773 However, any "raw" breakpoints must be removed from the list
774 (e.g., the solib bp's), since their address is probably invalid
775 now.
776
777 And, we DON'T want to call delete_breakpoints() here, since
778 that may write the bp's "shadow contents" (the instruction
779 value that was overwritten witha TRAP instruction). Since
780 we now have a new a.out, those shadow contents aren't valid. */
781
782 mark_breakpoints_out ();
783
784 update_breakpoints_after_exec ();
785
786 /* If there was one, it's gone now. We cannot truly step-to-next
787 statement through an exec(). */
788 th->control.step_resume_breakpoint = NULL;
789 th->control.exception_resume_breakpoint = NULL;
790 th->control.step_range_start = 0;
791 th->control.step_range_end = 0;
792
793 /* The target reports the exec event to the main thread, even if
794 some other thread does the exec, and even if the main thread was
795 already stopped --- if debugging in non-stop mode, it's possible
796 the user had the main thread held stopped in the previous image
797 --- release it now. This is the same behavior as step-over-exec
798 with scheduler-locking on in all-stop mode. */
799 th->stop_requested = 0;
800
801 /* What is this a.out's name? */
802 printf_unfiltered (_("%s is executing new program: %s\n"),
803 target_pid_to_str (inferior_ptid),
804 execd_pathname);
805
806 /* We've followed the inferior through an exec. Therefore, the
807 inferior has essentially been killed & reborn. */
808
809 gdb_flush (gdb_stdout);
810
811 breakpoint_init_inferior (inf_execd);
812
813 if (gdb_sysroot && *gdb_sysroot)
814 {
815 char *name = alloca (strlen (gdb_sysroot)
816 + strlen (execd_pathname)
817 + 1);
818
819 strcpy (name, gdb_sysroot);
820 strcat (name, execd_pathname);
821 execd_pathname = name;
822 }
823
824 /* Reset the shared library package. This ensures that we get a
825 shlib event when the child reaches "_start", at which point the
826 dld will have had a chance to initialize the child. */
827 /* Also, loading a symbol file below may trigger symbol lookups, and
828 we don't want those to be satisfied by the libraries of the
829 previous incarnation of this process. */
830 no_shared_libraries (NULL, 0);
831
832 if (follow_exec_mode_string == follow_exec_mode_new)
833 {
834 struct program_space *pspace;
835
836 /* The user wants to keep the old inferior and program spaces
837 around. Create a new fresh one, and switch to it. */
838
839 inf = add_inferior (current_inferior ()->pid);
840 pspace = add_program_space (maybe_new_address_space ());
841 inf->pspace = pspace;
842 inf->aspace = pspace->aspace;
843
844 exit_inferior_num_silent (current_inferior ()->num);
845
846 set_current_inferior (inf);
847 set_current_program_space (pspace);
848 }
849
850 gdb_assert (current_program_space == inf->pspace);
851
852 /* That a.out is now the one to use. */
853 exec_file_attach (execd_pathname, 0);
854
855 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
856 (Position Independent Executable) main symbol file will get applied by
857 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
858 the breakpoints with the zero displacement. */
859
860 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
861 NULL, 0);
862
863 set_initial_language ();
864
865#ifdef SOLIB_CREATE_INFERIOR_HOOK
866 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
867#else
868 solib_create_inferior_hook (0);
869#endif
870
871 jit_inferior_created_hook ();
872
873 breakpoint_re_set ();
874
875 /* Reinsert all breakpoints. (Those which were symbolic have
876 been reset to the proper address in the new a.out, thanks
877 to symbol_file_command...). */
878 insert_breakpoints ();
879
880 /* The next resume of this inferior should bring it to the shlib
881 startup breakpoints. (If the user had also set bp's on
882 "main" from the old (parent) process, then they'll auto-
883 matically get reset there in the new process.). */
884}
885
886/* Non-zero if we just simulating a single-step. This is needed
887 because we cannot remove the breakpoints in the inferior process
888 until after the `wait' in `wait_for_inferior'. */
889static int singlestep_breakpoints_inserted_p = 0;
890
891/* The thread we inserted single-step breakpoints for. */
892static ptid_t singlestep_ptid;
893
894/* PC when we started this single-step. */
895static CORE_ADDR singlestep_pc;
896
897/* If another thread hit the singlestep breakpoint, we save the original
898 thread here so that we can resume single-stepping it later. */
899static ptid_t saved_singlestep_ptid;
900static int stepping_past_singlestep_breakpoint;
901
902/* If not equal to null_ptid, this means that after stepping over breakpoint
903 is finished, we need to switch to deferred_step_ptid, and step it.
904
905 The use case is when one thread has hit a breakpoint, and then the user
906 has switched to another thread and issued 'step'. We need to step over
907 breakpoint in the thread which hit the breakpoint, but then continue
908 stepping the thread user has selected. */
909static ptid_t deferred_step_ptid;
910\f
911/* Displaced stepping. */
912
913/* In non-stop debugging mode, we must take special care to manage
914 breakpoints properly; in particular, the traditional strategy for
915 stepping a thread past a breakpoint it has hit is unsuitable.
916 'Displaced stepping' is a tactic for stepping one thread past a
917 breakpoint it has hit while ensuring that other threads running
918 concurrently will hit the breakpoint as they should.
919
920 The traditional way to step a thread T off a breakpoint in a
921 multi-threaded program in all-stop mode is as follows:
922
923 a0) Initially, all threads are stopped, and breakpoints are not
924 inserted.
925 a1) We single-step T, leaving breakpoints uninserted.
926 a2) We insert breakpoints, and resume all threads.
927
928 In non-stop debugging, however, this strategy is unsuitable: we
929 don't want to have to stop all threads in the system in order to
930 continue or step T past a breakpoint. Instead, we use displaced
931 stepping:
932
933 n0) Initially, T is stopped, other threads are running, and
934 breakpoints are inserted.
935 n1) We copy the instruction "under" the breakpoint to a separate
936 location, outside the main code stream, making any adjustments
937 to the instruction, register, and memory state as directed by
938 T's architecture.
939 n2) We single-step T over the instruction at its new location.
940 n3) We adjust the resulting register and memory state as directed
941 by T's architecture. This includes resetting T's PC to point
942 back into the main instruction stream.
943 n4) We resume T.
944
945 This approach depends on the following gdbarch methods:
946
947 - gdbarch_max_insn_length and gdbarch_displaced_step_location
948 indicate where to copy the instruction, and how much space must
949 be reserved there. We use these in step n1.
950
951 - gdbarch_displaced_step_copy_insn copies a instruction to a new
952 address, and makes any necessary adjustments to the instruction,
953 register contents, and memory. We use this in step n1.
954
955 - gdbarch_displaced_step_fixup adjusts registers and memory after
956 we have successfuly single-stepped the instruction, to yield the
957 same effect the instruction would have had if we had executed it
958 at its original address. We use this in step n3.
959
960 - gdbarch_displaced_step_free_closure provides cleanup.
961
962 The gdbarch_displaced_step_copy_insn and
963 gdbarch_displaced_step_fixup functions must be written so that
964 copying an instruction with gdbarch_displaced_step_copy_insn,
965 single-stepping across the copied instruction, and then applying
966 gdbarch_displaced_insn_fixup should have the same effects on the
967 thread's memory and registers as stepping the instruction in place
968 would have. Exactly which responsibilities fall to the copy and
969 which fall to the fixup is up to the author of those functions.
970
971 See the comments in gdbarch.sh for details.
972
973 Note that displaced stepping and software single-step cannot
974 currently be used in combination, although with some care I think
975 they could be made to. Software single-step works by placing
976 breakpoints on all possible subsequent instructions; if the
977 displaced instruction is a PC-relative jump, those breakpoints
978 could fall in very strange places --- on pages that aren't
979 executable, or at addresses that are not proper instruction
980 boundaries. (We do generally let other threads run while we wait
981 to hit the software single-step breakpoint, and they might
982 encounter such a corrupted instruction.) One way to work around
983 this would be to have gdbarch_displaced_step_copy_insn fully
984 simulate the effect of PC-relative instructions (and return NULL)
985 on architectures that use software single-stepping.
986
987 In non-stop mode, we can have independent and simultaneous step
988 requests, so more than one thread may need to simultaneously step
989 over a breakpoint. The current implementation assumes there is
990 only one scratch space per process. In this case, we have to
991 serialize access to the scratch space. If thread A wants to step
992 over a breakpoint, but we are currently waiting for some other
993 thread to complete a displaced step, we leave thread A stopped and
994 place it in the displaced_step_request_queue. Whenever a displaced
995 step finishes, we pick the next thread in the queue and start a new
996 displaced step operation on it. See displaced_step_prepare and
997 displaced_step_fixup for details. */
998
999struct displaced_step_request
1000{
1001 ptid_t ptid;
1002 struct displaced_step_request *next;
1003};
1004
1005/* Per-inferior displaced stepping state. */
1006struct displaced_step_inferior_state
1007{
1008 /* Pointer to next in linked list. */
1009 struct displaced_step_inferior_state *next;
1010
1011 /* The process this displaced step state refers to. */
1012 int pid;
1013
1014 /* A queue of pending displaced stepping requests. One entry per
1015 thread that needs to do a displaced step. */
1016 struct displaced_step_request *step_request_queue;
1017
1018 /* If this is not null_ptid, this is the thread carrying out a
1019 displaced single-step in process PID. This thread's state will
1020 require fixing up once it has completed its step. */
1021 ptid_t step_ptid;
1022
1023 /* The architecture the thread had when we stepped it. */
1024 struct gdbarch *step_gdbarch;
1025
1026 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1027 for post-step cleanup. */
1028 struct displaced_step_closure *step_closure;
1029
1030 /* The address of the original instruction, and the copy we
1031 made. */
1032 CORE_ADDR step_original, step_copy;
1033
1034 /* Saved contents of copy area. */
1035 gdb_byte *step_saved_copy;
1036};
1037
1038/* The list of states of processes involved in displaced stepping
1039 presently. */
1040static struct displaced_step_inferior_state *displaced_step_inferior_states;
1041
1042/* Get the displaced stepping state of process PID. */
1043
1044static struct displaced_step_inferior_state *
1045get_displaced_stepping_state (int pid)
1046{
1047 struct displaced_step_inferior_state *state;
1048
1049 for (state = displaced_step_inferior_states;
1050 state != NULL;
1051 state = state->next)
1052 if (state->pid == pid)
1053 return state;
1054
1055 return NULL;
1056}
1057
1058/* Add a new displaced stepping state for process PID to the displaced
1059 stepping state list, or return a pointer to an already existing
1060 entry, if it already exists. Never returns NULL. */
1061
1062static struct displaced_step_inferior_state *
1063add_displaced_stepping_state (int pid)
1064{
1065 struct displaced_step_inferior_state *state;
1066
1067 for (state = displaced_step_inferior_states;
1068 state != NULL;
1069 state = state->next)
1070 if (state->pid == pid)
1071 return state;
1072
1073 state = xcalloc (1, sizeof (*state));
1074 state->pid = pid;
1075 state->next = displaced_step_inferior_states;
1076 displaced_step_inferior_states = state;
1077
1078 return state;
1079}
1080
1081/* If inferior is in displaced stepping, and ADDR equals to starting address
1082 of copy area, return corresponding displaced_step_closure. Otherwise,
1083 return NULL. */
1084
1085struct displaced_step_closure*
1086get_displaced_step_closure_by_addr (CORE_ADDR addr)
1087{
1088 struct displaced_step_inferior_state *displaced
1089 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1090
1091 /* If checking the mode of displaced instruction in copy area. */
1092 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1093 && (displaced->step_copy == addr))
1094 return displaced->step_closure;
1095
1096 return NULL;
1097}
1098
1099/* Remove the displaced stepping state of process PID. */
1100
1101static void
1102remove_displaced_stepping_state (int pid)
1103{
1104 struct displaced_step_inferior_state *it, **prev_next_p;
1105
1106 gdb_assert (pid != 0);
1107
1108 it = displaced_step_inferior_states;
1109 prev_next_p = &displaced_step_inferior_states;
1110 while (it)
1111 {
1112 if (it->pid == pid)
1113 {
1114 *prev_next_p = it->next;
1115 xfree (it);
1116 return;
1117 }
1118
1119 prev_next_p = &it->next;
1120 it = *prev_next_p;
1121 }
1122}
1123
1124static void
1125infrun_inferior_exit (struct inferior *inf)
1126{
1127 remove_displaced_stepping_state (inf->pid);
1128}
1129
1130/* Enum strings for "set|show displaced-stepping". */
1131
1132static const char can_use_displaced_stepping_auto[] = "auto";
1133static const char can_use_displaced_stepping_on[] = "on";
1134static const char can_use_displaced_stepping_off[] = "off";
1135static const char *can_use_displaced_stepping_enum[] =
1136{
1137 can_use_displaced_stepping_auto,
1138 can_use_displaced_stepping_on,
1139 can_use_displaced_stepping_off,
1140 NULL,
1141};
1142
1143/* If ON, and the architecture supports it, GDB will use displaced
1144 stepping to step over breakpoints. If OFF, or if the architecture
1145 doesn't support it, GDB will instead use the traditional
1146 hold-and-step approach. If AUTO (which is the default), GDB will
1147 decide which technique to use to step over breakpoints depending on
1148 which of all-stop or non-stop mode is active --- displaced stepping
1149 in non-stop mode; hold-and-step in all-stop mode. */
1150
1151static const char *can_use_displaced_stepping =
1152 can_use_displaced_stepping_auto;
1153
1154static void
1155show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1156 struct cmd_list_element *c,
1157 const char *value)
1158{
1159 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1160 fprintf_filtered (file,
1161 _("Debugger's willingness to use displaced stepping "
1162 "to step over breakpoints is %s (currently %s).\n"),
1163 value, non_stop ? "on" : "off");
1164 else
1165 fprintf_filtered (file,
1166 _("Debugger's willingness to use displaced stepping "
1167 "to step over breakpoints is %s.\n"), value);
1168}
1169
1170/* Return non-zero if displaced stepping can/should be used to step
1171 over breakpoints. */
1172
1173static int
1174use_displaced_stepping (struct gdbarch *gdbarch)
1175{
1176 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1177 && non_stop)
1178 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1179 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1180 && !RECORD_IS_USED);
1181}
1182
1183/* Clean out any stray displaced stepping state. */
1184static void
1185displaced_step_clear (struct displaced_step_inferior_state *displaced)
1186{
1187 /* Indicate that there is no cleanup pending. */
1188 displaced->step_ptid = null_ptid;
1189
1190 if (displaced->step_closure)
1191 {
1192 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1193 displaced->step_closure);
1194 displaced->step_closure = NULL;
1195 }
1196}
1197
1198static void
1199displaced_step_clear_cleanup (void *arg)
1200{
1201 struct displaced_step_inferior_state *state = arg;
1202
1203 displaced_step_clear (state);
1204}
1205
1206/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1207void
1208displaced_step_dump_bytes (struct ui_file *file,
1209 const gdb_byte *buf,
1210 size_t len)
1211{
1212 int i;
1213
1214 for (i = 0; i < len; i++)
1215 fprintf_unfiltered (file, "%02x ", buf[i]);
1216 fputs_unfiltered ("\n", file);
1217}
1218
1219/* Prepare to single-step, using displaced stepping.
1220
1221 Note that we cannot use displaced stepping when we have a signal to
1222 deliver. If we have a signal to deliver and an instruction to step
1223 over, then after the step, there will be no indication from the
1224 target whether the thread entered a signal handler or ignored the
1225 signal and stepped over the instruction successfully --- both cases
1226 result in a simple SIGTRAP. In the first case we mustn't do a
1227 fixup, and in the second case we must --- but we can't tell which.
1228 Comments in the code for 'random signals' in handle_inferior_event
1229 explain how we handle this case instead.
1230
1231 Returns 1 if preparing was successful -- this thread is going to be
1232 stepped now; or 0 if displaced stepping this thread got queued. */
1233static int
1234displaced_step_prepare (ptid_t ptid)
1235{
1236 struct cleanup *old_cleanups, *ignore_cleanups;
1237 struct regcache *regcache = get_thread_regcache (ptid);
1238 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1239 CORE_ADDR original, copy;
1240 ULONGEST len;
1241 struct displaced_step_closure *closure;
1242 struct displaced_step_inferior_state *displaced;
1243
1244 /* We should never reach this function if the architecture does not
1245 support displaced stepping. */
1246 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1247
1248 /* We have to displaced step one thread at a time, as we only have
1249 access to a single scratch space per inferior. */
1250
1251 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1252
1253 if (!ptid_equal (displaced->step_ptid, null_ptid))
1254 {
1255 /* Already waiting for a displaced step to finish. Defer this
1256 request and place in queue. */
1257 struct displaced_step_request *req, *new_req;
1258
1259 if (debug_displaced)
1260 fprintf_unfiltered (gdb_stdlog,
1261 "displaced: defering step of %s\n",
1262 target_pid_to_str (ptid));
1263
1264 new_req = xmalloc (sizeof (*new_req));
1265 new_req->ptid = ptid;
1266 new_req->next = NULL;
1267
1268 if (displaced->step_request_queue)
1269 {
1270 for (req = displaced->step_request_queue;
1271 req && req->next;
1272 req = req->next)
1273 ;
1274 req->next = new_req;
1275 }
1276 else
1277 displaced->step_request_queue = new_req;
1278
1279 return 0;
1280 }
1281 else
1282 {
1283 if (debug_displaced)
1284 fprintf_unfiltered (gdb_stdlog,
1285 "displaced: stepping %s now\n",
1286 target_pid_to_str (ptid));
1287 }
1288
1289 displaced_step_clear (displaced);
1290
1291 old_cleanups = save_inferior_ptid ();
1292 inferior_ptid = ptid;
1293
1294 original = regcache_read_pc (regcache);
1295
1296 copy = gdbarch_displaced_step_location (gdbarch);
1297 len = gdbarch_max_insn_length (gdbarch);
1298
1299 /* Save the original contents of the copy area. */
1300 displaced->step_saved_copy = xmalloc (len);
1301 ignore_cleanups = make_cleanup (free_current_contents,
1302 &displaced->step_saved_copy);
1303 read_memory (copy, displaced->step_saved_copy, len);
1304 if (debug_displaced)
1305 {
1306 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1307 paddress (gdbarch, copy));
1308 displaced_step_dump_bytes (gdb_stdlog,
1309 displaced->step_saved_copy,
1310 len);
1311 };
1312
1313 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1314 original, copy, regcache);
1315
1316 /* We don't support the fully-simulated case at present. */
1317 gdb_assert (closure);
1318
1319 /* Save the information we need to fix things up if the step
1320 succeeds. */
1321 displaced->step_ptid = ptid;
1322 displaced->step_gdbarch = gdbarch;
1323 displaced->step_closure = closure;
1324 displaced->step_original = original;
1325 displaced->step_copy = copy;
1326
1327 make_cleanup (displaced_step_clear_cleanup, displaced);
1328
1329 /* Resume execution at the copy. */
1330 regcache_write_pc (regcache, copy);
1331
1332 discard_cleanups (ignore_cleanups);
1333
1334 do_cleanups (old_cleanups);
1335
1336 if (debug_displaced)
1337 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1338 paddress (gdbarch, copy));
1339
1340 return 1;
1341}
1342
1343static void
1344write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1345 const gdb_byte *myaddr, int len)
1346{
1347 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1348
1349 inferior_ptid = ptid;
1350 write_memory (memaddr, myaddr, len);
1351 do_cleanups (ptid_cleanup);
1352}
1353
1354static void
1355displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1356{
1357 struct cleanup *old_cleanups;
1358 struct displaced_step_inferior_state *displaced
1359 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1360
1361 /* Was any thread of this process doing a displaced step? */
1362 if (displaced == NULL)
1363 return;
1364
1365 /* Was this event for the pid we displaced? */
1366 if (ptid_equal (displaced->step_ptid, null_ptid)
1367 || ! ptid_equal (displaced->step_ptid, event_ptid))
1368 return;
1369
1370 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1371
1372 /* Restore the contents of the copy area. */
1373 {
1374 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1375
1376 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1377 displaced->step_saved_copy, len);
1378 if (debug_displaced)
1379 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1380 paddress (displaced->step_gdbarch,
1381 displaced->step_copy));
1382 }
1383
1384 /* Did the instruction complete successfully? */
1385 if (signal == TARGET_SIGNAL_TRAP)
1386 {
1387 /* Fix up the resulting state. */
1388 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1389 displaced->step_closure,
1390 displaced->step_original,
1391 displaced->step_copy,
1392 get_thread_regcache (displaced->step_ptid));
1393 }
1394 else
1395 {
1396 /* Since the instruction didn't complete, all we can do is
1397 relocate the PC. */
1398 struct regcache *regcache = get_thread_regcache (event_ptid);
1399 CORE_ADDR pc = regcache_read_pc (regcache);
1400
1401 pc = displaced->step_original + (pc - displaced->step_copy);
1402 regcache_write_pc (regcache, pc);
1403 }
1404
1405 do_cleanups (old_cleanups);
1406
1407 displaced->step_ptid = null_ptid;
1408
1409 /* Are there any pending displaced stepping requests? If so, run
1410 one now. Leave the state object around, since we're likely to
1411 need it again soon. */
1412 while (displaced->step_request_queue)
1413 {
1414 struct displaced_step_request *head;
1415 ptid_t ptid;
1416 struct regcache *regcache;
1417 struct gdbarch *gdbarch;
1418 CORE_ADDR actual_pc;
1419 struct address_space *aspace;
1420
1421 head = displaced->step_request_queue;
1422 ptid = head->ptid;
1423 displaced->step_request_queue = head->next;
1424 xfree (head);
1425
1426 context_switch (ptid);
1427
1428 regcache = get_thread_regcache (ptid);
1429 actual_pc = regcache_read_pc (regcache);
1430 aspace = get_regcache_aspace (regcache);
1431
1432 if (breakpoint_here_p (aspace, actual_pc))
1433 {
1434 if (debug_displaced)
1435 fprintf_unfiltered (gdb_stdlog,
1436 "displaced: stepping queued %s now\n",
1437 target_pid_to_str (ptid));
1438
1439 displaced_step_prepare (ptid);
1440
1441 gdbarch = get_regcache_arch (regcache);
1442
1443 if (debug_displaced)
1444 {
1445 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1446 gdb_byte buf[4];
1447
1448 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1449 paddress (gdbarch, actual_pc));
1450 read_memory (actual_pc, buf, sizeof (buf));
1451 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1452 }
1453
1454 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1455 displaced->step_closure))
1456 target_resume (ptid, 1, TARGET_SIGNAL_0);
1457 else
1458 target_resume (ptid, 0, TARGET_SIGNAL_0);
1459
1460 /* Done, we're stepping a thread. */
1461 break;
1462 }
1463 else
1464 {
1465 int step;
1466 struct thread_info *tp = inferior_thread ();
1467
1468 /* The breakpoint we were sitting under has since been
1469 removed. */
1470 tp->control.trap_expected = 0;
1471
1472 /* Go back to what we were trying to do. */
1473 step = currently_stepping (tp);
1474
1475 if (debug_displaced)
1476 fprintf_unfiltered (gdb_stdlog,
1477 "breakpoint is gone %s: step(%d)\n",
1478 target_pid_to_str (tp->ptid), step);
1479
1480 target_resume (ptid, step, TARGET_SIGNAL_0);
1481 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1482
1483 /* This request was discarded. See if there's any other
1484 thread waiting for its turn. */
1485 }
1486 }
1487}
1488
1489/* Update global variables holding ptids to hold NEW_PTID if they were
1490 holding OLD_PTID. */
1491static void
1492infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1493{
1494 struct displaced_step_request *it;
1495 struct displaced_step_inferior_state *displaced;
1496
1497 if (ptid_equal (inferior_ptid, old_ptid))
1498 inferior_ptid = new_ptid;
1499
1500 if (ptid_equal (singlestep_ptid, old_ptid))
1501 singlestep_ptid = new_ptid;
1502
1503 if (ptid_equal (deferred_step_ptid, old_ptid))
1504 deferred_step_ptid = new_ptid;
1505
1506 for (displaced = displaced_step_inferior_states;
1507 displaced;
1508 displaced = displaced->next)
1509 {
1510 if (ptid_equal (displaced->step_ptid, old_ptid))
1511 displaced->step_ptid = new_ptid;
1512
1513 for (it = displaced->step_request_queue; it; it = it->next)
1514 if (ptid_equal (it->ptid, old_ptid))
1515 it->ptid = new_ptid;
1516 }
1517}
1518
1519\f
1520/* Resuming. */
1521
1522/* Things to clean up if we QUIT out of resume (). */
1523static void
1524resume_cleanups (void *ignore)
1525{
1526 normal_stop ();
1527}
1528
1529static const char schedlock_off[] = "off";
1530static const char schedlock_on[] = "on";
1531static const char schedlock_step[] = "step";
1532static const char *scheduler_enums[] = {
1533 schedlock_off,
1534 schedlock_on,
1535 schedlock_step,
1536 NULL
1537};
1538static const char *scheduler_mode = schedlock_off;
1539static void
1540show_scheduler_mode (struct ui_file *file, int from_tty,
1541 struct cmd_list_element *c, const char *value)
1542{
1543 fprintf_filtered (file,
1544 _("Mode for locking scheduler "
1545 "during execution is \"%s\".\n"),
1546 value);
1547}
1548
1549static void
1550set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1551{
1552 if (!target_can_lock_scheduler)
1553 {
1554 scheduler_mode = schedlock_off;
1555 error (_("Target '%s' cannot support this command."), target_shortname);
1556 }
1557}
1558
1559/* True if execution commands resume all threads of all processes by
1560 default; otherwise, resume only threads of the current inferior
1561 process. */
1562int sched_multi = 0;
1563
1564/* Try to setup for software single stepping over the specified location.
1565 Return 1 if target_resume() should use hardware single step.
1566
1567 GDBARCH the current gdbarch.
1568 PC the location to step over. */
1569
1570static int
1571maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1572{
1573 int hw_step = 1;
1574
1575 if (execution_direction == EXEC_FORWARD
1576 && gdbarch_software_single_step_p (gdbarch)
1577 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1578 {
1579 hw_step = 0;
1580 /* Do not pull these breakpoints until after a `wait' in
1581 `wait_for_inferior'. */
1582 singlestep_breakpoints_inserted_p = 1;
1583 singlestep_ptid = inferior_ptid;
1584 singlestep_pc = pc;
1585 }
1586 return hw_step;
1587}
1588
1589/* Resume the inferior, but allow a QUIT. This is useful if the user
1590 wants to interrupt some lengthy single-stepping operation
1591 (for child processes, the SIGINT goes to the inferior, and so
1592 we get a SIGINT random_signal, but for remote debugging and perhaps
1593 other targets, that's not true).
1594
1595 STEP nonzero if we should step (zero to continue instead).
1596 SIG is the signal to give the inferior (zero for none). */
1597void
1598resume (int step, enum target_signal sig)
1599{
1600 int should_resume = 1;
1601 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1602 struct regcache *regcache = get_current_regcache ();
1603 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1604 struct thread_info *tp = inferior_thread ();
1605 CORE_ADDR pc = regcache_read_pc (regcache);
1606 struct address_space *aspace = get_regcache_aspace (regcache);
1607
1608 QUIT;
1609
1610 if (current_inferior ()->waiting_for_vfork_done)
1611 {
1612 /* Don't try to single-step a vfork parent that is waiting for
1613 the child to get out of the shared memory region (by exec'ing
1614 or exiting). This is particularly important on software
1615 single-step archs, as the child process would trip on the
1616 software single step breakpoint inserted for the parent
1617 process. Since the parent will not actually execute any
1618 instruction until the child is out of the shared region (such
1619 are vfork's semantics), it is safe to simply continue it.
1620 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1621 the parent, and tell it to `keep_going', which automatically
1622 re-sets it stepping. */
1623 if (debug_infrun)
1624 fprintf_unfiltered (gdb_stdlog,
1625 "infrun: resume : clear step\n");
1626 step = 0;
1627 }
1628
1629 if (debug_infrun)
1630 fprintf_unfiltered (gdb_stdlog,
1631 "infrun: resume (step=%d, signal=%d), "
1632 "trap_expected=%d\n",
1633 step, sig, tp->control.trap_expected);
1634
1635 /* Normally, by the time we reach `resume', the breakpoints are either
1636 removed or inserted, as appropriate. The exception is if we're sitting
1637 at a permanent breakpoint; we need to step over it, but permanent
1638 breakpoints can't be removed. So we have to test for it here. */
1639 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1640 {
1641 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1642 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1643 else
1644 error (_("\
1645The program is stopped at a permanent breakpoint, but GDB does not know\n\
1646how to step past a permanent breakpoint on this architecture. Try using\n\
1647a command like `return' or `jump' to continue execution."));
1648 }
1649
1650 /* If enabled, step over breakpoints by executing a copy of the
1651 instruction at a different address.
1652
1653 We can't use displaced stepping when we have a signal to deliver;
1654 the comments for displaced_step_prepare explain why. The
1655 comments in the handle_inferior event for dealing with 'random
1656 signals' explain what we do instead.
1657
1658 We can't use displaced stepping when we are waiting for vfork_done
1659 event, displaced stepping breaks the vfork child similarly as single
1660 step software breakpoint. */
1661 if (use_displaced_stepping (gdbarch)
1662 && (tp->control.trap_expected
1663 || (step && gdbarch_software_single_step_p (gdbarch)))
1664 && sig == TARGET_SIGNAL_0
1665 && !current_inferior ()->waiting_for_vfork_done)
1666 {
1667 struct displaced_step_inferior_state *displaced;
1668
1669 if (!displaced_step_prepare (inferior_ptid))
1670 {
1671 /* Got placed in displaced stepping queue. Will be resumed
1672 later when all the currently queued displaced stepping
1673 requests finish. The thread is not executing at this point,
1674 and the call to set_executing will be made later. But we
1675 need to call set_running here, since from frontend point of view,
1676 the thread is running. */
1677 set_running (inferior_ptid, 1);
1678 discard_cleanups (old_cleanups);
1679 return;
1680 }
1681
1682 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1683 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1684 displaced->step_closure);
1685 }
1686
1687 /* Do we need to do it the hard way, w/temp breakpoints? */
1688 else if (step)
1689 step = maybe_software_singlestep (gdbarch, pc);
1690
1691 if (should_resume)
1692 {
1693 ptid_t resume_ptid;
1694
1695 /* If STEP is set, it's a request to use hardware stepping
1696 facilities. But in that case, we should never
1697 use singlestep breakpoint. */
1698 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1699
1700 /* Decide the set of threads to ask the target to resume. Start
1701 by assuming everything will be resumed, than narrow the set
1702 by applying increasingly restricting conditions. */
1703
1704 /* By default, resume all threads of all processes. */
1705 resume_ptid = RESUME_ALL;
1706
1707 /* Maybe resume only all threads of the current process. */
1708 if (!sched_multi && target_supports_multi_process ())
1709 {
1710 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1711 }
1712
1713 /* Maybe resume a single thread after all. */
1714 if (singlestep_breakpoints_inserted_p
1715 && stepping_past_singlestep_breakpoint)
1716 {
1717 /* The situation here is as follows. In thread T1 we wanted to
1718 single-step. Lacking hardware single-stepping we've
1719 set breakpoint at the PC of the next instruction -- call it
1720 P. After resuming, we've hit that breakpoint in thread T2.
1721 Now we've removed original breakpoint, inserted breakpoint
1722 at P+1, and try to step to advance T2 past breakpoint.
1723 We need to step only T2, as if T1 is allowed to freely run,
1724 it can run past P, and if other threads are allowed to run,
1725 they can hit breakpoint at P+1, and nested hits of single-step
1726 breakpoints is not something we'd want -- that's complicated
1727 to support, and has no value. */
1728 resume_ptid = inferior_ptid;
1729 }
1730 else if ((step || singlestep_breakpoints_inserted_p)
1731 && tp->control.trap_expected)
1732 {
1733 /* We're allowing a thread to run past a breakpoint it has
1734 hit, by single-stepping the thread with the breakpoint
1735 removed. In which case, we need to single-step only this
1736 thread, and keep others stopped, as they can miss this
1737 breakpoint if allowed to run.
1738
1739 The current code actually removes all breakpoints when
1740 doing this, not just the one being stepped over, so if we
1741 let other threads run, we can actually miss any
1742 breakpoint, not just the one at PC. */
1743 resume_ptid = inferior_ptid;
1744 }
1745 else if (non_stop)
1746 {
1747 /* With non-stop mode on, threads are always handled
1748 individually. */
1749 resume_ptid = inferior_ptid;
1750 }
1751 else if ((scheduler_mode == schedlock_on)
1752 || (scheduler_mode == schedlock_step
1753 && (step || singlestep_breakpoints_inserted_p)))
1754 {
1755 /* User-settable 'scheduler' mode requires solo thread resume. */
1756 resume_ptid = inferior_ptid;
1757 }
1758
1759 if (gdbarch_cannot_step_breakpoint (gdbarch))
1760 {
1761 /* Most targets can step a breakpoint instruction, thus
1762 executing it normally. But if this one cannot, just
1763 continue and we will hit it anyway. */
1764 if (step && breakpoint_inserted_here_p (aspace, pc))
1765 step = 0;
1766 }
1767
1768 if (debug_displaced
1769 && use_displaced_stepping (gdbarch)
1770 && tp->control.trap_expected)
1771 {
1772 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1773 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1774 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1775 gdb_byte buf[4];
1776
1777 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1778 paddress (resume_gdbarch, actual_pc));
1779 read_memory (actual_pc, buf, sizeof (buf));
1780 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1781 }
1782
1783 /* Install inferior's terminal modes. */
1784 target_terminal_inferior ();
1785
1786 /* Avoid confusing the next resume, if the next stop/resume
1787 happens to apply to another thread. */
1788 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1789
1790 target_resume (resume_ptid, step, sig);
1791 }
1792
1793 discard_cleanups (old_cleanups);
1794}
1795\f
1796/* Proceeding. */
1797
1798/* Clear out all variables saying what to do when inferior is continued.
1799 First do this, then set the ones you want, then call `proceed'. */
1800
1801static void
1802clear_proceed_status_thread (struct thread_info *tp)
1803{
1804 if (debug_infrun)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "infrun: clear_proceed_status_thread (%s)\n",
1807 target_pid_to_str (tp->ptid));
1808
1809 tp->control.trap_expected = 0;
1810 tp->control.step_range_start = 0;
1811 tp->control.step_range_end = 0;
1812 tp->control.step_frame_id = null_frame_id;
1813 tp->control.step_stack_frame_id = null_frame_id;
1814 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1815 tp->stop_requested = 0;
1816
1817 tp->control.stop_step = 0;
1818
1819 tp->control.proceed_to_finish = 0;
1820
1821 /* Discard any remaining commands or status from previous stop. */
1822 bpstat_clear (&tp->control.stop_bpstat);
1823}
1824
1825static int
1826clear_proceed_status_callback (struct thread_info *tp, void *data)
1827{
1828 if (is_exited (tp->ptid))
1829 return 0;
1830
1831 clear_proceed_status_thread (tp);
1832 return 0;
1833}
1834
1835void
1836clear_proceed_status (void)
1837{
1838 if (!non_stop)
1839 {
1840 /* In all-stop mode, delete the per-thread status of all
1841 threads, even if inferior_ptid is null_ptid, there may be
1842 threads on the list. E.g., we may be launching a new
1843 process, while selecting the executable. */
1844 iterate_over_threads (clear_proceed_status_callback, NULL);
1845 }
1846
1847 if (!ptid_equal (inferior_ptid, null_ptid))
1848 {
1849 struct inferior *inferior;
1850
1851 if (non_stop)
1852 {
1853 /* If in non-stop mode, only delete the per-thread status of
1854 the current thread. */
1855 clear_proceed_status_thread (inferior_thread ());
1856 }
1857
1858 inferior = current_inferior ();
1859 inferior->control.stop_soon = NO_STOP_QUIETLY;
1860 }
1861
1862 stop_after_trap = 0;
1863
1864 observer_notify_about_to_proceed ();
1865
1866 if (stop_registers)
1867 {
1868 regcache_xfree (stop_registers);
1869 stop_registers = NULL;
1870 }
1871}
1872
1873/* Check the current thread against the thread that reported the most recent
1874 event. If a step-over is required return TRUE and set the current thread
1875 to the old thread. Otherwise return FALSE.
1876
1877 This should be suitable for any targets that support threads. */
1878
1879static int
1880prepare_to_proceed (int step)
1881{
1882 ptid_t wait_ptid;
1883 struct target_waitstatus wait_status;
1884 int schedlock_enabled;
1885
1886 /* With non-stop mode on, threads are always handled individually. */
1887 gdb_assert (! non_stop);
1888
1889 /* Get the last target status returned by target_wait(). */
1890 get_last_target_status (&wait_ptid, &wait_status);
1891
1892 /* Make sure we were stopped at a breakpoint. */
1893 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1894 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1895 && wait_status.value.sig != TARGET_SIGNAL_ILL
1896 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1897 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1898 {
1899 return 0;
1900 }
1901
1902 schedlock_enabled = (scheduler_mode == schedlock_on
1903 || (scheduler_mode == schedlock_step
1904 && step));
1905
1906 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1907 if (schedlock_enabled)
1908 return 0;
1909
1910 /* Don't switch over if we're about to resume some other process
1911 other than WAIT_PTID's, and schedule-multiple is off. */
1912 if (!sched_multi
1913 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1914 return 0;
1915
1916 /* Switched over from WAIT_PID. */
1917 if (!ptid_equal (wait_ptid, minus_one_ptid)
1918 && !ptid_equal (inferior_ptid, wait_ptid))
1919 {
1920 struct regcache *regcache = get_thread_regcache (wait_ptid);
1921
1922 if (breakpoint_here_p (get_regcache_aspace (regcache),
1923 regcache_read_pc (regcache)))
1924 {
1925 /* If stepping, remember current thread to switch back to. */
1926 if (step)
1927 deferred_step_ptid = inferior_ptid;
1928
1929 /* Switch back to WAIT_PID thread. */
1930 switch_to_thread (wait_ptid);
1931
1932 /* We return 1 to indicate that there is a breakpoint here,
1933 so we need to step over it before continuing to avoid
1934 hitting it straight away. */
1935 return 1;
1936 }
1937 }
1938
1939 return 0;
1940}
1941
1942/* Basic routine for continuing the program in various fashions.
1943
1944 ADDR is the address to resume at, or -1 for resume where stopped.
1945 SIGGNAL is the signal to give it, or 0 for none,
1946 or -1 for act according to how it stopped.
1947 STEP is nonzero if should trap after one instruction.
1948 -1 means return after that and print nothing.
1949 You should probably set various step_... variables
1950 before calling here, if you are stepping.
1951
1952 You should call clear_proceed_status before calling proceed. */
1953
1954void
1955proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1956{
1957 struct regcache *regcache;
1958 struct gdbarch *gdbarch;
1959 struct thread_info *tp;
1960 CORE_ADDR pc;
1961 struct address_space *aspace;
1962 int oneproc = 0;
1963
1964 /* If we're stopped at a fork/vfork, follow the branch set by the
1965 "set follow-fork-mode" command; otherwise, we'll just proceed
1966 resuming the current thread. */
1967 if (!follow_fork ())
1968 {
1969 /* The target for some reason decided not to resume. */
1970 normal_stop ();
1971 return;
1972 }
1973
1974 regcache = get_current_regcache ();
1975 gdbarch = get_regcache_arch (regcache);
1976 aspace = get_regcache_aspace (regcache);
1977 pc = regcache_read_pc (regcache);
1978
1979 if (step > 0)
1980 step_start_function = find_pc_function (pc);
1981 if (step < 0)
1982 stop_after_trap = 1;
1983
1984 if (addr == (CORE_ADDR) -1)
1985 {
1986 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
1987 && execution_direction != EXEC_REVERSE)
1988 /* There is a breakpoint at the address we will resume at,
1989 step one instruction before inserting breakpoints so that
1990 we do not stop right away (and report a second hit at this
1991 breakpoint).
1992
1993 Note, we don't do this in reverse, because we won't
1994 actually be executing the breakpoint insn anyway.
1995 We'll be (un-)executing the previous instruction. */
1996
1997 oneproc = 1;
1998 else if (gdbarch_single_step_through_delay_p (gdbarch)
1999 && gdbarch_single_step_through_delay (gdbarch,
2000 get_current_frame ()))
2001 /* We stepped onto an instruction that needs to be stepped
2002 again before re-inserting the breakpoint, do so. */
2003 oneproc = 1;
2004 }
2005 else
2006 {
2007 regcache_write_pc (regcache, addr);
2008 }
2009
2010 if (debug_infrun)
2011 fprintf_unfiltered (gdb_stdlog,
2012 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2013 paddress (gdbarch, addr), siggnal, step);
2014
2015 if (non_stop)
2016 /* In non-stop, each thread is handled individually. The context
2017 must already be set to the right thread here. */
2018 ;
2019 else
2020 {
2021 /* In a multi-threaded task we may select another thread and
2022 then continue or step.
2023
2024 But if the old thread was stopped at a breakpoint, it will
2025 immediately cause another breakpoint stop without any
2026 execution (i.e. it will report a breakpoint hit incorrectly).
2027 So we must step over it first.
2028
2029 prepare_to_proceed checks the current thread against the
2030 thread that reported the most recent event. If a step-over
2031 is required it returns TRUE and sets the current thread to
2032 the old thread. */
2033 if (prepare_to_proceed (step))
2034 oneproc = 1;
2035 }
2036
2037 /* prepare_to_proceed may change the current thread. */
2038 tp = inferior_thread ();
2039
2040 if (oneproc)
2041 {
2042 tp->control.trap_expected = 1;
2043 /* If displaced stepping is enabled, we can step over the
2044 breakpoint without hitting it, so leave all breakpoints
2045 inserted. Otherwise we need to disable all breakpoints, step
2046 one instruction, and then re-add them when that step is
2047 finished. */
2048 if (!use_displaced_stepping (gdbarch))
2049 remove_breakpoints ();
2050 }
2051
2052 /* We can insert breakpoints if we're not trying to step over one,
2053 or if we are stepping over one but we're using displaced stepping
2054 to do so. */
2055 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2056 insert_breakpoints ();
2057
2058 if (!non_stop)
2059 {
2060 /* Pass the last stop signal to the thread we're resuming,
2061 irrespective of whether the current thread is the thread that
2062 got the last event or not. This was historically GDB's
2063 behaviour before keeping a stop_signal per thread. */
2064
2065 struct thread_info *last_thread;
2066 ptid_t last_ptid;
2067 struct target_waitstatus last_status;
2068
2069 get_last_target_status (&last_ptid, &last_status);
2070 if (!ptid_equal (inferior_ptid, last_ptid)
2071 && !ptid_equal (last_ptid, null_ptid)
2072 && !ptid_equal (last_ptid, minus_one_ptid))
2073 {
2074 last_thread = find_thread_ptid (last_ptid);
2075 if (last_thread)
2076 {
2077 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2078 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2079 }
2080 }
2081 }
2082
2083 if (siggnal != TARGET_SIGNAL_DEFAULT)
2084 tp->suspend.stop_signal = siggnal;
2085 /* If this signal should not be seen by program,
2086 give it zero. Used for debugging signals. */
2087 else if (!signal_program[tp->suspend.stop_signal])
2088 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2089
2090 annotate_starting ();
2091
2092 /* Make sure that output from GDB appears before output from the
2093 inferior. */
2094 gdb_flush (gdb_stdout);
2095
2096 /* Refresh prev_pc value just prior to resuming. This used to be
2097 done in stop_stepping, however, setting prev_pc there did not handle
2098 scenarios such as inferior function calls or returning from
2099 a function via the return command. In those cases, the prev_pc
2100 value was not set properly for subsequent commands. The prev_pc value
2101 is used to initialize the starting line number in the ecs. With an
2102 invalid value, the gdb next command ends up stopping at the position
2103 represented by the next line table entry past our start position.
2104 On platforms that generate one line table entry per line, this
2105 is not a problem. However, on the ia64, the compiler generates
2106 extraneous line table entries that do not increase the line number.
2107 When we issue the gdb next command on the ia64 after an inferior call
2108 or a return command, we often end up a few instructions forward, still
2109 within the original line we started.
2110
2111 An attempt was made to refresh the prev_pc at the same time the
2112 execution_control_state is initialized (for instance, just before
2113 waiting for an inferior event). But this approach did not work
2114 because of platforms that use ptrace, where the pc register cannot
2115 be read unless the inferior is stopped. At that point, we are not
2116 guaranteed the inferior is stopped and so the regcache_read_pc() call
2117 can fail. Setting the prev_pc value here ensures the value is updated
2118 correctly when the inferior is stopped. */
2119 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2120
2121 /* Fill in with reasonable starting values. */
2122 init_thread_stepping_state (tp);
2123
2124 /* Reset to normal state. */
2125 init_infwait_state ();
2126
2127 /* Resume inferior. */
2128 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2129
2130 /* Wait for it to stop (if not standalone)
2131 and in any case decode why it stopped, and act accordingly. */
2132 /* Do this only if we are not using the event loop, or if the target
2133 does not support asynchronous execution. */
2134 if (!target_can_async_p ())
2135 {
2136 wait_for_inferior (0);
2137 normal_stop ();
2138 }
2139}
2140\f
2141
2142/* Start remote-debugging of a machine over a serial link. */
2143
2144void
2145start_remote (int from_tty)
2146{
2147 struct inferior *inferior;
2148
2149 init_wait_for_inferior ();
2150 inferior = current_inferior ();
2151 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2152
2153 /* Always go on waiting for the target, regardless of the mode. */
2154 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2155 indicate to wait_for_inferior that a target should timeout if
2156 nothing is returned (instead of just blocking). Because of this,
2157 targets expecting an immediate response need to, internally, set
2158 things up so that the target_wait() is forced to eventually
2159 timeout. */
2160 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2161 differentiate to its caller what the state of the target is after
2162 the initial open has been performed. Here we're assuming that
2163 the target has stopped. It should be possible to eventually have
2164 target_open() return to the caller an indication that the target
2165 is currently running and GDB state should be set to the same as
2166 for an async run. */
2167 wait_for_inferior (0);
2168
2169 /* Now that the inferior has stopped, do any bookkeeping like
2170 loading shared libraries. We want to do this before normal_stop,
2171 so that the displayed frame is up to date. */
2172 post_create_inferior (&current_target, from_tty);
2173
2174 normal_stop ();
2175}
2176
2177/* Initialize static vars when a new inferior begins. */
2178
2179void
2180init_wait_for_inferior (void)
2181{
2182 /* These are meaningless until the first time through wait_for_inferior. */
2183
2184 breakpoint_init_inferior (inf_starting);
2185
2186 clear_proceed_status ();
2187
2188 stepping_past_singlestep_breakpoint = 0;
2189 deferred_step_ptid = null_ptid;
2190
2191 target_last_wait_ptid = minus_one_ptid;
2192
2193 previous_inferior_ptid = null_ptid;
2194 init_infwait_state ();
2195
2196 /* Discard any skipped inlined frames. */
2197 clear_inline_frame_state (minus_one_ptid);
2198}
2199
2200\f
2201/* This enum encodes possible reasons for doing a target_wait, so that
2202 wfi can call target_wait in one place. (Ultimately the call will be
2203 moved out of the infinite loop entirely.) */
2204
2205enum infwait_states
2206{
2207 infwait_normal_state,
2208 infwait_thread_hop_state,
2209 infwait_step_watch_state,
2210 infwait_nonstep_watch_state
2211};
2212
2213/* The PTID we'll do a target_wait on.*/
2214ptid_t waiton_ptid;
2215
2216/* Current inferior wait state. */
2217enum infwait_states infwait_state;
2218
2219/* Data to be passed around while handling an event. This data is
2220 discarded between events. */
2221struct execution_control_state
2222{
2223 ptid_t ptid;
2224 /* The thread that got the event, if this was a thread event; NULL
2225 otherwise. */
2226 struct thread_info *event_thread;
2227
2228 struct target_waitstatus ws;
2229 int random_signal;
2230 CORE_ADDR stop_func_start;
2231 CORE_ADDR stop_func_end;
2232 char *stop_func_name;
2233 int new_thread_event;
2234 int wait_some_more;
2235};
2236
2237static void handle_inferior_event (struct execution_control_state *ecs);
2238
2239static void handle_step_into_function (struct gdbarch *gdbarch,
2240 struct execution_control_state *ecs);
2241static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2242 struct execution_control_state *ecs);
2243static void insert_step_resume_breakpoint_at_frame (struct frame_info *);
2244static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
2245static void insert_step_resume_breakpoint_at_sal (struct gdbarch *,
2246 struct symtab_and_line ,
2247 struct frame_id);
2248static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
2249static void check_exception_resume (struct execution_control_state *,
2250 struct frame_info *, struct symbol *);
2251
2252static void stop_stepping (struct execution_control_state *ecs);
2253static void prepare_to_wait (struct execution_control_state *ecs);
2254static void keep_going (struct execution_control_state *ecs);
2255
2256/* Callback for iterate over threads. If the thread is stopped, but
2257 the user/frontend doesn't know about that yet, go through
2258 normal_stop, as if the thread had just stopped now. ARG points at
2259 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2260 ptid_is_pid(PTID) is true, applies to all threads of the process
2261 pointed at by PTID. Otherwise, apply only to the thread pointed by
2262 PTID. */
2263
2264static int
2265infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2266{
2267 ptid_t ptid = * (ptid_t *) arg;
2268
2269 if ((ptid_equal (info->ptid, ptid)
2270 || ptid_equal (minus_one_ptid, ptid)
2271 || (ptid_is_pid (ptid)
2272 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2273 && is_running (info->ptid)
2274 && !is_executing (info->ptid))
2275 {
2276 struct cleanup *old_chain;
2277 struct execution_control_state ecss;
2278 struct execution_control_state *ecs = &ecss;
2279
2280 memset (ecs, 0, sizeof (*ecs));
2281
2282 old_chain = make_cleanup_restore_current_thread ();
2283
2284 switch_to_thread (info->ptid);
2285
2286 /* Go through handle_inferior_event/normal_stop, so we always
2287 have consistent output as if the stop event had been
2288 reported. */
2289 ecs->ptid = info->ptid;
2290 ecs->event_thread = find_thread_ptid (info->ptid);
2291 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2292 ecs->ws.value.sig = TARGET_SIGNAL_0;
2293
2294 handle_inferior_event (ecs);
2295
2296 if (!ecs->wait_some_more)
2297 {
2298 struct thread_info *tp;
2299
2300 normal_stop ();
2301
2302 /* Finish off the continuations. The continations
2303 themselves are responsible for realising the thread
2304 didn't finish what it was supposed to do. */
2305 tp = inferior_thread ();
2306 do_all_intermediate_continuations_thread (tp);
2307 do_all_continuations_thread (tp);
2308 }
2309
2310 do_cleanups (old_chain);
2311 }
2312
2313 return 0;
2314}
2315
2316/* This function is attached as a "thread_stop_requested" observer.
2317 Cleanup local state that assumed the PTID was to be resumed, and
2318 report the stop to the frontend. */
2319
2320static void
2321infrun_thread_stop_requested (ptid_t ptid)
2322{
2323 struct displaced_step_inferior_state *displaced;
2324
2325 /* PTID was requested to stop. Remove it from the displaced
2326 stepping queue, so we don't try to resume it automatically. */
2327
2328 for (displaced = displaced_step_inferior_states;
2329 displaced;
2330 displaced = displaced->next)
2331 {
2332 struct displaced_step_request *it, **prev_next_p;
2333
2334 it = displaced->step_request_queue;
2335 prev_next_p = &displaced->step_request_queue;
2336 while (it)
2337 {
2338 if (ptid_match (it->ptid, ptid))
2339 {
2340 *prev_next_p = it->next;
2341 it->next = NULL;
2342 xfree (it);
2343 }
2344 else
2345 {
2346 prev_next_p = &it->next;
2347 }
2348
2349 it = *prev_next_p;
2350 }
2351 }
2352
2353 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2354}
2355
2356static void
2357infrun_thread_thread_exit (struct thread_info *tp, int silent)
2358{
2359 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2360 nullify_last_target_wait_ptid ();
2361}
2362
2363/* Callback for iterate_over_threads. */
2364
2365static int
2366delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2367{
2368 if (is_exited (info->ptid))
2369 return 0;
2370
2371 delete_step_resume_breakpoint (info);
2372 delete_exception_resume_breakpoint (info);
2373 return 0;
2374}
2375
2376/* In all-stop, delete the step resume breakpoint of any thread that
2377 had one. In non-stop, delete the step resume breakpoint of the
2378 thread that just stopped. */
2379
2380static void
2381delete_step_thread_step_resume_breakpoint (void)
2382{
2383 if (!target_has_execution
2384 || ptid_equal (inferior_ptid, null_ptid))
2385 /* If the inferior has exited, we have already deleted the step
2386 resume breakpoints out of GDB's lists. */
2387 return;
2388
2389 if (non_stop)
2390 {
2391 /* If in non-stop mode, only delete the step-resume or
2392 longjmp-resume breakpoint of the thread that just stopped
2393 stepping. */
2394 struct thread_info *tp = inferior_thread ();
2395
2396 delete_step_resume_breakpoint (tp);
2397 delete_exception_resume_breakpoint (tp);
2398 }
2399 else
2400 /* In all-stop mode, delete all step-resume and longjmp-resume
2401 breakpoints of any thread that had them. */
2402 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2403}
2404
2405/* A cleanup wrapper. */
2406
2407static void
2408delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2409{
2410 delete_step_thread_step_resume_breakpoint ();
2411}
2412
2413/* Pretty print the results of target_wait, for debugging purposes. */
2414
2415static void
2416print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2417 const struct target_waitstatus *ws)
2418{
2419 char *status_string = target_waitstatus_to_string (ws);
2420 struct ui_file *tmp_stream = mem_fileopen ();
2421 char *text;
2422
2423 /* The text is split over several lines because it was getting too long.
2424 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2425 output as a unit; we want only one timestamp printed if debug_timestamp
2426 is set. */
2427
2428 fprintf_unfiltered (tmp_stream,
2429 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2430 if (PIDGET (waiton_ptid) != -1)
2431 fprintf_unfiltered (tmp_stream,
2432 " [%s]", target_pid_to_str (waiton_ptid));
2433 fprintf_unfiltered (tmp_stream, ", status) =\n");
2434 fprintf_unfiltered (tmp_stream,
2435 "infrun: %d [%s],\n",
2436 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2437 fprintf_unfiltered (tmp_stream,
2438 "infrun: %s\n",
2439 status_string);
2440
2441 text = ui_file_xstrdup (tmp_stream, NULL);
2442
2443 /* This uses %s in part to handle %'s in the text, but also to avoid
2444 a gcc error: the format attribute requires a string literal. */
2445 fprintf_unfiltered (gdb_stdlog, "%s", text);
2446
2447 xfree (status_string);
2448 xfree (text);
2449 ui_file_delete (tmp_stream);
2450}
2451
2452/* Prepare and stabilize the inferior for detaching it. E.g.,
2453 detaching while a thread is displaced stepping is a recipe for
2454 crashing it, as nothing would readjust the PC out of the scratch
2455 pad. */
2456
2457void
2458prepare_for_detach (void)
2459{
2460 struct inferior *inf = current_inferior ();
2461 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2462 struct cleanup *old_chain_1;
2463 struct displaced_step_inferior_state *displaced;
2464
2465 displaced = get_displaced_stepping_state (inf->pid);
2466
2467 /* Is any thread of this process displaced stepping? If not,
2468 there's nothing else to do. */
2469 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2470 return;
2471
2472 if (debug_infrun)
2473 fprintf_unfiltered (gdb_stdlog,
2474 "displaced-stepping in-process while detaching");
2475
2476 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2477 inf->detaching = 1;
2478
2479 while (!ptid_equal (displaced->step_ptid, null_ptid))
2480 {
2481 struct cleanup *old_chain_2;
2482 struct execution_control_state ecss;
2483 struct execution_control_state *ecs;
2484
2485 ecs = &ecss;
2486 memset (ecs, 0, sizeof (*ecs));
2487
2488 overlay_cache_invalid = 1;
2489
2490 /* We have to invalidate the registers BEFORE calling
2491 target_wait because they can be loaded from the target while
2492 in target_wait. This makes remote debugging a bit more
2493 efficient for those targets that provide critical registers
2494 as part of their normal status mechanism. */
2495
2496 registers_changed ();
2497
2498 if (deprecated_target_wait_hook)
2499 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2500 else
2501 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2502
2503 if (debug_infrun)
2504 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2505
2506 /* If an error happens while handling the event, propagate GDB's
2507 knowledge of the executing state to the frontend/user running
2508 state. */
2509 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2510 &minus_one_ptid);
2511
2512 /* In non-stop mode, each thread is handled individually.
2513 Switch early, so the global state is set correctly for this
2514 thread. */
2515 if (non_stop
2516 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2517 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2518 context_switch (ecs->ptid);
2519
2520 /* Now figure out what to do with the result of the result. */
2521 handle_inferior_event (ecs);
2522
2523 /* No error, don't finish the state yet. */
2524 discard_cleanups (old_chain_2);
2525
2526 /* Breakpoints and watchpoints are not installed on the target
2527 at this point, and signals are passed directly to the
2528 inferior, so this must mean the process is gone. */
2529 if (!ecs->wait_some_more)
2530 {
2531 discard_cleanups (old_chain_1);
2532 error (_("Program exited while detaching"));
2533 }
2534 }
2535
2536 discard_cleanups (old_chain_1);
2537}
2538
2539/* Wait for control to return from inferior to debugger.
2540
2541 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2542 as if they were SIGTRAP signals. This can be useful during
2543 the startup sequence on some targets such as HP/UX, where
2544 we receive an EXEC event instead of the expected SIGTRAP.
2545
2546 If inferior gets a signal, we may decide to start it up again
2547 instead of returning. That is why there is a loop in this function.
2548 When this function actually returns it means the inferior
2549 should be left stopped and GDB should read more commands. */
2550
2551void
2552wait_for_inferior (int treat_exec_as_sigtrap)
2553{
2554 struct cleanup *old_cleanups;
2555 struct execution_control_state ecss;
2556 struct execution_control_state *ecs;
2557
2558 if (debug_infrun)
2559 fprintf_unfiltered
2560 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2561 treat_exec_as_sigtrap);
2562
2563 old_cleanups =
2564 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2565
2566 ecs = &ecss;
2567 memset (ecs, 0, sizeof (*ecs));
2568
2569 /* We'll update this if & when we switch to a new thread. */
2570 previous_inferior_ptid = inferior_ptid;
2571
2572 while (1)
2573 {
2574 struct cleanup *old_chain;
2575
2576 /* We have to invalidate the registers BEFORE calling target_wait
2577 because they can be loaded from the target while in target_wait.
2578 This makes remote debugging a bit more efficient for those
2579 targets that provide critical registers as part of their normal
2580 status mechanism. */
2581
2582 overlay_cache_invalid = 1;
2583 registers_changed ();
2584
2585 if (deprecated_target_wait_hook)
2586 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2587 else
2588 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2589
2590 if (debug_infrun)
2591 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2592
2593 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2594 {
2595 xfree (ecs->ws.value.execd_pathname);
2596 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2597 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2598 }
2599
2600 /* If an error happens while handling the event, propagate GDB's
2601 knowledge of the executing state to the frontend/user running
2602 state. */
2603 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2604
2605 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2606 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2607 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2608
2609 /* Now figure out what to do with the result of the result. */
2610 handle_inferior_event (ecs);
2611
2612 /* No error, don't finish the state yet. */
2613 discard_cleanups (old_chain);
2614
2615 if (!ecs->wait_some_more)
2616 break;
2617 }
2618
2619 do_cleanups (old_cleanups);
2620}
2621
2622/* Asynchronous version of wait_for_inferior. It is called by the
2623 event loop whenever a change of state is detected on the file
2624 descriptor corresponding to the target. It can be called more than
2625 once to complete a single execution command. In such cases we need
2626 to keep the state in a global variable ECSS. If it is the last time
2627 that this function is called for a single execution command, then
2628 report to the user that the inferior has stopped, and do the
2629 necessary cleanups. */
2630
2631void
2632fetch_inferior_event (void *client_data)
2633{
2634 struct execution_control_state ecss;
2635 struct execution_control_state *ecs = &ecss;
2636 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2637 struct cleanup *ts_old_chain;
2638 int was_sync = sync_execution;
2639
2640 memset (ecs, 0, sizeof (*ecs));
2641
2642 /* We'll update this if & when we switch to a new thread. */
2643 previous_inferior_ptid = inferior_ptid;
2644
2645 /* We're handling a live event, so make sure we're doing live
2646 debugging. If we're looking at traceframes while the target is
2647 running, we're going to need to get back to that mode after
2648 handling the event. */
2649 if (non_stop)
2650 {
2651 make_cleanup_restore_current_traceframe ();
2652 set_current_traceframe (-1);
2653 }
2654
2655 if (non_stop)
2656 /* In non-stop mode, the user/frontend should not notice a thread
2657 switch due to internal events. Make sure we reverse to the
2658 user selected thread and frame after handling the event and
2659 running any breakpoint commands. */
2660 make_cleanup_restore_current_thread ();
2661
2662 /* We have to invalidate the registers BEFORE calling target_wait
2663 because they can be loaded from the target while in target_wait.
2664 This makes remote debugging a bit more efficient for those
2665 targets that provide critical registers as part of their normal
2666 status mechanism. */
2667
2668 overlay_cache_invalid = 1;
2669 registers_changed ();
2670
2671 if (deprecated_target_wait_hook)
2672 ecs->ptid =
2673 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2674 else
2675 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2676
2677 if (debug_infrun)
2678 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2679
2680 if (non_stop
2681 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2682 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2683 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2684 /* In non-stop mode, each thread is handled individually. Switch
2685 early, so the global state is set correctly for this
2686 thread. */
2687 context_switch (ecs->ptid);
2688
2689 /* If an error happens while handling the event, propagate GDB's
2690 knowledge of the executing state to the frontend/user running
2691 state. */
2692 if (!non_stop)
2693 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2694 else
2695 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2696
2697 /* Now figure out what to do with the result of the result. */
2698 handle_inferior_event (ecs);
2699
2700 if (!ecs->wait_some_more)
2701 {
2702 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2703
2704 delete_step_thread_step_resume_breakpoint ();
2705
2706 /* We may not find an inferior if this was a process exit. */
2707 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2708 normal_stop ();
2709
2710 if (target_has_execution
2711 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2712 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2713 && ecs->event_thread->step_multi
2714 && ecs->event_thread->control.stop_step)
2715 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2716 else
2717 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2718 }
2719
2720 /* No error, don't finish the thread states yet. */
2721 discard_cleanups (ts_old_chain);
2722
2723 /* Revert thread and frame. */
2724 do_cleanups (old_chain);
2725
2726 /* If the inferior was in sync execution mode, and now isn't,
2727 restore the prompt. */
2728 if (was_sync && !sync_execution)
2729 display_gdb_prompt (0);
2730}
2731
2732/* Record the frame and location we're currently stepping through. */
2733void
2734set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2735{
2736 struct thread_info *tp = inferior_thread ();
2737
2738 tp->control.step_frame_id = get_frame_id (frame);
2739 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2740
2741 tp->current_symtab = sal.symtab;
2742 tp->current_line = sal.line;
2743}
2744
2745/* Clear context switchable stepping state. */
2746
2747void
2748init_thread_stepping_state (struct thread_info *tss)
2749{
2750 tss->stepping_over_breakpoint = 0;
2751 tss->step_after_step_resume_breakpoint = 0;
2752 tss->stepping_through_solib_after_catch = 0;
2753 tss->stepping_through_solib_catchpoints = NULL;
2754}
2755
2756/* Return the cached copy of the last pid/waitstatus returned by
2757 target_wait()/deprecated_target_wait_hook(). The data is actually
2758 cached by handle_inferior_event(), which gets called immediately
2759 after target_wait()/deprecated_target_wait_hook(). */
2760
2761void
2762get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2763{
2764 *ptidp = target_last_wait_ptid;
2765 *status = target_last_waitstatus;
2766}
2767
2768void
2769nullify_last_target_wait_ptid (void)
2770{
2771 target_last_wait_ptid = minus_one_ptid;
2772}
2773
2774/* Switch thread contexts. */
2775
2776static void
2777context_switch (ptid_t ptid)
2778{
2779 if (debug_infrun)
2780 {
2781 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2782 target_pid_to_str (inferior_ptid));
2783 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2784 target_pid_to_str (ptid));
2785 }
2786
2787 switch_to_thread (ptid);
2788}
2789
2790static void
2791adjust_pc_after_break (struct execution_control_state *ecs)
2792{
2793 struct regcache *regcache;
2794 struct gdbarch *gdbarch;
2795 struct address_space *aspace;
2796 CORE_ADDR breakpoint_pc;
2797
2798 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2799 we aren't, just return.
2800
2801 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2802 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2803 implemented by software breakpoints should be handled through the normal
2804 breakpoint layer.
2805
2806 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2807 different signals (SIGILL or SIGEMT for instance), but it is less
2808 clear where the PC is pointing afterwards. It may not match
2809 gdbarch_decr_pc_after_break. I don't know any specific target that
2810 generates these signals at breakpoints (the code has been in GDB since at
2811 least 1992) so I can not guess how to handle them here.
2812
2813 In earlier versions of GDB, a target with
2814 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2815 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2816 target with both of these set in GDB history, and it seems unlikely to be
2817 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2818
2819 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2820 return;
2821
2822 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2823 return;
2824
2825 /* In reverse execution, when a breakpoint is hit, the instruction
2826 under it has already been de-executed. The reported PC always
2827 points at the breakpoint address, so adjusting it further would
2828 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2829 architecture:
2830
2831 B1 0x08000000 : INSN1
2832 B2 0x08000001 : INSN2
2833 0x08000002 : INSN3
2834 PC -> 0x08000003 : INSN4
2835
2836 Say you're stopped at 0x08000003 as above. Reverse continuing
2837 from that point should hit B2 as below. Reading the PC when the
2838 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2839 been de-executed already.
2840
2841 B1 0x08000000 : INSN1
2842 B2 PC -> 0x08000001 : INSN2
2843 0x08000002 : INSN3
2844 0x08000003 : INSN4
2845
2846 We can't apply the same logic as for forward execution, because
2847 we would wrongly adjust the PC to 0x08000000, since there's a
2848 breakpoint at PC - 1. We'd then report a hit on B1, although
2849 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2850 behaviour. */
2851 if (execution_direction == EXEC_REVERSE)
2852 return;
2853
2854 /* If this target does not decrement the PC after breakpoints, then
2855 we have nothing to do. */
2856 regcache = get_thread_regcache (ecs->ptid);
2857 gdbarch = get_regcache_arch (regcache);
2858 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2859 return;
2860
2861 aspace = get_regcache_aspace (regcache);
2862
2863 /* Find the location where (if we've hit a breakpoint) the
2864 breakpoint would be. */
2865 breakpoint_pc = regcache_read_pc (regcache)
2866 - gdbarch_decr_pc_after_break (gdbarch);
2867
2868 /* Check whether there actually is a software breakpoint inserted at
2869 that location.
2870
2871 If in non-stop mode, a race condition is possible where we've
2872 removed a breakpoint, but stop events for that breakpoint were
2873 already queued and arrive later. To suppress those spurious
2874 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2875 and retire them after a number of stop events are reported. */
2876 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2877 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2878 {
2879 struct cleanup *old_cleanups = NULL;
2880
2881 if (RECORD_IS_USED)
2882 old_cleanups = record_gdb_operation_disable_set ();
2883
2884 /* When using hardware single-step, a SIGTRAP is reported for both
2885 a completed single-step and a software breakpoint. Need to
2886 differentiate between the two, as the latter needs adjusting
2887 but the former does not.
2888
2889 The SIGTRAP can be due to a completed hardware single-step only if
2890 - we didn't insert software single-step breakpoints
2891 - the thread to be examined is still the current thread
2892 - this thread is currently being stepped
2893
2894 If any of these events did not occur, we must have stopped due
2895 to hitting a software breakpoint, and have to back up to the
2896 breakpoint address.
2897
2898 As a special case, we could have hardware single-stepped a
2899 software breakpoint. In this case (prev_pc == breakpoint_pc),
2900 we also need to back up to the breakpoint address. */
2901
2902 if (singlestep_breakpoints_inserted_p
2903 || !ptid_equal (ecs->ptid, inferior_ptid)
2904 || !currently_stepping (ecs->event_thread)
2905 || ecs->event_thread->prev_pc == breakpoint_pc)
2906 regcache_write_pc (regcache, breakpoint_pc);
2907
2908 if (RECORD_IS_USED)
2909 do_cleanups (old_cleanups);
2910 }
2911}
2912
2913void
2914init_infwait_state (void)
2915{
2916 waiton_ptid = pid_to_ptid (-1);
2917 infwait_state = infwait_normal_state;
2918}
2919
2920void
2921error_is_running (void)
2922{
2923 error (_("Cannot execute this command while "
2924 "the selected thread is running."));
2925}
2926
2927void
2928ensure_not_running (void)
2929{
2930 if (is_running (inferior_ptid))
2931 error_is_running ();
2932}
2933
2934static int
2935stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2936{
2937 for (frame = get_prev_frame (frame);
2938 frame != NULL;
2939 frame = get_prev_frame (frame))
2940 {
2941 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2942 return 1;
2943 if (get_frame_type (frame) != INLINE_FRAME)
2944 break;
2945 }
2946
2947 return 0;
2948}
2949
2950/* Auxiliary function that handles syscall entry/return events.
2951 It returns 1 if the inferior should keep going (and GDB
2952 should ignore the event), or 0 if the event deserves to be
2953 processed. */
2954
2955static int
2956handle_syscall_event (struct execution_control_state *ecs)
2957{
2958 struct regcache *regcache;
2959 struct gdbarch *gdbarch;
2960 int syscall_number;
2961
2962 if (!ptid_equal (ecs->ptid, inferior_ptid))
2963 context_switch (ecs->ptid);
2964
2965 regcache = get_thread_regcache (ecs->ptid);
2966 gdbarch = get_regcache_arch (regcache);
2967 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2968 stop_pc = regcache_read_pc (regcache);
2969
2970 target_last_waitstatus.value.syscall_number = syscall_number;
2971
2972 if (catch_syscall_enabled () > 0
2973 && catching_syscall_number (syscall_number) > 0)
2974 {
2975 if (debug_infrun)
2976 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2977 syscall_number);
2978
2979 ecs->event_thread->control.stop_bpstat
2980 = bpstat_stop_status (get_regcache_aspace (regcache),
2981 stop_pc, ecs->ptid);
2982 ecs->random_signal
2983 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
2984
2985 if (!ecs->random_signal)
2986 {
2987 /* Catchpoint hit. */
2988 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
2989 return 0;
2990 }
2991 }
2992
2993 /* If no catchpoint triggered for this, then keep going. */
2994 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2995 keep_going (ecs);
2996 return 1;
2997}
2998
2999/* Given an execution control state that has been freshly filled in
3000 by an event from the inferior, figure out what it means and take
3001 appropriate action. */
3002
3003static void
3004handle_inferior_event (struct execution_control_state *ecs)
3005{
3006 struct frame_info *frame;
3007 struct gdbarch *gdbarch;
3008 int sw_single_step_trap_p = 0;
3009 int stopped_by_watchpoint;
3010 int stepped_after_stopped_by_watchpoint = 0;
3011 struct symtab_and_line stop_pc_sal;
3012 enum stop_kind stop_soon;
3013
3014 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3015 {
3016 /* We had an event in the inferior, but we are not interested in
3017 handling it at this level. The lower layers have already
3018 done what needs to be done, if anything.
3019
3020 One of the possible circumstances for this is when the
3021 inferior produces output for the console. The inferior has
3022 not stopped, and we are ignoring the event. Another possible
3023 circumstance is any event which the lower level knows will be
3024 reported multiple times without an intervening resume. */
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3027 prepare_to_wait (ecs);
3028 return;
3029 }
3030
3031 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3032 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3033 {
3034 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3035
3036 gdb_assert (inf);
3037 stop_soon = inf->control.stop_soon;
3038 }
3039 else
3040 stop_soon = NO_STOP_QUIETLY;
3041
3042 /* Cache the last pid/waitstatus. */
3043 target_last_wait_ptid = ecs->ptid;
3044 target_last_waitstatus = ecs->ws;
3045
3046 /* Always clear state belonging to the previous time we stopped. */
3047 stop_stack_dummy = STOP_NONE;
3048
3049 /* If it's a new process, add it to the thread database. */
3050
3051 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3052 && !ptid_equal (ecs->ptid, minus_one_ptid)
3053 && !in_thread_list (ecs->ptid));
3054
3055 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3056 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3057 add_thread (ecs->ptid);
3058
3059 ecs->event_thread = find_thread_ptid (ecs->ptid);
3060
3061 /* Dependent on valid ECS->EVENT_THREAD. */
3062 adjust_pc_after_break (ecs);
3063
3064 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3065 reinit_frame_cache ();
3066
3067 breakpoint_retire_moribund ();
3068
3069 /* First, distinguish signals caused by the debugger from signals
3070 that have to do with the program's own actions. Note that
3071 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3072 on the operating system version. Here we detect when a SIGILL or
3073 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3074 something similar for SIGSEGV, since a SIGSEGV will be generated
3075 when we're trying to execute a breakpoint instruction on a
3076 non-executable stack. This happens for call dummy breakpoints
3077 for architectures like SPARC that place call dummies on the
3078 stack. */
3079 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3080 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3081 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3082 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3083 {
3084 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3085
3086 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3087 regcache_read_pc (regcache)))
3088 {
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: Treating signal as SIGTRAP\n");
3092 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3093 }
3094 }
3095
3096 /* Mark the non-executing threads accordingly. In all-stop, all
3097 threads of all processes are stopped when we get any event
3098 reported. In non-stop mode, only the event thread stops. If
3099 we're handling a process exit in non-stop mode, there's nothing
3100 to do, as threads of the dead process are gone, and threads of
3101 any other process were left running. */
3102 if (!non_stop)
3103 set_executing (minus_one_ptid, 0);
3104 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3105 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3106 set_executing (inferior_ptid, 0);
3107
3108 switch (infwait_state)
3109 {
3110 case infwait_thread_hop_state:
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3113 break;
3114
3115 case infwait_normal_state:
3116 if (debug_infrun)
3117 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3118 break;
3119
3120 case infwait_step_watch_state:
3121 if (debug_infrun)
3122 fprintf_unfiltered (gdb_stdlog,
3123 "infrun: infwait_step_watch_state\n");
3124
3125 stepped_after_stopped_by_watchpoint = 1;
3126 break;
3127
3128 case infwait_nonstep_watch_state:
3129 if (debug_infrun)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "infrun: infwait_nonstep_watch_state\n");
3132 insert_breakpoints ();
3133
3134 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3135 handle things like signals arriving and other things happening
3136 in combination correctly? */
3137 stepped_after_stopped_by_watchpoint = 1;
3138 break;
3139
3140 default:
3141 internal_error (__FILE__, __LINE__, _("bad switch"));
3142 }
3143
3144 infwait_state = infwait_normal_state;
3145 waiton_ptid = pid_to_ptid (-1);
3146
3147 switch (ecs->ws.kind)
3148 {
3149 case TARGET_WAITKIND_LOADED:
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3152 /* Ignore gracefully during startup of the inferior, as it might
3153 be the shell which has just loaded some objects, otherwise
3154 add the symbols for the newly loaded objects. Also ignore at
3155 the beginning of an attach or remote session; we will query
3156 the full list of libraries once the connection is
3157 established. */
3158 if (stop_soon == NO_STOP_QUIETLY)
3159 {
3160 /* Check for any newly added shared libraries if we're
3161 supposed to be adding them automatically. Switch
3162 terminal for any messages produced by
3163 breakpoint_re_set. */
3164 target_terminal_ours_for_output ();
3165 /* NOTE: cagney/2003-11-25: Make certain that the target
3166 stack's section table is kept up-to-date. Architectures,
3167 (e.g., PPC64), use the section table to perform
3168 operations such as address => section name and hence
3169 require the table to contain all sections (including
3170 those found in shared libraries). */
3171#ifdef SOLIB_ADD
3172 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3173#else
3174 solib_add (NULL, 0, &current_target, auto_solib_add);
3175#endif
3176 target_terminal_inferior ();
3177
3178 /* If requested, stop when the dynamic linker notifies
3179 gdb of events. This allows the user to get control
3180 and place breakpoints in initializer routines for
3181 dynamically loaded objects (among other things). */
3182 if (stop_on_solib_events)
3183 {
3184 /* Make sure we print "Stopped due to solib-event" in
3185 normal_stop. */
3186 stop_print_frame = 1;
3187
3188 stop_stepping (ecs);
3189 return;
3190 }
3191
3192 /* NOTE drow/2007-05-11: This might be a good place to check
3193 for "catch load". */
3194 }
3195
3196 /* If we are skipping through a shell, or through shared library
3197 loading that we aren't interested in, resume the program. If
3198 we're running the program normally, also resume. But stop if
3199 we're attaching or setting up a remote connection. */
3200 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3201 {
3202 /* Loading of shared libraries might have changed breakpoint
3203 addresses. Make sure new breakpoints are inserted. */
3204 if (stop_soon == NO_STOP_QUIETLY
3205 && !breakpoints_always_inserted_mode ())
3206 insert_breakpoints ();
3207 resume (0, TARGET_SIGNAL_0);
3208 prepare_to_wait (ecs);
3209 return;
3210 }
3211
3212 break;
3213
3214 case TARGET_WAITKIND_SPURIOUS:
3215 if (debug_infrun)
3216 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3217 resume (0, TARGET_SIGNAL_0);
3218 prepare_to_wait (ecs);
3219 return;
3220
3221 case TARGET_WAITKIND_EXITED:
3222 if (debug_infrun)
3223 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3224 inferior_ptid = ecs->ptid;
3225 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3226 set_current_program_space (current_inferior ()->pspace);
3227 handle_vfork_child_exec_or_exit (0);
3228 target_terminal_ours (); /* Must do this before mourn anyway. */
3229 print_exited_reason (ecs->ws.value.integer);
3230
3231 /* Record the exit code in the convenience variable $_exitcode, so
3232 that the user can inspect this again later. */
3233 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3234 (LONGEST) ecs->ws.value.integer);
3235 gdb_flush (gdb_stdout);
3236 target_mourn_inferior ();
3237 singlestep_breakpoints_inserted_p = 0;
3238 cancel_single_step_breakpoints ();
3239 stop_print_frame = 0;
3240 stop_stepping (ecs);
3241 return;
3242
3243 case TARGET_WAITKIND_SIGNALLED:
3244 if (debug_infrun)
3245 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3246 inferior_ptid = ecs->ptid;
3247 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3248 set_current_program_space (current_inferior ()->pspace);
3249 handle_vfork_child_exec_or_exit (0);
3250 stop_print_frame = 0;
3251 target_terminal_ours (); /* Must do this before mourn anyway. */
3252
3253 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3254 reach here unless the inferior is dead. However, for years
3255 target_kill() was called here, which hints that fatal signals aren't
3256 really fatal on some systems. If that's true, then some changes
3257 may be needed. */
3258 target_mourn_inferior ();
3259
3260 print_signal_exited_reason (ecs->ws.value.sig);
3261 singlestep_breakpoints_inserted_p = 0;
3262 cancel_single_step_breakpoints ();
3263 stop_stepping (ecs);
3264 return;
3265
3266 /* The following are the only cases in which we keep going;
3267 the above cases end in a continue or goto. */
3268 case TARGET_WAITKIND_FORKED:
3269 case TARGET_WAITKIND_VFORKED:
3270 if (debug_infrun)
3271 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3272
3273 if (!ptid_equal (ecs->ptid, inferior_ptid))
3274 {
3275 context_switch (ecs->ptid);
3276 reinit_frame_cache ();
3277 }
3278
3279 /* Immediately detach breakpoints from the child before there's
3280 any chance of letting the user delete breakpoints from the
3281 breakpoint lists. If we don't do this early, it's easy to
3282 leave left over traps in the child, vis: "break foo; catch
3283 fork; c; <fork>; del; c; <child calls foo>". We only follow
3284 the fork on the last `continue', and by that time the
3285 breakpoint at "foo" is long gone from the breakpoint table.
3286 If we vforked, then we don't need to unpatch here, since both
3287 parent and child are sharing the same memory pages; we'll
3288 need to unpatch at follow/detach time instead to be certain
3289 that new breakpoints added between catchpoint hit time and
3290 vfork follow are detached. */
3291 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3292 {
3293 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3294
3295 /* This won't actually modify the breakpoint list, but will
3296 physically remove the breakpoints from the child. */
3297 detach_breakpoints (child_pid);
3298 }
3299
3300 if (singlestep_breakpoints_inserted_p)
3301 {
3302 /* Pull the single step breakpoints out of the target. */
3303 remove_single_step_breakpoints ();
3304 singlestep_breakpoints_inserted_p = 0;
3305 }
3306
3307 /* In case the event is caught by a catchpoint, remember that
3308 the event is to be followed at the next resume of the thread,
3309 and not immediately. */
3310 ecs->event_thread->pending_follow = ecs->ws;
3311
3312 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3313
3314 ecs->event_thread->control.stop_bpstat
3315 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3316 stop_pc, ecs->ptid);
3317
3318 /* Note that we're interested in knowing the bpstat actually
3319 causes a stop, not just if it may explain the signal.
3320 Software watchpoints, for example, always appear in the
3321 bpstat. */
3322 ecs->random_signal
3323 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3324
3325 /* If no catchpoint triggered for this, then keep going. */
3326 if (ecs->random_signal)
3327 {
3328 ptid_t parent;
3329 ptid_t child;
3330 int should_resume;
3331 int follow_child
3332 = (follow_fork_mode_string == follow_fork_mode_child);
3333
3334 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3335
3336 should_resume = follow_fork ();
3337
3338 parent = ecs->ptid;
3339 child = ecs->ws.value.related_pid;
3340
3341 /* In non-stop mode, also resume the other branch. */
3342 if (non_stop && !detach_fork)
3343 {
3344 if (follow_child)
3345 switch_to_thread (parent);
3346 else
3347 switch_to_thread (child);
3348
3349 ecs->event_thread = inferior_thread ();
3350 ecs->ptid = inferior_ptid;
3351 keep_going (ecs);
3352 }
3353
3354 if (follow_child)
3355 switch_to_thread (child);
3356 else
3357 switch_to_thread (parent);
3358
3359 ecs->event_thread = inferior_thread ();
3360 ecs->ptid = inferior_ptid;
3361
3362 if (should_resume)
3363 keep_going (ecs);
3364 else
3365 stop_stepping (ecs);
3366 return;
3367 }
3368 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3369 goto process_event_stop_test;
3370
3371 case TARGET_WAITKIND_VFORK_DONE:
3372 /* Done with the shared memory region. Re-insert breakpoints in
3373 the parent, and keep going. */
3374
3375 if (debug_infrun)
3376 fprintf_unfiltered (gdb_stdlog,
3377 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3378
3379 if (!ptid_equal (ecs->ptid, inferior_ptid))
3380 context_switch (ecs->ptid);
3381
3382 current_inferior ()->waiting_for_vfork_done = 0;
3383 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3384 /* This also takes care of reinserting breakpoints in the
3385 previously locked inferior. */
3386 keep_going (ecs);
3387 return;
3388
3389 case TARGET_WAITKIND_EXECD:
3390 if (debug_infrun)
3391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3392
3393 if (!ptid_equal (ecs->ptid, inferior_ptid))
3394 {
3395 context_switch (ecs->ptid);
3396 reinit_frame_cache ();
3397 }
3398
3399 singlestep_breakpoints_inserted_p = 0;
3400 cancel_single_step_breakpoints ();
3401
3402 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3403
3404 /* Do whatever is necessary to the parent branch of the vfork. */
3405 handle_vfork_child_exec_or_exit (1);
3406
3407 /* This causes the eventpoints and symbol table to be reset.
3408 Must do this now, before trying to determine whether to
3409 stop. */
3410 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3411
3412 ecs->event_thread->control.stop_bpstat
3413 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3414 stop_pc, ecs->ptid);
3415 ecs->random_signal
3416 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3417
3418 /* Note that this may be referenced from inside
3419 bpstat_stop_status above, through inferior_has_execd. */
3420 xfree (ecs->ws.value.execd_pathname);
3421 ecs->ws.value.execd_pathname = NULL;
3422
3423 /* If no catchpoint triggered for this, then keep going. */
3424 if (ecs->random_signal)
3425 {
3426 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3427 keep_going (ecs);
3428 return;
3429 }
3430 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3431 goto process_event_stop_test;
3432
3433 /* Be careful not to try to gather much state about a thread
3434 that's in a syscall. It's frequently a losing proposition. */
3435 case TARGET_WAITKIND_SYSCALL_ENTRY:
3436 if (debug_infrun)
3437 fprintf_unfiltered (gdb_stdlog,
3438 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3439 /* Getting the current syscall number. */
3440 if (handle_syscall_event (ecs) != 0)
3441 return;
3442 goto process_event_stop_test;
3443
3444 /* Before examining the threads further, step this thread to
3445 get it entirely out of the syscall. (We get notice of the
3446 event when the thread is just on the verge of exiting a
3447 syscall. Stepping one instruction seems to get it back
3448 into user code.) */
3449 case TARGET_WAITKIND_SYSCALL_RETURN:
3450 if (debug_infrun)
3451 fprintf_unfiltered (gdb_stdlog,
3452 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3453 if (handle_syscall_event (ecs) != 0)
3454 return;
3455 goto process_event_stop_test;
3456
3457 case TARGET_WAITKIND_STOPPED:
3458 if (debug_infrun)
3459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3460 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3461 break;
3462
3463 case TARGET_WAITKIND_NO_HISTORY:
3464 /* Reverse execution: target ran out of history info. */
3465 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3466 print_no_history_reason ();
3467 stop_stepping (ecs);
3468 return;
3469 }
3470
3471 if (ecs->new_thread_event)
3472 {
3473 if (non_stop)
3474 /* Non-stop assumes that the target handles adding new threads
3475 to the thread list. */
3476 internal_error (__FILE__, __LINE__,
3477 "targets should add new threads to the thread "
3478 "list themselves in non-stop mode.");
3479
3480 /* We may want to consider not doing a resume here in order to
3481 give the user a chance to play with the new thread. It might
3482 be good to make that a user-settable option. */
3483
3484 /* At this point, all threads are stopped (happens automatically
3485 in either the OS or the native code). Therefore we need to
3486 continue all threads in order to make progress. */
3487
3488 if (!ptid_equal (ecs->ptid, inferior_ptid))
3489 context_switch (ecs->ptid);
3490 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3491 prepare_to_wait (ecs);
3492 return;
3493 }
3494
3495 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3496 {
3497 /* Do we need to clean up the state of a thread that has
3498 completed a displaced single-step? (Doing so usually affects
3499 the PC, so do it here, before we set stop_pc.) */
3500 displaced_step_fixup (ecs->ptid,
3501 ecs->event_thread->suspend.stop_signal);
3502
3503 /* If we either finished a single-step or hit a breakpoint, but
3504 the user wanted this thread to be stopped, pretend we got a
3505 SIG0 (generic unsignaled stop). */
3506
3507 if (ecs->event_thread->stop_requested
3508 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3509 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3510 }
3511
3512 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3513
3514 if (debug_infrun)
3515 {
3516 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3517 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3518 struct cleanup *old_chain = save_inferior_ptid ();
3519
3520 inferior_ptid = ecs->ptid;
3521
3522 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3523 paddress (gdbarch, stop_pc));
3524 if (target_stopped_by_watchpoint ())
3525 {
3526 CORE_ADDR addr;
3527
3528 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3529
3530 if (target_stopped_data_address (&current_target, &addr))
3531 fprintf_unfiltered (gdb_stdlog,
3532 "infrun: stopped data address = %s\n",
3533 paddress (gdbarch, addr));
3534 else
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: (no data address available)\n");
3537 }
3538
3539 do_cleanups (old_chain);
3540 }
3541
3542 if (stepping_past_singlestep_breakpoint)
3543 {
3544 gdb_assert (singlestep_breakpoints_inserted_p);
3545 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3546 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3547
3548 stepping_past_singlestep_breakpoint = 0;
3549
3550 /* We've either finished single-stepping past the single-step
3551 breakpoint, or stopped for some other reason. It would be nice if
3552 we could tell, but we can't reliably. */
3553 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3554 {
3555 if (debug_infrun)
3556 fprintf_unfiltered (gdb_stdlog,
3557 "infrun: stepping_past_"
3558 "singlestep_breakpoint\n");
3559 /* Pull the single step breakpoints out of the target. */
3560 remove_single_step_breakpoints ();
3561 singlestep_breakpoints_inserted_p = 0;
3562
3563 ecs->random_signal = 0;
3564 ecs->event_thread->control.trap_expected = 0;
3565
3566 context_switch (saved_singlestep_ptid);
3567 if (deprecated_context_hook)
3568 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3569
3570 resume (1, TARGET_SIGNAL_0);
3571 prepare_to_wait (ecs);
3572 return;
3573 }
3574 }
3575
3576 if (!ptid_equal (deferred_step_ptid, null_ptid))
3577 {
3578 /* In non-stop mode, there's never a deferred_step_ptid set. */
3579 gdb_assert (!non_stop);
3580
3581 /* If we stopped for some other reason than single-stepping, ignore
3582 the fact that we were supposed to switch back. */
3583 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3584 {
3585 if (debug_infrun)
3586 fprintf_unfiltered (gdb_stdlog,
3587 "infrun: handling deferred step\n");
3588
3589 /* Pull the single step breakpoints out of the target. */
3590 if (singlestep_breakpoints_inserted_p)
3591 {
3592 remove_single_step_breakpoints ();
3593 singlestep_breakpoints_inserted_p = 0;
3594 }
3595
3596 /* Note: We do not call context_switch at this point, as the
3597 context is already set up for stepping the original thread. */
3598 switch_to_thread (deferred_step_ptid);
3599 deferred_step_ptid = null_ptid;
3600 /* Suppress spurious "Switching to ..." message. */
3601 previous_inferior_ptid = inferior_ptid;
3602
3603 resume (1, TARGET_SIGNAL_0);
3604 prepare_to_wait (ecs);
3605 return;
3606 }
3607
3608 deferred_step_ptid = null_ptid;
3609 }
3610
3611 /* See if a thread hit a thread-specific breakpoint that was meant for
3612 another thread. If so, then step that thread past the breakpoint,
3613 and continue it. */
3614
3615 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3616 {
3617 int thread_hop_needed = 0;
3618 struct address_space *aspace =
3619 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3620
3621 /* Check if a regular breakpoint has been hit before checking
3622 for a potential single step breakpoint. Otherwise, GDB will
3623 not see this breakpoint hit when stepping onto breakpoints. */
3624 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3625 {
3626 ecs->random_signal = 0;
3627 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3628 thread_hop_needed = 1;
3629 }
3630 else if (singlestep_breakpoints_inserted_p)
3631 {
3632 /* We have not context switched yet, so this should be true
3633 no matter which thread hit the singlestep breakpoint. */
3634 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3635 if (debug_infrun)
3636 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3637 "trap for %s\n",
3638 target_pid_to_str (ecs->ptid));
3639
3640 ecs->random_signal = 0;
3641 /* The call to in_thread_list is necessary because PTIDs sometimes
3642 change when we go from single-threaded to multi-threaded. If
3643 the singlestep_ptid is still in the list, assume that it is
3644 really different from ecs->ptid. */
3645 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3646 && in_thread_list (singlestep_ptid))
3647 {
3648 /* If the PC of the thread we were trying to single-step
3649 has changed, discard this event (which we were going
3650 to ignore anyway), and pretend we saw that thread
3651 trap. This prevents us continuously moving the
3652 single-step breakpoint forward, one instruction at a
3653 time. If the PC has changed, then the thread we were
3654 trying to single-step has trapped or been signalled,
3655 but the event has not been reported to GDB yet.
3656
3657 There might be some cases where this loses signal
3658 information, if a signal has arrived at exactly the
3659 same time that the PC changed, but this is the best
3660 we can do with the information available. Perhaps we
3661 should arrange to report all events for all threads
3662 when they stop, or to re-poll the remote looking for
3663 this particular thread (i.e. temporarily enable
3664 schedlock). */
3665
3666 CORE_ADDR new_singlestep_pc
3667 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3668
3669 if (new_singlestep_pc != singlestep_pc)
3670 {
3671 enum target_signal stop_signal;
3672
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3675 " but expected thread advanced also\n");
3676
3677 /* The current context still belongs to
3678 singlestep_ptid. Don't swap here, since that's
3679 the context we want to use. Just fudge our
3680 state and continue. */
3681 stop_signal = ecs->event_thread->suspend.stop_signal;
3682 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3683 ecs->ptid = singlestep_ptid;
3684 ecs->event_thread = find_thread_ptid (ecs->ptid);
3685 ecs->event_thread->suspend.stop_signal = stop_signal;
3686 stop_pc = new_singlestep_pc;
3687 }
3688 else
3689 {
3690 if (debug_infrun)
3691 fprintf_unfiltered (gdb_stdlog,
3692 "infrun: unexpected thread\n");
3693
3694 thread_hop_needed = 1;
3695 stepping_past_singlestep_breakpoint = 1;
3696 saved_singlestep_ptid = singlestep_ptid;
3697 }
3698 }
3699 }
3700
3701 if (thread_hop_needed)
3702 {
3703 struct regcache *thread_regcache;
3704 int remove_status = 0;
3705
3706 if (debug_infrun)
3707 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3708
3709 /* Switch context before touching inferior memory, the
3710 previous thread may have exited. */
3711 if (!ptid_equal (inferior_ptid, ecs->ptid))
3712 context_switch (ecs->ptid);
3713
3714 /* Saw a breakpoint, but it was hit by the wrong thread.
3715 Just continue. */
3716
3717 if (singlestep_breakpoints_inserted_p)
3718 {
3719 /* Pull the single step breakpoints out of the target. */
3720 remove_single_step_breakpoints ();
3721 singlestep_breakpoints_inserted_p = 0;
3722 }
3723
3724 /* If the arch can displace step, don't remove the
3725 breakpoints. */
3726 thread_regcache = get_thread_regcache (ecs->ptid);
3727 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3728 remove_status = remove_breakpoints ();
3729
3730 /* Did we fail to remove breakpoints? If so, try
3731 to set the PC past the bp. (There's at least
3732 one situation in which we can fail to remove
3733 the bp's: On HP-UX's that use ttrace, we can't
3734 change the address space of a vforking child
3735 process until the child exits (well, okay, not
3736 then either :-) or execs. */
3737 if (remove_status != 0)
3738 error (_("Cannot step over breakpoint hit in wrong thread"));
3739 else
3740 { /* Single step */
3741 if (!non_stop)
3742 {
3743 /* Only need to require the next event from this
3744 thread in all-stop mode. */
3745 waiton_ptid = ecs->ptid;
3746 infwait_state = infwait_thread_hop_state;
3747 }
3748
3749 ecs->event_thread->stepping_over_breakpoint = 1;
3750 keep_going (ecs);
3751 return;
3752 }
3753 }
3754 else if (singlestep_breakpoints_inserted_p)
3755 {
3756 sw_single_step_trap_p = 1;
3757 ecs->random_signal = 0;
3758 }
3759 }
3760 else
3761 ecs->random_signal = 1;
3762
3763 /* See if something interesting happened to the non-current thread. If
3764 so, then switch to that thread. */
3765 if (!ptid_equal (ecs->ptid, inferior_ptid))
3766 {
3767 if (debug_infrun)
3768 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3769
3770 context_switch (ecs->ptid);
3771
3772 if (deprecated_context_hook)
3773 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3774 }
3775
3776 /* At this point, get hold of the now-current thread's frame. */
3777 frame = get_current_frame ();
3778 gdbarch = get_frame_arch (frame);
3779
3780 if (singlestep_breakpoints_inserted_p)
3781 {
3782 /* Pull the single step breakpoints out of the target. */
3783 remove_single_step_breakpoints ();
3784 singlestep_breakpoints_inserted_p = 0;
3785 }
3786
3787 if (stepped_after_stopped_by_watchpoint)
3788 stopped_by_watchpoint = 0;
3789 else
3790 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3791
3792 /* If necessary, step over this watchpoint. We'll be back to display
3793 it in a moment. */
3794 if (stopped_by_watchpoint
3795 && (target_have_steppable_watchpoint
3796 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3797 {
3798 /* At this point, we are stopped at an instruction which has
3799 attempted to write to a piece of memory under control of
3800 a watchpoint. The instruction hasn't actually executed
3801 yet. If we were to evaluate the watchpoint expression
3802 now, we would get the old value, and therefore no change
3803 would seem to have occurred.
3804
3805 In order to make watchpoints work `right', we really need
3806 to complete the memory write, and then evaluate the
3807 watchpoint expression. We do this by single-stepping the
3808 target.
3809
3810 It may not be necessary to disable the watchpoint to stop over
3811 it. For example, the PA can (with some kernel cooperation)
3812 single step over a watchpoint without disabling the watchpoint.
3813
3814 It is far more common to need to disable a watchpoint to step
3815 the inferior over it. If we have non-steppable watchpoints,
3816 we must disable the current watchpoint; it's simplest to
3817 disable all watchpoints and breakpoints. */
3818 int hw_step = 1;
3819
3820 if (!target_have_steppable_watchpoint)
3821 remove_breakpoints ();
3822 /* Single step */
3823 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3824 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3825 waiton_ptid = ecs->ptid;
3826 if (target_have_steppable_watchpoint)
3827 infwait_state = infwait_step_watch_state;
3828 else
3829 infwait_state = infwait_nonstep_watch_state;
3830 prepare_to_wait (ecs);
3831 return;
3832 }
3833
3834 ecs->stop_func_start = 0;
3835 ecs->stop_func_end = 0;
3836 ecs->stop_func_name = 0;
3837 /* Don't care about return value; stop_func_start and stop_func_name
3838 will both be 0 if it doesn't work. */
3839 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3840 &ecs->stop_func_start, &ecs->stop_func_end);
3841 ecs->stop_func_start
3842 += gdbarch_deprecated_function_start_offset (gdbarch);
3843 ecs->event_thread->stepping_over_breakpoint = 0;
3844 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3845 ecs->event_thread->control.stop_step = 0;
3846 stop_print_frame = 1;
3847 ecs->random_signal = 0;
3848 stopped_by_random_signal = 0;
3849
3850 /* Hide inlined functions starting here, unless we just performed stepi or
3851 nexti. After stepi and nexti, always show the innermost frame (not any
3852 inline function call sites). */
3853 if (ecs->event_thread->control.step_range_end != 1)
3854 skip_inline_frames (ecs->ptid);
3855
3856 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3857 && ecs->event_thread->control.trap_expected
3858 && gdbarch_single_step_through_delay_p (gdbarch)
3859 && currently_stepping (ecs->event_thread))
3860 {
3861 /* We're trying to step off a breakpoint. Turns out that we're
3862 also on an instruction that needs to be stepped multiple
3863 times before it's been fully executing. E.g., architectures
3864 with a delay slot. It needs to be stepped twice, once for
3865 the instruction and once for the delay slot. */
3866 int step_through_delay
3867 = gdbarch_single_step_through_delay (gdbarch, frame);
3868
3869 if (debug_infrun && step_through_delay)
3870 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3871 if (ecs->event_thread->control.step_range_end == 0
3872 && step_through_delay)
3873 {
3874 /* The user issued a continue when stopped at a breakpoint.
3875 Set up for another trap and get out of here. */
3876 ecs->event_thread->stepping_over_breakpoint = 1;
3877 keep_going (ecs);
3878 return;
3879 }
3880 else if (step_through_delay)
3881 {
3882 /* The user issued a step when stopped at a breakpoint.
3883 Maybe we should stop, maybe we should not - the delay
3884 slot *might* correspond to a line of source. In any
3885 case, don't decide that here, just set
3886 ecs->stepping_over_breakpoint, making sure we
3887 single-step again before breakpoints are re-inserted. */
3888 ecs->event_thread->stepping_over_breakpoint = 1;
3889 }
3890 }
3891
3892 /* Look at the cause of the stop, and decide what to do.
3893 The alternatives are:
3894 1) stop_stepping and return; to really stop and return to the debugger,
3895 2) keep_going and return to start up again
3896 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3897 3) set ecs->random_signal to 1, and the decision between 1 and 2
3898 will be made according to the signal handling tables. */
3899
3900 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3901 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3902 || stop_soon == STOP_QUIETLY_REMOTE)
3903 {
3904 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3905 && stop_after_trap)
3906 {
3907 if (debug_infrun)
3908 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3909 stop_print_frame = 0;
3910 stop_stepping (ecs);
3911 return;
3912 }
3913
3914 /* This is originated from start_remote(), start_inferior() and
3915 shared libraries hook functions. */
3916 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3917 {
3918 if (debug_infrun)
3919 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3920 stop_stepping (ecs);
3921 return;
3922 }
3923
3924 /* This originates from attach_command(). We need to overwrite
3925 the stop_signal here, because some kernels don't ignore a
3926 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3927 See more comments in inferior.h. On the other hand, if we
3928 get a non-SIGSTOP, report it to the user - assume the backend
3929 will handle the SIGSTOP if it should show up later.
3930
3931 Also consider that the attach is complete when we see a
3932 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3933 target extended-remote report it instead of a SIGSTOP
3934 (e.g. gdbserver). We already rely on SIGTRAP being our
3935 signal, so this is no exception.
3936
3937 Also consider that the attach is complete when we see a
3938 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3939 the target to stop all threads of the inferior, in case the
3940 low level attach operation doesn't stop them implicitly. If
3941 they weren't stopped implicitly, then the stub will report a
3942 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3943 other than GDB's request. */
3944 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3945 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
3946 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3947 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
3948 {
3949 stop_stepping (ecs);
3950 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3951 return;
3952 }
3953
3954 /* See if there is a breakpoint at the current PC. */
3955 ecs->event_thread->control.stop_bpstat
3956 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3957 stop_pc, ecs->ptid);
3958
3959 /* Following in case break condition called a
3960 function. */
3961 stop_print_frame = 1;
3962
3963 /* This is where we handle "moribund" watchpoints. Unlike
3964 software breakpoints traps, hardware watchpoint traps are
3965 always distinguishable from random traps. If no high-level
3966 watchpoint is associated with the reported stop data address
3967 anymore, then the bpstat does not explain the signal ---
3968 simply make sure to ignore it if `stopped_by_watchpoint' is
3969 set. */
3970
3971 if (debug_infrun
3972 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3973 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
3974 && stopped_by_watchpoint)
3975 fprintf_unfiltered (gdb_stdlog,
3976 "infrun: no user watchpoint explains "
3977 "watchpoint SIGTRAP, ignoring\n");
3978
3979 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3980 at one stage in the past included checks for an inferior
3981 function call's call dummy's return breakpoint. The original
3982 comment, that went with the test, read:
3983
3984 ``End of a stack dummy. Some systems (e.g. Sony news) give
3985 another signal besides SIGTRAP, so check here as well as
3986 above.''
3987
3988 If someone ever tries to get call dummys on a
3989 non-executable stack to work (where the target would stop
3990 with something like a SIGSEGV), then those tests might need
3991 to be re-instated. Given, however, that the tests were only
3992 enabled when momentary breakpoints were not being used, I
3993 suspect that it won't be the case.
3994
3995 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3996 be necessary for call dummies on a non-executable stack on
3997 SPARC. */
3998
3999 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4000 ecs->random_signal
4001 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4002 || stopped_by_watchpoint
4003 || ecs->event_thread->control.trap_expected
4004 || (ecs->event_thread->control.step_range_end
4005 && (ecs->event_thread->control.step_resume_breakpoint
4006 == NULL)));
4007 else
4008 {
4009 ecs->random_signal = !bpstat_explains_signal
4010 (ecs->event_thread->control.stop_bpstat);
4011 if (!ecs->random_signal)
4012 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4013 }
4014 }
4015
4016 /* When we reach this point, we've pretty much decided
4017 that the reason for stopping must've been a random
4018 (unexpected) signal. */
4019
4020 else
4021 ecs->random_signal = 1;
4022
4023process_event_stop_test:
4024
4025 /* Re-fetch current thread's frame in case we did a
4026 "goto process_event_stop_test" above. */
4027 frame = get_current_frame ();
4028 gdbarch = get_frame_arch (frame);
4029
4030 /* For the program's own signals, act according to
4031 the signal handling tables. */
4032
4033 if (ecs->random_signal)
4034 {
4035 /* Signal not for debugging purposes. */
4036 int printed = 0;
4037 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4038
4039 if (debug_infrun)
4040 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4041 ecs->event_thread->suspend.stop_signal);
4042
4043 stopped_by_random_signal = 1;
4044
4045 if (signal_print[ecs->event_thread->suspend.stop_signal])
4046 {
4047 printed = 1;
4048 target_terminal_ours_for_output ();
4049 print_signal_received_reason
4050 (ecs->event_thread->suspend.stop_signal);
4051 }
4052 /* Always stop on signals if we're either just gaining control
4053 of the program, or the user explicitly requested this thread
4054 to remain stopped. */
4055 if (stop_soon != NO_STOP_QUIETLY
4056 || ecs->event_thread->stop_requested
4057 || (!inf->detaching
4058 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4059 {
4060 stop_stepping (ecs);
4061 return;
4062 }
4063 /* If not going to stop, give terminal back
4064 if we took it away. */
4065 else if (printed)
4066 target_terminal_inferior ();
4067
4068 /* Clear the signal if it should not be passed. */
4069 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4070 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4071
4072 if (ecs->event_thread->prev_pc == stop_pc
4073 && ecs->event_thread->control.trap_expected
4074 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4075 {
4076 /* We were just starting a new sequence, attempting to
4077 single-step off of a breakpoint and expecting a SIGTRAP.
4078 Instead this signal arrives. This signal will take us out
4079 of the stepping range so GDB needs to remember to, when
4080 the signal handler returns, resume stepping off that
4081 breakpoint. */
4082 /* To simplify things, "continue" is forced to use the same
4083 code paths as single-step - set a breakpoint at the
4084 signal return address and then, once hit, step off that
4085 breakpoint. */
4086 if (debug_infrun)
4087 fprintf_unfiltered (gdb_stdlog,
4088 "infrun: signal arrived while stepping over "
4089 "breakpoint\n");
4090
4091 insert_step_resume_breakpoint_at_frame (frame);
4092 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4093 keep_going (ecs);
4094 return;
4095 }
4096
4097 if (ecs->event_thread->control.step_range_end != 0
4098 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4099 && (ecs->event_thread->control.step_range_start <= stop_pc
4100 && stop_pc < ecs->event_thread->control.step_range_end)
4101 && frame_id_eq (get_stack_frame_id (frame),
4102 ecs->event_thread->control.step_stack_frame_id)
4103 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4104 {
4105 /* The inferior is about to take a signal that will take it
4106 out of the single step range. Set a breakpoint at the
4107 current PC (which is presumably where the signal handler
4108 will eventually return) and then allow the inferior to
4109 run free.
4110
4111 Note that this is only needed for a signal delivered
4112 while in the single-step range. Nested signals aren't a
4113 problem as they eventually all return. */
4114 if (debug_infrun)
4115 fprintf_unfiltered (gdb_stdlog,
4116 "infrun: signal may take us out of "
4117 "single-step range\n");
4118
4119 insert_step_resume_breakpoint_at_frame (frame);
4120 keep_going (ecs);
4121 return;
4122 }
4123
4124 /* Note: step_resume_breakpoint may be non-NULL. This occures
4125 when either there's a nested signal, or when there's a
4126 pending signal enabled just as the signal handler returns
4127 (leaving the inferior at the step-resume-breakpoint without
4128 actually executing it). Either way continue until the
4129 breakpoint is really hit. */
4130 keep_going (ecs);
4131 return;
4132 }
4133
4134 /* Handle cases caused by hitting a breakpoint. */
4135 {
4136 CORE_ADDR jmp_buf_pc;
4137 struct bpstat_what what;
4138
4139 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4140
4141 if (what.call_dummy)
4142 {
4143 stop_stack_dummy = what.call_dummy;
4144 }
4145
4146 /* If we hit an internal event that triggers symbol changes, the
4147 current frame will be invalidated within bpstat_what (e.g., if
4148 we hit an internal solib event). Re-fetch it. */
4149 frame = get_current_frame ();
4150 gdbarch = get_frame_arch (frame);
4151
4152 switch (what.main_action)
4153 {
4154 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4155 /* If we hit the breakpoint at longjmp while stepping, we
4156 install a momentary breakpoint at the target of the
4157 jmp_buf. */
4158
4159 if (debug_infrun)
4160 fprintf_unfiltered (gdb_stdlog,
4161 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4162
4163 ecs->event_thread->stepping_over_breakpoint = 1;
4164
4165 if (what.is_longjmp)
4166 {
4167 if (!gdbarch_get_longjmp_target_p (gdbarch)
4168 || !gdbarch_get_longjmp_target (gdbarch,
4169 frame, &jmp_buf_pc))
4170 {
4171 if (debug_infrun)
4172 fprintf_unfiltered (gdb_stdlog,
4173 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4174 "(!gdbarch_get_longjmp_target)\n");
4175 keep_going (ecs);
4176 return;
4177 }
4178
4179 /* We're going to replace the current step-resume breakpoint
4180 with a longjmp-resume breakpoint. */
4181 delete_step_resume_breakpoint (ecs->event_thread);
4182
4183 /* Insert a breakpoint at resume address. */
4184 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4185 }
4186 else
4187 {
4188 struct symbol *func = get_frame_function (frame);
4189
4190 if (func)
4191 check_exception_resume (ecs, frame, func);
4192 }
4193 keep_going (ecs);
4194 return;
4195
4196 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4197 if (debug_infrun)
4198 fprintf_unfiltered (gdb_stdlog,
4199 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4200
4201 if (what.is_longjmp)
4202 {
4203 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4204 != NULL);
4205 delete_step_resume_breakpoint (ecs->event_thread);
4206 }
4207 else
4208 {
4209 /* There are several cases to consider.
4210
4211 1. The initiating frame no longer exists. In this case
4212 we must stop, because the exception has gone too far.
4213
4214 2. The initiating frame exists, and is the same as the
4215 current frame. We stop, because the exception has been
4216 caught.
4217
4218 3. The initiating frame exists and is different from
4219 the current frame. This means the exception has been
4220 caught beneath the initiating frame, so keep going. */
4221 struct frame_info *init_frame
4222 = frame_find_by_id (ecs->event_thread->initiating_frame);
4223
4224 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4225 != NULL);
4226 delete_exception_resume_breakpoint (ecs->event_thread);
4227
4228 if (init_frame)
4229 {
4230 struct frame_id current_id
4231 = get_frame_id (get_current_frame ());
4232 if (frame_id_eq (current_id,
4233 ecs->event_thread->initiating_frame))
4234 {
4235 /* Case 2. Fall through. */
4236 }
4237 else
4238 {
4239 /* Case 3. */
4240 keep_going (ecs);
4241 return;
4242 }
4243 }
4244
4245 /* For Cases 1 and 2, remove the step-resume breakpoint,
4246 if it exists. */
4247 delete_step_resume_breakpoint (ecs->event_thread);
4248 }
4249
4250 ecs->event_thread->control.stop_step = 1;
4251 print_end_stepping_range_reason ();
4252 stop_stepping (ecs);
4253 return;
4254
4255 case BPSTAT_WHAT_SINGLE:
4256 if (debug_infrun)
4257 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4258 ecs->event_thread->stepping_over_breakpoint = 1;
4259 /* Still need to check other stuff, at least the case
4260 where we are stepping and step out of the right range. */
4261 break;
4262
4263 case BPSTAT_WHAT_STOP_NOISY:
4264 if (debug_infrun)
4265 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4266 stop_print_frame = 1;
4267
4268 /* We are about to nuke the step_resume_breakpointt via the
4269 cleanup chain, so no need to worry about it here. */
4270
4271 stop_stepping (ecs);
4272 return;
4273
4274 case BPSTAT_WHAT_STOP_SILENT:
4275 if (debug_infrun)
4276 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4277 stop_print_frame = 0;
4278
4279 /* We are about to nuke the step_resume_breakpoin via the
4280 cleanup chain, so no need to worry about it here. */
4281
4282 stop_stepping (ecs);
4283 return;
4284
4285 case BPSTAT_WHAT_STEP_RESUME:
4286 if (debug_infrun)
4287 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4288
4289 delete_step_resume_breakpoint (ecs->event_thread);
4290 if (ecs->event_thread->step_after_step_resume_breakpoint)
4291 {
4292 /* Back when the step-resume breakpoint was inserted, we
4293 were trying to single-step off a breakpoint. Go back
4294 to doing that. */
4295 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4296 ecs->event_thread->stepping_over_breakpoint = 1;
4297 keep_going (ecs);
4298 return;
4299 }
4300 if (stop_pc == ecs->stop_func_start
4301 && execution_direction == EXEC_REVERSE)
4302 {
4303 /* We are stepping over a function call in reverse, and
4304 just hit the step-resume breakpoint at the start
4305 address of the function. Go back to single-stepping,
4306 which should take us back to the function call. */
4307 ecs->event_thread->stepping_over_breakpoint = 1;
4308 keep_going (ecs);
4309 return;
4310 }
4311 break;
4312
4313 case BPSTAT_WHAT_KEEP_CHECKING:
4314 break;
4315 }
4316 }
4317
4318 /* We come here if we hit a breakpoint but should not
4319 stop for it. Possibly we also were stepping
4320 and should stop for that. So fall through and
4321 test for stepping. But, if not stepping,
4322 do not stop. */
4323
4324 /* In all-stop mode, if we're currently stepping but have stopped in
4325 some other thread, we need to switch back to the stepped thread. */
4326 if (!non_stop)
4327 {
4328 struct thread_info *tp;
4329
4330 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4331 ecs->event_thread);
4332 if (tp)
4333 {
4334 /* However, if the current thread is blocked on some internal
4335 breakpoint, and we simply need to step over that breakpoint
4336 to get it going again, do that first. */
4337 if ((ecs->event_thread->control.trap_expected
4338 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4339 || ecs->event_thread->stepping_over_breakpoint)
4340 {
4341 keep_going (ecs);
4342 return;
4343 }
4344
4345 /* If the stepping thread exited, then don't try to switch
4346 back and resume it, which could fail in several different
4347 ways depending on the target. Instead, just keep going.
4348
4349 We can find a stepping dead thread in the thread list in
4350 two cases:
4351
4352 - The target supports thread exit events, and when the
4353 target tries to delete the thread from the thread list,
4354 inferior_ptid pointed at the exiting thread. In such
4355 case, calling delete_thread does not really remove the
4356 thread from the list; instead, the thread is left listed,
4357 with 'exited' state.
4358
4359 - The target's debug interface does not support thread
4360 exit events, and so we have no idea whatsoever if the
4361 previously stepping thread is still alive. For that
4362 reason, we need to synchronously query the target
4363 now. */
4364 if (is_exited (tp->ptid)
4365 || !target_thread_alive (tp->ptid))
4366 {
4367 if (debug_infrun)
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: not switching back to "
4370 "stepped thread, it has vanished\n");
4371
4372 delete_thread (tp->ptid);
4373 keep_going (ecs);
4374 return;
4375 }
4376
4377 /* Otherwise, we no longer expect a trap in the current thread.
4378 Clear the trap_expected flag before switching back -- this is
4379 what keep_going would do as well, if we called it. */
4380 ecs->event_thread->control.trap_expected = 0;
4381
4382 if (debug_infrun)
4383 fprintf_unfiltered (gdb_stdlog,
4384 "infrun: switching back to stepped thread\n");
4385
4386 ecs->event_thread = tp;
4387 ecs->ptid = tp->ptid;
4388 context_switch (ecs->ptid);
4389 keep_going (ecs);
4390 return;
4391 }
4392 }
4393
4394 /* Are we stepping to get the inferior out of the dynamic linker's
4395 hook (and possibly the dld itself) after catching a shlib
4396 event? */
4397 if (ecs->event_thread->stepping_through_solib_after_catch)
4398 {
4399#if defined(SOLIB_ADD)
4400 /* Have we reached our destination? If not, keep going. */
4401 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4402 {
4403 if (debug_infrun)
4404 fprintf_unfiltered (gdb_stdlog,
4405 "infrun: stepping in dynamic linker\n");
4406 ecs->event_thread->stepping_over_breakpoint = 1;
4407 keep_going (ecs);
4408 return;
4409 }
4410#endif
4411 if (debug_infrun)
4412 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4413 /* Else, stop and report the catchpoint(s) whose triggering
4414 caused us to begin stepping. */
4415 ecs->event_thread->stepping_through_solib_after_catch = 0;
4416 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4417 ecs->event_thread->control.stop_bpstat
4418 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4419 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4420 stop_print_frame = 1;
4421 stop_stepping (ecs);
4422 return;
4423 }
4424
4425 if (ecs->event_thread->control.step_resume_breakpoint)
4426 {
4427 if (debug_infrun)
4428 fprintf_unfiltered (gdb_stdlog,
4429 "infrun: step-resume breakpoint is inserted\n");
4430
4431 /* Having a step-resume breakpoint overrides anything
4432 else having to do with stepping commands until
4433 that breakpoint is reached. */
4434 keep_going (ecs);
4435 return;
4436 }
4437
4438 if (ecs->event_thread->control.step_range_end == 0)
4439 {
4440 if (debug_infrun)
4441 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4442 /* Likewise if we aren't even stepping. */
4443 keep_going (ecs);
4444 return;
4445 }
4446
4447 /* Re-fetch current thread's frame in case the code above caused
4448 the frame cache to be re-initialized, making our FRAME variable
4449 a dangling pointer. */
4450 frame = get_current_frame ();
4451 gdbarch = get_frame_arch (frame);
4452
4453 /* If stepping through a line, keep going if still within it.
4454
4455 Note that step_range_end is the address of the first instruction
4456 beyond the step range, and NOT the address of the last instruction
4457 within it!
4458
4459 Note also that during reverse execution, we may be stepping
4460 through a function epilogue and therefore must detect when
4461 the current-frame changes in the middle of a line. */
4462
4463 if (stop_pc >= ecs->event_thread->control.step_range_start
4464 && stop_pc < ecs->event_thread->control.step_range_end
4465 && (execution_direction != EXEC_REVERSE
4466 || frame_id_eq (get_frame_id (frame),
4467 ecs->event_thread->control.step_frame_id)))
4468 {
4469 if (debug_infrun)
4470 fprintf_unfiltered
4471 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4472 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4473 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4474
4475 /* When stepping backward, stop at beginning of line range
4476 (unless it's the function entry point, in which case
4477 keep going back to the call point). */
4478 if (stop_pc == ecs->event_thread->control.step_range_start
4479 && stop_pc != ecs->stop_func_start
4480 && execution_direction == EXEC_REVERSE)
4481 {
4482 ecs->event_thread->control.stop_step = 1;
4483 print_end_stepping_range_reason ();
4484 stop_stepping (ecs);
4485 }
4486 else
4487 keep_going (ecs);
4488
4489 return;
4490 }
4491
4492 /* We stepped out of the stepping range. */
4493
4494 /* If we are stepping at the source level and entered the runtime
4495 loader dynamic symbol resolution code...
4496
4497 EXEC_FORWARD: we keep on single stepping until we exit the run
4498 time loader code and reach the callee's address.
4499
4500 EXEC_REVERSE: we've already executed the callee (backward), and
4501 the runtime loader code is handled just like any other
4502 undebuggable function call. Now we need only keep stepping
4503 backward through the trampoline code, and that's handled further
4504 down, so there is nothing for us to do here. */
4505
4506 if (execution_direction != EXEC_REVERSE
4507 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4508 && in_solib_dynsym_resolve_code (stop_pc))
4509 {
4510 CORE_ADDR pc_after_resolver =
4511 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4512
4513 if (debug_infrun)
4514 fprintf_unfiltered (gdb_stdlog,
4515 "infrun: stepped into dynsym resolve code\n");
4516
4517 if (pc_after_resolver)
4518 {
4519 /* Set up a step-resume breakpoint at the address
4520 indicated by SKIP_SOLIB_RESOLVER. */
4521 struct symtab_and_line sr_sal;
4522
4523 init_sal (&sr_sal);
4524 sr_sal.pc = pc_after_resolver;
4525 sr_sal.pspace = get_frame_program_space (frame);
4526
4527 insert_step_resume_breakpoint_at_sal (gdbarch,
4528 sr_sal, null_frame_id);
4529 }
4530
4531 keep_going (ecs);
4532 return;
4533 }
4534
4535 if (ecs->event_thread->control.step_range_end != 1
4536 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4537 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4538 && get_frame_type (frame) == SIGTRAMP_FRAME)
4539 {
4540 if (debug_infrun)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "infrun: stepped into signal trampoline\n");
4543 /* The inferior, while doing a "step" or "next", has ended up in
4544 a signal trampoline (either by a signal being delivered or by
4545 the signal handler returning). Just single-step until the
4546 inferior leaves the trampoline (either by calling the handler
4547 or returning). */
4548 keep_going (ecs);
4549 return;
4550 }
4551
4552 /* Check for subroutine calls. The check for the current frame
4553 equalling the step ID is not necessary - the check of the
4554 previous frame's ID is sufficient - but it is a common case and
4555 cheaper than checking the previous frame's ID.
4556
4557 NOTE: frame_id_eq will never report two invalid frame IDs as
4558 being equal, so to get into this block, both the current and
4559 previous frame must have valid frame IDs. */
4560 /* The outer_frame_id check is a heuristic to detect stepping
4561 through startup code. If we step over an instruction which
4562 sets the stack pointer from an invalid value to a valid value,
4563 we may detect that as a subroutine call from the mythical
4564 "outermost" function. This could be fixed by marking
4565 outermost frames as !stack_p,code_p,special_p. Then the
4566 initial outermost frame, before sp was valid, would
4567 have code_addr == &_start. See the comment in frame_id_eq
4568 for more. */
4569 if (!frame_id_eq (get_stack_frame_id (frame),
4570 ecs->event_thread->control.step_stack_frame_id)
4571 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4572 ecs->event_thread->control.step_stack_frame_id)
4573 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4574 outer_frame_id)
4575 || step_start_function != find_pc_function (stop_pc))))
4576 {
4577 CORE_ADDR real_stop_pc;
4578
4579 if (debug_infrun)
4580 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4581
4582 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4583 || ((ecs->event_thread->control.step_range_end == 1)
4584 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4585 ecs->stop_func_start)))
4586 {
4587 /* I presume that step_over_calls is only 0 when we're
4588 supposed to be stepping at the assembly language level
4589 ("stepi"). Just stop. */
4590 /* Also, maybe we just did a "nexti" inside a prolog, so we
4591 thought it was a subroutine call but it was not. Stop as
4592 well. FENN */
4593 /* And this works the same backward as frontward. MVS */
4594 ecs->event_thread->control.stop_step = 1;
4595 print_end_stepping_range_reason ();
4596 stop_stepping (ecs);
4597 return;
4598 }
4599
4600 /* Reverse stepping through solib trampolines. */
4601
4602 if (execution_direction == EXEC_REVERSE
4603 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4604 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4605 || (ecs->stop_func_start == 0
4606 && in_solib_dynsym_resolve_code (stop_pc))))
4607 {
4608 /* Any solib trampoline code can be handled in reverse
4609 by simply continuing to single-step. We have already
4610 executed the solib function (backwards), and a few
4611 steps will take us back through the trampoline to the
4612 caller. */
4613 keep_going (ecs);
4614 return;
4615 }
4616
4617 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4618 {
4619 /* We're doing a "next".
4620
4621 Normal (forward) execution: set a breakpoint at the
4622 callee's return address (the address at which the caller
4623 will resume).
4624
4625 Reverse (backward) execution. set the step-resume
4626 breakpoint at the start of the function that we just
4627 stepped into (backwards), and continue to there. When we
4628 get there, we'll need to single-step back to the caller. */
4629
4630 if (execution_direction == EXEC_REVERSE)
4631 {
4632 struct symtab_and_line sr_sal;
4633
4634 /* Normal function call return (static or dynamic). */
4635 init_sal (&sr_sal);
4636 sr_sal.pc = ecs->stop_func_start;
4637 sr_sal.pspace = get_frame_program_space (frame);
4638 insert_step_resume_breakpoint_at_sal (gdbarch,
4639 sr_sal, null_frame_id);
4640 }
4641 else
4642 insert_step_resume_breakpoint_at_caller (frame);
4643
4644 keep_going (ecs);
4645 return;
4646 }
4647
4648 /* If we are in a function call trampoline (a stub between the
4649 calling routine and the real function), locate the real
4650 function. That's what tells us (a) whether we want to step
4651 into it at all, and (b) what prologue we want to run to the
4652 end of, if we do step into it. */
4653 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4654 if (real_stop_pc == 0)
4655 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4656 if (real_stop_pc != 0)
4657 ecs->stop_func_start = real_stop_pc;
4658
4659 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4660 {
4661 struct symtab_and_line sr_sal;
4662
4663 init_sal (&sr_sal);
4664 sr_sal.pc = ecs->stop_func_start;
4665 sr_sal.pspace = get_frame_program_space (frame);
4666
4667 insert_step_resume_breakpoint_at_sal (gdbarch,
4668 sr_sal, null_frame_id);
4669 keep_going (ecs);
4670 return;
4671 }
4672
4673 /* If we have line number information for the function we are
4674 thinking of stepping into, step into it.
4675
4676 If there are several symtabs at that PC (e.g. with include
4677 files), just want to know whether *any* of them have line
4678 numbers. find_pc_line handles this. */
4679 {
4680 struct symtab_and_line tmp_sal;
4681
4682 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4683 if (tmp_sal.line != 0)
4684 {
4685 if (execution_direction == EXEC_REVERSE)
4686 handle_step_into_function_backward (gdbarch, ecs);
4687 else
4688 handle_step_into_function (gdbarch, ecs);
4689 return;
4690 }
4691 }
4692
4693 /* If we have no line number and the step-stop-if-no-debug is
4694 set, we stop the step so that the user has a chance to switch
4695 in assembly mode. */
4696 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4697 && step_stop_if_no_debug)
4698 {
4699 ecs->event_thread->control.stop_step = 1;
4700 print_end_stepping_range_reason ();
4701 stop_stepping (ecs);
4702 return;
4703 }
4704
4705 if (execution_direction == EXEC_REVERSE)
4706 {
4707 /* Set a breakpoint at callee's start address.
4708 From there we can step once and be back in the caller. */
4709 struct symtab_and_line sr_sal;
4710
4711 init_sal (&sr_sal);
4712 sr_sal.pc = ecs->stop_func_start;
4713 sr_sal.pspace = get_frame_program_space (frame);
4714 insert_step_resume_breakpoint_at_sal (gdbarch,
4715 sr_sal, null_frame_id);
4716 }
4717 else
4718 /* Set a breakpoint at callee's return address (the address
4719 at which the caller will resume). */
4720 insert_step_resume_breakpoint_at_caller (frame);
4721
4722 keep_going (ecs);
4723 return;
4724 }
4725
4726 /* Reverse stepping through solib trampolines. */
4727
4728 if (execution_direction == EXEC_REVERSE
4729 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4730 {
4731 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4732 || (ecs->stop_func_start == 0
4733 && in_solib_dynsym_resolve_code (stop_pc)))
4734 {
4735 /* Any solib trampoline code can be handled in reverse
4736 by simply continuing to single-step. We have already
4737 executed the solib function (backwards), and a few
4738 steps will take us back through the trampoline to the
4739 caller. */
4740 keep_going (ecs);
4741 return;
4742 }
4743 else if (in_solib_dynsym_resolve_code (stop_pc))
4744 {
4745 /* Stepped backward into the solib dynsym resolver.
4746 Set a breakpoint at its start and continue, then
4747 one more step will take us out. */
4748 struct symtab_and_line sr_sal;
4749
4750 init_sal (&sr_sal);
4751 sr_sal.pc = ecs->stop_func_start;
4752 sr_sal.pspace = get_frame_program_space (frame);
4753 insert_step_resume_breakpoint_at_sal (gdbarch,
4754 sr_sal, null_frame_id);
4755 keep_going (ecs);
4756 return;
4757 }
4758 }
4759
4760 /* If we're in the return path from a shared library trampoline,
4761 we want to proceed through the trampoline when stepping. */
4762 if (gdbarch_in_solib_return_trampoline (gdbarch,
4763 stop_pc, ecs->stop_func_name))
4764 {
4765 /* Determine where this trampoline returns. */
4766 CORE_ADDR real_stop_pc;
4767
4768 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4769
4770 if (debug_infrun)
4771 fprintf_unfiltered (gdb_stdlog,
4772 "infrun: stepped into solib return tramp\n");
4773
4774 /* Only proceed through if we know where it's going. */
4775 if (real_stop_pc)
4776 {
4777 /* And put the step-breakpoint there and go until there. */
4778 struct symtab_and_line sr_sal;
4779
4780 init_sal (&sr_sal); /* initialize to zeroes */
4781 sr_sal.pc = real_stop_pc;
4782 sr_sal.section = find_pc_overlay (sr_sal.pc);
4783 sr_sal.pspace = get_frame_program_space (frame);
4784
4785 /* Do not specify what the fp should be when we stop since
4786 on some machines the prologue is where the new fp value
4787 is established. */
4788 insert_step_resume_breakpoint_at_sal (gdbarch,
4789 sr_sal, null_frame_id);
4790
4791 /* Restart without fiddling with the step ranges or
4792 other state. */
4793 keep_going (ecs);
4794 return;
4795 }
4796 }
4797
4798 stop_pc_sal = find_pc_line (stop_pc, 0);
4799
4800 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4801 the trampoline processing logic, however, there are some trampolines
4802 that have no names, so we should do trampoline handling first. */
4803 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4804 && ecs->stop_func_name == NULL
4805 && stop_pc_sal.line == 0)
4806 {
4807 if (debug_infrun)
4808 fprintf_unfiltered (gdb_stdlog,
4809 "infrun: stepped into undebuggable function\n");
4810
4811 /* The inferior just stepped into, or returned to, an
4812 undebuggable function (where there is no debugging information
4813 and no line number corresponding to the address where the
4814 inferior stopped). Since we want to skip this kind of code,
4815 we keep going until the inferior returns from this
4816 function - unless the user has asked us not to (via
4817 set step-mode) or we no longer know how to get back
4818 to the call site. */
4819 if (step_stop_if_no_debug
4820 || !frame_id_p (frame_unwind_caller_id (frame)))
4821 {
4822 /* If we have no line number and the step-stop-if-no-debug
4823 is set, we stop the step so that the user has a chance to
4824 switch in assembly mode. */
4825 ecs->event_thread->control.stop_step = 1;
4826 print_end_stepping_range_reason ();
4827 stop_stepping (ecs);
4828 return;
4829 }
4830 else
4831 {
4832 /* Set a breakpoint at callee's return address (the address
4833 at which the caller will resume). */
4834 insert_step_resume_breakpoint_at_caller (frame);
4835 keep_going (ecs);
4836 return;
4837 }
4838 }
4839
4840 if (ecs->event_thread->control.step_range_end == 1)
4841 {
4842 /* It is stepi or nexti. We always want to stop stepping after
4843 one instruction. */
4844 if (debug_infrun)
4845 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
4846 ecs->event_thread->control.stop_step = 1;
4847 print_end_stepping_range_reason ();
4848 stop_stepping (ecs);
4849 return;
4850 }
4851
4852 if (stop_pc_sal.line == 0)
4853 {
4854 /* We have no line number information. That means to stop
4855 stepping (does this always happen right after one instruction,
4856 when we do "s" in a function with no line numbers,
4857 or can this happen as a result of a return or longjmp?). */
4858 if (debug_infrun)
4859 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
4860 ecs->event_thread->control.stop_step = 1;
4861 print_end_stepping_range_reason ();
4862 stop_stepping (ecs);
4863 return;
4864 }
4865
4866 /* Look for "calls" to inlined functions, part one. If the inline
4867 frame machinery detected some skipped call sites, we have entered
4868 a new inline function. */
4869
4870 if (frame_id_eq (get_frame_id (get_current_frame ()),
4871 ecs->event_thread->control.step_frame_id)
4872 && inline_skipped_frames (ecs->ptid))
4873 {
4874 struct symtab_and_line call_sal;
4875
4876 if (debug_infrun)
4877 fprintf_unfiltered (gdb_stdlog,
4878 "infrun: stepped into inlined function\n");
4879
4880 find_frame_sal (get_current_frame (), &call_sal);
4881
4882 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
4883 {
4884 /* For "step", we're going to stop. But if the call site
4885 for this inlined function is on the same source line as
4886 we were previously stepping, go down into the function
4887 first. Otherwise stop at the call site. */
4888
4889 if (call_sal.line == ecs->event_thread->current_line
4890 && call_sal.symtab == ecs->event_thread->current_symtab)
4891 step_into_inline_frame (ecs->ptid);
4892
4893 ecs->event_thread->control.stop_step = 1;
4894 print_end_stepping_range_reason ();
4895 stop_stepping (ecs);
4896 return;
4897 }
4898 else
4899 {
4900 /* For "next", we should stop at the call site if it is on a
4901 different source line. Otherwise continue through the
4902 inlined function. */
4903 if (call_sal.line == ecs->event_thread->current_line
4904 && call_sal.symtab == ecs->event_thread->current_symtab)
4905 keep_going (ecs);
4906 else
4907 {
4908 ecs->event_thread->control.stop_step = 1;
4909 print_end_stepping_range_reason ();
4910 stop_stepping (ecs);
4911 }
4912 return;
4913 }
4914 }
4915
4916 /* Look for "calls" to inlined functions, part two. If we are still
4917 in the same real function we were stepping through, but we have
4918 to go further up to find the exact frame ID, we are stepping
4919 through a more inlined call beyond its call site. */
4920
4921 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4922 && !frame_id_eq (get_frame_id (get_current_frame ()),
4923 ecs->event_thread->control.step_frame_id)
4924 && stepped_in_from (get_current_frame (),
4925 ecs->event_thread->control.step_frame_id))
4926 {
4927 if (debug_infrun)
4928 fprintf_unfiltered (gdb_stdlog,
4929 "infrun: stepping through inlined function\n");
4930
4931 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4932 keep_going (ecs);
4933 else
4934 {
4935 ecs->event_thread->control.stop_step = 1;
4936 print_end_stepping_range_reason ();
4937 stop_stepping (ecs);
4938 }
4939 return;
4940 }
4941
4942 if ((stop_pc == stop_pc_sal.pc)
4943 && (ecs->event_thread->current_line != stop_pc_sal.line
4944 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
4945 {
4946 /* We are at the start of a different line. So stop. Note that
4947 we don't stop if we step into the middle of a different line.
4948 That is said to make things like for (;;) statements work
4949 better. */
4950 if (debug_infrun)
4951 fprintf_unfiltered (gdb_stdlog,
4952 "infrun: stepped to a different line\n");
4953 ecs->event_thread->control.stop_step = 1;
4954 print_end_stepping_range_reason ();
4955 stop_stepping (ecs);
4956 return;
4957 }
4958
4959 /* We aren't done stepping.
4960
4961 Optimize by setting the stepping range to the line.
4962 (We might not be in the original line, but if we entered a
4963 new line in mid-statement, we continue stepping. This makes
4964 things like for(;;) statements work better.) */
4965
4966 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
4967 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
4968 set_step_info (frame, stop_pc_sal);
4969
4970 if (debug_infrun)
4971 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
4972 keep_going (ecs);
4973}
4974
4975/* Is thread TP in the middle of single-stepping? */
4976
4977static int
4978currently_stepping (struct thread_info *tp)
4979{
4980 return ((tp->control.step_range_end
4981 && tp->control.step_resume_breakpoint == NULL)
4982 || tp->control.trap_expected
4983 || tp->stepping_through_solib_after_catch
4984 || bpstat_should_step ());
4985}
4986
4987/* Returns true if any thread *but* the one passed in "data" is in the
4988 middle of stepping or of handling a "next". */
4989
4990static int
4991currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
4992{
4993 if (tp == data)
4994 return 0;
4995
4996 return (tp->control.step_range_end
4997 || tp->control.trap_expected
4998 || tp->stepping_through_solib_after_catch);
4999}
5000
5001/* Inferior has stepped into a subroutine call with source code that
5002 we should not step over. Do step to the first line of code in
5003 it. */
5004
5005static void
5006handle_step_into_function (struct gdbarch *gdbarch,
5007 struct execution_control_state *ecs)
5008{
5009 struct symtab *s;
5010 struct symtab_and_line stop_func_sal, sr_sal;
5011
5012 s = find_pc_symtab (stop_pc);
5013 if (s && s->language != language_asm)
5014 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5015 ecs->stop_func_start);
5016
5017 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5018 /* Use the step_resume_break to step until the end of the prologue,
5019 even if that involves jumps (as it seems to on the vax under
5020 4.2). */
5021 /* If the prologue ends in the middle of a source line, continue to
5022 the end of that source line (if it is still within the function).
5023 Otherwise, just go to end of prologue. */
5024 if (stop_func_sal.end
5025 && stop_func_sal.pc != ecs->stop_func_start
5026 && stop_func_sal.end < ecs->stop_func_end)
5027 ecs->stop_func_start = stop_func_sal.end;
5028
5029 /* Architectures which require breakpoint adjustment might not be able
5030 to place a breakpoint at the computed address. If so, the test
5031 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5032 ecs->stop_func_start to an address at which a breakpoint may be
5033 legitimately placed.
5034
5035 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5036 made, GDB will enter an infinite loop when stepping through
5037 optimized code consisting of VLIW instructions which contain
5038 subinstructions corresponding to different source lines. On
5039 FR-V, it's not permitted to place a breakpoint on any but the
5040 first subinstruction of a VLIW instruction. When a breakpoint is
5041 set, GDB will adjust the breakpoint address to the beginning of
5042 the VLIW instruction. Thus, we need to make the corresponding
5043 adjustment here when computing the stop address. */
5044
5045 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5046 {
5047 ecs->stop_func_start
5048 = gdbarch_adjust_breakpoint_address (gdbarch,
5049 ecs->stop_func_start);
5050 }
5051
5052 if (ecs->stop_func_start == stop_pc)
5053 {
5054 /* We are already there: stop now. */
5055 ecs->event_thread->control.stop_step = 1;
5056 print_end_stepping_range_reason ();
5057 stop_stepping (ecs);
5058 return;
5059 }
5060 else
5061 {
5062 /* Put the step-breakpoint there and go until there. */
5063 init_sal (&sr_sal); /* initialize to zeroes */
5064 sr_sal.pc = ecs->stop_func_start;
5065 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5066 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5067
5068 /* Do not specify what the fp should be when we stop since on
5069 some machines the prologue is where the new fp value is
5070 established. */
5071 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5072
5073 /* And make sure stepping stops right away then. */
5074 ecs->event_thread->control.step_range_end
5075 = ecs->event_thread->control.step_range_start;
5076 }
5077 keep_going (ecs);
5078}
5079
5080/* Inferior has stepped backward into a subroutine call with source
5081 code that we should not step over. Do step to the beginning of the
5082 last line of code in it. */
5083
5084static void
5085handle_step_into_function_backward (struct gdbarch *gdbarch,
5086 struct execution_control_state *ecs)
5087{
5088 struct symtab *s;
5089 struct symtab_and_line stop_func_sal;
5090
5091 s = find_pc_symtab (stop_pc);
5092 if (s && s->language != language_asm)
5093 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5094 ecs->stop_func_start);
5095
5096 stop_func_sal = find_pc_line (stop_pc, 0);
5097
5098 /* OK, we're just going to keep stepping here. */
5099 if (stop_func_sal.pc == stop_pc)
5100 {
5101 /* We're there already. Just stop stepping now. */
5102 ecs->event_thread->control.stop_step = 1;
5103 print_end_stepping_range_reason ();
5104 stop_stepping (ecs);
5105 }
5106 else
5107 {
5108 /* Else just reset the step range and keep going.
5109 No step-resume breakpoint, they don't work for
5110 epilogues, which can have multiple entry paths. */
5111 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5112 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5113 keep_going (ecs);
5114 }
5115 return;
5116}
5117
5118/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5119 This is used to both functions and to skip over code. */
5120
5121static void
5122insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5123 struct symtab_and_line sr_sal,
5124 struct frame_id sr_id)
5125{
5126 /* There should never be more than one step-resume or longjmp-resume
5127 breakpoint per thread, so we should never be setting a new
5128 step_resume_breakpoint when one is already active. */
5129 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5130
5131 if (debug_infrun)
5132 fprintf_unfiltered (gdb_stdlog,
5133 "infrun: inserting step-resume breakpoint at %s\n",
5134 paddress (gdbarch, sr_sal.pc));
5135
5136 inferior_thread ()->control.step_resume_breakpoint
5137 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
5138}
5139
5140/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
5141 to skip a potential signal handler.
5142
5143 This is called with the interrupted function's frame. The signal
5144 handler, when it returns, will resume the interrupted function at
5145 RETURN_FRAME.pc. */
5146
5147static void
5148insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5149{
5150 struct symtab_and_line sr_sal;
5151 struct gdbarch *gdbarch;
5152
5153 gdb_assert (return_frame != NULL);
5154 init_sal (&sr_sal); /* initialize to zeros */
5155
5156 gdbarch = get_frame_arch (return_frame);
5157 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5158 sr_sal.section = find_pc_overlay (sr_sal.pc);
5159 sr_sal.pspace = get_frame_program_space (return_frame);
5160
5161 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5162 get_stack_frame_id (return_frame));
5163}
5164
5165/* Similar to insert_step_resume_breakpoint_at_frame, except
5166 but a breakpoint at the previous frame's PC. This is used to
5167 skip a function after stepping into it (for "next" or if the called
5168 function has no debugging information).
5169
5170 The current function has almost always been reached by single
5171 stepping a call or return instruction. NEXT_FRAME belongs to the
5172 current function, and the breakpoint will be set at the caller's
5173 resume address.
5174
5175 This is a separate function rather than reusing
5176 insert_step_resume_breakpoint_at_frame in order to avoid
5177 get_prev_frame, which may stop prematurely (see the implementation
5178 of frame_unwind_caller_id for an example). */
5179
5180static void
5181insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5182{
5183 struct symtab_and_line sr_sal;
5184 struct gdbarch *gdbarch;
5185
5186 /* We shouldn't have gotten here if we don't know where the call site
5187 is. */
5188 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5189
5190 init_sal (&sr_sal); /* initialize to zeros */
5191
5192 gdbarch = frame_unwind_caller_arch (next_frame);
5193 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5194 frame_unwind_caller_pc (next_frame));
5195 sr_sal.section = find_pc_overlay (sr_sal.pc);
5196 sr_sal.pspace = frame_unwind_program_space (next_frame);
5197
5198 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5199 frame_unwind_caller_id (next_frame));
5200}
5201
5202/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5203 new breakpoint at the target of a jmp_buf. The handling of
5204 longjmp-resume uses the same mechanisms used for handling
5205 "step-resume" breakpoints. */
5206
5207static void
5208insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5209{
5210 /* There should never be more than one step-resume or longjmp-resume
5211 breakpoint per thread, so we should never be setting a new
5212 longjmp_resume_breakpoint when one is already active. */
5213 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5214
5215 if (debug_infrun)
5216 fprintf_unfiltered (gdb_stdlog,
5217 "infrun: inserting longjmp-resume breakpoint at %s\n",
5218 paddress (gdbarch, pc));
5219
5220 inferior_thread ()->control.step_resume_breakpoint =
5221 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5222}
5223
5224/* Insert an exception resume breakpoint. TP is the thread throwing
5225 the exception. The block B is the block of the unwinder debug hook
5226 function. FRAME is the frame corresponding to the call to this
5227 function. SYM is the symbol of the function argument holding the
5228 target PC of the exception. */
5229
5230static void
5231insert_exception_resume_breakpoint (struct thread_info *tp,
5232 struct block *b,
5233 struct frame_info *frame,
5234 struct symbol *sym)
5235{
5236 struct gdb_exception e;
5237
5238 /* We want to ignore errors here. */
5239 TRY_CATCH (e, RETURN_MASK_ERROR)
5240 {
5241 struct symbol *vsym;
5242 struct value *value;
5243 CORE_ADDR handler;
5244 struct breakpoint *bp;
5245
5246 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5247 value = read_var_value (vsym, frame);
5248 /* If the value was optimized out, revert to the old behavior. */
5249 if (! value_optimized_out (value))
5250 {
5251 handler = value_as_address (value);
5252
5253 if (debug_infrun)
5254 fprintf_unfiltered (gdb_stdlog,
5255 "infrun: exception resume at %lx\n",
5256 (unsigned long) handler);
5257
5258 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5259 handler, bp_exception_resume);
5260 bp->thread = tp->num;
5261 inferior_thread ()->control.exception_resume_breakpoint = bp;
5262 }
5263 }
5264}
5265
5266/* This is called when an exception has been intercepted. Check to
5267 see whether the exception's destination is of interest, and if so,
5268 set an exception resume breakpoint there. */
5269
5270static void
5271check_exception_resume (struct execution_control_state *ecs,
5272 struct frame_info *frame, struct symbol *func)
5273{
5274 struct gdb_exception e;
5275
5276 TRY_CATCH (e, RETURN_MASK_ERROR)
5277 {
5278 struct block *b;
5279 struct dict_iterator iter;
5280 struct symbol *sym;
5281 int argno = 0;
5282
5283 /* The exception breakpoint is a thread-specific breakpoint on
5284 the unwinder's debug hook, declared as:
5285
5286 void _Unwind_DebugHook (void *cfa, void *handler);
5287
5288 The CFA argument indicates the frame to which control is
5289 about to be transferred. HANDLER is the destination PC.
5290
5291 We ignore the CFA and set a temporary breakpoint at HANDLER.
5292 This is not extremely efficient but it avoids issues in gdb
5293 with computing the DWARF CFA, and it also works even in weird
5294 cases such as throwing an exception from inside a signal
5295 handler. */
5296
5297 b = SYMBOL_BLOCK_VALUE (func);
5298 ALL_BLOCK_SYMBOLS (b, iter, sym)
5299 {
5300 if (!SYMBOL_IS_ARGUMENT (sym))
5301 continue;
5302
5303 if (argno == 0)
5304 ++argno;
5305 else
5306 {
5307 insert_exception_resume_breakpoint (ecs->event_thread,
5308 b, frame, sym);
5309 break;
5310 }
5311 }
5312 }
5313}
5314
5315static void
5316stop_stepping (struct execution_control_state *ecs)
5317{
5318 if (debug_infrun)
5319 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5320
5321 /* Let callers know we don't want to wait for the inferior anymore. */
5322 ecs->wait_some_more = 0;
5323}
5324
5325/* This function handles various cases where we need to continue
5326 waiting for the inferior. */
5327/* (Used to be the keep_going: label in the old wait_for_inferior). */
5328
5329static void
5330keep_going (struct execution_control_state *ecs)
5331{
5332 /* Make sure normal_stop is called if we get a QUIT handled before
5333 reaching resume. */
5334 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5335
5336 /* Save the pc before execution, to compare with pc after stop. */
5337 ecs->event_thread->prev_pc
5338 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5339
5340 /* If we did not do break;, it means we should keep running the
5341 inferior and not return to debugger. */
5342
5343 if (ecs->event_thread->control.trap_expected
5344 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5345 {
5346 /* We took a signal (which we are supposed to pass through to
5347 the inferior, else we'd not get here) and we haven't yet
5348 gotten our trap. Simply continue. */
5349
5350 discard_cleanups (old_cleanups);
5351 resume (currently_stepping (ecs->event_thread),
5352 ecs->event_thread->suspend.stop_signal);
5353 }
5354 else
5355 {
5356 /* Either the trap was not expected, but we are continuing
5357 anyway (the user asked that this signal be passed to the
5358 child)
5359 -- or --
5360 The signal was SIGTRAP, e.g. it was our signal, but we
5361 decided we should resume from it.
5362
5363 We're going to run this baby now!
5364
5365 Note that insert_breakpoints won't try to re-insert
5366 already inserted breakpoints. Therefore, we don't
5367 care if breakpoints were already inserted, or not. */
5368
5369 if (ecs->event_thread->stepping_over_breakpoint)
5370 {
5371 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5372
5373 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5374 /* Since we can't do a displaced step, we have to remove
5375 the breakpoint while we step it. To keep things
5376 simple, we remove them all. */
5377 remove_breakpoints ();
5378 }
5379 else
5380 {
5381 struct gdb_exception e;
5382
5383 /* Stop stepping when inserting breakpoints
5384 has failed. */
5385 TRY_CATCH (e, RETURN_MASK_ERROR)
5386 {
5387 insert_breakpoints ();
5388 }
5389 if (e.reason < 0)
5390 {
5391 exception_print (gdb_stderr, e);
5392 stop_stepping (ecs);
5393 return;
5394 }
5395 }
5396
5397 ecs->event_thread->control.trap_expected
5398 = ecs->event_thread->stepping_over_breakpoint;
5399
5400 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5401 specifies that such a signal should be delivered to the
5402 target program).
5403
5404 Typically, this would occure when a user is debugging a
5405 target monitor on a simulator: the target monitor sets a
5406 breakpoint; the simulator encounters this break-point and
5407 halts the simulation handing control to GDB; GDB, noteing
5408 that the break-point isn't valid, returns control back to the
5409 simulator; the simulator then delivers the hardware
5410 equivalent of a SIGNAL_TRAP to the program being debugged. */
5411
5412 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5413 && !signal_program[ecs->event_thread->suspend.stop_signal])
5414 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5415
5416 discard_cleanups (old_cleanups);
5417 resume (currently_stepping (ecs->event_thread),
5418 ecs->event_thread->suspend.stop_signal);
5419 }
5420
5421 prepare_to_wait (ecs);
5422}
5423
5424/* This function normally comes after a resume, before
5425 handle_inferior_event exits. It takes care of any last bits of
5426 housekeeping, and sets the all-important wait_some_more flag. */
5427
5428static void
5429prepare_to_wait (struct execution_control_state *ecs)
5430{
5431 if (debug_infrun)
5432 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5433
5434 /* This is the old end of the while loop. Let everybody know we
5435 want to wait for the inferior some more and get called again
5436 soon. */
5437 ecs->wait_some_more = 1;
5438}
5439
5440/* Several print_*_reason functions to print why the inferior has stopped.
5441 We always print something when the inferior exits, or receives a signal.
5442 The rest of the cases are dealt with later on in normal_stop and
5443 print_it_typical. Ideally there should be a call to one of these
5444 print_*_reason functions functions from handle_inferior_event each time
5445 stop_stepping is called. */
5446
5447/* Print why the inferior has stopped.
5448 We are done with a step/next/si/ni command, print why the inferior has
5449 stopped. For now print nothing. Print a message only if not in the middle
5450 of doing a "step n" operation for n > 1. */
5451
5452static void
5453print_end_stepping_range_reason (void)
5454{
5455 if ((!inferior_thread ()->step_multi
5456 || !inferior_thread ()->control.stop_step)
5457 && ui_out_is_mi_like_p (uiout))
5458 ui_out_field_string (uiout, "reason",
5459 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5460}
5461
5462/* The inferior was terminated by a signal, print why it stopped. */
5463
5464static void
5465print_signal_exited_reason (enum target_signal siggnal)
5466{
5467 annotate_signalled ();
5468 if (ui_out_is_mi_like_p (uiout))
5469 ui_out_field_string
5470 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5471 ui_out_text (uiout, "\nProgram terminated with signal ");
5472 annotate_signal_name ();
5473 ui_out_field_string (uiout, "signal-name",
5474 target_signal_to_name (siggnal));
5475 annotate_signal_name_end ();
5476 ui_out_text (uiout, ", ");
5477 annotate_signal_string ();
5478 ui_out_field_string (uiout, "signal-meaning",
5479 target_signal_to_string (siggnal));
5480 annotate_signal_string_end ();
5481 ui_out_text (uiout, ".\n");
5482 ui_out_text (uiout, "The program no longer exists.\n");
5483}
5484
5485/* The inferior program is finished, print why it stopped. */
5486
5487static void
5488print_exited_reason (int exitstatus)
5489{
5490 struct inferior *inf = current_inferior ();
5491 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5492
5493 annotate_exited (exitstatus);
5494 if (exitstatus)
5495 {
5496 if (ui_out_is_mi_like_p (uiout))
5497 ui_out_field_string (uiout, "reason",
5498 async_reason_lookup (EXEC_ASYNC_EXITED));
5499 ui_out_text (uiout, "[Inferior ");
5500 ui_out_text (uiout, plongest (inf->num));
5501 ui_out_text (uiout, " (");
5502 ui_out_text (uiout, pidstr);
5503 ui_out_text (uiout, ") exited with code ");
5504 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5505 ui_out_text (uiout, "]\n");
5506 }
5507 else
5508 {
5509 if (ui_out_is_mi_like_p (uiout))
5510 ui_out_field_string
5511 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5512 ui_out_text (uiout, "[Inferior ");
5513 ui_out_text (uiout, plongest (inf->num));
5514 ui_out_text (uiout, " (");
5515 ui_out_text (uiout, pidstr);
5516 ui_out_text (uiout, ") exited normally]\n");
5517 }
5518 /* Support the --return-child-result option. */
5519 return_child_result_value = exitstatus;
5520}
5521
5522/* Signal received, print why the inferior has stopped. The signal table
5523 tells us to print about it. */
5524
5525static void
5526print_signal_received_reason (enum target_signal siggnal)
5527{
5528 annotate_signal ();
5529
5530 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5531 {
5532 struct thread_info *t = inferior_thread ();
5533
5534 ui_out_text (uiout, "\n[");
5535 ui_out_field_string (uiout, "thread-name",
5536 target_pid_to_str (t->ptid));
5537 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5538 ui_out_text (uiout, " stopped");
5539 }
5540 else
5541 {
5542 ui_out_text (uiout, "\nProgram received signal ");
5543 annotate_signal_name ();
5544 if (ui_out_is_mi_like_p (uiout))
5545 ui_out_field_string
5546 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5547 ui_out_field_string (uiout, "signal-name",
5548 target_signal_to_name (siggnal));
5549 annotate_signal_name_end ();
5550 ui_out_text (uiout, ", ");
5551 annotate_signal_string ();
5552 ui_out_field_string (uiout, "signal-meaning",
5553 target_signal_to_string (siggnal));
5554 annotate_signal_string_end ();
5555 }
5556 ui_out_text (uiout, ".\n");
5557}
5558
5559/* Reverse execution: target ran out of history info, print why the inferior
5560 has stopped. */
5561
5562static void
5563print_no_history_reason (void)
5564{
5565 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5566}
5567
5568/* Here to return control to GDB when the inferior stops for real.
5569 Print appropriate messages, remove breakpoints, give terminal our modes.
5570
5571 STOP_PRINT_FRAME nonzero means print the executing frame
5572 (pc, function, args, file, line number and line text).
5573 BREAKPOINTS_FAILED nonzero means stop was due to error
5574 attempting to insert breakpoints. */
5575
5576void
5577normal_stop (void)
5578{
5579 struct target_waitstatus last;
5580 ptid_t last_ptid;
5581 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5582
5583 get_last_target_status (&last_ptid, &last);
5584
5585 /* If an exception is thrown from this point on, make sure to
5586 propagate GDB's knowledge of the executing state to the
5587 frontend/user running state. A QUIT is an easy exception to see
5588 here, so do this before any filtered output. */
5589 if (!non_stop)
5590 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5591 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5592 && last.kind != TARGET_WAITKIND_EXITED)
5593 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5594
5595 /* In non-stop mode, we don't want GDB to switch threads behind the
5596 user's back, to avoid races where the user is typing a command to
5597 apply to thread x, but GDB switches to thread y before the user
5598 finishes entering the command. */
5599
5600 /* As with the notification of thread events, we want to delay
5601 notifying the user that we've switched thread context until
5602 the inferior actually stops.
5603
5604 There's no point in saying anything if the inferior has exited.
5605 Note that SIGNALLED here means "exited with a signal", not
5606 "received a signal". */
5607 if (!non_stop
5608 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5609 && target_has_execution
5610 && last.kind != TARGET_WAITKIND_SIGNALLED
5611 && last.kind != TARGET_WAITKIND_EXITED)
5612 {
5613 target_terminal_ours_for_output ();
5614 printf_filtered (_("[Switching to %s]\n"),
5615 target_pid_to_str (inferior_ptid));
5616 annotate_thread_changed ();
5617 previous_inferior_ptid = inferior_ptid;
5618 }
5619
5620 if (!breakpoints_always_inserted_mode () && target_has_execution)
5621 {
5622 if (remove_breakpoints ())
5623 {
5624 target_terminal_ours_for_output ();
5625 printf_filtered (_("Cannot remove breakpoints because "
5626 "program is no longer writable.\nFurther "
5627 "execution is probably impossible.\n"));
5628 }
5629 }
5630
5631 /* If an auto-display called a function and that got a signal,
5632 delete that auto-display to avoid an infinite recursion. */
5633
5634 if (stopped_by_random_signal)
5635 disable_current_display ();
5636
5637 /* Don't print a message if in the middle of doing a "step n"
5638 operation for n > 1 */
5639 if (target_has_execution
5640 && last.kind != TARGET_WAITKIND_SIGNALLED
5641 && last.kind != TARGET_WAITKIND_EXITED
5642 && inferior_thread ()->step_multi
5643 && inferior_thread ()->control.stop_step)
5644 goto done;
5645
5646 target_terminal_ours ();
5647
5648 /* Set the current source location. This will also happen if we
5649 display the frame below, but the current SAL will be incorrect
5650 during a user hook-stop function. */
5651 if (has_stack_frames () && !stop_stack_dummy)
5652 set_current_sal_from_frame (get_current_frame (), 1);
5653
5654 /* Let the user/frontend see the threads as stopped. */
5655 do_cleanups (old_chain);
5656
5657 /* Look up the hook_stop and run it (CLI internally handles problem
5658 of stop_command's pre-hook not existing). */
5659 if (stop_command)
5660 catch_errors (hook_stop_stub, stop_command,
5661 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5662
5663 if (!has_stack_frames ())
5664 goto done;
5665
5666 if (last.kind == TARGET_WAITKIND_SIGNALLED
5667 || last.kind == TARGET_WAITKIND_EXITED)
5668 goto done;
5669
5670 /* Select innermost stack frame - i.e., current frame is frame 0,
5671 and current location is based on that.
5672 Don't do this on return from a stack dummy routine,
5673 or if the program has exited. */
5674
5675 if (!stop_stack_dummy)
5676 {
5677 select_frame (get_current_frame ());
5678
5679 /* Print current location without a level number, if
5680 we have changed functions or hit a breakpoint.
5681 Print source line if we have one.
5682 bpstat_print() contains the logic deciding in detail
5683 what to print, based on the event(s) that just occurred. */
5684
5685 /* If --batch-silent is enabled then there's no need to print the current
5686 source location, and to try risks causing an error message about
5687 missing source files. */
5688 if (stop_print_frame && !batch_silent)
5689 {
5690 int bpstat_ret;
5691 int source_flag;
5692 int do_frame_printing = 1;
5693 struct thread_info *tp = inferior_thread ();
5694
5695 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5696 switch (bpstat_ret)
5697 {
5698 case PRINT_UNKNOWN:
5699 /* If we had hit a shared library event breakpoint,
5700 bpstat_print would print out this message. If we hit
5701 an OS-level shared library event, do the same
5702 thing. */
5703 if (last.kind == TARGET_WAITKIND_LOADED)
5704 {
5705 printf_filtered (_("Stopped due to shared library event\n"));
5706 source_flag = SRC_LINE; /* something bogus */
5707 do_frame_printing = 0;
5708 break;
5709 }
5710
5711 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5712 (or should) carry around the function and does (or
5713 should) use that when doing a frame comparison. */
5714 if (tp->control.stop_step
5715 && frame_id_eq (tp->control.step_frame_id,
5716 get_frame_id (get_current_frame ()))
5717 && step_start_function == find_pc_function (stop_pc))
5718 source_flag = SRC_LINE; /* Finished step, just
5719 print source line. */
5720 else
5721 source_flag = SRC_AND_LOC; /* Print location and
5722 source line. */
5723 break;
5724 case PRINT_SRC_AND_LOC:
5725 source_flag = SRC_AND_LOC; /* Print location and
5726 source line. */
5727 break;
5728 case PRINT_SRC_ONLY:
5729 source_flag = SRC_LINE;
5730 break;
5731 case PRINT_NOTHING:
5732 source_flag = SRC_LINE; /* something bogus */
5733 do_frame_printing = 0;
5734 break;
5735 default:
5736 internal_error (__FILE__, __LINE__, _("Unknown value."));
5737 }
5738
5739 /* The behavior of this routine with respect to the source
5740 flag is:
5741 SRC_LINE: Print only source line
5742 LOCATION: Print only location
5743 SRC_AND_LOC: Print location and source line. */
5744 if (do_frame_printing)
5745 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5746
5747 /* Display the auto-display expressions. */
5748 do_displays ();
5749 }
5750 }
5751
5752 /* Save the function value return registers, if we care.
5753 We might be about to restore their previous contents. */
5754 if (inferior_thread ()->control.proceed_to_finish)
5755 {
5756 /* This should not be necessary. */
5757 if (stop_registers)
5758 regcache_xfree (stop_registers);
5759
5760 /* NB: The copy goes through to the target picking up the value of
5761 all the registers. */
5762 stop_registers = regcache_dup (get_current_regcache ());
5763 }
5764
5765 if (stop_stack_dummy == STOP_STACK_DUMMY)
5766 {
5767 /* Pop the empty frame that contains the stack dummy.
5768 This also restores inferior state prior to the call
5769 (struct infcall_suspend_state). */
5770 struct frame_info *frame = get_current_frame ();
5771
5772 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5773 frame_pop (frame);
5774 /* frame_pop() calls reinit_frame_cache as the last thing it
5775 does which means there's currently no selected frame. We
5776 don't need to re-establish a selected frame if the dummy call
5777 returns normally, that will be done by
5778 restore_infcall_control_state. However, we do have to handle
5779 the case where the dummy call is returning after being
5780 stopped (e.g. the dummy call previously hit a breakpoint).
5781 We can't know which case we have so just always re-establish
5782 a selected frame here. */
5783 select_frame (get_current_frame ());
5784 }
5785
5786done:
5787 annotate_stopped ();
5788
5789 /* Suppress the stop observer if we're in the middle of:
5790
5791 - a step n (n > 1), as there still more steps to be done.
5792
5793 - a "finish" command, as the observer will be called in
5794 finish_command_continuation, so it can include the inferior
5795 function's return value.
5796
5797 - calling an inferior function, as we pretend we inferior didn't
5798 run at all. The return value of the call is handled by the
5799 expression evaluator, through call_function_by_hand. */
5800
5801 if (!target_has_execution
5802 || last.kind == TARGET_WAITKIND_SIGNALLED
5803 || last.kind == TARGET_WAITKIND_EXITED
5804 || (!inferior_thread ()->step_multi
5805 && !(inferior_thread ()->control.stop_bpstat
5806 && inferior_thread ()->control.proceed_to_finish)
5807 && !inferior_thread ()->control.in_infcall))
5808 {
5809 if (!ptid_equal (inferior_ptid, null_ptid))
5810 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5811 stop_print_frame);
5812 else
5813 observer_notify_normal_stop (NULL, stop_print_frame);
5814 }
5815
5816 if (target_has_execution)
5817 {
5818 if (last.kind != TARGET_WAITKIND_SIGNALLED
5819 && last.kind != TARGET_WAITKIND_EXITED)
5820 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5821 Delete any breakpoint that is to be deleted at the next stop. */
5822 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
5823 }
5824
5825 /* Try to get rid of automatically added inferiors that are no
5826 longer needed. Keeping those around slows down things linearly.
5827 Note that this never removes the current inferior. */
5828 prune_inferiors ();
5829}
5830
5831static int
5832hook_stop_stub (void *cmd)
5833{
5834 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
5835 return (0);
5836}
5837\f
5838int
5839signal_stop_state (int signo)
5840{
5841 return signal_stop[signo];
5842}
5843
5844int
5845signal_print_state (int signo)
5846{
5847 return signal_print[signo];
5848}
5849
5850int
5851signal_pass_state (int signo)
5852{
5853 return signal_program[signo];
5854}
5855
5856int
5857signal_stop_update (int signo, int state)
5858{
5859 int ret = signal_stop[signo];
5860
5861 signal_stop[signo] = state;
5862 return ret;
5863}
5864
5865int
5866signal_print_update (int signo, int state)
5867{
5868 int ret = signal_print[signo];
5869
5870 signal_print[signo] = state;
5871 return ret;
5872}
5873
5874int
5875signal_pass_update (int signo, int state)
5876{
5877 int ret = signal_program[signo];
5878
5879 signal_program[signo] = state;
5880 return ret;
5881}
5882
5883static void
5884sig_print_header (void)
5885{
5886 printf_filtered (_("Signal Stop\tPrint\tPass "
5887 "to program\tDescription\n"));
5888}
5889
5890static void
5891sig_print_info (enum target_signal oursig)
5892{
5893 const char *name = target_signal_to_name (oursig);
5894 int name_padding = 13 - strlen (name);
5895
5896 if (name_padding <= 0)
5897 name_padding = 0;
5898
5899 printf_filtered ("%s", name);
5900 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
5901 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5902 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5903 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5904 printf_filtered ("%s\n", target_signal_to_string (oursig));
5905}
5906
5907/* Specify how various signals in the inferior should be handled. */
5908
5909static void
5910handle_command (char *args, int from_tty)
5911{
5912 char **argv;
5913 int digits, wordlen;
5914 int sigfirst, signum, siglast;
5915 enum target_signal oursig;
5916 int allsigs;
5917 int nsigs;
5918 unsigned char *sigs;
5919 struct cleanup *old_chain;
5920
5921 if (args == NULL)
5922 {
5923 error_no_arg (_("signal to handle"));
5924 }
5925
5926 /* Allocate and zero an array of flags for which signals to handle. */
5927
5928 nsigs = (int) TARGET_SIGNAL_LAST;
5929 sigs = (unsigned char *) alloca (nsigs);
5930 memset (sigs, 0, nsigs);
5931
5932 /* Break the command line up into args. */
5933
5934 argv = gdb_buildargv (args);
5935 old_chain = make_cleanup_freeargv (argv);
5936
5937 /* Walk through the args, looking for signal oursigs, signal names, and
5938 actions. Signal numbers and signal names may be interspersed with
5939 actions, with the actions being performed for all signals cumulatively
5940 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5941
5942 while (*argv != NULL)
5943 {
5944 wordlen = strlen (*argv);
5945 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5946 {;
5947 }
5948 allsigs = 0;
5949 sigfirst = siglast = -1;
5950
5951 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5952 {
5953 /* Apply action to all signals except those used by the
5954 debugger. Silently skip those. */
5955 allsigs = 1;
5956 sigfirst = 0;
5957 siglast = nsigs - 1;
5958 }
5959 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5960 {
5961 SET_SIGS (nsigs, sigs, signal_stop);
5962 SET_SIGS (nsigs, sigs, signal_print);
5963 }
5964 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5965 {
5966 UNSET_SIGS (nsigs, sigs, signal_program);
5967 }
5968 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5969 {
5970 SET_SIGS (nsigs, sigs, signal_print);
5971 }
5972 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5973 {
5974 SET_SIGS (nsigs, sigs, signal_program);
5975 }
5976 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5977 {
5978 UNSET_SIGS (nsigs, sigs, signal_stop);
5979 }
5980 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5981 {
5982 SET_SIGS (nsigs, sigs, signal_program);
5983 }
5984 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5985 {
5986 UNSET_SIGS (nsigs, sigs, signal_print);
5987 UNSET_SIGS (nsigs, sigs, signal_stop);
5988 }
5989 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5990 {
5991 UNSET_SIGS (nsigs, sigs, signal_program);
5992 }
5993 else if (digits > 0)
5994 {
5995 /* It is numeric. The numeric signal refers to our own
5996 internal signal numbering from target.h, not to host/target
5997 signal number. This is a feature; users really should be
5998 using symbolic names anyway, and the common ones like
5999 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6000
6001 sigfirst = siglast = (int)
6002 target_signal_from_command (atoi (*argv));
6003 if ((*argv)[digits] == '-')
6004 {
6005 siglast = (int)
6006 target_signal_from_command (atoi ((*argv) + digits + 1));
6007 }
6008 if (sigfirst > siglast)
6009 {
6010 /* Bet he didn't figure we'd think of this case... */
6011 signum = sigfirst;
6012 sigfirst = siglast;
6013 siglast = signum;
6014 }
6015 }
6016 else
6017 {
6018 oursig = target_signal_from_name (*argv);
6019 if (oursig != TARGET_SIGNAL_UNKNOWN)
6020 {
6021 sigfirst = siglast = (int) oursig;
6022 }
6023 else
6024 {
6025 /* Not a number and not a recognized flag word => complain. */
6026 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6027 }
6028 }
6029
6030 /* If any signal numbers or symbol names were found, set flags for
6031 which signals to apply actions to. */
6032
6033 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6034 {
6035 switch ((enum target_signal) signum)
6036 {
6037 case TARGET_SIGNAL_TRAP:
6038 case TARGET_SIGNAL_INT:
6039 if (!allsigs && !sigs[signum])
6040 {
6041 if (query (_("%s is used by the debugger.\n\
6042Are you sure you want to change it? "),
6043 target_signal_to_name ((enum target_signal) signum)))
6044 {
6045 sigs[signum] = 1;
6046 }
6047 else
6048 {
6049 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6050 gdb_flush (gdb_stdout);
6051 }
6052 }
6053 break;
6054 case TARGET_SIGNAL_0:
6055 case TARGET_SIGNAL_DEFAULT:
6056 case TARGET_SIGNAL_UNKNOWN:
6057 /* Make sure that "all" doesn't print these. */
6058 break;
6059 default:
6060 sigs[signum] = 1;
6061 break;
6062 }
6063 }
6064
6065 argv++;
6066 }
6067
6068 for (signum = 0; signum < nsigs; signum++)
6069 if (sigs[signum])
6070 {
6071 target_notice_signals (inferior_ptid);
6072
6073 if (from_tty)
6074 {
6075 /* Show the results. */
6076 sig_print_header ();
6077 for (; signum < nsigs; signum++)
6078 if (sigs[signum])
6079 sig_print_info (signum);
6080 }
6081
6082 break;
6083 }
6084
6085 do_cleanups (old_chain);
6086}
6087
6088static void
6089xdb_handle_command (char *args, int from_tty)
6090{
6091 char **argv;
6092 struct cleanup *old_chain;
6093
6094 if (args == NULL)
6095 error_no_arg (_("xdb command"));
6096
6097 /* Break the command line up into args. */
6098
6099 argv = gdb_buildargv (args);
6100 old_chain = make_cleanup_freeargv (argv);
6101 if (argv[1] != (char *) NULL)
6102 {
6103 char *argBuf;
6104 int bufLen;
6105
6106 bufLen = strlen (argv[0]) + 20;
6107 argBuf = (char *) xmalloc (bufLen);
6108 if (argBuf)
6109 {
6110 int validFlag = 1;
6111 enum target_signal oursig;
6112
6113 oursig = target_signal_from_name (argv[0]);
6114 memset (argBuf, 0, bufLen);
6115 if (strcmp (argv[1], "Q") == 0)
6116 sprintf (argBuf, "%s %s", argv[0], "noprint");
6117 else
6118 {
6119 if (strcmp (argv[1], "s") == 0)
6120 {
6121 if (!signal_stop[oursig])
6122 sprintf (argBuf, "%s %s", argv[0], "stop");
6123 else
6124 sprintf (argBuf, "%s %s", argv[0], "nostop");
6125 }
6126 else if (strcmp (argv[1], "i") == 0)
6127 {
6128 if (!signal_program[oursig])
6129 sprintf (argBuf, "%s %s", argv[0], "pass");
6130 else
6131 sprintf (argBuf, "%s %s", argv[0], "nopass");
6132 }
6133 else if (strcmp (argv[1], "r") == 0)
6134 {
6135 if (!signal_print[oursig])
6136 sprintf (argBuf, "%s %s", argv[0], "print");
6137 else
6138 sprintf (argBuf, "%s %s", argv[0], "noprint");
6139 }
6140 else
6141 validFlag = 0;
6142 }
6143 if (validFlag)
6144 handle_command (argBuf, from_tty);
6145 else
6146 printf_filtered (_("Invalid signal handling flag.\n"));
6147 if (argBuf)
6148 xfree (argBuf);
6149 }
6150 }
6151 do_cleanups (old_chain);
6152}
6153
6154/* Print current contents of the tables set by the handle command.
6155 It is possible we should just be printing signals actually used
6156 by the current target (but for things to work right when switching
6157 targets, all signals should be in the signal tables). */
6158
6159static void
6160signals_info (char *signum_exp, int from_tty)
6161{
6162 enum target_signal oursig;
6163
6164 sig_print_header ();
6165
6166 if (signum_exp)
6167 {
6168 /* First see if this is a symbol name. */
6169 oursig = target_signal_from_name (signum_exp);
6170 if (oursig == TARGET_SIGNAL_UNKNOWN)
6171 {
6172 /* No, try numeric. */
6173 oursig =
6174 target_signal_from_command (parse_and_eval_long (signum_exp));
6175 }
6176 sig_print_info (oursig);
6177 return;
6178 }
6179
6180 printf_filtered ("\n");
6181 /* These ugly casts brought to you by the native VAX compiler. */
6182 for (oursig = TARGET_SIGNAL_FIRST;
6183 (int) oursig < (int) TARGET_SIGNAL_LAST;
6184 oursig = (enum target_signal) ((int) oursig + 1))
6185 {
6186 QUIT;
6187
6188 if (oursig != TARGET_SIGNAL_UNKNOWN
6189 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6190 sig_print_info (oursig);
6191 }
6192
6193 printf_filtered (_("\nUse the \"handle\" command "
6194 "to change these tables.\n"));
6195}
6196
6197/* The $_siginfo convenience variable is a bit special. We don't know
6198 for sure the type of the value until we actually have a chance to
6199 fetch the data. The type can change depending on gdbarch, so it is
6200 also dependent on which thread you have selected.
6201
6202 1. making $_siginfo be an internalvar that creates a new value on
6203 access.
6204
6205 2. making the value of $_siginfo be an lval_computed value. */
6206
6207/* This function implements the lval_computed support for reading a
6208 $_siginfo value. */
6209
6210static void
6211siginfo_value_read (struct value *v)
6212{
6213 LONGEST transferred;
6214
6215 transferred =
6216 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6217 NULL,
6218 value_contents_all_raw (v),
6219 value_offset (v),
6220 TYPE_LENGTH (value_type (v)));
6221
6222 if (transferred != TYPE_LENGTH (value_type (v)))
6223 error (_("Unable to read siginfo"));
6224}
6225
6226/* This function implements the lval_computed support for writing a
6227 $_siginfo value. */
6228
6229static void
6230siginfo_value_write (struct value *v, struct value *fromval)
6231{
6232 LONGEST transferred;
6233
6234 transferred = target_write (&current_target,
6235 TARGET_OBJECT_SIGNAL_INFO,
6236 NULL,
6237 value_contents_all_raw (fromval),
6238 value_offset (v),
6239 TYPE_LENGTH (value_type (fromval)));
6240
6241 if (transferred != TYPE_LENGTH (value_type (fromval)))
6242 error (_("Unable to write siginfo"));
6243}
6244
6245static struct lval_funcs siginfo_value_funcs =
6246 {
6247 siginfo_value_read,
6248 siginfo_value_write
6249 };
6250
6251/* Return a new value with the correct type for the siginfo object of
6252 the current thread using architecture GDBARCH. Return a void value
6253 if there's no object available. */
6254
6255static struct value *
6256siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6257{
6258 if (target_has_stack
6259 && !ptid_equal (inferior_ptid, null_ptid)
6260 && gdbarch_get_siginfo_type_p (gdbarch))
6261 {
6262 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6263
6264 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6265 }
6266
6267 return allocate_value (builtin_type (gdbarch)->builtin_void);
6268}
6269
6270\f
6271/* infcall_suspend_state contains state about the program itself like its
6272 registers and any signal it received when it last stopped.
6273 This state must be restored regardless of how the inferior function call
6274 ends (either successfully, or after it hits a breakpoint or signal)
6275 if the program is to properly continue where it left off. */
6276
6277struct infcall_suspend_state
6278{
6279 struct thread_suspend_state thread_suspend;
6280 struct inferior_suspend_state inferior_suspend;
6281
6282 /* Other fields: */
6283 CORE_ADDR stop_pc;
6284 struct regcache *registers;
6285
6286 /* Format of SIGINFO_DATA or NULL if it is not present. */
6287 struct gdbarch *siginfo_gdbarch;
6288
6289 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6290 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6291 content would be invalid. */
6292 gdb_byte *siginfo_data;
6293};
6294
6295struct infcall_suspend_state *
6296save_infcall_suspend_state (void)
6297{
6298 struct infcall_suspend_state *inf_state;
6299 struct thread_info *tp = inferior_thread ();
6300 struct inferior *inf = current_inferior ();
6301 struct regcache *regcache = get_current_regcache ();
6302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6303 gdb_byte *siginfo_data = NULL;
6304
6305 if (gdbarch_get_siginfo_type_p (gdbarch))
6306 {
6307 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6308 size_t len = TYPE_LENGTH (type);
6309 struct cleanup *back_to;
6310
6311 siginfo_data = xmalloc (len);
6312 back_to = make_cleanup (xfree, siginfo_data);
6313
6314 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6315 siginfo_data, 0, len) == len)
6316 discard_cleanups (back_to);
6317 else
6318 {
6319 /* Errors ignored. */
6320 do_cleanups (back_to);
6321 siginfo_data = NULL;
6322 }
6323 }
6324
6325 inf_state = XZALLOC (struct infcall_suspend_state);
6326
6327 if (siginfo_data)
6328 {
6329 inf_state->siginfo_gdbarch = gdbarch;
6330 inf_state->siginfo_data = siginfo_data;
6331 }
6332
6333 inf_state->thread_suspend = tp->suspend;
6334 inf_state->inferior_suspend = inf->suspend;
6335
6336 /* run_inferior_call will not use the signal due to its `proceed' call with
6337 TARGET_SIGNAL_0 anyway. */
6338 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6339
6340 inf_state->stop_pc = stop_pc;
6341
6342 inf_state->registers = regcache_dup (regcache);
6343
6344 return inf_state;
6345}
6346
6347/* Restore inferior session state to INF_STATE. */
6348
6349void
6350restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6351{
6352 struct thread_info *tp = inferior_thread ();
6353 struct inferior *inf = current_inferior ();
6354 struct regcache *regcache = get_current_regcache ();
6355 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6356
6357 tp->suspend = inf_state->thread_suspend;
6358 inf->suspend = inf_state->inferior_suspend;
6359
6360 stop_pc = inf_state->stop_pc;
6361
6362 if (inf_state->siginfo_gdbarch == gdbarch)
6363 {
6364 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6365 size_t len = TYPE_LENGTH (type);
6366
6367 /* Errors ignored. */
6368 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6369 inf_state->siginfo_data, 0, len);
6370 }
6371
6372 /* The inferior can be gone if the user types "print exit(0)"
6373 (and perhaps other times). */
6374 if (target_has_execution)
6375 /* NB: The register write goes through to the target. */
6376 regcache_cpy (regcache, inf_state->registers);
6377
6378 discard_infcall_suspend_state (inf_state);
6379}
6380
6381static void
6382do_restore_infcall_suspend_state_cleanup (void *state)
6383{
6384 restore_infcall_suspend_state (state);
6385}
6386
6387struct cleanup *
6388make_cleanup_restore_infcall_suspend_state
6389 (struct infcall_suspend_state *inf_state)
6390{
6391 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6392}
6393
6394void
6395discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6396{
6397 regcache_xfree (inf_state->registers);
6398 xfree (inf_state->siginfo_data);
6399 xfree (inf_state);
6400}
6401
6402struct regcache *
6403get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6404{
6405 return inf_state->registers;
6406}
6407
6408/* infcall_control_state contains state regarding gdb's control of the
6409 inferior itself like stepping control. It also contains session state like
6410 the user's currently selected frame. */
6411
6412struct infcall_control_state
6413{
6414 struct thread_control_state thread_control;
6415 struct inferior_control_state inferior_control;
6416
6417 /* Other fields: */
6418 enum stop_stack_kind stop_stack_dummy;
6419 int stopped_by_random_signal;
6420 int stop_after_trap;
6421
6422 /* ID if the selected frame when the inferior function call was made. */
6423 struct frame_id selected_frame_id;
6424};
6425
6426/* Save all of the information associated with the inferior<==>gdb
6427 connection. */
6428
6429struct infcall_control_state *
6430save_infcall_control_state (void)
6431{
6432 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6433 struct thread_info *tp = inferior_thread ();
6434 struct inferior *inf = current_inferior ();
6435
6436 inf_status->thread_control = tp->control;
6437 inf_status->inferior_control = inf->control;
6438
6439 tp->control.step_resume_breakpoint = NULL;
6440 tp->control.exception_resume_breakpoint = NULL;
6441
6442 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6443 chain. If caller's caller is walking the chain, they'll be happier if we
6444 hand them back the original chain when restore_infcall_control_state is
6445 called. */
6446 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6447
6448 /* Other fields: */
6449 inf_status->stop_stack_dummy = stop_stack_dummy;
6450 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6451 inf_status->stop_after_trap = stop_after_trap;
6452
6453 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6454
6455 return inf_status;
6456}
6457
6458static int
6459restore_selected_frame (void *args)
6460{
6461 struct frame_id *fid = (struct frame_id *) args;
6462 struct frame_info *frame;
6463
6464 frame = frame_find_by_id (*fid);
6465
6466 /* If inf_status->selected_frame_id is NULL, there was no previously
6467 selected frame. */
6468 if (frame == NULL)
6469 {
6470 warning (_("Unable to restore previously selected frame."));
6471 return 0;
6472 }
6473
6474 select_frame (frame);
6475
6476 return (1);
6477}
6478
6479/* Restore inferior session state to INF_STATUS. */
6480
6481void
6482restore_infcall_control_state (struct infcall_control_state *inf_status)
6483{
6484 struct thread_info *tp = inferior_thread ();
6485 struct inferior *inf = current_inferior ();
6486
6487 if (tp->control.step_resume_breakpoint)
6488 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6489
6490 if (tp->control.exception_resume_breakpoint)
6491 tp->control.exception_resume_breakpoint->disposition
6492 = disp_del_at_next_stop;
6493
6494 /* Handle the bpstat_copy of the chain. */
6495 bpstat_clear (&tp->control.stop_bpstat);
6496
6497 tp->control = inf_status->thread_control;
6498 inf->control = inf_status->inferior_control;
6499
6500 /* Other fields: */
6501 stop_stack_dummy = inf_status->stop_stack_dummy;
6502 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6503 stop_after_trap = inf_status->stop_after_trap;
6504
6505 if (target_has_stack)
6506 {
6507 /* The point of catch_errors is that if the stack is clobbered,
6508 walking the stack might encounter a garbage pointer and
6509 error() trying to dereference it. */
6510 if (catch_errors
6511 (restore_selected_frame, &inf_status->selected_frame_id,
6512 "Unable to restore previously selected frame:\n",
6513 RETURN_MASK_ERROR) == 0)
6514 /* Error in restoring the selected frame. Select the innermost
6515 frame. */
6516 select_frame (get_current_frame ());
6517 }
6518
6519 xfree (inf_status);
6520}
6521
6522static void
6523do_restore_infcall_control_state_cleanup (void *sts)
6524{
6525 restore_infcall_control_state (sts);
6526}
6527
6528struct cleanup *
6529make_cleanup_restore_infcall_control_state
6530 (struct infcall_control_state *inf_status)
6531{
6532 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6533}
6534
6535void
6536discard_infcall_control_state (struct infcall_control_state *inf_status)
6537{
6538 if (inf_status->thread_control.step_resume_breakpoint)
6539 inf_status->thread_control.step_resume_breakpoint->disposition
6540 = disp_del_at_next_stop;
6541
6542 if (inf_status->thread_control.exception_resume_breakpoint)
6543 inf_status->thread_control.exception_resume_breakpoint->disposition
6544 = disp_del_at_next_stop;
6545
6546 /* See save_infcall_control_state for info on stop_bpstat. */
6547 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6548
6549 xfree (inf_status);
6550}
6551\f
6552int
6553inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6554{
6555 struct target_waitstatus last;
6556 ptid_t last_ptid;
6557
6558 get_last_target_status (&last_ptid, &last);
6559
6560 if (last.kind != TARGET_WAITKIND_FORKED)
6561 return 0;
6562
6563 if (!ptid_equal (last_ptid, pid))
6564 return 0;
6565
6566 *child_pid = last.value.related_pid;
6567 return 1;
6568}
6569
6570int
6571inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6572{
6573 struct target_waitstatus last;
6574 ptid_t last_ptid;
6575
6576 get_last_target_status (&last_ptid, &last);
6577
6578 if (last.kind != TARGET_WAITKIND_VFORKED)
6579 return 0;
6580
6581 if (!ptid_equal (last_ptid, pid))
6582 return 0;
6583
6584 *child_pid = last.value.related_pid;
6585 return 1;
6586}
6587
6588int
6589inferior_has_execd (ptid_t pid, char **execd_pathname)
6590{
6591 struct target_waitstatus last;
6592 ptid_t last_ptid;
6593
6594 get_last_target_status (&last_ptid, &last);
6595
6596 if (last.kind != TARGET_WAITKIND_EXECD)
6597 return 0;
6598
6599 if (!ptid_equal (last_ptid, pid))
6600 return 0;
6601
6602 *execd_pathname = xstrdup (last.value.execd_pathname);
6603 return 1;
6604}
6605
6606int
6607inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6608{
6609 struct target_waitstatus last;
6610 ptid_t last_ptid;
6611
6612 get_last_target_status (&last_ptid, &last);
6613
6614 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6615 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6616 return 0;
6617
6618 if (!ptid_equal (last_ptid, pid))
6619 return 0;
6620
6621 *syscall_number = last.value.syscall_number;
6622 return 1;
6623}
6624
6625/* Oft used ptids */
6626ptid_t null_ptid;
6627ptid_t minus_one_ptid;
6628
6629/* Create a ptid given the necessary PID, LWP, and TID components. */
6630
6631ptid_t
6632ptid_build (int pid, long lwp, long tid)
6633{
6634 ptid_t ptid;
6635
6636 ptid.pid = pid;
6637 ptid.lwp = lwp;
6638 ptid.tid = tid;
6639 return ptid;
6640}
6641
6642/* Create a ptid from just a pid. */
6643
6644ptid_t
6645pid_to_ptid (int pid)
6646{
6647 return ptid_build (pid, 0, 0);
6648}
6649
6650/* Fetch the pid (process id) component from a ptid. */
6651
6652int
6653ptid_get_pid (ptid_t ptid)
6654{
6655 return ptid.pid;
6656}
6657
6658/* Fetch the lwp (lightweight process) component from a ptid. */
6659
6660long
6661ptid_get_lwp (ptid_t ptid)
6662{
6663 return ptid.lwp;
6664}
6665
6666/* Fetch the tid (thread id) component from a ptid. */
6667
6668long
6669ptid_get_tid (ptid_t ptid)
6670{
6671 return ptid.tid;
6672}
6673
6674/* ptid_equal() is used to test equality of two ptids. */
6675
6676int
6677ptid_equal (ptid_t ptid1, ptid_t ptid2)
6678{
6679 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
6680 && ptid1.tid == ptid2.tid);
6681}
6682
6683/* Returns true if PTID represents a process. */
6684
6685int
6686ptid_is_pid (ptid_t ptid)
6687{
6688 if (ptid_equal (minus_one_ptid, ptid))
6689 return 0;
6690 if (ptid_equal (null_ptid, ptid))
6691 return 0;
6692
6693 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6694}
6695
6696int
6697ptid_match (ptid_t ptid, ptid_t filter)
6698{
6699 if (ptid_equal (filter, minus_one_ptid))
6700 return 1;
6701 if (ptid_is_pid (filter)
6702 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6703 return 1;
6704 else if (ptid_equal (ptid, filter))
6705 return 1;
6706
6707 return 0;
6708}
6709
6710/* restore_inferior_ptid() will be used by the cleanup machinery
6711 to restore the inferior_ptid value saved in a call to
6712 save_inferior_ptid(). */
6713
6714static void
6715restore_inferior_ptid (void *arg)
6716{
6717 ptid_t *saved_ptid_ptr = arg;
6718
6719 inferior_ptid = *saved_ptid_ptr;
6720 xfree (arg);
6721}
6722
6723/* Save the value of inferior_ptid so that it may be restored by a
6724 later call to do_cleanups(). Returns the struct cleanup pointer
6725 needed for later doing the cleanup. */
6726
6727struct cleanup *
6728save_inferior_ptid (void)
6729{
6730 ptid_t *saved_ptid_ptr;
6731
6732 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6733 *saved_ptid_ptr = inferior_ptid;
6734 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6735}
6736\f
6737
6738/* User interface for reverse debugging:
6739 Set exec-direction / show exec-direction commands
6740 (returns error unless target implements to_set_exec_direction method). */
6741
6742enum exec_direction_kind execution_direction = EXEC_FORWARD;
6743static const char exec_forward[] = "forward";
6744static const char exec_reverse[] = "reverse";
6745static const char *exec_direction = exec_forward;
6746static const char *exec_direction_names[] = {
6747 exec_forward,
6748 exec_reverse,
6749 NULL
6750};
6751
6752static void
6753set_exec_direction_func (char *args, int from_tty,
6754 struct cmd_list_element *cmd)
6755{
6756 if (target_can_execute_reverse)
6757 {
6758 if (!strcmp (exec_direction, exec_forward))
6759 execution_direction = EXEC_FORWARD;
6760 else if (!strcmp (exec_direction, exec_reverse))
6761 execution_direction = EXEC_REVERSE;
6762 }
6763 else
6764 {
6765 exec_direction = exec_forward;
6766 error (_("Target does not support this operation."));
6767 }
6768}
6769
6770static void
6771show_exec_direction_func (struct ui_file *out, int from_tty,
6772 struct cmd_list_element *cmd, const char *value)
6773{
6774 switch (execution_direction) {
6775 case EXEC_FORWARD:
6776 fprintf_filtered (out, _("Forward.\n"));
6777 break;
6778 case EXEC_REVERSE:
6779 fprintf_filtered (out, _("Reverse.\n"));
6780 break;
6781 case EXEC_ERROR:
6782 default:
6783 fprintf_filtered (out, _("Forward (target `%s' does not "
6784 "support exec-direction).\n"),
6785 target_shortname);
6786 break;
6787 }
6788}
6789
6790/* User interface for non-stop mode. */
6791
6792int non_stop = 0;
6793
6794static void
6795set_non_stop (char *args, int from_tty,
6796 struct cmd_list_element *c)
6797{
6798 if (target_has_execution)
6799 {
6800 non_stop_1 = non_stop;
6801 error (_("Cannot change this setting while the inferior is running."));
6802 }
6803
6804 non_stop = non_stop_1;
6805}
6806
6807static void
6808show_non_stop (struct ui_file *file, int from_tty,
6809 struct cmd_list_element *c, const char *value)
6810{
6811 fprintf_filtered (file,
6812 _("Controlling the inferior in non-stop mode is %s.\n"),
6813 value);
6814}
6815
6816static void
6817show_schedule_multiple (struct ui_file *file, int from_tty,
6818 struct cmd_list_element *c, const char *value)
6819{
6820 fprintf_filtered (file, _("Resuming the execution of threads "
6821 "of all processes is %s.\n"), value);
6822}
6823
6824void
6825_initialize_infrun (void)
6826{
6827 int i;
6828 int numsigs;
6829
6830 add_info ("signals", signals_info, _("\
6831What debugger does when program gets various signals.\n\
6832Specify a signal as argument to print info on that signal only."));
6833 add_info_alias ("handle", "signals", 0);
6834
6835 add_com ("handle", class_run, handle_command, _("\
6836Specify how to handle a signal.\n\
6837Args are signals and actions to apply to those signals.\n\
6838Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6839from 1-15 are allowed for compatibility with old versions of GDB.\n\
6840Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6841The special arg \"all\" is recognized to mean all signals except those\n\
6842used by the debugger, typically SIGTRAP and SIGINT.\n\
6843Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6844\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6845Stop means reenter debugger if this signal happens (implies print).\n\
6846Print means print a message if this signal happens.\n\
6847Pass means let program see this signal; otherwise program doesn't know.\n\
6848Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6849Pass and Stop may be combined."));
6850 if (xdb_commands)
6851 {
6852 add_com ("lz", class_info, signals_info, _("\
6853What debugger does when program gets various signals.\n\
6854Specify a signal as argument to print info on that signal only."));
6855 add_com ("z", class_run, xdb_handle_command, _("\
6856Specify how to handle a signal.\n\
6857Args are signals and actions to apply to those signals.\n\
6858Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6859from 1-15 are allowed for compatibility with old versions of GDB.\n\
6860Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6861The special arg \"all\" is recognized to mean all signals except those\n\
6862used by the debugger, typically SIGTRAP and SIGINT.\n\
6863Recognized actions include \"s\" (toggles between stop and nostop),\n\
6864\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6865nopass), \"Q\" (noprint)\n\
6866Stop means reenter debugger if this signal happens (implies print).\n\
6867Print means print a message if this signal happens.\n\
6868Pass means let program see this signal; otherwise program doesn't know.\n\
6869Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6870Pass and Stop may be combined."));
6871 }
6872
6873 if (!dbx_commands)
6874 stop_command = add_cmd ("stop", class_obscure,
6875 not_just_help_class_command, _("\
6876There is no `stop' command, but you can set a hook on `stop'.\n\
6877This allows you to set a list of commands to be run each time execution\n\
6878of the program stops."), &cmdlist);
6879
6880 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6881Set inferior debugging."), _("\
6882Show inferior debugging."), _("\
6883When non-zero, inferior specific debugging is enabled."),
6884 NULL,
6885 show_debug_infrun,
6886 &setdebuglist, &showdebuglist);
6887
6888 add_setshow_boolean_cmd ("displaced", class_maintenance,
6889 &debug_displaced, _("\
6890Set displaced stepping debugging."), _("\
6891Show displaced stepping debugging."), _("\
6892When non-zero, displaced stepping specific debugging is enabled."),
6893 NULL,
6894 show_debug_displaced,
6895 &setdebuglist, &showdebuglist);
6896
6897 add_setshow_boolean_cmd ("non-stop", no_class,
6898 &non_stop_1, _("\
6899Set whether gdb controls the inferior in non-stop mode."), _("\
6900Show whether gdb controls the inferior in non-stop mode."), _("\
6901When debugging a multi-threaded program and this setting is\n\
6902off (the default, also called all-stop mode), when one thread stops\n\
6903(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6904all other threads in the program while you interact with the thread of\n\
6905interest. When you continue or step a thread, you can allow the other\n\
6906threads to run, or have them remain stopped, but while you inspect any\n\
6907thread's state, all threads stop.\n\
6908\n\
6909In non-stop mode, when one thread stops, other threads can continue\n\
6910to run freely. You'll be able to step each thread independently,\n\
6911leave it stopped or free to run as needed."),
6912 set_non_stop,
6913 show_non_stop,
6914 &setlist,
6915 &showlist);
6916
6917 numsigs = (int) TARGET_SIGNAL_LAST;
6918 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
6919 signal_print = (unsigned char *)
6920 xmalloc (sizeof (signal_print[0]) * numsigs);
6921 signal_program = (unsigned char *)
6922 xmalloc (sizeof (signal_program[0]) * numsigs);
6923 for (i = 0; i < numsigs; i++)
6924 {
6925 signal_stop[i] = 1;
6926 signal_print[i] = 1;
6927 signal_program[i] = 1;
6928 }
6929
6930 /* Signals caused by debugger's own actions
6931 should not be given to the program afterwards. */
6932 signal_program[TARGET_SIGNAL_TRAP] = 0;
6933 signal_program[TARGET_SIGNAL_INT] = 0;
6934
6935 /* Signals that are not errors should not normally enter the debugger. */
6936 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6937 signal_print[TARGET_SIGNAL_ALRM] = 0;
6938 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6939 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6940 signal_stop[TARGET_SIGNAL_PROF] = 0;
6941 signal_print[TARGET_SIGNAL_PROF] = 0;
6942 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6943 signal_print[TARGET_SIGNAL_CHLD] = 0;
6944 signal_stop[TARGET_SIGNAL_IO] = 0;
6945 signal_print[TARGET_SIGNAL_IO] = 0;
6946 signal_stop[TARGET_SIGNAL_POLL] = 0;
6947 signal_print[TARGET_SIGNAL_POLL] = 0;
6948 signal_stop[TARGET_SIGNAL_URG] = 0;
6949 signal_print[TARGET_SIGNAL_URG] = 0;
6950 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6951 signal_print[TARGET_SIGNAL_WINCH] = 0;
6952 signal_stop[TARGET_SIGNAL_PRIO] = 0;
6953 signal_print[TARGET_SIGNAL_PRIO] = 0;
6954
6955 /* These signals are used internally by user-level thread
6956 implementations. (See signal(5) on Solaris.) Like the above
6957 signals, a healthy program receives and handles them as part of
6958 its normal operation. */
6959 signal_stop[TARGET_SIGNAL_LWP] = 0;
6960 signal_print[TARGET_SIGNAL_LWP] = 0;
6961 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6962 signal_print[TARGET_SIGNAL_WAITING] = 0;
6963 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6964 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6965
6966 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6967 &stop_on_solib_events, _("\
6968Set stopping for shared library events."), _("\
6969Show stopping for shared library events."), _("\
6970If nonzero, gdb will give control to the user when the dynamic linker\n\
6971notifies gdb of shared library events. The most common event of interest\n\
6972to the user would be loading/unloading of a new library."),
6973 NULL,
6974 show_stop_on_solib_events,
6975 &setlist, &showlist);
6976
6977 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6978 follow_fork_mode_kind_names,
6979 &follow_fork_mode_string, _("\
6980Set debugger response to a program call of fork or vfork."), _("\
6981Show debugger response to a program call of fork or vfork."), _("\
6982A fork or vfork creates a new process. follow-fork-mode can be:\n\
6983 parent - the original process is debugged after a fork\n\
6984 child - the new process is debugged after a fork\n\
6985The unfollowed process will continue to run.\n\
6986By default, the debugger will follow the parent process."),
6987 NULL,
6988 show_follow_fork_mode_string,
6989 &setlist, &showlist);
6990
6991 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6992 follow_exec_mode_names,
6993 &follow_exec_mode_string, _("\
6994Set debugger response to a program call of exec."), _("\
6995Show debugger response to a program call of exec."), _("\
6996An exec call replaces the program image of a process.\n\
6997\n\
6998follow-exec-mode can be:\n\
6999\n\
7000 new - the debugger creates a new inferior and rebinds the process\n\
7001to this new inferior. The program the process was running before\n\
7002the exec call can be restarted afterwards by restarting the original\n\
7003inferior.\n\
7004\n\
7005 same - the debugger keeps the process bound to the same inferior.\n\
7006The new executable image replaces the previous executable loaded in\n\
7007the inferior. Restarting the inferior after the exec call restarts\n\
7008the executable the process was running after the exec call.\n\
7009\n\
7010By default, the debugger will use the same inferior."),
7011 NULL,
7012 show_follow_exec_mode_string,
7013 &setlist, &showlist);
7014
7015 add_setshow_enum_cmd ("scheduler-locking", class_run,
7016 scheduler_enums, &scheduler_mode, _("\
7017Set mode for locking scheduler during execution."), _("\
7018Show mode for locking scheduler during execution."), _("\
7019off == no locking (threads may preempt at any time)\n\
7020on == full locking (no thread except the current thread may run)\n\
7021step == scheduler locked during every single-step operation.\n\
7022 In this mode, no other thread may run during a step command.\n\
7023 Other threads may run while stepping over a function call ('next')."),
7024 set_schedlock_func, /* traps on target vector */
7025 show_scheduler_mode,
7026 &setlist, &showlist);
7027
7028 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7029Set mode for resuming threads of all processes."), _("\
7030Show mode for resuming threads of all processes."), _("\
7031When on, execution commands (such as 'continue' or 'next') resume all\n\
7032threads of all processes. When off (which is the default), execution\n\
7033commands only resume the threads of the current process. The set of\n\
7034threads that are resumed is further refined by the scheduler-locking\n\
7035mode (see help set scheduler-locking)."),
7036 NULL,
7037 show_schedule_multiple,
7038 &setlist, &showlist);
7039
7040 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7041Set mode of the step operation."), _("\
7042Show mode of the step operation."), _("\
7043When set, doing a step over a function without debug line information\n\
7044will stop at the first instruction of that function. Otherwise, the\n\
7045function is skipped and the step command stops at a different source line."),
7046 NULL,
7047 show_step_stop_if_no_debug,
7048 &setlist, &showlist);
7049
7050 add_setshow_enum_cmd ("displaced-stepping", class_run,
7051 can_use_displaced_stepping_enum,
7052 &can_use_displaced_stepping, _("\
7053Set debugger's willingness to use displaced stepping."), _("\
7054Show debugger's willingness to use displaced stepping."), _("\
7055If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7056supported by the target architecture. If off, gdb will not use displaced\n\
7057stepping to step over breakpoints, even if such is supported by the target\n\
7058architecture. If auto (which is the default), gdb will use displaced stepping\n\
7059if the target architecture supports it and non-stop mode is active, but will not\n\
7060use it in all-stop mode (see help set non-stop)."),
7061 NULL,
7062 show_can_use_displaced_stepping,
7063 &setlist, &showlist);
7064
7065 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7066 &exec_direction, _("Set direction of execution.\n\
7067Options are 'forward' or 'reverse'."),
7068 _("Show direction of execution (forward/reverse)."),
7069 _("Tells gdb whether to execute forward or backward."),
7070 set_exec_direction_func, show_exec_direction_func,
7071 &setlist, &showlist);
7072
7073 /* Set/show detach-on-fork: user-settable mode. */
7074
7075 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7076Set whether gdb will detach the child of a fork."), _("\
7077Show whether gdb will detach the child of a fork."), _("\
7078Tells gdb whether to detach the child of a fork."),
7079 NULL, NULL, &setlist, &showlist);
7080
7081 /* ptid initializations */
7082 null_ptid = ptid_build (0, 0, 0);
7083 minus_one_ptid = ptid_build (-1, 0, 0);
7084 inferior_ptid = null_ptid;
7085 target_last_wait_ptid = minus_one_ptid;
7086
7087 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7088 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7089 observer_attach_thread_exit (infrun_thread_thread_exit);
7090 observer_attach_inferior_exit (infrun_inferior_exit);
7091
7092 /* Explicitly create without lookup, since that tries to create a
7093 value with a void typed value, and when we get here, gdbarch
7094 isn't initialized yet. At this point, we're quite sure there
7095 isn't another convenience variable of the same name. */
7096 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7097
7098 add_setshow_boolean_cmd ("observer", no_class,
7099 &observer_mode_1, _("\
7100Set whether gdb controls the inferior in observer mode."), _("\
7101Show whether gdb controls the inferior in observer mode."), _("\
7102In observer mode, GDB can get data from the inferior, but not\n\
7103affect its execution. Registers and memory may not be changed,\n\
7104breakpoints may not be set, and the program cannot be interrupted\n\
7105or signalled."),
7106 set_observer_mode,
7107 show_observer_mode,
7108 &setlist,
7109 &showlist);
7110}
This page took 0.067351 seconds and 4 git commands to generate.