guile disassembly hardcode TARGET_XFER_E_IO
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "infrun.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
28#include "gdb_wait.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "cli/cli-script.h"
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
35#include "symfile.h"
36#include "top.h"
37#include <signal.h>
38#include "inf-loop.h"
39#include "regcache.h"
40#include "value.h"
41#include "observer.h"
42#include "language.h"
43#include "solib.h"
44#include "main.h"
45#include "dictionary.h"
46#include "block.h"
47#include "mi/mi-common.h"
48#include "event-top.h"
49#include "record.h"
50#include "record-full.h"
51#include "inline-frame.h"
52#include "jit.h"
53#include "tracepoint.h"
54#include "continuations.h"
55#include "interps.h"
56#include "skip.h"
57#include "probe.h"
58#include "objfiles.h"
59#include "completer.h"
60#include "target-descriptions.h"
61#include "target-dcache.h"
62#include "terminal.h"
63#include "solist.h"
64#include "event-loop.h"
65#include "thread-fsm.h"
66
67/* Prototypes for local functions */
68
69static void signals_info (char *, int);
70
71static void handle_command (char *, int);
72
73static void sig_print_info (enum gdb_signal);
74
75static void sig_print_header (void);
76
77static void resume_cleanups (void *);
78
79static int hook_stop_stub (void *);
80
81static int restore_selected_frame (void *);
82
83static int follow_fork (void);
84
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
89static void set_schedlock_func (char *args, int from_tty,
90 struct cmd_list_element *c);
91
92static int currently_stepping (struct thread_info *tp);
93
94void _initialize_infrun (void);
95
96void nullify_last_target_wait_ptid (void);
97
98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
153
154/* In asynchronous mode, but simulating synchronous execution. */
155
156int sync_execution = 0;
157
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
161
162static ptid_t previous_inferior_ptid;
163
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
170
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
179unsigned int debug_infrun = 0;
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
186
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
318
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
359}
360
361/* Value to pass to target_resume() to cause all threads to resume. */
362
363#define RESUME_ALL minus_one_ptid
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
371int stop_on_solib_events;
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
389
390/* Nonzero after stop if current stack frame should be printed. */
391
392static int stop_print_frame;
393
394/* This is a cached copy of the pid/waitstatus of the last event
395 returned by target_wait()/deprecated_target_wait_hook(). This
396 information is returned by get_last_target_status(). */
397static ptid_t target_last_wait_ptid;
398static struct target_waitstatus target_last_waitstatus;
399
400static void context_switch (ptid_t ptid);
401
402void init_thread_stepping_state (struct thread_info *tss);
403
404static const char follow_fork_mode_child[] = "child";
405static const char follow_fork_mode_parent[] = "parent";
406
407static const char *const follow_fork_mode_kind_names[] = {
408 follow_fork_mode_child,
409 follow_fork_mode_parent,
410 NULL
411};
412
413static const char *follow_fork_mode_string = follow_fork_mode_parent;
414static void
415show_follow_fork_mode_string (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c, const char *value)
417{
418 fprintf_filtered (file,
419 _("Debugger response to a program "
420 "call of fork or vfork is \"%s\".\n"),
421 value);
422}
423\f
424
425/* Handle changes to the inferior list based on the type of fork,
426 which process is being followed, and whether the other process
427 should be detached. On entry inferior_ptid must be the ptid of
428 the fork parent. At return inferior_ptid is the ptid of the
429 followed inferior. */
430
431static int
432follow_fork_inferior (int follow_child, int detach_fork)
433{
434 int has_vforked;
435 ptid_t parent_ptid, child_ptid;
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
441
442 if (has_vforked
443 && !non_stop /* Non-stop always resumes both branches. */
444 && (!target_is_async_p () || sync_execution)
445 && !(follow_child || detach_fork || sched_multi))
446 {
447 /* The parent stays blocked inside the vfork syscall until the
448 child execs or exits. If we don't let the child run, then
449 the parent stays blocked. If we're telling the parent to run
450 in the foreground, the user will not be able to ctrl-c to get
451 back the terminal, effectively hanging the debug session. */
452 fprintf_filtered (gdb_stderr, _("\
453Can not resume the parent process over vfork in the foreground while\n\
454holding the child stopped. Try \"set detach-on-fork\" or \
455\"set schedule-multiple\".\n"));
456 /* FIXME output string > 80 columns. */
457 return 1;
458 }
459
460 if (!follow_child)
461 {
462 /* Detach new forked process? */
463 if (detach_fork)
464 {
465 struct cleanup *old_chain;
466
467 /* Before detaching from the child, remove all breakpoints
468 from it. If we forked, then this has already been taken
469 care of by infrun.c. If we vforked however, any
470 breakpoint inserted in the parent is visible in the
471 child, even those added while stopped in a vfork
472 catchpoint. This will remove the breakpoints from the
473 parent also, but they'll be reinserted below. */
474 if (has_vforked)
475 {
476 /* Keep breakpoints list in sync. */
477 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
478 }
479
480 if (info_verbose || debug_infrun)
481 {
482 /* Ensure that we have a process ptid. */
483 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
484
485 target_terminal_ours_for_output ();
486 fprintf_filtered (gdb_stdlog,
487 _("Detaching after %s from child %s.\n"),
488 has_vforked ? "vfork" : "fork",
489 target_pid_to_str (process_ptid));
490 }
491 }
492 else
493 {
494 struct inferior *parent_inf, *child_inf;
495 struct cleanup *old_chain;
496
497 /* Add process to GDB's tables. */
498 child_inf = add_inferior (ptid_get_pid (child_ptid));
499
500 parent_inf = current_inferior ();
501 child_inf->attach_flag = parent_inf->attach_flag;
502 copy_terminal_info (child_inf, parent_inf);
503 child_inf->gdbarch = parent_inf->gdbarch;
504 copy_inferior_target_desc_info (child_inf, parent_inf);
505
506 old_chain = save_inferior_ptid ();
507 save_current_program_space ();
508
509 inferior_ptid = child_ptid;
510 add_thread (inferior_ptid);
511 child_inf->symfile_flags = SYMFILE_NO_READ;
512
513 /* If this is a vfork child, then the address-space is
514 shared with the parent. */
515 if (has_vforked)
516 {
517 child_inf->pspace = parent_inf->pspace;
518 child_inf->aspace = parent_inf->aspace;
519
520 /* The parent will be frozen until the child is done
521 with the shared region. Keep track of the
522 parent. */
523 child_inf->vfork_parent = parent_inf;
524 child_inf->pending_detach = 0;
525 parent_inf->vfork_child = child_inf;
526 parent_inf->pending_detach = 0;
527 }
528 else
529 {
530 child_inf->aspace = new_address_space ();
531 child_inf->pspace = add_program_space (child_inf->aspace);
532 child_inf->removable = 1;
533 set_current_program_space (child_inf->pspace);
534 clone_program_space (child_inf->pspace, parent_inf->pspace);
535
536 /* Let the shared library layer (e.g., solib-svr4) learn
537 about this new process, relocate the cloned exec, pull
538 in shared libraries, and install the solib event
539 breakpoint. If a "cloned-VM" event was propagated
540 better throughout the core, this wouldn't be
541 required. */
542 solib_create_inferior_hook (0);
543 }
544
545 do_cleanups (old_chain);
546 }
547
548 if (has_vforked)
549 {
550 struct inferior *parent_inf;
551
552 parent_inf = current_inferior ();
553
554 /* If we detached from the child, then we have to be careful
555 to not insert breakpoints in the parent until the child
556 is done with the shared memory region. However, if we're
557 staying attached to the child, then we can and should
558 insert breakpoints, so that we can debug it. A
559 subsequent child exec or exit is enough to know when does
560 the child stops using the parent's address space. */
561 parent_inf->waiting_for_vfork_done = detach_fork;
562 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
563 }
564 }
565 else
566 {
567 /* Follow the child. */
568 struct inferior *parent_inf, *child_inf;
569 struct program_space *parent_pspace;
570
571 if (info_verbose || debug_infrun)
572 {
573 target_terminal_ours_for_output ();
574 fprintf_filtered (gdb_stdlog,
575 _("Attaching after %s %s to child %s.\n"),
576 target_pid_to_str (parent_ptid),
577 has_vforked ? "vfork" : "fork",
578 target_pid_to_str (child_ptid));
579 }
580
581 /* Add the new inferior first, so that the target_detach below
582 doesn't unpush the target. */
583
584 child_inf = add_inferior (ptid_get_pid (child_ptid));
585
586 parent_inf = current_inferior ();
587 child_inf->attach_flag = parent_inf->attach_flag;
588 copy_terminal_info (child_inf, parent_inf);
589 child_inf->gdbarch = parent_inf->gdbarch;
590 copy_inferior_target_desc_info (child_inf, parent_inf);
591
592 parent_pspace = parent_inf->pspace;
593
594 /* If we're vforking, we want to hold on to the parent until the
595 child exits or execs. At child exec or exit time we can
596 remove the old breakpoints from the parent and detach or
597 resume debugging it. Otherwise, detach the parent now; we'll
598 want to reuse it's program/address spaces, but we can't set
599 them to the child before removing breakpoints from the
600 parent, otherwise, the breakpoints module could decide to
601 remove breakpoints from the wrong process (since they'd be
602 assigned to the same address space). */
603
604 if (has_vforked)
605 {
606 gdb_assert (child_inf->vfork_parent == NULL);
607 gdb_assert (parent_inf->vfork_child == NULL);
608 child_inf->vfork_parent = parent_inf;
609 child_inf->pending_detach = 0;
610 parent_inf->vfork_child = child_inf;
611 parent_inf->pending_detach = detach_fork;
612 parent_inf->waiting_for_vfork_done = 0;
613 }
614 else if (detach_fork)
615 {
616 if (info_verbose || debug_infrun)
617 {
618 /* Ensure that we have a process ptid. */
619 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
620
621 target_terminal_ours_for_output ();
622 fprintf_filtered (gdb_stdlog,
623 _("Detaching after fork from "
624 "child %s.\n"),
625 target_pid_to_str (process_ptid));
626 }
627
628 target_detach (NULL, 0);
629 }
630
631 /* Note that the detach above makes PARENT_INF dangling. */
632
633 /* Add the child thread to the appropriate lists, and switch to
634 this new thread, before cloning the program space, and
635 informing the solib layer about this new process. */
636
637 inferior_ptid = child_ptid;
638 add_thread (inferior_ptid);
639
640 /* If this is a vfork child, then the address-space is shared
641 with the parent. If we detached from the parent, then we can
642 reuse the parent's program/address spaces. */
643 if (has_vforked || detach_fork)
644 {
645 child_inf->pspace = parent_pspace;
646 child_inf->aspace = child_inf->pspace->aspace;
647 }
648 else
649 {
650 child_inf->aspace = new_address_space ();
651 child_inf->pspace = add_program_space (child_inf->aspace);
652 child_inf->removable = 1;
653 child_inf->symfile_flags = SYMFILE_NO_READ;
654 set_current_program_space (child_inf->pspace);
655 clone_program_space (child_inf->pspace, parent_pspace);
656
657 /* Let the shared library layer (e.g., solib-svr4) learn
658 about this new process, relocate the cloned exec, pull in
659 shared libraries, and install the solib event breakpoint.
660 If a "cloned-VM" event was propagated better throughout
661 the core, this wouldn't be required. */
662 solib_create_inferior_hook (0);
663 }
664 }
665
666 return target_follow_fork (follow_child, detach_fork);
667}
668
669/* Tell the target to follow the fork we're stopped at. Returns true
670 if the inferior should be resumed; false, if the target for some
671 reason decided it's best not to resume. */
672
673static int
674follow_fork (void)
675{
676 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
677 int should_resume = 1;
678 struct thread_info *tp;
679
680 /* Copy user stepping state to the new inferior thread. FIXME: the
681 followed fork child thread should have a copy of most of the
682 parent thread structure's run control related fields, not just these.
683 Initialized to avoid "may be used uninitialized" warnings from gcc. */
684 struct breakpoint *step_resume_breakpoint = NULL;
685 struct breakpoint *exception_resume_breakpoint = NULL;
686 CORE_ADDR step_range_start = 0;
687 CORE_ADDR step_range_end = 0;
688 struct frame_id step_frame_id = { 0 };
689 struct interp *command_interp = NULL;
690
691 if (!non_stop)
692 {
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (!ptid_equal (wait_ptid, minus_one_ptid)
708 && !ptid_equal (inferior_ptid, wait_ptid))
709 {
710 /* We did. Switch back to WAIT_PTID thread, to tell the
711 target to follow it (in either direction). We'll
712 afterwards refuse to resume, and inform the user what
713 happened. */
714 switch_to_thread (wait_ptid);
715 should_resume = 0;
716 }
717 }
718
719 tp = inferior_thread ();
720
721 /* If there were any forks/vforks that were caught and are now to be
722 followed, then do so now. */
723 switch (tp->pending_follow.kind)
724 {
725 case TARGET_WAITKIND_FORKED:
726 case TARGET_WAITKIND_VFORKED:
727 {
728 ptid_t parent, child;
729
730 /* If the user did a next/step, etc, over a fork call,
731 preserve the stepping state in the fork child. */
732 if (follow_child && should_resume)
733 {
734 step_resume_breakpoint = clone_momentary_breakpoint
735 (tp->control.step_resume_breakpoint);
736 step_range_start = tp->control.step_range_start;
737 step_range_end = tp->control.step_range_end;
738 step_frame_id = tp->control.step_frame_id;
739 exception_resume_breakpoint
740 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
741 command_interp = tp->control.command_interp;
742
743 /* For now, delete the parent's sr breakpoint, otherwise,
744 parent/child sr breakpoints are considered duplicates,
745 and the child version will not be installed. Remove
746 this when the breakpoints module becomes aware of
747 inferiors and address spaces. */
748 delete_step_resume_breakpoint (tp);
749 tp->control.step_range_start = 0;
750 tp->control.step_range_end = 0;
751 tp->control.step_frame_id = null_frame_id;
752 delete_exception_resume_breakpoint (tp);
753 tp->control.command_interp = NULL;
754 }
755
756 parent = inferior_ptid;
757 child = tp->pending_follow.value.related_pid;
758
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
774 tp = find_thread_ptid (parent);
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
782 /* If we followed the child, switch to it... */
783 if (follow_child)
784 {
785 switch_to_thread (child);
786
787 /* ... and preserve the stepping state, in case the
788 user was stepping over the fork call. */
789 if (should_resume)
790 {
791 tp = inferior_thread ();
792 tp->control.step_resume_breakpoint
793 = step_resume_breakpoint;
794 tp->control.step_range_start = step_range_start;
795 tp->control.step_range_end = step_range_end;
796 tp->control.step_frame_id = step_frame_id;
797 tp->control.exception_resume_breakpoint
798 = exception_resume_breakpoint;
799 tp->control.command_interp = command_interp;
800 }
801 else
802 {
803 /* If we get here, it was because we're trying to
804 resume from a fork catchpoint, but, the user
805 has switched threads away from the thread that
806 forked. In that case, the resume command
807 issued is most likely not applicable to the
808 child, so just warn, and refuse to resume. */
809 warning (_("Not resuming: switched threads "
810 "before following fork child."));
811 }
812
813 /* Reset breakpoints in the child as appropriate. */
814 follow_inferior_reset_breakpoints ();
815 }
816 else
817 switch_to_thread (parent);
818 }
819 }
820 break;
821 case TARGET_WAITKIND_SPURIOUS:
822 /* Nothing to follow. */
823 break;
824 default:
825 internal_error (__FILE__, __LINE__,
826 "Unexpected pending_follow.kind %d\n",
827 tp->pending_follow.kind);
828 break;
829 }
830
831 return should_resume;
832}
833
834static void
835follow_inferior_reset_breakpoints (void)
836{
837 struct thread_info *tp = inferior_thread ();
838
839 /* Was there a step_resume breakpoint? (There was if the user
840 did a "next" at the fork() call.) If so, explicitly reset its
841 thread number. Cloned step_resume breakpoints are disabled on
842 creation, so enable it here now that it is associated with the
843 correct thread.
844
845 step_resumes are a form of bp that are made to be per-thread.
846 Since we created the step_resume bp when the parent process
847 was being debugged, and now are switching to the child process,
848 from the breakpoint package's viewpoint, that's a switch of
849 "threads". We must update the bp's notion of which thread
850 it is for, or it'll be ignored when it triggers. */
851
852 if (tp->control.step_resume_breakpoint)
853 {
854 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
855 tp->control.step_resume_breakpoint->loc->enabled = 1;
856 }
857
858 /* Treat exception_resume breakpoints like step_resume breakpoints. */
859 if (tp->control.exception_resume_breakpoint)
860 {
861 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
862 tp->control.exception_resume_breakpoint->loc->enabled = 1;
863 }
864
865 /* Reinsert all breakpoints in the child. The user may have set
866 breakpoints after catching the fork, in which case those
867 were never set in the child, but only in the parent. This makes
868 sure the inserted breakpoints match the breakpoint list. */
869
870 breakpoint_re_set ();
871 insert_breakpoints ();
872}
873
874/* The child has exited or execed: resume threads of the parent the
875 user wanted to be executing. */
876
877static int
878proceed_after_vfork_done (struct thread_info *thread,
879 void *arg)
880{
881 int pid = * (int *) arg;
882
883 if (ptid_get_pid (thread->ptid) == pid
884 && is_running (thread->ptid)
885 && !is_executing (thread->ptid)
886 && !thread->stop_requested
887 && thread->suspend.stop_signal == GDB_SIGNAL_0)
888 {
889 if (debug_infrun)
890 fprintf_unfiltered (gdb_stdlog,
891 "infrun: resuming vfork parent thread %s\n",
892 target_pid_to_str (thread->ptid));
893
894 switch_to_thread (thread->ptid);
895 clear_proceed_status (0);
896 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
897 }
898
899 return 0;
900}
901
902/* Called whenever we notice an exec or exit event, to handle
903 detaching or resuming a vfork parent. */
904
905static void
906handle_vfork_child_exec_or_exit (int exec)
907{
908 struct inferior *inf = current_inferior ();
909
910 if (inf->vfork_parent)
911 {
912 int resume_parent = -1;
913
914 /* This exec or exit marks the end of the shared memory region
915 between the parent and the child. If the user wanted to
916 detach from the parent, now is the time. */
917
918 if (inf->vfork_parent->pending_detach)
919 {
920 struct thread_info *tp;
921 struct cleanup *old_chain;
922 struct program_space *pspace;
923 struct address_space *aspace;
924
925 /* follow-fork child, detach-on-fork on. */
926
927 inf->vfork_parent->pending_detach = 0;
928
929 if (!exec)
930 {
931 /* If we're handling a child exit, then inferior_ptid
932 points at the inferior's pid, not to a thread. */
933 old_chain = save_inferior_ptid ();
934 save_current_program_space ();
935 save_current_inferior ();
936 }
937 else
938 old_chain = save_current_space_and_thread ();
939
940 /* We're letting loose of the parent. */
941 tp = any_live_thread_of_process (inf->vfork_parent->pid);
942 switch_to_thread (tp->ptid);
943
944 /* We're about to detach from the parent, which implicitly
945 removes breakpoints from its address space. There's a
946 catch here: we want to reuse the spaces for the child,
947 but, parent/child are still sharing the pspace at this
948 point, although the exec in reality makes the kernel give
949 the child a fresh set of new pages. The problem here is
950 that the breakpoints module being unaware of this, would
951 likely chose the child process to write to the parent
952 address space. Swapping the child temporarily away from
953 the spaces has the desired effect. Yes, this is "sort
954 of" a hack. */
955
956 pspace = inf->pspace;
957 aspace = inf->aspace;
958 inf->aspace = NULL;
959 inf->pspace = NULL;
960
961 if (debug_infrun || info_verbose)
962 {
963 target_terminal_ours_for_output ();
964
965 if (exec)
966 {
967 fprintf_filtered (gdb_stdlog,
968 _("Detaching vfork parent process "
969 "%d after child exec.\n"),
970 inf->vfork_parent->pid);
971 }
972 else
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("Detaching vfork parent process "
976 "%d after child exit.\n"),
977 inf->vfork_parent->pid);
978 }
979 }
980
981 target_detach (NULL, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986
987 do_cleanups (old_chain);
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
993 inf->pspace = add_program_space (maybe_new_address_space ());
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = inf->vfork_parent->pid;
999
1000 /* Break the bonds. */
1001 inf->vfork_parent->vfork_child = NULL;
1002 }
1003 else
1004 {
1005 struct cleanup *old_chain;
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
1017 /* Switch to null_ptid, so that clone_program_space doesn't want
1018 to read the selected frame of a dead process. */
1019 old_chain = save_inferior_ptid ();
1020 inferior_ptid = null_ptid;
1021
1022 /* This inferior is dead, so avoid giving the breakpoints
1023 module the option to write through to it (cloning a
1024 program space resets breakpoints). */
1025 inf->aspace = NULL;
1026 inf->pspace = NULL;
1027 pspace = add_program_space (maybe_new_address_space ());
1028 set_current_program_space (pspace);
1029 inf->removable = 1;
1030 inf->symfile_flags = SYMFILE_NO_READ;
1031 clone_program_space (pspace, inf->vfork_parent->pspace);
1032 inf->pspace = pspace;
1033 inf->aspace = pspace->aspace;
1034
1035 /* Put back inferior_ptid. We'll continue mourning this
1036 inferior. */
1037 do_cleanups (old_chain);
1038
1039 resume_parent = inf->vfork_parent->pid;
1040 /* Break the bonds. */
1041 inf->vfork_parent->vfork_child = NULL;
1042 }
1043
1044 inf->vfork_parent = NULL;
1045
1046 gdb_assert (current_program_space == inf->pspace);
1047
1048 if (non_stop && resume_parent != -1)
1049 {
1050 /* If the user wanted the parent to be running, let it go
1051 free now. */
1052 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1053
1054 if (debug_infrun)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "infrun: resuming vfork parent process %d\n",
1057 resume_parent);
1058
1059 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1060
1061 do_cleanups (old_chain);
1062 }
1063 }
1064}
1065
1066/* Enum strings for "set|show follow-exec-mode". */
1067
1068static const char follow_exec_mode_new[] = "new";
1069static const char follow_exec_mode_same[] = "same";
1070static const char *const follow_exec_mode_names[] =
1071{
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075};
1076
1077static const char *follow_exec_mode_string = follow_exec_mode_same;
1078static void
1079show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081{
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083}
1084
1085/* EXECD_PATHNAME is assumed to be non-NULL. */
1086
1087static void
1088follow_exec (ptid_t ptid, char *execd_pathname)
1089{
1090 struct thread_info *th, *tmp;
1091 struct inferior *inf = current_inferior ();
1092 int pid = ptid_get_pid (ptid);
1093 ptid_t process_ptid;
1094
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten witha TRAP instruction). Since
1114 we now have a new a.out, those shadow contents aren't valid. */
1115
1116 mark_breakpoints_out ();
1117
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
1137 ALL_THREADS_SAFE (th, tmp)
1138 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1139 delete_thread (th->ptid);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 th = inferior_thread ();
1146 th->control.step_resume_breakpoint = NULL;
1147 th->control.exception_resume_breakpoint = NULL;
1148 th->control.single_step_breakpoints = NULL;
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
1151
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
1155 th->stop_requested = 0;
1156
1157 update_breakpoints_after_exec ();
1158
1159 /* What is this a.out's name? */
1160 process_ptid = pid_to_ptid (pid);
1161 printf_unfiltered (_("%s is executing new program: %s\n"),
1162 target_pid_to_str (process_ptid),
1163 execd_pathname);
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1166 inferior has essentially been killed & reborn. */
1167
1168 gdb_flush (gdb_stdout);
1169
1170 breakpoint_init_inferior (inf_execd);
1171
1172 if (*gdb_sysroot != '\0')
1173 {
1174 char *name = exec_file_find (execd_pathname, NULL);
1175
1176 execd_pathname = (char *) alloca (strlen (name) + 1);
1177 strcpy (execd_pathname, name);
1178 xfree (name);
1179 }
1180
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
1201 target_follow_exec (inf, execd_pathname);
1202
1203 set_current_inferior (inf);
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
1206 }
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
1220 /* That a.out is now the one to use. */
1221 exec_file_attach (execd_pathname, 0);
1222
1223 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1224 (Position Independent Executable) main symbol file will get applied by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1226 the breakpoints with the zero displacement. */
1227
1228 symbol_file_add (execd_pathname,
1229 (inf->symfile_flags
1230 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1231 NULL, 0);
1232
1233 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1234 set_initial_language ();
1235
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
1244 solib_create_inferior_hook (0);
1245
1246 jit_inferior_created_hook ();
1247
1248 breakpoint_re_set ();
1249
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1252 to symbol_file_command...). */
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1258 matically get reset there in the new process.). */
1259}
1260
1261/* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
1268struct thread_info *step_over_queue_head;
1269
1270/* Bit flags indicating what the thread needs to step over. */
1271
1272enum step_over_what
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
1282
1283/* Info about an instruction that is being stepped over. */
1284
1285struct step_over_info
1286{
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
1291 struct address_space *aspace;
1292 CORE_ADDR address;
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
1297};
1298
1299/* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323static struct step_over_info step_over_info;
1324
1325/* Record the address of the breakpoint/instruction we're currently
1326 stepping over. */
1327
1328static void
1329set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1330 int nonsteppable_watchpoint_p)
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335}
1336
1337/* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340static void
1341clear_step_over_info (void)
1342{
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
1348 step_over_info.nonsteppable_watchpoint_p = 0;
1349}
1350
1351/* See infrun.h. */
1352
1353int
1354stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356{
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361}
1362
1363/* See infrun.h. */
1364
1365int
1366stepping_past_nonsteppable_watchpoint (void)
1367{
1368 return step_over_info.nonsteppable_watchpoint_p;
1369}
1370
1371/* Returns true if step-over info is valid. */
1372
1373static int
1374step_over_info_valid_p (void)
1375{
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
1378}
1379
1380\f
1381/* Displaced stepping. */
1382
1383/* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfuly single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 - gdbarch_displaced_step_free_closure provides cleanup.
1431
1432 The gdbarch_displaced_step_copy_insn and
1433 gdbarch_displaced_step_fixup functions must be written so that
1434 copying an instruction with gdbarch_displaced_step_copy_insn,
1435 single-stepping across the copied instruction, and then applying
1436 gdbarch_displaced_insn_fixup should have the same effects on the
1437 thread's memory and registers as stepping the instruction in place
1438 would have. Exactly which responsibilities fall to the copy and
1439 which fall to the fixup is up to the author of those functions.
1440
1441 See the comments in gdbarch.sh for details.
1442
1443 Note that displaced stepping and software single-step cannot
1444 currently be used in combination, although with some care I think
1445 they could be made to. Software single-step works by placing
1446 breakpoints on all possible subsequent instructions; if the
1447 displaced instruction is a PC-relative jump, those breakpoints
1448 could fall in very strange places --- on pages that aren't
1449 executable, or at addresses that are not proper instruction
1450 boundaries. (We do generally let other threads run while we wait
1451 to hit the software single-step breakpoint, and they might
1452 encounter such a corrupted instruction.) One way to work around
1453 this would be to have gdbarch_displaced_step_copy_insn fully
1454 simulate the effect of PC-relative instructions (and return NULL)
1455 on architectures that use software single-stepping.
1456
1457 In non-stop mode, we can have independent and simultaneous step
1458 requests, so more than one thread may need to simultaneously step
1459 over a breakpoint. The current implementation assumes there is
1460 only one scratch space per process. In this case, we have to
1461 serialize access to the scratch space. If thread A wants to step
1462 over a breakpoint, but we are currently waiting for some other
1463 thread to complete a displaced step, we leave thread A stopped and
1464 place it in the displaced_step_request_queue. Whenever a displaced
1465 step finishes, we pick the next thread in the queue and start a new
1466 displaced step operation on it. See displaced_step_prepare and
1467 displaced_step_fixup for details. */
1468
1469/* Per-inferior displaced stepping state. */
1470struct displaced_step_inferior_state
1471{
1472 /* Pointer to next in linked list. */
1473 struct displaced_step_inferior_state *next;
1474
1475 /* The process this displaced step state refers to. */
1476 int pid;
1477
1478 /* True if preparing a displaced step ever failed. If so, we won't
1479 try displaced stepping for this inferior again. */
1480 int failed_before;
1481
1482 /* If this is not null_ptid, this is the thread carrying out a
1483 displaced single-step in process PID. This thread's state will
1484 require fixing up once it has completed its step. */
1485 ptid_t step_ptid;
1486
1487 /* The architecture the thread had when we stepped it. */
1488 struct gdbarch *step_gdbarch;
1489
1490 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1491 for post-step cleanup. */
1492 struct displaced_step_closure *step_closure;
1493
1494 /* The address of the original instruction, and the copy we
1495 made. */
1496 CORE_ADDR step_original, step_copy;
1497
1498 /* Saved contents of copy area. */
1499 gdb_byte *step_saved_copy;
1500};
1501
1502/* The list of states of processes involved in displaced stepping
1503 presently. */
1504static struct displaced_step_inferior_state *displaced_step_inferior_states;
1505
1506/* Get the displaced stepping state of process PID. */
1507
1508static struct displaced_step_inferior_state *
1509get_displaced_stepping_state (int pid)
1510{
1511 struct displaced_step_inferior_state *state;
1512
1513 for (state = displaced_step_inferior_states;
1514 state != NULL;
1515 state = state->next)
1516 if (state->pid == pid)
1517 return state;
1518
1519 return NULL;
1520}
1521
1522/* Returns true if any inferior has a thread doing a displaced
1523 step. */
1524
1525static int
1526displaced_step_in_progress_any_inferior (void)
1527{
1528 struct displaced_step_inferior_state *state;
1529
1530 for (state = displaced_step_inferior_states;
1531 state != NULL;
1532 state = state->next)
1533 if (!ptid_equal (state->step_ptid, null_ptid))
1534 return 1;
1535
1536 return 0;
1537}
1538
1539/* Return true if thread represented by PTID is doing a displaced
1540 step. */
1541
1542static int
1543displaced_step_in_progress_thread (ptid_t ptid)
1544{
1545 struct displaced_step_inferior_state *displaced;
1546
1547 gdb_assert (!ptid_equal (ptid, null_ptid));
1548
1549 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1550
1551 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1552}
1553
1554/* Return true if process PID has a thread doing a displaced step. */
1555
1556static int
1557displaced_step_in_progress (int pid)
1558{
1559 struct displaced_step_inferior_state *displaced;
1560
1561 displaced = get_displaced_stepping_state (pid);
1562 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1563 return 1;
1564
1565 return 0;
1566}
1567
1568/* Add a new displaced stepping state for process PID to the displaced
1569 stepping state list, or return a pointer to an already existing
1570 entry, if it already exists. Never returns NULL. */
1571
1572static struct displaced_step_inferior_state *
1573add_displaced_stepping_state (int pid)
1574{
1575 struct displaced_step_inferior_state *state;
1576
1577 for (state = displaced_step_inferior_states;
1578 state != NULL;
1579 state = state->next)
1580 if (state->pid == pid)
1581 return state;
1582
1583 state = XCNEW (struct displaced_step_inferior_state);
1584 state->pid = pid;
1585 state->next = displaced_step_inferior_states;
1586 displaced_step_inferior_states = state;
1587
1588 return state;
1589}
1590
1591/* If inferior is in displaced stepping, and ADDR equals to starting address
1592 of copy area, return corresponding displaced_step_closure. Otherwise,
1593 return NULL. */
1594
1595struct displaced_step_closure*
1596get_displaced_step_closure_by_addr (CORE_ADDR addr)
1597{
1598 struct displaced_step_inferior_state *displaced
1599 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1600
1601 /* If checking the mode of displaced instruction in copy area. */
1602 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1603 && (displaced->step_copy == addr))
1604 return displaced->step_closure;
1605
1606 return NULL;
1607}
1608
1609/* Remove the displaced stepping state of process PID. */
1610
1611static void
1612remove_displaced_stepping_state (int pid)
1613{
1614 struct displaced_step_inferior_state *it, **prev_next_p;
1615
1616 gdb_assert (pid != 0);
1617
1618 it = displaced_step_inferior_states;
1619 prev_next_p = &displaced_step_inferior_states;
1620 while (it)
1621 {
1622 if (it->pid == pid)
1623 {
1624 *prev_next_p = it->next;
1625 xfree (it);
1626 return;
1627 }
1628
1629 prev_next_p = &it->next;
1630 it = *prev_next_p;
1631 }
1632}
1633
1634static void
1635infrun_inferior_exit (struct inferior *inf)
1636{
1637 remove_displaced_stepping_state (inf->pid);
1638}
1639
1640/* If ON, and the architecture supports it, GDB will use displaced
1641 stepping to step over breakpoints. If OFF, or if the architecture
1642 doesn't support it, GDB will instead use the traditional
1643 hold-and-step approach. If AUTO (which is the default), GDB will
1644 decide which technique to use to step over breakpoints depending on
1645 which of all-stop or non-stop mode is active --- displaced stepping
1646 in non-stop mode; hold-and-step in all-stop mode. */
1647
1648static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1649
1650static void
1651show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1652 struct cmd_list_element *c,
1653 const char *value)
1654{
1655 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1656 fprintf_filtered (file,
1657 _("Debugger's willingness to use displaced stepping "
1658 "to step over breakpoints is %s (currently %s).\n"),
1659 value, target_is_non_stop_p () ? "on" : "off");
1660 else
1661 fprintf_filtered (file,
1662 _("Debugger's willingness to use displaced stepping "
1663 "to step over breakpoints is %s.\n"), value);
1664}
1665
1666/* Return non-zero if displaced stepping can/should be used to step
1667 over breakpoints of thread TP. */
1668
1669static int
1670use_displaced_stepping (struct thread_info *tp)
1671{
1672 struct regcache *regcache = get_thread_regcache (tp->ptid);
1673 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1674 struct displaced_step_inferior_state *displaced_state;
1675
1676 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1677
1678 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1679 && target_is_non_stop_p ())
1680 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1681 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1682 && find_record_target () == NULL
1683 && (displaced_state == NULL
1684 || !displaced_state->failed_before));
1685}
1686
1687/* Clean out any stray displaced stepping state. */
1688static void
1689displaced_step_clear (struct displaced_step_inferior_state *displaced)
1690{
1691 /* Indicate that there is no cleanup pending. */
1692 displaced->step_ptid = null_ptid;
1693
1694 if (displaced->step_closure)
1695 {
1696 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1697 displaced->step_closure);
1698 displaced->step_closure = NULL;
1699 }
1700}
1701
1702static void
1703displaced_step_clear_cleanup (void *arg)
1704{
1705 struct displaced_step_inferior_state *state
1706 = (struct displaced_step_inferior_state *) arg;
1707
1708 displaced_step_clear (state);
1709}
1710
1711/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1712void
1713displaced_step_dump_bytes (struct ui_file *file,
1714 const gdb_byte *buf,
1715 size_t len)
1716{
1717 int i;
1718
1719 for (i = 0; i < len; i++)
1720 fprintf_unfiltered (file, "%02x ", buf[i]);
1721 fputs_unfiltered ("\n", file);
1722}
1723
1724/* Prepare to single-step, using displaced stepping.
1725
1726 Note that we cannot use displaced stepping when we have a signal to
1727 deliver. If we have a signal to deliver and an instruction to step
1728 over, then after the step, there will be no indication from the
1729 target whether the thread entered a signal handler or ignored the
1730 signal and stepped over the instruction successfully --- both cases
1731 result in a simple SIGTRAP. In the first case we mustn't do a
1732 fixup, and in the second case we must --- but we can't tell which.
1733 Comments in the code for 'random signals' in handle_inferior_event
1734 explain how we handle this case instead.
1735
1736 Returns 1 if preparing was successful -- this thread is going to be
1737 stepped now; 0 if displaced stepping this thread got queued; or -1
1738 if this instruction can't be displaced stepped. */
1739
1740static int
1741displaced_step_prepare_throw (ptid_t ptid)
1742{
1743 struct cleanup *old_cleanups, *ignore_cleanups;
1744 struct thread_info *tp = find_thread_ptid (ptid);
1745 struct regcache *regcache = get_thread_regcache (ptid);
1746 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1747 struct address_space *aspace = get_regcache_aspace (regcache);
1748 CORE_ADDR original, copy;
1749 ULONGEST len;
1750 struct displaced_step_closure *closure;
1751 struct displaced_step_inferior_state *displaced;
1752 int status;
1753
1754 /* We should never reach this function if the architecture does not
1755 support displaced stepping. */
1756 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1757
1758 /* Nor if the thread isn't meant to step over a breakpoint. */
1759 gdb_assert (tp->control.trap_expected);
1760
1761 /* Disable range stepping while executing in the scratch pad. We
1762 want a single-step even if executing the displaced instruction in
1763 the scratch buffer lands within the stepping range (e.g., a
1764 jump/branch). */
1765 tp->control.may_range_step = 0;
1766
1767 /* We have to displaced step one thread at a time, as we only have
1768 access to a single scratch space per inferior. */
1769
1770 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1771
1772 if (!ptid_equal (displaced->step_ptid, null_ptid))
1773 {
1774 /* Already waiting for a displaced step to finish. Defer this
1775 request and place in queue. */
1776
1777 if (debug_displaced)
1778 fprintf_unfiltered (gdb_stdlog,
1779 "displaced: deferring step of %s\n",
1780 target_pid_to_str (ptid));
1781
1782 thread_step_over_chain_enqueue (tp);
1783 return 0;
1784 }
1785 else
1786 {
1787 if (debug_displaced)
1788 fprintf_unfiltered (gdb_stdlog,
1789 "displaced: stepping %s now\n",
1790 target_pid_to_str (ptid));
1791 }
1792
1793 displaced_step_clear (displaced);
1794
1795 old_cleanups = save_inferior_ptid ();
1796 inferior_ptid = ptid;
1797
1798 original = regcache_read_pc (regcache);
1799
1800 copy = gdbarch_displaced_step_location (gdbarch);
1801 len = gdbarch_max_insn_length (gdbarch);
1802
1803 if (breakpoint_in_range_p (aspace, copy, len))
1804 {
1805 /* There's a breakpoint set in the scratch pad location range
1806 (which is usually around the entry point). We'd either
1807 install it before resuming, which would overwrite/corrupt the
1808 scratch pad, or if it was already inserted, this displaced
1809 step would overwrite it. The latter is OK in the sense that
1810 we already assume that no thread is going to execute the code
1811 in the scratch pad range (after initial startup) anyway, but
1812 the former is unacceptable. Simply punt and fallback to
1813 stepping over this breakpoint in-line. */
1814 if (debug_displaced)
1815 {
1816 fprintf_unfiltered (gdb_stdlog,
1817 "displaced: breakpoint set in scratch pad. "
1818 "Stepping over breakpoint in-line instead.\n");
1819 }
1820
1821 do_cleanups (old_cleanups);
1822 return -1;
1823 }
1824
1825 /* Save the original contents of the copy area. */
1826 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1827 ignore_cleanups = make_cleanup (free_current_contents,
1828 &displaced->step_saved_copy);
1829 status = target_read_memory (copy, displaced->step_saved_copy, len);
1830 if (status != 0)
1831 throw_error (MEMORY_ERROR,
1832 _("Error accessing memory address %s (%s) for "
1833 "displaced-stepping scratch space."),
1834 paddress (gdbarch, copy), safe_strerror (status));
1835 if (debug_displaced)
1836 {
1837 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1838 paddress (gdbarch, copy));
1839 displaced_step_dump_bytes (gdb_stdlog,
1840 displaced->step_saved_copy,
1841 len);
1842 };
1843
1844 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1845 original, copy, regcache);
1846 if (closure == NULL)
1847 {
1848 /* The architecture doesn't know how or want to displaced step
1849 this instruction or instruction sequence. Fallback to
1850 stepping over the breakpoint in-line. */
1851 do_cleanups (old_cleanups);
1852 return -1;
1853 }
1854
1855 /* Save the information we need to fix things up if the step
1856 succeeds. */
1857 displaced->step_ptid = ptid;
1858 displaced->step_gdbarch = gdbarch;
1859 displaced->step_closure = closure;
1860 displaced->step_original = original;
1861 displaced->step_copy = copy;
1862
1863 make_cleanup (displaced_step_clear_cleanup, displaced);
1864
1865 /* Resume execution at the copy. */
1866 regcache_write_pc (regcache, copy);
1867
1868 discard_cleanups (ignore_cleanups);
1869
1870 do_cleanups (old_cleanups);
1871
1872 if (debug_displaced)
1873 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1874 paddress (gdbarch, copy));
1875
1876 return 1;
1877}
1878
1879/* Wrapper for displaced_step_prepare_throw that disabled further
1880 attempts at displaced stepping if we get a memory error. */
1881
1882static int
1883displaced_step_prepare (ptid_t ptid)
1884{
1885 int prepared = -1;
1886
1887 TRY
1888 {
1889 prepared = displaced_step_prepare_throw (ptid);
1890 }
1891 CATCH (ex, RETURN_MASK_ERROR)
1892 {
1893 struct displaced_step_inferior_state *displaced_state;
1894
1895 if (ex.error != MEMORY_ERROR)
1896 throw_exception (ex);
1897
1898 if (debug_infrun)
1899 {
1900 fprintf_unfiltered (gdb_stdlog,
1901 "infrun: disabling displaced stepping: %s\n",
1902 ex.message);
1903 }
1904
1905 /* Be verbose if "set displaced-stepping" is "on", silent if
1906 "auto". */
1907 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1908 {
1909 warning (_("disabling displaced stepping: %s"),
1910 ex.message);
1911 }
1912
1913 /* Disable further displaced stepping attempts. */
1914 displaced_state
1915 = get_displaced_stepping_state (ptid_get_pid (ptid));
1916 displaced_state->failed_before = 1;
1917 }
1918 END_CATCH
1919
1920 return prepared;
1921}
1922
1923static void
1924write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1925 const gdb_byte *myaddr, int len)
1926{
1927 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1928
1929 inferior_ptid = ptid;
1930 write_memory (memaddr, myaddr, len);
1931 do_cleanups (ptid_cleanup);
1932}
1933
1934/* Restore the contents of the copy area for thread PTID. */
1935
1936static void
1937displaced_step_restore (struct displaced_step_inferior_state *displaced,
1938 ptid_t ptid)
1939{
1940 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1941
1942 write_memory_ptid (ptid, displaced->step_copy,
1943 displaced->step_saved_copy, len);
1944 if (debug_displaced)
1945 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1946 target_pid_to_str (ptid),
1947 paddress (displaced->step_gdbarch,
1948 displaced->step_copy));
1949}
1950
1951/* If we displaced stepped an instruction successfully, adjust
1952 registers and memory to yield the same effect the instruction would
1953 have had if we had executed it at its original address, and return
1954 1. If the instruction didn't complete, relocate the PC and return
1955 -1. If the thread wasn't displaced stepping, return 0. */
1956
1957static int
1958displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1959{
1960 struct cleanup *old_cleanups;
1961 struct displaced_step_inferior_state *displaced
1962 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1963 int ret;
1964
1965 /* Was any thread of this process doing a displaced step? */
1966 if (displaced == NULL)
1967 return 0;
1968
1969 /* Was this event for the pid we displaced? */
1970 if (ptid_equal (displaced->step_ptid, null_ptid)
1971 || ! ptid_equal (displaced->step_ptid, event_ptid))
1972 return 0;
1973
1974 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1975
1976 displaced_step_restore (displaced, displaced->step_ptid);
1977
1978 /* Fixup may need to read memory/registers. Switch to the thread
1979 that we're fixing up. Also, target_stopped_by_watchpoint checks
1980 the current thread. */
1981 switch_to_thread (event_ptid);
1982
1983 /* Did the instruction complete successfully? */
1984 if (signal == GDB_SIGNAL_TRAP
1985 && !(target_stopped_by_watchpoint ()
1986 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1987 || target_have_steppable_watchpoint)))
1988 {
1989 /* Fix up the resulting state. */
1990 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1991 displaced->step_closure,
1992 displaced->step_original,
1993 displaced->step_copy,
1994 get_thread_regcache (displaced->step_ptid));
1995 ret = 1;
1996 }
1997 else
1998 {
1999 /* Since the instruction didn't complete, all we can do is
2000 relocate the PC. */
2001 struct regcache *regcache = get_thread_regcache (event_ptid);
2002 CORE_ADDR pc = regcache_read_pc (regcache);
2003
2004 pc = displaced->step_original + (pc - displaced->step_copy);
2005 regcache_write_pc (regcache, pc);
2006 ret = -1;
2007 }
2008
2009 do_cleanups (old_cleanups);
2010
2011 displaced->step_ptid = null_ptid;
2012
2013 return ret;
2014}
2015
2016/* Data to be passed around while handling an event. This data is
2017 discarded between events. */
2018struct execution_control_state
2019{
2020 ptid_t ptid;
2021 /* The thread that got the event, if this was a thread event; NULL
2022 otherwise. */
2023 struct thread_info *event_thread;
2024
2025 struct target_waitstatus ws;
2026 int stop_func_filled_in;
2027 CORE_ADDR stop_func_start;
2028 CORE_ADDR stop_func_end;
2029 const char *stop_func_name;
2030 int wait_some_more;
2031
2032 /* True if the event thread hit the single-step breakpoint of
2033 another thread. Thus the event doesn't cause a stop, the thread
2034 needs to be single-stepped past the single-step breakpoint before
2035 we can switch back to the original stepping thread. */
2036 int hit_singlestep_breakpoint;
2037};
2038
2039/* Clear ECS and set it to point at TP. */
2040
2041static void
2042reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2043{
2044 memset (ecs, 0, sizeof (*ecs));
2045 ecs->event_thread = tp;
2046 ecs->ptid = tp->ptid;
2047}
2048
2049static void keep_going_pass_signal (struct execution_control_state *ecs);
2050static void prepare_to_wait (struct execution_control_state *ecs);
2051static int keep_going_stepped_thread (struct thread_info *tp);
2052static int thread_still_needs_step_over (struct thread_info *tp);
2053static void stop_all_threads (void);
2054
2055/* Are there any pending step-over requests? If so, run all we can
2056 now and return true. Otherwise, return false. */
2057
2058static int
2059start_step_over (void)
2060{
2061 struct thread_info *tp, *next;
2062
2063 /* Don't start a new step-over if we already have an in-line
2064 step-over operation ongoing. */
2065 if (step_over_info_valid_p ())
2066 return 0;
2067
2068 for (tp = step_over_queue_head; tp != NULL; tp = next)
2069 {
2070 struct execution_control_state ecss;
2071 struct execution_control_state *ecs = &ecss;
2072 enum step_over_what step_what;
2073 int must_be_in_line;
2074
2075 next = thread_step_over_chain_next (tp);
2076
2077 /* If this inferior already has a displaced step in process,
2078 don't start a new one. */
2079 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2080 continue;
2081
2082 step_what = thread_still_needs_step_over (tp);
2083 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2084 || ((step_what & STEP_OVER_BREAKPOINT)
2085 && !use_displaced_stepping (tp)));
2086
2087 /* We currently stop all threads of all processes to step-over
2088 in-line. If we need to start a new in-line step-over, let
2089 any pending displaced steps finish first. */
2090 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2091 return 0;
2092
2093 thread_step_over_chain_remove (tp);
2094
2095 if (step_over_queue_head == NULL)
2096 {
2097 if (debug_infrun)
2098 fprintf_unfiltered (gdb_stdlog,
2099 "infrun: step-over queue now empty\n");
2100 }
2101
2102 if (tp->control.trap_expected
2103 || tp->resumed
2104 || tp->executing)
2105 {
2106 internal_error (__FILE__, __LINE__,
2107 "[%s] has inconsistent state: "
2108 "trap_expected=%d, resumed=%d, executing=%d\n",
2109 target_pid_to_str (tp->ptid),
2110 tp->control.trap_expected,
2111 tp->resumed,
2112 tp->executing);
2113 }
2114
2115 if (debug_infrun)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "infrun: resuming [%s] for step-over\n",
2118 target_pid_to_str (tp->ptid));
2119
2120 /* keep_going_pass_signal skips the step-over if the breakpoint
2121 is no longer inserted. In all-stop, we want to keep looking
2122 for a thread that needs a step-over instead of resuming TP,
2123 because we wouldn't be able to resume anything else until the
2124 target stops again. In non-stop, the resume always resumes
2125 only TP, so it's OK to let the thread resume freely. */
2126 if (!target_is_non_stop_p () && !step_what)
2127 continue;
2128
2129 switch_to_thread (tp->ptid);
2130 reset_ecs (ecs, tp);
2131 keep_going_pass_signal (ecs);
2132
2133 if (!ecs->wait_some_more)
2134 error (_("Command aborted."));
2135
2136 gdb_assert (tp->resumed);
2137
2138 /* If we started a new in-line step-over, we're done. */
2139 if (step_over_info_valid_p ())
2140 {
2141 gdb_assert (tp->control.trap_expected);
2142 return 1;
2143 }
2144
2145 if (!target_is_non_stop_p ())
2146 {
2147 /* On all-stop, shouldn't have resumed unless we needed a
2148 step over. */
2149 gdb_assert (tp->control.trap_expected
2150 || tp->step_after_step_resume_breakpoint);
2151
2152 /* With remote targets (at least), in all-stop, we can't
2153 issue any further remote commands until the program stops
2154 again. */
2155 return 1;
2156 }
2157
2158 /* Either the thread no longer needed a step-over, or a new
2159 displaced stepping sequence started. Even in the latter
2160 case, continue looking. Maybe we can also start another
2161 displaced step on a thread of other process. */
2162 }
2163
2164 return 0;
2165}
2166
2167/* Update global variables holding ptids to hold NEW_PTID if they were
2168 holding OLD_PTID. */
2169static void
2170infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2171{
2172 struct displaced_step_request *it;
2173 struct displaced_step_inferior_state *displaced;
2174
2175 if (ptid_equal (inferior_ptid, old_ptid))
2176 inferior_ptid = new_ptid;
2177
2178 for (displaced = displaced_step_inferior_states;
2179 displaced;
2180 displaced = displaced->next)
2181 {
2182 if (ptid_equal (displaced->step_ptid, old_ptid))
2183 displaced->step_ptid = new_ptid;
2184 }
2185}
2186
2187\f
2188/* Resuming. */
2189
2190/* Things to clean up if we QUIT out of resume (). */
2191static void
2192resume_cleanups (void *ignore)
2193{
2194 if (!ptid_equal (inferior_ptid, null_ptid))
2195 delete_single_step_breakpoints (inferior_thread ());
2196
2197 normal_stop ();
2198}
2199
2200static const char schedlock_off[] = "off";
2201static const char schedlock_on[] = "on";
2202static const char schedlock_step[] = "step";
2203static const char schedlock_replay[] = "replay";
2204static const char *const scheduler_enums[] = {
2205 schedlock_off,
2206 schedlock_on,
2207 schedlock_step,
2208 schedlock_replay,
2209 NULL
2210};
2211static const char *scheduler_mode = schedlock_replay;
2212static void
2213show_scheduler_mode (struct ui_file *file, int from_tty,
2214 struct cmd_list_element *c, const char *value)
2215{
2216 fprintf_filtered (file,
2217 _("Mode for locking scheduler "
2218 "during execution is \"%s\".\n"),
2219 value);
2220}
2221
2222static void
2223set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2224{
2225 if (!target_can_lock_scheduler)
2226 {
2227 scheduler_mode = schedlock_off;
2228 error (_("Target '%s' cannot support this command."), target_shortname);
2229 }
2230}
2231
2232/* True if execution commands resume all threads of all processes by
2233 default; otherwise, resume only threads of the current inferior
2234 process. */
2235int sched_multi = 0;
2236
2237/* Try to setup for software single stepping over the specified location.
2238 Return 1 if target_resume() should use hardware single step.
2239
2240 GDBARCH the current gdbarch.
2241 PC the location to step over. */
2242
2243static int
2244maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2245{
2246 int hw_step = 1;
2247
2248 if (execution_direction == EXEC_FORWARD
2249 && gdbarch_software_single_step_p (gdbarch)
2250 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2251 {
2252 hw_step = 0;
2253 }
2254 return hw_step;
2255}
2256
2257/* See infrun.h. */
2258
2259ptid_t
2260user_visible_resume_ptid (int step)
2261{
2262 ptid_t resume_ptid;
2263
2264 if (non_stop)
2265 {
2266 /* With non-stop mode on, threads are always handled
2267 individually. */
2268 resume_ptid = inferior_ptid;
2269 }
2270 else if ((scheduler_mode == schedlock_on)
2271 || (scheduler_mode == schedlock_step && step))
2272 {
2273 /* User-settable 'scheduler' mode requires solo thread
2274 resume. */
2275 resume_ptid = inferior_ptid;
2276 }
2277 else if ((scheduler_mode == schedlock_replay)
2278 && target_record_will_replay (minus_one_ptid, execution_direction))
2279 {
2280 /* User-settable 'scheduler' mode requires solo thread resume in replay
2281 mode. */
2282 resume_ptid = inferior_ptid;
2283 }
2284 else if (!sched_multi && target_supports_multi_process ())
2285 {
2286 /* Resume all threads of the current process (and none of other
2287 processes). */
2288 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2289 }
2290 else
2291 {
2292 /* Resume all threads of all processes. */
2293 resume_ptid = RESUME_ALL;
2294 }
2295
2296 return resume_ptid;
2297}
2298
2299/* Return a ptid representing the set of threads that we will resume,
2300 in the perspective of the target, assuming run control handling
2301 does not require leaving some threads stopped (e.g., stepping past
2302 breakpoint). USER_STEP indicates whether we're about to start the
2303 target for a stepping command. */
2304
2305static ptid_t
2306internal_resume_ptid (int user_step)
2307{
2308 /* In non-stop, we always control threads individually. Note that
2309 the target may always work in non-stop mode even with "set
2310 non-stop off", in which case user_visible_resume_ptid could
2311 return a wildcard ptid. */
2312 if (target_is_non_stop_p ())
2313 return inferior_ptid;
2314 else
2315 return user_visible_resume_ptid (user_step);
2316}
2317
2318/* Wrapper for target_resume, that handles infrun-specific
2319 bookkeeping. */
2320
2321static void
2322do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2323{
2324 struct thread_info *tp = inferior_thread ();
2325
2326 /* Install inferior's terminal modes. */
2327 target_terminal_inferior ();
2328
2329 /* Avoid confusing the next resume, if the next stop/resume
2330 happens to apply to another thread. */
2331 tp->suspend.stop_signal = GDB_SIGNAL_0;
2332
2333 /* Advise target which signals may be handled silently.
2334
2335 If we have removed breakpoints because we are stepping over one
2336 in-line (in any thread), we need to receive all signals to avoid
2337 accidentally skipping a breakpoint during execution of a signal
2338 handler.
2339
2340 Likewise if we're displaced stepping, otherwise a trap for a
2341 breakpoint in a signal handler might be confused with the
2342 displaced step finishing. We don't make the displaced_step_fixup
2343 step distinguish the cases instead, because:
2344
2345 - a backtrace while stopped in the signal handler would show the
2346 scratch pad as frame older than the signal handler, instead of
2347 the real mainline code.
2348
2349 - when the thread is later resumed, the signal handler would
2350 return to the scratch pad area, which would no longer be
2351 valid. */
2352 if (step_over_info_valid_p ()
2353 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2354 target_pass_signals (0, NULL);
2355 else
2356 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2357
2358 target_resume (resume_ptid, step, sig);
2359}
2360
2361/* Resume the inferior, but allow a QUIT. This is useful if the user
2362 wants to interrupt some lengthy single-stepping operation
2363 (for child processes, the SIGINT goes to the inferior, and so
2364 we get a SIGINT random_signal, but for remote debugging and perhaps
2365 other targets, that's not true).
2366
2367 SIG is the signal to give the inferior (zero for none). */
2368void
2369resume (enum gdb_signal sig)
2370{
2371 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2372 struct regcache *regcache = get_current_regcache ();
2373 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2374 struct thread_info *tp = inferior_thread ();
2375 CORE_ADDR pc = regcache_read_pc (regcache);
2376 struct address_space *aspace = get_regcache_aspace (regcache);
2377 ptid_t resume_ptid;
2378 /* This represents the user's step vs continue request. When
2379 deciding whether "set scheduler-locking step" applies, it's the
2380 user's intention that counts. */
2381 const int user_step = tp->control.stepping_command;
2382 /* This represents what we'll actually request the target to do.
2383 This can decay from a step to a continue, if e.g., we need to
2384 implement single-stepping with breakpoints (software
2385 single-step). */
2386 int step;
2387
2388 gdb_assert (!thread_is_in_step_over_chain (tp));
2389
2390 QUIT;
2391
2392 if (tp->suspend.waitstatus_pending_p)
2393 {
2394 if (debug_infrun)
2395 {
2396 char *statstr;
2397
2398 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2399 fprintf_unfiltered (gdb_stdlog,
2400 "infrun: resume: thread %s has pending wait status %s "
2401 "(currently_stepping=%d).\n",
2402 target_pid_to_str (tp->ptid), statstr,
2403 currently_stepping (tp));
2404 xfree (statstr);
2405 }
2406
2407 tp->resumed = 1;
2408
2409 /* FIXME: What should we do if we are supposed to resume this
2410 thread with a signal? Maybe we should maintain a queue of
2411 pending signals to deliver. */
2412 if (sig != GDB_SIGNAL_0)
2413 {
2414 warning (_("Couldn't deliver signal %s to %s."),
2415 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2416 }
2417
2418 tp->suspend.stop_signal = GDB_SIGNAL_0;
2419 discard_cleanups (old_cleanups);
2420
2421 if (target_can_async_p ())
2422 target_async (1);
2423 return;
2424 }
2425
2426 tp->stepped_breakpoint = 0;
2427
2428 /* Depends on stepped_breakpoint. */
2429 step = currently_stepping (tp);
2430
2431 if (current_inferior ()->waiting_for_vfork_done)
2432 {
2433 /* Don't try to single-step a vfork parent that is waiting for
2434 the child to get out of the shared memory region (by exec'ing
2435 or exiting). This is particularly important on software
2436 single-step archs, as the child process would trip on the
2437 software single step breakpoint inserted for the parent
2438 process. Since the parent will not actually execute any
2439 instruction until the child is out of the shared region (such
2440 are vfork's semantics), it is safe to simply continue it.
2441 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2442 the parent, and tell it to `keep_going', which automatically
2443 re-sets it stepping. */
2444 if (debug_infrun)
2445 fprintf_unfiltered (gdb_stdlog,
2446 "infrun: resume : clear step\n");
2447 step = 0;
2448 }
2449
2450 if (debug_infrun)
2451 fprintf_unfiltered (gdb_stdlog,
2452 "infrun: resume (step=%d, signal=%s), "
2453 "trap_expected=%d, current thread [%s] at %s\n",
2454 step, gdb_signal_to_symbol_string (sig),
2455 tp->control.trap_expected,
2456 target_pid_to_str (inferior_ptid),
2457 paddress (gdbarch, pc));
2458
2459 /* Normally, by the time we reach `resume', the breakpoints are either
2460 removed or inserted, as appropriate. The exception is if we're sitting
2461 at a permanent breakpoint; we need to step over it, but permanent
2462 breakpoints can't be removed. So we have to test for it here. */
2463 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2464 {
2465 if (sig != GDB_SIGNAL_0)
2466 {
2467 /* We have a signal to pass to the inferior. The resume
2468 may, or may not take us to the signal handler. If this
2469 is a step, we'll need to stop in the signal handler, if
2470 there's one, (if the target supports stepping into
2471 handlers), or in the next mainline instruction, if
2472 there's no handler. If this is a continue, we need to be
2473 sure to run the handler with all breakpoints inserted.
2474 In all cases, set a breakpoint at the current address
2475 (where the handler returns to), and once that breakpoint
2476 is hit, resume skipping the permanent breakpoint. If
2477 that breakpoint isn't hit, then we've stepped into the
2478 signal handler (or hit some other event). We'll delete
2479 the step-resume breakpoint then. */
2480
2481 if (debug_infrun)
2482 fprintf_unfiltered (gdb_stdlog,
2483 "infrun: resume: skipping permanent breakpoint, "
2484 "deliver signal first\n");
2485
2486 clear_step_over_info ();
2487 tp->control.trap_expected = 0;
2488
2489 if (tp->control.step_resume_breakpoint == NULL)
2490 {
2491 /* Set a "high-priority" step-resume, as we don't want
2492 user breakpoints at PC to trigger (again) when this
2493 hits. */
2494 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2495 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2496
2497 tp->step_after_step_resume_breakpoint = step;
2498 }
2499
2500 insert_breakpoints ();
2501 }
2502 else
2503 {
2504 /* There's no signal to pass, we can go ahead and skip the
2505 permanent breakpoint manually. */
2506 if (debug_infrun)
2507 fprintf_unfiltered (gdb_stdlog,
2508 "infrun: resume: skipping permanent breakpoint\n");
2509 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2510 /* Update pc to reflect the new address from which we will
2511 execute instructions. */
2512 pc = regcache_read_pc (regcache);
2513
2514 if (step)
2515 {
2516 /* We've already advanced the PC, so the stepping part
2517 is done. Now we need to arrange for a trap to be
2518 reported to handle_inferior_event. Set a breakpoint
2519 at the current PC, and run to it. Don't update
2520 prev_pc, because if we end in
2521 switch_back_to_stepped_thread, we want the "expected
2522 thread advanced also" branch to be taken. IOW, we
2523 don't want this thread to step further from PC
2524 (overstep). */
2525 gdb_assert (!step_over_info_valid_p ());
2526 insert_single_step_breakpoint (gdbarch, aspace, pc);
2527 insert_breakpoints ();
2528
2529 resume_ptid = internal_resume_ptid (user_step);
2530 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2531 discard_cleanups (old_cleanups);
2532 tp->resumed = 1;
2533 return;
2534 }
2535 }
2536 }
2537
2538 /* If we have a breakpoint to step over, make sure to do a single
2539 step only. Same if we have software watchpoints. */
2540 if (tp->control.trap_expected || bpstat_should_step ())
2541 tp->control.may_range_step = 0;
2542
2543 /* If enabled, step over breakpoints by executing a copy of the
2544 instruction at a different address.
2545
2546 We can't use displaced stepping when we have a signal to deliver;
2547 the comments for displaced_step_prepare explain why. The
2548 comments in the handle_inferior event for dealing with 'random
2549 signals' explain what we do instead.
2550
2551 We can't use displaced stepping when we are waiting for vfork_done
2552 event, displaced stepping breaks the vfork child similarly as single
2553 step software breakpoint. */
2554 if (tp->control.trap_expected
2555 && use_displaced_stepping (tp)
2556 && !step_over_info_valid_p ()
2557 && sig == GDB_SIGNAL_0
2558 && !current_inferior ()->waiting_for_vfork_done)
2559 {
2560 int prepared = displaced_step_prepare (inferior_ptid);
2561
2562 if (prepared == 0)
2563 {
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog,
2566 "Got placed in step-over queue\n");
2567
2568 tp->control.trap_expected = 0;
2569 discard_cleanups (old_cleanups);
2570 return;
2571 }
2572 else if (prepared < 0)
2573 {
2574 /* Fallback to stepping over the breakpoint in-line. */
2575
2576 if (target_is_non_stop_p ())
2577 stop_all_threads ();
2578
2579 set_step_over_info (get_regcache_aspace (regcache),
2580 regcache_read_pc (regcache), 0);
2581
2582 step = maybe_software_singlestep (gdbarch, pc);
2583
2584 insert_breakpoints ();
2585 }
2586 else if (prepared > 0)
2587 {
2588 struct displaced_step_inferior_state *displaced;
2589
2590 /* Update pc to reflect the new address from which we will
2591 execute instructions due to displaced stepping. */
2592 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2593
2594 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2595 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2596 displaced->step_closure);
2597 }
2598 }
2599
2600 /* Do we need to do it the hard way, w/temp breakpoints? */
2601 else if (step)
2602 step = maybe_software_singlestep (gdbarch, pc);
2603
2604 /* Currently, our software single-step implementation leads to different
2605 results than hardware single-stepping in one situation: when stepping
2606 into delivering a signal which has an associated signal handler,
2607 hardware single-step will stop at the first instruction of the handler,
2608 while software single-step will simply skip execution of the handler.
2609
2610 For now, this difference in behavior is accepted since there is no
2611 easy way to actually implement single-stepping into a signal handler
2612 without kernel support.
2613
2614 However, there is one scenario where this difference leads to follow-on
2615 problems: if we're stepping off a breakpoint by removing all breakpoints
2616 and then single-stepping. In this case, the software single-step
2617 behavior means that even if there is a *breakpoint* in the signal
2618 handler, GDB still would not stop.
2619
2620 Fortunately, we can at least fix this particular issue. We detect
2621 here the case where we are about to deliver a signal while software
2622 single-stepping with breakpoints removed. In this situation, we
2623 revert the decisions to remove all breakpoints and insert single-
2624 step breakpoints, and instead we install a step-resume breakpoint
2625 at the current address, deliver the signal without stepping, and
2626 once we arrive back at the step-resume breakpoint, actually step
2627 over the breakpoint we originally wanted to step over. */
2628 if (thread_has_single_step_breakpoints_set (tp)
2629 && sig != GDB_SIGNAL_0
2630 && step_over_info_valid_p ())
2631 {
2632 /* If we have nested signals or a pending signal is delivered
2633 immediately after a handler returns, might might already have
2634 a step-resume breakpoint set on the earlier handler. We cannot
2635 set another step-resume breakpoint; just continue on until the
2636 original breakpoint is hit. */
2637 if (tp->control.step_resume_breakpoint == NULL)
2638 {
2639 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2640 tp->step_after_step_resume_breakpoint = 1;
2641 }
2642
2643 delete_single_step_breakpoints (tp);
2644
2645 clear_step_over_info ();
2646 tp->control.trap_expected = 0;
2647
2648 insert_breakpoints ();
2649 }
2650
2651 /* If STEP is set, it's a request to use hardware stepping
2652 facilities. But in that case, we should never
2653 use singlestep breakpoint. */
2654 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2655
2656 /* Decide the set of threads to ask the target to resume. */
2657 if ((step || thread_has_single_step_breakpoints_set (tp))
2658 && tp->control.trap_expected)
2659 {
2660 /* We're allowing a thread to run past a breakpoint it has
2661 hit, by single-stepping the thread with the breakpoint
2662 removed. In which case, we need to single-step only this
2663 thread, and keep others stopped, as they can miss this
2664 breakpoint if allowed to run. */
2665 resume_ptid = inferior_ptid;
2666 }
2667 else
2668 resume_ptid = internal_resume_ptid (user_step);
2669
2670 if (execution_direction != EXEC_REVERSE
2671 && step && breakpoint_inserted_here_p (aspace, pc))
2672 {
2673 /* There are two cases where we currently need to step a
2674 breakpoint instruction when we have a signal to deliver:
2675
2676 - See handle_signal_stop where we handle random signals that
2677 could take out us out of the stepping range. Normally, in
2678 that case we end up continuing (instead of stepping) over the
2679 signal handler with a breakpoint at PC, but there are cases
2680 where we should _always_ single-step, even if we have a
2681 step-resume breakpoint, like when a software watchpoint is
2682 set. Assuming single-stepping and delivering a signal at the
2683 same time would takes us to the signal handler, then we could
2684 have removed the breakpoint at PC to step over it. However,
2685 some hardware step targets (like e.g., Mac OS) can't step
2686 into signal handlers, and for those, we need to leave the
2687 breakpoint at PC inserted, as otherwise if the handler
2688 recurses and executes PC again, it'll miss the breakpoint.
2689 So we leave the breakpoint inserted anyway, but we need to
2690 record that we tried to step a breakpoint instruction, so
2691 that adjust_pc_after_break doesn't end up confused.
2692
2693 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2694 in one thread after another thread that was stepping had been
2695 momentarily paused for a step-over. When we re-resume the
2696 stepping thread, it may be resumed from that address with a
2697 breakpoint that hasn't trapped yet. Seen with
2698 gdb.threads/non-stop-fair-events.exp, on targets that don't
2699 do displaced stepping. */
2700
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "infrun: resume: [%s] stepped breakpoint\n",
2704 target_pid_to_str (tp->ptid));
2705
2706 tp->stepped_breakpoint = 1;
2707
2708 /* Most targets can step a breakpoint instruction, thus
2709 executing it normally. But if this one cannot, just
2710 continue and we will hit it anyway. */
2711 if (gdbarch_cannot_step_breakpoint (gdbarch))
2712 step = 0;
2713 }
2714
2715 if (debug_displaced
2716 && tp->control.trap_expected
2717 && use_displaced_stepping (tp)
2718 && !step_over_info_valid_p ())
2719 {
2720 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2721 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2722 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2723 gdb_byte buf[4];
2724
2725 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2726 paddress (resume_gdbarch, actual_pc));
2727 read_memory (actual_pc, buf, sizeof (buf));
2728 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2729 }
2730
2731 if (tp->control.may_range_step)
2732 {
2733 /* If we're resuming a thread with the PC out of the step
2734 range, then we're doing some nested/finer run control
2735 operation, like stepping the thread out of the dynamic
2736 linker or the displaced stepping scratch pad. We
2737 shouldn't have allowed a range step then. */
2738 gdb_assert (pc_in_thread_step_range (pc, tp));
2739 }
2740
2741 do_target_resume (resume_ptid, step, sig);
2742 tp->resumed = 1;
2743 discard_cleanups (old_cleanups);
2744}
2745\f
2746/* Proceeding. */
2747
2748/* See infrun.h. */
2749
2750/* Counter that tracks number of user visible stops. This can be used
2751 to tell whether a command has proceeded the inferior past the
2752 current location. This allows e.g., inferior function calls in
2753 breakpoint commands to not interrupt the command list. When the
2754 call finishes successfully, the inferior is standing at the same
2755 breakpoint as if nothing happened (and so we don't call
2756 normal_stop). */
2757static ULONGEST current_stop_id;
2758
2759/* See infrun.h. */
2760
2761ULONGEST
2762get_stop_id (void)
2763{
2764 return current_stop_id;
2765}
2766
2767/* Called when we report a user visible stop. */
2768
2769static void
2770new_stop_id (void)
2771{
2772 current_stop_id++;
2773}
2774
2775/* Clear out all variables saying what to do when inferior is continued.
2776 First do this, then set the ones you want, then call `proceed'. */
2777
2778static void
2779clear_proceed_status_thread (struct thread_info *tp)
2780{
2781 if (debug_infrun)
2782 fprintf_unfiltered (gdb_stdlog,
2783 "infrun: clear_proceed_status_thread (%s)\n",
2784 target_pid_to_str (tp->ptid));
2785
2786 /* If we're starting a new sequence, then the previous finished
2787 single-step is no longer relevant. */
2788 if (tp->suspend.waitstatus_pending_p)
2789 {
2790 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2791 {
2792 if (debug_infrun)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "infrun: clear_proceed_status: pending "
2795 "event of %s was a finished step. "
2796 "Discarding.\n",
2797 target_pid_to_str (tp->ptid));
2798
2799 tp->suspend.waitstatus_pending_p = 0;
2800 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2801 }
2802 else if (debug_infrun)
2803 {
2804 char *statstr;
2805
2806 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2807 fprintf_unfiltered (gdb_stdlog,
2808 "infrun: clear_proceed_status_thread: thread %s "
2809 "has pending wait status %s "
2810 "(currently_stepping=%d).\n",
2811 target_pid_to_str (tp->ptid), statstr,
2812 currently_stepping (tp));
2813 xfree (statstr);
2814 }
2815 }
2816
2817 /* If this signal should not be seen by program, give it zero.
2818 Used for debugging signals. */
2819 if (!signal_pass_state (tp->suspend.stop_signal))
2820 tp->suspend.stop_signal = GDB_SIGNAL_0;
2821
2822 thread_fsm_delete (tp->thread_fsm);
2823 tp->thread_fsm = NULL;
2824
2825 tp->control.trap_expected = 0;
2826 tp->control.step_range_start = 0;
2827 tp->control.step_range_end = 0;
2828 tp->control.may_range_step = 0;
2829 tp->control.step_frame_id = null_frame_id;
2830 tp->control.step_stack_frame_id = null_frame_id;
2831 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2832 tp->control.step_start_function = NULL;
2833 tp->stop_requested = 0;
2834
2835 tp->control.stop_step = 0;
2836
2837 tp->control.proceed_to_finish = 0;
2838
2839 tp->control.command_interp = NULL;
2840 tp->control.stepping_command = 0;
2841
2842 /* Discard any remaining commands or status from previous stop. */
2843 bpstat_clear (&tp->control.stop_bpstat);
2844}
2845
2846void
2847clear_proceed_status (int step)
2848{
2849 /* With scheduler-locking replay, stop replaying other threads if we're
2850 not replaying the user-visible resume ptid.
2851
2852 This is a convenience feature to not require the user to explicitly
2853 stop replaying the other threads. We're assuming that the user's
2854 intent is to resume tracing the recorded process. */
2855 if (!non_stop && scheduler_mode == schedlock_replay
2856 && target_record_is_replaying (minus_one_ptid)
2857 && !target_record_will_replay (user_visible_resume_ptid (step),
2858 execution_direction))
2859 target_record_stop_replaying ();
2860
2861 if (!non_stop)
2862 {
2863 struct thread_info *tp;
2864 ptid_t resume_ptid;
2865
2866 resume_ptid = user_visible_resume_ptid (step);
2867
2868 /* In all-stop mode, delete the per-thread status of all threads
2869 we're about to resume, implicitly and explicitly. */
2870 ALL_NON_EXITED_THREADS (tp)
2871 {
2872 if (!ptid_match (tp->ptid, resume_ptid))
2873 continue;
2874 clear_proceed_status_thread (tp);
2875 }
2876 }
2877
2878 if (!ptid_equal (inferior_ptid, null_ptid))
2879 {
2880 struct inferior *inferior;
2881
2882 if (non_stop)
2883 {
2884 /* If in non-stop mode, only delete the per-thread status of
2885 the current thread. */
2886 clear_proceed_status_thread (inferior_thread ());
2887 }
2888
2889 inferior = current_inferior ();
2890 inferior->control.stop_soon = NO_STOP_QUIETLY;
2891 }
2892
2893 observer_notify_about_to_proceed ();
2894}
2895
2896/* Returns true if TP is still stopped at a breakpoint that needs
2897 stepping-over in order to make progress. If the breakpoint is gone
2898 meanwhile, we can skip the whole step-over dance. */
2899
2900static int
2901thread_still_needs_step_over_bp (struct thread_info *tp)
2902{
2903 if (tp->stepping_over_breakpoint)
2904 {
2905 struct regcache *regcache = get_thread_regcache (tp->ptid);
2906
2907 if (breakpoint_here_p (get_regcache_aspace (regcache),
2908 regcache_read_pc (regcache))
2909 == ordinary_breakpoint_here)
2910 return 1;
2911
2912 tp->stepping_over_breakpoint = 0;
2913 }
2914
2915 return 0;
2916}
2917
2918/* Check whether thread TP still needs to start a step-over in order
2919 to make progress when resumed. Returns an bitwise or of enum
2920 step_over_what bits, indicating what needs to be stepped over. */
2921
2922static int
2923thread_still_needs_step_over (struct thread_info *tp)
2924{
2925 struct inferior *inf = find_inferior_ptid (tp->ptid);
2926 int what = 0;
2927
2928 if (thread_still_needs_step_over_bp (tp))
2929 what |= STEP_OVER_BREAKPOINT;
2930
2931 if (tp->stepping_over_watchpoint
2932 && !target_have_steppable_watchpoint)
2933 what |= STEP_OVER_WATCHPOINT;
2934
2935 return what;
2936}
2937
2938/* Returns true if scheduler locking applies. STEP indicates whether
2939 we're about to do a step/next-like command to a thread. */
2940
2941static int
2942schedlock_applies (struct thread_info *tp)
2943{
2944 return (scheduler_mode == schedlock_on
2945 || (scheduler_mode == schedlock_step
2946 && tp->control.stepping_command)
2947 || (scheduler_mode == schedlock_replay
2948 && target_record_will_replay (minus_one_ptid,
2949 execution_direction)));
2950}
2951
2952/* Basic routine for continuing the program in various fashions.
2953
2954 ADDR is the address to resume at, or -1 for resume where stopped.
2955 SIGGNAL is the signal to give it, or 0 for none,
2956 or -1 for act according to how it stopped.
2957 STEP is nonzero if should trap after one instruction.
2958 -1 means return after that and print nothing.
2959 You should probably set various step_... variables
2960 before calling here, if you are stepping.
2961
2962 You should call clear_proceed_status before calling proceed. */
2963
2964void
2965proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2966{
2967 struct regcache *regcache;
2968 struct gdbarch *gdbarch;
2969 struct thread_info *tp;
2970 CORE_ADDR pc;
2971 struct address_space *aspace;
2972 ptid_t resume_ptid;
2973 struct execution_control_state ecss;
2974 struct execution_control_state *ecs = &ecss;
2975 struct cleanup *old_chain;
2976 int started;
2977
2978 /* If we're stopped at a fork/vfork, follow the branch set by the
2979 "set follow-fork-mode" command; otherwise, we'll just proceed
2980 resuming the current thread. */
2981 if (!follow_fork ())
2982 {
2983 /* The target for some reason decided not to resume. */
2984 normal_stop ();
2985 if (target_can_async_p ())
2986 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2987 return;
2988 }
2989
2990 /* We'll update this if & when we switch to a new thread. */
2991 previous_inferior_ptid = inferior_ptid;
2992
2993 regcache = get_current_regcache ();
2994 gdbarch = get_regcache_arch (regcache);
2995 aspace = get_regcache_aspace (regcache);
2996 pc = regcache_read_pc (regcache);
2997 tp = inferior_thread ();
2998
2999 /* Fill in with reasonable starting values. */
3000 init_thread_stepping_state (tp);
3001
3002 gdb_assert (!thread_is_in_step_over_chain (tp));
3003
3004 if (addr == (CORE_ADDR) -1)
3005 {
3006 if (pc == stop_pc
3007 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3008 && execution_direction != EXEC_REVERSE)
3009 /* There is a breakpoint at the address we will resume at,
3010 step one instruction before inserting breakpoints so that
3011 we do not stop right away (and report a second hit at this
3012 breakpoint).
3013
3014 Note, we don't do this in reverse, because we won't
3015 actually be executing the breakpoint insn anyway.
3016 We'll be (un-)executing the previous instruction. */
3017 tp->stepping_over_breakpoint = 1;
3018 else if (gdbarch_single_step_through_delay_p (gdbarch)
3019 && gdbarch_single_step_through_delay (gdbarch,
3020 get_current_frame ()))
3021 /* We stepped onto an instruction that needs to be stepped
3022 again before re-inserting the breakpoint, do so. */
3023 tp->stepping_over_breakpoint = 1;
3024 }
3025 else
3026 {
3027 regcache_write_pc (regcache, addr);
3028 }
3029
3030 if (siggnal != GDB_SIGNAL_DEFAULT)
3031 tp->suspend.stop_signal = siggnal;
3032
3033 /* Record the interpreter that issued the execution command that
3034 caused this thread to resume. If the top level interpreter is
3035 MI/async, and the execution command was a CLI command
3036 (next/step/etc.), we'll want to print stop event output to the MI
3037 console channel (the stepped-to line, etc.), as if the user
3038 entered the execution command on a real GDB console. */
3039 tp->control.command_interp = command_interp ();
3040
3041 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3042
3043 /* If an exception is thrown from this point on, make sure to
3044 propagate GDB's knowledge of the executing state to the
3045 frontend/user running state. */
3046 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3047
3048 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3049 threads (e.g., we might need to set threads stepping over
3050 breakpoints first), from the user/frontend's point of view, all
3051 threads in RESUME_PTID are now running. Unless we're calling an
3052 inferior function, as in that case we pretend the inferior
3053 doesn't run at all. */
3054 if (!tp->control.in_infcall)
3055 set_running (resume_ptid, 1);
3056
3057 if (debug_infrun)
3058 fprintf_unfiltered (gdb_stdlog,
3059 "infrun: proceed (addr=%s, signal=%s)\n",
3060 paddress (gdbarch, addr),
3061 gdb_signal_to_symbol_string (siggnal));
3062
3063 annotate_starting ();
3064
3065 /* Make sure that output from GDB appears before output from the
3066 inferior. */
3067 gdb_flush (gdb_stdout);
3068
3069 /* In a multi-threaded task we may select another thread and
3070 then continue or step.
3071
3072 But if a thread that we're resuming had stopped at a breakpoint,
3073 it will immediately cause another breakpoint stop without any
3074 execution (i.e. it will report a breakpoint hit incorrectly). So
3075 we must step over it first.
3076
3077 Look for threads other than the current (TP) that reported a
3078 breakpoint hit and haven't been resumed yet since. */
3079
3080 /* If scheduler locking applies, we can avoid iterating over all
3081 threads. */
3082 if (!non_stop && !schedlock_applies (tp))
3083 {
3084 struct thread_info *current = tp;
3085
3086 ALL_NON_EXITED_THREADS (tp)
3087 {
3088 /* Ignore the current thread here. It's handled
3089 afterwards. */
3090 if (tp == current)
3091 continue;
3092
3093 /* Ignore threads of processes we're not resuming. */
3094 if (!ptid_match (tp->ptid, resume_ptid))
3095 continue;
3096
3097 if (!thread_still_needs_step_over (tp))
3098 continue;
3099
3100 gdb_assert (!thread_is_in_step_over_chain (tp));
3101
3102 if (debug_infrun)
3103 fprintf_unfiltered (gdb_stdlog,
3104 "infrun: need to step-over [%s] first\n",
3105 target_pid_to_str (tp->ptid));
3106
3107 thread_step_over_chain_enqueue (tp);
3108 }
3109
3110 tp = current;
3111 }
3112
3113 /* Enqueue the current thread last, so that we move all other
3114 threads over their breakpoints first. */
3115 if (tp->stepping_over_breakpoint)
3116 thread_step_over_chain_enqueue (tp);
3117
3118 /* If the thread isn't started, we'll still need to set its prev_pc,
3119 so that switch_back_to_stepped_thread knows the thread hasn't
3120 advanced. Must do this before resuming any thread, as in
3121 all-stop/remote, once we resume we can't send any other packet
3122 until the target stops again. */
3123 tp->prev_pc = regcache_read_pc (regcache);
3124
3125 started = start_step_over ();
3126
3127 if (step_over_info_valid_p ())
3128 {
3129 /* Either this thread started a new in-line step over, or some
3130 other thread was already doing one. In either case, don't
3131 resume anything else until the step-over is finished. */
3132 }
3133 else if (started && !target_is_non_stop_p ())
3134 {
3135 /* A new displaced stepping sequence was started. In all-stop,
3136 we can't talk to the target anymore until it next stops. */
3137 }
3138 else if (!non_stop && target_is_non_stop_p ())
3139 {
3140 /* In all-stop, but the target is always in non-stop mode.
3141 Start all other threads that are implicitly resumed too. */
3142 ALL_NON_EXITED_THREADS (tp)
3143 {
3144 /* Ignore threads of processes we're not resuming. */
3145 if (!ptid_match (tp->ptid, resume_ptid))
3146 continue;
3147
3148 if (tp->resumed)
3149 {
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "infrun: proceed: [%s] resumed\n",
3153 target_pid_to_str (tp->ptid));
3154 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3155 continue;
3156 }
3157
3158 if (thread_is_in_step_over_chain (tp))
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "infrun: proceed: [%s] needs step-over\n",
3163 target_pid_to_str (tp->ptid));
3164 continue;
3165 }
3166
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog,
3169 "infrun: proceed: resuming %s\n",
3170 target_pid_to_str (tp->ptid));
3171
3172 reset_ecs (ecs, tp);
3173 switch_to_thread (tp->ptid);
3174 keep_going_pass_signal (ecs);
3175 if (!ecs->wait_some_more)
3176 error (_("Command aborted."));
3177 }
3178 }
3179 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3180 {
3181 /* The thread wasn't started, and isn't queued, run it now. */
3182 reset_ecs (ecs, tp);
3183 switch_to_thread (tp->ptid);
3184 keep_going_pass_signal (ecs);
3185 if (!ecs->wait_some_more)
3186 error (_("Command aborted."));
3187 }
3188
3189 discard_cleanups (old_chain);
3190
3191 /* Tell the event loop to wait for it to stop. If the target
3192 supports asynchronous execution, it'll do this from within
3193 target_resume. */
3194 if (!target_can_async_p ())
3195 mark_async_event_handler (infrun_async_inferior_event_token);
3196}
3197\f
3198
3199/* Start remote-debugging of a machine over a serial link. */
3200
3201void
3202start_remote (int from_tty)
3203{
3204 struct inferior *inferior;
3205
3206 inferior = current_inferior ();
3207 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3208
3209 /* Always go on waiting for the target, regardless of the mode. */
3210 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3211 indicate to wait_for_inferior that a target should timeout if
3212 nothing is returned (instead of just blocking). Because of this,
3213 targets expecting an immediate response need to, internally, set
3214 things up so that the target_wait() is forced to eventually
3215 timeout. */
3216 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3217 differentiate to its caller what the state of the target is after
3218 the initial open has been performed. Here we're assuming that
3219 the target has stopped. It should be possible to eventually have
3220 target_open() return to the caller an indication that the target
3221 is currently running and GDB state should be set to the same as
3222 for an async run. */
3223 wait_for_inferior ();
3224
3225 /* Now that the inferior has stopped, do any bookkeeping like
3226 loading shared libraries. We want to do this before normal_stop,
3227 so that the displayed frame is up to date. */
3228 post_create_inferior (&current_target, from_tty);
3229
3230 normal_stop ();
3231}
3232
3233/* Initialize static vars when a new inferior begins. */
3234
3235void
3236init_wait_for_inferior (void)
3237{
3238 /* These are meaningless until the first time through wait_for_inferior. */
3239
3240 breakpoint_init_inferior (inf_starting);
3241
3242 clear_proceed_status (0);
3243
3244 target_last_wait_ptid = minus_one_ptid;
3245
3246 previous_inferior_ptid = inferior_ptid;
3247
3248 /* Discard any skipped inlined frames. */
3249 clear_inline_frame_state (minus_one_ptid);
3250}
3251
3252\f
3253
3254static void handle_inferior_event (struct execution_control_state *ecs);
3255
3256static void handle_step_into_function (struct gdbarch *gdbarch,
3257 struct execution_control_state *ecs);
3258static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260static void handle_signal_stop (struct execution_control_state *ecs);
3261static void check_exception_resume (struct execution_control_state *,
3262 struct frame_info *);
3263
3264static void end_stepping_range (struct execution_control_state *ecs);
3265static void stop_waiting (struct execution_control_state *ecs);
3266static void keep_going (struct execution_control_state *ecs);
3267static void process_event_stop_test (struct execution_control_state *ecs);
3268static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3269
3270/* Callback for iterate over threads. If the thread is stopped, but
3271 the user/frontend doesn't know about that yet, go through
3272 normal_stop, as if the thread had just stopped now. ARG points at
3273 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3274 ptid_is_pid(PTID) is true, applies to all threads of the process
3275 pointed at by PTID. Otherwise, apply only to the thread pointed by
3276 PTID. */
3277
3278static int
3279infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3280{
3281 ptid_t ptid = * (ptid_t *) arg;
3282
3283 if ((ptid_equal (info->ptid, ptid)
3284 || ptid_equal (minus_one_ptid, ptid)
3285 || (ptid_is_pid (ptid)
3286 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3287 && is_running (info->ptid)
3288 && !is_executing (info->ptid))
3289 {
3290 struct cleanup *old_chain;
3291 struct execution_control_state ecss;
3292 struct execution_control_state *ecs = &ecss;
3293
3294 memset (ecs, 0, sizeof (*ecs));
3295
3296 old_chain = make_cleanup_restore_current_thread ();
3297
3298 overlay_cache_invalid = 1;
3299 /* Flush target cache before starting to handle each event.
3300 Target was running and cache could be stale. This is just a
3301 heuristic. Running threads may modify target memory, but we
3302 don't get any event. */
3303 target_dcache_invalidate ();
3304
3305 /* Go through handle_inferior_event/normal_stop, so we always
3306 have consistent output as if the stop event had been
3307 reported. */
3308 ecs->ptid = info->ptid;
3309 ecs->event_thread = info;
3310 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3311 ecs->ws.value.sig = GDB_SIGNAL_0;
3312
3313 handle_inferior_event (ecs);
3314
3315 if (!ecs->wait_some_more)
3316 {
3317 /* Cancel any running execution command. */
3318 thread_cancel_execution_command (info);
3319
3320 normal_stop ();
3321 }
3322
3323 do_cleanups (old_chain);
3324 }
3325
3326 return 0;
3327}
3328
3329/* This function is attached as a "thread_stop_requested" observer.
3330 Cleanup local state that assumed the PTID was to be resumed, and
3331 report the stop to the frontend. */
3332
3333static void
3334infrun_thread_stop_requested (ptid_t ptid)
3335{
3336 struct thread_info *tp;
3337
3338 /* PTID was requested to stop. Remove matching threads from the
3339 step-over queue, so we don't try to resume them
3340 automatically. */
3341 ALL_NON_EXITED_THREADS (tp)
3342 if (ptid_match (tp->ptid, ptid))
3343 {
3344 if (thread_is_in_step_over_chain (tp))
3345 thread_step_over_chain_remove (tp);
3346 }
3347
3348 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3349}
3350
3351static void
3352infrun_thread_thread_exit (struct thread_info *tp, int silent)
3353{
3354 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3355 nullify_last_target_wait_ptid ();
3356}
3357
3358/* Delete the step resume, single-step and longjmp/exception resume
3359 breakpoints of TP. */
3360
3361static void
3362delete_thread_infrun_breakpoints (struct thread_info *tp)
3363{
3364 delete_step_resume_breakpoint (tp);
3365 delete_exception_resume_breakpoint (tp);
3366 delete_single_step_breakpoints (tp);
3367}
3368
3369/* If the target still has execution, call FUNC for each thread that
3370 just stopped. In all-stop, that's all the non-exited threads; in
3371 non-stop, that's the current thread, only. */
3372
3373typedef void (*for_each_just_stopped_thread_callback_func)
3374 (struct thread_info *tp);
3375
3376static void
3377for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3378{
3379 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3380 return;
3381
3382 if (target_is_non_stop_p ())
3383 {
3384 /* If in non-stop mode, only the current thread stopped. */
3385 func (inferior_thread ());
3386 }
3387 else
3388 {
3389 struct thread_info *tp;
3390
3391 /* In all-stop mode, all threads have stopped. */
3392 ALL_NON_EXITED_THREADS (tp)
3393 {
3394 func (tp);
3395 }
3396 }
3397}
3398
3399/* Delete the step resume and longjmp/exception resume breakpoints of
3400 the threads that just stopped. */
3401
3402static void
3403delete_just_stopped_threads_infrun_breakpoints (void)
3404{
3405 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3406}
3407
3408/* Delete the single-step breakpoints of the threads that just
3409 stopped. */
3410
3411static void
3412delete_just_stopped_threads_single_step_breakpoints (void)
3413{
3414 for_each_just_stopped_thread (delete_single_step_breakpoints);
3415}
3416
3417/* A cleanup wrapper. */
3418
3419static void
3420delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3421{
3422 delete_just_stopped_threads_infrun_breakpoints ();
3423}
3424
3425/* See infrun.h. */
3426
3427void
3428print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3429 const struct target_waitstatus *ws)
3430{
3431 char *status_string = target_waitstatus_to_string (ws);
3432 struct ui_file *tmp_stream = mem_fileopen ();
3433 char *text;
3434
3435 /* The text is split over several lines because it was getting too long.
3436 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3437 output as a unit; we want only one timestamp printed if debug_timestamp
3438 is set. */
3439
3440 fprintf_unfiltered (tmp_stream,
3441 "infrun: target_wait (%d.%ld.%ld",
3442 ptid_get_pid (waiton_ptid),
3443 ptid_get_lwp (waiton_ptid),
3444 ptid_get_tid (waiton_ptid));
3445 if (ptid_get_pid (waiton_ptid) != -1)
3446 fprintf_unfiltered (tmp_stream,
3447 " [%s]", target_pid_to_str (waiton_ptid));
3448 fprintf_unfiltered (tmp_stream, ", status) =\n");
3449 fprintf_unfiltered (tmp_stream,
3450 "infrun: %d.%ld.%ld [%s],\n",
3451 ptid_get_pid (result_ptid),
3452 ptid_get_lwp (result_ptid),
3453 ptid_get_tid (result_ptid),
3454 target_pid_to_str (result_ptid));
3455 fprintf_unfiltered (tmp_stream,
3456 "infrun: %s\n",
3457 status_string);
3458
3459 text = ui_file_xstrdup (tmp_stream, NULL);
3460
3461 /* This uses %s in part to handle %'s in the text, but also to avoid
3462 a gcc error: the format attribute requires a string literal. */
3463 fprintf_unfiltered (gdb_stdlog, "%s", text);
3464
3465 xfree (status_string);
3466 xfree (text);
3467 ui_file_delete (tmp_stream);
3468}
3469
3470/* Select a thread at random, out of those which are resumed and have
3471 had events. */
3472
3473static struct thread_info *
3474random_pending_event_thread (ptid_t waiton_ptid)
3475{
3476 struct thread_info *event_tp;
3477 int num_events = 0;
3478 int random_selector;
3479
3480 /* First see how many events we have. Count only resumed threads
3481 that have an event pending. */
3482 ALL_NON_EXITED_THREADS (event_tp)
3483 if (ptid_match (event_tp->ptid, waiton_ptid)
3484 && event_tp->resumed
3485 && event_tp->suspend.waitstatus_pending_p)
3486 num_events++;
3487
3488 if (num_events == 0)
3489 return NULL;
3490
3491 /* Now randomly pick a thread out of those that have had events. */
3492 random_selector = (int)
3493 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3494
3495 if (debug_infrun && num_events > 1)
3496 fprintf_unfiltered (gdb_stdlog,
3497 "infrun: Found %d events, selecting #%d\n",
3498 num_events, random_selector);
3499
3500 /* Select the Nth thread that has had an event. */
3501 ALL_NON_EXITED_THREADS (event_tp)
3502 if (ptid_match (event_tp->ptid, waiton_ptid)
3503 && event_tp->resumed
3504 && event_tp->suspend.waitstatus_pending_p)
3505 if (random_selector-- == 0)
3506 break;
3507
3508 return event_tp;
3509}
3510
3511/* Wrapper for target_wait that first checks whether threads have
3512 pending statuses to report before actually asking the target for
3513 more events. */
3514
3515static ptid_t
3516do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3517{
3518 ptid_t event_ptid;
3519 struct thread_info *tp;
3520
3521 /* First check if there is a resumed thread with a wait status
3522 pending. */
3523 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3524 {
3525 tp = random_pending_event_thread (ptid);
3526 }
3527 else
3528 {
3529 if (debug_infrun)
3530 fprintf_unfiltered (gdb_stdlog,
3531 "infrun: Waiting for specific thread %s.\n",
3532 target_pid_to_str (ptid));
3533
3534 /* We have a specific thread to check. */
3535 tp = find_thread_ptid (ptid);
3536 gdb_assert (tp != NULL);
3537 if (!tp->suspend.waitstatus_pending_p)
3538 tp = NULL;
3539 }
3540
3541 if (tp != NULL
3542 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3543 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3544 {
3545 struct regcache *regcache = get_thread_regcache (tp->ptid);
3546 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3547 CORE_ADDR pc;
3548 int discard = 0;
3549
3550 pc = regcache_read_pc (regcache);
3551
3552 if (pc != tp->suspend.stop_pc)
3553 {
3554 if (debug_infrun)
3555 fprintf_unfiltered (gdb_stdlog,
3556 "infrun: PC of %s changed. was=%s, now=%s\n",
3557 target_pid_to_str (tp->ptid),
3558 paddress (gdbarch, tp->prev_pc),
3559 paddress (gdbarch, pc));
3560 discard = 1;
3561 }
3562 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3563 {
3564 if (debug_infrun)
3565 fprintf_unfiltered (gdb_stdlog,
3566 "infrun: previous breakpoint of %s, at %s gone\n",
3567 target_pid_to_str (tp->ptid),
3568 paddress (gdbarch, pc));
3569
3570 discard = 1;
3571 }
3572
3573 if (discard)
3574 {
3575 if (debug_infrun)
3576 fprintf_unfiltered (gdb_stdlog,
3577 "infrun: pending event of %s cancelled.\n",
3578 target_pid_to_str (tp->ptid));
3579
3580 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3581 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3582 }
3583 }
3584
3585 if (tp != NULL)
3586 {
3587 if (debug_infrun)
3588 {
3589 char *statstr;
3590
3591 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3592 fprintf_unfiltered (gdb_stdlog,
3593 "infrun: Using pending wait status %s for %s.\n",
3594 statstr,
3595 target_pid_to_str (tp->ptid));
3596 xfree (statstr);
3597 }
3598
3599 /* Now that we've selected our final event LWP, un-adjust its PC
3600 if it was a software breakpoint (and the target doesn't
3601 always adjust the PC itself). */
3602 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3603 && !target_supports_stopped_by_sw_breakpoint ())
3604 {
3605 struct regcache *regcache;
3606 struct gdbarch *gdbarch;
3607 int decr_pc;
3608
3609 regcache = get_thread_regcache (tp->ptid);
3610 gdbarch = get_regcache_arch (regcache);
3611
3612 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3613 if (decr_pc != 0)
3614 {
3615 CORE_ADDR pc;
3616
3617 pc = regcache_read_pc (regcache);
3618 regcache_write_pc (regcache, pc + decr_pc);
3619 }
3620 }
3621
3622 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3623 *status = tp->suspend.waitstatus;
3624 tp->suspend.waitstatus_pending_p = 0;
3625
3626 /* Wake up the event loop again, until all pending events are
3627 processed. */
3628 if (target_is_async_p ())
3629 mark_async_event_handler (infrun_async_inferior_event_token);
3630 return tp->ptid;
3631 }
3632
3633 /* But if we don't find one, we'll have to wait. */
3634
3635 if (deprecated_target_wait_hook)
3636 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3637 else
3638 event_ptid = target_wait (ptid, status, options);
3639
3640 return event_ptid;
3641}
3642
3643/* Prepare and stabilize the inferior for detaching it. E.g.,
3644 detaching while a thread is displaced stepping is a recipe for
3645 crashing it, as nothing would readjust the PC out of the scratch
3646 pad. */
3647
3648void
3649prepare_for_detach (void)
3650{
3651 struct inferior *inf = current_inferior ();
3652 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3653 struct cleanup *old_chain_1;
3654 struct displaced_step_inferior_state *displaced;
3655
3656 displaced = get_displaced_stepping_state (inf->pid);
3657
3658 /* Is any thread of this process displaced stepping? If not,
3659 there's nothing else to do. */
3660 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3661 return;
3662
3663 if (debug_infrun)
3664 fprintf_unfiltered (gdb_stdlog,
3665 "displaced-stepping in-process while detaching");
3666
3667 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3668 inf->detaching = 1;
3669
3670 while (!ptid_equal (displaced->step_ptid, null_ptid))
3671 {
3672 struct cleanup *old_chain_2;
3673 struct execution_control_state ecss;
3674 struct execution_control_state *ecs;
3675
3676 ecs = &ecss;
3677 memset (ecs, 0, sizeof (*ecs));
3678
3679 overlay_cache_invalid = 1;
3680 /* Flush target cache before starting to handle each event.
3681 Target was running and cache could be stale. This is just a
3682 heuristic. Running threads may modify target memory, but we
3683 don't get any event. */
3684 target_dcache_invalidate ();
3685
3686 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3687
3688 if (debug_infrun)
3689 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3690
3691 /* If an error happens while handling the event, propagate GDB's
3692 knowledge of the executing state to the frontend/user running
3693 state. */
3694 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3695 &minus_one_ptid);
3696
3697 /* Now figure out what to do with the result of the result. */
3698 handle_inferior_event (ecs);
3699
3700 /* No error, don't finish the state yet. */
3701 discard_cleanups (old_chain_2);
3702
3703 /* Breakpoints and watchpoints are not installed on the target
3704 at this point, and signals are passed directly to the
3705 inferior, so this must mean the process is gone. */
3706 if (!ecs->wait_some_more)
3707 {
3708 discard_cleanups (old_chain_1);
3709 error (_("Program exited while detaching"));
3710 }
3711 }
3712
3713 discard_cleanups (old_chain_1);
3714}
3715
3716/* Wait for control to return from inferior to debugger.
3717
3718 If inferior gets a signal, we may decide to start it up again
3719 instead of returning. That is why there is a loop in this function.
3720 When this function actually returns it means the inferior
3721 should be left stopped and GDB should read more commands. */
3722
3723void
3724wait_for_inferior (void)
3725{
3726 struct cleanup *old_cleanups;
3727 struct cleanup *thread_state_chain;
3728
3729 if (debug_infrun)
3730 fprintf_unfiltered
3731 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3732
3733 old_cleanups
3734 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3735 NULL);
3736
3737 /* If an error happens while handling the event, propagate GDB's
3738 knowledge of the executing state to the frontend/user running
3739 state. */
3740 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3741
3742 while (1)
3743 {
3744 struct execution_control_state ecss;
3745 struct execution_control_state *ecs = &ecss;
3746 ptid_t waiton_ptid = minus_one_ptid;
3747
3748 memset (ecs, 0, sizeof (*ecs));
3749
3750 overlay_cache_invalid = 1;
3751
3752 /* Flush target cache before starting to handle each event.
3753 Target was running and cache could be stale. This is just a
3754 heuristic. Running threads may modify target memory, but we
3755 don't get any event. */
3756 target_dcache_invalidate ();
3757
3758 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3759
3760 if (debug_infrun)
3761 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3762
3763 /* Now figure out what to do with the result of the result. */
3764 handle_inferior_event (ecs);
3765
3766 if (!ecs->wait_some_more)
3767 break;
3768 }
3769
3770 /* No error, don't finish the state yet. */
3771 discard_cleanups (thread_state_chain);
3772
3773 do_cleanups (old_cleanups);
3774}
3775
3776/* Cleanup that reinstalls the readline callback handler, if the
3777 target is running in the background. If while handling the target
3778 event something triggered a secondary prompt, like e.g., a
3779 pagination prompt, we'll have removed the callback handler (see
3780 gdb_readline_wrapper_line). Need to do this as we go back to the
3781 event loop, ready to process further input. Note this has no
3782 effect if the handler hasn't actually been removed, because calling
3783 rl_callback_handler_install resets the line buffer, thus losing
3784 input. */
3785
3786static void
3787reinstall_readline_callback_handler_cleanup (void *arg)
3788{
3789 if (!interpreter_async)
3790 {
3791 /* We're not going back to the top level event loop yet. Don't
3792 install the readline callback, as it'd prep the terminal,
3793 readline-style (raw, noecho) (e.g., --batch). We'll install
3794 it the next time the prompt is displayed, when we're ready
3795 for input. */
3796 return;
3797 }
3798
3799 if (async_command_editing_p && !sync_execution)
3800 gdb_rl_callback_handler_reinstall ();
3801}
3802
3803/* Clean up the FSMs of threads that are now stopped. In non-stop,
3804 that's just the event thread. In all-stop, that's all threads. */
3805
3806static void
3807clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3808{
3809 struct thread_info *thr = ecs->event_thread;
3810
3811 if (thr != NULL && thr->thread_fsm != NULL)
3812 thread_fsm_clean_up (thr->thread_fsm);
3813
3814 if (!non_stop)
3815 {
3816 ALL_NON_EXITED_THREADS (thr)
3817 {
3818 if (thr->thread_fsm == NULL)
3819 continue;
3820 if (thr == ecs->event_thread)
3821 continue;
3822
3823 switch_to_thread (thr->ptid);
3824 thread_fsm_clean_up (thr->thread_fsm);
3825 }
3826
3827 if (ecs->event_thread != NULL)
3828 switch_to_thread (ecs->event_thread->ptid);
3829 }
3830}
3831
3832/* A cleanup that restores the execution direction to the value saved
3833 in *ARG. */
3834
3835static void
3836restore_execution_direction (void *arg)
3837{
3838 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3839
3840 execution_direction = *save_exec_dir;
3841}
3842
3843/* Asynchronous version of wait_for_inferior. It is called by the
3844 event loop whenever a change of state is detected on the file
3845 descriptor corresponding to the target. It can be called more than
3846 once to complete a single execution command. In such cases we need
3847 to keep the state in a global variable ECSS. If it is the last time
3848 that this function is called for a single execution command, then
3849 report to the user that the inferior has stopped, and do the
3850 necessary cleanups. */
3851
3852void
3853fetch_inferior_event (void *client_data)
3854{
3855 struct execution_control_state ecss;
3856 struct execution_control_state *ecs = &ecss;
3857 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3858 struct cleanup *ts_old_chain;
3859 int was_sync = sync_execution;
3860 enum exec_direction_kind save_exec_dir = execution_direction;
3861 int cmd_done = 0;
3862 ptid_t waiton_ptid = minus_one_ptid;
3863
3864 memset (ecs, 0, sizeof (*ecs));
3865
3866 /* End up with readline processing input, if necessary. */
3867 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3868
3869 /* We're handling a live event, so make sure we're doing live
3870 debugging. If we're looking at traceframes while the target is
3871 running, we're going to need to get back to that mode after
3872 handling the event. */
3873 if (non_stop)
3874 {
3875 make_cleanup_restore_current_traceframe ();
3876 set_current_traceframe (-1);
3877 }
3878
3879 if (non_stop)
3880 /* In non-stop mode, the user/frontend should not notice a thread
3881 switch due to internal events. Make sure we reverse to the
3882 user selected thread and frame after handling the event and
3883 running any breakpoint commands. */
3884 make_cleanup_restore_current_thread ();
3885
3886 overlay_cache_invalid = 1;
3887 /* Flush target cache before starting to handle each event. Target
3888 was running and cache could be stale. This is just a heuristic.
3889 Running threads may modify target memory, but we don't get any
3890 event. */
3891 target_dcache_invalidate ();
3892
3893 make_cleanup (restore_execution_direction, &save_exec_dir);
3894 execution_direction = target_execution_direction ();
3895
3896 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3897 target_can_async_p () ? TARGET_WNOHANG : 0);
3898
3899 if (debug_infrun)
3900 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3901
3902 /* If an error happens while handling the event, propagate GDB's
3903 knowledge of the executing state to the frontend/user running
3904 state. */
3905 if (!target_is_non_stop_p ())
3906 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3907 else
3908 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3909
3910 /* Get executed before make_cleanup_restore_current_thread above to apply
3911 still for the thread which has thrown the exception. */
3912 make_bpstat_clear_actions_cleanup ();
3913
3914 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3915
3916 /* Now figure out what to do with the result of the result. */
3917 handle_inferior_event (ecs);
3918
3919 if (!ecs->wait_some_more)
3920 {
3921 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3922 int should_stop = 1;
3923 struct thread_info *thr = ecs->event_thread;
3924 int should_notify_stop = 1;
3925
3926 delete_just_stopped_threads_infrun_breakpoints ();
3927
3928 if (thr != NULL)
3929 {
3930 struct thread_fsm *thread_fsm = thr->thread_fsm;
3931
3932 if (thread_fsm != NULL)
3933 should_stop = thread_fsm_should_stop (thread_fsm);
3934 }
3935
3936 if (!should_stop)
3937 {
3938 keep_going (ecs);
3939 }
3940 else
3941 {
3942 clean_up_just_stopped_threads_fsms (ecs);
3943
3944 if (thr != NULL && thr->thread_fsm != NULL)
3945 {
3946 should_notify_stop
3947 = thread_fsm_should_notify_stop (thr->thread_fsm);
3948 }
3949
3950 if (should_notify_stop)
3951 {
3952 int proceeded = 0;
3953
3954 /* We may not find an inferior if this was a process exit. */
3955 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3956 proceeded = normal_stop ();
3957
3958 if (!proceeded)
3959 {
3960 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3961 cmd_done = 1;
3962 }
3963 }
3964 }
3965 }
3966
3967 /* No error, don't finish the thread states yet. */
3968 discard_cleanups (ts_old_chain);
3969
3970 /* Revert thread and frame. */
3971 do_cleanups (old_chain);
3972
3973 /* If the inferior was in sync execution mode, and now isn't,
3974 restore the prompt (a synchronous execution command has finished,
3975 and we're ready for input). */
3976 if (interpreter_async && was_sync && !sync_execution)
3977 observer_notify_sync_execution_done ();
3978
3979 if (cmd_done
3980 && !was_sync
3981 && exec_done_display_p
3982 && (ptid_equal (inferior_ptid, null_ptid)
3983 || !is_running (inferior_ptid)))
3984 printf_unfiltered (_("completed.\n"));
3985}
3986
3987/* Record the frame and location we're currently stepping through. */
3988void
3989set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3990{
3991 struct thread_info *tp = inferior_thread ();
3992
3993 tp->control.step_frame_id = get_frame_id (frame);
3994 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3995
3996 tp->current_symtab = sal.symtab;
3997 tp->current_line = sal.line;
3998}
3999
4000/* Clear context switchable stepping state. */
4001
4002void
4003init_thread_stepping_state (struct thread_info *tss)
4004{
4005 tss->stepped_breakpoint = 0;
4006 tss->stepping_over_breakpoint = 0;
4007 tss->stepping_over_watchpoint = 0;
4008 tss->step_after_step_resume_breakpoint = 0;
4009}
4010
4011/* Set the cached copy of the last ptid/waitstatus. */
4012
4013static void
4014set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4015{
4016 target_last_wait_ptid = ptid;
4017 target_last_waitstatus = status;
4018}
4019
4020/* Return the cached copy of the last pid/waitstatus returned by
4021 target_wait()/deprecated_target_wait_hook(). The data is actually
4022 cached by handle_inferior_event(), which gets called immediately
4023 after target_wait()/deprecated_target_wait_hook(). */
4024
4025void
4026get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4027{
4028 *ptidp = target_last_wait_ptid;
4029 *status = target_last_waitstatus;
4030}
4031
4032void
4033nullify_last_target_wait_ptid (void)
4034{
4035 target_last_wait_ptid = minus_one_ptid;
4036}
4037
4038/* Switch thread contexts. */
4039
4040static void
4041context_switch (ptid_t ptid)
4042{
4043 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4044 {
4045 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4046 target_pid_to_str (inferior_ptid));
4047 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4048 target_pid_to_str (ptid));
4049 }
4050
4051 switch_to_thread (ptid);
4052}
4053
4054/* If the target can't tell whether we've hit breakpoints
4055 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4056 check whether that could have been caused by a breakpoint. If so,
4057 adjust the PC, per gdbarch_decr_pc_after_break. */
4058
4059static void
4060adjust_pc_after_break (struct thread_info *thread,
4061 struct target_waitstatus *ws)
4062{
4063 struct regcache *regcache;
4064 struct gdbarch *gdbarch;
4065 struct address_space *aspace;
4066 CORE_ADDR breakpoint_pc, decr_pc;
4067
4068 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4069 we aren't, just return.
4070
4071 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4072 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4073 implemented by software breakpoints should be handled through the normal
4074 breakpoint layer.
4075
4076 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4077 different signals (SIGILL or SIGEMT for instance), but it is less
4078 clear where the PC is pointing afterwards. It may not match
4079 gdbarch_decr_pc_after_break. I don't know any specific target that
4080 generates these signals at breakpoints (the code has been in GDB since at
4081 least 1992) so I can not guess how to handle them here.
4082
4083 In earlier versions of GDB, a target with
4084 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4085 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4086 target with both of these set in GDB history, and it seems unlikely to be
4087 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4088
4089 if (ws->kind != TARGET_WAITKIND_STOPPED)
4090 return;
4091
4092 if (ws->value.sig != GDB_SIGNAL_TRAP)
4093 return;
4094
4095 /* In reverse execution, when a breakpoint is hit, the instruction
4096 under it has already been de-executed. The reported PC always
4097 points at the breakpoint address, so adjusting it further would
4098 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4099 architecture:
4100
4101 B1 0x08000000 : INSN1
4102 B2 0x08000001 : INSN2
4103 0x08000002 : INSN3
4104 PC -> 0x08000003 : INSN4
4105
4106 Say you're stopped at 0x08000003 as above. Reverse continuing
4107 from that point should hit B2 as below. Reading the PC when the
4108 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4109 been de-executed already.
4110
4111 B1 0x08000000 : INSN1
4112 B2 PC -> 0x08000001 : INSN2
4113 0x08000002 : INSN3
4114 0x08000003 : INSN4
4115
4116 We can't apply the same logic as for forward execution, because
4117 we would wrongly adjust the PC to 0x08000000, since there's a
4118 breakpoint at PC - 1. We'd then report a hit on B1, although
4119 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4120 behaviour. */
4121 if (execution_direction == EXEC_REVERSE)
4122 return;
4123
4124 /* If the target can tell whether the thread hit a SW breakpoint,
4125 trust it. Targets that can tell also adjust the PC
4126 themselves. */
4127 if (target_supports_stopped_by_sw_breakpoint ())
4128 return;
4129
4130 /* Note that relying on whether a breakpoint is planted in memory to
4131 determine this can fail. E.g,. the breakpoint could have been
4132 removed since. Or the thread could have been told to step an
4133 instruction the size of a breakpoint instruction, and only
4134 _after_ was a breakpoint inserted at its address. */
4135
4136 /* If this target does not decrement the PC after breakpoints, then
4137 we have nothing to do. */
4138 regcache = get_thread_regcache (thread->ptid);
4139 gdbarch = get_regcache_arch (regcache);
4140
4141 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4142 if (decr_pc == 0)
4143 return;
4144
4145 aspace = get_regcache_aspace (regcache);
4146
4147 /* Find the location where (if we've hit a breakpoint) the
4148 breakpoint would be. */
4149 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4150
4151 /* If the target can't tell whether a software breakpoint triggered,
4152 fallback to figuring it out based on breakpoints we think were
4153 inserted in the target, and on whether the thread was stepped or
4154 continued. */
4155
4156 /* Check whether there actually is a software breakpoint inserted at
4157 that location.
4158
4159 If in non-stop mode, a race condition is possible where we've
4160 removed a breakpoint, but stop events for that breakpoint were
4161 already queued and arrive later. To suppress those spurious
4162 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4163 and retire them after a number of stop events are reported. Note
4164 this is an heuristic and can thus get confused. The real fix is
4165 to get the "stopped by SW BP and needs adjustment" info out of
4166 the target/kernel (and thus never reach here; see above). */
4167 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4168 || (target_is_non_stop_p ()
4169 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4170 {
4171 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4172
4173 if (record_full_is_used ())
4174 record_full_gdb_operation_disable_set ();
4175
4176 /* When using hardware single-step, a SIGTRAP is reported for both
4177 a completed single-step and a software breakpoint. Need to
4178 differentiate between the two, as the latter needs adjusting
4179 but the former does not.
4180
4181 The SIGTRAP can be due to a completed hardware single-step only if
4182 - we didn't insert software single-step breakpoints
4183 - this thread is currently being stepped
4184
4185 If any of these events did not occur, we must have stopped due
4186 to hitting a software breakpoint, and have to back up to the
4187 breakpoint address.
4188
4189 As a special case, we could have hardware single-stepped a
4190 software breakpoint. In this case (prev_pc == breakpoint_pc),
4191 we also need to back up to the breakpoint address. */
4192
4193 if (thread_has_single_step_breakpoints_set (thread)
4194 || !currently_stepping (thread)
4195 || (thread->stepped_breakpoint
4196 && thread->prev_pc == breakpoint_pc))
4197 regcache_write_pc (regcache, breakpoint_pc);
4198
4199 do_cleanups (old_cleanups);
4200 }
4201}
4202
4203static int
4204stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4205{
4206 for (frame = get_prev_frame (frame);
4207 frame != NULL;
4208 frame = get_prev_frame (frame))
4209 {
4210 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4211 return 1;
4212 if (get_frame_type (frame) != INLINE_FRAME)
4213 break;
4214 }
4215
4216 return 0;
4217}
4218
4219/* Auxiliary function that handles syscall entry/return events.
4220 It returns 1 if the inferior should keep going (and GDB
4221 should ignore the event), or 0 if the event deserves to be
4222 processed. */
4223
4224static int
4225handle_syscall_event (struct execution_control_state *ecs)
4226{
4227 struct regcache *regcache;
4228 int syscall_number;
4229
4230 if (!ptid_equal (ecs->ptid, inferior_ptid))
4231 context_switch (ecs->ptid);
4232
4233 regcache = get_thread_regcache (ecs->ptid);
4234 syscall_number = ecs->ws.value.syscall_number;
4235 stop_pc = regcache_read_pc (regcache);
4236
4237 if (catch_syscall_enabled () > 0
4238 && catching_syscall_number (syscall_number) > 0)
4239 {
4240 if (debug_infrun)
4241 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4242 syscall_number);
4243
4244 ecs->event_thread->control.stop_bpstat
4245 = bpstat_stop_status (get_regcache_aspace (regcache),
4246 stop_pc, ecs->ptid, &ecs->ws);
4247
4248 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4249 {
4250 /* Catchpoint hit. */
4251 return 0;
4252 }
4253 }
4254
4255 /* If no catchpoint triggered for this, then keep going. */
4256 keep_going (ecs);
4257 return 1;
4258}
4259
4260/* Lazily fill in the execution_control_state's stop_func_* fields. */
4261
4262static void
4263fill_in_stop_func (struct gdbarch *gdbarch,
4264 struct execution_control_state *ecs)
4265{
4266 if (!ecs->stop_func_filled_in)
4267 {
4268 /* Don't care about return value; stop_func_start and stop_func_name
4269 will both be 0 if it doesn't work. */
4270 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4271 &ecs->stop_func_start, &ecs->stop_func_end);
4272 ecs->stop_func_start
4273 += gdbarch_deprecated_function_start_offset (gdbarch);
4274
4275 if (gdbarch_skip_entrypoint_p (gdbarch))
4276 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4277 ecs->stop_func_start);
4278
4279 ecs->stop_func_filled_in = 1;
4280 }
4281}
4282
4283
4284/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4285
4286static enum stop_kind
4287get_inferior_stop_soon (ptid_t ptid)
4288{
4289 struct inferior *inf = find_inferior_ptid (ptid);
4290
4291 gdb_assert (inf != NULL);
4292 return inf->control.stop_soon;
4293}
4294
4295/* Wait for one event. Store the resulting waitstatus in WS, and
4296 return the event ptid. */
4297
4298static ptid_t
4299wait_one (struct target_waitstatus *ws)
4300{
4301 ptid_t event_ptid;
4302 ptid_t wait_ptid = minus_one_ptid;
4303
4304 overlay_cache_invalid = 1;
4305
4306 /* Flush target cache before starting to handle each event.
4307 Target was running and cache could be stale. This is just a
4308 heuristic. Running threads may modify target memory, but we
4309 don't get any event. */
4310 target_dcache_invalidate ();
4311
4312 if (deprecated_target_wait_hook)
4313 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4314 else
4315 event_ptid = target_wait (wait_ptid, ws, 0);
4316
4317 if (debug_infrun)
4318 print_target_wait_results (wait_ptid, event_ptid, ws);
4319
4320 return event_ptid;
4321}
4322
4323/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4324 instead of the current thread. */
4325#define THREAD_STOPPED_BY(REASON) \
4326static int \
4327thread_stopped_by_ ## REASON (ptid_t ptid) \
4328{ \
4329 struct cleanup *old_chain; \
4330 int res; \
4331 \
4332 old_chain = save_inferior_ptid (); \
4333 inferior_ptid = ptid; \
4334 \
4335 res = target_stopped_by_ ## REASON (); \
4336 \
4337 do_cleanups (old_chain); \
4338 \
4339 return res; \
4340}
4341
4342/* Generate thread_stopped_by_watchpoint. */
4343THREAD_STOPPED_BY (watchpoint)
4344/* Generate thread_stopped_by_sw_breakpoint. */
4345THREAD_STOPPED_BY (sw_breakpoint)
4346/* Generate thread_stopped_by_hw_breakpoint. */
4347THREAD_STOPPED_BY (hw_breakpoint)
4348
4349/* Cleanups that switches to the PTID pointed at by PTID_P. */
4350
4351static void
4352switch_to_thread_cleanup (void *ptid_p)
4353{
4354 ptid_t ptid = *(ptid_t *) ptid_p;
4355
4356 switch_to_thread (ptid);
4357}
4358
4359/* Save the thread's event and stop reason to process it later. */
4360
4361static void
4362save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4363{
4364 struct regcache *regcache;
4365 struct address_space *aspace;
4366
4367 if (debug_infrun)
4368 {
4369 char *statstr;
4370
4371 statstr = target_waitstatus_to_string (ws);
4372 fprintf_unfiltered (gdb_stdlog,
4373 "infrun: saving status %s for %d.%ld.%ld\n",
4374 statstr,
4375 ptid_get_pid (tp->ptid),
4376 ptid_get_lwp (tp->ptid),
4377 ptid_get_tid (tp->ptid));
4378 xfree (statstr);
4379 }
4380
4381 /* Record for later. */
4382 tp->suspend.waitstatus = *ws;
4383 tp->suspend.waitstatus_pending_p = 1;
4384
4385 regcache = get_thread_regcache (tp->ptid);
4386 aspace = get_regcache_aspace (regcache);
4387
4388 if (ws->kind == TARGET_WAITKIND_STOPPED
4389 && ws->value.sig == GDB_SIGNAL_TRAP)
4390 {
4391 CORE_ADDR pc = regcache_read_pc (regcache);
4392
4393 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4394
4395 if (thread_stopped_by_watchpoint (tp->ptid))
4396 {
4397 tp->suspend.stop_reason
4398 = TARGET_STOPPED_BY_WATCHPOINT;
4399 }
4400 else if (target_supports_stopped_by_sw_breakpoint ()
4401 && thread_stopped_by_sw_breakpoint (tp->ptid))
4402 {
4403 tp->suspend.stop_reason
4404 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4405 }
4406 else if (target_supports_stopped_by_hw_breakpoint ()
4407 && thread_stopped_by_hw_breakpoint (tp->ptid))
4408 {
4409 tp->suspend.stop_reason
4410 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4411 }
4412 else if (!target_supports_stopped_by_hw_breakpoint ()
4413 && hardware_breakpoint_inserted_here_p (aspace,
4414 pc))
4415 {
4416 tp->suspend.stop_reason
4417 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4418 }
4419 else if (!target_supports_stopped_by_sw_breakpoint ()
4420 && software_breakpoint_inserted_here_p (aspace,
4421 pc))
4422 {
4423 tp->suspend.stop_reason
4424 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4425 }
4426 else if (!thread_has_single_step_breakpoints_set (tp)
4427 && currently_stepping (tp))
4428 {
4429 tp->suspend.stop_reason
4430 = TARGET_STOPPED_BY_SINGLE_STEP;
4431 }
4432 }
4433}
4434
4435/* Stop all threads. */
4436
4437static void
4438stop_all_threads (void)
4439{
4440 /* We may need multiple passes to discover all threads. */
4441 int pass;
4442 int iterations = 0;
4443 ptid_t entry_ptid;
4444 struct cleanup *old_chain;
4445
4446 gdb_assert (target_is_non_stop_p ());
4447
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4450
4451 entry_ptid = inferior_ptid;
4452 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4453
4454 /* Request threads to stop, and then wait for the stops. Because
4455 threads we already know about can spawn more threads while we're
4456 trying to stop them, and we only learn about new threads when we
4457 update the thread list, do this in a loop, and keep iterating
4458 until two passes find no threads that need to be stopped. */
4459 for (pass = 0; pass < 2; pass++, iterations++)
4460 {
4461 if (debug_infrun)
4462 fprintf_unfiltered (gdb_stdlog,
4463 "infrun: stop_all_threads, pass=%d, "
4464 "iterations=%d\n", pass, iterations);
4465 while (1)
4466 {
4467 ptid_t event_ptid;
4468 struct target_waitstatus ws;
4469 int need_wait = 0;
4470 struct thread_info *t;
4471
4472 update_thread_list ();
4473
4474 /* Go through all threads looking for threads that we need
4475 to tell the target to stop. */
4476 ALL_NON_EXITED_THREADS (t)
4477 {
4478 if (t->executing)
4479 {
4480 /* If already stopping, don't request a stop again.
4481 We just haven't seen the notification yet. */
4482 if (!t->stop_requested)
4483 {
4484 if (debug_infrun)
4485 fprintf_unfiltered (gdb_stdlog,
4486 "infrun: %s executing, "
4487 "need stop\n",
4488 target_pid_to_str (t->ptid));
4489 target_stop (t->ptid);
4490 t->stop_requested = 1;
4491 }
4492 else
4493 {
4494 if (debug_infrun)
4495 fprintf_unfiltered (gdb_stdlog,
4496 "infrun: %s executing, "
4497 "already stopping\n",
4498 target_pid_to_str (t->ptid));
4499 }
4500
4501 if (t->stop_requested)
4502 need_wait = 1;
4503 }
4504 else
4505 {
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog,
4508 "infrun: %s not executing\n",
4509 target_pid_to_str (t->ptid));
4510
4511 /* The thread may be not executing, but still be
4512 resumed with a pending status to process. */
4513 t->resumed = 0;
4514 }
4515 }
4516
4517 if (!need_wait)
4518 break;
4519
4520 /* If we find new threads on the second iteration, restart
4521 over. We want to see two iterations in a row with all
4522 threads stopped. */
4523 if (pass > 0)
4524 pass = -1;
4525
4526 event_ptid = wait_one (&ws);
4527 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4528 {
4529 /* All resumed threads exited. */
4530 }
4531 else if (ws.kind == TARGET_WAITKIND_EXITED
4532 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4533 {
4534 if (debug_infrun)
4535 {
4536 ptid_t ptid = pid_to_ptid (ws.value.integer);
4537
4538 fprintf_unfiltered (gdb_stdlog,
4539 "infrun: %s exited while "
4540 "stopping threads\n",
4541 target_pid_to_str (ptid));
4542 }
4543 }
4544 else
4545 {
4546 t = find_thread_ptid (event_ptid);
4547 if (t == NULL)
4548 t = add_thread (event_ptid);
4549
4550 t->stop_requested = 0;
4551 t->executing = 0;
4552 t->resumed = 0;
4553 t->control.may_range_step = 0;
4554
4555 if (ws.kind == TARGET_WAITKIND_STOPPED
4556 && ws.value.sig == GDB_SIGNAL_0)
4557 {
4558 /* We caught the event that we intended to catch, so
4559 there's no event pending. */
4560 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4561 t->suspend.waitstatus_pending_p = 0;
4562
4563 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4564 {
4565 /* Add it back to the step-over queue. */
4566 if (debug_infrun)
4567 {
4568 fprintf_unfiltered (gdb_stdlog,
4569 "infrun: displaced-step of %s "
4570 "canceled: adding back to the "
4571 "step-over queue\n",
4572 target_pid_to_str (t->ptid));
4573 }
4574 t->control.trap_expected = 0;
4575 thread_step_over_chain_enqueue (t);
4576 }
4577 }
4578 else
4579 {
4580 enum gdb_signal sig;
4581 struct regcache *regcache;
4582 struct address_space *aspace;
4583
4584 if (debug_infrun)
4585 {
4586 char *statstr;
4587
4588 statstr = target_waitstatus_to_string (&ws);
4589 fprintf_unfiltered (gdb_stdlog,
4590 "infrun: target_wait %s, saving "
4591 "status for %d.%ld.%ld\n",
4592 statstr,
4593 ptid_get_pid (t->ptid),
4594 ptid_get_lwp (t->ptid),
4595 ptid_get_tid (t->ptid));
4596 xfree (statstr);
4597 }
4598
4599 /* Record for later. */
4600 save_waitstatus (t, &ws);
4601
4602 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4603 ? ws.value.sig : GDB_SIGNAL_0);
4604
4605 if (displaced_step_fixup (t->ptid, sig) < 0)
4606 {
4607 /* Add it back to the step-over queue. */
4608 t->control.trap_expected = 0;
4609 thread_step_over_chain_enqueue (t);
4610 }
4611
4612 regcache = get_thread_regcache (t->ptid);
4613 t->suspend.stop_pc = regcache_read_pc (regcache);
4614
4615 if (debug_infrun)
4616 {
4617 fprintf_unfiltered (gdb_stdlog,
4618 "infrun: saved stop_pc=%s for %s "
4619 "(currently_stepping=%d)\n",
4620 paddress (target_gdbarch (),
4621 t->suspend.stop_pc),
4622 target_pid_to_str (t->ptid),
4623 currently_stepping (t));
4624 }
4625 }
4626 }
4627 }
4628 }
4629
4630 do_cleanups (old_chain);
4631
4632 if (debug_infrun)
4633 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4634}
4635
4636/* Given an execution control state that has been freshly filled in by
4637 an event from the inferior, figure out what it means and take
4638 appropriate action.
4639
4640 The alternatives are:
4641
4642 1) stop_waiting and return; to really stop and return to the
4643 debugger.
4644
4645 2) keep_going and return; to wait for the next event (set
4646 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4647 once). */
4648
4649static void
4650handle_inferior_event_1 (struct execution_control_state *ecs)
4651{
4652 enum stop_kind stop_soon;
4653
4654 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4655 {
4656 /* We had an event in the inferior, but we are not interested in
4657 handling it at this level. The lower layers have already
4658 done what needs to be done, if anything.
4659
4660 One of the possible circumstances for this is when the
4661 inferior produces output for the console. The inferior has
4662 not stopped, and we are ignoring the event. Another possible
4663 circumstance is any event which the lower level knows will be
4664 reported multiple times without an intervening resume. */
4665 if (debug_infrun)
4666 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4667 prepare_to_wait (ecs);
4668 return;
4669 }
4670
4671 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4672 && target_can_async_p () && !sync_execution)
4673 {
4674 /* There were no unwaited-for children left in the target, but,
4675 we're not synchronously waiting for events either. Just
4676 ignore. Otherwise, if we were running a synchronous
4677 execution command, we need to cancel it and give the user
4678 back the terminal. */
4679 if (debug_infrun)
4680 fprintf_unfiltered (gdb_stdlog,
4681 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4682 prepare_to_wait (ecs);
4683 return;
4684 }
4685
4686 /* Cache the last pid/waitstatus. */
4687 set_last_target_status (ecs->ptid, ecs->ws);
4688
4689 /* Always clear state belonging to the previous time we stopped. */
4690 stop_stack_dummy = STOP_NONE;
4691
4692 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4693 {
4694 /* No unwaited-for children left. IOW, all resumed children
4695 have exited. */
4696 if (debug_infrun)
4697 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4698
4699 stop_print_frame = 0;
4700 stop_waiting (ecs);
4701 return;
4702 }
4703
4704 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4705 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4706 {
4707 ecs->event_thread = find_thread_ptid (ecs->ptid);
4708 /* If it's a new thread, add it to the thread database. */
4709 if (ecs->event_thread == NULL)
4710 ecs->event_thread = add_thread (ecs->ptid);
4711
4712 /* Disable range stepping. If the next step request could use a
4713 range, this will be end up re-enabled then. */
4714 ecs->event_thread->control.may_range_step = 0;
4715 }
4716
4717 /* Dependent on valid ECS->EVENT_THREAD. */
4718 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4719
4720 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4721 reinit_frame_cache ();
4722
4723 breakpoint_retire_moribund ();
4724
4725 /* First, distinguish signals caused by the debugger from signals
4726 that have to do with the program's own actions. Note that
4727 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4728 on the operating system version. Here we detect when a SIGILL or
4729 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4730 something similar for SIGSEGV, since a SIGSEGV will be generated
4731 when we're trying to execute a breakpoint instruction on a
4732 non-executable stack. This happens for call dummy breakpoints
4733 for architectures like SPARC that place call dummies on the
4734 stack. */
4735 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4736 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4737 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4738 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4739 {
4740 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4741
4742 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4743 regcache_read_pc (regcache)))
4744 {
4745 if (debug_infrun)
4746 fprintf_unfiltered (gdb_stdlog,
4747 "infrun: Treating signal as SIGTRAP\n");
4748 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4749 }
4750 }
4751
4752 /* Mark the non-executing threads accordingly. In all-stop, all
4753 threads of all processes are stopped when we get any event
4754 reported. In non-stop mode, only the event thread stops. */
4755 {
4756 ptid_t mark_ptid;
4757
4758 if (!target_is_non_stop_p ())
4759 mark_ptid = minus_one_ptid;
4760 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4761 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4762 {
4763 /* If we're handling a process exit in non-stop mode, even
4764 though threads haven't been deleted yet, one would think
4765 that there is nothing to do, as threads of the dead process
4766 will be soon deleted, and threads of any other process were
4767 left running. However, on some targets, threads survive a
4768 process exit event. E.g., for the "checkpoint" command,
4769 when the current checkpoint/fork exits, linux-fork.c
4770 automatically switches to another fork from within
4771 target_mourn_inferior, by associating the same
4772 inferior/thread to another fork. We haven't mourned yet at
4773 this point, but we must mark any threads left in the
4774 process as not-executing so that finish_thread_state marks
4775 them stopped (in the user's perspective) if/when we present
4776 the stop to the user. */
4777 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4778 }
4779 else
4780 mark_ptid = ecs->ptid;
4781
4782 set_executing (mark_ptid, 0);
4783
4784 /* Likewise the resumed flag. */
4785 set_resumed (mark_ptid, 0);
4786 }
4787
4788 switch (ecs->ws.kind)
4789 {
4790 case TARGET_WAITKIND_LOADED:
4791 if (debug_infrun)
4792 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4793 if (!ptid_equal (ecs->ptid, inferior_ptid))
4794 context_switch (ecs->ptid);
4795 /* Ignore gracefully during startup of the inferior, as it might
4796 be the shell which has just loaded some objects, otherwise
4797 add the symbols for the newly loaded objects. Also ignore at
4798 the beginning of an attach or remote session; we will query
4799 the full list of libraries once the connection is
4800 established. */
4801
4802 stop_soon = get_inferior_stop_soon (ecs->ptid);
4803 if (stop_soon == NO_STOP_QUIETLY)
4804 {
4805 struct regcache *regcache;
4806
4807 regcache = get_thread_regcache (ecs->ptid);
4808
4809 handle_solib_event ();
4810
4811 ecs->event_thread->control.stop_bpstat
4812 = bpstat_stop_status (get_regcache_aspace (regcache),
4813 stop_pc, ecs->ptid, &ecs->ws);
4814
4815 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4816 {
4817 /* A catchpoint triggered. */
4818 process_event_stop_test (ecs);
4819 return;
4820 }
4821
4822 /* If requested, stop when the dynamic linker notifies
4823 gdb of events. This allows the user to get control
4824 and place breakpoints in initializer routines for
4825 dynamically loaded objects (among other things). */
4826 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4827 if (stop_on_solib_events)
4828 {
4829 /* Make sure we print "Stopped due to solib-event" in
4830 normal_stop. */
4831 stop_print_frame = 1;
4832
4833 stop_waiting (ecs);
4834 return;
4835 }
4836 }
4837
4838 /* If we are skipping through a shell, or through shared library
4839 loading that we aren't interested in, resume the program. If
4840 we're running the program normally, also resume. */
4841 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4842 {
4843 /* Loading of shared libraries might have changed breakpoint
4844 addresses. Make sure new breakpoints are inserted. */
4845 if (stop_soon == NO_STOP_QUIETLY)
4846 insert_breakpoints ();
4847 resume (GDB_SIGNAL_0);
4848 prepare_to_wait (ecs);
4849 return;
4850 }
4851
4852 /* But stop if we're attaching or setting up a remote
4853 connection. */
4854 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4855 || stop_soon == STOP_QUIETLY_REMOTE)
4856 {
4857 if (debug_infrun)
4858 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4859 stop_waiting (ecs);
4860 return;
4861 }
4862
4863 internal_error (__FILE__, __LINE__,
4864 _("unhandled stop_soon: %d"), (int) stop_soon);
4865
4866 case TARGET_WAITKIND_SPURIOUS:
4867 if (debug_infrun)
4868 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4869 if (!ptid_equal (ecs->ptid, inferior_ptid))
4870 context_switch (ecs->ptid);
4871 resume (GDB_SIGNAL_0);
4872 prepare_to_wait (ecs);
4873 return;
4874
4875 case TARGET_WAITKIND_EXITED:
4876 case TARGET_WAITKIND_SIGNALLED:
4877 if (debug_infrun)
4878 {
4879 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4880 fprintf_unfiltered (gdb_stdlog,
4881 "infrun: TARGET_WAITKIND_EXITED\n");
4882 else
4883 fprintf_unfiltered (gdb_stdlog,
4884 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4885 }
4886
4887 inferior_ptid = ecs->ptid;
4888 set_current_inferior (find_inferior_ptid (ecs->ptid));
4889 set_current_program_space (current_inferior ()->pspace);
4890 handle_vfork_child_exec_or_exit (0);
4891 target_terminal_ours (); /* Must do this before mourn anyway. */
4892
4893 /* Clearing any previous state of convenience variables. */
4894 clear_exit_convenience_vars ();
4895
4896 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4897 {
4898 /* Record the exit code in the convenience variable $_exitcode, so
4899 that the user can inspect this again later. */
4900 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4901 (LONGEST) ecs->ws.value.integer);
4902
4903 /* Also record this in the inferior itself. */
4904 current_inferior ()->has_exit_code = 1;
4905 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4906
4907 /* Support the --return-child-result option. */
4908 return_child_result_value = ecs->ws.value.integer;
4909
4910 observer_notify_exited (ecs->ws.value.integer);
4911 }
4912 else
4913 {
4914 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4915 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4916
4917 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4918 {
4919 /* Set the value of the internal variable $_exitsignal,
4920 which holds the signal uncaught by the inferior. */
4921 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4922 gdbarch_gdb_signal_to_target (gdbarch,
4923 ecs->ws.value.sig));
4924 }
4925 else
4926 {
4927 /* We don't have access to the target's method used for
4928 converting between signal numbers (GDB's internal
4929 representation <-> target's representation).
4930 Therefore, we cannot do a good job at displaying this
4931 information to the user. It's better to just warn
4932 her about it (if infrun debugging is enabled), and
4933 give up. */
4934 if (debug_infrun)
4935 fprintf_filtered (gdb_stdlog, _("\
4936Cannot fill $_exitsignal with the correct signal number.\n"));
4937 }
4938
4939 observer_notify_signal_exited (ecs->ws.value.sig);
4940 }
4941
4942 gdb_flush (gdb_stdout);
4943 target_mourn_inferior ();
4944 stop_print_frame = 0;
4945 stop_waiting (ecs);
4946 return;
4947
4948 /* The following are the only cases in which we keep going;
4949 the above cases end in a continue or goto. */
4950 case TARGET_WAITKIND_FORKED:
4951 case TARGET_WAITKIND_VFORKED:
4952 if (debug_infrun)
4953 {
4954 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4955 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4956 else
4957 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4958 }
4959
4960 /* Check whether the inferior is displaced stepping. */
4961 {
4962 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4963 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4964
4965 /* If checking displaced stepping is supported, and thread
4966 ecs->ptid is displaced stepping. */
4967 if (displaced_step_in_progress_thread (ecs->ptid))
4968 {
4969 struct inferior *parent_inf
4970 = find_inferior_ptid (ecs->ptid);
4971 struct regcache *child_regcache;
4972 CORE_ADDR parent_pc;
4973
4974 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4975 indicating that the displaced stepping of syscall instruction
4976 has been done. Perform cleanup for parent process here. Note
4977 that this operation also cleans up the child process for vfork,
4978 because their pages are shared. */
4979 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
4980 /* Start a new step-over in another thread if there's one
4981 that needs it. */
4982 start_step_over ();
4983
4984 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4985 {
4986 struct displaced_step_inferior_state *displaced
4987 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4988
4989 /* Restore scratch pad for child process. */
4990 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4991 }
4992
4993 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4994 the child's PC is also within the scratchpad. Set the child's PC
4995 to the parent's PC value, which has already been fixed up.
4996 FIXME: we use the parent's aspace here, although we're touching
4997 the child, because the child hasn't been added to the inferior
4998 list yet at this point. */
4999
5000 child_regcache
5001 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5002 gdbarch,
5003 parent_inf->aspace);
5004 /* Read PC value of parent process. */
5005 parent_pc = regcache_read_pc (regcache);
5006
5007 if (debug_displaced)
5008 fprintf_unfiltered (gdb_stdlog,
5009 "displaced: write child pc from %s to %s\n",
5010 paddress (gdbarch,
5011 regcache_read_pc (child_regcache)),
5012 paddress (gdbarch, parent_pc));
5013
5014 regcache_write_pc (child_regcache, parent_pc);
5015 }
5016 }
5017
5018 if (!ptid_equal (ecs->ptid, inferior_ptid))
5019 context_switch (ecs->ptid);
5020
5021 /* Immediately detach breakpoints from the child before there's
5022 any chance of letting the user delete breakpoints from the
5023 breakpoint lists. If we don't do this early, it's easy to
5024 leave left over traps in the child, vis: "break foo; catch
5025 fork; c; <fork>; del; c; <child calls foo>". We only follow
5026 the fork on the last `continue', and by that time the
5027 breakpoint at "foo" is long gone from the breakpoint table.
5028 If we vforked, then we don't need to unpatch here, since both
5029 parent and child are sharing the same memory pages; we'll
5030 need to unpatch at follow/detach time instead to be certain
5031 that new breakpoints added between catchpoint hit time and
5032 vfork follow are detached. */
5033 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5034 {
5035 /* This won't actually modify the breakpoint list, but will
5036 physically remove the breakpoints from the child. */
5037 detach_breakpoints (ecs->ws.value.related_pid);
5038 }
5039
5040 delete_just_stopped_threads_single_step_breakpoints ();
5041
5042 /* In case the event is caught by a catchpoint, remember that
5043 the event is to be followed at the next resume of the thread,
5044 and not immediately. */
5045 ecs->event_thread->pending_follow = ecs->ws;
5046
5047 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5048
5049 ecs->event_thread->control.stop_bpstat
5050 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5051 stop_pc, ecs->ptid, &ecs->ws);
5052
5053 /* If no catchpoint triggered for this, then keep going. Note
5054 that we're interested in knowing the bpstat actually causes a
5055 stop, not just if it may explain the signal. Software
5056 watchpoints, for example, always appear in the bpstat. */
5057 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5058 {
5059 ptid_t parent;
5060 ptid_t child;
5061 int should_resume;
5062 int follow_child
5063 = (follow_fork_mode_string == follow_fork_mode_child);
5064
5065 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5066
5067 should_resume = follow_fork ();
5068
5069 parent = ecs->ptid;
5070 child = ecs->ws.value.related_pid;
5071
5072 /* In non-stop mode, also resume the other branch. */
5073 if (!detach_fork && (non_stop
5074 || (sched_multi && target_is_non_stop_p ())))
5075 {
5076 if (follow_child)
5077 switch_to_thread (parent);
5078 else
5079 switch_to_thread (child);
5080
5081 ecs->event_thread = inferior_thread ();
5082 ecs->ptid = inferior_ptid;
5083 keep_going (ecs);
5084 }
5085
5086 if (follow_child)
5087 switch_to_thread (child);
5088 else
5089 switch_to_thread (parent);
5090
5091 ecs->event_thread = inferior_thread ();
5092 ecs->ptid = inferior_ptid;
5093
5094 if (should_resume)
5095 keep_going (ecs);
5096 else
5097 stop_waiting (ecs);
5098 return;
5099 }
5100 process_event_stop_test (ecs);
5101 return;
5102
5103 case TARGET_WAITKIND_VFORK_DONE:
5104 /* Done with the shared memory region. Re-insert breakpoints in
5105 the parent, and keep going. */
5106
5107 if (debug_infrun)
5108 fprintf_unfiltered (gdb_stdlog,
5109 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5110
5111 if (!ptid_equal (ecs->ptid, inferior_ptid))
5112 context_switch (ecs->ptid);
5113
5114 current_inferior ()->waiting_for_vfork_done = 0;
5115 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5116 /* This also takes care of reinserting breakpoints in the
5117 previously locked inferior. */
5118 keep_going (ecs);
5119 return;
5120
5121 case TARGET_WAITKIND_EXECD:
5122 if (debug_infrun)
5123 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5124
5125 if (!ptid_equal (ecs->ptid, inferior_ptid))
5126 context_switch (ecs->ptid);
5127
5128 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5129
5130 /* Do whatever is necessary to the parent branch of the vfork. */
5131 handle_vfork_child_exec_or_exit (1);
5132
5133 /* This causes the eventpoints and symbol table to be reset.
5134 Must do this now, before trying to determine whether to
5135 stop. */
5136 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5137
5138 /* In follow_exec we may have deleted the original thread and
5139 created a new one. Make sure that the event thread is the
5140 execd thread for that case (this is a nop otherwise). */
5141 ecs->event_thread = inferior_thread ();
5142
5143 ecs->event_thread->control.stop_bpstat
5144 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5145 stop_pc, ecs->ptid, &ecs->ws);
5146
5147 /* Note that this may be referenced from inside
5148 bpstat_stop_status above, through inferior_has_execd. */
5149 xfree (ecs->ws.value.execd_pathname);
5150 ecs->ws.value.execd_pathname = NULL;
5151
5152 /* If no catchpoint triggered for this, then keep going. */
5153 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5154 {
5155 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5156 keep_going (ecs);
5157 return;
5158 }
5159 process_event_stop_test (ecs);
5160 return;
5161
5162 /* Be careful not to try to gather much state about a thread
5163 that's in a syscall. It's frequently a losing proposition. */
5164 case TARGET_WAITKIND_SYSCALL_ENTRY:
5165 if (debug_infrun)
5166 fprintf_unfiltered (gdb_stdlog,
5167 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5168 /* Getting the current syscall number. */
5169 if (handle_syscall_event (ecs) == 0)
5170 process_event_stop_test (ecs);
5171 return;
5172
5173 /* Before examining the threads further, step this thread to
5174 get it entirely out of the syscall. (We get notice of the
5175 event when the thread is just on the verge of exiting a
5176 syscall. Stepping one instruction seems to get it back
5177 into user code.) */
5178 case TARGET_WAITKIND_SYSCALL_RETURN:
5179 if (debug_infrun)
5180 fprintf_unfiltered (gdb_stdlog,
5181 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5182 if (handle_syscall_event (ecs) == 0)
5183 process_event_stop_test (ecs);
5184 return;
5185
5186 case TARGET_WAITKIND_STOPPED:
5187 if (debug_infrun)
5188 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5189 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5190 handle_signal_stop (ecs);
5191 return;
5192
5193 case TARGET_WAITKIND_NO_HISTORY:
5194 if (debug_infrun)
5195 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5196 /* Reverse execution: target ran out of history info. */
5197
5198 /* Switch to the stopped thread. */
5199 if (!ptid_equal (ecs->ptid, inferior_ptid))
5200 context_switch (ecs->ptid);
5201 if (debug_infrun)
5202 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5203
5204 delete_just_stopped_threads_single_step_breakpoints ();
5205 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5206 observer_notify_no_history ();
5207 stop_waiting (ecs);
5208 return;
5209 }
5210}
5211
5212/* A wrapper around handle_inferior_event_1, which also makes sure
5213 that all temporary struct value objects that were created during
5214 the handling of the event get deleted at the end. */
5215
5216static void
5217handle_inferior_event (struct execution_control_state *ecs)
5218{
5219 struct value *mark = value_mark ();
5220
5221 handle_inferior_event_1 (ecs);
5222 /* Purge all temporary values created during the event handling,
5223 as it could be a long time before we return to the command level
5224 where such values would otherwise be purged. */
5225 value_free_to_mark (mark);
5226}
5227
5228/* Restart threads back to what they were trying to do back when we
5229 paused them for an in-line step-over. The EVENT_THREAD thread is
5230 ignored. */
5231
5232static void
5233restart_threads (struct thread_info *event_thread)
5234{
5235 struct thread_info *tp;
5236 struct thread_info *step_over = NULL;
5237
5238 /* In case the instruction just stepped spawned a new thread. */
5239 update_thread_list ();
5240
5241 ALL_NON_EXITED_THREADS (tp)
5242 {
5243 if (tp == event_thread)
5244 {
5245 if (debug_infrun)
5246 fprintf_unfiltered (gdb_stdlog,
5247 "infrun: restart threads: "
5248 "[%s] is event thread\n",
5249 target_pid_to_str (tp->ptid));
5250 continue;
5251 }
5252
5253 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5254 {
5255 if (debug_infrun)
5256 fprintf_unfiltered (gdb_stdlog,
5257 "infrun: restart threads: "
5258 "[%s] not meant to be running\n",
5259 target_pid_to_str (tp->ptid));
5260 continue;
5261 }
5262
5263 if (tp->resumed)
5264 {
5265 if (debug_infrun)
5266 fprintf_unfiltered (gdb_stdlog,
5267 "infrun: restart threads: [%s] resumed\n",
5268 target_pid_to_str (tp->ptid));
5269 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5270 continue;
5271 }
5272
5273 if (thread_is_in_step_over_chain (tp))
5274 {
5275 if (debug_infrun)
5276 fprintf_unfiltered (gdb_stdlog,
5277 "infrun: restart threads: "
5278 "[%s] needs step-over\n",
5279 target_pid_to_str (tp->ptid));
5280 gdb_assert (!tp->resumed);
5281 continue;
5282 }
5283
5284
5285 if (tp->suspend.waitstatus_pending_p)
5286 {
5287 if (debug_infrun)
5288 fprintf_unfiltered (gdb_stdlog,
5289 "infrun: restart threads: "
5290 "[%s] has pending status\n",
5291 target_pid_to_str (tp->ptid));
5292 tp->resumed = 1;
5293 continue;
5294 }
5295
5296 /* If some thread needs to start a step-over at this point, it
5297 should still be in the step-over queue, and thus skipped
5298 above. */
5299 if (thread_still_needs_step_over (tp))
5300 {
5301 internal_error (__FILE__, __LINE__,
5302 "thread [%s] needs a step-over, but not in "
5303 "step-over queue\n",
5304 target_pid_to_str (tp->ptid));
5305 }
5306
5307 if (currently_stepping (tp))
5308 {
5309 if (debug_infrun)
5310 fprintf_unfiltered (gdb_stdlog,
5311 "infrun: restart threads: [%s] was stepping\n",
5312 target_pid_to_str (tp->ptid));
5313 keep_going_stepped_thread (tp);
5314 }
5315 else
5316 {
5317 struct execution_control_state ecss;
5318 struct execution_control_state *ecs = &ecss;
5319
5320 if (debug_infrun)
5321 fprintf_unfiltered (gdb_stdlog,
5322 "infrun: restart threads: [%s] continuing\n",
5323 target_pid_to_str (tp->ptid));
5324 reset_ecs (ecs, tp);
5325 switch_to_thread (tp->ptid);
5326 keep_going_pass_signal (ecs);
5327 }
5328 }
5329}
5330
5331/* Callback for iterate_over_threads. Find a resumed thread that has
5332 a pending waitstatus. */
5333
5334static int
5335resumed_thread_with_pending_status (struct thread_info *tp,
5336 void *arg)
5337{
5338 return (tp->resumed
5339 && tp->suspend.waitstatus_pending_p);
5340}
5341
5342/* Called when we get an event that may finish an in-line or
5343 out-of-line (displaced stepping) step-over started previously.
5344 Return true if the event is processed and we should go back to the
5345 event loop; false if the caller should continue processing the
5346 event. */
5347
5348static int
5349finish_step_over (struct execution_control_state *ecs)
5350{
5351 int had_step_over_info;
5352
5353 displaced_step_fixup (ecs->ptid,
5354 ecs->event_thread->suspend.stop_signal);
5355
5356 had_step_over_info = step_over_info_valid_p ();
5357
5358 if (had_step_over_info)
5359 {
5360 /* If we're stepping over a breakpoint with all threads locked,
5361 then only the thread that was stepped should be reporting
5362 back an event. */
5363 gdb_assert (ecs->event_thread->control.trap_expected);
5364
5365 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5366 clear_step_over_info ();
5367 }
5368
5369 if (!target_is_non_stop_p ())
5370 return 0;
5371
5372 /* Start a new step-over in another thread if there's one that
5373 needs it. */
5374 start_step_over ();
5375
5376 /* If we were stepping over a breakpoint before, and haven't started
5377 a new in-line step-over sequence, then restart all other threads
5378 (except the event thread). We can't do this in all-stop, as then
5379 e.g., we wouldn't be able to issue any other remote packet until
5380 these other threads stop. */
5381 if (had_step_over_info && !step_over_info_valid_p ())
5382 {
5383 struct thread_info *pending;
5384
5385 /* If we only have threads with pending statuses, the restart
5386 below won't restart any thread and so nothing re-inserts the
5387 breakpoint we just stepped over. But we need it inserted
5388 when we later process the pending events, otherwise if
5389 another thread has a pending event for this breakpoint too,
5390 we'd discard its event (because the breakpoint that
5391 originally caused the event was no longer inserted). */
5392 context_switch (ecs->ptid);
5393 insert_breakpoints ();
5394
5395 restart_threads (ecs->event_thread);
5396
5397 /* If we have events pending, go through handle_inferior_event
5398 again, picking up a pending event at random. This avoids
5399 thread starvation. */
5400
5401 /* But not if we just stepped over a watchpoint in order to let
5402 the instruction execute so we can evaluate its expression.
5403 The set of watchpoints that triggered is recorded in the
5404 breakpoint objects themselves (see bp->watchpoint_triggered).
5405 If we processed another event first, that other event could
5406 clobber this info. */
5407 if (ecs->event_thread->stepping_over_watchpoint)
5408 return 0;
5409
5410 pending = iterate_over_threads (resumed_thread_with_pending_status,
5411 NULL);
5412 if (pending != NULL)
5413 {
5414 struct thread_info *tp = ecs->event_thread;
5415 struct regcache *regcache;
5416
5417 if (debug_infrun)
5418 {
5419 fprintf_unfiltered (gdb_stdlog,
5420 "infrun: found resumed threads with "
5421 "pending events, saving status\n");
5422 }
5423
5424 gdb_assert (pending != tp);
5425
5426 /* Record the event thread's event for later. */
5427 save_waitstatus (tp, &ecs->ws);
5428 /* This was cleared early, by handle_inferior_event. Set it
5429 so this pending event is considered by
5430 do_target_wait. */
5431 tp->resumed = 1;
5432
5433 gdb_assert (!tp->executing);
5434
5435 regcache = get_thread_regcache (tp->ptid);
5436 tp->suspend.stop_pc = regcache_read_pc (regcache);
5437
5438 if (debug_infrun)
5439 {
5440 fprintf_unfiltered (gdb_stdlog,
5441 "infrun: saved stop_pc=%s for %s "
5442 "(currently_stepping=%d)\n",
5443 paddress (target_gdbarch (),
5444 tp->suspend.stop_pc),
5445 target_pid_to_str (tp->ptid),
5446 currently_stepping (tp));
5447 }
5448
5449 /* This in-line step-over finished; clear this so we won't
5450 start a new one. This is what handle_signal_stop would
5451 do, if we returned false. */
5452 tp->stepping_over_breakpoint = 0;
5453
5454 /* Wake up the event loop again. */
5455 mark_async_event_handler (infrun_async_inferior_event_token);
5456
5457 prepare_to_wait (ecs);
5458 return 1;
5459 }
5460 }
5461
5462 return 0;
5463}
5464
5465/* Come here when the program has stopped with a signal. */
5466
5467static void
5468handle_signal_stop (struct execution_control_state *ecs)
5469{
5470 struct frame_info *frame;
5471 struct gdbarch *gdbarch;
5472 int stopped_by_watchpoint;
5473 enum stop_kind stop_soon;
5474 int random_signal;
5475
5476 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5477
5478 /* Do we need to clean up the state of a thread that has
5479 completed a displaced single-step? (Doing so usually affects
5480 the PC, so do it here, before we set stop_pc.) */
5481 if (finish_step_over (ecs))
5482 return;
5483
5484 /* If we either finished a single-step or hit a breakpoint, but
5485 the user wanted this thread to be stopped, pretend we got a
5486 SIG0 (generic unsignaled stop). */
5487 if (ecs->event_thread->stop_requested
5488 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5489 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5490
5491 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5492
5493 if (debug_infrun)
5494 {
5495 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5496 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5497 struct cleanup *old_chain = save_inferior_ptid ();
5498
5499 inferior_ptid = ecs->ptid;
5500
5501 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5502 paddress (gdbarch, stop_pc));
5503 if (target_stopped_by_watchpoint ())
5504 {
5505 CORE_ADDR addr;
5506
5507 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5508
5509 if (target_stopped_data_address (&current_target, &addr))
5510 fprintf_unfiltered (gdb_stdlog,
5511 "infrun: stopped data address = %s\n",
5512 paddress (gdbarch, addr));
5513 else
5514 fprintf_unfiltered (gdb_stdlog,
5515 "infrun: (no data address available)\n");
5516 }
5517
5518 do_cleanups (old_chain);
5519 }
5520
5521 /* This is originated from start_remote(), start_inferior() and
5522 shared libraries hook functions. */
5523 stop_soon = get_inferior_stop_soon (ecs->ptid);
5524 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5525 {
5526 if (!ptid_equal (ecs->ptid, inferior_ptid))
5527 context_switch (ecs->ptid);
5528 if (debug_infrun)
5529 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5530 stop_print_frame = 1;
5531 stop_waiting (ecs);
5532 return;
5533 }
5534
5535 /* This originates from attach_command(). We need to overwrite
5536 the stop_signal here, because some kernels don't ignore a
5537 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5538 See more comments in inferior.h. On the other hand, if we
5539 get a non-SIGSTOP, report it to the user - assume the backend
5540 will handle the SIGSTOP if it should show up later.
5541
5542 Also consider that the attach is complete when we see a
5543 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5544 target extended-remote report it instead of a SIGSTOP
5545 (e.g. gdbserver). We already rely on SIGTRAP being our
5546 signal, so this is no exception.
5547
5548 Also consider that the attach is complete when we see a
5549 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5550 the target to stop all threads of the inferior, in case the
5551 low level attach operation doesn't stop them implicitly. If
5552 they weren't stopped implicitly, then the stub will report a
5553 GDB_SIGNAL_0, meaning: stopped for no particular reason
5554 other than GDB's request. */
5555 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5556 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5557 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5558 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5559 {
5560 stop_print_frame = 1;
5561 stop_waiting (ecs);
5562 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5563 return;
5564 }
5565
5566 /* See if something interesting happened to the non-current thread. If
5567 so, then switch to that thread. */
5568 if (!ptid_equal (ecs->ptid, inferior_ptid))
5569 {
5570 if (debug_infrun)
5571 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5572
5573 context_switch (ecs->ptid);
5574
5575 if (deprecated_context_hook)
5576 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
5577 }
5578
5579 /* At this point, get hold of the now-current thread's frame. */
5580 frame = get_current_frame ();
5581 gdbarch = get_frame_arch (frame);
5582
5583 /* Pull the single step breakpoints out of the target. */
5584 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5585 {
5586 struct regcache *regcache;
5587 struct address_space *aspace;
5588 CORE_ADDR pc;
5589
5590 regcache = get_thread_regcache (ecs->ptid);
5591 aspace = get_regcache_aspace (regcache);
5592 pc = regcache_read_pc (regcache);
5593
5594 /* However, before doing so, if this single-step breakpoint was
5595 actually for another thread, set this thread up for moving
5596 past it. */
5597 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5598 aspace, pc))
5599 {
5600 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5601 {
5602 if (debug_infrun)
5603 {
5604 fprintf_unfiltered (gdb_stdlog,
5605 "infrun: [%s] hit another thread's "
5606 "single-step breakpoint\n",
5607 target_pid_to_str (ecs->ptid));
5608 }
5609 ecs->hit_singlestep_breakpoint = 1;
5610 }
5611 }
5612 else
5613 {
5614 if (debug_infrun)
5615 {
5616 fprintf_unfiltered (gdb_stdlog,
5617 "infrun: [%s] hit its "
5618 "single-step breakpoint\n",
5619 target_pid_to_str (ecs->ptid));
5620 }
5621 }
5622 }
5623 delete_just_stopped_threads_single_step_breakpoints ();
5624
5625 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5626 && ecs->event_thread->control.trap_expected
5627 && ecs->event_thread->stepping_over_watchpoint)
5628 stopped_by_watchpoint = 0;
5629 else
5630 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5631
5632 /* If necessary, step over this watchpoint. We'll be back to display
5633 it in a moment. */
5634 if (stopped_by_watchpoint
5635 && (target_have_steppable_watchpoint
5636 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5637 {
5638 /* At this point, we are stopped at an instruction which has
5639 attempted to write to a piece of memory under control of
5640 a watchpoint. The instruction hasn't actually executed
5641 yet. If we were to evaluate the watchpoint expression
5642 now, we would get the old value, and therefore no change
5643 would seem to have occurred.
5644
5645 In order to make watchpoints work `right', we really need
5646 to complete the memory write, and then evaluate the
5647 watchpoint expression. We do this by single-stepping the
5648 target.
5649
5650 It may not be necessary to disable the watchpoint to step over
5651 it. For example, the PA can (with some kernel cooperation)
5652 single step over a watchpoint without disabling the watchpoint.
5653
5654 It is far more common to need to disable a watchpoint to step
5655 the inferior over it. If we have non-steppable watchpoints,
5656 we must disable the current watchpoint; it's simplest to
5657 disable all watchpoints.
5658
5659 Any breakpoint at PC must also be stepped over -- if there's
5660 one, it will have already triggered before the watchpoint
5661 triggered, and we either already reported it to the user, or
5662 it didn't cause a stop and we called keep_going. In either
5663 case, if there was a breakpoint at PC, we must be trying to
5664 step past it. */
5665 ecs->event_thread->stepping_over_watchpoint = 1;
5666 keep_going (ecs);
5667 return;
5668 }
5669
5670 ecs->event_thread->stepping_over_breakpoint = 0;
5671 ecs->event_thread->stepping_over_watchpoint = 0;
5672 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5673 ecs->event_thread->control.stop_step = 0;
5674 stop_print_frame = 1;
5675 stopped_by_random_signal = 0;
5676
5677 /* Hide inlined functions starting here, unless we just performed stepi or
5678 nexti. After stepi and nexti, always show the innermost frame (not any
5679 inline function call sites). */
5680 if (ecs->event_thread->control.step_range_end != 1)
5681 {
5682 struct address_space *aspace =
5683 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5684
5685 /* skip_inline_frames is expensive, so we avoid it if we can
5686 determine that the address is one where functions cannot have
5687 been inlined. This improves performance with inferiors that
5688 load a lot of shared libraries, because the solib event
5689 breakpoint is defined as the address of a function (i.e. not
5690 inline). Note that we have to check the previous PC as well
5691 as the current one to catch cases when we have just
5692 single-stepped off a breakpoint prior to reinstating it.
5693 Note that we're assuming that the code we single-step to is
5694 not inline, but that's not definitive: there's nothing
5695 preventing the event breakpoint function from containing
5696 inlined code, and the single-step ending up there. If the
5697 user had set a breakpoint on that inlined code, the missing
5698 skip_inline_frames call would break things. Fortunately
5699 that's an extremely unlikely scenario. */
5700 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5701 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5702 && ecs->event_thread->control.trap_expected
5703 && pc_at_non_inline_function (aspace,
5704 ecs->event_thread->prev_pc,
5705 &ecs->ws)))
5706 {
5707 skip_inline_frames (ecs->ptid);
5708
5709 /* Re-fetch current thread's frame in case that invalidated
5710 the frame cache. */
5711 frame = get_current_frame ();
5712 gdbarch = get_frame_arch (frame);
5713 }
5714 }
5715
5716 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5717 && ecs->event_thread->control.trap_expected
5718 && gdbarch_single_step_through_delay_p (gdbarch)
5719 && currently_stepping (ecs->event_thread))
5720 {
5721 /* We're trying to step off a breakpoint. Turns out that we're
5722 also on an instruction that needs to be stepped multiple
5723 times before it's been fully executing. E.g., architectures
5724 with a delay slot. It needs to be stepped twice, once for
5725 the instruction and once for the delay slot. */
5726 int step_through_delay
5727 = gdbarch_single_step_through_delay (gdbarch, frame);
5728
5729 if (debug_infrun && step_through_delay)
5730 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5731 if (ecs->event_thread->control.step_range_end == 0
5732 && step_through_delay)
5733 {
5734 /* The user issued a continue when stopped at a breakpoint.
5735 Set up for another trap and get out of here. */
5736 ecs->event_thread->stepping_over_breakpoint = 1;
5737 keep_going (ecs);
5738 return;
5739 }
5740 else if (step_through_delay)
5741 {
5742 /* The user issued a step when stopped at a breakpoint.
5743 Maybe we should stop, maybe we should not - the delay
5744 slot *might* correspond to a line of source. In any
5745 case, don't decide that here, just set
5746 ecs->stepping_over_breakpoint, making sure we
5747 single-step again before breakpoints are re-inserted. */
5748 ecs->event_thread->stepping_over_breakpoint = 1;
5749 }
5750 }
5751
5752 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5753 handles this event. */
5754 ecs->event_thread->control.stop_bpstat
5755 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5756 stop_pc, ecs->ptid, &ecs->ws);
5757
5758 /* Following in case break condition called a
5759 function. */
5760 stop_print_frame = 1;
5761
5762 /* This is where we handle "moribund" watchpoints. Unlike
5763 software breakpoints traps, hardware watchpoint traps are
5764 always distinguishable from random traps. If no high-level
5765 watchpoint is associated with the reported stop data address
5766 anymore, then the bpstat does not explain the signal ---
5767 simply make sure to ignore it if `stopped_by_watchpoint' is
5768 set. */
5769
5770 if (debug_infrun
5771 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5772 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5773 GDB_SIGNAL_TRAP)
5774 && stopped_by_watchpoint)
5775 fprintf_unfiltered (gdb_stdlog,
5776 "infrun: no user watchpoint explains "
5777 "watchpoint SIGTRAP, ignoring\n");
5778
5779 /* NOTE: cagney/2003-03-29: These checks for a random signal
5780 at one stage in the past included checks for an inferior
5781 function call's call dummy's return breakpoint. The original
5782 comment, that went with the test, read:
5783
5784 ``End of a stack dummy. Some systems (e.g. Sony news) give
5785 another signal besides SIGTRAP, so check here as well as
5786 above.''
5787
5788 If someone ever tries to get call dummys on a
5789 non-executable stack to work (where the target would stop
5790 with something like a SIGSEGV), then those tests might need
5791 to be re-instated. Given, however, that the tests were only
5792 enabled when momentary breakpoints were not being used, I
5793 suspect that it won't be the case.
5794
5795 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5796 be necessary for call dummies on a non-executable stack on
5797 SPARC. */
5798
5799 /* See if the breakpoints module can explain the signal. */
5800 random_signal
5801 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5802 ecs->event_thread->suspend.stop_signal);
5803
5804 /* Maybe this was a trap for a software breakpoint that has since
5805 been removed. */
5806 if (random_signal && target_stopped_by_sw_breakpoint ())
5807 {
5808 if (program_breakpoint_here_p (gdbarch, stop_pc))
5809 {
5810 struct regcache *regcache;
5811 int decr_pc;
5812
5813 /* Re-adjust PC to what the program would see if GDB was not
5814 debugging it. */
5815 regcache = get_thread_regcache (ecs->event_thread->ptid);
5816 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5817 if (decr_pc != 0)
5818 {
5819 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5820
5821 if (record_full_is_used ())
5822 record_full_gdb_operation_disable_set ();
5823
5824 regcache_write_pc (regcache, stop_pc + decr_pc);
5825
5826 do_cleanups (old_cleanups);
5827 }
5828 }
5829 else
5830 {
5831 /* A delayed software breakpoint event. Ignore the trap. */
5832 if (debug_infrun)
5833 fprintf_unfiltered (gdb_stdlog,
5834 "infrun: delayed software breakpoint "
5835 "trap, ignoring\n");
5836 random_signal = 0;
5837 }
5838 }
5839
5840 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5841 has since been removed. */
5842 if (random_signal && target_stopped_by_hw_breakpoint ())
5843 {
5844 /* A delayed hardware breakpoint event. Ignore the trap. */
5845 if (debug_infrun)
5846 fprintf_unfiltered (gdb_stdlog,
5847 "infrun: delayed hardware breakpoint/watchpoint "
5848 "trap, ignoring\n");
5849 random_signal = 0;
5850 }
5851
5852 /* If not, perhaps stepping/nexting can. */
5853 if (random_signal)
5854 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5855 && currently_stepping (ecs->event_thread));
5856
5857 /* Perhaps the thread hit a single-step breakpoint of _another_
5858 thread. Single-step breakpoints are transparent to the
5859 breakpoints module. */
5860 if (random_signal)
5861 random_signal = !ecs->hit_singlestep_breakpoint;
5862
5863 /* No? Perhaps we got a moribund watchpoint. */
5864 if (random_signal)
5865 random_signal = !stopped_by_watchpoint;
5866
5867 /* For the program's own signals, act according to
5868 the signal handling tables. */
5869
5870 if (random_signal)
5871 {
5872 /* Signal not for debugging purposes. */
5873 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5874 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5875
5876 if (debug_infrun)
5877 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5878 gdb_signal_to_symbol_string (stop_signal));
5879
5880 stopped_by_random_signal = 1;
5881
5882 /* Always stop on signals if we're either just gaining control
5883 of the program, or the user explicitly requested this thread
5884 to remain stopped. */
5885 if (stop_soon != NO_STOP_QUIETLY
5886 || ecs->event_thread->stop_requested
5887 || (!inf->detaching
5888 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5889 {
5890 stop_waiting (ecs);
5891 return;
5892 }
5893
5894 /* Notify observers the signal has "handle print" set. Note we
5895 returned early above if stopping; normal_stop handles the
5896 printing in that case. */
5897 if (signal_print[ecs->event_thread->suspend.stop_signal])
5898 {
5899 /* The signal table tells us to print about this signal. */
5900 target_terminal_ours_for_output ();
5901 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5902 target_terminal_inferior ();
5903 }
5904
5905 /* Clear the signal if it should not be passed. */
5906 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5907 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5908
5909 if (ecs->event_thread->prev_pc == stop_pc
5910 && ecs->event_thread->control.trap_expected
5911 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5912 {
5913 int was_in_line;
5914
5915 /* We were just starting a new sequence, attempting to
5916 single-step off of a breakpoint and expecting a SIGTRAP.
5917 Instead this signal arrives. This signal will take us out
5918 of the stepping range so GDB needs to remember to, when
5919 the signal handler returns, resume stepping off that
5920 breakpoint. */
5921 /* To simplify things, "continue" is forced to use the same
5922 code paths as single-step - set a breakpoint at the
5923 signal return address and then, once hit, step off that
5924 breakpoint. */
5925 if (debug_infrun)
5926 fprintf_unfiltered (gdb_stdlog,
5927 "infrun: signal arrived while stepping over "
5928 "breakpoint\n");
5929
5930 was_in_line = step_over_info_valid_p ();
5931 clear_step_over_info ();
5932 insert_hp_step_resume_breakpoint_at_frame (frame);
5933 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5934 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5935 ecs->event_thread->control.trap_expected = 0;
5936
5937 if (target_is_non_stop_p ())
5938 {
5939 /* Either "set non-stop" is "on", or the target is
5940 always in non-stop mode. In this case, we have a bit
5941 more work to do. Resume the current thread, and if
5942 we had paused all threads, restart them while the
5943 signal handler runs. */
5944 keep_going (ecs);
5945
5946 if (was_in_line)
5947 {
5948 restart_threads (ecs->event_thread);
5949 }
5950 else if (debug_infrun)
5951 {
5952 fprintf_unfiltered (gdb_stdlog,
5953 "infrun: no need to restart threads\n");
5954 }
5955 return;
5956 }
5957
5958 /* If we were nexting/stepping some other thread, switch to
5959 it, so that we don't continue it, losing control. */
5960 if (!switch_back_to_stepped_thread (ecs))
5961 keep_going (ecs);
5962 return;
5963 }
5964
5965 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5966 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5967 || ecs->event_thread->control.step_range_end == 1)
5968 && frame_id_eq (get_stack_frame_id (frame),
5969 ecs->event_thread->control.step_stack_frame_id)
5970 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5971 {
5972 /* The inferior is about to take a signal that will take it
5973 out of the single step range. Set a breakpoint at the
5974 current PC (which is presumably where the signal handler
5975 will eventually return) and then allow the inferior to
5976 run free.
5977
5978 Note that this is only needed for a signal delivered
5979 while in the single-step range. Nested signals aren't a
5980 problem as they eventually all return. */
5981 if (debug_infrun)
5982 fprintf_unfiltered (gdb_stdlog,
5983 "infrun: signal may take us out of "
5984 "single-step range\n");
5985
5986 clear_step_over_info ();
5987 insert_hp_step_resume_breakpoint_at_frame (frame);
5988 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5989 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5990 ecs->event_thread->control.trap_expected = 0;
5991 keep_going (ecs);
5992 return;
5993 }
5994
5995 /* Note: step_resume_breakpoint may be non-NULL. This occures
5996 when either there's a nested signal, or when there's a
5997 pending signal enabled just as the signal handler returns
5998 (leaving the inferior at the step-resume-breakpoint without
5999 actually executing it). Either way continue until the
6000 breakpoint is really hit. */
6001
6002 if (!switch_back_to_stepped_thread (ecs))
6003 {
6004 if (debug_infrun)
6005 fprintf_unfiltered (gdb_stdlog,
6006 "infrun: random signal, keep going\n");
6007
6008 keep_going (ecs);
6009 }
6010 return;
6011 }
6012
6013 process_event_stop_test (ecs);
6014}
6015
6016/* Come here when we've got some debug event / signal we can explain
6017 (IOW, not a random signal), and test whether it should cause a
6018 stop, or whether we should resume the inferior (transparently).
6019 E.g., could be a breakpoint whose condition evaluates false; we
6020 could be still stepping within the line; etc. */
6021
6022static void
6023process_event_stop_test (struct execution_control_state *ecs)
6024{
6025 struct symtab_and_line stop_pc_sal;
6026 struct frame_info *frame;
6027 struct gdbarch *gdbarch;
6028 CORE_ADDR jmp_buf_pc;
6029 struct bpstat_what what;
6030
6031 /* Handle cases caused by hitting a breakpoint. */
6032
6033 frame = get_current_frame ();
6034 gdbarch = get_frame_arch (frame);
6035
6036 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6037
6038 if (what.call_dummy)
6039 {
6040 stop_stack_dummy = what.call_dummy;
6041 }
6042
6043 /* A few breakpoint types have callbacks associated (e.g.,
6044 bp_jit_event). Run them now. */
6045 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6046
6047 /* If we hit an internal event that triggers symbol changes, the
6048 current frame will be invalidated within bpstat_what (e.g., if we
6049 hit an internal solib event). Re-fetch it. */
6050 frame = get_current_frame ();
6051 gdbarch = get_frame_arch (frame);
6052
6053 switch (what.main_action)
6054 {
6055 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6056 /* If we hit the breakpoint at longjmp while stepping, we
6057 install a momentary breakpoint at the target of the
6058 jmp_buf. */
6059
6060 if (debug_infrun)
6061 fprintf_unfiltered (gdb_stdlog,
6062 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6063
6064 ecs->event_thread->stepping_over_breakpoint = 1;
6065
6066 if (what.is_longjmp)
6067 {
6068 struct value *arg_value;
6069
6070 /* If we set the longjmp breakpoint via a SystemTap probe,
6071 then use it to extract the arguments. The destination PC
6072 is the third argument to the probe. */
6073 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6074 if (arg_value)
6075 {
6076 jmp_buf_pc = value_as_address (arg_value);
6077 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6078 }
6079 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6080 || !gdbarch_get_longjmp_target (gdbarch,
6081 frame, &jmp_buf_pc))
6082 {
6083 if (debug_infrun)
6084 fprintf_unfiltered (gdb_stdlog,
6085 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6086 "(!gdbarch_get_longjmp_target)\n");
6087 keep_going (ecs);
6088 return;
6089 }
6090
6091 /* Insert a breakpoint at resume address. */
6092 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6093 }
6094 else
6095 check_exception_resume (ecs, frame);
6096 keep_going (ecs);
6097 return;
6098
6099 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6100 {
6101 struct frame_info *init_frame;
6102
6103 /* There are several cases to consider.
6104
6105 1. The initiating frame no longer exists. In this case we
6106 must stop, because the exception or longjmp has gone too
6107 far.
6108
6109 2. The initiating frame exists, and is the same as the
6110 current frame. We stop, because the exception or longjmp
6111 has been caught.
6112
6113 3. The initiating frame exists and is different from the
6114 current frame. This means the exception or longjmp has
6115 been caught beneath the initiating frame, so keep going.
6116
6117 4. longjmp breakpoint has been placed just to protect
6118 against stale dummy frames and user is not interested in
6119 stopping around longjmps. */
6120
6121 if (debug_infrun)
6122 fprintf_unfiltered (gdb_stdlog,
6123 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6124
6125 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6126 != NULL);
6127 delete_exception_resume_breakpoint (ecs->event_thread);
6128
6129 if (what.is_longjmp)
6130 {
6131 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6132
6133 if (!frame_id_p (ecs->event_thread->initiating_frame))
6134 {
6135 /* Case 4. */
6136 keep_going (ecs);
6137 return;
6138 }
6139 }
6140
6141 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6142
6143 if (init_frame)
6144 {
6145 struct frame_id current_id
6146 = get_frame_id (get_current_frame ());
6147 if (frame_id_eq (current_id,
6148 ecs->event_thread->initiating_frame))
6149 {
6150 /* Case 2. Fall through. */
6151 }
6152 else
6153 {
6154 /* Case 3. */
6155 keep_going (ecs);
6156 return;
6157 }
6158 }
6159
6160 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6161 exists. */
6162 delete_step_resume_breakpoint (ecs->event_thread);
6163
6164 end_stepping_range (ecs);
6165 }
6166 return;
6167
6168 case BPSTAT_WHAT_SINGLE:
6169 if (debug_infrun)
6170 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6171 ecs->event_thread->stepping_over_breakpoint = 1;
6172 /* Still need to check other stuff, at least the case where we
6173 are stepping and step out of the right range. */
6174 break;
6175
6176 case BPSTAT_WHAT_STEP_RESUME:
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6179
6180 delete_step_resume_breakpoint (ecs->event_thread);
6181 if (ecs->event_thread->control.proceed_to_finish
6182 && execution_direction == EXEC_REVERSE)
6183 {
6184 struct thread_info *tp = ecs->event_thread;
6185
6186 /* We are finishing a function in reverse, and just hit the
6187 step-resume breakpoint at the start address of the
6188 function, and we're almost there -- just need to back up
6189 by one more single-step, which should take us back to the
6190 function call. */
6191 tp->control.step_range_start = tp->control.step_range_end = 1;
6192 keep_going (ecs);
6193 return;
6194 }
6195 fill_in_stop_func (gdbarch, ecs);
6196 if (stop_pc == ecs->stop_func_start
6197 && execution_direction == EXEC_REVERSE)
6198 {
6199 /* We are stepping over a function call in reverse, and just
6200 hit the step-resume breakpoint at the start address of
6201 the function. Go back to single-stepping, which should
6202 take us back to the function call. */
6203 ecs->event_thread->stepping_over_breakpoint = 1;
6204 keep_going (ecs);
6205 return;
6206 }
6207 break;
6208
6209 case BPSTAT_WHAT_STOP_NOISY:
6210 if (debug_infrun)
6211 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6212 stop_print_frame = 1;
6213
6214 /* Assume the thread stopped for a breapoint. We'll still check
6215 whether a/the breakpoint is there when the thread is next
6216 resumed. */
6217 ecs->event_thread->stepping_over_breakpoint = 1;
6218
6219 stop_waiting (ecs);
6220 return;
6221
6222 case BPSTAT_WHAT_STOP_SILENT:
6223 if (debug_infrun)
6224 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6225 stop_print_frame = 0;
6226
6227 /* Assume the thread stopped for a breapoint. We'll still check
6228 whether a/the breakpoint is there when the thread is next
6229 resumed. */
6230 ecs->event_thread->stepping_over_breakpoint = 1;
6231 stop_waiting (ecs);
6232 return;
6233
6234 case BPSTAT_WHAT_HP_STEP_RESUME:
6235 if (debug_infrun)
6236 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6237
6238 delete_step_resume_breakpoint (ecs->event_thread);
6239 if (ecs->event_thread->step_after_step_resume_breakpoint)
6240 {
6241 /* Back when the step-resume breakpoint was inserted, we
6242 were trying to single-step off a breakpoint. Go back to
6243 doing that. */
6244 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6245 ecs->event_thread->stepping_over_breakpoint = 1;
6246 keep_going (ecs);
6247 return;
6248 }
6249 break;
6250
6251 case BPSTAT_WHAT_KEEP_CHECKING:
6252 break;
6253 }
6254
6255 /* If we stepped a permanent breakpoint and we had a high priority
6256 step-resume breakpoint for the address we stepped, but we didn't
6257 hit it, then we must have stepped into the signal handler. The
6258 step-resume was only necessary to catch the case of _not_
6259 stepping into the handler, so delete it, and fall through to
6260 checking whether the step finished. */
6261 if (ecs->event_thread->stepped_breakpoint)
6262 {
6263 struct breakpoint *sr_bp
6264 = ecs->event_thread->control.step_resume_breakpoint;
6265
6266 if (sr_bp != NULL
6267 && sr_bp->loc->permanent
6268 && sr_bp->type == bp_hp_step_resume
6269 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6270 {
6271 if (debug_infrun)
6272 fprintf_unfiltered (gdb_stdlog,
6273 "infrun: stepped permanent breakpoint, stopped in "
6274 "handler\n");
6275 delete_step_resume_breakpoint (ecs->event_thread);
6276 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6277 }
6278 }
6279
6280 /* We come here if we hit a breakpoint but should not stop for it.
6281 Possibly we also were stepping and should stop for that. So fall
6282 through and test for stepping. But, if not stepping, do not
6283 stop. */
6284
6285 /* In all-stop mode, if we're currently stepping but have stopped in
6286 some other thread, we need to switch back to the stepped thread. */
6287 if (switch_back_to_stepped_thread (ecs))
6288 return;
6289
6290 if (ecs->event_thread->control.step_resume_breakpoint)
6291 {
6292 if (debug_infrun)
6293 fprintf_unfiltered (gdb_stdlog,
6294 "infrun: step-resume breakpoint is inserted\n");
6295
6296 /* Having a step-resume breakpoint overrides anything
6297 else having to do with stepping commands until
6298 that breakpoint is reached. */
6299 keep_going (ecs);
6300 return;
6301 }
6302
6303 if (ecs->event_thread->control.step_range_end == 0)
6304 {
6305 if (debug_infrun)
6306 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6307 /* Likewise if we aren't even stepping. */
6308 keep_going (ecs);
6309 return;
6310 }
6311
6312 /* Re-fetch current thread's frame in case the code above caused
6313 the frame cache to be re-initialized, making our FRAME variable
6314 a dangling pointer. */
6315 frame = get_current_frame ();
6316 gdbarch = get_frame_arch (frame);
6317 fill_in_stop_func (gdbarch, ecs);
6318
6319 /* If stepping through a line, keep going if still within it.
6320
6321 Note that step_range_end is the address of the first instruction
6322 beyond the step range, and NOT the address of the last instruction
6323 within it!
6324
6325 Note also that during reverse execution, we may be stepping
6326 through a function epilogue and therefore must detect when
6327 the current-frame changes in the middle of a line. */
6328
6329 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6330 && (execution_direction != EXEC_REVERSE
6331 || frame_id_eq (get_frame_id (frame),
6332 ecs->event_thread->control.step_frame_id)))
6333 {
6334 if (debug_infrun)
6335 fprintf_unfiltered
6336 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6337 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6338 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6339
6340 /* Tentatively re-enable range stepping; `resume' disables it if
6341 necessary (e.g., if we're stepping over a breakpoint or we
6342 have software watchpoints). */
6343 ecs->event_thread->control.may_range_step = 1;
6344
6345 /* When stepping backward, stop at beginning of line range
6346 (unless it's the function entry point, in which case
6347 keep going back to the call point). */
6348 if (stop_pc == ecs->event_thread->control.step_range_start
6349 && stop_pc != ecs->stop_func_start
6350 && execution_direction == EXEC_REVERSE)
6351 end_stepping_range (ecs);
6352 else
6353 keep_going (ecs);
6354
6355 return;
6356 }
6357
6358 /* We stepped out of the stepping range. */
6359
6360 /* If we are stepping at the source level and entered the runtime
6361 loader dynamic symbol resolution code...
6362
6363 EXEC_FORWARD: we keep on single stepping until we exit the run
6364 time loader code and reach the callee's address.
6365
6366 EXEC_REVERSE: we've already executed the callee (backward), and
6367 the runtime loader code is handled just like any other
6368 undebuggable function call. Now we need only keep stepping
6369 backward through the trampoline code, and that's handled further
6370 down, so there is nothing for us to do here. */
6371
6372 if (execution_direction != EXEC_REVERSE
6373 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6374 && in_solib_dynsym_resolve_code (stop_pc))
6375 {
6376 CORE_ADDR pc_after_resolver =
6377 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6378
6379 if (debug_infrun)
6380 fprintf_unfiltered (gdb_stdlog,
6381 "infrun: stepped into dynsym resolve code\n");
6382
6383 if (pc_after_resolver)
6384 {
6385 /* Set up a step-resume breakpoint at the address
6386 indicated by SKIP_SOLIB_RESOLVER. */
6387 struct symtab_and_line sr_sal;
6388
6389 init_sal (&sr_sal);
6390 sr_sal.pc = pc_after_resolver;
6391 sr_sal.pspace = get_frame_program_space (frame);
6392
6393 insert_step_resume_breakpoint_at_sal (gdbarch,
6394 sr_sal, null_frame_id);
6395 }
6396
6397 keep_going (ecs);
6398 return;
6399 }
6400
6401 if (ecs->event_thread->control.step_range_end != 1
6402 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6403 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6404 && get_frame_type (frame) == SIGTRAMP_FRAME)
6405 {
6406 if (debug_infrun)
6407 fprintf_unfiltered (gdb_stdlog,
6408 "infrun: stepped into signal trampoline\n");
6409 /* The inferior, while doing a "step" or "next", has ended up in
6410 a signal trampoline (either by a signal being delivered or by
6411 the signal handler returning). Just single-step until the
6412 inferior leaves the trampoline (either by calling the handler
6413 or returning). */
6414 keep_going (ecs);
6415 return;
6416 }
6417
6418 /* If we're in the return path from a shared library trampoline,
6419 we want to proceed through the trampoline when stepping. */
6420 /* macro/2012-04-25: This needs to come before the subroutine
6421 call check below as on some targets return trampolines look
6422 like subroutine calls (MIPS16 return thunks). */
6423 if (gdbarch_in_solib_return_trampoline (gdbarch,
6424 stop_pc, ecs->stop_func_name)
6425 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6426 {
6427 /* Determine where this trampoline returns. */
6428 CORE_ADDR real_stop_pc;
6429
6430 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6431
6432 if (debug_infrun)
6433 fprintf_unfiltered (gdb_stdlog,
6434 "infrun: stepped into solib return tramp\n");
6435
6436 /* Only proceed through if we know where it's going. */
6437 if (real_stop_pc)
6438 {
6439 /* And put the step-breakpoint there and go until there. */
6440 struct symtab_and_line sr_sal;
6441
6442 init_sal (&sr_sal); /* initialize to zeroes */
6443 sr_sal.pc = real_stop_pc;
6444 sr_sal.section = find_pc_overlay (sr_sal.pc);
6445 sr_sal.pspace = get_frame_program_space (frame);
6446
6447 /* Do not specify what the fp should be when we stop since
6448 on some machines the prologue is where the new fp value
6449 is established. */
6450 insert_step_resume_breakpoint_at_sal (gdbarch,
6451 sr_sal, null_frame_id);
6452
6453 /* Restart without fiddling with the step ranges or
6454 other state. */
6455 keep_going (ecs);
6456 return;
6457 }
6458 }
6459
6460 /* Check for subroutine calls. The check for the current frame
6461 equalling the step ID is not necessary - the check of the
6462 previous frame's ID is sufficient - but it is a common case and
6463 cheaper than checking the previous frame's ID.
6464
6465 NOTE: frame_id_eq will never report two invalid frame IDs as
6466 being equal, so to get into this block, both the current and
6467 previous frame must have valid frame IDs. */
6468 /* The outer_frame_id check is a heuristic to detect stepping
6469 through startup code. If we step over an instruction which
6470 sets the stack pointer from an invalid value to a valid value,
6471 we may detect that as a subroutine call from the mythical
6472 "outermost" function. This could be fixed by marking
6473 outermost frames as !stack_p,code_p,special_p. Then the
6474 initial outermost frame, before sp was valid, would
6475 have code_addr == &_start. See the comment in frame_id_eq
6476 for more. */
6477 if (!frame_id_eq (get_stack_frame_id (frame),
6478 ecs->event_thread->control.step_stack_frame_id)
6479 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6480 ecs->event_thread->control.step_stack_frame_id)
6481 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6482 outer_frame_id)
6483 || (ecs->event_thread->control.step_start_function
6484 != find_pc_function (stop_pc)))))
6485 {
6486 CORE_ADDR real_stop_pc;
6487
6488 if (debug_infrun)
6489 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6490
6491 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6492 {
6493 /* I presume that step_over_calls is only 0 when we're
6494 supposed to be stepping at the assembly language level
6495 ("stepi"). Just stop. */
6496 /* And this works the same backward as frontward. MVS */
6497 end_stepping_range (ecs);
6498 return;
6499 }
6500
6501 /* Reverse stepping through solib trampolines. */
6502
6503 if (execution_direction == EXEC_REVERSE
6504 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6505 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6506 || (ecs->stop_func_start == 0
6507 && in_solib_dynsym_resolve_code (stop_pc))))
6508 {
6509 /* Any solib trampoline code can be handled in reverse
6510 by simply continuing to single-step. We have already
6511 executed the solib function (backwards), and a few
6512 steps will take us back through the trampoline to the
6513 caller. */
6514 keep_going (ecs);
6515 return;
6516 }
6517
6518 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6519 {
6520 /* We're doing a "next".
6521
6522 Normal (forward) execution: set a breakpoint at the
6523 callee's return address (the address at which the caller
6524 will resume).
6525
6526 Reverse (backward) execution. set the step-resume
6527 breakpoint at the start of the function that we just
6528 stepped into (backwards), and continue to there. When we
6529 get there, we'll need to single-step back to the caller. */
6530
6531 if (execution_direction == EXEC_REVERSE)
6532 {
6533 /* If we're already at the start of the function, we've either
6534 just stepped backward into a single instruction function,
6535 or stepped back out of a signal handler to the first instruction
6536 of the function. Just keep going, which will single-step back
6537 to the caller. */
6538 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6539 {
6540 struct symtab_and_line sr_sal;
6541
6542 /* Normal function call return (static or dynamic). */
6543 init_sal (&sr_sal);
6544 sr_sal.pc = ecs->stop_func_start;
6545 sr_sal.pspace = get_frame_program_space (frame);
6546 insert_step_resume_breakpoint_at_sal (gdbarch,
6547 sr_sal, null_frame_id);
6548 }
6549 }
6550 else
6551 insert_step_resume_breakpoint_at_caller (frame);
6552
6553 keep_going (ecs);
6554 return;
6555 }
6556
6557 /* If we are in a function call trampoline (a stub between the
6558 calling routine and the real function), locate the real
6559 function. That's what tells us (a) whether we want to step
6560 into it at all, and (b) what prologue we want to run to the
6561 end of, if we do step into it. */
6562 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6563 if (real_stop_pc == 0)
6564 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6565 if (real_stop_pc != 0)
6566 ecs->stop_func_start = real_stop_pc;
6567
6568 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6569 {
6570 struct symtab_and_line sr_sal;
6571
6572 init_sal (&sr_sal);
6573 sr_sal.pc = ecs->stop_func_start;
6574 sr_sal.pspace = get_frame_program_space (frame);
6575
6576 insert_step_resume_breakpoint_at_sal (gdbarch,
6577 sr_sal, null_frame_id);
6578 keep_going (ecs);
6579 return;
6580 }
6581
6582 /* If we have line number information for the function we are
6583 thinking of stepping into and the function isn't on the skip
6584 list, step into it.
6585
6586 If there are several symtabs at that PC (e.g. with include
6587 files), just want to know whether *any* of them have line
6588 numbers. find_pc_line handles this. */
6589 {
6590 struct symtab_and_line tmp_sal;
6591
6592 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6593 if (tmp_sal.line != 0
6594 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6595 &tmp_sal))
6596 {
6597 if (execution_direction == EXEC_REVERSE)
6598 handle_step_into_function_backward (gdbarch, ecs);
6599 else
6600 handle_step_into_function (gdbarch, ecs);
6601 return;
6602 }
6603 }
6604
6605 /* If we have no line number and the step-stop-if-no-debug is
6606 set, we stop the step so that the user has a chance to switch
6607 in assembly mode. */
6608 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6609 && step_stop_if_no_debug)
6610 {
6611 end_stepping_range (ecs);
6612 return;
6613 }
6614
6615 if (execution_direction == EXEC_REVERSE)
6616 {
6617 /* If we're already at the start of the function, we've either just
6618 stepped backward into a single instruction function without line
6619 number info, or stepped back out of a signal handler to the first
6620 instruction of the function without line number info. Just keep
6621 going, which will single-step back to the caller. */
6622 if (ecs->stop_func_start != stop_pc)
6623 {
6624 /* Set a breakpoint at callee's start address.
6625 From there we can step once and be back in the caller. */
6626 struct symtab_and_line sr_sal;
6627
6628 init_sal (&sr_sal);
6629 sr_sal.pc = ecs->stop_func_start;
6630 sr_sal.pspace = get_frame_program_space (frame);
6631 insert_step_resume_breakpoint_at_sal (gdbarch,
6632 sr_sal, null_frame_id);
6633 }
6634 }
6635 else
6636 /* Set a breakpoint at callee's return address (the address
6637 at which the caller will resume). */
6638 insert_step_resume_breakpoint_at_caller (frame);
6639
6640 keep_going (ecs);
6641 return;
6642 }
6643
6644 /* Reverse stepping through solib trampolines. */
6645
6646 if (execution_direction == EXEC_REVERSE
6647 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6648 {
6649 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6650 || (ecs->stop_func_start == 0
6651 && in_solib_dynsym_resolve_code (stop_pc)))
6652 {
6653 /* Any solib trampoline code can be handled in reverse
6654 by simply continuing to single-step. We have already
6655 executed the solib function (backwards), and a few
6656 steps will take us back through the trampoline to the
6657 caller. */
6658 keep_going (ecs);
6659 return;
6660 }
6661 else if (in_solib_dynsym_resolve_code (stop_pc))
6662 {
6663 /* Stepped backward into the solib dynsym resolver.
6664 Set a breakpoint at its start and continue, then
6665 one more step will take us out. */
6666 struct symtab_and_line sr_sal;
6667
6668 init_sal (&sr_sal);
6669 sr_sal.pc = ecs->stop_func_start;
6670 sr_sal.pspace = get_frame_program_space (frame);
6671 insert_step_resume_breakpoint_at_sal (gdbarch,
6672 sr_sal, null_frame_id);
6673 keep_going (ecs);
6674 return;
6675 }
6676 }
6677
6678 stop_pc_sal = find_pc_line (stop_pc, 0);
6679
6680 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6681 the trampoline processing logic, however, there are some trampolines
6682 that have no names, so we should do trampoline handling first. */
6683 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6684 && ecs->stop_func_name == NULL
6685 && stop_pc_sal.line == 0)
6686 {
6687 if (debug_infrun)
6688 fprintf_unfiltered (gdb_stdlog,
6689 "infrun: stepped into undebuggable function\n");
6690
6691 /* The inferior just stepped into, or returned to, an
6692 undebuggable function (where there is no debugging information
6693 and no line number corresponding to the address where the
6694 inferior stopped). Since we want to skip this kind of code,
6695 we keep going until the inferior returns from this
6696 function - unless the user has asked us not to (via
6697 set step-mode) or we no longer know how to get back
6698 to the call site. */
6699 if (step_stop_if_no_debug
6700 || !frame_id_p (frame_unwind_caller_id (frame)))
6701 {
6702 /* If we have no line number and the step-stop-if-no-debug
6703 is set, we stop the step so that the user has a chance to
6704 switch in assembly mode. */
6705 end_stepping_range (ecs);
6706 return;
6707 }
6708 else
6709 {
6710 /* Set a breakpoint at callee's return address (the address
6711 at which the caller will resume). */
6712 insert_step_resume_breakpoint_at_caller (frame);
6713 keep_going (ecs);
6714 return;
6715 }
6716 }
6717
6718 if (ecs->event_thread->control.step_range_end == 1)
6719 {
6720 /* It is stepi or nexti. We always want to stop stepping after
6721 one instruction. */
6722 if (debug_infrun)
6723 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6724 end_stepping_range (ecs);
6725 return;
6726 }
6727
6728 if (stop_pc_sal.line == 0)
6729 {
6730 /* We have no line number information. That means to stop
6731 stepping (does this always happen right after one instruction,
6732 when we do "s" in a function with no line numbers,
6733 or can this happen as a result of a return or longjmp?). */
6734 if (debug_infrun)
6735 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6736 end_stepping_range (ecs);
6737 return;
6738 }
6739
6740 /* Look for "calls" to inlined functions, part one. If the inline
6741 frame machinery detected some skipped call sites, we have entered
6742 a new inline function. */
6743
6744 if (frame_id_eq (get_frame_id (get_current_frame ()),
6745 ecs->event_thread->control.step_frame_id)
6746 && inline_skipped_frames (ecs->ptid))
6747 {
6748 struct symtab_and_line call_sal;
6749
6750 if (debug_infrun)
6751 fprintf_unfiltered (gdb_stdlog,
6752 "infrun: stepped into inlined function\n");
6753
6754 find_frame_sal (get_current_frame (), &call_sal);
6755
6756 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6757 {
6758 /* For "step", we're going to stop. But if the call site
6759 for this inlined function is on the same source line as
6760 we were previously stepping, go down into the function
6761 first. Otherwise stop at the call site. */
6762
6763 if (call_sal.line == ecs->event_thread->current_line
6764 && call_sal.symtab == ecs->event_thread->current_symtab)
6765 step_into_inline_frame (ecs->ptid);
6766
6767 end_stepping_range (ecs);
6768 return;
6769 }
6770 else
6771 {
6772 /* For "next", we should stop at the call site if it is on a
6773 different source line. Otherwise continue through the
6774 inlined function. */
6775 if (call_sal.line == ecs->event_thread->current_line
6776 && call_sal.symtab == ecs->event_thread->current_symtab)
6777 keep_going (ecs);
6778 else
6779 end_stepping_range (ecs);
6780 return;
6781 }
6782 }
6783
6784 /* Look for "calls" to inlined functions, part two. If we are still
6785 in the same real function we were stepping through, but we have
6786 to go further up to find the exact frame ID, we are stepping
6787 through a more inlined call beyond its call site. */
6788
6789 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6790 && !frame_id_eq (get_frame_id (get_current_frame ()),
6791 ecs->event_thread->control.step_frame_id)
6792 && stepped_in_from (get_current_frame (),
6793 ecs->event_thread->control.step_frame_id))
6794 {
6795 if (debug_infrun)
6796 fprintf_unfiltered (gdb_stdlog,
6797 "infrun: stepping through inlined function\n");
6798
6799 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6800 keep_going (ecs);
6801 else
6802 end_stepping_range (ecs);
6803 return;
6804 }
6805
6806 if ((stop_pc == stop_pc_sal.pc)
6807 && (ecs->event_thread->current_line != stop_pc_sal.line
6808 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6809 {
6810 /* We are at the start of a different line. So stop. Note that
6811 we don't stop if we step into the middle of a different line.
6812 That is said to make things like for (;;) statements work
6813 better. */
6814 if (debug_infrun)
6815 fprintf_unfiltered (gdb_stdlog,
6816 "infrun: stepped to a different line\n");
6817 end_stepping_range (ecs);
6818 return;
6819 }
6820
6821 /* We aren't done stepping.
6822
6823 Optimize by setting the stepping range to the line.
6824 (We might not be in the original line, but if we entered a
6825 new line in mid-statement, we continue stepping. This makes
6826 things like for(;;) statements work better.) */
6827
6828 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6829 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6830 ecs->event_thread->control.may_range_step = 1;
6831 set_step_info (frame, stop_pc_sal);
6832
6833 if (debug_infrun)
6834 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6835 keep_going (ecs);
6836}
6837
6838/* In all-stop mode, if we're currently stepping but have stopped in
6839 some other thread, we may need to switch back to the stepped
6840 thread. Returns true we set the inferior running, false if we left
6841 it stopped (and the event needs further processing). */
6842
6843static int
6844switch_back_to_stepped_thread (struct execution_control_state *ecs)
6845{
6846 if (!target_is_non_stop_p ())
6847 {
6848 struct thread_info *tp;
6849 struct thread_info *stepping_thread;
6850
6851 /* If any thread is blocked on some internal breakpoint, and we
6852 simply need to step over that breakpoint to get it going
6853 again, do that first. */
6854
6855 /* However, if we see an event for the stepping thread, then we
6856 know all other threads have been moved past their breakpoints
6857 already. Let the caller check whether the step is finished,
6858 etc., before deciding to move it past a breakpoint. */
6859 if (ecs->event_thread->control.step_range_end != 0)
6860 return 0;
6861
6862 /* Check if the current thread is blocked on an incomplete
6863 step-over, interrupted by a random signal. */
6864 if (ecs->event_thread->control.trap_expected
6865 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6866 {
6867 if (debug_infrun)
6868 {
6869 fprintf_unfiltered (gdb_stdlog,
6870 "infrun: need to finish step-over of [%s]\n",
6871 target_pid_to_str (ecs->event_thread->ptid));
6872 }
6873 keep_going (ecs);
6874 return 1;
6875 }
6876
6877 /* Check if the current thread is blocked by a single-step
6878 breakpoint of another thread. */
6879 if (ecs->hit_singlestep_breakpoint)
6880 {
6881 if (debug_infrun)
6882 {
6883 fprintf_unfiltered (gdb_stdlog,
6884 "infrun: need to step [%s] over single-step "
6885 "breakpoint\n",
6886 target_pid_to_str (ecs->ptid));
6887 }
6888 keep_going (ecs);
6889 return 1;
6890 }
6891
6892 /* If this thread needs yet another step-over (e.g., stepping
6893 through a delay slot), do it first before moving on to
6894 another thread. */
6895 if (thread_still_needs_step_over (ecs->event_thread))
6896 {
6897 if (debug_infrun)
6898 {
6899 fprintf_unfiltered (gdb_stdlog,
6900 "infrun: thread [%s] still needs step-over\n",
6901 target_pid_to_str (ecs->event_thread->ptid));
6902 }
6903 keep_going (ecs);
6904 return 1;
6905 }
6906
6907 /* If scheduler locking applies even if not stepping, there's no
6908 need to walk over threads. Above we've checked whether the
6909 current thread is stepping. If some other thread not the
6910 event thread is stepping, then it must be that scheduler
6911 locking is not in effect. */
6912 if (schedlock_applies (ecs->event_thread))
6913 return 0;
6914
6915 /* Otherwise, we no longer expect a trap in the current thread.
6916 Clear the trap_expected flag before switching back -- this is
6917 what keep_going does as well, if we call it. */
6918 ecs->event_thread->control.trap_expected = 0;
6919
6920 /* Likewise, clear the signal if it should not be passed. */
6921 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6922 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6923
6924 /* Do all pending step-overs before actually proceeding with
6925 step/next/etc. */
6926 if (start_step_over ())
6927 {
6928 prepare_to_wait (ecs);
6929 return 1;
6930 }
6931
6932 /* Look for the stepping/nexting thread. */
6933 stepping_thread = NULL;
6934
6935 ALL_NON_EXITED_THREADS (tp)
6936 {
6937 /* Ignore threads of processes the caller is not
6938 resuming. */
6939 if (!sched_multi
6940 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
6941 continue;
6942
6943 /* When stepping over a breakpoint, we lock all threads
6944 except the one that needs to move past the breakpoint.
6945 If a non-event thread has this set, the "incomplete
6946 step-over" check above should have caught it earlier. */
6947 if (tp->control.trap_expected)
6948 {
6949 internal_error (__FILE__, __LINE__,
6950 "[%s] has inconsistent state: "
6951 "trap_expected=%d\n",
6952 target_pid_to_str (tp->ptid),
6953 tp->control.trap_expected);
6954 }
6955
6956 /* Did we find the stepping thread? */
6957 if (tp->control.step_range_end)
6958 {
6959 /* Yep. There should only one though. */
6960 gdb_assert (stepping_thread == NULL);
6961
6962 /* The event thread is handled at the top, before we
6963 enter this loop. */
6964 gdb_assert (tp != ecs->event_thread);
6965
6966 /* If some thread other than the event thread is
6967 stepping, then scheduler locking can't be in effect,
6968 otherwise we wouldn't have resumed the current event
6969 thread in the first place. */
6970 gdb_assert (!schedlock_applies (tp));
6971
6972 stepping_thread = tp;
6973 }
6974 }
6975
6976 if (stepping_thread != NULL)
6977 {
6978 if (debug_infrun)
6979 fprintf_unfiltered (gdb_stdlog,
6980 "infrun: switching back to stepped thread\n");
6981
6982 if (keep_going_stepped_thread (stepping_thread))
6983 {
6984 prepare_to_wait (ecs);
6985 return 1;
6986 }
6987 }
6988 }
6989
6990 return 0;
6991}
6992
6993/* Set a previously stepped thread back to stepping. Returns true on
6994 success, false if the resume is not possible (e.g., the thread
6995 vanished). */
6996
6997static int
6998keep_going_stepped_thread (struct thread_info *tp)
6999{
7000 struct frame_info *frame;
7001 struct gdbarch *gdbarch;
7002 struct execution_control_state ecss;
7003 struct execution_control_state *ecs = &ecss;
7004
7005 /* If the stepping thread exited, then don't try to switch back and
7006 resume it, which could fail in several different ways depending
7007 on the target. Instead, just keep going.
7008
7009 We can find a stepping dead thread in the thread list in two
7010 cases:
7011
7012 - The target supports thread exit events, and when the target
7013 tries to delete the thread from the thread list, inferior_ptid
7014 pointed at the exiting thread. In such case, calling
7015 delete_thread does not really remove the thread from the list;
7016 instead, the thread is left listed, with 'exited' state.
7017
7018 - The target's debug interface does not support thread exit
7019 events, and so we have no idea whatsoever if the previously
7020 stepping thread is still alive. For that reason, we need to
7021 synchronously query the target now. */
7022
7023 if (is_exited (tp->ptid)
7024 || !target_thread_alive (tp->ptid))
7025 {
7026 if (debug_infrun)
7027 fprintf_unfiltered (gdb_stdlog,
7028 "infrun: not resuming previously "
7029 "stepped thread, it has vanished\n");
7030
7031 delete_thread (tp->ptid);
7032 return 0;
7033 }
7034
7035 if (debug_infrun)
7036 fprintf_unfiltered (gdb_stdlog,
7037 "infrun: resuming previously stepped thread\n");
7038
7039 reset_ecs (ecs, tp);
7040 switch_to_thread (tp->ptid);
7041
7042 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7043 frame = get_current_frame ();
7044 gdbarch = get_frame_arch (frame);
7045
7046 /* If the PC of the thread we were trying to single-step has
7047 changed, then that thread has trapped or been signaled, but the
7048 event has not been reported to GDB yet. Re-poll the target
7049 looking for this particular thread's event (i.e. temporarily
7050 enable schedlock) by:
7051
7052 - setting a break at the current PC
7053 - resuming that particular thread, only (by setting trap
7054 expected)
7055
7056 This prevents us continuously moving the single-step breakpoint
7057 forward, one instruction at a time, overstepping. */
7058
7059 if (stop_pc != tp->prev_pc)
7060 {
7061 ptid_t resume_ptid;
7062
7063 if (debug_infrun)
7064 fprintf_unfiltered (gdb_stdlog,
7065 "infrun: expected thread advanced also (%s -> %s)\n",
7066 paddress (target_gdbarch (), tp->prev_pc),
7067 paddress (target_gdbarch (), stop_pc));
7068
7069 /* Clear the info of the previous step-over, as it's no longer
7070 valid (if the thread was trying to step over a breakpoint, it
7071 has already succeeded). It's what keep_going would do too,
7072 if we called it. Do this before trying to insert the sss
7073 breakpoint, otherwise if we were previously trying to step
7074 over this exact address in another thread, the breakpoint is
7075 skipped. */
7076 clear_step_over_info ();
7077 tp->control.trap_expected = 0;
7078
7079 insert_single_step_breakpoint (get_frame_arch (frame),
7080 get_frame_address_space (frame),
7081 stop_pc);
7082
7083 tp->resumed = 1;
7084 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7085 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7086 }
7087 else
7088 {
7089 if (debug_infrun)
7090 fprintf_unfiltered (gdb_stdlog,
7091 "infrun: expected thread still hasn't advanced\n");
7092
7093 keep_going_pass_signal (ecs);
7094 }
7095 return 1;
7096}
7097
7098/* Is thread TP in the middle of (software or hardware)
7099 single-stepping? (Note the result of this function must never be
7100 passed directly as target_resume's STEP parameter.) */
7101
7102static int
7103currently_stepping (struct thread_info *tp)
7104{
7105 return ((tp->control.step_range_end
7106 && tp->control.step_resume_breakpoint == NULL)
7107 || tp->control.trap_expected
7108 || tp->stepped_breakpoint
7109 || bpstat_should_step ());
7110}
7111
7112/* Inferior has stepped into a subroutine call with source code that
7113 we should not step over. Do step to the first line of code in
7114 it. */
7115
7116static void
7117handle_step_into_function (struct gdbarch *gdbarch,
7118 struct execution_control_state *ecs)
7119{
7120 struct compunit_symtab *cust;
7121 struct symtab_and_line stop_func_sal, sr_sal;
7122
7123 fill_in_stop_func (gdbarch, ecs);
7124
7125 cust = find_pc_compunit_symtab (stop_pc);
7126 if (cust != NULL && compunit_language (cust) != language_asm)
7127 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7128 ecs->stop_func_start);
7129
7130 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7131 /* Use the step_resume_break to step until the end of the prologue,
7132 even if that involves jumps (as it seems to on the vax under
7133 4.2). */
7134 /* If the prologue ends in the middle of a source line, continue to
7135 the end of that source line (if it is still within the function).
7136 Otherwise, just go to end of prologue. */
7137 if (stop_func_sal.end
7138 && stop_func_sal.pc != ecs->stop_func_start
7139 && stop_func_sal.end < ecs->stop_func_end)
7140 ecs->stop_func_start = stop_func_sal.end;
7141
7142 /* Architectures which require breakpoint adjustment might not be able
7143 to place a breakpoint at the computed address. If so, the test
7144 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7145 ecs->stop_func_start to an address at which a breakpoint may be
7146 legitimately placed.
7147
7148 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7149 made, GDB will enter an infinite loop when stepping through
7150 optimized code consisting of VLIW instructions which contain
7151 subinstructions corresponding to different source lines. On
7152 FR-V, it's not permitted to place a breakpoint on any but the
7153 first subinstruction of a VLIW instruction. When a breakpoint is
7154 set, GDB will adjust the breakpoint address to the beginning of
7155 the VLIW instruction. Thus, we need to make the corresponding
7156 adjustment here when computing the stop address. */
7157
7158 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7159 {
7160 ecs->stop_func_start
7161 = gdbarch_adjust_breakpoint_address (gdbarch,
7162 ecs->stop_func_start);
7163 }
7164
7165 if (ecs->stop_func_start == stop_pc)
7166 {
7167 /* We are already there: stop now. */
7168 end_stepping_range (ecs);
7169 return;
7170 }
7171 else
7172 {
7173 /* Put the step-breakpoint there and go until there. */
7174 init_sal (&sr_sal); /* initialize to zeroes */
7175 sr_sal.pc = ecs->stop_func_start;
7176 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7177 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7178
7179 /* Do not specify what the fp should be when we stop since on
7180 some machines the prologue is where the new fp value is
7181 established. */
7182 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7183
7184 /* And make sure stepping stops right away then. */
7185 ecs->event_thread->control.step_range_end
7186 = ecs->event_thread->control.step_range_start;
7187 }
7188 keep_going (ecs);
7189}
7190
7191/* Inferior has stepped backward into a subroutine call with source
7192 code that we should not step over. Do step to the beginning of the
7193 last line of code in it. */
7194
7195static void
7196handle_step_into_function_backward (struct gdbarch *gdbarch,
7197 struct execution_control_state *ecs)
7198{
7199 struct compunit_symtab *cust;
7200 struct symtab_and_line stop_func_sal;
7201
7202 fill_in_stop_func (gdbarch, ecs);
7203
7204 cust = find_pc_compunit_symtab (stop_pc);
7205 if (cust != NULL && compunit_language (cust) != language_asm)
7206 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7207 ecs->stop_func_start);
7208
7209 stop_func_sal = find_pc_line (stop_pc, 0);
7210
7211 /* OK, we're just going to keep stepping here. */
7212 if (stop_func_sal.pc == stop_pc)
7213 {
7214 /* We're there already. Just stop stepping now. */
7215 end_stepping_range (ecs);
7216 }
7217 else
7218 {
7219 /* Else just reset the step range and keep going.
7220 No step-resume breakpoint, they don't work for
7221 epilogues, which can have multiple entry paths. */
7222 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7223 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7224 keep_going (ecs);
7225 }
7226 return;
7227}
7228
7229/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7230 This is used to both functions and to skip over code. */
7231
7232static void
7233insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7234 struct symtab_and_line sr_sal,
7235 struct frame_id sr_id,
7236 enum bptype sr_type)
7237{
7238 /* There should never be more than one step-resume or longjmp-resume
7239 breakpoint per thread, so we should never be setting a new
7240 step_resume_breakpoint when one is already active. */
7241 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7242 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7243
7244 if (debug_infrun)
7245 fprintf_unfiltered (gdb_stdlog,
7246 "infrun: inserting step-resume breakpoint at %s\n",
7247 paddress (gdbarch, sr_sal.pc));
7248
7249 inferior_thread ()->control.step_resume_breakpoint
7250 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7251}
7252
7253void
7254insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7255 struct symtab_and_line sr_sal,
7256 struct frame_id sr_id)
7257{
7258 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7259 sr_sal, sr_id,
7260 bp_step_resume);
7261}
7262
7263/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7264 This is used to skip a potential signal handler.
7265
7266 This is called with the interrupted function's frame. The signal
7267 handler, when it returns, will resume the interrupted function at
7268 RETURN_FRAME.pc. */
7269
7270static void
7271insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7272{
7273 struct symtab_and_line sr_sal;
7274 struct gdbarch *gdbarch;
7275
7276 gdb_assert (return_frame != NULL);
7277 init_sal (&sr_sal); /* initialize to zeros */
7278
7279 gdbarch = get_frame_arch (return_frame);
7280 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7281 sr_sal.section = find_pc_overlay (sr_sal.pc);
7282 sr_sal.pspace = get_frame_program_space (return_frame);
7283
7284 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7285 get_stack_frame_id (return_frame),
7286 bp_hp_step_resume);
7287}
7288
7289/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7290 is used to skip a function after stepping into it (for "next" or if
7291 the called function has no debugging information).
7292
7293 The current function has almost always been reached by single
7294 stepping a call or return instruction. NEXT_FRAME belongs to the
7295 current function, and the breakpoint will be set at the caller's
7296 resume address.
7297
7298 This is a separate function rather than reusing
7299 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7300 get_prev_frame, which may stop prematurely (see the implementation
7301 of frame_unwind_caller_id for an example). */
7302
7303static void
7304insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7305{
7306 struct symtab_and_line sr_sal;
7307 struct gdbarch *gdbarch;
7308
7309 /* We shouldn't have gotten here if we don't know where the call site
7310 is. */
7311 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7312
7313 init_sal (&sr_sal); /* initialize to zeros */
7314
7315 gdbarch = frame_unwind_caller_arch (next_frame);
7316 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7317 frame_unwind_caller_pc (next_frame));
7318 sr_sal.section = find_pc_overlay (sr_sal.pc);
7319 sr_sal.pspace = frame_unwind_program_space (next_frame);
7320
7321 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7322 frame_unwind_caller_id (next_frame));
7323}
7324
7325/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7326 new breakpoint at the target of a jmp_buf. The handling of
7327 longjmp-resume uses the same mechanisms used for handling
7328 "step-resume" breakpoints. */
7329
7330static void
7331insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7332{
7333 /* There should never be more than one longjmp-resume breakpoint per
7334 thread, so we should never be setting a new
7335 longjmp_resume_breakpoint when one is already active. */
7336 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7337
7338 if (debug_infrun)
7339 fprintf_unfiltered (gdb_stdlog,
7340 "infrun: inserting longjmp-resume breakpoint at %s\n",
7341 paddress (gdbarch, pc));
7342
7343 inferior_thread ()->control.exception_resume_breakpoint =
7344 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7345}
7346
7347/* Insert an exception resume breakpoint. TP is the thread throwing
7348 the exception. The block B is the block of the unwinder debug hook
7349 function. FRAME is the frame corresponding to the call to this
7350 function. SYM is the symbol of the function argument holding the
7351 target PC of the exception. */
7352
7353static void
7354insert_exception_resume_breakpoint (struct thread_info *tp,
7355 const struct block *b,
7356 struct frame_info *frame,
7357 struct symbol *sym)
7358{
7359 TRY
7360 {
7361 struct block_symbol vsym;
7362 struct value *value;
7363 CORE_ADDR handler;
7364 struct breakpoint *bp;
7365
7366 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7367 value = read_var_value (vsym.symbol, vsym.block, frame);
7368 /* If the value was optimized out, revert to the old behavior. */
7369 if (! value_optimized_out (value))
7370 {
7371 handler = value_as_address (value);
7372
7373 if (debug_infrun)
7374 fprintf_unfiltered (gdb_stdlog,
7375 "infrun: exception resume at %lx\n",
7376 (unsigned long) handler);
7377
7378 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7379 handler, bp_exception_resume);
7380
7381 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7382 frame = NULL;
7383
7384 bp->thread = tp->num;
7385 inferior_thread ()->control.exception_resume_breakpoint = bp;
7386 }
7387 }
7388 CATCH (e, RETURN_MASK_ERROR)
7389 {
7390 /* We want to ignore errors here. */
7391 }
7392 END_CATCH
7393}
7394
7395/* A helper for check_exception_resume that sets an
7396 exception-breakpoint based on a SystemTap probe. */
7397
7398static void
7399insert_exception_resume_from_probe (struct thread_info *tp,
7400 const struct bound_probe *probe,
7401 struct frame_info *frame)
7402{
7403 struct value *arg_value;
7404 CORE_ADDR handler;
7405 struct breakpoint *bp;
7406
7407 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7408 if (!arg_value)
7409 return;
7410
7411 handler = value_as_address (arg_value);
7412
7413 if (debug_infrun)
7414 fprintf_unfiltered (gdb_stdlog,
7415 "infrun: exception resume at %s\n",
7416 paddress (get_objfile_arch (probe->objfile),
7417 handler));
7418
7419 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7420 handler, bp_exception_resume);
7421 bp->thread = tp->num;
7422 inferior_thread ()->control.exception_resume_breakpoint = bp;
7423}
7424
7425/* This is called when an exception has been intercepted. Check to
7426 see whether the exception's destination is of interest, and if so,
7427 set an exception resume breakpoint there. */
7428
7429static void
7430check_exception_resume (struct execution_control_state *ecs,
7431 struct frame_info *frame)
7432{
7433 struct bound_probe probe;
7434 struct symbol *func;
7435
7436 /* First see if this exception unwinding breakpoint was set via a
7437 SystemTap probe point. If so, the probe has two arguments: the
7438 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7439 set a breakpoint there. */
7440 probe = find_probe_by_pc (get_frame_pc (frame));
7441 if (probe.probe)
7442 {
7443 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7444 return;
7445 }
7446
7447 func = get_frame_function (frame);
7448 if (!func)
7449 return;
7450
7451 TRY
7452 {
7453 const struct block *b;
7454 struct block_iterator iter;
7455 struct symbol *sym;
7456 int argno = 0;
7457
7458 /* The exception breakpoint is a thread-specific breakpoint on
7459 the unwinder's debug hook, declared as:
7460
7461 void _Unwind_DebugHook (void *cfa, void *handler);
7462
7463 The CFA argument indicates the frame to which control is
7464 about to be transferred. HANDLER is the destination PC.
7465
7466 We ignore the CFA and set a temporary breakpoint at HANDLER.
7467 This is not extremely efficient but it avoids issues in gdb
7468 with computing the DWARF CFA, and it also works even in weird
7469 cases such as throwing an exception from inside a signal
7470 handler. */
7471
7472 b = SYMBOL_BLOCK_VALUE (func);
7473 ALL_BLOCK_SYMBOLS (b, iter, sym)
7474 {
7475 if (!SYMBOL_IS_ARGUMENT (sym))
7476 continue;
7477
7478 if (argno == 0)
7479 ++argno;
7480 else
7481 {
7482 insert_exception_resume_breakpoint (ecs->event_thread,
7483 b, frame, sym);
7484 break;
7485 }
7486 }
7487 }
7488 CATCH (e, RETURN_MASK_ERROR)
7489 {
7490 }
7491 END_CATCH
7492}
7493
7494static void
7495stop_waiting (struct execution_control_state *ecs)
7496{
7497 if (debug_infrun)
7498 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7499
7500 clear_step_over_info ();
7501
7502 /* Let callers know we don't want to wait for the inferior anymore. */
7503 ecs->wait_some_more = 0;
7504
7505 /* If all-stop, but the target is always in non-stop mode, stop all
7506 threads now that we're presenting the stop to the user. */
7507 if (!non_stop && target_is_non_stop_p ())
7508 stop_all_threads ();
7509}
7510
7511/* Like keep_going, but passes the signal to the inferior, even if the
7512 signal is set to nopass. */
7513
7514static void
7515keep_going_pass_signal (struct execution_control_state *ecs)
7516{
7517 /* Make sure normal_stop is called if we get a QUIT handled before
7518 reaching resume. */
7519 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7520
7521 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7522 gdb_assert (!ecs->event_thread->resumed);
7523
7524 /* Save the pc before execution, to compare with pc after stop. */
7525 ecs->event_thread->prev_pc
7526 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7527
7528 if (ecs->event_thread->control.trap_expected)
7529 {
7530 struct thread_info *tp = ecs->event_thread;
7531
7532 if (debug_infrun)
7533 fprintf_unfiltered (gdb_stdlog,
7534 "infrun: %s has trap_expected set, "
7535 "resuming to collect trap\n",
7536 target_pid_to_str (tp->ptid));
7537
7538 /* We haven't yet gotten our trap, and either: intercepted a
7539 non-signal event (e.g., a fork); or took a signal which we
7540 are supposed to pass through to the inferior. Simply
7541 continue. */
7542 discard_cleanups (old_cleanups);
7543 resume (ecs->event_thread->suspend.stop_signal);
7544 }
7545 else if (step_over_info_valid_p ())
7546 {
7547 /* Another thread is stepping over a breakpoint in-line. If
7548 this thread needs a step-over too, queue the request. In
7549 either case, this resume must be deferred for later. */
7550 struct thread_info *tp = ecs->event_thread;
7551
7552 if (ecs->hit_singlestep_breakpoint
7553 || thread_still_needs_step_over (tp))
7554 {
7555 if (debug_infrun)
7556 fprintf_unfiltered (gdb_stdlog,
7557 "infrun: step-over already in progress: "
7558 "step-over for %s deferred\n",
7559 target_pid_to_str (tp->ptid));
7560 thread_step_over_chain_enqueue (tp);
7561 }
7562 else
7563 {
7564 if (debug_infrun)
7565 fprintf_unfiltered (gdb_stdlog,
7566 "infrun: step-over in progress: "
7567 "resume of %s deferred\n",
7568 target_pid_to_str (tp->ptid));
7569 }
7570
7571 discard_cleanups (old_cleanups);
7572 }
7573 else
7574 {
7575 struct regcache *regcache = get_current_regcache ();
7576 int remove_bp;
7577 int remove_wps;
7578 enum step_over_what step_what;
7579
7580 /* Either the trap was not expected, but we are continuing
7581 anyway (if we got a signal, the user asked it be passed to
7582 the child)
7583 -- or --
7584 We got our expected trap, but decided we should resume from
7585 it.
7586
7587 We're going to run this baby now!
7588
7589 Note that insert_breakpoints won't try to re-insert
7590 already inserted breakpoints. Therefore, we don't
7591 care if breakpoints were already inserted, or not. */
7592
7593 /* If we need to step over a breakpoint, and we're not using
7594 displaced stepping to do so, insert all breakpoints
7595 (watchpoints, etc.) but the one we're stepping over, step one
7596 instruction, and then re-insert the breakpoint when that step
7597 is finished. */
7598
7599 step_what = thread_still_needs_step_over (ecs->event_thread);
7600
7601 remove_bp = (ecs->hit_singlestep_breakpoint
7602 || (step_what & STEP_OVER_BREAKPOINT));
7603 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7604
7605 /* We can't use displaced stepping if we need to step past a
7606 watchpoint. The instruction copied to the scratch pad would
7607 still trigger the watchpoint. */
7608 if (remove_bp
7609 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7610 {
7611 set_step_over_info (get_regcache_aspace (regcache),
7612 regcache_read_pc (regcache), remove_wps);
7613 }
7614 else if (remove_wps)
7615 set_step_over_info (NULL, 0, remove_wps);
7616
7617 /* If we now need to do an in-line step-over, we need to stop
7618 all other threads. Note this must be done before
7619 insert_breakpoints below, because that removes the breakpoint
7620 we're about to step over, otherwise other threads could miss
7621 it. */
7622 if (step_over_info_valid_p () && target_is_non_stop_p ())
7623 stop_all_threads ();
7624
7625 /* Stop stepping if inserting breakpoints fails. */
7626 TRY
7627 {
7628 insert_breakpoints ();
7629 }
7630 CATCH (e, RETURN_MASK_ERROR)
7631 {
7632 exception_print (gdb_stderr, e);
7633 stop_waiting (ecs);
7634 discard_cleanups (old_cleanups);
7635 return;
7636 }
7637 END_CATCH
7638
7639 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7640
7641 discard_cleanups (old_cleanups);
7642 resume (ecs->event_thread->suspend.stop_signal);
7643 }
7644
7645 prepare_to_wait (ecs);
7646}
7647
7648/* Called when we should continue running the inferior, because the
7649 current event doesn't cause a user visible stop. This does the
7650 resuming part; waiting for the next event is done elsewhere. */
7651
7652static void
7653keep_going (struct execution_control_state *ecs)
7654{
7655 if (ecs->event_thread->control.trap_expected
7656 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7657 ecs->event_thread->control.trap_expected = 0;
7658
7659 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7660 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7661 keep_going_pass_signal (ecs);
7662}
7663
7664/* This function normally comes after a resume, before
7665 handle_inferior_event exits. It takes care of any last bits of
7666 housekeeping, and sets the all-important wait_some_more flag. */
7667
7668static void
7669prepare_to_wait (struct execution_control_state *ecs)
7670{
7671 if (debug_infrun)
7672 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7673
7674 ecs->wait_some_more = 1;
7675
7676 if (!target_is_async_p ())
7677 mark_infrun_async_event_handler ();
7678}
7679
7680/* We are done with the step range of a step/next/si/ni command.
7681 Called once for each n of a "step n" operation. */
7682
7683static void
7684end_stepping_range (struct execution_control_state *ecs)
7685{
7686 ecs->event_thread->control.stop_step = 1;
7687 stop_waiting (ecs);
7688}
7689
7690/* Several print_*_reason functions to print why the inferior has stopped.
7691 We always print something when the inferior exits, or receives a signal.
7692 The rest of the cases are dealt with later on in normal_stop and
7693 print_it_typical. Ideally there should be a call to one of these
7694 print_*_reason functions functions from handle_inferior_event each time
7695 stop_waiting is called.
7696
7697 Note that we don't call these directly, instead we delegate that to
7698 the interpreters, through observers. Interpreters then call these
7699 with whatever uiout is right. */
7700
7701void
7702print_end_stepping_range_reason (struct ui_out *uiout)
7703{
7704 /* For CLI-like interpreters, print nothing. */
7705
7706 if (ui_out_is_mi_like_p (uiout))
7707 {
7708 ui_out_field_string (uiout, "reason",
7709 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7710 }
7711}
7712
7713void
7714print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7715{
7716 annotate_signalled ();
7717 if (ui_out_is_mi_like_p (uiout))
7718 ui_out_field_string
7719 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7720 ui_out_text (uiout, "\nProgram terminated with signal ");
7721 annotate_signal_name ();
7722 ui_out_field_string (uiout, "signal-name",
7723 gdb_signal_to_name (siggnal));
7724 annotate_signal_name_end ();
7725 ui_out_text (uiout, ", ");
7726 annotate_signal_string ();
7727 ui_out_field_string (uiout, "signal-meaning",
7728 gdb_signal_to_string (siggnal));
7729 annotate_signal_string_end ();
7730 ui_out_text (uiout, ".\n");
7731 ui_out_text (uiout, "The program no longer exists.\n");
7732}
7733
7734void
7735print_exited_reason (struct ui_out *uiout, int exitstatus)
7736{
7737 struct inferior *inf = current_inferior ();
7738 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7739
7740 annotate_exited (exitstatus);
7741 if (exitstatus)
7742 {
7743 if (ui_out_is_mi_like_p (uiout))
7744 ui_out_field_string (uiout, "reason",
7745 async_reason_lookup (EXEC_ASYNC_EXITED));
7746 ui_out_text (uiout, "[Inferior ");
7747 ui_out_text (uiout, plongest (inf->num));
7748 ui_out_text (uiout, " (");
7749 ui_out_text (uiout, pidstr);
7750 ui_out_text (uiout, ") exited with code ");
7751 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7752 ui_out_text (uiout, "]\n");
7753 }
7754 else
7755 {
7756 if (ui_out_is_mi_like_p (uiout))
7757 ui_out_field_string
7758 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7759 ui_out_text (uiout, "[Inferior ");
7760 ui_out_text (uiout, plongest (inf->num));
7761 ui_out_text (uiout, " (");
7762 ui_out_text (uiout, pidstr);
7763 ui_out_text (uiout, ") exited normally]\n");
7764 }
7765}
7766
7767void
7768print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7769{
7770 annotate_signal ();
7771
7772 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7773 {
7774 struct thread_info *t = inferior_thread ();
7775
7776 ui_out_text (uiout, "\n[");
7777 ui_out_field_string (uiout, "thread-name",
7778 target_pid_to_str (t->ptid));
7779 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7780 ui_out_text (uiout, " stopped");
7781 }
7782 else
7783 {
7784 ui_out_text (uiout, "\nProgram received signal ");
7785 annotate_signal_name ();
7786 if (ui_out_is_mi_like_p (uiout))
7787 ui_out_field_string
7788 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7789 ui_out_field_string (uiout, "signal-name",
7790 gdb_signal_to_name (siggnal));
7791 annotate_signal_name_end ();
7792 ui_out_text (uiout, ", ");
7793 annotate_signal_string ();
7794 ui_out_field_string (uiout, "signal-meaning",
7795 gdb_signal_to_string (siggnal));
7796 annotate_signal_string_end ();
7797 }
7798 ui_out_text (uiout, ".\n");
7799}
7800
7801void
7802print_no_history_reason (struct ui_out *uiout)
7803{
7804 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7805}
7806
7807/* Print current location without a level number, if we have changed
7808 functions or hit a breakpoint. Print source line if we have one.
7809 bpstat_print contains the logic deciding in detail what to print,
7810 based on the event(s) that just occurred. */
7811
7812static void
7813print_stop_location (struct target_waitstatus *ws)
7814{
7815 int bpstat_ret;
7816 enum print_what source_flag;
7817 int do_frame_printing = 1;
7818 struct thread_info *tp = inferior_thread ();
7819
7820 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7821 switch (bpstat_ret)
7822 {
7823 case PRINT_UNKNOWN:
7824 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7825 should) carry around the function and does (or should) use
7826 that when doing a frame comparison. */
7827 if (tp->control.stop_step
7828 && frame_id_eq (tp->control.step_frame_id,
7829 get_frame_id (get_current_frame ()))
7830 && tp->control.step_start_function == find_pc_function (stop_pc))
7831 {
7832 /* Finished step, just print source line. */
7833 source_flag = SRC_LINE;
7834 }
7835 else
7836 {
7837 /* Print location and source line. */
7838 source_flag = SRC_AND_LOC;
7839 }
7840 break;
7841 case PRINT_SRC_AND_LOC:
7842 /* Print location and source line. */
7843 source_flag = SRC_AND_LOC;
7844 break;
7845 case PRINT_SRC_ONLY:
7846 source_flag = SRC_LINE;
7847 break;
7848 case PRINT_NOTHING:
7849 /* Something bogus. */
7850 source_flag = SRC_LINE;
7851 do_frame_printing = 0;
7852 break;
7853 default:
7854 internal_error (__FILE__, __LINE__, _("Unknown value."));
7855 }
7856
7857 /* The behavior of this routine with respect to the source
7858 flag is:
7859 SRC_LINE: Print only source line
7860 LOCATION: Print only location
7861 SRC_AND_LOC: Print location and source line. */
7862 if (do_frame_printing)
7863 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7864}
7865
7866/* Cleanup that restores a previous current uiout. */
7867
7868static void
7869restore_current_uiout_cleanup (void *arg)
7870{
7871 struct ui_out *saved_uiout = (struct ui_out *) arg;
7872
7873 current_uiout = saved_uiout;
7874}
7875
7876/* See infrun.h. */
7877
7878void
7879print_stop_event (struct ui_out *uiout)
7880{
7881 struct cleanup *old_chain;
7882 struct target_waitstatus last;
7883 ptid_t last_ptid;
7884 struct thread_info *tp;
7885
7886 get_last_target_status (&last_ptid, &last);
7887
7888 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7889 current_uiout = uiout;
7890
7891 print_stop_location (&last);
7892
7893 /* Display the auto-display expressions. */
7894 do_displays ();
7895
7896 do_cleanups (old_chain);
7897
7898 tp = inferior_thread ();
7899 if (tp->thread_fsm != NULL
7900 && thread_fsm_finished_p (tp->thread_fsm))
7901 {
7902 struct return_value_info *rv;
7903
7904 rv = thread_fsm_return_value (tp->thread_fsm);
7905 if (rv != NULL)
7906 print_return_value (uiout, rv);
7907 }
7908}
7909
7910/* See infrun.h. */
7911
7912void
7913maybe_remove_breakpoints (void)
7914{
7915 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7916 {
7917 if (remove_breakpoints ())
7918 {
7919 target_terminal_ours_for_output ();
7920 printf_filtered (_("Cannot remove breakpoints because "
7921 "program is no longer writable.\nFurther "
7922 "execution is probably impossible.\n"));
7923 }
7924 }
7925}
7926
7927/* The execution context that just caused a normal stop. */
7928
7929struct stop_context
7930{
7931 /* The stop ID. */
7932 ULONGEST stop_id;
7933
7934 /* The event PTID. */
7935
7936 ptid_t ptid;
7937
7938 /* If stopp for a thread event, this is the thread that caused the
7939 stop. */
7940 struct thread_info *thread;
7941
7942 /* The inferior that caused the stop. */
7943 int inf_num;
7944};
7945
7946/* Returns a new stop context. If stopped for a thread event, this
7947 takes a strong reference to the thread. */
7948
7949static struct stop_context *
7950save_stop_context (void)
7951{
7952 struct stop_context *sc = XNEW (struct stop_context);
7953
7954 sc->stop_id = get_stop_id ();
7955 sc->ptid = inferior_ptid;
7956 sc->inf_num = current_inferior ()->num;
7957
7958 if (!ptid_equal (inferior_ptid, null_ptid))
7959 {
7960 /* Take a strong reference so that the thread can't be deleted
7961 yet. */
7962 sc->thread = inferior_thread ();
7963 sc->thread->refcount++;
7964 }
7965 else
7966 sc->thread = NULL;
7967
7968 return sc;
7969}
7970
7971/* Release a stop context previously created with save_stop_context.
7972 Releases the strong reference to the thread as well. */
7973
7974static void
7975release_stop_context_cleanup (void *arg)
7976{
7977 struct stop_context *sc = (struct stop_context *) arg;
7978
7979 if (sc->thread != NULL)
7980 sc->thread->refcount--;
7981 xfree (sc);
7982}
7983
7984/* Return true if the current context no longer matches the saved stop
7985 context. */
7986
7987static int
7988stop_context_changed (struct stop_context *prev)
7989{
7990 if (!ptid_equal (prev->ptid, inferior_ptid))
7991 return 1;
7992 if (prev->inf_num != current_inferior ()->num)
7993 return 1;
7994 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7995 return 1;
7996 if (get_stop_id () != prev->stop_id)
7997 return 1;
7998 return 0;
7999}
8000
8001/* See infrun.h. */
8002
8003int
8004normal_stop (void)
8005{
8006 struct target_waitstatus last;
8007 ptid_t last_ptid;
8008 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8009 ptid_t pid_ptid;
8010
8011 get_last_target_status (&last_ptid, &last);
8012
8013 new_stop_id ();
8014
8015 /* If an exception is thrown from this point on, make sure to
8016 propagate GDB's knowledge of the executing state to the
8017 frontend/user running state. A QUIT is an easy exception to see
8018 here, so do this before any filtered output. */
8019 if (!non_stop)
8020 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8021 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8022 || last.kind == TARGET_WAITKIND_EXITED)
8023 {
8024 /* On some targets, we may still have live threads in the
8025 inferior when we get a process exit event. E.g., for
8026 "checkpoint", when the current checkpoint/fork exits,
8027 linux-fork.c automatically switches to another fork from
8028 within target_mourn_inferior. */
8029 if (!ptid_equal (inferior_ptid, null_ptid))
8030 {
8031 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8032 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8033 }
8034 }
8035 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8036 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8037
8038 /* As we're presenting a stop, and potentially removing breakpoints,
8039 update the thread list so we can tell whether there are threads
8040 running on the target. With target remote, for example, we can
8041 only learn about new threads when we explicitly update the thread
8042 list. Do this before notifying the interpreters about signal
8043 stops, end of stepping ranges, etc., so that the "new thread"
8044 output is emitted before e.g., "Program received signal FOO",
8045 instead of after. */
8046 update_thread_list ();
8047
8048 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8049 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8050
8051 /* As with the notification of thread events, we want to delay
8052 notifying the user that we've switched thread context until
8053 the inferior actually stops.
8054
8055 There's no point in saying anything if the inferior has exited.
8056 Note that SIGNALLED here means "exited with a signal", not
8057 "received a signal".
8058
8059 Also skip saying anything in non-stop mode. In that mode, as we
8060 don't want GDB to switch threads behind the user's back, to avoid
8061 races where the user is typing a command to apply to thread x,
8062 but GDB switches to thread y before the user finishes entering
8063 the command, fetch_inferior_event installs a cleanup to restore
8064 the current thread back to the thread the user had selected right
8065 after this event is handled, so we're not really switching, only
8066 informing of a stop. */
8067 if (!non_stop
8068 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8069 && target_has_execution
8070 && last.kind != TARGET_WAITKIND_SIGNALLED
8071 && last.kind != TARGET_WAITKIND_EXITED
8072 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8073 {
8074 target_terminal_ours_for_output ();
8075 printf_filtered (_("[Switching to %s]\n"),
8076 target_pid_to_str (inferior_ptid));
8077 annotate_thread_changed ();
8078 previous_inferior_ptid = inferior_ptid;
8079 }
8080
8081 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8082 {
8083 gdb_assert (sync_execution || !target_can_async_p ());
8084
8085 target_terminal_ours_for_output ();
8086 printf_filtered (_("No unwaited-for children left.\n"));
8087 }
8088
8089 /* Note: this depends on the update_thread_list call above. */
8090 maybe_remove_breakpoints ();
8091
8092 /* If an auto-display called a function and that got a signal,
8093 delete that auto-display to avoid an infinite recursion. */
8094
8095 if (stopped_by_random_signal)
8096 disable_current_display ();
8097
8098 target_terminal_ours ();
8099 async_enable_stdin ();
8100
8101 /* Let the user/frontend see the threads as stopped. */
8102 do_cleanups (old_chain);
8103
8104 /* Select innermost stack frame - i.e., current frame is frame 0,
8105 and current location is based on that. Handle the case where the
8106 dummy call is returning after being stopped. E.g. the dummy call
8107 previously hit a breakpoint. (If the dummy call returns
8108 normally, we won't reach here.) Do this before the stop hook is
8109 run, so that it doesn't get to see the temporary dummy frame,
8110 which is not where we'll present the stop. */
8111 if (has_stack_frames ())
8112 {
8113 if (stop_stack_dummy == STOP_STACK_DUMMY)
8114 {
8115 /* Pop the empty frame that contains the stack dummy. This
8116 also restores inferior state prior to the call (struct
8117 infcall_suspend_state). */
8118 struct frame_info *frame = get_current_frame ();
8119
8120 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8121 frame_pop (frame);
8122 /* frame_pop calls reinit_frame_cache as the last thing it
8123 does which means there's now no selected frame. */
8124 }
8125
8126 select_frame (get_current_frame ());
8127
8128 /* Set the current source location. */
8129 set_current_sal_from_frame (get_current_frame ());
8130 }
8131
8132 /* Look up the hook_stop and run it (CLI internally handles problem
8133 of stop_command's pre-hook not existing). */
8134 if (stop_command != NULL)
8135 {
8136 struct stop_context *saved_context = save_stop_context ();
8137 struct cleanup *old_chain
8138 = make_cleanup (release_stop_context_cleanup, saved_context);
8139
8140 catch_errors (hook_stop_stub, stop_command,
8141 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8142
8143 /* If the stop hook resumes the target, then there's no point in
8144 trying to notify about the previous stop; its context is
8145 gone. Likewise if the command switches thread or inferior --
8146 the observers would print a stop for the wrong
8147 thread/inferior. */
8148 if (stop_context_changed (saved_context))
8149 {
8150 do_cleanups (old_chain);
8151 return 1;
8152 }
8153 do_cleanups (old_chain);
8154 }
8155
8156 /* Notify observers about the stop. This is where the interpreters
8157 print the stop event. */
8158 if (!ptid_equal (inferior_ptid, null_ptid))
8159 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8160 stop_print_frame);
8161 else
8162 observer_notify_normal_stop (NULL, stop_print_frame);
8163
8164 annotate_stopped ();
8165
8166 if (target_has_execution)
8167 {
8168 if (last.kind != TARGET_WAITKIND_SIGNALLED
8169 && last.kind != TARGET_WAITKIND_EXITED)
8170 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8171 Delete any breakpoint that is to be deleted at the next stop. */
8172 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8173 }
8174
8175 /* Try to get rid of automatically added inferiors that are no
8176 longer needed. Keeping those around slows down things linearly.
8177 Note that this never removes the current inferior. */
8178 prune_inferiors ();
8179
8180 return 0;
8181}
8182
8183static int
8184hook_stop_stub (void *cmd)
8185{
8186 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8187 return (0);
8188}
8189\f
8190int
8191signal_stop_state (int signo)
8192{
8193 return signal_stop[signo];
8194}
8195
8196int
8197signal_print_state (int signo)
8198{
8199 return signal_print[signo];
8200}
8201
8202int
8203signal_pass_state (int signo)
8204{
8205 return signal_program[signo];
8206}
8207
8208static void
8209signal_cache_update (int signo)
8210{
8211 if (signo == -1)
8212 {
8213 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8214 signal_cache_update (signo);
8215
8216 return;
8217 }
8218
8219 signal_pass[signo] = (signal_stop[signo] == 0
8220 && signal_print[signo] == 0
8221 && signal_program[signo] == 1
8222 && signal_catch[signo] == 0);
8223}
8224
8225int
8226signal_stop_update (int signo, int state)
8227{
8228 int ret = signal_stop[signo];
8229
8230 signal_stop[signo] = state;
8231 signal_cache_update (signo);
8232 return ret;
8233}
8234
8235int
8236signal_print_update (int signo, int state)
8237{
8238 int ret = signal_print[signo];
8239
8240 signal_print[signo] = state;
8241 signal_cache_update (signo);
8242 return ret;
8243}
8244
8245int
8246signal_pass_update (int signo, int state)
8247{
8248 int ret = signal_program[signo];
8249
8250 signal_program[signo] = state;
8251 signal_cache_update (signo);
8252 return ret;
8253}
8254
8255/* Update the global 'signal_catch' from INFO and notify the
8256 target. */
8257
8258void
8259signal_catch_update (const unsigned int *info)
8260{
8261 int i;
8262
8263 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8264 signal_catch[i] = info[i] > 0;
8265 signal_cache_update (-1);
8266 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8267}
8268
8269static void
8270sig_print_header (void)
8271{
8272 printf_filtered (_("Signal Stop\tPrint\tPass "
8273 "to program\tDescription\n"));
8274}
8275
8276static void
8277sig_print_info (enum gdb_signal oursig)
8278{
8279 const char *name = gdb_signal_to_name (oursig);
8280 int name_padding = 13 - strlen (name);
8281
8282 if (name_padding <= 0)
8283 name_padding = 0;
8284
8285 printf_filtered ("%s", name);
8286 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8287 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8288 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8289 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8290 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8291}
8292
8293/* Specify how various signals in the inferior should be handled. */
8294
8295static void
8296handle_command (char *args, int from_tty)
8297{
8298 char **argv;
8299 int digits, wordlen;
8300 int sigfirst, signum, siglast;
8301 enum gdb_signal oursig;
8302 int allsigs;
8303 int nsigs;
8304 unsigned char *sigs;
8305 struct cleanup *old_chain;
8306
8307 if (args == NULL)
8308 {
8309 error_no_arg (_("signal to handle"));
8310 }
8311
8312 /* Allocate and zero an array of flags for which signals to handle. */
8313
8314 nsigs = (int) GDB_SIGNAL_LAST;
8315 sigs = (unsigned char *) alloca (nsigs);
8316 memset (sigs, 0, nsigs);
8317
8318 /* Break the command line up into args. */
8319
8320 argv = gdb_buildargv (args);
8321 old_chain = make_cleanup_freeargv (argv);
8322
8323 /* Walk through the args, looking for signal oursigs, signal names, and
8324 actions. Signal numbers and signal names may be interspersed with
8325 actions, with the actions being performed for all signals cumulatively
8326 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8327
8328 while (*argv != NULL)
8329 {
8330 wordlen = strlen (*argv);
8331 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8332 {;
8333 }
8334 allsigs = 0;
8335 sigfirst = siglast = -1;
8336
8337 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8338 {
8339 /* Apply action to all signals except those used by the
8340 debugger. Silently skip those. */
8341 allsigs = 1;
8342 sigfirst = 0;
8343 siglast = nsigs - 1;
8344 }
8345 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8346 {
8347 SET_SIGS (nsigs, sigs, signal_stop);
8348 SET_SIGS (nsigs, sigs, signal_print);
8349 }
8350 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8351 {
8352 UNSET_SIGS (nsigs, sigs, signal_program);
8353 }
8354 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8355 {
8356 SET_SIGS (nsigs, sigs, signal_print);
8357 }
8358 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8359 {
8360 SET_SIGS (nsigs, sigs, signal_program);
8361 }
8362 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8363 {
8364 UNSET_SIGS (nsigs, sigs, signal_stop);
8365 }
8366 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8367 {
8368 SET_SIGS (nsigs, sigs, signal_program);
8369 }
8370 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8371 {
8372 UNSET_SIGS (nsigs, sigs, signal_print);
8373 UNSET_SIGS (nsigs, sigs, signal_stop);
8374 }
8375 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8376 {
8377 UNSET_SIGS (nsigs, sigs, signal_program);
8378 }
8379 else if (digits > 0)
8380 {
8381 /* It is numeric. The numeric signal refers to our own
8382 internal signal numbering from target.h, not to host/target
8383 signal number. This is a feature; users really should be
8384 using symbolic names anyway, and the common ones like
8385 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8386
8387 sigfirst = siglast = (int)
8388 gdb_signal_from_command (atoi (*argv));
8389 if ((*argv)[digits] == '-')
8390 {
8391 siglast = (int)
8392 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8393 }
8394 if (sigfirst > siglast)
8395 {
8396 /* Bet he didn't figure we'd think of this case... */
8397 signum = sigfirst;
8398 sigfirst = siglast;
8399 siglast = signum;
8400 }
8401 }
8402 else
8403 {
8404 oursig = gdb_signal_from_name (*argv);
8405 if (oursig != GDB_SIGNAL_UNKNOWN)
8406 {
8407 sigfirst = siglast = (int) oursig;
8408 }
8409 else
8410 {
8411 /* Not a number and not a recognized flag word => complain. */
8412 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8413 }
8414 }
8415
8416 /* If any signal numbers or symbol names were found, set flags for
8417 which signals to apply actions to. */
8418
8419 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8420 {
8421 switch ((enum gdb_signal) signum)
8422 {
8423 case GDB_SIGNAL_TRAP:
8424 case GDB_SIGNAL_INT:
8425 if (!allsigs && !sigs[signum])
8426 {
8427 if (query (_("%s is used by the debugger.\n\
8428Are you sure you want to change it? "),
8429 gdb_signal_to_name ((enum gdb_signal) signum)))
8430 {
8431 sigs[signum] = 1;
8432 }
8433 else
8434 {
8435 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8436 gdb_flush (gdb_stdout);
8437 }
8438 }
8439 break;
8440 case GDB_SIGNAL_0:
8441 case GDB_SIGNAL_DEFAULT:
8442 case GDB_SIGNAL_UNKNOWN:
8443 /* Make sure that "all" doesn't print these. */
8444 break;
8445 default:
8446 sigs[signum] = 1;
8447 break;
8448 }
8449 }
8450
8451 argv++;
8452 }
8453
8454 for (signum = 0; signum < nsigs; signum++)
8455 if (sigs[signum])
8456 {
8457 signal_cache_update (-1);
8458 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8459 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8460
8461 if (from_tty)
8462 {
8463 /* Show the results. */
8464 sig_print_header ();
8465 for (; signum < nsigs; signum++)
8466 if (sigs[signum])
8467 sig_print_info ((enum gdb_signal) signum);
8468 }
8469
8470 break;
8471 }
8472
8473 do_cleanups (old_chain);
8474}
8475
8476/* Complete the "handle" command. */
8477
8478static VEC (char_ptr) *
8479handle_completer (struct cmd_list_element *ignore,
8480 const char *text, const char *word)
8481{
8482 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8483 static const char * const keywords[] =
8484 {
8485 "all",
8486 "stop",
8487 "ignore",
8488 "print",
8489 "pass",
8490 "nostop",
8491 "noignore",
8492 "noprint",
8493 "nopass",
8494 NULL,
8495 };
8496
8497 vec_signals = signal_completer (ignore, text, word);
8498 vec_keywords = complete_on_enum (keywords, word, word);
8499
8500 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8501 VEC_free (char_ptr, vec_signals);
8502 VEC_free (char_ptr, vec_keywords);
8503 return return_val;
8504}
8505
8506enum gdb_signal
8507gdb_signal_from_command (int num)
8508{
8509 if (num >= 1 && num <= 15)
8510 return (enum gdb_signal) num;
8511 error (_("Only signals 1-15 are valid as numeric signals.\n\
8512Use \"info signals\" for a list of symbolic signals."));
8513}
8514
8515/* Print current contents of the tables set by the handle command.
8516 It is possible we should just be printing signals actually used
8517 by the current target (but for things to work right when switching
8518 targets, all signals should be in the signal tables). */
8519
8520static void
8521signals_info (char *signum_exp, int from_tty)
8522{
8523 enum gdb_signal oursig;
8524
8525 sig_print_header ();
8526
8527 if (signum_exp)
8528 {
8529 /* First see if this is a symbol name. */
8530 oursig = gdb_signal_from_name (signum_exp);
8531 if (oursig == GDB_SIGNAL_UNKNOWN)
8532 {
8533 /* No, try numeric. */
8534 oursig =
8535 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8536 }
8537 sig_print_info (oursig);
8538 return;
8539 }
8540
8541 printf_filtered ("\n");
8542 /* These ugly casts brought to you by the native VAX compiler. */
8543 for (oursig = GDB_SIGNAL_FIRST;
8544 (int) oursig < (int) GDB_SIGNAL_LAST;
8545 oursig = (enum gdb_signal) ((int) oursig + 1))
8546 {
8547 QUIT;
8548
8549 if (oursig != GDB_SIGNAL_UNKNOWN
8550 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8551 sig_print_info (oursig);
8552 }
8553
8554 printf_filtered (_("\nUse the \"handle\" command "
8555 "to change these tables.\n"));
8556}
8557
8558/* Check if it makes sense to read $_siginfo from the current thread
8559 at this point. If not, throw an error. */
8560
8561static void
8562validate_siginfo_access (void)
8563{
8564 /* No current inferior, no siginfo. */
8565 if (ptid_equal (inferior_ptid, null_ptid))
8566 error (_("No thread selected."));
8567
8568 /* Don't try to read from a dead thread. */
8569 if (is_exited (inferior_ptid))
8570 error (_("The current thread has terminated"));
8571
8572 /* ... or from a spinning thread. */
8573 if (is_running (inferior_ptid))
8574 error (_("Selected thread is running."));
8575}
8576
8577/* The $_siginfo convenience variable is a bit special. We don't know
8578 for sure the type of the value until we actually have a chance to
8579 fetch the data. The type can change depending on gdbarch, so it is
8580 also dependent on which thread you have selected.
8581
8582 1. making $_siginfo be an internalvar that creates a new value on
8583 access.
8584
8585 2. making the value of $_siginfo be an lval_computed value. */
8586
8587/* This function implements the lval_computed support for reading a
8588 $_siginfo value. */
8589
8590static void
8591siginfo_value_read (struct value *v)
8592{
8593 LONGEST transferred;
8594
8595 validate_siginfo_access ();
8596
8597 transferred =
8598 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8599 NULL,
8600 value_contents_all_raw (v),
8601 value_offset (v),
8602 TYPE_LENGTH (value_type (v)));
8603
8604 if (transferred != TYPE_LENGTH (value_type (v)))
8605 error (_("Unable to read siginfo"));
8606}
8607
8608/* This function implements the lval_computed support for writing a
8609 $_siginfo value. */
8610
8611static void
8612siginfo_value_write (struct value *v, struct value *fromval)
8613{
8614 LONGEST transferred;
8615
8616 validate_siginfo_access ();
8617
8618 transferred = target_write (&current_target,
8619 TARGET_OBJECT_SIGNAL_INFO,
8620 NULL,
8621 value_contents_all_raw (fromval),
8622 value_offset (v),
8623 TYPE_LENGTH (value_type (fromval)));
8624
8625 if (transferred != TYPE_LENGTH (value_type (fromval)))
8626 error (_("Unable to write siginfo"));
8627}
8628
8629static const struct lval_funcs siginfo_value_funcs =
8630 {
8631 siginfo_value_read,
8632 siginfo_value_write
8633 };
8634
8635/* Return a new value with the correct type for the siginfo object of
8636 the current thread using architecture GDBARCH. Return a void value
8637 if there's no object available. */
8638
8639static struct value *
8640siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8641 void *ignore)
8642{
8643 if (target_has_stack
8644 && !ptid_equal (inferior_ptid, null_ptid)
8645 && gdbarch_get_siginfo_type_p (gdbarch))
8646 {
8647 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8648
8649 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8650 }
8651
8652 return allocate_value (builtin_type (gdbarch)->builtin_void);
8653}
8654
8655\f
8656/* infcall_suspend_state contains state about the program itself like its
8657 registers and any signal it received when it last stopped.
8658 This state must be restored regardless of how the inferior function call
8659 ends (either successfully, or after it hits a breakpoint or signal)
8660 if the program is to properly continue where it left off. */
8661
8662struct infcall_suspend_state
8663{
8664 struct thread_suspend_state thread_suspend;
8665
8666 /* Other fields: */
8667 CORE_ADDR stop_pc;
8668 struct regcache *registers;
8669
8670 /* Format of SIGINFO_DATA or NULL if it is not present. */
8671 struct gdbarch *siginfo_gdbarch;
8672
8673 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8674 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8675 content would be invalid. */
8676 gdb_byte *siginfo_data;
8677};
8678
8679struct infcall_suspend_state *
8680save_infcall_suspend_state (void)
8681{
8682 struct infcall_suspend_state *inf_state;
8683 struct thread_info *tp = inferior_thread ();
8684 struct regcache *regcache = get_current_regcache ();
8685 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8686 gdb_byte *siginfo_data = NULL;
8687
8688 if (gdbarch_get_siginfo_type_p (gdbarch))
8689 {
8690 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8691 size_t len = TYPE_LENGTH (type);
8692 struct cleanup *back_to;
8693
8694 siginfo_data = (gdb_byte *) xmalloc (len);
8695 back_to = make_cleanup (xfree, siginfo_data);
8696
8697 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8698 siginfo_data, 0, len) == len)
8699 discard_cleanups (back_to);
8700 else
8701 {
8702 /* Errors ignored. */
8703 do_cleanups (back_to);
8704 siginfo_data = NULL;
8705 }
8706 }
8707
8708 inf_state = XCNEW (struct infcall_suspend_state);
8709
8710 if (siginfo_data)
8711 {
8712 inf_state->siginfo_gdbarch = gdbarch;
8713 inf_state->siginfo_data = siginfo_data;
8714 }
8715
8716 inf_state->thread_suspend = tp->suspend;
8717
8718 /* run_inferior_call will not use the signal due to its `proceed' call with
8719 GDB_SIGNAL_0 anyway. */
8720 tp->suspend.stop_signal = GDB_SIGNAL_0;
8721
8722 inf_state->stop_pc = stop_pc;
8723
8724 inf_state->registers = regcache_dup (regcache);
8725
8726 return inf_state;
8727}
8728
8729/* Restore inferior session state to INF_STATE. */
8730
8731void
8732restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8733{
8734 struct thread_info *tp = inferior_thread ();
8735 struct regcache *regcache = get_current_regcache ();
8736 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8737
8738 tp->suspend = inf_state->thread_suspend;
8739
8740 stop_pc = inf_state->stop_pc;
8741
8742 if (inf_state->siginfo_gdbarch == gdbarch)
8743 {
8744 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8745
8746 /* Errors ignored. */
8747 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8748 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8749 }
8750
8751 /* The inferior can be gone if the user types "print exit(0)"
8752 (and perhaps other times). */
8753 if (target_has_execution)
8754 /* NB: The register write goes through to the target. */
8755 regcache_cpy (regcache, inf_state->registers);
8756
8757 discard_infcall_suspend_state (inf_state);
8758}
8759
8760static void
8761do_restore_infcall_suspend_state_cleanup (void *state)
8762{
8763 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8764}
8765
8766struct cleanup *
8767make_cleanup_restore_infcall_suspend_state
8768 (struct infcall_suspend_state *inf_state)
8769{
8770 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8771}
8772
8773void
8774discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8775{
8776 regcache_xfree (inf_state->registers);
8777 xfree (inf_state->siginfo_data);
8778 xfree (inf_state);
8779}
8780
8781struct regcache *
8782get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8783{
8784 return inf_state->registers;
8785}
8786
8787/* infcall_control_state contains state regarding gdb's control of the
8788 inferior itself like stepping control. It also contains session state like
8789 the user's currently selected frame. */
8790
8791struct infcall_control_state
8792{
8793 struct thread_control_state thread_control;
8794 struct inferior_control_state inferior_control;
8795
8796 /* Other fields: */
8797 enum stop_stack_kind stop_stack_dummy;
8798 int stopped_by_random_signal;
8799
8800 /* ID if the selected frame when the inferior function call was made. */
8801 struct frame_id selected_frame_id;
8802};
8803
8804/* Save all of the information associated with the inferior<==>gdb
8805 connection. */
8806
8807struct infcall_control_state *
8808save_infcall_control_state (void)
8809{
8810 struct infcall_control_state *inf_status =
8811 XNEW (struct infcall_control_state);
8812 struct thread_info *tp = inferior_thread ();
8813 struct inferior *inf = current_inferior ();
8814
8815 inf_status->thread_control = tp->control;
8816 inf_status->inferior_control = inf->control;
8817
8818 tp->control.step_resume_breakpoint = NULL;
8819 tp->control.exception_resume_breakpoint = NULL;
8820
8821 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8822 chain. If caller's caller is walking the chain, they'll be happier if we
8823 hand them back the original chain when restore_infcall_control_state is
8824 called. */
8825 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8826
8827 /* Other fields: */
8828 inf_status->stop_stack_dummy = stop_stack_dummy;
8829 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8830
8831 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8832
8833 return inf_status;
8834}
8835
8836static int
8837restore_selected_frame (void *args)
8838{
8839 struct frame_id *fid = (struct frame_id *) args;
8840 struct frame_info *frame;
8841
8842 frame = frame_find_by_id (*fid);
8843
8844 /* If inf_status->selected_frame_id is NULL, there was no previously
8845 selected frame. */
8846 if (frame == NULL)
8847 {
8848 warning (_("Unable to restore previously selected frame."));
8849 return 0;
8850 }
8851
8852 select_frame (frame);
8853
8854 return (1);
8855}
8856
8857/* Restore inferior session state to INF_STATUS. */
8858
8859void
8860restore_infcall_control_state (struct infcall_control_state *inf_status)
8861{
8862 struct thread_info *tp = inferior_thread ();
8863 struct inferior *inf = current_inferior ();
8864
8865 if (tp->control.step_resume_breakpoint)
8866 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8867
8868 if (tp->control.exception_resume_breakpoint)
8869 tp->control.exception_resume_breakpoint->disposition
8870 = disp_del_at_next_stop;
8871
8872 /* Handle the bpstat_copy of the chain. */
8873 bpstat_clear (&tp->control.stop_bpstat);
8874
8875 tp->control = inf_status->thread_control;
8876 inf->control = inf_status->inferior_control;
8877
8878 /* Other fields: */
8879 stop_stack_dummy = inf_status->stop_stack_dummy;
8880 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8881
8882 if (target_has_stack)
8883 {
8884 /* The point of catch_errors is that if the stack is clobbered,
8885 walking the stack might encounter a garbage pointer and
8886 error() trying to dereference it. */
8887 if (catch_errors
8888 (restore_selected_frame, &inf_status->selected_frame_id,
8889 "Unable to restore previously selected frame:\n",
8890 RETURN_MASK_ERROR) == 0)
8891 /* Error in restoring the selected frame. Select the innermost
8892 frame. */
8893 select_frame (get_current_frame ());
8894 }
8895
8896 xfree (inf_status);
8897}
8898
8899static void
8900do_restore_infcall_control_state_cleanup (void *sts)
8901{
8902 restore_infcall_control_state ((struct infcall_control_state *) sts);
8903}
8904
8905struct cleanup *
8906make_cleanup_restore_infcall_control_state
8907 (struct infcall_control_state *inf_status)
8908{
8909 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
8910}
8911
8912void
8913discard_infcall_control_state (struct infcall_control_state *inf_status)
8914{
8915 if (inf_status->thread_control.step_resume_breakpoint)
8916 inf_status->thread_control.step_resume_breakpoint->disposition
8917 = disp_del_at_next_stop;
8918
8919 if (inf_status->thread_control.exception_resume_breakpoint)
8920 inf_status->thread_control.exception_resume_breakpoint->disposition
8921 = disp_del_at_next_stop;
8922
8923 /* See save_infcall_control_state for info on stop_bpstat. */
8924 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8925
8926 xfree (inf_status);
8927}
8928\f
8929/* restore_inferior_ptid() will be used by the cleanup machinery
8930 to restore the inferior_ptid value saved in a call to
8931 save_inferior_ptid(). */
8932
8933static void
8934restore_inferior_ptid (void *arg)
8935{
8936 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
8937
8938 inferior_ptid = *saved_ptid_ptr;
8939 xfree (arg);
8940}
8941
8942/* Save the value of inferior_ptid so that it may be restored by a
8943 later call to do_cleanups(). Returns the struct cleanup pointer
8944 needed for later doing the cleanup. */
8945
8946struct cleanup *
8947save_inferior_ptid (void)
8948{
8949 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
8950
8951 *saved_ptid_ptr = inferior_ptid;
8952 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8953}
8954
8955/* See infrun.h. */
8956
8957void
8958clear_exit_convenience_vars (void)
8959{
8960 clear_internalvar (lookup_internalvar ("_exitsignal"));
8961 clear_internalvar (lookup_internalvar ("_exitcode"));
8962}
8963\f
8964
8965/* User interface for reverse debugging:
8966 Set exec-direction / show exec-direction commands
8967 (returns error unless target implements to_set_exec_direction method). */
8968
8969enum exec_direction_kind execution_direction = EXEC_FORWARD;
8970static const char exec_forward[] = "forward";
8971static const char exec_reverse[] = "reverse";
8972static const char *exec_direction = exec_forward;
8973static const char *const exec_direction_names[] = {
8974 exec_forward,
8975 exec_reverse,
8976 NULL
8977};
8978
8979static void
8980set_exec_direction_func (char *args, int from_tty,
8981 struct cmd_list_element *cmd)
8982{
8983 if (target_can_execute_reverse)
8984 {
8985 if (!strcmp (exec_direction, exec_forward))
8986 execution_direction = EXEC_FORWARD;
8987 else if (!strcmp (exec_direction, exec_reverse))
8988 execution_direction = EXEC_REVERSE;
8989 }
8990 else
8991 {
8992 exec_direction = exec_forward;
8993 error (_("Target does not support this operation."));
8994 }
8995}
8996
8997static void
8998show_exec_direction_func (struct ui_file *out, int from_tty,
8999 struct cmd_list_element *cmd, const char *value)
9000{
9001 switch (execution_direction) {
9002 case EXEC_FORWARD:
9003 fprintf_filtered (out, _("Forward.\n"));
9004 break;
9005 case EXEC_REVERSE:
9006 fprintf_filtered (out, _("Reverse.\n"));
9007 break;
9008 default:
9009 internal_error (__FILE__, __LINE__,
9010 _("bogus execution_direction value: %d"),
9011 (int) execution_direction);
9012 }
9013}
9014
9015static void
9016show_schedule_multiple (struct ui_file *file, int from_tty,
9017 struct cmd_list_element *c, const char *value)
9018{
9019 fprintf_filtered (file, _("Resuming the execution of threads "
9020 "of all processes is %s.\n"), value);
9021}
9022
9023/* Implementation of `siginfo' variable. */
9024
9025static const struct internalvar_funcs siginfo_funcs =
9026{
9027 siginfo_make_value,
9028 NULL,
9029 NULL
9030};
9031
9032/* Callback for infrun's target events source. This is marked when a
9033 thread has a pending status to process. */
9034
9035static void
9036infrun_async_inferior_event_handler (gdb_client_data data)
9037{
9038 inferior_event_handler (INF_REG_EVENT, NULL);
9039}
9040
9041void
9042_initialize_infrun (void)
9043{
9044 int i;
9045 int numsigs;
9046 struct cmd_list_element *c;
9047
9048 /* Register extra event sources in the event loop. */
9049 infrun_async_inferior_event_token
9050 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9051
9052 add_info ("signals", signals_info, _("\
9053What debugger does when program gets various signals.\n\
9054Specify a signal as argument to print info on that signal only."));
9055 add_info_alias ("handle", "signals", 0);
9056
9057 c = add_com ("handle", class_run, handle_command, _("\
9058Specify how to handle signals.\n\
9059Usage: handle SIGNAL [ACTIONS]\n\
9060Args are signals and actions to apply to those signals.\n\
9061If no actions are specified, the current settings for the specified signals\n\
9062will be displayed instead.\n\
9063\n\
9064Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9065from 1-15 are allowed for compatibility with old versions of GDB.\n\
9066Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9067The special arg \"all\" is recognized to mean all signals except those\n\
9068used by the debugger, typically SIGTRAP and SIGINT.\n\
9069\n\
9070Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9071\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9072Stop means reenter debugger if this signal happens (implies print).\n\
9073Print means print a message if this signal happens.\n\
9074Pass means let program see this signal; otherwise program doesn't know.\n\
9075Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9076Pass and Stop may be combined.\n\
9077\n\
9078Multiple signals may be specified. Signal numbers and signal names\n\
9079may be interspersed with actions, with the actions being performed for\n\
9080all signals cumulatively specified."));
9081 set_cmd_completer (c, handle_completer);
9082
9083 if (!dbx_commands)
9084 stop_command = add_cmd ("stop", class_obscure,
9085 not_just_help_class_command, _("\
9086There is no `stop' command, but you can set a hook on `stop'.\n\
9087This allows you to set a list of commands to be run each time execution\n\
9088of the program stops."), &cmdlist);
9089
9090 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9091Set inferior debugging."), _("\
9092Show inferior debugging."), _("\
9093When non-zero, inferior specific debugging is enabled."),
9094 NULL,
9095 show_debug_infrun,
9096 &setdebuglist, &showdebuglist);
9097
9098 add_setshow_boolean_cmd ("displaced", class_maintenance,
9099 &debug_displaced, _("\
9100Set displaced stepping debugging."), _("\
9101Show displaced stepping debugging."), _("\
9102When non-zero, displaced stepping specific debugging is enabled."),
9103 NULL,
9104 show_debug_displaced,
9105 &setdebuglist, &showdebuglist);
9106
9107 add_setshow_boolean_cmd ("non-stop", no_class,
9108 &non_stop_1, _("\
9109Set whether gdb controls the inferior in non-stop mode."), _("\
9110Show whether gdb controls the inferior in non-stop mode."), _("\
9111When debugging a multi-threaded program and this setting is\n\
9112off (the default, also called all-stop mode), when one thread stops\n\
9113(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9114all other threads in the program while you interact with the thread of\n\
9115interest. When you continue or step a thread, you can allow the other\n\
9116threads to run, or have them remain stopped, but while you inspect any\n\
9117thread's state, all threads stop.\n\
9118\n\
9119In non-stop mode, when one thread stops, other threads can continue\n\
9120to run freely. You'll be able to step each thread independently,\n\
9121leave it stopped or free to run as needed."),
9122 set_non_stop,
9123 show_non_stop,
9124 &setlist,
9125 &showlist);
9126
9127 numsigs = (int) GDB_SIGNAL_LAST;
9128 signal_stop = XNEWVEC (unsigned char, numsigs);
9129 signal_print = XNEWVEC (unsigned char, numsigs);
9130 signal_program = XNEWVEC (unsigned char, numsigs);
9131 signal_catch = XNEWVEC (unsigned char, numsigs);
9132 signal_pass = XNEWVEC (unsigned char, numsigs);
9133 for (i = 0; i < numsigs; i++)
9134 {
9135 signal_stop[i] = 1;
9136 signal_print[i] = 1;
9137 signal_program[i] = 1;
9138 signal_catch[i] = 0;
9139 }
9140
9141 /* Signals caused by debugger's own actions should not be given to
9142 the program afterwards.
9143
9144 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9145 explicitly specifies that it should be delivered to the target
9146 program. Typically, that would occur when a user is debugging a
9147 target monitor on a simulator: the target monitor sets a
9148 breakpoint; the simulator encounters this breakpoint and halts
9149 the simulation handing control to GDB; GDB, noting that the stop
9150 address doesn't map to any known breakpoint, returns control back
9151 to the simulator; the simulator then delivers the hardware
9152 equivalent of a GDB_SIGNAL_TRAP to the program being
9153 debugged. */
9154 signal_program[GDB_SIGNAL_TRAP] = 0;
9155 signal_program[GDB_SIGNAL_INT] = 0;
9156
9157 /* Signals that are not errors should not normally enter the debugger. */
9158 signal_stop[GDB_SIGNAL_ALRM] = 0;
9159 signal_print[GDB_SIGNAL_ALRM] = 0;
9160 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9161 signal_print[GDB_SIGNAL_VTALRM] = 0;
9162 signal_stop[GDB_SIGNAL_PROF] = 0;
9163 signal_print[GDB_SIGNAL_PROF] = 0;
9164 signal_stop[GDB_SIGNAL_CHLD] = 0;
9165 signal_print[GDB_SIGNAL_CHLD] = 0;
9166 signal_stop[GDB_SIGNAL_IO] = 0;
9167 signal_print[GDB_SIGNAL_IO] = 0;
9168 signal_stop[GDB_SIGNAL_POLL] = 0;
9169 signal_print[GDB_SIGNAL_POLL] = 0;
9170 signal_stop[GDB_SIGNAL_URG] = 0;
9171 signal_print[GDB_SIGNAL_URG] = 0;
9172 signal_stop[GDB_SIGNAL_WINCH] = 0;
9173 signal_print[GDB_SIGNAL_WINCH] = 0;
9174 signal_stop[GDB_SIGNAL_PRIO] = 0;
9175 signal_print[GDB_SIGNAL_PRIO] = 0;
9176
9177 /* These signals are used internally by user-level thread
9178 implementations. (See signal(5) on Solaris.) Like the above
9179 signals, a healthy program receives and handles them as part of
9180 its normal operation. */
9181 signal_stop[GDB_SIGNAL_LWP] = 0;
9182 signal_print[GDB_SIGNAL_LWP] = 0;
9183 signal_stop[GDB_SIGNAL_WAITING] = 0;
9184 signal_print[GDB_SIGNAL_WAITING] = 0;
9185 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9186 signal_print[GDB_SIGNAL_CANCEL] = 0;
9187
9188 /* Update cached state. */
9189 signal_cache_update (-1);
9190
9191 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9192 &stop_on_solib_events, _("\
9193Set stopping for shared library events."), _("\
9194Show stopping for shared library events."), _("\
9195If nonzero, gdb will give control to the user when the dynamic linker\n\
9196notifies gdb of shared library events. The most common event of interest\n\
9197to the user would be loading/unloading of a new library."),
9198 set_stop_on_solib_events,
9199 show_stop_on_solib_events,
9200 &setlist, &showlist);
9201
9202 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9203 follow_fork_mode_kind_names,
9204 &follow_fork_mode_string, _("\
9205Set debugger response to a program call of fork or vfork."), _("\
9206Show debugger response to a program call of fork or vfork."), _("\
9207A fork or vfork creates a new process. follow-fork-mode can be:\n\
9208 parent - the original process is debugged after a fork\n\
9209 child - the new process is debugged after a fork\n\
9210The unfollowed process will continue to run.\n\
9211By default, the debugger will follow the parent process."),
9212 NULL,
9213 show_follow_fork_mode_string,
9214 &setlist, &showlist);
9215
9216 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9217 follow_exec_mode_names,
9218 &follow_exec_mode_string, _("\
9219Set debugger response to a program call of exec."), _("\
9220Show debugger response to a program call of exec."), _("\
9221An exec call replaces the program image of a process.\n\
9222\n\
9223follow-exec-mode can be:\n\
9224\n\
9225 new - the debugger creates a new inferior and rebinds the process\n\
9226to this new inferior. The program the process was running before\n\
9227the exec call can be restarted afterwards by restarting the original\n\
9228inferior.\n\
9229\n\
9230 same - the debugger keeps the process bound to the same inferior.\n\
9231The new executable image replaces the previous executable loaded in\n\
9232the inferior. Restarting the inferior after the exec call restarts\n\
9233the executable the process was running after the exec call.\n\
9234\n\
9235By default, the debugger will use the same inferior."),
9236 NULL,
9237 show_follow_exec_mode_string,
9238 &setlist, &showlist);
9239
9240 add_setshow_enum_cmd ("scheduler-locking", class_run,
9241 scheduler_enums, &scheduler_mode, _("\
9242Set mode for locking scheduler during execution."), _("\
9243Show mode for locking scheduler during execution."), _("\
9244off == no locking (threads may preempt at any time)\n\
9245on == full locking (no thread except the current thread may run)\n\
9246 This applies to both normal execution and replay mode.\n\
9247step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9248 In this mode, other threads may run during other commands.\n\
9249 This applies to both normal execution and replay mode.\n\
9250replay == scheduler locked in replay mode and unlocked during normal execution."),
9251 set_schedlock_func, /* traps on target vector */
9252 show_scheduler_mode,
9253 &setlist, &showlist);
9254
9255 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9256Set mode for resuming threads of all processes."), _("\
9257Show mode for resuming threads of all processes."), _("\
9258When on, execution commands (such as 'continue' or 'next') resume all\n\
9259threads of all processes. When off (which is the default), execution\n\
9260commands only resume the threads of the current process. The set of\n\
9261threads that are resumed is further refined by the scheduler-locking\n\
9262mode (see help set scheduler-locking)."),
9263 NULL,
9264 show_schedule_multiple,
9265 &setlist, &showlist);
9266
9267 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9268Set mode of the step operation."), _("\
9269Show mode of the step operation."), _("\
9270When set, doing a step over a function without debug line information\n\
9271will stop at the first instruction of that function. Otherwise, the\n\
9272function is skipped and the step command stops at a different source line."),
9273 NULL,
9274 show_step_stop_if_no_debug,
9275 &setlist, &showlist);
9276
9277 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9278 &can_use_displaced_stepping, _("\
9279Set debugger's willingness to use displaced stepping."), _("\
9280Show debugger's willingness to use displaced stepping."), _("\
9281If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9282supported by the target architecture. If off, gdb will not use displaced\n\
9283stepping to step over breakpoints, even if such is supported by the target\n\
9284architecture. If auto (which is the default), gdb will use displaced stepping\n\
9285if the target architecture supports it and non-stop mode is active, but will not\n\
9286use it in all-stop mode (see help set non-stop)."),
9287 NULL,
9288 show_can_use_displaced_stepping,
9289 &setlist, &showlist);
9290
9291 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9292 &exec_direction, _("Set direction of execution.\n\
9293Options are 'forward' or 'reverse'."),
9294 _("Show direction of execution (forward/reverse)."),
9295 _("Tells gdb whether to execute forward or backward."),
9296 set_exec_direction_func, show_exec_direction_func,
9297 &setlist, &showlist);
9298
9299 /* Set/show detach-on-fork: user-settable mode. */
9300
9301 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9302Set whether gdb will detach the child of a fork."), _("\
9303Show whether gdb will detach the child of a fork."), _("\
9304Tells gdb whether to detach the child of a fork."),
9305 NULL, NULL, &setlist, &showlist);
9306
9307 /* Set/show disable address space randomization mode. */
9308
9309 add_setshow_boolean_cmd ("disable-randomization", class_support,
9310 &disable_randomization, _("\
9311Set disabling of debuggee's virtual address space randomization."), _("\
9312Show disabling of debuggee's virtual address space randomization."), _("\
9313When this mode is on (which is the default), randomization of the virtual\n\
9314address space is disabled. Standalone programs run with the randomization\n\
9315enabled by default on some platforms."),
9316 &set_disable_randomization,
9317 &show_disable_randomization,
9318 &setlist, &showlist);
9319
9320 /* ptid initializations */
9321 inferior_ptid = null_ptid;
9322 target_last_wait_ptid = minus_one_ptid;
9323
9324 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9325 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9326 observer_attach_thread_exit (infrun_thread_thread_exit);
9327 observer_attach_inferior_exit (infrun_inferior_exit);
9328
9329 /* Explicitly create without lookup, since that tries to create a
9330 value with a void typed value, and when we get here, gdbarch
9331 isn't initialized yet. At this point, we're quite sure there
9332 isn't another convenience variable of the same name. */
9333 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9334
9335 add_setshow_boolean_cmd ("observer", no_class,
9336 &observer_mode_1, _("\
9337Set whether gdb controls the inferior in observer mode."), _("\
9338Show whether gdb controls the inferior in observer mode."), _("\
9339In observer mode, GDB can get data from the inferior, but not\n\
9340affect its execution. Registers and memory may not be changed,\n\
9341breakpoints may not be set, and the program cannot be interrupted\n\
9342or signalled."),
9343 set_observer_mode,
9344 show_observer_mode,
9345 &setlist,
9346 &showlist);
9347}
This page took 0.066263 seconds and 4 git commands to generate.