Disallow PC relative for CMPI on MC68000/10
[deliverable/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "infrun.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "target-connection.h"
32#include "gdbthread.h"
33#include "annotate.h"
34#include "symfile.h"
35#include "top.h"
36#include "inf-loop.h"
37#include "regcache.h"
38#include "value.h"
39#include "observable.h"
40#include "language.h"
41#include "solib.h"
42#include "main.h"
43#include "block.h"
44#include "mi/mi-common.h"
45#include "event-top.h"
46#include "record.h"
47#include "record-full.h"
48#include "inline-frame.h"
49#include "jit.h"
50#include "tracepoint.h"
51#include "skip.h"
52#include "probe.h"
53#include "objfiles.h"
54#include "completer.h"
55#include "target-descriptions.h"
56#include "target-dcache.h"
57#include "terminal.h"
58#include "solist.h"
59#include "gdbsupport/event-loop.h"
60#include "thread-fsm.h"
61#include "gdbsupport/enum-flags.h"
62#include "progspace-and-thread.h"
63#include "gdbsupport/gdb_optional.h"
64#include "arch-utils.h"
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
67#include "gdbsupport/gdb_select.h"
68#include <unordered_map>
69#include "async-event.h"
70
71/* Prototypes for local functions */
72
73static void sig_print_info (enum gdb_signal);
74
75static void sig_print_header (void);
76
77static void follow_inferior_reset_breakpoints (void);
78
79static int currently_stepping (struct thread_info *tp);
80
81static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
82
83static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
85static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
87static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
89static void resume (gdb_signal sig);
90
91static void wait_for_inferior (inferior *inf);
92
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133bool step_stop_if_no_debug = false;
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
140
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145static ptid_t previous_inferior_ptid;
146
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152static bool detach_fork = true;
153
154bool debug_displaced = false;
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
162unsigned int debug_infrun = 0;
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
169
170
171/* Support for disabling address space randomization. */
172
173bool disable_randomization = true;
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
191set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
200/* User interface for non-stop mode. */
201
202bool non_stop = false;
203static bool non_stop_1 = false;
204
205static void
206set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231bool observer_mode = false;
232static bool observer_mode_1 = false;
233
234static void
235set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237{
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
299
300/* Tables of how to react to signals; the user sets them. */
301
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
338 target_program_signals (signal_program);
339}
340
341/* Value to pass to target_resume() to cause all threads to resume. */
342
343#define RESUME_ALL minus_one_ptid
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351int stop_on_solib_events;
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359{
360 update_solib_breakpoints ();
361}
362
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
370
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
379static ptid_t target_last_wait_ptid;
380static struct target_waitstatus target_last_waitstatus;
381
382void init_thread_stepping_state (struct thread_info *tss);
383
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
387static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391};
392
393static const char *follow_fork_mode_string = follow_fork_mode_parent;
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402}
403\f
404
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
413{
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 set_current_inferior (child_inf);
485 switch_to_no_thread ();
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487 push_target (parent_inf->process_target ());
488 add_thread_silent (child_inf->process_target (), child_ptid);
489 inferior_ptid = child_ptid;
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
498 exec_on_vfork ();
499
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507 }
508 else
509 {
510 child_inf->aspace = new_address_space ();
511 child_inf->pspace = new program_space (child_inf->aspace);
512 child_inf->removable = 1;
513 set_current_program_space (child_inf->pspace);
514 clone_program_space (child_inf->pspace, parent_inf->pspace);
515
516 /* Let the shared library layer (e.g., solib-svr4) learn
517 about this new process, relocate the cloned exec, pull
518 in shared libraries, and install the solib event
519 breakpoint. If a "cloned-VM" event was propagated
520 better throughout the core, this wouldn't be
521 required. */
522 solib_create_inferior_hook (0);
523 }
524 }
525
526 if (has_vforked)
527 {
528 struct inferior *parent_inf;
529
530 parent_inf = current_inferior ();
531
532 /* If we detached from the child, then we have to be careful
533 to not insert breakpoints in the parent until the child
534 is done with the shared memory region. However, if we're
535 staying attached to the child, then we can and should
536 insert breakpoints, so that we can debug it. A
537 subsequent child exec or exit is enough to know when does
538 the child stops using the parent's address space. */
539 parent_inf->waiting_for_vfork_done = detach_fork;
540 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
541 }
542 }
543 else
544 {
545 /* Follow the child. */
546 struct inferior *parent_inf, *child_inf;
547 struct program_space *parent_pspace;
548
549 if (print_inferior_events)
550 {
551 std::string parent_pid = target_pid_to_str (parent_ptid);
552 std::string child_pid = target_pid_to_str (child_ptid);
553
554 target_terminal::ours_for_output ();
555 fprintf_filtered (gdb_stdlog,
556 _("[Attaching after %s %s to child %s]\n"),
557 parent_pid.c_str (),
558 has_vforked ? "vfork" : "fork",
559 child_pid.c_str ());
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
565 child_inf = add_inferior (child_ptid.pid ());
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 process_stratum_target *target = parent_inf->process_target ();
576
577 {
578 /* Hold a strong reference to the target while (maybe)
579 detaching the parent. Otherwise detaching could close the
580 target. */
581 auto target_ref = target_ops_ref::new_reference (target);
582
583 /* If we're vforking, we want to hold on to the parent until
584 the child exits or execs. At child exec or exit time we
585 can remove the old breakpoints from the parent and detach
586 or resume debugging it. Otherwise, detach the parent now;
587 we'll want to reuse it's program/address spaces, but we
588 can't set them to the child before removing breakpoints
589 from the parent, otherwise, the breakpoints module could
590 decide to remove breakpoints from the wrong process (since
591 they'd be assigned to the same address space). */
592
593 if (has_vforked)
594 {
595 gdb_assert (child_inf->vfork_parent == NULL);
596 gdb_assert (parent_inf->vfork_child == NULL);
597 child_inf->vfork_parent = parent_inf;
598 child_inf->pending_detach = 0;
599 parent_inf->vfork_child = child_inf;
600 parent_inf->pending_detach = detach_fork;
601 parent_inf->waiting_for_vfork_done = 0;
602 }
603 else if (detach_fork)
604 {
605 if (print_inferior_events)
606 {
607 /* Ensure that we have a process ptid. */
608 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
609
610 target_terminal::ours_for_output ();
611 fprintf_filtered (gdb_stdlog,
612 _("[Detaching after fork from "
613 "parent %s]\n"),
614 target_pid_to_str (process_ptid).c_str ());
615 }
616
617 target_detach (parent_inf, 0);
618 parent_inf = NULL;
619 }
620
621 /* Note that the detach above makes PARENT_INF dangling. */
622
623 /* Add the child thread to the appropriate lists, and switch
624 to this new thread, before cloning the program space, and
625 informing the solib layer about this new process. */
626
627 set_current_inferior (child_inf);
628 push_target (target);
629 }
630
631 add_thread_silent (target, child_ptid);
632 inferior_ptid = child_ptid;
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
641
642 exec_on_vfork ();
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
647 child_inf->pspace = new program_space (child_inf->aspace);
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663}
664
665/* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
669static bool
670follow_fork ()
671{
672 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 bool should_resume = true;
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
681 struct breakpoint *exception_resume_breakpoint = NULL;
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
685 struct thread_fsm *thread_fsm = NULL;
686
687 if (!non_stop)
688 {
689 process_stratum_target *wait_target;
690 ptid_t wait_ptid;
691 struct target_waitstatus wait_status;
692
693 /* Get the last target status returned by target_wait(). */
694 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
695
696 /* If not stopped at a fork event, then there's nothing else to
697 do. */
698 if (wait_status.kind != TARGET_WAITKIND_FORKED
699 && wait_status.kind != TARGET_WAITKIND_VFORKED)
700 return 1;
701
702 /* Check if we switched over from WAIT_PTID, since the event was
703 reported. */
704 if (wait_ptid != minus_one_ptid
705 && (current_inferior ()->process_target () != wait_target
706 || inferior_ptid != wait_ptid))
707 {
708 /* We did. Switch back to WAIT_PTID thread, to tell the
709 target to follow it (in either direction). We'll
710 afterwards refuse to resume, and inform the user what
711 happened. */
712 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
713 switch_to_thread (wait_thread);
714 should_resume = false;
715 }
716 }
717
718 tp = inferior_thread ();
719
720 /* If there were any forks/vforks that were caught and are now to be
721 followed, then do so now. */
722 switch (tp->pending_follow.kind)
723 {
724 case TARGET_WAITKIND_FORKED:
725 case TARGET_WAITKIND_VFORKED:
726 {
727 ptid_t parent, child;
728
729 /* If the user did a next/step, etc, over a fork call,
730 preserve the stepping state in the fork child. */
731 if (follow_child && should_resume)
732 {
733 step_resume_breakpoint = clone_momentary_breakpoint
734 (tp->control.step_resume_breakpoint);
735 step_range_start = tp->control.step_range_start;
736 step_range_end = tp->control.step_range_end;
737 step_frame_id = tp->control.step_frame_id;
738 exception_resume_breakpoint
739 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
740 thread_fsm = tp->thread_fsm;
741
742 /* For now, delete the parent's sr breakpoint, otherwise,
743 parent/child sr breakpoints are considered duplicates,
744 and the child version will not be installed. Remove
745 this when the breakpoints module becomes aware of
746 inferiors and address spaces. */
747 delete_step_resume_breakpoint (tp);
748 tp->control.step_range_start = 0;
749 tp->control.step_range_end = 0;
750 tp->control.step_frame_id = null_frame_id;
751 delete_exception_resume_breakpoint (tp);
752 tp->thread_fsm = NULL;
753 }
754
755 parent = inferior_ptid;
756 child = tp->pending_follow.value.related_pid;
757
758 process_stratum_target *parent_targ = tp->inf->process_target ();
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
774 tp = find_thread_ptid (parent_targ, parent);
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
782 /* If we followed the child, switch to it... */
783 if (follow_child)
784 {
785 thread_info *child_thr = find_thread_ptid (parent_targ, child);
786 switch_to_thread (child_thr);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
800 tp->thread_fsm = thread_fsm;
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
810 warning (_("Not resuming: switched threads "
811 "before following fork child."));
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 }
818 }
819 break;
820 case TARGET_WAITKIND_SPURIOUS:
821 /* Nothing to follow. */
822 break;
823 default:
824 internal_error (__FILE__, __LINE__,
825 "Unexpected pending_follow.kind %d\n",
826 tp->pending_follow.kind);
827 break;
828 }
829
830 return should_resume;
831}
832
833static void
834follow_inferior_reset_breakpoints (void)
835{
836 struct thread_info *tp = inferior_thread ();
837
838 /* Was there a step_resume breakpoint? (There was if the user
839 did a "next" at the fork() call.) If so, explicitly reset its
840 thread number. Cloned step_resume breakpoints are disabled on
841 creation, so enable it here now that it is associated with the
842 correct thread.
843
844 step_resumes are a form of bp that are made to be per-thread.
845 Since we created the step_resume bp when the parent process
846 was being debugged, and now are switching to the child process,
847 from the breakpoint package's viewpoint, that's a switch of
848 "threads". We must update the bp's notion of which thread
849 it is for, or it'll be ignored when it triggers. */
850
851 if (tp->control.step_resume_breakpoint)
852 {
853 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
854 tp->control.step_resume_breakpoint->loc->enabled = 1;
855 }
856
857 /* Treat exception_resume breakpoints like step_resume breakpoints. */
858 if (tp->control.exception_resume_breakpoint)
859 {
860 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
861 tp->control.exception_resume_breakpoint->loc->enabled = 1;
862 }
863
864 /* Reinsert all breakpoints in the child. The user may have set
865 breakpoints after catching the fork, in which case those
866 were never set in the child, but only in the parent. This makes
867 sure the inserted breakpoints match the breakpoint list. */
868
869 breakpoint_re_set ();
870 insert_breakpoints ();
871}
872
873/* The child has exited or execed: resume threads of the parent the
874 user wanted to be executing. */
875
876static int
877proceed_after_vfork_done (struct thread_info *thread,
878 void *arg)
879{
880 int pid = * (int *) arg;
881
882 if (thread->ptid.pid () == pid
883 && thread->state == THREAD_RUNNING
884 && !thread->executing
885 && !thread->stop_requested
886 && thread->suspend.stop_signal == GDB_SIGNAL_0)
887 {
888 if (debug_infrun)
889 fprintf_unfiltered (gdb_stdlog,
890 "infrun: resuming vfork parent thread %s\n",
891 target_pid_to_str (thread->ptid).c_str ());
892
893 switch_to_thread (thread);
894 clear_proceed_status (0);
895 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
896 }
897
898 return 0;
899}
900
901/* Save/restore inferior_ptid, current program space and current
902 inferior. Only use this if the current context points at an exited
903 inferior (and therefore there's no current thread to save). */
904class scoped_restore_exited_inferior
905{
906public:
907 scoped_restore_exited_inferior ()
908 : m_saved_ptid (&inferior_ptid)
909 {}
910
911private:
912 scoped_restore_tmpl<ptid_t> m_saved_ptid;
913 scoped_restore_current_program_space m_pspace;
914 scoped_restore_current_inferior m_inferior;
915};
916
917/* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920static void
921handle_vfork_child_exec_or_exit (int exec)
922{
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
934
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
938 {
939 struct thread_info *tp;
940 struct program_space *pspace;
941 struct address_space *aspace;
942
943 /* follow-fork child, detach-on-fork on. */
944
945 vfork_parent->pending_detach = 0;
946
947 gdb::optional<scoped_restore_exited_inferior>
948 maybe_restore_inferior;
949 gdb::optional<scoped_restore_current_pspace_and_thread>
950 maybe_restore_thread;
951
952 /* If we're handling a child exit, then inferior_ptid points
953 at the inferior's pid, not to a thread. */
954 if (!exec)
955 maybe_restore_inferior.emplace ();
956 else
957 maybe_restore_thread.emplace ();
958
959 /* We're letting loose of the parent. */
960 tp = any_live_thread_of_inferior (vfork_parent);
961 switch_to_thread (tp);
962
963 /* We're about to detach from the parent, which implicitly
964 removes breakpoints from its address space. There's a
965 catch here: we want to reuse the spaces for the child,
966 but, parent/child are still sharing the pspace at this
967 point, although the exec in reality makes the kernel give
968 the child a fresh set of new pages. The problem here is
969 that the breakpoints module being unaware of this, would
970 likely chose the child process to write to the parent
971 address space. Swapping the child temporarily away from
972 the spaces has the desired effect. Yes, this is "sort
973 of" a hack. */
974
975 pspace = inf->pspace;
976 aspace = inf->aspace;
977 inf->aspace = NULL;
978 inf->pspace = NULL;
979
980 if (print_inferior_events)
981 {
982 std::string pidstr
983 = target_pid_to_str (ptid_t (vfork_parent->pid));
984
985 target_terminal::ours_for_output ();
986
987 if (exec)
988 {
989 fprintf_filtered (gdb_stdlog,
990 _("[Detaching vfork parent %s "
991 "after child exec]\n"), pidstr.c_str ());
992 }
993 else
994 {
995 fprintf_filtered (gdb_stdlog,
996 _("[Detaching vfork parent %s "
997 "after child exit]\n"), pidstr.c_str ());
998 }
999 }
1000
1001 target_detach (vfork_parent, 0);
1002
1003 /* Put it back. */
1004 inf->pspace = pspace;
1005 inf->aspace = aspace;
1006 }
1007 else if (exec)
1008 {
1009 /* We're staying attached to the parent, so, really give the
1010 child a new address space. */
1011 inf->pspace = new program_space (maybe_new_address_space ());
1012 inf->aspace = inf->pspace->aspace;
1013 inf->removable = 1;
1014 set_current_program_space (inf->pspace);
1015
1016 resume_parent = vfork_parent->pid;
1017 }
1018 else
1019 {
1020 /* If this is a vfork child exiting, then the pspace and
1021 aspaces were shared with the parent. Since we're
1022 reporting the process exit, we'll be mourning all that is
1023 found in the address space, and switching to null_ptid,
1024 preparing to start a new inferior. But, since we don't
1025 want to clobber the parent's address/program spaces, we
1026 go ahead and create a new one for this exiting
1027 inferior. */
1028
1029 /* Switch to null_ptid while running clone_program_space, so
1030 that clone_program_space doesn't want to read the
1031 selected frame of a dead process. */
1032 scoped_restore restore_ptid
1033 = make_scoped_restore (&inferior_ptid, null_ptid);
1034
1035 inf->pspace = new program_space (maybe_new_address_space ());
1036 inf->aspace = inf->pspace->aspace;
1037 set_current_program_space (inf->pspace);
1038 inf->removable = 1;
1039 inf->symfile_flags = SYMFILE_NO_READ;
1040 clone_program_space (inf->pspace, vfork_parent->pspace);
1041
1042 resume_parent = vfork_parent->pid;
1043 }
1044
1045 gdb_assert (current_program_space == inf->pspace);
1046
1047 if (non_stop && resume_parent != -1)
1048 {
1049 /* If the user wanted the parent to be running, let it go
1050 free now. */
1051 scoped_restore_current_thread restore_thread;
1052
1053 if (debug_infrun)
1054 fprintf_unfiltered (gdb_stdlog,
1055 "infrun: resuming vfork parent process %d\n",
1056 resume_parent);
1057
1058 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1059 }
1060 }
1061}
1062
1063/* Enum strings for "set|show follow-exec-mode". */
1064
1065static const char follow_exec_mode_new[] = "new";
1066static const char follow_exec_mode_same[] = "same";
1067static const char *const follow_exec_mode_names[] =
1068{
1069 follow_exec_mode_new,
1070 follow_exec_mode_same,
1071 NULL,
1072};
1073
1074static const char *follow_exec_mode_string = follow_exec_mode_same;
1075static void
1076show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c, const char *value)
1078{
1079 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1080}
1081
1082/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1083
1084static void
1085follow_exec (ptid_t ptid, const char *exec_file_target)
1086{
1087 struct inferior *inf = current_inferior ();
1088 int pid = ptid.pid ();
1089 ptid_t process_ptid;
1090
1091 /* Switch terminal for any messages produced e.g. by
1092 breakpoint_re_set. */
1093 target_terminal::ours_for_output ();
1094
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten with a TRAP instruction). Since
1114 we now have a new a.out, those shadow contents aren't valid. */
1115
1116 mark_breakpoints_out ();
1117
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
1137 for (thread_info *th : all_threads_safe ())
1138 if (th->ptid.pid () == pid && th->ptid != ptid)
1139 delete_thread (th);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 thread_info *th = inferior_thread ();
1146 th->control.step_resume_breakpoint = NULL;
1147 th->control.exception_resume_breakpoint = NULL;
1148 th->control.single_step_breakpoints = NULL;
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
1151
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
1155 th->stop_requested = 0;
1156
1157 update_breakpoints_after_exec ();
1158
1159 /* What is this a.out's name? */
1160 process_ptid = ptid_t (pid);
1161 printf_unfiltered (_("%s is executing new program: %s\n"),
1162 target_pid_to_str (process_ptid).c_str (),
1163 exec_file_target);
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1166 inferior has essentially been killed & reborn. */
1167
1168 breakpoint_init_inferior (inf_execd);
1169
1170 gdb::unique_xmalloc_ptr<char> exec_file_host
1171 = exec_file_find (exec_file_target, NULL);
1172
1173 /* If we were unable to map the executable target pathname onto a host
1174 pathname, tell the user that. Otherwise GDB's subsequent behavior
1175 is confusing. Maybe it would even be better to stop at this point
1176 so that the user can specify a file manually before continuing. */
1177 if (exec_file_host == NULL)
1178 warning (_("Could not load symbols for executable %s.\n"
1179 "Do you need \"set sysroot\"?"),
1180 exec_file_target);
1181
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
1195 /* Do exit processing for the original inferior before setting the new
1196 inferior's pid. Having two inferiors with the same pid would confuse
1197 find_inferior_p(t)id. Transfer the terminal state and info from the
1198 old to the new inferior. */
1199 inf = add_inferior_with_spaces ();
1200 swap_terminal_info (inf, current_inferior ());
1201 exit_inferior_silent (current_inferior ());
1202
1203 inf->pid = pid;
1204 target_follow_exec (inf, exec_file_target);
1205
1206 inferior *org_inferior = current_inferior ();
1207 switch_to_inferior_no_thread (inf);
1208 push_target (org_inferior->process_target ());
1209 thread_info *thr = add_thread (inf->process_target (), ptid);
1210 switch_to_thread (thr);
1211 }
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1225 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1226 because the proper displacement for a PIE (Position Independent
1227 Executable) main symbol file will only be computed by
1228 solib_create_inferior_hook below. breakpoint_re_set would fail
1229 to insert the breakpoints with the zero displacement. */
1230 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1231
1232 /* If the target can specify a description, read it. Must do this
1233 after flipping to the new executable (because the target supplied
1234 description must be compatible with the executable's
1235 architecture, and the old executable may e.g., be 32-bit, while
1236 the new one 64-bit), and before anything involving memory or
1237 registers. */
1238 target_find_description ();
1239
1240 solib_create_inferior_hook (0);
1241
1242 jit_inferior_created_hook ();
1243
1244 breakpoint_re_set ();
1245
1246 /* Reinsert all breakpoints. (Those which were symbolic have
1247 been reset to the proper address in the new a.out, thanks
1248 to symbol_file_command...). */
1249 insert_breakpoints ();
1250
1251 /* The next resume of this inferior should bring it to the shlib
1252 startup breakpoints. (If the user had also set bp's on
1253 "main" from the old (parent) process, then they'll auto-
1254 matically get reset there in the new process.). */
1255}
1256
1257/* The queue of threads that need to do a step-over operation to get
1258 past e.g., a breakpoint. What technique is used to step over the
1259 breakpoint/watchpoint does not matter -- all threads end up in the
1260 same queue, to maintain rough temporal order of execution, in order
1261 to avoid starvation, otherwise, we could e.g., find ourselves
1262 constantly stepping the same couple threads past their breakpoints
1263 over and over, if the single-step finish fast enough. */
1264struct thread_info *step_over_queue_head;
1265
1266/* Bit flags indicating what the thread needs to step over. */
1267
1268enum step_over_what_flag
1269 {
1270 /* Step over a breakpoint. */
1271 STEP_OVER_BREAKPOINT = 1,
1272
1273 /* Step past a non-continuable watchpoint, in order to let the
1274 instruction execute so we can evaluate the watchpoint
1275 expression. */
1276 STEP_OVER_WATCHPOINT = 2
1277 };
1278DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1279
1280/* Info about an instruction that is being stepped over. */
1281
1282struct step_over_info
1283{
1284 /* If we're stepping past a breakpoint, this is the address space
1285 and address of the instruction the breakpoint is set at. We'll
1286 skip inserting all breakpoints here. Valid iff ASPACE is
1287 non-NULL. */
1288 const address_space *aspace;
1289 CORE_ADDR address;
1290
1291 /* The instruction being stepped over triggers a nonsteppable
1292 watchpoint. If true, we'll skip inserting watchpoints. */
1293 int nonsteppable_watchpoint_p;
1294
1295 /* The thread's global number. */
1296 int thread;
1297};
1298
1299/* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323static struct step_over_info step_over_info;
1324
1325/* Record the address of the breakpoint/instruction we're currently
1326 stepping over.
1327 N.B. We record the aspace and address now, instead of say just the thread,
1328 because when we need the info later the thread may be running. */
1329
1330static void
1331set_step_over_info (const address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p,
1333 int thread)
1334{
1335 step_over_info.aspace = aspace;
1336 step_over_info.address = address;
1337 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1338 step_over_info.thread = thread;
1339}
1340
1341/* Called when we're not longer stepping over a breakpoint / an
1342 instruction, so all breakpoints are free to be (re)inserted. */
1343
1344static void
1345clear_step_over_info (void)
1346{
1347 if (debug_infrun)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "infrun: clear_step_over_info\n");
1350 step_over_info.aspace = NULL;
1351 step_over_info.address = 0;
1352 step_over_info.nonsteppable_watchpoint_p = 0;
1353 step_over_info.thread = -1;
1354}
1355
1356/* See infrun.h. */
1357
1358int
1359stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361{
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366}
1367
1368/* See infrun.h. */
1369
1370int
1371thread_is_stepping_over_breakpoint (int thread)
1372{
1373 return (step_over_info.thread != -1
1374 && thread == step_over_info.thread);
1375}
1376
1377/* See infrun.h. */
1378
1379int
1380stepping_past_nonsteppable_watchpoint (void)
1381{
1382 return step_over_info.nonsteppable_watchpoint_p;
1383}
1384
1385/* Returns true if step-over info is valid. */
1386
1387static int
1388step_over_info_valid_p (void)
1389{
1390 return (step_over_info.aspace != NULL
1391 || stepping_past_nonsteppable_watchpoint ());
1392}
1393
1394\f
1395/* Displaced stepping. */
1396
1397/* In non-stop debugging mode, we must take special care to manage
1398 breakpoints properly; in particular, the traditional strategy for
1399 stepping a thread past a breakpoint it has hit is unsuitable.
1400 'Displaced stepping' is a tactic for stepping one thread past a
1401 breakpoint it has hit while ensuring that other threads running
1402 concurrently will hit the breakpoint as they should.
1403
1404 The traditional way to step a thread T off a breakpoint in a
1405 multi-threaded program in all-stop mode is as follows:
1406
1407 a0) Initially, all threads are stopped, and breakpoints are not
1408 inserted.
1409 a1) We single-step T, leaving breakpoints uninserted.
1410 a2) We insert breakpoints, and resume all threads.
1411
1412 In non-stop debugging, however, this strategy is unsuitable: we
1413 don't want to have to stop all threads in the system in order to
1414 continue or step T past a breakpoint. Instead, we use displaced
1415 stepping:
1416
1417 n0) Initially, T is stopped, other threads are running, and
1418 breakpoints are inserted.
1419 n1) We copy the instruction "under" the breakpoint to a separate
1420 location, outside the main code stream, making any adjustments
1421 to the instruction, register, and memory state as directed by
1422 T's architecture.
1423 n2) We single-step T over the instruction at its new location.
1424 n3) We adjust the resulting register and memory state as directed
1425 by T's architecture. This includes resetting T's PC to point
1426 back into the main instruction stream.
1427 n4) We resume T.
1428
1429 This approach depends on the following gdbarch methods:
1430
1431 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1432 indicate where to copy the instruction, and how much space must
1433 be reserved there. We use these in step n1.
1434
1435 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1436 address, and makes any necessary adjustments to the instruction,
1437 register contents, and memory. We use this in step n1.
1438
1439 - gdbarch_displaced_step_fixup adjusts registers and memory after
1440 we have successfully single-stepped the instruction, to yield the
1441 same effect the instruction would have had if we had executed it
1442 at its original address. We use this in step n3.
1443
1444 The gdbarch_displaced_step_copy_insn and
1445 gdbarch_displaced_step_fixup functions must be written so that
1446 copying an instruction with gdbarch_displaced_step_copy_insn,
1447 single-stepping across the copied instruction, and then applying
1448 gdbarch_displaced_insn_fixup should have the same effects on the
1449 thread's memory and registers as stepping the instruction in place
1450 would have. Exactly which responsibilities fall to the copy and
1451 which fall to the fixup is up to the author of those functions.
1452
1453 See the comments in gdbarch.sh for details.
1454
1455 Note that displaced stepping and software single-step cannot
1456 currently be used in combination, although with some care I think
1457 they could be made to. Software single-step works by placing
1458 breakpoints on all possible subsequent instructions; if the
1459 displaced instruction is a PC-relative jump, those breakpoints
1460 could fall in very strange places --- on pages that aren't
1461 executable, or at addresses that are not proper instruction
1462 boundaries. (We do generally let other threads run while we wait
1463 to hit the software single-step breakpoint, and they might
1464 encounter such a corrupted instruction.) One way to work around
1465 this would be to have gdbarch_displaced_step_copy_insn fully
1466 simulate the effect of PC-relative instructions (and return NULL)
1467 on architectures that use software single-stepping.
1468
1469 In non-stop mode, we can have independent and simultaneous step
1470 requests, so more than one thread may need to simultaneously step
1471 over a breakpoint. The current implementation assumes there is
1472 only one scratch space per process. In this case, we have to
1473 serialize access to the scratch space. If thread A wants to step
1474 over a breakpoint, but we are currently waiting for some other
1475 thread to complete a displaced step, we leave thread A stopped and
1476 place it in the displaced_step_request_queue. Whenever a displaced
1477 step finishes, we pick the next thread in the queue and start a new
1478 displaced step operation on it. See displaced_step_prepare and
1479 displaced_step_fixup for details. */
1480
1481/* Default destructor for displaced_step_closure. */
1482
1483displaced_step_closure::~displaced_step_closure () = default;
1484
1485/* Get the displaced stepping state of process PID. */
1486
1487static displaced_step_inferior_state *
1488get_displaced_stepping_state (inferior *inf)
1489{
1490 return &inf->displaced_step_state;
1491}
1492
1493/* Returns true if any inferior has a thread doing a displaced
1494 step. */
1495
1496static bool
1497displaced_step_in_progress_any_inferior ()
1498{
1499 for (inferior *i : all_inferiors ())
1500 {
1501 if (i->displaced_step_state.step_thread != nullptr)
1502 return true;
1503 }
1504
1505 return false;
1506}
1507
1508/* Return true if thread represented by PTID is doing a displaced
1509 step. */
1510
1511static int
1512displaced_step_in_progress_thread (thread_info *thread)
1513{
1514 gdb_assert (thread != NULL);
1515
1516 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1517}
1518
1519/* Return true if process PID has a thread doing a displaced step. */
1520
1521static int
1522displaced_step_in_progress (inferior *inf)
1523{
1524 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1525}
1526
1527/* If inferior is in displaced stepping, and ADDR equals to starting address
1528 of copy area, return corresponding displaced_step_closure. Otherwise,
1529 return NULL. */
1530
1531struct displaced_step_closure*
1532get_displaced_step_closure_by_addr (CORE_ADDR addr)
1533{
1534 displaced_step_inferior_state *displaced
1535 = get_displaced_stepping_state (current_inferior ());
1536
1537 /* If checking the mode of displaced instruction in copy area. */
1538 if (displaced->step_thread != nullptr
1539 && displaced->step_copy == addr)
1540 return displaced->step_closure.get ();
1541
1542 return NULL;
1543}
1544
1545static void
1546infrun_inferior_exit (struct inferior *inf)
1547{
1548 inf->displaced_step_state.reset ();
1549}
1550
1551/* If ON, and the architecture supports it, GDB will use displaced
1552 stepping to step over breakpoints. If OFF, or if the architecture
1553 doesn't support it, GDB will instead use the traditional
1554 hold-and-step approach. If AUTO (which is the default), GDB will
1555 decide which technique to use to step over breakpoints depending on
1556 whether the target works in a non-stop way (see use_displaced_stepping). */
1557
1558static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1559
1560static void
1561show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1562 struct cmd_list_element *c,
1563 const char *value)
1564{
1565 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s (currently %s).\n"),
1569 value, target_is_non_stop_p () ? "on" : "off");
1570 else
1571 fprintf_filtered (file,
1572 _("Debugger's willingness to use displaced stepping "
1573 "to step over breakpoints is %s.\n"), value);
1574}
1575
1576/* Return true if the gdbarch implements the required methods to use
1577 displaced stepping. */
1578
1579static bool
1580gdbarch_supports_displaced_stepping (gdbarch *arch)
1581{
1582 /* Only check for the presence of step_copy_insn. Other required methods
1583 are checked by the gdbarch validation. */
1584 return gdbarch_displaced_step_copy_insn_p (arch);
1585}
1586
1587/* Return non-zero if displaced stepping can/should be used to step
1588 over breakpoints of thread TP. */
1589
1590static bool
1591use_displaced_stepping (thread_info *tp)
1592{
1593 /* If the user disabled it explicitly, don't use displaced stepping. */
1594 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1595 return false;
1596
1597 /* If "auto", only use displaced stepping if the target operates in a non-stop
1598 way. */
1599 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1600 && !target_is_non_stop_p ())
1601 return false;
1602
1603 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1604
1605 /* If the architecture doesn't implement displaced stepping, don't use
1606 it. */
1607 if (!gdbarch_supports_displaced_stepping (gdbarch))
1608 return false;
1609
1610 /* If recording, don't use displaced stepping. */
1611 if (find_record_target () != nullptr)
1612 return false;
1613
1614 displaced_step_inferior_state *displaced_state
1615 = get_displaced_stepping_state (tp->inf);
1616
1617 /* If displaced stepping failed before for this inferior, don't bother trying
1618 again. */
1619 if (displaced_state->failed_before)
1620 return false;
1621
1622 return true;
1623}
1624
1625/* Simple function wrapper around displaced_step_inferior_state::reset. */
1626
1627static void
1628displaced_step_reset (displaced_step_inferior_state *displaced)
1629{
1630 displaced->reset ();
1631}
1632
1633/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1634 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1635
1636using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1637
1638/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1639void
1640displaced_step_dump_bytes (struct ui_file *file,
1641 const gdb_byte *buf,
1642 size_t len)
1643{
1644 int i;
1645
1646 for (i = 0; i < len; i++)
1647 fprintf_unfiltered (file, "%02x ", buf[i]);
1648 fputs_unfiltered ("\n", file);
1649}
1650
1651/* Prepare to single-step, using displaced stepping.
1652
1653 Note that we cannot use displaced stepping when we have a signal to
1654 deliver. If we have a signal to deliver and an instruction to step
1655 over, then after the step, there will be no indication from the
1656 target whether the thread entered a signal handler or ignored the
1657 signal and stepped over the instruction successfully --- both cases
1658 result in a simple SIGTRAP. In the first case we mustn't do a
1659 fixup, and in the second case we must --- but we can't tell which.
1660 Comments in the code for 'random signals' in handle_inferior_event
1661 explain how we handle this case instead.
1662
1663 Returns 1 if preparing was successful -- this thread is going to be
1664 stepped now; 0 if displaced stepping this thread got queued; or -1
1665 if this instruction can't be displaced stepped. */
1666
1667static int
1668displaced_step_prepare_throw (thread_info *tp)
1669{
1670 regcache *regcache = get_thread_regcache (tp);
1671 struct gdbarch *gdbarch = regcache->arch ();
1672 const address_space *aspace = regcache->aspace ();
1673 CORE_ADDR original, copy;
1674 ULONGEST len;
1675 int status;
1676
1677 /* We should never reach this function if the architecture does not
1678 support displaced stepping. */
1679 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1680
1681 /* Nor if the thread isn't meant to step over a breakpoint. */
1682 gdb_assert (tp->control.trap_expected);
1683
1684 /* Disable range stepping while executing in the scratch pad. We
1685 want a single-step even if executing the displaced instruction in
1686 the scratch buffer lands within the stepping range (e.g., a
1687 jump/branch). */
1688 tp->control.may_range_step = 0;
1689
1690 /* We have to displaced step one thread at a time, as we only have
1691 access to a single scratch space per inferior. */
1692
1693 displaced_step_inferior_state *displaced
1694 = get_displaced_stepping_state (tp->inf);
1695
1696 if (displaced->step_thread != nullptr)
1697 {
1698 /* Already waiting for a displaced step to finish. Defer this
1699 request and place in queue. */
1700
1701 if (debug_displaced)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "displaced: deferring step of %s\n",
1704 target_pid_to_str (tp->ptid).c_str ());
1705
1706 thread_step_over_chain_enqueue (tp);
1707 return 0;
1708 }
1709 else
1710 {
1711 if (debug_displaced)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "displaced: stepping %s now\n",
1714 target_pid_to_str (tp->ptid).c_str ());
1715 }
1716
1717 displaced_step_reset (displaced);
1718
1719 scoped_restore_current_thread restore_thread;
1720
1721 switch_to_thread (tp);
1722
1723 original = regcache_read_pc (regcache);
1724
1725 copy = gdbarch_displaced_step_location (gdbarch);
1726 len = gdbarch_max_insn_length (gdbarch);
1727
1728 if (breakpoint_in_range_p (aspace, copy, len))
1729 {
1730 /* There's a breakpoint set in the scratch pad location range
1731 (which is usually around the entry point). We'd either
1732 install it before resuming, which would overwrite/corrupt the
1733 scratch pad, or if it was already inserted, this displaced
1734 step would overwrite it. The latter is OK in the sense that
1735 we already assume that no thread is going to execute the code
1736 in the scratch pad range (after initial startup) anyway, but
1737 the former is unacceptable. Simply punt and fallback to
1738 stepping over this breakpoint in-line. */
1739 if (debug_displaced)
1740 {
1741 fprintf_unfiltered (gdb_stdlog,
1742 "displaced: breakpoint set in scratch pad. "
1743 "Stepping over breakpoint in-line instead.\n");
1744 }
1745
1746 return -1;
1747 }
1748
1749 /* Save the original contents of the copy area. */
1750 displaced->step_saved_copy.resize (len);
1751 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1752 if (status != 0)
1753 throw_error (MEMORY_ERROR,
1754 _("Error accessing memory address %s (%s) for "
1755 "displaced-stepping scratch space."),
1756 paddress (gdbarch, copy), safe_strerror (status));
1757 if (debug_displaced)
1758 {
1759 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1760 paddress (gdbarch, copy));
1761 displaced_step_dump_bytes (gdb_stdlog,
1762 displaced->step_saved_copy.data (),
1763 len);
1764 };
1765
1766 displaced->step_closure
1767 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1768 if (displaced->step_closure == NULL)
1769 {
1770 /* The architecture doesn't know how or want to displaced step
1771 this instruction or instruction sequence. Fallback to
1772 stepping over the breakpoint in-line. */
1773 return -1;
1774 }
1775
1776 /* Save the information we need to fix things up if the step
1777 succeeds. */
1778 displaced->step_thread = tp;
1779 displaced->step_gdbarch = gdbarch;
1780 displaced->step_original = original;
1781 displaced->step_copy = copy;
1782
1783 {
1784 displaced_step_reset_cleanup cleanup (displaced);
1785
1786 /* Resume execution at the copy. */
1787 regcache_write_pc (regcache, copy);
1788
1789 cleanup.release ();
1790 }
1791
1792 if (debug_displaced)
1793 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1794 paddress (gdbarch, copy));
1795
1796 return 1;
1797}
1798
1799/* Wrapper for displaced_step_prepare_throw that disabled further
1800 attempts at displaced stepping if we get a memory error. */
1801
1802static int
1803displaced_step_prepare (thread_info *thread)
1804{
1805 int prepared = -1;
1806
1807 try
1808 {
1809 prepared = displaced_step_prepare_throw (thread);
1810 }
1811 catch (const gdb_exception_error &ex)
1812 {
1813 struct displaced_step_inferior_state *displaced_state;
1814
1815 if (ex.error != MEMORY_ERROR
1816 && ex.error != NOT_SUPPORTED_ERROR)
1817 throw;
1818
1819 if (debug_infrun)
1820 {
1821 fprintf_unfiltered (gdb_stdlog,
1822 "infrun: disabling displaced stepping: %s\n",
1823 ex.what ());
1824 }
1825
1826 /* Be verbose if "set displaced-stepping" is "on", silent if
1827 "auto". */
1828 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1829 {
1830 warning (_("disabling displaced stepping: %s"),
1831 ex.what ());
1832 }
1833
1834 /* Disable further displaced stepping attempts. */
1835 displaced_state
1836 = get_displaced_stepping_state (thread->inf);
1837 displaced_state->failed_before = 1;
1838 }
1839
1840 return prepared;
1841}
1842
1843static void
1844write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1845 const gdb_byte *myaddr, int len)
1846{
1847 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1848
1849 inferior_ptid = ptid;
1850 write_memory (memaddr, myaddr, len);
1851}
1852
1853/* Restore the contents of the copy area for thread PTID. */
1854
1855static void
1856displaced_step_restore (struct displaced_step_inferior_state *displaced,
1857 ptid_t ptid)
1858{
1859 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1860
1861 write_memory_ptid (ptid, displaced->step_copy,
1862 displaced->step_saved_copy.data (), len);
1863 if (debug_displaced)
1864 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1865 target_pid_to_str (ptid).c_str (),
1866 paddress (displaced->step_gdbarch,
1867 displaced->step_copy));
1868}
1869
1870/* If we displaced stepped an instruction successfully, adjust
1871 registers and memory to yield the same effect the instruction would
1872 have had if we had executed it at its original address, and return
1873 1. If the instruction didn't complete, relocate the PC and return
1874 -1. If the thread wasn't displaced stepping, return 0. */
1875
1876static int
1877displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1878{
1879 struct displaced_step_inferior_state *displaced
1880 = get_displaced_stepping_state (event_thread->inf);
1881 int ret;
1882
1883 /* Was this event for the thread we displaced? */
1884 if (displaced->step_thread != event_thread)
1885 return 0;
1886
1887 displaced_step_reset_cleanup cleanup (displaced);
1888
1889 displaced_step_restore (displaced, displaced->step_thread->ptid);
1890
1891 /* Fixup may need to read memory/registers. Switch to the thread
1892 that we're fixing up. Also, target_stopped_by_watchpoint checks
1893 the current thread. */
1894 switch_to_thread (event_thread);
1895
1896 /* Did the instruction complete successfully? */
1897 if (signal == GDB_SIGNAL_TRAP
1898 && !(target_stopped_by_watchpoint ()
1899 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1900 || target_have_steppable_watchpoint)))
1901 {
1902 /* Fix up the resulting state. */
1903 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1904 displaced->step_closure.get (),
1905 displaced->step_original,
1906 displaced->step_copy,
1907 get_thread_regcache (displaced->step_thread));
1908 ret = 1;
1909 }
1910 else
1911 {
1912 /* Since the instruction didn't complete, all we can do is
1913 relocate the PC. */
1914 struct regcache *regcache = get_thread_regcache (event_thread);
1915 CORE_ADDR pc = regcache_read_pc (regcache);
1916
1917 pc = displaced->step_original + (pc - displaced->step_copy);
1918 regcache_write_pc (regcache, pc);
1919 ret = -1;
1920 }
1921
1922 return ret;
1923}
1924
1925/* Data to be passed around while handling an event. This data is
1926 discarded between events. */
1927struct execution_control_state
1928{
1929 process_stratum_target *target;
1930 ptid_t ptid;
1931 /* The thread that got the event, if this was a thread event; NULL
1932 otherwise. */
1933 struct thread_info *event_thread;
1934
1935 struct target_waitstatus ws;
1936 int stop_func_filled_in;
1937 CORE_ADDR stop_func_start;
1938 CORE_ADDR stop_func_end;
1939 const char *stop_func_name;
1940 int wait_some_more;
1941
1942 /* True if the event thread hit the single-step breakpoint of
1943 another thread. Thus the event doesn't cause a stop, the thread
1944 needs to be single-stepped past the single-step breakpoint before
1945 we can switch back to the original stepping thread. */
1946 int hit_singlestep_breakpoint;
1947};
1948
1949/* Clear ECS and set it to point at TP. */
1950
1951static void
1952reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1953{
1954 memset (ecs, 0, sizeof (*ecs));
1955 ecs->event_thread = tp;
1956 ecs->ptid = tp->ptid;
1957}
1958
1959static void keep_going_pass_signal (struct execution_control_state *ecs);
1960static void prepare_to_wait (struct execution_control_state *ecs);
1961static int keep_going_stepped_thread (struct thread_info *tp);
1962static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1963
1964/* Are there any pending step-over requests? If so, run all we can
1965 now and return true. Otherwise, return false. */
1966
1967static int
1968start_step_over (void)
1969{
1970 struct thread_info *tp, *next;
1971
1972 /* Don't start a new step-over if we already have an in-line
1973 step-over operation ongoing. */
1974 if (step_over_info_valid_p ())
1975 return 0;
1976
1977 for (tp = step_over_queue_head; tp != NULL; tp = next)
1978 {
1979 struct execution_control_state ecss;
1980 struct execution_control_state *ecs = &ecss;
1981 step_over_what step_what;
1982 int must_be_in_line;
1983
1984 gdb_assert (!tp->stop_requested);
1985
1986 next = thread_step_over_chain_next (tp);
1987
1988 /* If this inferior already has a displaced step in process,
1989 don't start a new one. */
1990 if (displaced_step_in_progress (tp->inf))
1991 continue;
1992
1993 step_what = thread_still_needs_step_over (tp);
1994 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1995 || ((step_what & STEP_OVER_BREAKPOINT)
1996 && !use_displaced_stepping (tp)));
1997
1998 /* We currently stop all threads of all processes to step-over
1999 in-line. If we need to start a new in-line step-over, let
2000 any pending displaced steps finish first. */
2001 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2002 return 0;
2003
2004 thread_step_over_chain_remove (tp);
2005
2006 if (step_over_queue_head == NULL)
2007 {
2008 if (debug_infrun)
2009 fprintf_unfiltered (gdb_stdlog,
2010 "infrun: step-over queue now empty\n");
2011 }
2012
2013 if (tp->control.trap_expected
2014 || tp->resumed
2015 || tp->executing)
2016 {
2017 internal_error (__FILE__, __LINE__,
2018 "[%s] has inconsistent state: "
2019 "trap_expected=%d, resumed=%d, executing=%d\n",
2020 target_pid_to_str (tp->ptid).c_str (),
2021 tp->control.trap_expected,
2022 tp->resumed,
2023 tp->executing);
2024 }
2025
2026 if (debug_infrun)
2027 fprintf_unfiltered (gdb_stdlog,
2028 "infrun: resuming [%s] for step-over\n",
2029 target_pid_to_str (tp->ptid).c_str ());
2030
2031 /* keep_going_pass_signal skips the step-over if the breakpoint
2032 is no longer inserted. In all-stop, we want to keep looking
2033 for a thread that needs a step-over instead of resuming TP,
2034 because we wouldn't be able to resume anything else until the
2035 target stops again. In non-stop, the resume always resumes
2036 only TP, so it's OK to let the thread resume freely. */
2037 if (!target_is_non_stop_p () && !step_what)
2038 continue;
2039
2040 switch_to_thread (tp);
2041 reset_ecs (ecs, tp);
2042 keep_going_pass_signal (ecs);
2043
2044 if (!ecs->wait_some_more)
2045 error (_("Command aborted."));
2046
2047 gdb_assert (tp->resumed);
2048
2049 /* If we started a new in-line step-over, we're done. */
2050 if (step_over_info_valid_p ())
2051 {
2052 gdb_assert (tp->control.trap_expected);
2053 return 1;
2054 }
2055
2056 if (!target_is_non_stop_p ())
2057 {
2058 /* On all-stop, shouldn't have resumed unless we needed a
2059 step over. */
2060 gdb_assert (tp->control.trap_expected
2061 || tp->step_after_step_resume_breakpoint);
2062
2063 /* With remote targets (at least), in all-stop, we can't
2064 issue any further remote commands until the program stops
2065 again. */
2066 return 1;
2067 }
2068
2069 /* Either the thread no longer needed a step-over, or a new
2070 displaced stepping sequence started. Even in the latter
2071 case, continue looking. Maybe we can also start another
2072 displaced step on a thread of other process. */
2073 }
2074
2075 return 0;
2076}
2077
2078/* Update global variables holding ptids to hold NEW_PTID if they were
2079 holding OLD_PTID. */
2080static void
2081infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2082{
2083 if (inferior_ptid == old_ptid)
2084 inferior_ptid = new_ptid;
2085}
2086
2087\f
2088
2089static const char schedlock_off[] = "off";
2090static const char schedlock_on[] = "on";
2091static const char schedlock_step[] = "step";
2092static const char schedlock_replay[] = "replay";
2093static const char *const scheduler_enums[] = {
2094 schedlock_off,
2095 schedlock_on,
2096 schedlock_step,
2097 schedlock_replay,
2098 NULL
2099};
2100static const char *scheduler_mode = schedlock_replay;
2101static void
2102show_scheduler_mode (struct ui_file *file, int from_tty,
2103 struct cmd_list_element *c, const char *value)
2104{
2105 fprintf_filtered (file,
2106 _("Mode for locking scheduler "
2107 "during execution is \"%s\".\n"),
2108 value);
2109}
2110
2111static void
2112set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2113{
2114 if (!target_can_lock_scheduler)
2115 {
2116 scheduler_mode = schedlock_off;
2117 error (_("Target '%s' cannot support this command."), target_shortname);
2118 }
2119}
2120
2121/* True if execution commands resume all threads of all processes by
2122 default; otherwise, resume only threads of the current inferior
2123 process. */
2124bool sched_multi = false;
2125
2126/* Try to setup for software single stepping over the specified location.
2127 Return 1 if target_resume() should use hardware single step.
2128
2129 GDBARCH the current gdbarch.
2130 PC the location to step over. */
2131
2132static int
2133maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2134{
2135 int hw_step = 1;
2136
2137 if (execution_direction == EXEC_FORWARD
2138 && gdbarch_software_single_step_p (gdbarch))
2139 hw_step = !insert_single_step_breakpoints (gdbarch);
2140
2141 return hw_step;
2142}
2143
2144/* See infrun.h. */
2145
2146ptid_t
2147user_visible_resume_ptid (int step)
2148{
2149 ptid_t resume_ptid;
2150
2151 if (non_stop)
2152 {
2153 /* With non-stop mode on, threads are always handled
2154 individually. */
2155 resume_ptid = inferior_ptid;
2156 }
2157 else if ((scheduler_mode == schedlock_on)
2158 || (scheduler_mode == schedlock_step && step))
2159 {
2160 /* User-settable 'scheduler' mode requires solo thread
2161 resume. */
2162 resume_ptid = inferior_ptid;
2163 }
2164 else if ((scheduler_mode == schedlock_replay)
2165 && target_record_will_replay (minus_one_ptid, execution_direction))
2166 {
2167 /* User-settable 'scheduler' mode requires solo thread resume in replay
2168 mode. */
2169 resume_ptid = inferior_ptid;
2170 }
2171 else if (!sched_multi && target_supports_multi_process ())
2172 {
2173 /* Resume all threads of the current process (and none of other
2174 processes). */
2175 resume_ptid = ptid_t (inferior_ptid.pid ());
2176 }
2177 else
2178 {
2179 /* Resume all threads of all processes. */
2180 resume_ptid = RESUME_ALL;
2181 }
2182
2183 return resume_ptid;
2184}
2185
2186/* See infrun.h. */
2187
2188process_stratum_target *
2189user_visible_resume_target (ptid_t resume_ptid)
2190{
2191 return (resume_ptid == minus_one_ptid && sched_multi
2192 ? NULL
2193 : current_inferior ()->process_target ());
2194}
2195
2196/* Return a ptid representing the set of threads that we will resume,
2197 in the perspective of the target, assuming run control handling
2198 does not require leaving some threads stopped (e.g., stepping past
2199 breakpoint). USER_STEP indicates whether we're about to start the
2200 target for a stepping command. */
2201
2202static ptid_t
2203internal_resume_ptid (int user_step)
2204{
2205 /* In non-stop, we always control threads individually. Note that
2206 the target may always work in non-stop mode even with "set
2207 non-stop off", in which case user_visible_resume_ptid could
2208 return a wildcard ptid. */
2209 if (target_is_non_stop_p ())
2210 return inferior_ptid;
2211 else
2212 return user_visible_resume_ptid (user_step);
2213}
2214
2215/* Wrapper for target_resume, that handles infrun-specific
2216 bookkeeping. */
2217
2218static void
2219do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2220{
2221 struct thread_info *tp = inferior_thread ();
2222
2223 gdb_assert (!tp->stop_requested);
2224
2225 /* Install inferior's terminal modes. */
2226 target_terminal::inferior ();
2227
2228 /* Avoid confusing the next resume, if the next stop/resume
2229 happens to apply to another thread. */
2230 tp->suspend.stop_signal = GDB_SIGNAL_0;
2231
2232 /* Advise target which signals may be handled silently.
2233
2234 If we have removed breakpoints because we are stepping over one
2235 in-line (in any thread), we need to receive all signals to avoid
2236 accidentally skipping a breakpoint during execution of a signal
2237 handler.
2238
2239 Likewise if we're displaced stepping, otherwise a trap for a
2240 breakpoint in a signal handler might be confused with the
2241 displaced step finishing. We don't make the displaced_step_fixup
2242 step distinguish the cases instead, because:
2243
2244 - a backtrace while stopped in the signal handler would show the
2245 scratch pad as frame older than the signal handler, instead of
2246 the real mainline code.
2247
2248 - when the thread is later resumed, the signal handler would
2249 return to the scratch pad area, which would no longer be
2250 valid. */
2251 if (step_over_info_valid_p ()
2252 || displaced_step_in_progress (tp->inf))
2253 target_pass_signals ({});
2254 else
2255 target_pass_signals (signal_pass);
2256
2257 target_resume (resume_ptid, step, sig);
2258
2259 target_commit_resume ();
2260
2261 if (target_can_async_p ())
2262 target_async (1);
2263}
2264
2265/* Resume the inferior. SIG is the signal to give the inferior
2266 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2267 call 'resume', which handles exceptions. */
2268
2269static void
2270resume_1 (enum gdb_signal sig)
2271{
2272 struct regcache *regcache = get_current_regcache ();
2273 struct gdbarch *gdbarch = regcache->arch ();
2274 struct thread_info *tp = inferior_thread ();
2275 CORE_ADDR pc = regcache_read_pc (regcache);
2276 const address_space *aspace = regcache->aspace ();
2277 ptid_t resume_ptid;
2278 /* This represents the user's step vs continue request. When
2279 deciding whether "set scheduler-locking step" applies, it's the
2280 user's intention that counts. */
2281 const int user_step = tp->control.stepping_command;
2282 /* This represents what we'll actually request the target to do.
2283 This can decay from a step to a continue, if e.g., we need to
2284 implement single-stepping with breakpoints (software
2285 single-step). */
2286 int step;
2287
2288 gdb_assert (!tp->stop_requested);
2289 gdb_assert (!thread_is_in_step_over_chain (tp));
2290
2291 if (tp->suspend.waitstatus_pending_p)
2292 {
2293 if (debug_infrun)
2294 {
2295 std::string statstr
2296 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2297
2298 fprintf_unfiltered (gdb_stdlog,
2299 "infrun: resume: thread %s has pending wait "
2300 "status %s (currently_stepping=%d).\n",
2301 target_pid_to_str (tp->ptid).c_str (),
2302 statstr.c_str (),
2303 currently_stepping (tp));
2304 }
2305
2306 tp->inf->process_target ()->threads_executing = true;
2307 tp->resumed = true;
2308
2309 /* FIXME: What should we do if we are supposed to resume this
2310 thread with a signal? Maybe we should maintain a queue of
2311 pending signals to deliver. */
2312 if (sig != GDB_SIGNAL_0)
2313 {
2314 warning (_("Couldn't deliver signal %s to %s."),
2315 gdb_signal_to_name (sig),
2316 target_pid_to_str (tp->ptid).c_str ());
2317 }
2318
2319 tp->suspend.stop_signal = GDB_SIGNAL_0;
2320
2321 if (target_can_async_p ())
2322 {
2323 target_async (1);
2324 /* Tell the event loop we have an event to process. */
2325 mark_async_event_handler (infrun_async_inferior_event_token);
2326 }
2327 return;
2328 }
2329
2330 tp->stepped_breakpoint = 0;
2331
2332 /* Depends on stepped_breakpoint. */
2333 step = currently_stepping (tp);
2334
2335 if (current_inferior ()->waiting_for_vfork_done)
2336 {
2337 /* Don't try to single-step a vfork parent that is waiting for
2338 the child to get out of the shared memory region (by exec'ing
2339 or exiting). This is particularly important on software
2340 single-step archs, as the child process would trip on the
2341 software single step breakpoint inserted for the parent
2342 process. Since the parent will not actually execute any
2343 instruction until the child is out of the shared region (such
2344 are vfork's semantics), it is safe to simply continue it.
2345 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2346 the parent, and tell it to `keep_going', which automatically
2347 re-sets it stepping. */
2348 if (debug_infrun)
2349 fprintf_unfiltered (gdb_stdlog,
2350 "infrun: resume : clear step\n");
2351 step = 0;
2352 }
2353
2354 if (debug_infrun)
2355 fprintf_unfiltered (gdb_stdlog,
2356 "infrun: resume (step=%d, signal=%s), "
2357 "trap_expected=%d, current thread [%s] at %s\n",
2358 step, gdb_signal_to_symbol_string (sig),
2359 tp->control.trap_expected,
2360 target_pid_to_str (inferior_ptid).c_str (),
2361 paddress (gdbarch, pc));
2362
2363 /* Normally, by the time we reach `resume', the breakpoints are either
2364 removed or inserted, as appropriate. The exception is if we're sitting
2365 at a permanent breakpoint; we need to step over it, but permanent
2366 breakpoints can't be removed. So we have to test for it here. */
2367 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2368 {
2369 if (sig != GDB_SIGNAL_0)
2370 {
2371 /* We have a signal to pass to the inferior. The resume
2372 may, or may not take us to the signal handler. If this
2373 is a step, we'll need to stop in the signal handler, if
2374 there's one, (if the target supports stepping into
2375 handlers), or in the next mainline instruction, if
2376 there's no handler. If this is a continue, we need to be
2377 sure to run the handler with all breakpoints inserted.
2378 In all cases, set a breakpoint at the current address
2379 (where the handler returns to), and once that breakpoint
2380 is hit, resume skipping the permanent breakpoint. If
2381 that breakpoint isn't hit, then we've stepped into the
2382 signal handler (or hit some other event). We'll delete
2383 the step-resume breakpoint then. */
2384
2385 if (debug_infrun)
2386 fprintf_unfiltered (gdb_stdlog,
2387 "infrun: resume: skipping permanent breakpoint, "
2388 "deliver signal first\n");
2389
2390 clear_step_over_info ();
2391 tp->control.trap_expected = 0;
2392
2393 if (tp->control.step_resume_breakpoint == NULL)
2394 {
2395 /* Set a "high-priority" step-resume, as we don't want
2396 user breakpoints at PC to trigger (again) when this
2397 hits. */
2398 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2399 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2400
2401 tp->step_after_step_resume_breakpoint = step;
2402 }
2403
2404 insert_breakpoints ();
2405 }
2406 else
2407 {
2408 /* There's no signal to pass, we can go ahead and skip the
2409 permanent breakpoint manually. */
2410 if (debug_infrun)
2411 fprintf_unfiltered (gdb_stdlog,
2412 "infrun: resume: skipping permanent breakpoint\n");
2413 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2414 /* Update pc to reflect the new address from which we will
2415 execute instructions. */
2416 pc = regcache_read_pc (regcache);
2417
2418 if (step)
2419 {
2420 /* We've already advanced the PC, so the stepping part
2421 is done. Now we need to arrange for a trap to be
2422 reported to handle_inferior_event. Set a breakpoint
2423 at the current PC, and run to it. Don't update
2424 prev_pc, because if we end in
2425 switch_back_to_stepped_thread, we want the "expected
2426 thread advanced also" branch to be taken. IOW, we
2427 don't want this thread to step further from PC
2428 (overstep). */
2429 gdb_assert (!step_over_info_valid_p ());
2430 insert_single_step_breakpoint (gdbarch, aspace, pc);
2431 insert_breakpoints ();
2432
2433 resume_ptid = internal_resume_ptid (user_step);
2434 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2435 tp->resumed = true;
2436 return;
2437 }
2438 }
2439 }
2440
2441 /* If we have a breakpoint to step over, make sure to do a single
2442 step only. Same if we have software watchpoints. */
2443 if (tp->control.trap_expected || bpstat_should_step ())
2444 tp->control.may_range_step = 0;
2445
2446 /* If displaced stepping is enabled, step over breakpoints by executing a
2447 copy of the instruction at a different address.
2448
2449 We can't use displaced stepping when we have a signal to deliver;
2450 the comments for displaced_step_prepare explain why. The
2451 comments in the handle_inferior event for dealing with 'random
2452 signals' explain what we do instead.
2453
2454 We can't use displaced stepping when we are waiting for vfork_done
2455 event, displaced stepping breaks the vfork child similarly as single
2456 step software breakpoint. */
2457 if (tp->control.trap_expected
2458 && use_displaced_stepping (tp)
2459 && !step_over_info_valid_p ()
2460 && sig == GDB_SIGNAL_0
2461 && !current_inferior ()->waiting_for_vfork_done)
2462 {
2463 int prepared = displaced_step_prepare (tp);
2464
2465 if (prepared == 0)
2466 {
2467 if (debug_infrun)
2468 fprintf_unfiltered (gdb_stdlog,
2469 "Got placed in step-over queue\n");
2470
2471 tp->control.trap_expected = 0;
2472 return;
2473 }
2474 else if (prepared < 0)
2475 {
2476 /* Fallback to stepping over the breakpoint in-line. */
2477
2478 if (target_is_non_stop_p ())
2479 stop_all_threads ();
2480
2481 set_step_over_info (regcache->aspace (),
2482 regcache_read_pc (regcache), 0, tp->global_num);
2483
2484 step = maybe_software_singlestep (gdbarch, pc);
2485
2486 insert_breakpoints ();
2487 }
2488 else if (prepared > 0)
2489 {
2490 struct displaced_step_inferior_state *displaced;
2491
2492 /* Update pc to reflect the new address from which we will
2493 execute instructions due to displaced stepping. */
2494 pc = regcache_read_pc (get_thread_regcache (tp));
2495
2496 displaced = get_displaced_stepping_state (tp->inf);
2497 step = gdbarch_displaced_step_hw_singlestep
2498 (gdbarch, displaced->step_closure.get ());
2499 }
2500 }
2501
2502 /* Do we need to do it the hard way, w/temp breakpoints? */
2503 else if (step)
2504 step = maybe_software_singlestep (gdbarch, pc);
2505
2506 /* Currently, our software single-step implementation leads to different
2507 results than hardware single-stepping in one situation: when stepping
2508 into delivering a signal which has an associated signal handler,
2509 hardware single-step will stop at the first instruction of the handler,
2510 while software single-step will simply skip execution of the handler.
2511
2512 For now, this difference in behavior is accepted since there is no
2513 easy way to actually implement single-stepping into a signal handler
2514 without kernel support.
2515
2516 However, there is one scenario where this difference leads to follow-on
2517 problems: if we're stepping off a breakpoint by removing all breakpoints
2518 and then single-stepping. In this case, the software single-step
2519 behavior means that even if there is a *breakpoint* in the signal
2520 handler, GDB still would not stop.
2521
2522 Fortunately, we can at least fix this particular issue. We detect
2523 here the case where we are about to deliver a signal while software
2524 single-stepping with breakpoints removed. In this situation, we
2525 revert the decisions to remove all breakpoints and insert single-
2526 step breakpoints, and instead we install a step-resume breakpoint
2527 at the current address, deliver the signal without stepping, and
2528 once we arrive back at the step-resume breakpoint, actually step
2529 over the breakpoint we originally wanted to step over. */
2530 if (thread_has_single_step_breakpoints_set (tp)
2531 && sig != GDB_SIGNAL_0
2532 && step_over_info_valid_p ())
2533 {
2534 /* If we have nested signals or a pending signal is delivered
2535 immediately after a handler returns, might already have
2536 a step-resume breakpoint set on the earlier handler. We cannot
2537 set another step-resume breakpoint; just continue on until the
2538 original breakpoint is hit. */
2539 if (tp->control.step_resume_breakpoint == NULL)
2540 {
2541 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2542 tp->step_after_step_resume_breakpoint = 1;
2543 }
2544
2545 delete_single_step_breakpoints (tp);
2546
2547 clear_step_over_info ();
2548 tp->control.trap_expected = 0;
2549
2550 insert_breakpoints ();
2551 }
2552
2553 /* If STEP is set, it's a request to use hardware stepping
2554 facilities. But in that case, we should never
2555 use singlestep breakpoint. */
2556 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2557
2558 /* Decide the set of threads to ask the target to resume. */
2559 if (tp->control.trap_expected)
2560 {
2561 /* We're allowing a thread to run past a breakpoint it has
2562 hit, either by single-stepping the thread with the breakpoint
2563 removed, or by displaced stepping, with the breakpoint inserted.
2564 In the former case, we need to single-step only this thread,
2565 and keep others stopped, as they can miss this breakpoint if
2566 allowed to run. That's not really a problem for displaced
2567 stepping, but, we still keep other threads stopped, in case
2568 another thread is also stopped for a breakpoint waiting for
2569 its turn in the displaced stepping queue. */
2570 resume_ptid = inferior_ptid;
2571 }
2572 else
2573 resume_ptid = internal_resume_ptid (user_step);
2574
2575 if (execution_direction != EXEC_REVERSE
2576 && step && breakpoint_inserted_here_p (aspace, pc))
2577 {
2578 /* There are two cases where we currently need to step a
2579 breakpoint instruction when we have a signal to deliver:
2580
2581 - See handle_signal_stop where we handle random signals that
2582 could take out us out of the stepping range. Normally, in
2583 that case we end up continuing (instead of stepping) over the
2584 signal handler with a breakpoint at PC, but there are cases
2585 where we should _always_ single-step, even if we have a
2586 step-resume breakpoint, like when a software watchpoint is
2587 set. Assuming single-stepping and delivering a signal at the
2588 same time would takes us to the signal handler, then we could
2589 have removed the breakpoint at PC to step over it. However,
2590 some hardware step targets (like e.g., Mac OS) can't step
2591 into signal handlers, and for those, we need to leave the
2592 breakpoint at PC inserted, as otherwise if the handler
2593 recurses and executes PC again, it'll miss the breakpoint.
2594 So we leave the breakpoint inserted anyway, but we need to
2595 record that we tried to step a breakpoint instruction, so
2596 that adjust_pc_after_break doesn't end up confused.
2597
2598 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2599 in one thread after another thread that was stepping had been
2600 momentarily paused for a step-over. When we re-resume the
2601 stepping thread, it may be resumed from that address with a
2602 breakpoint that hasn't trapped yet. Seen with
2603 gdb.threads/non-stop-fair-events.exp, on targets that don't
2604 do displaced stepping. */
2605
2606 if (debug_infrun)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "infrun: resume: [%s] stepped breakpoint\n",
2609 target_pid_to_str (tp->ptid).c_str ());
2610
2611 tp->stepped_breakpoint = 1;
2612
2613 /* Most targets can step a breakpoint instruction, thus
2614 executing it normally. But if this one cannot, just
2615 continue and we will hit it anyway. */
2616 if (gdbarch_cannot_step_breakpoint (gdbarch))
2617 step = 0;
2618 }
2619
2620 if (debug_displaced
2621 && tp->control.trap_expected
2622 && use_displaced_stepping (tp)
2623 && !step_over_info_valid_p ())
2624 {
2625 struct regcache *resume_regcache = get_thread_regcache (tp);
2626 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2627 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2628 gdb_byte buf[4];
2629
2630 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2631 paddress (resume_gdbarch, actual_pc));
2632 read_memory (actual_pc, buf, sizeof (buf));
2633 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2634 }
2635
2636 if (tp->control.may_range_step)
2637 {
2638 /* If we're resuming a thread with the PC out of the step
2639 range, then we're doing some nested/finer run control
2640 operation, like stepping the thread out of the dynamic
2641 linker or the displaced stepping scratch pad. We
2642 shouldn't have allowed a range step then. */
2643 gdb_assert (pc_in_thread_step_range (pc, tp));
2644 }
2645
2646 do_target_resume (resume_ptid, step, sig);
2647 tp->resumed = true;
2648}
2649
2650/* Resume the inferior. SIG is the signal to give the inferior
2651 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2652 rolls back state on error. */
2653
2654static void
2655resume (gdb_signal sig)
2656{
2657 try
2658 {
2659 resume_1 (sig);
2660 }
2661 catch (const gdb_exception &ex)
2662 {
2663 /* If resuming is being aborted for any reason, delete any
2664 single-step breakpoint resume_1 may have created, to avoid
2665 confusing the following resumption, and to avoid leaving
2666 single-step breakpoints perturbing other threads, in case
2667 we're running in non-stop mode. */
2668 if (inferior_ptid != null_ptid)
2669 delete_single_step_breakpoints (inferior_thread ());
2670 throw;
2671 }
2672}
2673
2674\f
2675/* Proceeding. */
2676
2677/* See infrun.h. */
2678
2679/* Counter that tracks number of user visible stops. This can be used
2680 to tell whether a command has proceeded the inferior past the
2681 current location. This allows e.g., inferior function calls in
2682 breakpoint commands to not interrupt the command list. When the
2683 call finishes successfully, the inferior is standing at the same
2684 breakpoint as if nothing happened (and so we don't call
2685 normal_stop). */
2686static ULONGEST current_stop_id;
2687
2688/* See infrun.h. */
2689
2690ULONGEST
2691get_stop_id (void)
2692{
2693 return current_stop_id;
2694}
2695
2696/* Called when we report a user visible stop. */
2697
2698static void
2699new_stop_id (void)
2700{
2701 current_stop_id++;
2702}
2703
2704/* Clear out all variables saying what to do when inferior is continued.
2705 First do this, then set the ones you want, then call `proceed'. */
2706
2707static void
2708clear_proceed_status_thread (struct thread_info *tp)
2709{
2710 if (debug_infrun)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "infrun: clear_proceed_status_thread (%s)\n",
2713 target_pid_to_str (tp->ptid).c_str ());
2714
2715 /* If we're starting a new sequence, then the previous finished
2716 single-step is no longer relevant. */
2717 if (tp->suspend.waitstatus_pending_p)
2718 {
2719 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2720 {
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: clear_proceed_status: pending "
2724 "event of %s was a finished step. "
2725 "Discarding.\n",
2726 target_pid_to_str (tp->ptid).c_str ());
2727
2728 tp->suspend.waitstatus_pending_p = 0;
2729 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2730 }
2731 else if (debug_infrun)
2732 {
2733 std::string statstr
2734 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2735
2736 fprintf_unfiltered (gdb_stdlog,
2737 "infrun: clear_proceed_status_thread: thread %s "
2738 "has pending wait status %s "
2739 "(currently_stepping=%d).\n",
2740 target_pid_to_str (tp->ptid).c_str (),
2741 statstr.c_str (),
2742 currently_stepping (tp));
2743 }
2744 }
2745
2746 /* If this signal should not be seen by program, give it zero.
2747 Used for debugging signals. */
2748 if (!signal_pass_state (tp->suspend.stop_signal))
2749 tp->suspend.stop_signal = GDB_SIGNAL_0;
2750
2751 delete tp->thread_fsm;
2752 tp->thread_fsm = NULL;
2753
2754 tp->control.trap_expected = 0;
2755 tp->control.step_range_start = 0;
2756 tp->control.step_range_end = 0;
2757 tp->control.may_range_step = 0;
2758 tp->control.step_frame_id = null_frame_id;
2759 tp->control.step_stack_frame_id = null_frame_id;
2760 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2761 tp->control.step_start_function = NULL;
2762 tp->stop_requested = 0;
2763
2764 tp->control.stop_step = 0;
2765
2766 tp->control.proceed_to_finish = 0;
2767
2768 tp->control.stepping_command = 0;
2769
2770 /* Discard any remaining commands or status from previous stop. */
2771 bpstat_clear (&tp->control.stop_bpstat);
2772}
2773
2774void
2775clear_proceed_status (int step)
2776{
2777 /* With scheduler-locking replay, stop replaying other threads if we're
2778 not replaying the user-visible resume ptid.
2779
2780 This is a convenience feature to not require the user to explicitly
2781 stop replaying the other threads. We're assuming that the user's
2782 intent is to resume tracing the recorded process. */
2783 if (!non_stop && scheduler_mode == schedlock_replay
2784 && target_record_is_replaying (minus_one_ptid)
2785 && !target_record_will_replay (user_visible_resume_ptid (step),
2786 execution_direction))
2787 target_record_stop_replaying ();
2788
2789 if (!non_stop && inferior_ptid != null_ptid)
2790 {
2791 ptid_t resume_ptid = user_visible_resume_ptid (step);
2792 process_stratum_target *resume_target
2793 = user_visible_resume_target (resume_ptid);
2794
2795 /* In all-stop mode, delete the per-thread status of all threads
2796 we're about to resume, implicitly and explicitly. */
2797 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2798 clear_proceed_status_thread (tp);
2799 }
2800
2801 if (inferior_ptid != null_ptid)
2802 {
2803 struct inferior *inferior;
2804
2805 if (non_stop)
2806 {
2807 /* If in non-stop mode, only delete the per-thread status of
2808 the current thread. */
2809 clear_proceed_status_thread (inferior_thread ());
2810 }
2811
2812 inferior = current_inferior ();
2813 inferior->control.stop_soon = NO_STOP_QUIETLY;
2814 }
2815
2816 gdb::observers::about_to_proceed.notify ();
2817}
2818
2819/* Returns true if TP is still stopped at a breakpoint that needs
2820 stepping-over in order to make progress. If the breakpoint is gone
2821 meanwhile, we can skip the whole step-over dance. */
2822
2823static int
2824thread_still_needs_step_over_bp (struct thread_info *tp)
2825{
2826 if (tp->stepping_over_breakpoint)
2827 {
2828 struct regcache *regcache = get_thread_regcache (tp);
2829
2830 if (breakpoint_here_p (regcache->aspace (),
2831 regcache_read_pc (regcache))
2832 == ordinary_breakpoint_here)
2833 return 1;
2834
2835 tp->stepping_over_breakpoint = 0;
2836 }
2837
2838 return 0;
2839}
2840
2841/* Check whether thread TP still needs to start a step-over in order
2842 to make progress when resumed. Returns an bitwise or of enum
2843 step_over_what bits, indicating what needs to be stepped over. */
2844
2845static step_over_what
2846thread_still_needs_step_over (struct thread_info *tp)
2847{
2848 step_over_what what = 0;
2849
2850 if (thread_still_needs_step_over_bp (tp))
2851 what |= STEP_OVER_BREAKPOINT;
2852
2853 if (tp->stepping_over_watchpoint
2854 && !target_have_steppable_watchpoint)
2855 what |= STEP_OVER_WATCHPOINT;
2856
2857 return what;
2858}
2859
2860/* Returns true if scheduler locking applies. STEP indicates whether
2861 we're about to do a step/next-like command to a thread. */
2862
2863static int
2864schedlock_applies (struct thread_info *tp)
2865{
2866 return (scheduler_mode == schedlock_on
2867 || (scheduler_mode == schedlock_step
2868 && tp->control.stepping_command)
2869 || (scheduler_mode == schedlock_replay
2870 && target_record_will_replay (minus_one_ptid,
2871 execution_direction)));
2872}
2873
2874/* Calls target_commit_resume on all targets. */
2875
2876static void
2877commit_resume_all_targets ()
2878{
2879 scoped_restore_current_thread restore_thread;
2880
2881 /* Map between process_target and a representative inferior. This
2882 is to avoid committing a resume in the same target more than
2883 once. Resumptions must be idempotent, so this is an
2884 optimization. */
2885 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2886
2887 for (inferior *inf : all_non_exited_inferiors ())
2888 if (inf->has_execution ())
2889 conn_inf[inf->process_target ()] = inf;
2890
2891 for (const auto &ci : conn_inf)
2892 {
2893 inferior *inf = ci.second;
2894 switch_to_inferior_no_thread (inf);
2895 target_commit_resume ();
2896 }
2897}
2898
2899/* Check that all the targets we're about to resume are in non-stop
2900 mode. Ideally, we'd only care whether all targets support
2901 target-async, but we're not there yet. E.g., stop_all_threads
2902 doesn't know how to handle all-stop targets. Also, the remote
2903 protocol in all-stop mode is synchronous, irrespective of
2904 target-async, which means that things like a breakpoint re-set
2905 triggered by one target would try to read memory from all targets
2906 and fail. */
2907
2908static void
2909check_multi_target_resumption (process_stratum_target *resume_target)
2910{
2911 if (!non_stop && resume_target == nullptr)
2912 {
2913 scoped_restore_current_thread restore_thread;
2914
2915 /* This is used to track whether we're resuming more than one
2916 target. */
2917 process_stratum_target *first_connection = nullptr;
2918
2919 /* The first inferior we see with a target that does not work in
2920 always-non-stop mode. */
2921 inferior *first_not_non_stop = nullptr;
2922
2923 for (inferior *inf : all_non_exited_inferiors (resume_target))
2924 {
2925 switch_to_inferior_no_thread (inf);
2926
2927 if (!target_has_execution)
2928 continue;
2929
2930 process_stratum_target *proc_target
2931 = current_inferior ()->process_target();
2932
2933 if (!target_is_non_stop_p ())
2934 first_not_non_stop = inf;
2935
2936 if (first_connection == nullptr)
2937 first_connection = proc_target;
2938 else if (first_connection != proc_target
2939 && first_not_non_stop != nullptr)
2940 {
2941 switch_to_inferior_no_thread (first_not_non_stop);
2942
2943 proc_target = current_inferior ()->process_target();
2944
2945 error (_("Connection %d (%s) does not support "
2946 "multi-target resumption."),
2947 proc_target->connection_number,
2948 make_target_connection_string (proc_target).c_str ());
2949 }
2950 }
2951 }
2952}
2953
2954/* Basic routine for continuing the program in various fashions.
2955
2956 ADDR is the address to resume at, or -1 for resume where stopped.
2957 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2958 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2959
2960 You should call clear_proceed_status before calling proceed. */
2961
2962void
2963proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2964{
2965 struct regcache *regcache;
2966 struct gdbarch *gdbarch;
2967 CORE_ADDR pc;
2968 struct execution_control_state ecss;
2969 struct execution_control_state *ecs = &ecss;
2970 int started;
2971
2972 /* If we're stopped at a fork/vfork, follow the branch set by the
2973 "set follow-fork-mode" command; otherwise, we'll just proceed
2974 resuming the current thread. */
2975 if (!follow_fork ())
2976 {
2977 /* The target for some reason decided not to resume. */
2978 normal_stop ();
2979 if (target_can_async_p ())
2980 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2981 return;
2982 }
2983
2984 /* We'll update this if & when we switch to a new thread. */
2985 previous_inferior_ptid = inferior_ptid;
2986
2987 regcache = get_current_regcache ();
2988 gdbarch = regcache->arch ();
2989 const address_space *aspace = regcache->aspace ();
2990
2991 pc = regcache_read_pc (regcache);
2992 thread_info *cur_thr = inferior_thread ();
2993
2994 /* Fill in with reasonable starting values. */
2995 init_thread_stepping_state (cur_thr);
2996
2997 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2998
2999 ptid_t resume_ptid
3000 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3001 process_stratum_target *resume_target
3002 = user_visible_resume_target (resume_ptid);
3003
3004 check_multi_target_resumption (resume_target);
3005
3006 if (addr == (CORE_ADDR) -1)
3007 {
3008 if (pc == cur_thr->suspend.stop_pc
3009 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3010 && execution_direction != EXEC_REVERSE)
3011 /* There is a breakpoint at the address we will resume at,
3012 step one instruction before inserting breakpoints so that
3013 we do not stop right away (and report a second hit at this
3014 breakpoint).
3015
3016 Note, we don't do this in reverse, because we won't
3017 actually be executing the breakpoint insn anyway.
3018 We'll be (un-)executing the previous instruction. */
3019 cur_thr->stepping_over_breakpoint = 1;
3020 else if (gdbarch_single_step_through_delay_p (gdbarch)
3021 && gdbarch_single_step_through_delay (gdbarch,
3022 get_current_frame ()))
3023 /* We stepped onto an instruction that needs to be stepped
3024 again before re-inserting the breakpoint, do so. */
3025 cur_thr->stepping_over_breakpoint = 1;
3026 }
3027 else
3028 {
3029 regcache_write_pc (regcache, addr);
3030 }
3031
3032 if (siggnal != GDB_SIGNAL_DEFAULT)
3033 cur_thr->suspend.stop_signal = siggnal;
3034
3035 /* If an exception is thrown from this point on, make sure to
3036 propagate GDB's knowledge of the executing state to the
3037 frontend/user running state. */
3038 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3039
3040 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3041 threads (e.g., we might need to set threads stepping over
3042 breakpoints first), from the user/frontend's point of view, all
3043 threads in RESUME_PTID are now running. Unless we're calling an
3044 inferior function, as in that case we pretend the inferior
3045 doesn't run at all. */
3046 if (!cur_thr->control.in_infcall)
3047 set_running (resume_target, resume_ptid, true);
3048
3049 if (debug_infrun)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "infrun: proceed (addr=%s, signal=%s)\n",
3052 paddress (gdbarch, addr),
3053 gdb_signal_to_symbol_string (siggnal));
3054
3055 annotate_starting ();
3056
3057 /* Make sure that output from GDB appears before output from the
3058 inferior. */
3059 gdb_flush (gdb_stdout);
3060
3061 /* Since we've marked the inferior running, give it the terminal. A
3062 QUIT/Ctrl-C from here on is forwarded to the target (which can
3063 still detect attempts to unblock a stuck connection with repeated
3064 Ctrl-C from within target_pass_ctrlc). */
3065 target_terminal::inferior ();
3066
3067 /* In a multi-threaded task we may select another thread and
3068 then continue or step.
3069
3070 But if a thread that we're resuming had stopped at a breakpoint,
3071 it will immediately cause another breakpoint stop without any
3072 execution (i.e. it will report a breakpoint hit incorrectly). So
3073 we must step over it first.
3074
3075 Look for threads other than the current (TP) that reported a
3076 breakpoint hit and haven't been resumed yet since. */
3077
3078 /* If scheduler locking applies, we can avoid iterating over all
3079 threads. */
3080 if (!non_stop && !schedlock_applies (cur_thr))
3081 {
3082 for (thread_info *tp : all_non_exited_threads (resume_target,
3083 resume_ptid))
3084 {
3085 switch_to_thread_no_regs (tp);
3086
3087 /* Ignore the current thread here. It's handled
3088 afterwards. */
3089 if (tp == cur_thr)
3090 continue;
3091
3092 if (!thread_still_needs_step_over (tp))
3093 continue;
3094
3095 gdb_assert (!thread_is_in_step_over_chain (tp));
3096
3097 if (debug_infrun)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "infrun: need to step-over [%s] first\n",
3100 target_pid_to_str (tp->ptid).c_str ());
3101
3102 thread_step_over_chain_enqueue (tp);
3103 }
3104
3105 switch_to_thread (cur_thr);
3106 }
3107
3108 /* Enqueue the current thread last, so that we move all other
3109 threads over their breakpoints first. */
3110 if (cur_thr->stepping_over_breakpoint)
3111 thread_step_over_chain_enqueue (cur_thr);
3112
3113 /* If the thread isn't started, we'll still need to set its prev_pc,
3114 so that switch_back_to_stepped_thread knows the thread hasn't
3115 advanced. Must do this before resuming any thread, as in
3116 all-stop/remote, once we resume we can't send any other packet
3117 until the target stops again. */
3118 cur_thr->prev_pc = regcache_read_pc (regcache);
3119
3120 {
3121 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3122
3123 started = start_step_over ();
3124
3125 if (step_over_info_valid_p ())
3126 {
3127 /* Either this thread started a new in-line step over, or some
3128 other thread was already doing one. In either case, don't
3129 resume anything else until the step-over is finished. */
3130 }
3131 else if (started && !target_is_non_stop_p ())
3132 {
3133 /* A new displaced stepping sequence was started. In all-stop,
3134 we can't talk to the target anymore until it next stops. */
3135 }
3136 else if (!non_stop && target_is_non_stop_p ())
3137 {
3138 /* In all-stop, but the target is always in non-stop mode.
3139 Start all other threads that are implicitly resumed too. */
3140 for (thread_info *tp : all_non_exited_threads (resume_target,
3141 resume_ptid))
3142 {
3143 switch_to_thread_no_regs (tp);
3144
3145 if (!tp->inf->has_execution ())
3146 {
3147 if (debug_infrun)
3148 fprintf_unfiltered (gdb_stdlog,
3149 "infrun: proceed: [%s] target has "
3150 "no execution\n",
3151 target_pid_to_str (tp->ptid).c_str ());
3152 continue;
3153 }
3154
3155 if (tp->resumed)
3156 {
3157 if (debug_infrun)
3158 fprintf_unfiltered (gdb_stdlog,
3159 "infrun: proceed: [%s] resumed\n",
3160 target_pid_to_str (tp->ptid).c_str ());
3161 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3162 continue;
3163 }
3164
3165 if (thread_is_in_step_over_chain (tp))
3166 {
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog,
3169 "infrun: proceed: [%s] needs step-over\n",
3170 target_pid_to_str (tp->ptid).c_str ());
3171 continue;
3172 }
3173
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "infrun: proceed: resuming %s\n",
3177 target_pid_to_str (tp->ptid).c_str ());
3178
3179 reset_ecs (ecs, tp);
3180 switch_to_thread (tp);
3181 keep_going_pass_signal (ecs);
3182 if (!ecs->wait_some_more)
3183 error (_("Command aborted."));
3184 }
3185 }
3186 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3187 {
3188 /* The thread wasn't started, and isn't queued, run it now. */
3189 reset_ecs (ecs, cur_thr);
3190 switch_to_thread (cur_thr);
3191 keep_going_pass_signal (ecs);
3192 if (!ecs->wait_some_more)
3193 error (_("Command aborted."));
3194 }
3195 }
3196
3197 commit_resume_all_targets ();
3198
3199 finish_state.release ();
3200
3201 /* If we've switched threads above, switch back to the previously
3202 current thread. We don't want the user to see a different
3203 selected thread. */
3204 switch_to_thread (cur_thr);
3205
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
3209 if (!target_can_async_p ())
3210 mark_async_event_handler (infrun_async_inferior_event_token);
3211}
3212\f
3213
3214/* Start remote-debugging of a machine over a serial link. */
3215
3216void
3217start_remote (int from_tty)
3218{
3219 inferior *inf = current_inferior ();
3220 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3221
3222 /* Always go on waiting for the target, regardless of the mode. */
3223 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3224 indicate to wait_for_inferior that a target should timeout if
3225 nothing is returned (instead of just blocking). Because of this,
3226 targets expecting an immediate response need to, internally, set
3227 things up so that the target_wait() is forced to eventually
3228 timeout. */
3229 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3230 differentiate to its caller what the state of the target is after
3231 the initial open has been performed. Here we're assuming that
3232 the target has stopped. It should be possible to eventually have
3233 target_open() return to the caller an indication that the target
3234 is currently running and GDB state should be set to the same as
3235 for an async run. */
3236 wait_for_inferior (inf);
3237
3238 /* Now that the inferior has stopped, do any bookkeeping like
3239 loading shared libraries. We want to do this before normal_stop,
3240 so that the displayed frame is up to date. */
3241 post_create_inferior (current_top_target (), from_tty);
3242
3243 normal_stop ();
3244}
3245
3246/* Initialize static vars when a new inferior begins. */
3247
3248void
3249init_wait_for_inferior (void)
3250{
3251 /* These are meaningless until the first time through wait_for_inferior. */
3252
3253 breakpoint_init_inferior (inf_starting);
3254
3255 clear_proceed_status (0);
3256
3257 nullify_last_target_wait_ptid ();
3258
3259 previous_inferior_ptid = inferior_ptid;
3260}
3261
3262\f
3263
3264static void handle_inferior_event (struct execution_control_state *ecs);
3265
3266static void handle_step_into_function (struct gdbarch *gdbarch,
3267 struct execution_control_state *ecs);
3268static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3269 struct execution_control_state *ecs);
3270static void handle_signal_stop (struct execution_control_state *ecs);
3271static void check_exception_resume (struct execution_control_state *,
3272 struct frame_info *);
3273
3274static void end_stepping_range (struct execution_control_state *ecs);
3275static void stop_waiting (struct execution_control_state *ecs);
3276static void keep_going (struct execution_control_state *ecs);
3277static void process_event_stop_test (struct execution_control_state *ecs);
3278static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3279
3280/* This function is attached as a "thread_stop_requested" observer.
3281 Cleanup local state that assumed the PTID was to be resumed, and
3282 report the stop to the frontend. */
3283
3284static void
3285infrun_thread_stop_requested (ptid_t ptid)
3286{
3287 process_stratum_target *curr_target = current_inferior ()->process_target ();
3288
3289 /* PTID was requested to stop. If the thread was already stopped,
3290 but the user/frontend doesn't know about that yet (e.g., the
3291 thread had been temporarily paused for some step-over), set up
3292 for reporting the stop now. */
3293 for (thread_info *tp : all_threads (curr_target, ptid))
3294 {
3295 if (tp->state != THREAD_RUNNING)
3296 continue;
3297 if (tp->executing)
3298 continue;
3299
3300 /* Remove matching threads from the step-over queue, so
3301 start_step_over doesn't try to resume them
3302 automatically. */
3303 if (thread_is_in_step_over_chain (tp))
3304 thread_step_over_chain_remove (tp);
3305
3306 /* If the thread is stopped, but the user/frontend doesn't
3307 know about that yet, queue a pending event, as if the
3308 thread had just stopped now. Unless the thread already had
3309 a pending event. */
3310 if (!tp->suspend.waitstatus_pending_p)
3311 {
3312 tp->suspend.waitstatus_pending_p = 1;
3313 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3314 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3315 }
3316
3317 /* Clear the inline-frame state, since we're re-processing the
3318 stop. */
3319 clear_inline_frame_state (tp);
3320
3321 /* If this thread was paused because some other thread was
3322 doing an inline-step over, let that finish first. Once
3323 that happens, we'll restart all threads and consume pending
3324 stop events then. */
3325 if (step_over_info_valid_p ())
3326 continue;
3327
3328 /* Otherwise we can process the (new) pending event now. Set
3329 it so this pending event is considered by
3330 do_target_wait. */
3331 tp->resumed = true;
3332 }
3333}
3334
3335static void
3336infrun_thread_thread_exit (struct thread_info *tp, int silent)
3337{
3338 if (target_last_proc_target == tp->inf->process_target ()
3339 && target_last_wait_ptid == tp->ptid)
3340 nullify_last_target_wait_ptid ();
3341}
3342
3343/* Delete the step resume, single-step and longjmp/exception resume
3344 breakpoints of TP. */
3345
3346static void
3347delete_thread_infrun_breakpoints (struct thread_info *tp)
3348{
3349 delete_step_resume_breakpoint (tp);
3350 delete_exception_resume_breakpoint (tp);
3351 delete_single_step_breakpoints (tp);
3352}
3353
3354/* If the target still has execution, call FUNC for each thread that
3355 just stopped. In all-stop, that's all the non-exited threads; in
3356 non-stop, that's the current thread, only. */
3357
3358typedef void (*for_each_just_stopped_thread_callback_func)
3359 (struct thread_info *tp);
3360
3361static void
3362for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3363{
3364 if (!target_has_execution || inferior_ptid == null_ptid)
3365 return;
3366
3367 if (target_is_non_stop_p ())
3368 {
3369 /* If in non-stop mode, only the current thread stopped. */
3370 func (inferior_thread ());
3371 }
3372 else
3373 {
3374 /* In all-stop mode, all threads have stopped. */
3375 for (thread_info *tp : all_non_exited_threads ())
3376 func (tp);
3377 }
3378}
3379
3380/* Delete the step resume and longjmp/exception resume breakpoints of
3381 the threads that just stopped. */
3382
3383static void
3384delete_just_stopped_threads_infrun_breakpoints (void)
3385{
3386 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3387}
3388
3389/* Delete the single-step breakpoints of the threads that just
3390 stopped. */
3391
3392static void
3393delete_just_stopped_threads_single_step_breakpoints (void)
3394{
3395 for_each_just_stopped_thread (delete_single_step_breakpoints);
3396}
3397
3398/* See infrun.h. */
3399
3400void
3401print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3402 const struct target_waitstatus *ws)
3403{
3404 std::string status_string = target_waitstatus_to_string (ws);
3405 string_file stb;
3406
3407 /* The text is split over several lines because it was getting too long.
3408 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3409 output as a unit; we want only one timestamp printed if debug_timestamp
3410 is set. */
3411
3412 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3413 waiton_ptid.pid (),
3414 waiton_ptid.lwp (),
3415 waiton_ptid.tid ());
3416 if (waiton_ptid.pid () != -1)
3417 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3418 stb.printf (", status) =\n");
3419 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3420 result_ptid.pid (),
3421 result_ptid.lwp (),
3422 result_ptid.tid (),
3423 target_pid_to_str (result_ptid).c_str ());
3424 stb.printf ("infrun: %s\n", status_string.c_str ());
3425
3426 /* This uses %s in part to handle %'s in the text, but also to avoid
3427 a gcc error: the format attribute requires a string literal. */
3428 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3429}
3430
3431/* Select a thread at random, out of those which are resumed and have
3432 had events. */
3433
3434static struct thread_info *
3435random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3436{
3437 int num_events = 0;
3438
3439 auto has_event = [&] (thread_info *tp)
3440 {
3441 return (tp->ptid.matches (waiton_ptid)
3442 && tp->resumed
3443 && tp->suspend.waitstatus_pending_p);
3444 };
3445
3446 /* First see how many events we have. Count only resumed threads
3447 that have an event pending. */
3448 for (thread_info *tp : inf->non_exited_threads ())
3449 if (has_event (tp))
3450 num_events++;
3451
3452 if (num_events == 0)
3453 return NULL;
3454
3455 /* Now randomly pick a thread out of those that have had events. */
3456 int random_selector = (int) ((num_events * (double) rand ())
3457 / (RAND_MAX + 1.0));
3458
3459 if (debug_infrun && num_events > 1)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "infrun: Found %d events, selecting #%d\n",
3462 num_events, random_selector);
3463
3464 /* Select the Nth thread that has had an event. */
3465 for (thread_info *tp : inf->non_exited_threads ())
3466 if (has_event (tp))
3467 if (random_selector-- == 0)
3468 return tp;
3469
3470 gdb_assert_not_reached ("event thread not found");
3471}
3472
3473/* Wrapper for target_wait that first checks whether threads have
3474 pending statuses to report before actually asking the target for
3475 more events. INF is the inferior we're using to call target_wait
3476 on. */
3477
3478static ptid_t
3479do_target_wait_1 (inferior *inf, ptid_t ptid,
3480 target_waitstatus *status, int options)
3481{
3482 ptid_t event_ptid;
3483 struct thread_info *tp;
3484
3485 /* We know that we are looking for an event in the target of inferior
3486 INF, but we don't know which thread the event might come from. As
3487 such we want to make sure that INFERIOR_PTID is reset so that none of
3488 the wait code relies on it - doing so is always a mistake. */
3489 switch_to_inferior_no_thread (inf);
3490
3491 /* First check if there is a resumed thread with a wait status
3492 pending. */
3493 if (ptid == minus_one_ptid || ptid.is_pid ())
3494 {
3495 tp = random_pending_event_thread (inf, ptid);
3496 }
3497 else
3498 {
3499 if (debug_infrun)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: Waiting for specific thread %s.\n",
3502 target_pid_to_str (ptid).c_str ());
3503
3504 /* We have a specific thread to check. */
3505 tp = find_thread_ptid (inf, ptid);
3506 gdb_assert (tp != NULL);
3507 if (!tp->suspend.waitstatus_pending_p)
3508 tp = NULL;
3509 }
3510
3511 if (tp != NULL
3512 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3513 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3514 {
3515 struct regcache *regcache = get_thread_regcache (tp);
3516 struct gdbarch *gdbarch = regcache->arch ();
3517 CORE_ADDR pc;
3518 int discard = 0;
3519
3520 pc = regcache_read_pc (regcache);
3521
3522 if (pc != tp->suspend.stop_pc)
3523 {
3524 if (debug_infrun)
3525 fprintf_unfiltered (gdb_stdlog,
3526 "infrun: PC of %s changed. was=%s, now=%s\n",
3527 target_pid_to_str (tp->ptid).c_str (),
3528 paddress (gdbarch, tp->suspend.stop_pc),
3529 paddress (gdbarch, pc));
3530 discard = 1;
3531 }
3532 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: previous breakpoint of %s, at %s gone\n",
3537 target_pid_to_str (tp->ptid).c_str (),
3538 paddress (gdbarch, pc));
3539
3540 discard = 1;
3541 }
3542
3543 if (discard)
3544 {
3545 if (debug_infrun)
3546 fprintf_unfiltered (gdb_stdlog,
3547 "infrun: pending event of %s cancelled.\n",
3548 target_pid_to_str (tp->ptid).c_str ());
3549
3550 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3551 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3552 }
3553 }
3554
3555 if (tp != NULL)
3556 {
3557 if (debug_infrun)
3558 {
3559 std::string statstr
3560 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3561
3562 fprintf_unfiltered (gdb_stdlog,
3563 "infrun: Using pending wait status %s for %s.\n",
3564 statstr.c_str (),
3565 target_pid_to_str (tp->ptid).c_str ());
3566 }
3567
3568 /* Now that we've selected our final event LWP, un-adjust its PC
3569 if it was a software breakpoint (and the target doesn't
3570 always adjust the PC itself). */
3571 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3572 && !target_supports_stopped_by_sw_breakpoint ())
3573 {
3574 struct regcache *regcache;
3575 struct gdbarch *gdbarch;
3576 int decr_pc;
3577
3578 regcache = get_thread_regcache (tp);
3579 gdbarch = regcache->arch ();
3580
3581 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3582 if (decr_pc != 0)
3583 {
3584 CORE_ADDR pc;
3585
3586 pc = regcache_read_pc (regcache);
3587 regcache_write_pc (regcache, pc + decr_pc);
3588 }
3589 }
3590
3591 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3592 *status = tp->suspend.waitstatus;
3593 tp->suspend.waitstatus_pending_p = 0;
3594
3595 /* Wake up the event loop again, until all pending events are
3596 processed. */
3597 if (target_is_async_p ())
3598 mark_async_event_handler (infrun_async_inferior_event_token);
3599 return tp->ptid;
3600 }
3601
3602 /* But if we don't find one, we'll have to wait. */
3603
3604 if (deprecated_target_wait_hook)
3605 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3606 else
3607 event_ptid = target_wait (ptid, status, options);
3608
3609 return event_ptid;
3610}
3611
3612/* Returns true if INF has any resumed thread with a status
3613 pending. */
3614
3615static bool
3616threads_are_resumed_pending_p (inferior *inf)
3617{
3618 for (thread_info *tp : inf->non_exited_threads ())
3619 if (tp->resumed
3620 && tp->suspend.waitstatus_pending_p)
3621 return true;
3622
3623 return false;
3624}
3625
3626/* Wrapper for target_wait that first checks whether threads have
3627 pending statuses to report before actually asking the target for
3628 more events. Polls for events from all inferiors/targets. */
3629
3630static bool
3631do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3632{
3633 int num_inferiors = 0;
3634 int random_selector;
3635
3636 /* For fairness, we pick the first inferior/target to poll at
3637 random, and then continue polling the rest of the inferior list
3638 starting from that one in a circular fashion until the whole list
3639 is polled once. */
3640
3641 auto inferior_matches = [&wait_ptid] (inferior *inf)
3642 {
3643 return (inf->process_target () != NULL
3644 && (threads_are_executing (inf->process_target ())
3645 || threads_are_resumed_pending_p (inf))
3646 && ptid_t (inf->pid).matches (wait_ptid));
3647 };
3648
3649 /* First see how many resumed inferiors we have. */
3650 for (inferior *inf : all_inferiors ())
3651 if (inferior_matches (inf))
3652 num_inferiors++;
3653
3654 if (num_inferiors == 0)
3655 {
3656 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3657 return false;
3658 }
3659
3660 /* Now randomly pick an inferior out of those that were resumed. */
3661 random_selector = (int)
3662 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3663
3664 if (debug_infrun && num_inferiors > 1)
3665 fprintf_unfiltered (gdb_stdlog,
3666 "infrun: Found %d inferiors, starting at #%d\n",
3667 num_inferiors, random_selector);
3668
3669 /* Select the Nth inferior that was resumed. */
3670
3671 inferior *selected = nullptr;
3672
3673 for (inferior *inf : all_inferiors ())
3674 if (inferior_matches (inf))
3675 if (random_selector-- == 0)
3676 {
3677 selected = inf;
3678 break;
3679 }
3680
3681 /* Now poll for events out of each of the resumed inferior's
3682 targets, starting from the selected one. */
3683
3684 auto do_wait = [&] (inferior *inf)
3685 {
3686 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3687 ecs->target = inf->process_target ();
3688 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3689 };
3690
3691 /* Needed in all-stop+target-non-stop mode, because we end up here
3692 spuriously after the target is all stopped and we've already
3693 reported the stop to the user, polling for events. */
3694 scoped_restore_current_thread restore_thread;
3695
3696 int inf_num = selected->num;
3697 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3698 if (inferior_matches (inf))
3699 if (do_wait (inf))
3700 return true;
3701
3702 for (inferior *inf = inferior_list;
3703 inf != NULL && inf->num < inf_num;
3704 inf = inf->next)
3705 if (inferior_matches (inf))
3706 if (do_wait (inf))
3707 return true;
3708
3709 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3710 return false;
3711}
3712
3713/* Prepare and stabilize the inferior for detaching it. E.g.,
3714 detaching while a thread is displaced stepping is a recipe for
3715 crashing it, as nothing would readjust the PC out of the scratch
3716 pad. */
3717
3718void
3719prepare_for_detach (void)
3720{
3721 struct inferior *inf = current_inferior ();
3722 ptid_t pid_ptid = ptid_t (inf->pid);
3723
3724 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3725
3726 /* Is any thread of this process displaced stepping? If not,
3727 there's nothing else to do. */
3728 if (displaced->step_thread == nullptr)
3729 return;
3730
3731 if (debug_infrun)
3732 fprintf_unfiltered (gdb_stdlog,
3733 "displaced-stepping in-process while detaching");
3734
3735 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3736
3737 while (displaced->step_thread != nullptr)
3738 {
3739 struct execution_control_state ecss;
3740 struct execution_control_state *ecs;
3741
3742 ecs = &ecss;
3743 memset (ecs, 0, sizeof (*ecs));
3744
3745 overlay_cache_invalid = 1;
3746 /* Flush target cache before starting to handle each event.
3747 Target was running and cache could be stale. This is just a
3748 heuristic. Running threads may modify target memory, but we
3749 don't get any event. */
3750 target_dcache_invalidate ();
3751
3752 do_target_wait (pid_ptid, ecs, 0);
3753
3754 if (debug_infrun)
3755 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3756
3757 /* If an error happens while handling the event, propagate GDB's
3758 knowledge of the executing state to the frontend/user running
3759 state. */
3760 scoped_finish_thread_state finish_state (inf->process_target (),
3761 minus_one_ptid);
3762
3763 /* Now figure out what to do with the result of the result. */
3764 handle_inferior_event (ecs);
3765
3766 /* No error, don't finish the state yet. */
3767 finish_state.release ();
3768
3769 /* Breakpoints and watchpoints are not installed on the target
3770 at this point, and signals are passed directly to the
3771 inferior, so this must mean the process is gone. */
3772 if (!ecs->wait_some_more)
3773 {
3774 restore_detaching.release ();
3775 error (_("Program exited while detaching"));
3776 }
3777 }
3778
3779 restore_detaching.release ();
3780}
3781
3782/* Wait for control to return from inferior to debugger.
3783
3784 If inferior gets a signal, we may decide to start it up again
3785 instead of returning. That is why there is a loop in this function.
3786 When this function actually returns it means the inferior
3787 should be left stopped and GDB should read more commands. */
3788
3789static void
3790wait_for_inferior (inferior *inf)
3791{
3792 if (debug_infrun)
3793 fprintf_unfiltered
3794 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3795
3796 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3797
3798 /* If an error happens while handling the event, propagate GDB's
3799 knowledge of the executing state to the frontend/user running
3800 state. */
3801 scoped_finish_thread_state finish_state
3802 (inf->process_target (), minus_one_ptid);
3803
3804 while (1)
3805 {
3806 struct execution_control_state ecss;
3807 struct execution_control_state *ecs = &ecss;
3808
3809 memset (ecs, 0, sizeof (*ecs));
3810
3811 overlay_cache_invalid = 1;
3812
3813 /* Flush target cache before starting to handle each event.
3814 Target was running and cache could be stale. This is just a
3815 heuristic. Running threads may modify target memory, but we
3816 don't get any event. */
3817 target_dcache_invalidate ();
3818
3819 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3820 ecs->target = inf->process_target ();
3821
3822 if (debug_infrun)
3823 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3824
3825 /* Now figure out what to do with the result of the result. */
3826 handle_inferior_event (ecs);
3827
3828 if (!ecs->wait_some_more)
3829 break;
3830 }
3831
3832 /* No error, don't finish the state yet. */
3833 finish_state.release ();
3834}
3835
3836/* Cleanup that reinstalls the readline callback handler, if the
3837 target is running in the background. If while handling the target
3838 event something triggered a secondary prompt, like e.g., a
3839 pagination prompt, we'll have removed the callback handler (see
3840 gdb_readline_wrapper_line). Need to do this as we go back to the
3841 event loop, ready to process further input. Note this has no
3842 effect if the handler hasn't actually been removed, because calling
3843 rl_callback_handler_install resets the line buffer, thus losing
3844 input. */
3845
3846static void
3847reinstall_readline_callback_handler_cleanup ()
3848{
3849 struct ui *ui = current_ui;
3850
3851 if (!ui->async)
3852 {
3853 /* We're not going back to the top level event loop yet. Don't
3854 install the readline callback, as it'd prep the terminal,
3855 readline-style (raw, noecho) (e.g., --batch). We'll install
3856 it the next time the prompt is displayed, when we're ready
3857 for input. */
3858 return;
3859 }
3860
3861 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3862 gdb_rl_callback_handler_reinstall ();
3863}
3864
3865/* Clean up the FSMs of threads that are now stopped. In non-stop,
3866 that's just the event thread. In all-stop, that's all threads. */
3867
3868static void
3869clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3870{
3871 if (ecs->event_thread != NULL
3872 && ecs->event_thread->thread_fsm != NULL)
3873 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3874
3875 if (!non_stop)
3876 {
3877 for (thread_info *thr : all_non_exited_threads ())
3878 {
3879 if (thr->thread_fsm == NULL)
3880 continue;
3881 if (thr == ecs->event_thread)
3882 continue;
3883
3884 switch_to_thread (thr);
3885 thr->thread_fsm->clean_up (thr);
3886 }
3887
3888 if (ecs->event_thread != NULL)
3889 switch_to_thread (ecs->event_thread);
3890 }
3891}
3892
3893/* Helper for all_uis_check_sync_execution_done that works on the
3894 current UI. */
3895
3896static void
3897check_curr_ui_sync_execution_done (void)
3898{
3899 struct ui *ui = current_ui;
3900
3901 if (ui->prompt_state == PROMPT_NEEDED
3902 && ui->async
3903 && !gdb_in_secondary_prompt_p (ui))
3904 {
3905 target_terminal::ours ();
3906 gdb::observers::sync_execution_done.notify ();
3907 ui_register_input_event_handler (ui);
3908 }
3909}
3910
3911/* See infrun.h. */
3912
3913void
3914all_uis_check_sync_execution_done (void)
3915{
3916 SWITCH_THRU_ALL_UIS ()
3917 {
3918 check_curr_ui_sync_execution_done ();
3919 }
3920}
3921
3922/* See infrun.h. */
3923
3924void
3925all_uis_on_sync_execution_starting (void)
3926{
3927 SWITCH_THRU_ALL_UIS ()
3928 {
3929 if (current_ui->prompt_state == PROMPT_NEEDED)
3930 async_disable_stdin ();
3931 }
3932}
3933
3934/* Asynchronous version of wait_for_inferior. It is called by the
3935 event loop whenever a change of state is detected on the file
3936 descriptor corresponding to the target. It can be called more than
3937 once to complete a single execution command. In such cases we need
3938 to keep the state in a global variable ECSS. If it is the last time
3939 that this function is called for a single execution command, then
3940 report to the user that the inferior has stopped, and do the
3941 necessary cleanups. */
3942
3943void
3944fetch_inferior_event (void *client_data)
3945{
3946 struct execution_control_state ecss;
3947 struct execution_control_state *ecs = &ecss;
3948 int cmd_done = 0;
3949
3950 memset (ecs, 0, sizeof (*ecs));
3951
3952 /* Events are always processed with the main UI as current UI. This
3953 way, warnings, debug output, etc. are always consistently sent to
3954 the main console. */
3955 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3956
3957 /* End up with readline processing input, if necessary. */
3958 {
3959 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3960
3961 /* We're handling a live event, so make sure we're doing live
3962 debugging. If we're looking at traceframes while the target is
3963 running, we're going to need to get back to that mode after
3964 handling the event. */
3965 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3966 if (non_stop)
3967 {
3968 maybe_restore_traceframe.emplace ();
3969 set_current_traceframe (-1);
3970 }
3971
3972 /* The user/frontend should not notice a thread switch due to
3973 internal events. Make sure we revert to the user selected
3974 thread and frame after handling the event and running any
3975 breakpoint commands. */
3976 scoped_restore_current_thread restore_thread;
3977
3978 overlay_cache_invalid = 1;
3979 /* Flush target cache before starting to handle each event. Target
3980 was running and cache could be stale. This is just a heuristic.
3981 Running threads may modify target memory, but we don't get any
3982 event. */
3983 target_dcache_invalidate ();
3984
3985 scoped_restore save_exec_dir
3986 = make_scoped_restore (&execution_direction,
3987 target_execution_direction ());
3988
3989 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3990 return;
3991
3992 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3993
3994 /* Switch to the target that generated the event, so we can do
3995 target calls. Any inferior bound to the target will do, so we
3996 just switch to the first we find. */
3997 for (inferior *inf : all_inferiors (ecs->target))
3998 {
3999 switch_to_inferior_no_thread (inf);
4000 break;
4001 }
4002
4003 if (debug_infrun)
4004 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4005
4006 /* If an error happens while handling the event, propagate GDB's
4007 knowledge of the executing state to the frontend/user running
4008 state. */
4009 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4010 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4011
4012 /* Get executed before scoped_restore_current_thread above to apply
4013 still for the thread which has thrown the exception. */
4014 auto defer_bpstat_clear
4015 = make_scope_exit (bpstat_clear_actions);
4016 auto defer_delete_threads
4017 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4018
4019 /* Now figure out what to do with the result of the result. */
4020 handle_inferior_event (ecs);
4021
4022 if (!ecs->wait_some_more)
4023 {
4024 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4025 int should_stop = 1;
4026 struct thread_info *thr = ecs->event_thread;
4027
4028 delete_just_stopped_threads_infrun_breakpoints ();
4029
4030 if (thr != NULL)
4031 {
4032 struct thread_fsm *thread_fsm = thr->thread_fsm;
4033
4034 if (thread_fsm != NULL)
4035 should_stop = thread_fsm->should_stop (thr);
4036 }
4037
4038 if (!should_stop)
4039 {
4040 keep_going (ecs);
4041 }
4042 else
4043 {
4044 bool should_notify_stop = true;
4045 int proceeded = 0;
4046
4047 clean_up_just_stopped_threads_fsms (ecs);
4048
4049 if (thr != NULL && thr->thread_fsm != NULL)
4050 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4051
4052 if (should_notify_stop)
4053 {
4054 /* We may not find an inferior if this was a process exit. */
4055 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4056 proceeded = normal_stop ();
4057 }
4058
4059 if (!proceeded)
4060 {
4061 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4062 cmd_done = 1;
4063 }
4064
4065 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4066 previously selected thread is gone. We have two
4067 choices - switch to no thread selected, or restore the
4068 previously selected thread (now exited). We chose the
4069 later, just because that's what GDB used to do. After
4070 this, "info threads" says "The current thread <Thread
4071 ID 2> has terminated." instead of "No thread
4072 selected.". */
4073 if (!non_stop
4074 && cmd_done
4075 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4076 restore_thread.dont_restore ();
4077 }
4078 }
4079
4080 defer_delete_threads.release ();
4081 defer_bpstat_clear.release ();
4082
4083 /* No error, don't finish the thread states yet. */
4084 finish_state.release ();
4085
4086 /* This scope is used to ensure that readline callbacks are
4087 reinstalled here. */
4088 }
4089
4090 /* If a UI was in sync execution mode, and now isn't, restore its
4091 prompt (a synchronous execution command has finished, and we're
4092 ready for input). */
4093 all_uis_check_sync_execution_done ();
4094
4095 if (cmd_done
4096 && exec_done_display_p
4097 && (inferior_ptid == null_ptid
4098 || inferior_thread ()->state != THREAD_RUNNING))
4099 printf_unfiltered (_("completed.\n"));
4100}
4101
4102/* See infrun.h. */
4103
4104void
4105set_step_info (thread_info *tp, struct frame_info *frame,
4106 struct symtab_and_line sal)
4107{
4108 /* This can be removed once this function no longer implicitly relies on the
4109 inferior_ptid value. */
4110 gdb_assert (inferior_ptid == tp->ptid);
4111
4112 tp->control.step_frame_id = get_frame_id (frame);
4113 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4114
4115 tp->current_symtab = sal.symtab;
4116 tp->current_line = sal.line;
4117}
4118
4119/* Clear context switchable stepping state. */
4120
4121void
4122init_thread_stepping_state (struct thread_info *tss)
4123{
4124 tss->stepped_breakpoint = 0;
4125 tss->stepping_over_breakpoint = 0;
4126 tss->stepping_over_watchpoint = 0;
4127 tss->step_after_step_resume_breakpoint = 0;
4128}
4129
4130/* See infrun.h. */
4131
4132void
4133set_last_target_status (process_stratum_target *target, ptid_t ptid,
4134 target_waitstatus status)
4135{
4136 target_last_proc_target = target;
4137 target_last_wait_ptid = ptid;
4138 target_last_waitstatus = status;
4139}
4140
4141/* See infrun.h. */
4142
4143void
4144get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4145 target_waitstatus *status)
4146{
4147 if (target != nullptr)
4148 *target = target_last_proc_target;
4149 if (ptid != nullptr)
4150 *ptid = target_last_wait_ptid;
4151 if (status != nullptr)
4152 *status = target_last_waitstatus;
4153}
4154
4155/* See infrun.h. */
4156
4157void
4158nullify_last_target_wait_ptid (void)
4159{
4160 target_last_proc_target = nullptr;
4161 target_last_wait_ptid = minus_one_ptid;
4162 target_last_waitstatus = {};
4163}
4164
4165/* Switch thread contexts. */
4166
4167static void
4168context_switch (execution_control_state *ecs)
4169{
4170 if (debug_infrun
4171 && ecs->ptid != inferior_ptid
4172 && (inferior_ptid == null_ptid
4173 || ecs->event_thread != inferior_thread ()))
4174 {
4175 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4176 target_pid_to_str (inferior_ptid).c_str ());
4177 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4178 target_pid_to_str (ecs->ptid).c_str ());
4179 }
4180
4181 switch_to_thread (ecs->event_thread);
4182}
4183
4184/* If the target can't tell whether we've hit breakpoints
4185 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4186 check whether that could have been caused by a breakpoint. If so,
4187 adjust the PC, per gdbarch_decr_pc_after_break. */
4188
4189static void
4190adjust_pc_after_break (struct thread_info *thread,
4191 struct target_waitstatus *ws)
4192{
4193 struct regcache *regcache;
4194 struct gdbarch *gdbarch;
4195 CORE_ADDR breakpoint_pc, decr_pc;
4196
4197 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4198 we aren't, just return.
4199
4200 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4201 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4202 implemented by software breakpoints should be handled through the normal
4203 breakpoint layer.
4204
4205 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4206 different signals (SIGILL or SIGEMT for instance), but it is less
4207 clear where the PC is pointing afterwards. It may not match
4208 gdbarch_decr_pc_after_break. I don't know any specific target that
4209 generates these signals at breakpoints (the code has been in GDB since at
4210 least 1992) so I can not guess how to handle them here.
4211
4212 In earlier versions of GDB, a target with
4213 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4214 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4215 target with both of these set in GDB history, and it seems unlikely to be
4216 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4217
4218 if (ws->kind != TARGET_WAITKIND_STOPPED)
4219 return;
4220
4221 if (ws->value.sig != GDB_SIGNAL_TRAP)
4222 return;
4223
4224 /* In reverse execution, when a breakpoint is hit, the instruction
4225 under it has already been de-executed. The reported PC always
4226 points at the breakpoint address, so adjusting it further would
4227 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4228 architecture:
4229
4230 B1 0x08000000 : INSN1
4231 B2 0x08000001 : INSN2
4232 0x08000002 : INSN3
4233 PC -> 0x08000003 : INSN4
4234
4235 Say you're stopped at 0x08000003 as above. Reverse continuing
4236 from that point should hit B2 as below. Reading the PC when the
4237 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4238 been de-executed already.
4239
4240 B1 0x08000000 : INSN1
4241 B2 PC -> 0x08000001 : INSN2
4242 0x08000002 : INSN3
4243 0x08000003 : INSN4
4244
4245 We can't apply the same logic as for forward execution, because
4246 we would wrongly adjust the PC to 0x08000000, since there's a
4247 breakpoint at PC - 1. We'd then report a hit on B1, although
4248 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4249 behaviour. */
4250 if (execution_direction == EXEC_REVERSE)
4251 return;
4252
4253 /* If the target can tell whether the thread hit a SW breakpoint,
4254 trust it. Targets that can tell also adjust the PC
4255 themselves. */
4256 if (target_supports_stopped_by_sw_breakpoint ())
4257 return;
4258
4259 /* Note that relying on whether a breakpoint is planted in memory to
4260 determine this can fail. E.g,. the breakpoint could have been
4261 removed since. Or the thread could have been told to step an
4262 instruction the size of a breakpoint instruction, and only
4263 _after_ was a breakpoint inserted at its address. */
4264
4265 /* If this target does not decrement the PC after breakpoints, then
4266 we have nothing to do. */
4267 regcache = get_thread_regcache (thread);
4268 gdbarch = regcache->arch ();
4269
4270 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4271 if (decr_pc == 0)
4272 return;
4273
4274 const address_space *aspace = regcache->aspace ();
4275
4276 /* Find the location where (if we've hit a breakpoint) the
4277 breakpoint would be. */
4278 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4279
4280 /* If the target can't tell whether a software breakpoint triggered,
4281 fallback to figuring it out based on breakpoints we think were
4282 inserted in the target, and on whether the thread was stepped or
4283 continued. */
4284
4285 /* Check whether there actually is a software breakpoint inserted at
4286 that location.
4287
4288 If in non-stop mode, a race condition is possible where we've
4289 removed a breakpoint, but stop events for that breakpoint were
4290 already queued and arrive later. To suppress those spurious
4291 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4292 and retire them after a number of stop events are reported. Note
4293 this is an heuristic and can thus get confused. The real fix is
4294 to get the "stopped by SW BP and needs adjustment" info out of
4295 the target/kernel (and thus never reach here; see above). */
4296 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4297 || (target_is_non_stop_p ()
4298 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4299 {
4300 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4301
4302 if (record_full_is_used ())
4303 restore_operation_disable.emplace
4304 (record_full_gdb_operation_disable_set ());
4305
4306 /* When using hardware single-step, a SIGTRAP is reported for both
4307 a completed single-step and a software breakpoint. Need to
4308 differentiate between the two, as the latter needs adjusting
4309 but the former does not.
4310
4311 The SIGTRAP can be due to a completed hardware single-step only if
4312 - we didn't insert software single-step breakpoints
4313 - this thread is currently being stepped
4314
4315 If any of these events did not occur, we must have stopped due
4316 to hitting a software breakpoint, and have to back up to the
4317 breakpoint address.
4318
4319 As a special case, we could have hardware single-stepped a
4320 software breakpoint. In this case (prev_pc == breakpoint_pc),
4321 we also need to back up to the breakpoint address. */
4322
4323 if (thread_has_single_step_breakpoints_set (thread)
4324 || !currently_stepping (thread)
4325 || (thread->stepped_breakpoint
4326 && thread->prev_pc == breakpoint_pc))
4327 regcache_write_pc (regcache, breakpoint_pc);
4328 }
4329}
4330
4331static int
4332stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4333{
4334 for (frame = get_prev_frame (frame);
4335 frame != NULL;
4336 frame = get_prev_frame (frame))
4337 {
4338 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4339 return 1;
4340 if (get_frame_type (frame) != INLINE_FRAME)
4341 break;
4342 }
4343
4344 return 0;
4345}
4346
4347/* Look for an inline frame that is marked for skip.
4348 If PREV_FRAME is TRUE start at the previous frame,
4349 otherwise start at the current frame. Stop at the
4350 first non-inline frame, or at the frame where the
4351 step started. */
4352
4353static bool
4354inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4355{
4356 struct frame_info *frame = get_current_frame ();
4357
4358 if (prev_frame)
4359 frame = get_prev_frame (frame);
4360
4361 for (; frame != NULL; frame = get_prev_frame (frame))
4362 {
4363 const char *fn = NULL;
4364 symtab_and_line sal;
4365 struct symbol *sym;
4366
4367 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4368 break;
4369 if (get_frame_type (frame) != INLINE_FRAME)
4370 break;
4371
4372 sal = find_frame_sal (frame);
4373 sym = get_frame_function (frame);
4374
4375 if (sym != NULL)
4376 fn = sym->print_name ();
4377
4378 if (sal.line != 0
4379 && function_name_is_marked_for_skip (fn, sal))
4380 return true;
4381 }
4382
4383 return false;
4384}
4385
4386/* If the event thread has the stop requested flag set, pretend it
4387 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4388 target_stop). */
4389
4390static bool
4391handle_stop_requested (struct execution_control_state *ecs)
4392{
4393 if (ecs->event_thread->stop_requested)
4394 {
4395 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4396 ecs->ws.value.sig = GDB_SIGNAL_0;
4397 handle_signal_stop (ecs);
4398 return true;
4399 }
4400 return false;
4401}
4402
4403/* Auxiliary function that handles syscall entry/return events.
4404 It returns 1 if the inferior should keep going (and GDB
4405 should ignore the event), or 0 if the event deserves to be
4406 processed. */
4407
4408static int
4409handle_syscall_event (struct execution_control_state *ecs)
4410{
4411 struct regcache *regcache;
4412 int syscall_number;
4413
4414 context_switch (ecs);
4415
4416 regcache = get_thread_regcache (ecs->event_thread);
4417 syscall_number = ecs->ws.value.syscall_number;
4418 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4419
4420 if (catch_syscall_enabled () > 0
4421 && catching_syscall_number (syscall_number) > 0)
4422 {
4423 if (debug_infrun)
4424 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4425 syscall_number);
4426
4427 ecs->event_thread->control.stop_bpstat
4428 = bpstat_stop_status (regcache->aspace (),
4429 ecs->event_thread->suspend.stop_pc,
4430 ecs->event_thread, &ecs->ws);
4431
4432 if (handle_stop_requested (ecs))
4433 return 0;
4434
4435 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4436 {
4437 /* Catchpoint hit. */
4438 return 0;
4439 }
4440 }
4441
4442 if (handle_stop_requested (ecs))
4443 return 0;
4444
4445 /* If no catchpoint triggered for this, then keep going. */
4446 keep_going (ecs);
4447 return 1;
4448}
4449
4450/* Lazily fill in the execution_control_state's stop_func_* fields. */
4451
4452static void
4453fill_in_stop_func (struct gdbarch *gdbarch,
4454 struct execution_control_state *ecs)
4455{
4456 if (!ecs->stop_func_filled_in)
4457 {
4458 const block *block;
4459
4460 /* Don't care about return value; stop_func_start and stop_func_name
4461 will both be 0 if it doesn't work. */
4462 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4463 &ecs->stop_func_name,
4464 &ecs->stop_func_start,
4465 &ecs->stop_func_end,
4466 &block);
4467
4468 /* The call to find_pc_partial_function, above, will set
4469 stop_func_start and stop_func_end to the start and end
4470 of the range containing the stop pc. If this range
4471 contains the entry pc for the block (which is always the
4472 case for contiguous blocks), advance stop_func_start past
4473 the function's start offset and entrypoint. Note that
4474 stop_func_start is NOT advanced when in a range of a
4475 non-contiguous block that does not contain the entry pc. */
4476 if (block != nullptr
4477 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4478 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4479 {
4480 ecs->stop_func_start
4481 += gdbarch_deprecated_function_start_offset (gdbarch);
4482
4483 if (gdbarch_skip_entrypoint_p (gdbarch))
4484 ecs->stop_func_start
4485 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4486 }
4487
4488 ecs->stop_func_filled_in = 1;
4489 }
4490}
4491
4492
4493/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4494
4495static enum stop_kind
4496get_inferior_stop_soon (execution_control_state *ecs)
4497{
4498 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4499
4500 gdb_assert (inf != NULL);
4501 return inf->control.stop_soon;
4502}
4503
4504/* Poll for one event out of the current target. Store the resulting
4505 waitstatus in WS, and return the event ptid. Does not block. */
4506
4507static ptid_t
4508poll_one_curr_target (struct target_waitstatus *ws)
4509{
4510 ptid_t event_ptid;
4511
4512 overlay_cache_invalid = 1;
4513
4514 /* Flush target cache before starting to handle each event.
4515 Target was running and cache could be stale. This is just a
4516 heuristic. Running threads may modify target memory, but we
4517 don't get any event. */
4518 target_dcache_invalidate ();
4519
4520 if (deprecated_target_wait_hook)
4521 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4522 else
4523 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4524
4525 if (debug_infrun)
4526 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4527
4528 return event_ptid;
4529}
4530
4531/* An event reported by wait_one. */
4532
4533struct wait_one_event
4534{
4535 /* The target the event came out of. */
4536 process_stratum_target *target;
4537
4538 /* The PTID the event was for. */
4539 ptid_t ptid;
4540
4541 /* The waitstatus. */
4542 target_waitstatus ws;
4543};
4544
4545/* Wait for one event out of any target. */
4546
4547static wait_one_event
4548wait_one ()
4549{
4550 while (1)
4551 {
4552 for (inferior *inf : all_inferiors ())
4553 {
4554 process_stratum_target *target = inf->process_target ();
4555 if (target == NULL
4556 || !target->is_async_p ()
4557 || !target->threads_executing)
4558 continue;
4559
4560 switch_to_inferior_no_thread (inf);
4561
4562 wait_one_event event;
4563 event.target = target;
4564 event.ptid = poll_one_curr_target (&event.ws);
4565
4566 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4567 {
4568 /* If nothing is resumed, remove the target from the
4569 event loop. */
4570 target_async (0);
4571 }
4572 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4573 return event;
4574 }
4575
4576 /* Block waiting for some event. */
4577
4578 fd_set readfds;
4579 int nfds = 0;
4580
4581 FD_ZERO (&readfds);
4582
4583 for (inferior *inf : all_inferiors ())
4584 {
4585 process_stratum_target *target = inf->process_target ();
4586 if (target == NULL
4587 || !target->is_async_p ()
4588 || !target->threads_executing)
4589 continue;
4590
4591 int fd = target->async_wait_fd ();
4592 FD_SET (fd, &readfds);
4593 if (nfds <= fd)
4594 nfds = fd + 1;
4595 }
4596
4597 if (nfds == 0)
4598 {
4599 /* No waitable targets left. All must be stopped. */
4600 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4601 }
4602
4603 QUIT;
4604
4605 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4606 if (numfds < 0)
4607 {
4608 if (errno == EINTR)
4609 continue;
4610 else
4611 perror_with_name ("interruptible_select");
4612 }
4613 }
4614}
4615
4616/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4617 instead of the current thread. */
4618#define THREAD_STOPPED_BY(REASON) \
4619static int \
4620thread_stopped_by_ ## REASON (ptid_t ptid) \
4621{ \
4622 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4623 inferior_ptid = ptid; \
4624 \
4625 return target_stopped_by_ ## REASON (); \
4626}
4627
4628/* Generate thread_stopped_by_watchpoint. */
4629THREAD_STOPPED_BY (watchpoint)
4630/* Generate thread_stopped_by_sw_breakpoint. */
4631THREAD_STOPPED_BY (sw_breakpoint)
4632/* Generate thread_stopped_by_hw_breakpoint. */
4633THREAD_STOPPED_BY (hw_breakpoint)
4634
4635/* Save the thread's event and stop reason to process it later. */
4636
4637static void
4638save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4639{
4640 if (debug_infrun)
4641 {
4642 std::string statstr = target_waitstatus_to_string (ws);
4643
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: saving status %s for %d.%ld.%ld\n",
4646 statstr.c_str (),
4647 tp->ptid.pid (),
4648 tp->ptid.lwp (),
4649 tp->ptid.tid ());
4650 }
4651
4652 /* Record for later. */
4653 tp->suspend.waitstatus = *ws;
4654 tp->suspend.waitstatus_pending_p = 1;
4655
4656 struct regcache *regcache = get_thread_regcache (tp);
4657 const address_space *aspace = regcache->aspace ();
4658
4659 if (ws->kind == TARGET_WAITKIND_STOPPED
4660 && ws->value.sig == GDB_SIGNAL_TRAP)
4661 {
4662 CORE_ADDR pc = regcache_read_pc (regcache);
4663
4664 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4665
4666 if (thread_stopped_by_watchpoint (tp->ptid))
4667 {
4668 tp->suspend.stop_reason
4669 = TARGET_STOPPED_BY_WATCHPOINT;
4670 }
4671 else if (target_supports_stopped_by_sw_breakpoint ()
4672 && thread_stopped_by_sw_breakpoint (tp->ptid))
4673 {
4674 tp->suspend.stop_reason
4675 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4676 }
4677 else if (target_supports_stopped_by_hw_breakpoint ()
4678 && thread_stopped_by_hw_breakpoint (tp->ptid))
4679 {
4680 tp->suspend.stop_reason
4681 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4682 }
4683 else if (!target_supports_stopped_by_hw_breakpoint ()
4684 && hardware_breakpoint_inserted_here_p (aspace,
4685 pc))
4686 {
4687 tp->suspend.stop_reason
4688 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4689 }
4690 else if (!target_supports_stopped_by_sw_breakpoint ()
4691 && software_breakpoint_inserted_here_p (aspace,
4692 pc))
4693 {
4694 tp->suspend.stop_reason
4695 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4696 }
4697 else if (!thread_has_single_step_breakpoints_set (tp)
4698 && currently_stepping (tp))
4699 {
4700 tp->suspend.stop_reason
4701 = TARGET_STOPPED_BY_SINGLE_STEP;
4702 }
4703 }
4704}
4705
4706/* See infrun.h. */
4707
4708void
4709stop_all_threads (void)
4710{
4711 /* We may need multiple passes to discover all threads. */
4712 int pass;
4713 int iterations = 0;
4714
4715 gdb_assert (exists_non_stop_target ());
4716
4717 if (debug_infrun)
4718 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4719
4720 scoped_restore_current_thread restore_thread;
4721
4722 target_thread_events (1);
4723 SCOPE_EXIT { target_thread_events (0); };
4724
4725 /* Request threads to stop, and then wait for the stops. Because
4726 threads we already know about can spawn more threads while we're
4727 trying to stop them, and we only learn about new threads when we
4728 update the thread list, do this in a loop, and keep iterating
4729 until two passes find no threads that need to be stopped. */
4730 for (pass = 0; pass < 2; pass++, iterations++)
4731 {
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: stop_all_threads, pass=%d, "
4735 "iterations=%d\n", pass, iterations);
4736 while (1)
4737 {
4738 int need_wait = 0;
4739
4740 update_thread_list ();
4741
4742 /* Go through all threads looking for threads that we need
4743 to tell the target to stop. */
4744 for (thread_info *t : all_non_exited_threads ())
4745 {
4746 /* For a single-target setting with an all-stop target,
4747 we would not even arrive here. For a multi-target
4748 setting, until GDB is able to handle a mixture of
4749 all-stop and non-stop targets, simply skip all-stop
4750 targets' threads. This should be fine due to the
4751 protection of 'check_multi_target_resumption'. */
4752
4753 switch_to_thread_no_regs (t);
4754 if (!target_is_non_stop_p ())
4755 continue;
4756
4757 if (t->executing)
4758 {
4759 /* If already stopping, don't request a stop again.
4760 We just haven't seen the notification yet. */
4761 if (!t->stop_requested)
4762 {
4763 if (debug_infrun)
4764 fprintf_unfiltered (gdb_stdlog,
4765 "infrun: %s executing, "
4766 "need stop\n",
4767 target_pid_to_str (t->ptid).c_str ());
4768 target_stop (t->ptid);
4769 t->stop_requested = 1;
4770 }
4771 else
4772 {
4773 if (debug_infrun)
4774 fprintf_unfiltered (gdb_stdlog,
4775 "infrun: %s executing, "
4776 "already stopping\n",
4777 target_pid_to_str (t->ptid).c_str ());
4778 }
4779
4780 if (t->stop_requested)
4781 need_wait = 1;
4782 }
4783 else
4784 {
4785 if (debug_infrun)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "infrun: %s not executing\n",
4788 target_pid_to_str (t->ptid).c_str ());
4789
4790 /* The thread may be not executing, but still be
4791 resumed with a pending status to process. */
4792 t->resumed = false;
4793 }
4794 }
4795
4796 if (!need_wait)
4797 break;
4798
4799 /* If we find new threads on the second iteration, restart
4800 over. We want to see two iterations in a row with all
4801 threads stopped. */
4802 if (pass > 0)
4803 pass = -1;
4804
4805 wait_one_event event = wait_one ();
4806
4807 if (debug_infrun)
4808 {
4809 fprintf_unfiltered (gdb_stdlog,
4810 "infrun: stop_all_threads %s %s\n",
4811 target_waitstatus_to_string (&event.ws).c_str (),
4812 target_pid_to_str (event.ptid).c_str ());
4813 }
4814
4815 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4816 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4817 || event.ws.kind == TARGET_WAITKIND_EXITED
4818 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4819 {
4820 /* All resumed threads exited
4821 or one thread/process exited/signalled. */
4822 }
4823 else
4824 {
4825 thread_info *t = find_thread_ptid (event.target, event.ptid);
4826 if (t == NULL)
4827 t = add_thread (event.target, event.ptid);
4828
4829 t->stop_requested = 0;
4830 t->executing = 0;
4831 t->resumed = false;
4832 t->control.may_range_step = 0;
4833
4834 /* This may be the first time we see the inferior report
4835 a stop. */
4836 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4837 if (inf->needs_setup)
4838 {
4839 switch_to_thread_no_regs (t);
4840 setup_inferior (0);
4841 }
4842
4843 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4844 && event.ws.value.sig == GDB_SIGNAL_0)
4845 {
4846 /* We caught the event that we intended to catch, so
4847 there's no event pending. */
4848 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4849 t->suspend.waitstatus_pending_p = 0;
4850
4851 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4852 {
4853 /* Add it back to the step-over queue. */
4854 if (debug_infrun)
4855 {
4856 fprintf_unfiltered (gdb_stdlog,
4857 "infrun: displaced-step of %s "
4858 "canceled: adding back to the "
4859 "step-over queue\n",
4860 target_pid_to_str (t->ptid).c_str ());
4861 }
4862 t->control.trap_expected = 0;
4863 thread_step_over_chain_enqueue (t);
4864 }
4865 }
4866 else
4867 {
4868 enum gdb_signal sig;
4869 struct regcache *regcache;
4870
4871 if (debug_infrun)
4872 {
4873 std::string statstr = target_waitstatus_to_string (&event.ws);
4874
4875 fprintf_unfiltered (gdb_stdlog,
4876 "infrun: target_wait %s, saving "
4877 "status for %d.%ld.%ld\n",
4878 statstr.c_str (),
4879 t->ptid.pid (),
4880 t->ptid.lwp (),
4881 t->ptid.tid ());
4882 }
4883
4884 /* Record for later. */
4885 save_waitstatus (t, &event.ws);
4886
4887 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4888 ? event.ws.value.sig : GDB_SIGNAL_0);
4889
4890 if (displaced_step_fixup (t, sig) < 0)
4891 {
4892 /* Add it back to the step-over queue. */
4893 t->control.trap_expected = 0;
4894 thread_step_over_chain_enqueue (t);
4895 }
4896
4897 regcache = get_thread_regcache (t);
4898 t->suspend.stop_pc = regcache_read_pc (regcache);
4899
4900 if (debug_infrun)
4901 {
4902 fprintf_unfiltered (gdb_stdlog,
4903 "infrun: saved stop_pc=%s for %s "
4904 "(currently_stepping=%d)\n",
4905 paddress (target_gdbarch (),
4906 t->suspend.stop_pc),
4907 target_pid_to_str (t->ptid).c_str (),
4908 currently_stepping (t));
4909 }
4910 }
4911 }
4912 }
4913 }
4914
4915 if (debug_infrun)
4916 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4917}
4918
4919/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4920
4921static int
4922handle_no_resumed (struct execution_control_state *ecs)
4923{
4924 if (target_can_async_p ())
4925 {
4926 struct ui *ui;
4927 int any_sync = 0;
4928
4929 ALL_UIS (ui)
4930 {
4931 if (ui->prompt_state == PROMPT_BLOCKED)
4932 {
4933 any_sync = 1;
4934 break;
4935 }
4936 }
4937 if (!any_sync)
4938 {
4939 /* There were no unwaited-for children left in the target, but,
4940 we're not synchronously waiting for events either. Just
4941 ignore. */
4942
4943 if (debug_infrun)
4944 fprintf_unfiltered (gdb_stdlog,
4945 "infrun: TARGET_WAITKIND_NO_RESUMED "
4946 "(ignoring: bg)\n");
4947 prepare_to_wait (ecs);
4948 return 1;
4949 }
4950 }
4951
4952 /* Otherwise, if we were running a synchronous execution command, we
4953 may need to cancel it and give the user back the terminal.
4954
4955 In non-stop mode, the target can't tell whether we've already
4956 consumed previous stop events, so it can end up sending us a
4957 no-resumed event like so:
4958
4959 #0 - thread 1 is left stopped
4960
4961 #1 - thread 2 is resumed and hits breakpoint
4962 -> TARGET_WAITKIND_STOPPED
4963
4964 #2 - thread 3 is resumed and exits
4965 this is the last resumed thread, so
4966 -> TARGET_WAITKIND_NO_RESUMED
4967
4968 #3 - gdb processes stop for thread 2 and decides to re-resume
4969 it.
4970
4971 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4972 thread 2 is now resumed, so the event should be ignored.
4973
4974 IOW, if the stop for thread 2 doesn't end a foreground command,
4975 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4976 event. But it could be that the event meant that thread 2 itself
4977 (or whatever other thread was the last resumed thread) exited.
4978
4979 To address this we refresh the thread list and check whether we
4980 have resumed threads _now_. In the example above, this removes
4981 thread 3 from the thread list. If thread 2 was re-resumed, we
4982 ignore this event. If we find no thread resumed, then we cancel
4983 the synchronous command show "no unwaited-for " to the user. */
4984 update_thread_list ();
4985
4986 for (thread_info *thread : all_non_exited_threads (ecs->target))
4987 {
4988 if (thread->executing
4989 || thread->suspend.waitstatus_pending_p)
4990 {
4991 /* There were no unwaited-for children left in the target at
4992 some point, but there are now. Just ignore. */
4993 if (debug_infrun)
4994 fprintf_unfiltered (gdb_stdlog,
4995 "infrun: TARGET_WAITKIND_NO_RESUMED "
4996 "(ignoring: found resumed)\n");
4997 prepare_to_wait (ecs);
4998 return 1;
4999 }
5000 }
5001
5002 /* Note however that we may find no resumed thread because the whole
5003 process exited meanwhile (thus updating the thread list results
5004 in an empty thread list). In this case we know we'll be getting
5005 a process exit event shortly. */
5006 for (inferior *inf : all_non_exited_inferiors (ecs->target))
5007 {
5008 thread_info *thread = any_live_thread_of_inferior (inf);
5009 if (thread == NULL)
5010 {
5011 if (debug_infrun)
5012 fprintf_unfiltered (gdb_stdlog,
5013 "infrun: TARGET_WAITKIND_NO_RESUMED "
5014 "(expect process exit)\n");
5015 prepare_to_wait (ecs);
5016 return 1;
5017 }
5018 }
5019
5020 /* Go ahead and report the event. */
5021 return 0;
5022}
5023
5024/* Given an execution control state that has been freshly filled in by
5025 an event from the inferior, figure out what it means and take
5026 appropriate action.
5027
5028 The alternatives are:
5029
5030 1) stop_waiting and return; to really stop and return to the
5031 debugger.
5032
5033 2) keep_going and return; to wait for the next event (set
5034 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5035 once). */
5036
5037static void
5038handle_inferior_event (struct execution_control_state *ecs)
5039{
5040 /* Make sure that all temporary struct value objects that were
5041 created during the handling of the event get deleted at the
5042 end. */
5043 scoped_value_mark free_values;
5044
5045 enum stop_kind stop_soon;
5046
5047 if (debug_infrun)
5048 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5049 target_waitstatus_to_string (&ecs->ws).c_str ());
5050
5051 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5052 {
5053 /* We had an event in the inferior, but we are not interested in
5054 handling it at this level. The lower layers have already
5055 done what needs to be done, if anything.
5056
5057 One of the possible circumstances for this is when the
5058 inferior produces output for the console. The inferior has
5059 not stopped, and we are ignoring the event. Another possible
5060 circumstance is any event which the lower level knows will be
5061 reported multiple times without an intervening resume. */
5062 prepare_to_wait (ecs);
5063 return;
5064 }
5065
5066 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5067 {
5068 prepare_to_wait (ecs);
5069 return;
5070 }
5071
5072 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5073 && handle_no_resumed (ecs))
5074 return;
5075
5076 /* Cache the last target/ptid/waitstatus. */
5077 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5078
5079 /* Always clear state belonging to the previous time we stopped. */
5080 stop_stack_dummy = STOP_NONE;
5081
5082 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5083 {
5084 /* No unwaited-for children left. IOW, all resumed children
5085 have exited. */
5086 stop_print_frame = 0;
5087 stop_waiting (ecs);
5088 return;
5089 }
5090
5091 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5092 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5093 {
5094 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5095 /* If it's a new thread, add it to the thread database. */
5096 if (ecs->event_thread == NULL)
5097 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5098
5099 /* Disable range stepping. If the next step request could use a
5100 range, this will be end up re-enabled then. */
5101 ecs->event_thread->control.may_range_step = 0;
5102 }
5103
5104 /* Dependent on valid ECS->EVENT_THREAD. */
5105 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5106
5107 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5108 reinit_frame_cache ();
5109
5110 breakpoint_retire_moribund ();
5111
5112 /* First, distinguish signals caused by the debugger from signals
5113 that have to do with the program's own actions. Note that
5114 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5115 on the operating system version. Here we detect when a SIGILL or
5116 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5117 something similar for SIGSEGV, since a SIGSEGV will be generated
5118 when we're trying to execute a breakpoint instruction on a
5119 non-executable stack. This happens for call dummy breakpoints
5120 for architectures like SPARC that place call dummies on the
5121 stack. */
5122 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5123 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5124 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5125 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5126 {
5127 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5128
5129 if (breakpoint_inserted_here_p (regcache->aspace (),
5130 regcache_read_pc (regcache)))
5131 {
5132 if (debug_infrun)
5133 fprintf_unfiltered (gdb_stdlog,
5134 "infrun: Treating signal as SIGTRAP\n");
5135 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5136 }
5137 }
5138
5139 /* Mark the non-executing threads accordingly. In all-stop, all
5140 threads of all processes are stopped when we get any event
5141 reported. In non-stop mode, only the event thread stops. */
5142 {
5143 ptid_t mark_ptid;
5144
5145 if (!target_is_non_stop_p ())
5146 mark_ptid = minus_one_ptid;
5147 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5148 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5149 {
5150 /* If we're handling a process exit in non-stop mode, even
5151 though threads haven't been deleted yet, one would think
5152 that there is nothing to do, as threads of the dead process
5153 will be soon deleted, and threads of any other process were
5154 left running. However, on some targets, threads survive a
5155 process exit event. E.g., for the "checkpoint" command,
5156 when the current checkpoint/fork exits, linux-fork.c
5157 automatically switches to another fork from within
5158 target_mourn_inferior, by associating the same
5159 inferior/thread to another fork. We haven't mourned yet at
5160 this point, but we must mark any threads left in the
5161 process as not-executing so that finish_thread_state marks
5162 them stopped (in the user's perspective) if/when we present
5163 the stop to the user. */
5164 mark_ptid = ptid_t (ecs->ptid.pid ());
5165 }
5166 else
5167 mark_ptid = ecs->ptid;
5168
5169 set_executing (ecs->target, mark_ptid, false);
5170
5171 /* Likewise the resumed flag. */
5172 set_resumed (ecs->target, mark_ptid, false);
5173 }
5174
5175 switch (ecs->ws.kind)
5176 {
5177 case TARGET_WAITKIND_LOADED:
5178 context_switch (ecs);
5179 /* Ignore gracefully during startup of the inferior, as it might
5180 be the shell which has just loaded some objects, otherwise
5181 add the symbols for the newly loaded objects. Also ignore at
5182 the beginning of an attach or remote session; we will query
5183 the full list of libraries once the connection is
5184 established. */
5185
5186 stop_soon = get_inferior_stop_soon (ecs);
5187 if (stop_soon == NO_STOP_QUIETLY)
5188 {
5189 struct regcache *regcache;
5190
5191 regcache = get_thread_regcache (ecs->event_thread);
5192
5193 handle_solib_event ();
5194
5195 ecs->event_thread->control.stop_bpstat
5196 = bpstat_stop_status (regcache->aspace (),
5197 ecs->event_thread->suspend.stop_pc,
5198 ecs->event_thread, &ecs->ws);
5199
5200 if (handle_stop_requested (ecs))
5201 return;
5202
5203 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5204 {
5205 /* A catchpoint triggered. */
5206 process_event_stop_test (ecs);
5207 return;
5208 }
5209
5210 /* If requested, stop when the dynamic linker notifies
5211 gdb of events. This allows the user to get control
5212 and place breakpoints in initializer routines for
5213 dynamically loaded objects (among other things). */
5214 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5215 if (stop_on_solib_events)
5216 {
5217 /* Make sure we print "Stopped due to solib-event" in
5218 normal_stop. */
5219 stop_print_frame = 1;
5220
5221 stop_waiting (ecs);
5222 return;
5223 }
5224 }
5225
5226 /* If we are skipping through a shell, or through shared library
5227 loading that we aren't interested in, resume the program. If
5228 we're running the program normally, also resume. */
5229 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5230 {
5231 /* Loading of shared libraries might have changed breakpoint
5232 addresses. Make sure new breakpoints are inserted. */
5233 if (stop_soon == NO_STOP_QUIETLY)
5234 insert_breakpoints ();
5235 resume (GDB_SIGNAL_0);
5236 prepare_to_wait (ecs);
5237 return;
5238 }
5239
5240 /* But stop if we're attaching or setting up a remote
5241 connection. */
5242 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5243 || stop_soon == STOP_QUIETLY_REMOTE)
5244 {
5245 if (debug_infrun)
5246 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5247 stop_waiting (ecs);
5248 return;
5249 }
5250
5251 internal_error (__FILE__, __LINE__,
5252 _("unhandled stop_soon: %d"), (int) stop_soon);
5253
5254 case TARGET_WAITKIND_SPURIOUS:
5255 if (handle_stop_requested (ecs))
5256 return;
5257 context_switch (ecs);
5258 resume (GDB_SIGNAL_0);
5259 prepare_to_wait (ecs);
5260 return;
5261
5262 case TARGET_WAITKIND_THREAD_CREATED:
5263 if (handle_stop_requested (ecs))
5264 return;
5265 context_switch (ecs);
5266 if (!switch_back_to_stepped_thread (ecs))
5267 keep_going (ecs);
5268 return;
5269
5270 case TARGET_WAITKIND_EXITED:
5271 case TARGET_WAITKIND_SIGNALLED:
5272 inferior_ptid = ecs->ptid;
5273 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5274 set_current_program_space (current_inferior ()->pspace);
5275 handle_vfork_child_exec_or_exit (0);
5276 target_terminal::ours (); /* Must do this before mourn anyway. */
5277
5278 /* Clearing any previous state of convenience variables. */
5279 clear_exit_convenience_vars ();
5280
5281 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5282 {
5283 /* Record the exit code in the convenience variable $_exitcode, so
5284 that the user can inspect this again later. */
5285 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5286 (LONGEST) ecs->ws.value.integer);
5287
5288 /* Also record this in the inferior itself. */
5289 current_inferior ()->has_exit_code = 1;
5290 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5291
5292 /* Support the --return-child-result option. */
5293 return_child_result_value = ecs->ws.value.integer;
5294
5295 gdb::observers::exited.notify (ecs->ws.value.integer);
5296 }
5297 else
5298 {
5299 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5300
5301 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5302 {
5303 /* Set the value of the internal variable $_exitsignal,
5304 which holds the signal uncaught by the inferior. */
5305 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5306 gdbarch_gdb_signal_to_target (gdbarch,
5307 ecs->ws.value.sig));
5308 }
5309 else
5310 {
5311 /* We don't have access to the target's method used for
5312 converting between signal numbers (GDB's internal
5313 representation <-> target's representation).
5314 Therefore, we cannot do a good job at displaying this
5315 information to the user. It's better to just warn
5316 her about it (if infrun debugging is enabled), and
5317 give up. */
5318 if (debug_infrun)
5319 fprintf_filtered (gdb_stdlog, _("\
5320Cannot fill $_exitsignal with the correct signal number.\n"));
5321 }
5322
5323 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5324 }
5325
5326 gdb_flush (gdb_stdout);
5327 target_mourn_inferior (inferior_ptid);
5328 stop_print_frame = 0;
5329 stop_waiting (ecs);
5330 return;
5331
5332 case TARGET_WAITKIND_FORKED:
5333 case TARGET_WAITKIND_VFORKED:
5334 /* Check whether the inferior is displaced stepping. */
5335 {
5336 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5337 struct gdbarch *gdbarch = regcache->arch ();
5338
5339 /* If checking displaced stepping is supported, and thread
5340 ecs->ptid is displaced stepping. */
5341 if (displaced_step_in_progress_thread (ecs->event_thread))
5342 {
5343 struct inferior *parent_inf
5344 = find_inferior_ptid (ecs->target, ecs->ptid);
5345 struct regcache *child_regcache;
5346 CORE_ADDR parent_pc;
5347
5348 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5349 {
5350 struct displaced_step_inferior_state *displaced
5351 = get_displaced_stepping_state (parent_inf);
5352
5353 /* Restore scratch pad for child process. */
5354 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5355 }
5356
5357 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5358 indicating that the displaced stepping of syscall instruction
5359 has been done. Perform cleanup for parent process here. Note
5360 that this operation also cleans up the child process for vfork,
5361 because their pages are shared. */
5362 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5363 /* Start a new step-over in another thread if there's one
5364 that needs it. */
5365 start_step_over ();
5366
5367 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5368 the child's PC is also within the scratchpad. Set the child's PC
5369 to the parent's PC value, which has already been fixed up.
5370 FIXME: we use the parent's aspace here, although we're touching
5371 the child, because the child hasn't been added to the inferior
5372 list yet at this point. */
5373
5374 child_regcache
5375 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5376 ecs->ws.value.related_pid,
5377 gdbarch,
5378 parent_inf->aspace);
5379 /* Read PC value of parent process. */
5380 parent_pc = regcache_read_pc (regcache);
5381
5382 if (debug_displaced)
5383 fprintf_unfiltered (gdb_stdlog,
5384 "displaced: write child pc from %s to %s\n",
5385 paddress (gdbarch,
5386 regcache_read_pc (child_regcache)),
5387 paddress (gdbarch, parent_pc));
5388
5389 regcache_write_pc (child_regcache, parent_pc);
5390 }
5391 }
5392
5393 context_switch (ecs);
5394
5395 /* Immediately detach breakpoints from the child before there's
5396 any chance of letting the user delete breakpoints from the
5397 breakpoint lists. If we don't do this early, it's easy to
5398 leave left over traps in the child, vis: "break foo; catch
5399 fork; c; <fork>; del; c; <child calls foo>". We only follow
5400 the fork on the last `continue', and by that time the
5401 breakpoint at "foo" is long gone from the breakpoint table.
5402 If we vforked, then we don't need to unpatch here, since both
5403 parent and child are sharing the same memory pages; we'll
5404 need to unpatch at follow/detach time instead to be certain
5405 that new breakpoints added between catchpoint hit time and
5406 vfork follow are detached. */
5407 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5408 {
5409 /* This won't actually modify the breakpoint list, but will
5410 physically remove the breakpoints from the child. */
5411 detach_breakpoints (ecs->ws.value.related_pid);
5412 }
5413
5414 delete_just_stopped_threads_single_step_breakpoints ();
5415
5416 /* In case the event is caught by a catchpoint, remember that
5417 the event is to be followed at the next resume of the thread,
5418 and not immediately. */
5419 ecs->event_thread->pending_follow = ecs->ws;
5420
5421 ecs->event_thread->suspend.stop_pc
5422 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5423
5424 ecs->event_thread->control.stop_bpstat
5425 = bpstat_stop_status (get_current_regcache ()->aspace (),
5426 ecs->event_thread->suspend.stop_pc,
5427 ecs->event_thread, &ecs->ws);
5428
5429 if (handle_stop_requested (ecs))
5430 return;
5431
5432 /* If no catchpoint triggered for this, then keep going. Note
5433 that we're interested in knowing the bpstat actually causes a
5434 stop, not just if it may explain the signal. Software
5435 watchpoints, for example, always appear in the bpstat. */
5436 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5437 {
5438 bool follow_child
5439 = (follow_fork_mode_string == follow_fork_mode_child);
5440
5441 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5442
5443 process_stratum_target *targ
5444 = ecs->event_thread->inf->process_target ();
5445
5446 bool should_resume = follow_fork ();
5447
5448 /* Note that one of these may be an invalid pointer,
5449 depending on detach_fork. */
5450 thread_info *parent = ecs->event_thread;
5451 thread_info *child
5452 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5453
5454 /* At this point, the parent is marked running, and the
5455 child is marked stopped. */
5456
5457 /* If not resuming the parent, mark it stopped. */
5458 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5459 parent->set_running (false);
5460
5461 /* If resuming the child, mark it running. */
5462 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5463 child->set_running (true);
5464
5465 /* In non-stop mode, also resume the other branch. */
5466 if (!detach_fork && (non_stop
5467 || (sched_multi && target_is_non_stop_p ())))
5468 {
5469 if (follow_child)
5470 switch_to_thread (parent);
5471 else
5472 switch_to_thread (child);
5473
5474 ecs->event_thread = inferior_thread ();
5475 ecs->ptid = inferior_ptid;
5476 keep_going (ecs);
5477 }
5478
5479 if (follow_child)
5480 switch_to_thread (child);
5481 else
5482 switch_to_thread (parent);
5483
5484 ecs->event_thread = inferior_thread ();
5485 ecs->ptid = inferior_ptid;
5486
5487 if (should_resume)
5488 keep_going (ecs);
5489 else
5490 stop_waiting (ecs);
5491 return;
5492 }
5493 process_event_stop_test (ecs);
5494 return;
5495
5496 case TARGET_WAITKIND_VFORK_DONE:
5497 /* Done with the shared memory region. Re-insert breakpoints in
5498 the parent, and keep going. */
5499
5500 context_switch (ecs);
5501
5502 current_inferior ()->waiting_for_vfork_done = 0;
5503 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5504
5505 if (handle_stop_requested (ecs))
5506 return;
5507
5508 /* This also takes care of reinserting breakpoints in the
5509 previously locked inferior. */
5510 keep_going (ecs);
5511 return;
5512
5513 case TARGET_WAITKIND_EXECD:
5514
5515 /* Note we can't read registers yet (the stop_pc), because we
5516 don't yet know the inferior's post-exec architecture.
5517 'stop_pc' is explicitly read below instead. */
5518 switch_to_thread_no_regs (ecs->event_thread);
5519
5520 /* Do whatever is necessary to the parent branch of the vfork. */
5521 handle_vfork_child_exec_or_exit (1);
5522
5523 /* This causes the eventpoints and symbol table to be reset.
5524 Must do this now, before trying to determine whether to
5525 stop. */
5526 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5527
5528 /* In follow_exec we may have deleted the original thread and
5529 created a new one. Make sure that the event thread is the
5530 execd thread for that case (this is a nop otherwise). */
5531 ecs->event_thread = inferior_thread ();
5532
5533 ecs->event_thread->suspend.stop_pc
5534 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5535
5536 ecs->event_thread->control.stop_bpstat
5537 = bpstat_stop_status (get_current_regcache ()->aspace (),
5538 ecs->event_thread->suspend.stop_pc,
5539 ecs->event_thread, &ecs->ws);
5540
5541 /* Note that this may be referenced from inside
5542 bpstat_stop_status above, through inferior_has_execd. */
5543 xfree (ecs->ws.value.execd_pathname);
5544 ecs->ws.value.execd_pathname = NULL;
5545
5546 if (handle_stop_requested (ecs))
5547 return;
5548
5549 /* If no catchpoint triggered for this, then keep going. */
5550 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5551 {
5552 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5553 keep_going (ecs);
5554 return;
5555 }
5556 process_event_stop_test (ecs);
5557 return;
5558
5559 /* Be careful not to try to gather much state about a thread
5560 that's in a syscall. It's frequently a losing proposition. */
5561 case TARGET_WAITKIND_SYSCALL_ENTRY:
5562 /* Getting the current syscall number. */
5563 if (handle_syscall_event (ecs) == 0)
5564 process_event_stop_test (ecs);
5565 return;
5566
5567 /* Before examining the threads further, step this thread to
5568 get it entirely out of the syscall. (We get notice of the
5569 event when the thread is just on the verge of exiting a
5570 syscall. Stepping one instruction seems to get it back
5571 into user code.) */
5572 case TARGET_WAITKIND_SYSCALL_RETURN:
5573 if (handle_syscall_event (ecs) == 0)
5574 process_event_stop_test (ecs);
5575 return;
5576
5577 case TARGET_WAITKIND_STOPPED:
5578 handle_signal_stop (ecs);
5579 return;
5580
5581 case TARGET_WAITKIND_NO_HISTORY:
5582 /* Reverse execution: target ran out of history info. */
5583
5584 /* Switch to the stopped thread. */
5585 context_switch (ecs);
5586 if (debug_infrun)
5587 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5588
5589 delete_just_stopped_threads_single_step_breakpoints ();
5590 ecs->event_thread->suspend.stop_pc
5591 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5592
5593 if (handle_stop_requested (ecs))
5594 return;
5595
5596 gdb::observers::no_history.notify ();
5597 stop_waiting (ecs);
5598 return;
5599 }
5600}
5601
5602/* Restart threads back to what they were trying to do back when we
5603 paused them for an in-line step-over. The EVENT_THREAD thread is
5604 ignored. */
5605
5606static void
5607restart_threads (struct thread_info *event_thread)
5608{
5609 /* In case the instruction just stepped spawned a new thread. */
5610 update_thread_list ();
5611
5612 for (thread_info *tp : all_non_exited_threads ())
5613 {
5614 switch_to_thread_no_regs (tp);
5615
5616 if (tp == event_thread)
5617 {
5618 if (debug_infrun)
5619 fprintf_unfiltered (gdb_stdlog,
5620 "infrun: restart threads: "
5621 "[%s] is event thread\n",
5622 target_pid_to_str (tp->ptid).c_str ());
5623 continue;
5624 }
5625
5626 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5627 {
5628 if (debug_infrun)
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: restart threads: "
5631 "[%s] not meant to be running\n",
5632 target_pid_to_str (tp->ptid).c_str ());
5633 continue;
5634 }
5635
5636 if (tp->resumed)
5637 {
5638 if (debug_infrun)
5639 fprintf_unfiltered (gdb_stdlog,
5640 "infrun: restart threads: [%s] resumed\n",
5641 target_pid_to_str (tp->ptid).c_str ());
5642 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5643 continue;
5644 }
5645
5646 if (thread_is_in_step_over_chain (tp))
5647 {
5648 if (debug_infrun)
5649 fprintf_unfiltered (gdb_stdlog,
5650 "infrun: restart threads: "
5651 "[%s] needs step-over\n",
5652 target_pid_to_str (tp->ptid).c_str ());
5653 gdb_assert (!tp->resumed);
5654 continue;
5655 }
5656
5657
5658 if (tp->suspend.waitstatus_pending_p)
5659 {
5660 if (debug_infrun)
5661 fprintf_unfiltered (gdb_stdlog,
5662 "infrun: restart threads: "
5663 "[%s] has pending status\n",
5664 target_pid_to_str (tp->ptid).c_str ());
5665 tp->resumed = true;
5666 continue;
5667 }
5668
5669 gdb_assert (!tp->stop_requested);
5670
5671 /* If some thread needs to start a step-over at this point, it
5672 should still be in the step-over queue, and thus skipped
5673 above. */
5674 if (thread_still_needs_step_over (tp))
5675 {
5676 internal_error (__FILE__, __LINE__,
5677 "thread [%s] needs a step-over, but not in "
5678 "step-over queue\n",
5679 target_pid_to_str (tp->ptid).c_str ());
5680 }
5681
5682 if (currently_stepping (tp))
5683 {
5684 if (debug_infrun)
5685 fprintf_unfiltered (gdb_stdlog,
5686 "infrun: restart threads: [%s] was stepping\n",
5687 target_pid_to_str (tp->ptid).c_str ());
5688 keep_going_stepped_thread (tp);
5689 }
5690 else
5691 {
5692 struct execution_control_state ecss;
5693 struct execution_control_state *ecs = &ecss;
5694
5695 if (debug_infrun)
5696 fprintf_unfiltered (gdb_stdlog,
5697 "infrun: restart threads: [%s] continuing\n",
5698 target_pid_to_str (tp->ptid).c_str ());
5699 reset_ecs (ecs, tp);
5700 switch_to_thread (tp);
5701 keep_going_pass_signal (ecs);
5702 }
5703 }
5704}
5705
5706/* Callback for iterate_over_threads. Find a resumed thread that has
5707 a pending waitstatus. */
5708
5709static int
5710resumed_thread_with_pending_status (struct thread_info *tp,
5711 void *arg)
5712{
5713 return (tp->resumed
5714 && tp->suspend.waitstatus_pending_p);
5715}
5716
5717/* Called when we get an event that may finish an in-line or
5718 out-of-line (displaced stepping) step-over started previously.
5719 Return true if the event is processed and we should go back to the
5720 event loop; false if the caller should continue processing the
5721 event. */
5722
5723static int
5724finish_step_over (struct execution_control_state *ecs)
5725{
5726 int had_step_over_info;
5727
5728 displaced_step_fixup (ecs->event_thread,
5729 ecs->event_thread->suspend.stop_signal);
5730
5731 had_step_over_info = step_over_info_valid_p ();
5732
5733 if (had_step_over_info)
5734 {
5735 /* If we're stepping over a breakpoint with all threads locked,
5736 then only the thread that was stepped should be reporting
5737 back an event. */
5738 gdb_assert (ecs->event_thread->control.trap_expected);
5739
5740 clear_step_over_info ();
5741 }
5742
5743 if (!target_is_non_stop_p ())
5744 return 0;
5745
5746 /* Start a new step-over in another thread if there's one that
5747 needs it. */
5748 start_step_over ();
5749
5750 /* If we were stepping over a breakpoint before, and haven't started
5751 a new in-line step-over sequence, then restart all other threads
5752 (except the event thread). We can't do this in all-stop, as then
5753 e.g., we wouldn't be able to issue any other remote packet until
5754 these other threads stop. */
5755 if (had_step_over_info && !step_over_info_valid_p ())
5756 {
5757 struct thread_info *pending;
5758
5759 /* If we only have threads with pending statuses, the restart
5760 below won't restart any thread and so nothing re-inserts the
5761 breakpoint we just stepped over. But we need it inserted
5762 when we later process the pending events, otherwise if
5763 another thread has a pending event for this breakpoint too,
5764 we'd discard its event (because the breakpoint that
5765 originally caused the event was no longer inserted). */
5766 context_switch (ecs);
5767 insert_breakpoints ();
5768
5769 restart_threads (ecs->event_thread);
5770
5771 /* If we have events pending, go through handle_inferior_event
5772 again, picking up a pending event at random. This avoids
5773 thread starvation. */
5774
5775 /* But not if we just stepped over a watchpoint in order to let
5776 the instruction execute so we can evaluate its expression.
5777 The set of watchpoints that triggered is recorded in the
5778 breakpoint objects themselves (see bp->watchpoint_triggered).
5779 If we processed another event first, that other event could
5780 clobber this info. */
5781 if (ecs->event_thread->stepping_over_watchpoint)
5782 return 0;
5783
5784 pending = iterate_over_threads (resumed_thread_with_pending_status,
5785 NULL);
5786 if (pending != NULL)
5787 {
5788 struct thread_info *tp = ecs->event_thread;
5789 struct regcache *regcache;
5790
5791 if (debug_infrun)
5792 {
5793 fprintf_unfiltered (gdb_stdlog,
5794 "infrun: found resumed threads with "
5795 "pending events, saving status\n");
5796 }
5797
5798 gdb_assert (pending != tp);
5799
5800 /* Record the event thread's event for later. */
5801 save_waitstatus (tp, &ecs->ws);
5802 /* This was cleared early, by handle_inferior_event. Set it
5803 so this pending event is considered by
5804 do_target_wait. */
5805 tp->resumed = true;
5806
5807 gdb_assert (!tp->executing);
5808
5809 regcache = get_thread_regcache (tp);
5810 tp->suspend.stop_pc = regcache_read_pc (regcache);
5811
5812 if (debug_infrun)
5813 {
5814 fprintf_unfiltered (gdb_stdlog,
5815 "infrun: saved stop_pc=%s for %s "
5816 "(currently_stepping=%d)\n",
5817 paddress (target_gdbarch (),
5818 tp->suspend.stop_pc),
5819 target_pid_to_str (tp->ptid).c_str (),
5820 currently_stepping (tp));
5821 }
5822
5823 /* This in-line step-over finished; clear this so we won't
5824 start a new one. This is what handle_signal_stop would
5825 do, if we returned false. */
5826 tp->stepping_over_breakpoint = 0;
5827
5828 /* Wake up the event loop again. */
5829 mark_async_event_handler (infrun_async_inferior_event_token);
5830
5831 prepare_to_wait (ecs);
5832 return 1;
5833 }
5834 }
5835
5836 return 0;
5837}
5838
5839/* Come here when the program has stopped with a signal. */
5840
5841static void
5842handle_signal_stop (struct execution_control_state *ecs)
5843{
5844 struct frame_info *frame;
5845 struct gdbarch *gdbarch;
5846 int stopped_by_watchpoint;
5847 enum stop_kind stop_soon;
5848 int random_signal;
5849
5850 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5851
5852 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5853
5854 /* Do we need to clean up the state of a thread that has
5855 completed a displaced single-step? (Doing so usually affects
5856 the PC, so do it here, before we set stop_pc.) */
5857 if (finish_step_over (ecs))
5858 return;
5859
5860 /* If we either finished a single-step or hit a breakpoint, but
5861 the user wanted this thread to be stopped, pretend we got a
5862 SIG0 (generic unsignaled stop). */
5863 if (ecs->event_thread->stop_requested
5864 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5865 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5866
5867 ecs->event_thread->suspend.stop_pc
5868 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5869
5870 if (debug_infrun)
5871 {
5872 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5873 struct gdbarch *reg_gdbarch = regcache->arch ();
5874
5875 switch_to_thread (ecs->event_thread);
5876
5877 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5878 paddress (reg_gdbarch,
5879 ecs->event_thread->suspend.stop_pc));
5880 if (target_stopped_by_watchpoint ())
5881 {
5882 CORE_ADDR addr;
5883
5884 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5885
5886 if (target_stopped_data_address (current_top_target (), &addr))
5887 fprintf_unfiltered (gdb_stdlog,
5888 "infrun: stopped data address = %s\n",
5889 paddress (reg_gdbarch, addr));
5890 else
5891 fprintf_unfiltered (gdb_stdlog,
5892 "infrun: (no data address available)\n");
5893 }
5894 }
5895
5896 /* This is originated from start_remote(), start_inferior() and
5897 shared libraries hook functions. */
5898 stop_soon = get_inferior_stop_soon (ecs);
5899 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5900 {
5901 context_switch (ecs);
5902 if (debug_infrun)
5903 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5904 stop_print_frame = 1;
5905 stop_waiting (ecs);
5906 return;
5907 }
5908
5909 /* This originates from attach_command(). We need to overwrite
5910 the stop_signal here, because some kernels don't ignore a
5911 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5912 See more comments in inferior.h. On the other hand, if we
5913 get a non-SIGSTOP, report it to the user - assume the backend
5914 will handle the SIGSTOP if it should show up later.
5915
5916 Also consider that the attach is complete when we see a
5917 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5918 target extended-remote report it instead of a SIGSTOP
5919 (e.g. gdbserver). We already rely on SIGTRAP being our
5920 signal, so this is no exception.
5921
5922 Also consider that the attach is complete when we see a
5923 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5924 the target to stop all threads of the inferior, in case the
5925 low level attach operation doesn't stop them implicitly. If
5926 they weren't stopped implicitly, then the stub will report a
5927 GDB_SIGNAL_0, meaning: stopped for no particular reason
5928 other than GDB's request. */
5929 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5930 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5931 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5932 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5933 {
5934 stop_print_frame = 1;
5935 stop_waiting (ecs);
5936 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5937 return;
5938 }
5939
5940 /* See if something interesting happened to the non-current thread. If
5941 so, then switch to that thread. */
5942 if (ecs->ptid != inferior_ptid)
5943 {
5944 if (debug_infrun)
5945 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5946
5947 context_switch (ecs);
5948
5949 if (deprecated_context_hook)
5950 deprecated_context_hook (ecs->event_thread->global_num);
5951 }
5952
5953 /* At this point, get hold of the now-current thread's frame. */
5954 frame = get_current_frame ();
5955 gdbarch = get_frame_arch (frame);
5956
5957 /* Pull the single step breakpoints out of the target. */
5958 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5959 {
5960 struct regcache *regcache;
5961 CORE_ADDR pc;
5962
5963 regcache = get_thread_regcache (ecs->event_thread);
5964 const address_space *aspace = regcache->aspace ();
5965
5966 pc = regcache_read_pc (regcache);
5967
5968 /* However, before doing so, if this single-step breakpoint was
5969 actually for another thread, set this thread up for moving
5970 past it. */
5971 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5972 aspace, pc))
5973 {
5974 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5975 {
5976 if (debug_infrun)
5977 {
5978 fprintf_unfiltered (gdb_stdlog,
5979 "infrun: [%s] hit another thread's "
5980 "single-step breakpoint\n",
5981 target_pid_to_str (ecs->ptid).c_str ());
5982 }
5983 ecs->hit_singlestep_breakpoint = 1;
5984 }
5985 }
5986 else
5987 {
5988 if (debug_infrun)
5989 {
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: [%s] hit its "
5992 "single-step breakpoint\n",
5993 target_pid_to_str (ecs->ptid).c_str ());
5994 }
5995 }
5996 }
5997 delete_just_stopped_threads_single_step_breakpoints ();
5998
5999 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6000 && ecs->event_thread->control.trap_expected
6001 && ecs->event_thread->stepping_over_watchpoint)
6002 stopped_by_watchpoint = 0;
6003 else
6004 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6005
6006 /* If necessary, step over this watchpoint. We'll be back to display
6007 it in a moment. */
6008 if (stopped_by_watchpoint
6009 && (target_have_steppable_watchpoint
6010 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6011 {
6012 /* At this point, we are stopped at an instruction which has
6013 attempted to write to a piece of memory under control of
6014 a watchpoint. The instruction hasn't actually executed
6015 yet. If we were to evaluate the watchpoint expression
6016 now, we would get the old value, and therefore no change
6017 would seem to have occurred.
6018
6019 In order to make watchpoints work `right', we really need
6020 to complete the memory write, and then evaluate the
6021 watchpoint expression. We do this by single-stepping the
6022 target.
6023
6024 It may not be necessary to disable the watchpoint to step over
6025 it. For example, the PA can (with some kernel cooperation)
6026 single step over a watchpoint without disabling the watchpoint.
6027
6028 It is far more common to need to disable a watchpoint to step
6029 the inferior over it. If we have non-steppable watchpoints,
6030 we must disable the current watchpoint; it's simplest to
6031 disable all watchpoints.
6032
6033 Any breakpoint at PC must also be stepped over -- if there's
6034 one, it will have already triggered before the watchpoint
6035 triggered, and we either already reported it to the user, or
6036 it didn't cause a stop and we called keep_going. In either
6037 case, if there was a breakpoint at PC, we must be trying to
6038 step past it. */
6039 ecs->event_thread->stepping_over_watchpoint = 1;
6040 keep_going (ecs);
6041 return;
6042 }
6043
6044 ecs->event_thread->stepping_over_breakpoint = 0;
6045 ecs->event_thread->stepping_over_watchpoint = 0;
6046 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6047 ecs->event_thread->control.stop_step = 0;
6048 stop_print_frame = 1;
6049 stopped_by_random_signal = 0;
6050 bpstat stop_chain = NULL;
6051
6052 /* Hide inlined functions starting here, unless we just performed stepi or
6053 nexti. After stepi and nexti, always show the innermost frame (not any
6054 inline function call sites). */
6055 if (ecs->event_thread->control.step_range_end != 1)
6056 {
6057 const address_space *aspace
6058 = get_thread_regcache (ecs->event_thread)->aspace ();
6059
6060 /* skip_inline_frames is expensive, so we avoid it if we can
6061 determine that the address is one where functions cannot have
6062 been inlined. This improves performance with inferiors that
6063 load a lot of shared libraries, because the solib event
6064 breakpoint is defined as the address of a function (i.e. not
6065 inline). Note that we have to check the previous PC as well
6066 as the current one to catch cases when we have just
6067 single-stepped off a breakpoint prior to reinstating it.
6068 Note that we're assuming that the code we single-step to is
6069 not inline, but that's not definitive: there's nothing
6070 preventing the event breakpoint function from containing
6071 inlined code, and the single-step ending up there. If the
6072 user had set a breakpoint on that inlined code, the missing
6073 skip_inline_frames call would break things. Fortunately
6074 that's an extremely unlikely scenario. */
6075 if (!pc_at_non_inline_function (aspace,
6076 ecs->event_thread->suspend.stop_pc,
6077 &ecs->ws)
6078 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6079 && ecs->event_thread->control.trap_expected
6080 && pc_at_non_inline_function (aspace,
6081 ecs->event_thread->prev_pc,
6082 &ecs->ws)))
6083 {
6084 stop_chain = build_bpstat_chain (aspace,
6085 ecs->event_thread->suspend.stop_pc,
6086 &ecs->ws);
6087 skip_inline_frames (ecs->event_thread, stop_chain);
6088
6089 /* Re-fetch current thread's frame in case that invalidated
6090 the frame cache. */
6091 frame = get_current_frame ();
6092 gdbarch = get_frame_arch (frame);
6093 }
6094 }
6095
6096 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6097 && ecs->event_thread->control.trap_expected
6098 && gdbarch_single_step_through_delay_p (gdbarch)
6099 && currently_stepping (ecs->event_thread))
6100 {
6101 /* We're trying to step off a breakpoint. Turns out that we're
6102 also on an instruction that needs to be stepped multiple
6103 times before it's been fully executing. E.g., architectures
6104 with a delay slot. It needs to be stepped twice, once for
6105 the instruction and once for the delay slot. */
6106 int step_through_delay
6107 = gdbarch_single_step_through_delay (gdbarch, frame);
6108
6109 if (debug_infrun && step_through_delay)
6110 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6111 if (ecs->event_thread->control.step_range_end == 0
6112 && step_through_delay)
6113 {
6114 /* The user issued a continue when stopped at a breakpoint.
6115 Set up for another trap and get out of here. */
6116 ecs->event_thread->stepping_over_breakpoint = 1;
6117 keep_going (ecs);
6118 return;
6119 }
6120 else if (step_through_delay)
6121 {
6122 /* The user issued a step when stopped at a breakpoint.
6123 Maybe we should stop, maybe we should not - the delay
6124 slot *might* correspond to a line of source. In any
6125 case, don't decide that here, just set
6126 ecs->stepping_over_breakpoint, making sure we
6127 single-step again before breakpoints are re-inserted. */
6128 ecs->event_thread->stepping_over_breakpoint = 1;
6129 }
6130 }
6131
6132 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6133 handles this event. */
6134 ecs->event_thread->control.stop_bpstat
6135 = bpstat_stop_status (get_current_regcache ()->aspace (),
6136 ecs->event_thread->suspend.stop_pc,
6137 ecs->event_thread, &ecs->ws, stop_chain);
6138
6139 /* Following in case break condition called a
6140 function. */
6141 stop_print_frame = 1;
6142
6143 /* This is where we handle "moribund" watchpoints. Unlike
6144 software breakpoints traps, hardware watchpoint traps are
6145 always distinguishable from random traps. If no high-level
6146 watchpoint is associated with the reported stop data address
6147 anymore, then the bpstat does not explain the signal ---
6148 simply make sure to ignore it if `stopped_by_watchpoint' is
6149 set. */
6150
6151 if (debug_infrun
6152 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6153 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6154 GDB_SIGNAL_TRAP)
6155 && stopped_by_watchpoint)
6156 fprintf_unfiltered (gdb_stdlog,
6157 "infrun: no user watchpoint explains "
6158 "watchpoint SIGTRAP, ignoring\n");
6159
6160 /* NOTE: cagney/2003-03-29: These checks for a random signal
6161 at one stage in the past included checks for an inferior
6162 function call's call dummy's return breakpoint. The original
6163 comment, that went with the test, read:
6164
6165 ``End of a stack dummy. Some systems (e.g. Sony news) give
6166 another signal besides SIGTRAP, so check here as well as
6167 above.''
6168
6169 If someone ever tries to get call dummys on a
6170 non-executable stack to work (where the target would stop
6171 with something like a SIGSEGV), then those tests might need
6172 to be re-instated. Given, however, that the tests were only
6173 enabled when momentary breakpoints were not being used, I
6174 suspect that it won't be the case.
6175
6176 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6177 be necessary for call dummies on a non-executable stack on
6178 SPARC. */
6179
6180 /* See if the breakpoints module can explain the signal. */
6181 random_signal
6182 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6183 ecs->event_thread->suspend.stop_signal);
6184
6185 /* Maybe this was a trap for a software breakpoint that has since
6186 been removed. */
6187 if (random_signal && target_stopped_by_sw_breakpoint ())
6188 {
6189 if (gdbarch_program_breakpoint_here_p (gdbarch,
6190 ecs->event_thread->suspend.stop_pc))
6191 {
6192 struct regcache *regcache;
6193 int decr_pc;
6194
6195 /* Re-adjust PC to what the program would see if GDB was not
6196 debugging it. */
6197 regcache = get_thread_regcache (ecs->event_thread);
6198 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6199 if (decr_pc != 0)
6200 {
6201 gdb::optional<scoped_restore_tmpl<int>>
6202 restore_operation_disable;
6203
6204 if (record_full_is_used ())
6205 restore_operation_disable.emplace
6206 (record_full_gdb_operation_disable_set ());
6207
6208 regcache_write_pc (regcache,
6209 ecs->event_thread->suspend.stop_pc + decr_pc);
6210 }
6211 }
6212 else
6213 {
6214 /* A delayed software breakpoint event. Ignore the trap. */
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog,
6217 "infrun: delayed software breakpoint "
6218 "trap, ignoring\n");
6219 random_signal = 0;
6220 }
6221 }
6222
6223 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6224 has since been removed. */
6225 if (random_signal && target_stopped_by_hw_breakpoint ())
6226 {
6227 /* A delayed hardware breakpoint event. Ignore the trap. */
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog,
6230 "infrun: delayed hardware breakpoint/watchpoint "
6231 "trap, ignoring\n");
6232 random_signal = 0;
6233 }
6234
6235 /* If not, perhaps stepping/nexting can. */
6236 if (random_signal)
6237 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6238 && currently_stepping (ecs->event_thread));
6239
6240 /* Perhaps the thread hit a single-step breakpoint of _another_
6241 thread. Single-step breakpoints are transparent to the
6242 breakpoints module. */
6243 if (random_signal)
6244 random_signal = !ecs->hit_singlestep_breakpoint;
6245
6246 /* No? Perhaps we got a moribund watchpoint. */
6247 if (random_signal)
6248 random_signal = !stopped_by_watchpoint;
6249
6250 /* Always stop if the user explicitly requested this thread to
6251 remain stopped. */
6252 if (ecs->event_thread->stop_requested)
6253 {
6254 random_signal = 1;
6255 if (debug_infrun)
6256 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6257 }
6258
6259 /* For the program's own signals, act according to
6260 the signal handling tables. */
6261
6262 if (random_signal)
6263 {
6264 /* Signal not for debugging purposes. */
6265 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6266 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6267
6268 if (debug_infrun)
6269 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6270 gdb_signal_to_symbol_string (stop_signal));
6271
6272 stopped_by_random_signal = 1;
6273
6274 /* Always stop on signals if we're either just gaining control
6275 of the program, or the user explicitly requested this thread
6276 to remain stopped. */
6277 if (stop_soon != NO_STOP_QUIETLY
6278 || ecs->event_thread->stop_requested
6279 || (!inf->detaching
6280 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6281 {
6282 stop_waiting (ecs);
6283 return;
6284 }
6285
6286 /* Notify observers the signal has "handle print" set. Note we
6287 returned early above if stopping; normal_stop handles the
6288 printing in that case. */
6289 if (signal_print[ecs->event_thread->suspend.stop_signal])
6290 {
6291 /* The signal table tells us to print about this signal. */
6292 target_terminal::ours_for_output ();
6293 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6294 target_terminal::inferior ();
6295 }
6296
6297 /* Clear the signal if it should not be passed. */
6298 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6299 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6300
6301 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6302 && ecs->event_thread->control.trap_expected
6303 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6304 {
6305 /* We were just starting a new sequence, attempting to
6306 single-step off of a breakpoint and expecting a SIGTRAP.
6307 Instead this signal arrives. This signal will take us out
6308 of the stepping range so GDB needs to remember to, when
6309 the signal handler returns, resume stepping off that
6310 breakpoint. */
6311 /* To simplify things, "continue" is forced to use the same
6312 code paths as single-step - set a breakpoint at the
6313 signal return address and then, once hit, step off that
6314 breakpoint. */
6315 if (debug_infrun)
6316 fprintf_unfiltered (gdb_stdlog,
6317 "infrun: signal arrived while stepping over "
6318 "breakpoint\n");
6319
6320 insert_hp_step_resume_breakpoint_at_frame (frame);
6321 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6322 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6323 ecs->event_thread->control.trap_expected = 0;
6324
6325 /* If we were nexting/stepping some other thread, switch to
6326 it, so that we don't continue it, losing control. */
6327 if (!switch_back_to_stepped_thread (ecs))
6328 keep_going (ecs);
6329 return;
6330 }
6331
6332 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6333 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6334 ecs->event_thread)
6335 || ecs->event_thread->control.step_range_end == 1)
6336 && frame_id_eq (get_stack_frame_id (frame),
6337 ecs->event_thread->control.step_stack_frame_id)
6338 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6339 {
6340 /* The inferior is about to take a signal that will take it
6341 out of the single step range. Set a breakpoint at the
6342 current PC (which is presumably where the signal handler
6343 will eventually return) and then allow the inferior to
6344 run free.
6345
6346 Note that this is only needed for a signal delivered
6347 while in the single-step range. Nested signals aren't a
6348 problem as they eventually all return. */
6349 if (debug_infrun)
6350 fprintf_unfiltered (gdb_stdlog,
6351 "infrun: signal may take us out of "
6352 "single-step range\n");
6353
6354 clear_step_over_info ();
6355 insert_hp_step_resume_breakpoint_at_frame (frame);
6356 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6357 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6358 ecs->event_thread->control.trap_expected = 0;
6359 keep_going (ecs);
6360 return;
6361 }
6362
6363 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6364 when either there's a nested signal, or when there's a
6365 pending signal enabled just as the signal handler returns
6366 (leaving the inferior at the step-resume-breakpoint without
6367 actually executing it). Either way continue until the
6368 breakpoint is really hit. */
6369
6370 if (!switch_back_to_stepped_thread (ecs))
6371 {
6372 if (debug_infrun)
6373 fprintf_unfiltered (gdb_stdlog,
6374 "infrun: random signal, keep going\n");
6375
6376 keep_going (ecs);
6377 }
6378 return;
6379 }
6380
6381 process_event_stop_test (ecs);
6382}
6383
6384/* Come here when we've got some debug event / signal we can explain
6385 (IOW, not a random signal), and test whether it should cause a
6386 stop, or whether we should resume the inferior (transparently).
6387 E.g., could be a breakpoint whose condition evaluates false; we
6388 could be still stepping within the line; etc. */
6389
6390static void
6391process_event_stop_test (struct execution_control_state *ecs)
6392{
6393 struct symtab_and_line stop_pc_sal;
6394 struct frame_info *frame;
6395 struct gdbarch *gdbarch;
6396 CORE_ADDR jmp_buf_pc;
6397 struct bpstat_what what;
6398
6399 /* Handle cases caused by hitting a breakpoint. */
6400
6401 frame = get_current_frame ();
6402 gdbarch = get_frame_arch (frame);
6403
6404 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6405
6406 if (what.call_dummy)
6407 {
6408 stop_stack_dummy = what.call_dummy;
6409 }
6410
6411 /* A few breakpoint types have callbacks associated (e.g.,
6412 bp_jit_event). Run them now. */
6413 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6414
6415 /* If we hit an internal event that triggers symbol changes, the
6416 current frame will be invalidated within bpstat_what (e.g., if we
6417 hit an internal solib event). Re-fetch it. */
6418 frame = get_current_frame ();
6419 gdbarch = get_frame_arch (frame);
6420
6421 switch (what.main_action)
6422 {
6423 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6424 /* If we hit the breakpoint at longjmp while stepping, we
6425 install a momentary breakpoint at the target of the
6426 jmp_buf. */
6427
6428 if (debug_infrun)
6429 fprintf_unfiltered (gdb_stdlog,
6430 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6431
6432 ecs->event_thread->stepping_over_breakpoint = 1;
6433
6434 if (what.is_longjmp)
6435 {
6436 struct value *arg_value;
6437
6438 /* If we set the longjmp breakpoint via a SystemTap probe,
6439 then use it to extract the arguments. The destination PC
6440 is the third argument to the probe. */
6441 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6442 if (arg_value)
6443 {
6444 jmp_buf_pc = value_as_address (arg_value);
6445 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6446 }
6447 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6448 || !gdbarch_get_longjmp_target (gdbarch,
6449 frame, &jmp_buf_pc))
6450 {
6451 if (debug_infrun)
6452 fprintf_unfiltered (gdb_stdlog,
6453 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6454 "(!gdbarch_get_longjmp_target)\n");
6455 keep_going (ecs);
6456 return;
6457 }
6458
6459 /* Insert a breakpoint at resume address. */
6460 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6461 }
6462 else
6463 check_exception_resume (ecs, frame);
6464 keep_going (ecs);
6465 return;
6466
6467 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6468 {
6469 struct frame_info *init_frame;
6470
6471 /* There are several cases to consider.
6472
6473 1. The initiating frame no longer exists. In this case we
6474 must stop, because the exception or longjmp has gone too
6475 far.
6476
6477 2. The initiating frame exists, and is the same as the
6478 current frame. We stop, because the exception or longjmp
6479 has been caught.
6480
6481 3. The initiating frame exists and is different from the
6482 current frame. This means the exception or longjmp has
6483 been caught beneath the initiating frame, so keep going.
6484
6485 4. longjmp breakpoint has been placed just to protect
6486 against stale dummy frames and user is not interested in
6487 stopping around longjmps. */
6488
6489 if (debug_infrun)
6490 fprintf_unfiltered (gdb_stdlog,
6491 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6492
6493 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6494 != NULL);
6495 delete_exception_resume_breakpoint (ecs->event_thread);
6496
6497 if (what.is_longjmp)
6498 {
6499 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6500
6501 if (!frame_id_p (ecs->event_thread->initiating_frame))
6502 {
6503 /* Case 4. */
6504 keep_going (ecs);
6505 return;
6506 }
6507 }
6508
6509 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6510
6511 if (init_frame)
6512 {
6513 struct frame_id current_id
6514 = get_frame_id (get_current_frame ());
6515 if (frame_id_eq (current_id,
6516 ecs->event_thread->initiating_frame))
6517 {
6518 /* Case 2. Fall through. */
6519 }
6520 else
6521 {
6522 /* Case 3. */
6523 keep_going (ecs);
6524 return;
6525 }
6526 }
6527
6528 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6529 exists. */
6530 delete_step_resume_breakpoint (ecs->event_thread);
6531
6532 end_stepping_range (ecs);
6533 }
6534 return;
6535
6536 case BPSTAT_WHAT_SINGLE:
6537 if (debug_infrun)
6538 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6539 ecs->event_thread->stepping_over_breakpoint = 1;
6540 /* Still need to check other stuff, at least the case where we
6541 are stepping and step out of the right range. */
6542 break;
6543
6544 case BPSTAT_WHAT_STEP_RESUME:
6545 if (debug_infrun)
6546 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6547
6548 delete_step_resume_breakpoint (ecs->event_thread);
6549 if (ecs->event_thread->control.proceed_to_finish
6550 && execution_direction == EXEC_REVERSE)
6551 {
6552 struct thread_info *tp = ecs->event_thread;
6553
6554 /* We are finishing a function in reverse, and just hit the
6555 step-resume breakpoint at the start address of the
6556 function, and we're almost there -- just need to back up
6557 by one more single-step, which should take us back to the
6558 function call. */
6559 tp->control.step_range_start = tp->control.step_range_end = 1;
6560 keep_going (ecs);
6561 return;
6562 }
6563 fill_in_stop_func (gdbarch, ecs);
6564 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6565 && execution_direction == EXEC_REVERSE)
6566 {
6567 /* We are stepping over a function call in reverse, and just
6568 hit the step-resume breakpoint at the start address of
6569 the function. Go back to single-stepping, which should
6570 take us back to the function call. */
6571 ecs->event_thread->stepping_over_breakpoint = 1;
6572 keep_going (ecs);
6573 return;
6574 }
6575 break;
6576
6577 case BPSTAT_WHAT_STOP_NOISY:
6578 if (debug_infrun)
6579 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6580 stop_print_frame = 1;
6581
6582 /* Assume the thread stopped for a breapoint. We'll still check
6583 whether a/the breakpoint is there when the thread is next
6584 resumed. */
6585 ecs->event_thread->stepping_over_breakpoint = 1;
6586
6587 stop_waiting (ecs);
6588 return;
6589
6590 case BPSTAT_WHAT_STOP_SILENT:
6591 if (debug_infrun)
6592 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6593 stop_print_frame = 0;
6594
6595 /* Assume the thread stopped for a breapoint. We'll still check
6596 whether a/the breakpoint is there when the thread is next
6597 resumed. */
6598 ecs->event_thread->stepping_over_breakpoint = 1;
6599 stop_waiting (ecs);
6600 return;
6601
6602 case BPSTAT_WHAT_HP_STEP_RESUME:
6603 if (debug_infrun)
6604 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6605
6606 delete_step_resume_breakpoint (ecs->event_thread);
6607 if (ecs->event_thread->step_after_step_resume_breakpoint)
6608 {
6609 /* Back when the step-resume breakpoint was inserted, we
6610 were trying to single-step off a breakpoint. Go back to
6611 doing that. */
6612 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6613 ecs->event_thread->stepping_over_breakpoint = 1;
6614 keep_going (ecs);
6615 return;
6616 }
6617 break;
6618
6619 case BPSTAT_WHAT_KEEP_CHECKING:
6620 break;
6621 }
6622
6623 /* If we stepped a permanent breakpoint and we had a high priority
6624 step-resume breakpoint for the address we stepped, but we didn't
6625 hit it, then we must have stepped into the signal handler. The
6626 step-resume was only necessary to catch the case of _not_
6627 stepping into the handler, so delete it, and fall through to
6628 checking whether the step finished. */
6629 if (ecs->event_thread->stepped_breakpoint)
6630 {
6631 struct breakpoint *sr_bp
6632 = ecs->event_thread->control.step_resume_breakpoint;
6633
6634 if (sr_bp != NULL
6635 && sr_bp->loc->permanent
6636 && sr_bp->type == bp_hp_step_resume
6637 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6638 {
6639 if (debug_infrun)
6640 fprintf_unfiltered (gdb_stdlog,
6641 "infrun: stepped permanent breakpoint, stopped in "
6642 "handler\n");
6643 delete_step_resume_breakpoint (ecs->event_thread);
6644 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6645 }
6646 }
6647
6648 /* We come here if we hit a breakpoint but should not stop for it.
6649 Possibly we also were stepping and should stop for that. So fall
6650 through and test for stepping. But, if not stepping, do not
6651 stop. */
6652
6653 /* In all-stop mode, if we're currently stepping but have stopped in
6654 some other thread, we need to switch back to the stepped thread. */
6655 if (switch_back_to_stepped_thread (ecs))
6656 return;
6657
6658 if (ecs->event_thread->control.step_resume_breakpoint)
6659 {
6660 if (debug_infrun)
6661 fprintf_unfiltered (gdb_stdlog,
6662 "infrun: step-resume breakpoint is inserted\n");
6663
6664 /* Having a step-resume breakpoint overrides anything
6665 else having to do with stepping commands until
6666 that breakpoint is reached. */
6667 keep_going (ecs);
6668 return;
6669 }
6670
6671 if (ecs->event_thread->control.step_range_end == 0)
6672 {
6673 if (debug_infrun)
6674 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6675 /* Likewise if we aren't even stepping. */
6676 keep_going (ecs);
6677 return;
6678 }
6679
6680 /* Re-fetch current thread's frame in case the code above caused
6681 the frame cache to be re-initialized, making our FRAME variable
6682 a dangling pointer. */
6683 frame = get_current_frame ();
6684 gdbarch = get_frame_arch (frame);
6685 fill_in_stop_func (gdbarch, ecs);
6686
6687 /* If stepping through a line, keep going if still within it.
6688
6689 Note that step_range_end is the address of the first instruction
6690 beyond the step range, and NOT the address of the last instruction
6691 within it!
6692
6693 Note also that during reverse execution, we may be stepping
6694 through a function epilogue and therefore must detect when
6695 the current-frame changes in the middle of a line. */
6696
6697 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6698 ecs->event_thread)
6699 && (execution_direction != EXEC_REVERSE
6700 || frame_id_eq (get_frame_id (frame),
6701 ecs->event_thread->control.step_frame_id)))
6702 {
6703 if (debug_infrun)
6704 fprintf_unfiltered
6705 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6706 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6707 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6708
6709 /* Tentatively re-enable range stepping; `resume' disables it if
6710 necessary (e.g., if we're stepping over a breakpoint or we
6711 have software watchpoints). */
6712 ecs->event_thread->control.may_range_step = 1;
6713
6714 /* When stepping backward, stop at beginning of line range
6715 (unless it's the function entry point, in which case
6716 keep going back to the call point). */
6717 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6718 if (stop_pc == ecs->event_thread->control.step_range_start
6719 && stop_pc != ecs->stop_func_start
6720 && execution_direction == EXEC_REVERSE)
6721 end_stepping_range (ecs);
6722 else
6723 keep_going (ecs);
6724
6725 return;
6726 }
6727
6728 /* We stepped out of the stepping range. */
6729
6730 /* If we are stepping at the source level and entered the runtime
6731 loader dynamic symbol resolution code...
6732
6733 EXEC_FORWARD: we keep on single stepping until we exit the run
6734 time loader code and reach the callee's address.
6735
6736 EXEC_REVERSE: we've already executed the callee (backward), and
6737 the runtime loader code is handled just like any other
6738 undebuggable function call. Now we need only keep stepping
6739 backward through the trampoline code, and that's handled further
6740 down, so there is nothing for us to do here. */
6741
6742 if (execution_direction != EXEC_REVERSE
6743 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6744 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6745 {
6746 CORE_ADDR pc_after_resolver =
6747 gdbarch_skip_solib_resolver (gdbarch,
6748 ecs->event_thread->suspend.stop_pc);
6749
6750 if (debug_infrun)
6751 fprintf_unfiltered (gdb_stdlog,
6752 "infrun: stepped into dynsym resolve code\n");
6753
6754 if (pc_after_resolver)
6755 {
6756 /* Set up a step-resume breakpoint at the address
6757 indicated by SKIP_SOLIB_RESOLVER. */
6758 symtab_and_line sr_sal;
6759 sr_sal.pc = pc_after_resolver;
6760 sr_sal.pspace = get_frame_program_space (frame);
6761
6762 insert_step_resume_breakpoint_at_sal (gdbarch,
6763 sr_sal, null_frame_id);
6764 }
6765
6766 keep_going (ecs);
6767 return;
6768 }
6769
6770 /* Step through an indirect branch thunk. */
6771 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6772 && gdbarch_in_indirect_branch_thunk (gdbarch,
6773 ecs->event_thread->suspend.stop_pc))
6774 {
6775 if (debug_infrun)
6776 fprintf_unfiltered (gdb_stdlog,
6777 "infrun: stepped into indirect branch thunk\n");
6778 keep_going (ecs);
6779 return;
6780 }
6781
6782 if (ecs->event_thread->control.step_range_end != 1
6783 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6784 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6785 && get_frame_type (frame) == SIGTRAMP_FRAME)
6786 {
6787 if (debug_infrun)
6788 fprintf_unfiltered (gdb_stdlog,
6789 "infrun: stepped into signal trampoline\n");
6790 /* The inferior, while doing a "step" or "next", has ended up in
6791 a signal trampoline (either by a signal being delivered or by
6792 the signal handler returning). Just single-step until the
6793 inferior leaves the trampoline (either by calling the handler
6794 or returning). */
6795 keep_going (ecs);
6796 return;
6797 }
6798
6799 /* If we're in the return path from a shared library trampoline,
6800 we want to proceed through the trampoline when stepping. */
6801 /* macro/2012-04-25: This needs to come before the subroutine
6802 call check below as on some targets return trampolines look
6803 like subroutine calls (MIPS16 return thunks). */
6804 if (gdbarch_in_solib_return_trampoline (gdbarch,
6805 ecs->event_thread->suspend.stop_pc,
6806 ecs->stop_func_name)
6807 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6808 {
6809 /* Determine where this trampoline returns. */
6810 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6811 CORE_ADDR real_stop_pc
6812 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6813
6814 if (debug_infrun)
6815 fprintf_unfiltered (gdb_stdlog,
6816 "infrun: stepped into solib return tramp\n");
6817
6818 /* Only proceed through if we know where it's going. */
6819 if (real_stop_pc)
6820 {
6821 /* And put the step-breakpoint there and go until there. */
6822 symtab_and_line sr_sal;
6823 sr_sal.pc = real_stop_pc;
6824 sr_sal.section = find_pc_overlay (sr_sal.pc);
6825 sr_sal.pspace = get_frame_program_space (frame);
6826
6827 /* Do not specify what the fp should be when we stop since
6828 on some machines the prologue is where the new fp value
6829 is established. */
6830 insert_step_resume_breakpoint_at_sal (gdbarch,
6831 sr_sal, null_frame_id);
6832
6833 /* Restart without fiddling with the step ranges or
6834 other state. */
6835 keep_going (ecs);
6836 return;
6837 }
6838 }
6839
6840 /* Check for subroutine calls. The check for the current frame
6841 equalling the step ID is not necessary - the check of the
6842 previous frame's ID is sufficient - but it is a common case and
6843 cheaper than checking the previous frame's ID.
6844
6845 NOTE: frame_id_eq will never report two invalid frame IDs as
6846 being equal, so to get into this block, both the current and
6847 previous frame must have valid frame IDs. */
6848 /* The outer_frame_id check is a heuristic to detect stepping
6849 through startup code. If we step over an instruction which
6850 sets the stack pointer from an invalid value to a valid value,
6851 we may detect that as a subroutine call from the mythical
6852 "outermost" function. This could be fixed by marking
6853 outermost frames as !stack_p,code_p,special_p. Then the
6854 initial outermost frame, before sp was valid, would
6855 have code_addr == &_start. See the comment in frame_id_eq
6856 for more. */
6857 if (!frame_id_eq (get_stack_frame_id (frame),
6858 ecs->event_thread->control.step_stack_frame_id)
6859 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6860 ecs->event_thread->control.step_stack_frame_id)
6861 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6862 outer_frame_id)
6863 || (ecs->event_thread->control.step_start_function
6864 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6865 {
6866 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6867 CORE_ADDR real_stop_pc;
6868
6869 if (debug_infrun)
6870 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6871
6872 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6873 {
6874 /* I presume that step_over_calls is only 0 when we're
6875 supposed to be stepping at the assembly language level
6876 ("stepi"). Just stop. */
6877 /* And this works the same backward as frontward. MVS */
6878 end_stepping_range (ecs);
6879 return;
6880 }
6881
6882 /* Reverse stepping through solib trampolines. */
6883
6884 if (execution_direction == EXEC_REVERSE
6885 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6886 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6887 || (ecs->stop_func_start == 0
6888 && in_solib_dynsym_resolve_code (stop_pc))))
6889 {
6890 /* Any solib trampoline code can be handled in reverse
6891 by simply continuing to single-step. We have already
6892 executed the solib function (backwards), and a few
6893 steps will take us back through the trampoline to the
6894 caller. */
6895 keep_going (ecs);
6896 return;
6897 }
6898
6899 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6900 {
6901 /* We're doing a "next".
6902
6903 Normal (forward) execution: set a breakpoint at the
6904 callee's return address (the address at which the caller
6905 will resume).
6906
6907 Reverse (backward) execution. set the step-resume
6908 breakpoint at the start of the function that we just
6909 stepped into (backwards), and continue to there. When we
6910 get there, we'll need to single-step back to the caller. */
6911
6912 if (execution_direction == EXEC_REVERSE)
6913 {
6914 /* If we're already at the start of the function, we've either
6915 just stepped backward into a single instruction function,
6916 or stepped back out of a signal handler to the first instruction
6917 of the function. Just keep going, which will single-step back
6918 to the caller. */
6919 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6920 {
6921 /* Normal function call return (static or dynamic). */
6922 symtab_and_line sr_sal;
6923 sr_sal.pc = ecs->stop_func_start;
6924 sr_sal.pspace = get_frame_program_space (frame);
6925 insert_step_resume_breakpoint_at_sal (gdbarch,
6926 sr_sal, null_frame_id);
6927 }
6928 }
6929 else
6930 insert_step_resume_breakpoint_at_caller (frame);
6931
6932 keep_going (ecs);
6933 return;
6934 }
6935
6936 /* If we are in a function call trampoline (a stub between the
6937 calling routine and the real function), locate the real
6938 function. That's what tells us (a) whether we want to step
6939 into it at all, and (b) what prologue we want to run to the
6940 end of, if we do step into it. */
6941 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6942 if (real_stop_pc == 0)
6943 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6944 if (real_stop_pc != 0)
6945 ecs->stop_func_start = real_stop_pc;
6946
6947 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6948 {
6949 symtab_and_line sr_sal;
6950 sr_sal.pc = ecs->stop_func_start;
6951 sr_sal.pspace = get_frame_program_space (frame);
6952
6953 insert_step_resume_breakpoint_at_sal (gdbarch,
6954 sr_sal, null_frame_id);
6955 keep_going (ecs);
6956 return;
6957 }
6958
6959 /* If we have line number information for the function we are
6960 thinking of stepping into and the function isn't on the skip
6961 list, step into it.
6962
6963 If there are several symtabs at that PC (e.g. with include
6964 files), just want to know whether *any* of them have line
6965 numbers. find_pc_line handles this. */
6966 {
6967 struct symtab_and_line tmp_sal;
6968
6969 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6970 if (tmp_sal.line != 0
6971 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6972 tmp_sal)
6973 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6974 {
6975 if (execution_direction == EXEC_REVERSE)
6976 handle_step_into_function_backward (gdbarch, ecs);
6977 else
6978 handle_step_into_function (gdbarch, ecs);
6979 return;
6980 }
6981 }
6982
6983 /* If we have no line number and the step-stop-if-no-debug is
6984 set, we stop the step so that the user has a chance to switch
6985 in assembly mode. */
6986 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6987 && step_stop_if_no_debug)
6988 {
6989 end_stepping_range (ecs);
6990 return;
6991 }
6992
6993 if (execution_direction == EXEC_REVERSE)
6994 {
6995 /* If we're already at the start of the function, we've either just
6996 stepped backward into a single instruction function without line
6997 number info, or stepped back out of a signal handler to the first
6998 instruction of the function without line number info. Just keep
6999 going, which will single-step back to the caller. */
7000 if (ecs->stop_func_start != stop_pc)
7001 {
7002 /* Set a breakpoint at callee's start address.
7003 From there we can step once and be back in the caller. */
7004 symtab_and_line sr_sal;
7005 sr_sal.pc = ecs->stop_func_start;
7006 sr_sal.pspace = get_frame_program_space (frame);
7007 insert_step_resume_breakpoint_at_sal (gdbarch,
7008 sr_sal, null_frame_id);
7009 }
7010 }
7011 else
7012 /* Set a breakpoint at callee's return address (the address
7013 at which the caller will resume). */
7014 insert_step_resume_breakpoint_at_caller (frame);
7015
7016 keep_going (ecs);
7017 return;
7018 }
7019
7020 /* Reverse stepping through solib trampolines. */
7021
7022 if (execution_direction == EXEC_REVERSE
7023 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7024 {
7025 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7026
7027 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7028 || (ecs->stop_func_start == 0
7029 && in_solib_dynsym_resolve_code (stop_pc)))
7030 {
7031 /* Any solib trampoline code can be handled in reverse
7032 by simply continuing to single-step. We have already
7033 executed the solib function (backwards), and a few
7034 steps will take us back through the trampoline to the
7035 caller. */
7036 keep_going (ecs);
7037 return;
7038 }
7039 else if (in_solib_dynsym_resolve_code (stop_pc))
7040 {
7041 /* Stepped backward into the solib dynsym resolver.
7042 Set a breakpoint at its start and continue, then
7043 one more step will take us out. */
7044 symtab_and_line sr_sal;
7045 sr_sal.pc = ecs->stop_func_start;
7046 sr_sal.pspace = get_frame_program_space (frame);
7047 insert_step_resume_breakpoint_at_sal (gdbarch,
7048 sr_sal, null_frame_id);
7049 keep_going (ecs);
7050 return;
7051 }
7052 }
7053
7054 /* This always returns the sal for the inner-most frame when we are in a
7055 stack of inlined frames, even if GDB actually believes that it is in a
7056 more outer frame. This is checked for below by calls to
7057 inline_skipped_frames. */
7058 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7059
7060 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7061 the trampoline processing logic, however, there are some trampolines
7062 that have no names, so we should do trampoline handling first. */
7063 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7064 && ecs->stop_func_name == NULL
7065 && stop_pc_sal.line == 0)
7066 {
7067 if (debug_infrun)
7068 fprintf_unfiltered (gdb_stdlog,
7069 "infrun: stepped into undebuggable function\n");
7070
7071 /* The inferior just stepped into, or returned to, an
7072 undebuggable function (where there is no debugging information
7073 and no line number corresponding to the address where the
7074 inferior stopped). Since we want to skip this kind of code,
7075 we keep going until the inferior returns from this
7076 function - unless the user has asked us not to (via
7077 set step-mode) or we no longer know how to get back
7078 to the call site. */
7079 if (step_stop_if_no_debug
7080 || !frame_id_p (frame_unwind_caller_id (frame)))
7081 {
7082 /* If we have no line number and the step-stop-if-no-debug
7083 is set, we stop the step so that the user has a chance to
7084 switch in assembly mode. */
7085 end_stepping_range (ecs);
7086 return;
7087 }
7088 else
7089 {
7090 /* Set a breakpoint at callee's return address (the address
7091 at which the caller will resume). */
7092 insert_step_resume_breakpoint_at_caller (frame);
7093 keep_going (ecs);
7094 return;
7095 }
7096 }
7097
7098 if (ecs->event_thread->control.step_range_end == 1)
7099 {
7100 /* It is stepi or nexti. We always want to stop stepping after
7101 one instruction. */
7102 if (debug_infrun)
7103 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7104 end_stepping_range (ecs);
7105 return;
7106 }
7107
7108 if (stop_pc_sal.line == 0)
7109 {
7110 /* We have no line number information. That means to stop
7111 stepping (does this always happen right after one instruction,
7112 when we do "s" in a function with no line numbers,
7113 or can this happen as a result of a return or longjmp?). */
7114 if (debug_infrun)
7115 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7116 end_stepping_range (ecs);
7117 return;
7118 }
7119
7120 /* Look for "calls" to inlined functions, part one. If the inline
7121 frame machinery detected some skipped call sites, we have entered
7122 a new inline function. */
7123
7124 if (frame_id_eq (get_frame_id (get_current_frame ()),
7125 ecs->event_thread->control.step_frame_id)
7126 && inline_skipped_frames (ecs->event_thread))
7127 {
7128 if (debug_infrun)
7129 fprintf_unfiltered (gdb_stdlog,
7130 "infrun: stepped into inlined function\n");
7131
7132 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7133
7134 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7135 {
7136 /* For "step", we're going to stop. But if the call site
7137 for this inlined function is on the same source line as
7138 we were previously stepping, go down into the function
7139 first. Otherwise stop at the call site. */
7140
7141 if (call_sal.line == ecs->event_thread->current_line
7142 && call_sal.symtab == ecs->event_thread->current_symtab)
7143 {
7144 step_into_inline_frame (ecs->event_thread);
7145 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7146 {
7147 keep_going (ecs);
7148 return;
7149 }
7150 }
7151
7152 end_stepping_range (ecs);
7153 return;
7154 }
7155 else
7156 {
7157 /* For "next", we should stop at the call site if it is on a
7158 different source line. Otherwise continue through the
7159 inlined function. */
7160 if (call_sal.line == ecs->event_thread->current_line
7161 && call_sal.symtab == ecs->event_thread->current_symtab)
7162 keep_going (ecs);
7163 else
7164 end_stepping_range (ecs);
7165 return;
7166 }
7167 }
7168
7169 /* Look for "calls" to inlined functions, part two. If we are still
7170 in the same real function we were stepping through, but we have
7171 to go further up to find the exact frame ID, we are stepping
7172 through a more inlined call beyond its call site. */
7173
7174 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7175 && !frame_id_eq (get_frame_id (get_current_frame ()),
7176 ecs->event_thread->control.step_frame_id)
7177 && stepped_in_from (get_current_frame (),
7178 ecs->event_thread->control.step_frame_id))
7179 {
7180 if (debug_infrun)
7181 fprintf_unfiltered (gdb_stdlog,
7182 "infrun: stepping through inlined function\n");
7183
7184 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7185 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7186 keep_going (ecs);
7187 else
7188 end_stepping_range (ecs);
7189 return;
7190 }
7191
7192 bool refresh_step_info = true;
7193 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7194 && (ecs->event_thread->current_line != stop_pc_sal.line
7195 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7196 {
7197 if (stop_pc_sal.is_stmt)
7198 {
7199 /* We are at the start of a different line. So stop. Note that
7200 we don't stop if we step into the middle of a different line.
7201 That is said to make things like for (;;) statements work
7202 better. */
7203 if (debug_infrun)
7204 fprintf_unfiltered (gdb_stdlog,
7205 "infrun: stepped to a different line\n");
7206 end_stepping_range (ecs);
7207 return;
7208 }
7209 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7210 ecs->event_thread->control.step_frame_id))
7211 {
7212 /* We are at the start of a different line, however, this line is
7213 not marked as a statement, and we have not changed frame. We
7214 ignore this line table entry, and continue stepping forward,
7215 looking for a better place to stop. */
7216 refresh_step_info = false;
7217 if (debug_infrun)
7218 fprintf_unfiltered (gdb_stdlog,
7219 "infrun: stepped to a different line, but "
7220 "it's not the start of a statement\n");
7221 }
7222 }
7223
7224 /* We aren't done stepping.
7225
7226 Optimize by setting the stepping range to the line.
7227 (We might not be in the original line, but if we entered a
7228 new line in mid-statement, we continue stepping. This makes
7229 things like for(;;) statements work better.)
7230
7231 If we entered a SAL that indicates a non-statement line table entry,
7232 then we update the stepping range, but we don't update the step info,
7233 which includes things like the line number we are stepping away from.
7234 This means we will stop when we find a line table entry that is marked
7235 as is-statement, even if it matches the non-statement one we just
7236 stepped into. */
7237
7238 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7239 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7240 ecs->event_thread->control.may_range_step = 1;
7241 if (refresh_step_info)
7242 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7243
7244 if (debug_infrun)
7245 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7246 keep_going (ecs);
7247}
7248
7249/* In all-stop mode, if we're currently stepping but have stopped in
7250 some other thread, we may need to switch back to the stepped
7251 thread. Returns true we set the inferior running, false if we left
7252 it stopped (and the event needs further processing). */
7253
7254static int
7255switch_back_to_stepped_thread (struct execution_control_state *ecs)
7256{
7257 if (!target_is_non_stop_p ())
7258 {
7259 struct thread_info *stepping_thread;
7260
7261 /* If any thread is blocked on some internal breakpoint, and we
7262 simply need to step over that breakpoint to get it going
7263 again, do that first. */
7264
7265 /* However, if we see an event for the stepping thread, then we
7266 know all other threads have been moved past their breakpoints
7267 already. Let the caller check whether the step is finished,
7268 etc., before deciding to move it past a breakpoint. */
7269 if (ecs->event_thread->control.step_range_end != 0)
7270 return 0;
7271
7272 /* Check if the current thread is blocked on an incomplete
7273 step-over, interrupted by a random signal. */
7274 if (ecs->event_thread->control.trap_expected
7275 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7276 {
7277 if (debug_infrun)
7278 {
7279 fprintf_unfiltered (gdb_stdlog,
7280 "infrun: need to finish step-over of [%s]\n",
7281 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7282 }
7283 keep_going (ecs);
7284 return 1;
7285 }
7286
7287 /* Check if the current thread is blocked by a single-step
7288 breakpoint of another thread. */
7289 if (ecs->hit_singlestep_breakpoint)
7290 {
7291 if (debug_infrun)
7292 {
7293 fprintf_unfiltered (gdb_stdlog,
7294 "infrun: need to step [%s] over single-step "
7295 "breakpoint\n",
7296 target_pid_to_str (ecs->ptid).c_str ());
7297 }
7298 keep_going (ecs);
7299 return 1;
7300 }
7301
7302 /* If this thread needs yet another step-over (e.g., stepping
7303 through a delay slot), do it first before moving on to
7304 another thread. */
7305 if (thread_still_needs_step_over (ecs->event_thread))
7306 {
7307 if (debug_infrun)
7308 {
7309 fprintf_unfiltered (gdb_stdlog,
7310 "infrun: thread [%s] still needs step-over\n",
7311 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7312 }
7313 keep_going (ecs);
7314 return 1;
7315 }
7316
7317 /* If scheduler locking applies even if not stepping, there's no
7318 need to walk over threads. Above we've checked whether the
7319 current thread is stepping. If some other thread not the
7320 event thread is stepping, then it must be that scheduler
7321 locking is not in effect. */
7322 if (schedlock_applies (ecs->event_thread))
7323 return 0;
7324
7325 /* Otherwise, we no longer expect a trap in the current thread.
7326 Clear the trap_expected flag before switching back -- this is
7327 what keep_going does as well, if we call it. */
7328 ecs->event_thread->control.trap_expected = 0;
7329
7330 /* Likewise, clear the signal if it should not be passed. */
7331 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7332 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7333
7334 /* Do all pending step-overs before actually proceeding with
7335 step/next/etc. */
7336 if (start_step_over ())
7337 {
7338 prepare_to_wait (ecs);
7339 return 1;
7340 }
7341
7342 /* Look for the stepping/nexting thread. */
7343 stepping_thread = NULL;
7344
7345 for (thread_info *tp : all_non_exited_threads ())
7346 {
7347 switch_to_thread_no_regs (tp);
7348
7349 /* Ignore threads of processes the caller is not
7350 resuming. */
7351 if (!sched_multi
7352 && (tp->inf->process_target () != ecs->target
7353 || tp->inf->pid != ecs->ptid.pid ()))
7354 continue;
7355
7356 /* When stepping over a breakpoint, we lock all threads
7357 except the one that needs to move past the breakpoint.
7358 If a non-event thread has this set, the "incomplete
7359 step-over" check above should have caught it earlier. */
7360 if (tp->control.trap_expected)
7361 {
7362 internal_error (__FILE__, __LINE__,
7363 "[%s] has inconsistent state: "
7364 "trap_expected=%d\n",
7365 target_pid_to_str (tp->ptid).c_str (),
7366 tp->control.trap_expected);
7367 }
7368
7369 /* Did we find the stepping thread? */
7370 if (tp->control.step_range_end)
7371 {
7372 /* Yep. There should only one though. */
7373 gdb_assert (stepping_thread == NULL);
7374
7375 /* The event thread is handled at the top, before we
7376 enter this loop. */
7377 gdb_assert (tp != ecs->event_thread);
7378
7379 /* If some thread other than the event thread is
7380 stepping, then scheduler locking can't be in effect,
7381 otherwise we wouldn't have resumed the current event
7382 thread in the first place. */
7383 gdb_assert (!schedlock_applies (tp));
7384
7385 stepping_thread = tp;
7386 }
7387 }
7388
7389 if (stepping_thread != NULL)
7390 {
7391 if (debug_infrun)
7392 fprintf_unfiltered (gdb_stdlog,
7393 "infrun: switching back to stepped thread\n");
7394
7395 if (keep_going_stepped_thread (stepping_thread))
7396 {
7397 prepare_to_wait (ecs);
7398 return 1;
7399 }
7400 }
7401
7402 switch_to_thread (ecs->event_thread);
7403 }
7404
7405 return 0;
7406}
7407
7408/* Set a previously stepped thread back to stepping. Returns true on
7409 success, false if the resume is not possible (e.g., the thread
7410 vanished). */
7411
7412static int
7413keep_going_stepped_thread (struct thread_info *tp)
7414{
7415 struct frame_info *frame;
7416 struct execution_control_state ecss;
7417 struct execution_control_state *ecs = &ecss;
7418
7419 /* If the stepping thread exited, then don't try to switch back and
7420 resume it, which could fail in several different ways depending
7421 on the target. Instead, just keep going.
7422
7423 We can find a stepping dead thread in the thread list in two
7424 cases:
7425
7426 - The target supports thread exit events, and when the target
7427 tries to delete the thread from the thread list, inferior_ptid
7428 pointed at the exiting thread. In such case, calling
7429 delete_thread does not really remove the thread from the list;
7430 instead, the thread is left listed, with 'exited' state.
7431
7432 - The target's debug interface does not support thread exit
7433 events, and so we have no idea whatsoever if the previously
7434 stepping thread is still alive. For that reason, we need to
7435 synchronously query the target now. */
7436
7437 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7438 {
7439 if (debug_infrun)
7440 fprintf_unfiltered (gdb_stdlog,
7441 "infrun: not resuming previously "
7442 "stepped thread, it has vanished\n");
7443
7444 delete_thread (tp);
7445 return 0;
7446 }
7447
7448 if (debug_infrun)
7449 fprintf_unfiltered (gdb_stdlog,
7450 "infrun: resuming previously stepped thread\n");
7451
7452 reset_ecs (ecs, tp);
7453 switch_to_thread (tp);
7454
7455 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7456 frame = get_current_frame ();
7457
7458 /* If the PC of the thread we were trying to single-step has
7459 changed, then that thread has trapped or been signaled, but the
7460 event has not been reported to GDB yet. Re-poll the target
7461 looking for this particular thread's event (i.e. temporarily
7462 enable schedlock) by:
7463
7464 - setting a break at the current PC
7465 - resuming that particular thread, only (by setting trap
7466 expected)
7467
7468 This prevents us continuously moving the single-step breakpoint
7469 forward, one instruction at a time, overstepping. */
7470
7471 if (tp->suspend.stop_pc != tp->prev_pc)
7472 {
7473 ptid_t resume_ptid;
7474
7475 if (debug_infrun)
7476 fprintf_unfiltered (gdb_stdlog,
7477 "infrun: expected thread advanced also (%s -> %s)\n",
7478 paddress (target_gdbarch (), tp->prev_pc),
7479 paddress (target_gdbarch (), tp->suspend.stop_pc));
7480
7481 /* Clear the info of the previous step-over, as it's no longer
7482 valid (if the thread was trying to step over a breakpoint, it
7483 has already succeeded). It's what keep_going would do too,
7484 if we called it. Do this before trying to insert the sss
7485 breakpoint, otherwise if we were previously trying to step
7486 over this exact address in another thread, the breakpoint is
7487 skipped. */
7488 clear_step_over_info ();
7489 tp->control.trap_expected = 0;
7490
7491 insert_single_step_breakpoint (get_frame_arch (frame),
7492 get_frame_address_space (frame),
7493 tp->suspend.stop_pc);
7494
7495 tp->resumed = true;
7496 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7497 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7498 }
7499 else
7500 {
7501 if (debug_infrun)
7502 fprintf_unfiltered (gdb_stdlog,
7503 "infrun: expected thread still hasn't advanced\n");
7504
7505 keep_going_pass_signal (ecs);
7506 }
7507 return 1;
7508}
7509
7510/* Is thread TP in the middle of (software or hardware)
7511 single-stepping? (Note the result of this function must never be
7512 passed directly as target_resume's STEP parameter.) */
7513
7514static int
7515currently_stepping (struct thread_info *tp)
7516{
7517 return ((tp->control.step_range_end
7518 && tp->control.step_resume_breakpoint == NULL)
7519 || tp->control.trap_expected
7520 || tp->stepped_breakpoint
7521 || bpstat_should_step ());
7522}
7523
7524/* Inferior has stepped into a subroutine call with source code that
7525 we should not step over. Do step to the first line of code in
7526 it. */
7527
7528static void
7529handle_step_into_function (struct gdbarch *gdbarch,
7530 struct execution_control_state *ecs)
7531{
7532 fill_in_stop_func (gdbarch, ecs);
7533
7534 compunit_symtab *cust
7535 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7536 if (cust != NULL && compunit_language (cust) != language_asm)
7537 ecs->stop_func_start
7538 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7539
7540 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7541 /* Use the step_resume_break to step until the end of the prologue,
7542 even if that involves jumps (as it seems to on the vax under
7543 4.2). */
7544 /* If the prologue ends in the middle of a source line, continue to
7545 the end of that source line (if it is still within the function).
7546 Otherwise, just go to end of prologue. */
7547 if (stop_func_sal.end
7548 && stop_func_sal.pc != ecs->stop_func_start
7549 && stop_func_sal.end < ecs->stop_func_end)
7550 ecs->stop_func_start = stop_func_sal.end;
7551
7552 /* Architectures which require breakpoint adjustment might not be able
7553 to place a breakpoint at the computed address. If so, the test
7554 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7555 ecs->stop_func_start to an address at which a breakpoint may be
7556 legitimately placed.
7557
7558 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7559 made, GDB will enter an infinite loop when stepping through
7560 optimized code consisting of VLIW instructions which contain
7561 subinstructions corresponding to different source lines. On
7562 FR-V, it's not permitted to place a breakpoint on any but the
7563 first subinstruction of a VLIW instruction. When a breakpoint is
7564 set, GDB will adjust the breakpoint address to the beginning of
7565 the VLIW instruction. Thus, we need to make the corresponding
7566 adjustment here when computing the stop address. */
7567
7568 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7569 {
7570 ecs->stop_func_start
7571 = gdbarch_adjust_breakpoint_address (gdbarch,
7572 ecs->stop_func_start);
7573 }
7574
7575 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7576 {
7577 /* We are already there: stop now. */
7578 end_stepping_range (ecs);
7579 return;
7580 }
7581 else
7582 {
7583 /* Put the step-breakpoint there and go until there. */
7584 symtab_and_line sr_sal;
7585 sr_sal.pc = ecs->stop_func_start;
7586 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7587 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7588
7589 /* Do not specify what the fp should be when we stop since on
7590 some machines the prologue is where the new fp value is
7591 established. */
7592 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7593
7594 /* And make sure stepping stops right away then. */
7595 ecs->event_thread->control.step_range_end
7596 = ecs->event_thread->control.step_range_start;
7597 }
7598 keep_going (ecs);
7599}
7600
7601/* Inferior has stepped backward into a subroutine call with source
7602 code that we should not step over. Do step to the beginning of the
7603 last line of code in it. */
7604
7605static void
7606handle_step_into_function_backward (struct gdbarch *gdbarch,
7607 struct execution_control_state *ecs)
7608{
7609 struct compunit_symtab *cust;
7610 struct symtab_and_line stop_func_sal;
7611
7612 fill_in_stop_func (gdbarch, ecs);
7613
7614 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7615 if (cust != NULL && compunit_language (cust) != language_asm)
7616 ecs->stop_func_start
7617 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7618
7619 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7620
7621 /* OK, we're just going to keep stepping here. */
7622 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7623 {
7624 /* We're there already. Just stop stepping now. */
7625 end_stepping_range (ecs);
7626 }
7627 else
7628 {
7629 /* Else just reset the step range and keep going.
7630 No step-resume breakpoint, they don't work for
7631 epilogues, which can have multiple entry paths. */
7632 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7633 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7634 keep_going (ecs);
7635 }
7636 return;
7637}
7638
7639/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7640 This is used to both functions and to skip over code. */
7641
7642static void
7643insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7644 struct symtab_and_line sr_sal,
7645 struct frame_id sr_id,
7646 enum bptype sr_type)
7647{
7648 /* There should never be more than one step-resume or longjmp-resume
7649 breakpoint per thread, so we should never be setting a new
7650 step_resume_breakpoint when one is already active. */
7651 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7652 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7653
7654 if (debug_infrun)
7655 fprintf_unfiltered (gdb_stdlog,
7656 "infrun: inserting step-resume breakpoint at %s\n",
7657 paddress (gdbarch, sr_sal.pc));
7658
7659 inferior_thread ()->control.step_resume_breakpoint
7660 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7661}
7662
7663void
7664insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7665 struct symtab_and_line sr_sal,
7666 struct frame_id sr_id)
7667{
7668 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7669 sr_sal, sr_id,
7670 bp_step_resume);
7671}
7672
7673/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7674 This is used to skip a potential signal handler.
7675
7676 This is called with the interrupted function's frame. The signal
7677 handler, when it returns, will resume the interrupted function at
7678 RETURN_FRAME.pc. */
7679
7680static void
7681insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7682{
7683 gdb_assert (return_frame != NULL);
7684
7685 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7686
7687 symtab_and_line sr_sal;
7688 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7689 sr_sal.section = find_pc_overlay (sr_sal.pc);
7690 sr_sal.pspace = get_frame_program_space (return_frame);
7691
7692 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7693 get_stack_frame_id (return_frame),
7694 bp_hp_step_resume);
7695}
7696
7697/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7698 is used to skip a function after stepping into it (for "next" or if
7699 the called function has no debugging information).
7700
7701 The current function has almost always been reached by single
7702 stepping a call or return instruction. NEXT_FRAME belongs to the
7703 current function, and the breakpoint will be set at the caller's
7704 resume address.
7705
7706 This is a separate function rather than reusing
7707 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7708 get_prev_frame, which may stop prematurely (see the implementation
7709 of frame_unwind_caller_id for an example). */
7710
7711static void
7712insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7713{
7714 /* We shouldn't have gotten here if we don't know where the call site
7715 is. */
7716 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7717
7718 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7719
7720 symtab_and_line sr_sal;
7721 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7722 frame_unwind_caller_pc (next_frame));
7723 sr_sal.section = find_pc_overlay (sr_sal.pc);
7724 sr_sal.pspace = frame_unwind_program_space (next_frame);
7725
7726 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7727 frame_unwind_caller_id (next_frame));
7728}
7729
7730/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7731 new breakpoint at the target of a jmp_buf. The handling of
7732 longjmp-resume uses the same mechanisms used for handling
7733 "step-resume" breakpoints. */
7734
7735static void
7736insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7737{
7738 /* There should never be more than one longjmp-resume breakpoint per
7739 thread, so we should never be setting a new
7740 longjmp_resume_breakpoint when one is already active. */
7741 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7742
7743 if (debug_infrun)
7744 fprintf_unfiltered (gdb_stdlog,
7745 "infrun: inserting longjmp-resume breakpoint at %s\n",
7746 paddress (gdbarch, pc));
7747
7748 inferior_thread ()->control.exception_resume_breakpoint =
7749 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7750}
7751
7752/* Insert an exception resume breakpoint. TP is the thread throwing
7753 the exception. The block B is the block of the unwinder debug hook
7754 function. FRAME is the frame corresponding to the call to this
7755 function. SYM is the symbol of the function argument holding the
7756 target PC of the exception. */
7757
7758static void
7759insert_exception_resume_breakpoint (struct thread_info *tp,
7760 const struct block *b,
7761 struct frame_info *frame,
7762 struct symbol *sym)
7763{
7764 try
7765 {
7766 struct block_symbol vsym;
7767 struct value *value;
7768 CORE_ADDR handler;
7769 struct breakpoint *bp;
7770
7771 vsym = lookup_symbol_search_name (sym->search_name (),
7772 b, VAR_DOMAIN);
7773 value = read_var_value (vsym.symbol, vsym.block, frame);
7774 /* If the value was optimized out, revert to the old behavior. */
7775 if (! value_optimized_out (value))
7776 {
7777 handler = value_as_address (value);
7778
7779 if (debug_infrun)
7780 fprintf_unfiltered (gdb_stdlog,
7781 "infrun: exception resume at %lx\n",
7782 (unsigned long) handler);
7783
7784 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7785 handler,
7786 bp_exception_resume).release ();
7787
7788 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7789 frame = NULL;
7790
7791 bp->thread = tp->global_num;
7792 inferior_thread ()->control.exception_resume_breakpoint = bp;
7793 }
7794 }
7795 catch (const gdb_exception_error &e)
7796 {
7797 /* We want to ignore errors here. */
7798 }
7799}
7800
7801/* A helper for check_exception_resume that sets an
7802 exception-breakpoint based on a SystemTap probe. */
7803
7804static void
7805insert_exception_resume_from_probe (struct thread_info *tp,
7806 const struct bound_probe *probe,
7807 struct frame_info *frame)
7808{
7809 struct value *arg_value;
7810 CORE_ADDR handler;
7811 struct breakpoint *bp;
7812
7813 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7814 if (!arg_value)
7815 return;
7816
7817 handler = value_as_address (arg_value);
7818
7819 if (debug_infrun)
7820 fprintf_unfiltered (gdb_stdlog,
7821 "infrun: exception resume at %s\n",
7822 paddress (probe->objfile->arch (),
7823 handler));
7824
7825 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7826 handler, bp_exception_resume).release ();
7827 bp->thread = tp->global_num;
7828 inferior_thread ()->control.exception_resume_breakpoint = bp;
7829}
7830
7831/* This is called when an exception has been intercepted. Check to
7832 see whether the exception's destination is of interest, and if so,
7833 set an exception resume breakpoint there. */
7834
7835static void
7836check_exception_resume (struct execution_control_state *ecs,
7837 struct frame_info *frame)
7838{
7839 struct bound_probe probe;
7840 struct symbol *func;
7841
7842 /* First see if this exception unwinding breakpoint was set via a
7843 SystemTap probe point. If so, the probe has two arguments: the
7844 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7845 set a breakpoint there. */
7846 probe = find_probe_by_pc (get_frame_pc (frame));
7847 if (probe.prob)
7848 {
7849 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7850 return;
7851 }
7852
7853 func = get_frame_function (frame);
7854 if (!func)
7855 return;
7856
7857 try
7858 {
7859 const struct block *b;
7860 struct block_iterator iter;
7861 struct symbol *sym;
7862 int argno = 0;
7863
7864 /* The exception breakpoint is a thread-specific breakpoint on
7865 the unwinder's debug hook, declared as:
7866
7867 void _Unwind_DebugHook (void *cfa, void *handler);
7868
7869 The CFA argument indicates the frame to which control is
7870 about to be transferred. HANDLER is the destination PC.
7871
7872 We ignore the CFA and set a temporary breakpoint at HANDLER.
7873 This is not extremely efficient but it avoids issues in gdb
7874 with computing the DWARF CFA, and it also works even in weird
7875 cases such as throwing an exception from inside a signal
7876 handler. */
7877
7878 b = SYMBOL_BLOCK_VALUE (func);
7879 ALL_BLOCK_SYMBOLS (b, iter, sym)
7880 {
7881 if (!SYMBOL_IS_ARGUMENT (sym))
7882 continue;
7883
7884 if (argno == 0)
7885 ++argno;
7886 else
7887 {
7888 insert_exception_resume_breakpoint (ecs->event_thread,
7889 b, frame, sym);
7890 break;
7891 }
7892 }
7893 }
7894 catch (const gdb_exception_error &e)
7895 {
7896 }
7897}
7898
7899static void
7900stop_waiting (struct execution_control_state *ecs)
7901{
7902 if (debug_infrun)
7903 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7904
7905 /* Let callers know we don't want to wait for the inferior anymore. */
7906 ecs->wait_some_more = 0;
7907
7908 /* If all-stop, but there exists a non-stop target, stop all
7909 threads now that we're presenting the stop to the user. */
7910 if (!non_stop && exists_non_stop_target ())
7911 stop_all_threads ();
7912}
7913
7914/* Like keep_going, but passes the signal to the inferior, even if the
7915 signal is set to nopass. */
7916
7917static void
7918keep_going_pass_signal (struct execution_control_state *ecs)
7919{
7920 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7921 gdb_assert (!ecs->event_thread->resumed);
7922
7923 /* Save the pc before execution, to compare with pc after stop. */
7924 ecs->event_thread->prev_pc
7925 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7926
7927 if (ecs->event_thread->control.trap_expected)
7928 {
7929 struct thread_info *tp = ecs->event_thread;
7930
7931 if (debug_infrun)
7932 fprintf_unfiltered (gdb_stdlog,
7933 "infrun: %s has trap_expected set, "
7934 "resuming to collect trap\n",
7935 target_pid_to_str (tp->ptid).c_str ());
7936
7937 /* We haven't yet gotten our trap, and either: intercepted a
7938 non-signal event (e.g., a fork); or took a signal which we
7939 are supposed to pass through to the inferior. Simply
7940 continue. */
7941 resume (ecs->event_thread->suspend.stop_signal);
7942 }
7943 else if (step_over_info_valid_p ())
7944 {
7945 /* Another thread is stepping over a breakpoint in-line. If
7946 this thread needs a step-over too, queue the request. In
7947 either case, this resume must be deferred for later. */
7948 struct thread_info *tp = ecs->event_thread;
7949
7950 if (ecs->hit_singlestep_breakpoint
7951 || thread_still_needs_step_over (tp))
7952 {
7953 if (debug_infrun)
7954 fprintf_unfiltered (gdb_stdlog,
7955 "infrun: step-over already in progress: "
7956 "step-over for %s deferred\n",
7957 target_pid_to_str (tp->ptid).c_str ());
7958 thread_step_over_chain_enqueue (tp);
7959 }
7960 else
7961 {
7962 if (debug_infrun)
7963 fprintf_unfiltered (gdb_stdlog,
7964 "infrun: step-over in progress: "
7965 "resume of %s deferred\n",
7966 target_pid_to_str (tp->ptid).c_str ());
7967 }
7968 }
7969 else
7970 {
7971 struct regcache *regcache = get_current_regcache ();
7972 int remove_bp;
7973 int remove_wps;
7974 step_over_what step_what;
7975
7976 /* Either the trap was not expected, but we are continuing
7977 anyway (if we got a signal, the user asked it be passed to
7978 the child)
7979 -- or --
7980 We got our expected trap, but decided we should resume from
7981 it.
7982
7983 We're going to run this baby now!
7984
7985 Note that insert_breakpoints won't try to re-insert
7986 already inserted breakpoints. Therefore, we don't
7987 care if breakpoints were already inserted, or not. */
7988
7989 /* If we need to step over a breakpoint, and we're not using
7990 displaced stepping to do so, insert all breakpoints
7991 (watchpoints, etc.) but the one we're stepping over, step one
7992 instruction, and then re-insert the breakpoint when that step
7993 is finished. */
7994
7995 step_what = thread_still_needs_step_over (ecs->event_thread);
7996
7997 remove_bp = (ecs->hit_singlestep_breakpoint
7998 || (step_what & STEP_OVER_BREAKPOINT));
7999 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8000
8001 /* We can't use displaced stepping if we need to step past a
8002 watchpoint. The instruction copied to the scratch pad would
8003 still trigger the watchpoint. */
8004 if (remove_bp
8005 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8006 {
8007 set_step_over_info (regcache->aspace (),
8008 regcache_read_pc (regcache), remove_wps,
8009 ecs->event_thread->global_num);
8010 }
8011 else if (remove_wps)
8012 set_step_over_info (NULL, 0, remove_wps, -1);
8013
8014 /* If we now need to do an in-line step-over, we need to stop
8015 all other threads. Note this must be done before
8016 insert_breakpoints below, because that removes the breakpoint
8017 we're about to step over, otherwise other threads could miss
8018 it. */
8019 if (step_over_info_valid_p () && target_is_non_stop_p ())
8020 stop_all_threads ();
8021
8022 /* Stop stepping if inserting breakpoints fails. */
8023 try
8024 {
8025 insert_breakpoints ();
8026 }
8027 catch (const gdb_exception_error &e)
8028 {
8029 exception_print (gdb_stderr, e);
8030 stop_waiting (ecs);
8031 clear_step_over_info ();
8032 return;
8033 }
8034
8035 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8036
8037 resume (ecs->event_thread->suspend.stop_signal);
8038 }
8039
8040 prepare_to_wait (ecs);
8041}
8042
8043/* Called when we should continue running the inferior, because the
8044 current event doesn't cause a user visible stop. This does the
8045 resuming part; waiting for the next event is done elsewhere. */
8046
8047static void
8048keep_going (struct execution_control_state *ecs)
8049{
8050 if (ecs->event_thread->control.trap_expected
8051 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8052 ecs->event_thread->control.trap_expected = 0;
8053
8054 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8055 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8056 keep_going_pass_signal (ecs);
8057}
8058
8059/* This function normally comes after a resume, before
8060 handle_inferior_event exits. It takes care of any last bits of
8061 housekeeping, and sets the all-important wait_some_more flag. */
8062
8063static void
8064prepare_to_wait (struct execution_control_state *ecs)
8065{
8066 if (debug_infrun)
8067 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8068
8069 ecs->wait_some_more = 1;
8070
8071 if (!target_is_async_p ())
8072 mark_infrun_async_event_handler ();
8073}
8074
8075/* We are done with the step range of a step/next/si/ni command.
8076 Called once for each n of a "step n" operation. */
8077
8078static void
8079end_stepping_range (struct execution_control_state *ecs)
8080{
8081 ecs->event_thread->control.stop_step = 1;
8082 stop_waiting (ecs);
8083}
8084
8085/* Several print_*_reason functions to print why the inferior has stopped.
8086 We always print something when the inferior exits, or receives a signal.
8087 The rest of the cases are dealt with later on in normal_stop and
8088 print_it_typical. Ideally there should be a call to one of these
8089 print_*_reason functions functions from handle_inferior_event each time
8090 stop_waiting is called.
8091
8092 Note that we don't call these directly, instead we delegate that to
8093 the interpreters, through observers. Interpreters then call these
8094 with whatever uiout is right. */
8095
8096void
8097print_end_stepping_range_reason (struct ui_out *uiout)
8098{
8099 /* For CLI-like interpreters, print nothing. */
8100
8101 if (uiout->is_mi_like_p ())
8102 {
8103 uiout->field_string ("reason",
8104 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8105 }
8106}
8107
8108void
8109print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8110{
8111 annotate_signalled ();
8112 if (uiout->is_mi_like_p ())
8113 uiout->field_string
8114 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8115 uiout->text ("\nProgram terminated with signal ");
8116 annotate_signal_name ();
8117 uiout->field_string ("signal-name",
8118 gdb_signal_to_name (siggnal));
8119 annotate_signal_name_end ();
8120 uiout->text (", ");
8121 annotate_signal_string ();
8122 uiout->field_string ("signal-meaning",
8123 gdb_signal_to_string (siggnal));
8124 annotate_signal_string_end ();
8125 uiout->text (".\n");
8126 uiout->text ("The program no longer exists.\n");
8127}
8128
8129void
8130print_exited_reason (struct ui_out *uiout, int exitstatus)
8131{
8132 struct inferior *inf = current_inferior ();
8133 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8134
8135 annotate_exited (exitstatus);
8136 if (exitstatus)
8137 {
8138 if (uiout->is_mi_like_p ())
8139 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8140 std::string exit_code_str
8141 = string_printf ("0%o", (unsigned int) exitstatus);
8142 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8143 plongest (inf->num), pidstr.c_str (),
8144 string_field ("exit-code", exit_code_str.c_str ()));
8145 }
8146 else
8147 {
8148 if (uiout->is_mi_like_p ())
8149 uiout->field_string
8150 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8151 uiout->message ("[Inferior %s (%s) exited normally]\n",
8152 plongest (inf->num), pidstr.c_str ());
8153 }
8154}
8155
8156/* Some targets/architectures can do extra processing/display of
8157 segmentation faults. E.g., Intel MPX boundary faults.
8158 Call the architecture dependent function to handle the fault. */
8159
8160static void
8161handle_segmentation_fault (struct ui_out *uiout)
8162{
8163 struct regcache *regcache = get_current_regcache ();
8164 struct gdbarch *gdbarch = regcache->arch ();
8165
8166 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8167 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8168}
8169
8170void
8171print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8172{
8173 struct thread_info *thr = inferior_thread ();
8174
8175 annotate_signal ();
8176
8177 if (uiout->is_mi_like_p ())
8178 ;
8179 else if (show_thread_that_caused_stop ())
8180 {
8181 const char *name;
8182
8183 uiout->text ("\nThread ");
8184 uiout->field_string ("thread-id", print_thread_id (thr));
8185
8186 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8187 if (name != NULL)
8188 {
8189 uiout->text (" \"");
8190 uiout->field_string ("name", name);
8191 uiout->text ("\"");
8192 }
8193 }
8194 else
8195 uiout->text ("\nProgram");
8196
8197 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8198 uiout->text (" stopped");
8199 else
8200 {
8201 uiout->text (" received signal ");
8202 annotate_signal_name ();
8203 if (uiout->is_mi_like_p ())
8204 uiout->field_string
8205 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8206 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8207 annotate_signal_name_end ();
8208 uiout->text (", ");
8209 annotate_signal_string ();
8210 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8211
8212 if (siggnal == GDB_SIGNAL_SEGV)
8213 handle_segmentation_fault (uiout);
8214
8215 annotate_signal_string_end ();
8216 }
8217 uiout->text (".\n");
8218}
8219
8220void
8221print_no_history_reason (struct ui_out *uiout)
8222{
8223 uiout->text ("\nNo more reverse-execution history.\n");
8224}
8225
8226/* Print current location without a level number, if we have changed
8227 functions or hit a breakpoint. Print source line if we have one.
8228 bpstat_print contains the logic deciding in detail what to print,
8229 based on the event(s) that just occurred. */
8230
8231static void
8232print_stop_location (struct target_waitstatus *ws)
8233{
8234 int bpstat_ret;
8235 enum print_what source_flag;
8236 int do_frame_printing = 1;
8237 struct thread_info *tp = inferior_thread ();
8238
8239 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8240 switch (bpstat_ret)
8241 {
8242 case PRINT_UNKNOWN:
8243 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8244 should) carry around the function and does (or should) use
8245 that when doing a frame comparison. */
8246 if (tp->control.stop_step
8247 && frame_id_eq (tp->control.step_frame_id,
8248 get_frame_id (get_current_frame ()))
8249 && (tp->control.step_start_function
8250 == find_pc_function (tp->suspend.stop_pc)))
8251 {
8252 /* Finished step, just print source line. */
8253 source_flag = SRC_LINE;
8254 }
8255 else
8256 {
8257 /* Print location and source line. */
8258 source_flag = SRC_AND_LOC;
8259 }
8260 break;
8261 case PRINT_SRC_AND_LOC:
8262 /* Print location and source line. */
8263 source_flag = SRC_AND_LOC;
8264 break;
8265 case PRINT_SRC_ONLY:
8266 source_flag = SRC_LINE;
8267 break;
8268 case PRINT_NOTHING:
8269 /* Something bogus. */
8270 source_flag = SRC_LINE;
8271 do_frame_printing = 0;
8272 break;
8273 default:
8274 internal_error (__FILE__, __LINE__, _("Unknown value."));
8275 }
8276
8277 /* The behavior of this routine with respect to the source
8278 flag is:
8279 SRC_LINE: Print only source line
8280 LOCATION: Print only location
8281 SRC_AND_LOC: Print location and source line. */
8282 if (do_frame_printing)
8283 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8284}
8285
8286/* See infrun.h. */
8287
8288void
8289print_stop_event (struct ui_out *uiout, bool displays)
8290{
8291 struct target_waitstatus last;
8292 struct thread_info *tp;
8293
8294 get_last_target_status (nullptr, nullptr, &last);
8295
8296 {
8297 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8298
8299 print_stop_location (&last);
8300
8301 /* Display the auto-display expressions. */
8302 if (displays)
8303 do_displays ();
8304 }
8305
8306 tp = inferior_thread ();
8307 if (tp->thread_fsm != NULL
8308 && tp->thread_fsm->finished_p ())
8309 {
8310 struct return_value_info *rv;
8311
8312 rv = tp->thread_fsm->return_value ();
8313 if (rv != NULL)
8314 print_return_value (uiout, rv);
8315 }
8316}
8317
8318/* See infrun.h. */
8319
8320void
8321maybe_remove_breakpoints (void)
8322{
8323 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8324 {
8325 if (remove_breakpoints ())
8326 {
8327 target_terminal::ours_for_output ();
8328 printf_filtered (_("Cannot remove breakpoints because "
8329 "program is no longer writable.\nFurther "
8330 "execution is probably impossible.\n"));
8331 }
8332 }
8333}
8334
8335/* The execution context that just caused a normal stop. */
8336
8337struct stop_context
8338{
8339 stop_context ();
8340 ~stop_context ();
8341
8342 DISABLE_COPY_AND_ASSIGN (stop_context);
8343
8344 bool changed () const;
8345
8346 /* The stop ID. */
8347 ULONGEST stop_id;
8348
8349 /* The event PTID. */
8350
8351 ptid_t ptid;
8352
8353 /* If stopp for a thread event, this is the thread that caused the
8354 stop. */
8355 struct thread_info *thread;
8356
8357 /* The inferior that caused the stop. */
8358 int inf_num;
8359};
8360
8361/* Initializes a new stop context. If stopped for a thread event, this
8362 takes a strong reference to the thread. */
8363
8364stop_context::stop_context ()
8365{
8366 stop_id = get_stop_id ();
8367 ptid = inferior_ptid;
8368 inf_num = current_inferior ()->num;
8369
8370 if (inferior_ptid != null_ptid)
8371 {
8372 /* Take a strong reference so that the thread can't be deleted
8373 yet. */
8374 thread = inferior_thread ();
8375 thread->incref ();
8376 }
8377 else
8378 thread = NULL;
8379}
8380
8381/* Release a stop context previously created with save_stop_context.
8382 Releases the strong reference to the thread as well. */
8383
8384stop_context::~stop_context ()
8385{
8386 if (thread != NULL)
8387 thread->decref ();
8388}
8389
8390/* Return true if the current context no longer matches the saved stop
8391 context. */
8392
8393bool
8394stop_context::changed () const
8395{
8396 if (ptid != inferior_ptid)
8397 return true;
8398 if (inf_num != current_inferior ()->num)
8399 return true;
8400 if (thread != NULL && thread->state != THREAD_STOPPED)
8401 return true;
8402 if (get_stop_id () != stop_id)
8403 return true;
8404 return false;
8405}
8406
8407/* See infrun.h. */
8408
8409int
8410normal_stop (void)
8411{
8412 struct target_waitstatus last;
8413
8414 get_last_target_status (nullptr, nullptr, &last);
8415
8416 new_stop_id ();
8417
8418 /* If an exception is thrown from this point on, make sure to
8419 propagate GDB's knowledge of the executing state to the
8420 frontend/user running state. A QUIT is an easy exception to see
8421 here, so do this before any filtered output. */
8422
8423 ptid_t finish_ptid = null_ptid;
8424
8425 if (!non_stop)
8426 finish_ptid = minus_one_ptid;
8427 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8428 || last.kind == TARGET_WAITKIND_EXITED)
8429 {
8430 /* On some targets, we may still have live threads in the
8431 inferior when we get a process exit event. E.g., for
8432 "checkpoint", when the current checkpoint/fork exits,
8433 linux-fork.c automatically switches to another fork from
8434 within target_mourn_inferior. */
8435 if (inferior_ptid != null_ptid)
8436 finish_ptid = ptid_t (inferior_ptid.pid ());
8437 }
8438 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8439 finish_ptid = inferior_ptid;
8440
8441 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8442 if (finish_ptid != null_ptid)
8443 {
8444 maybe_finish_thread_state.emplace
8445 (user_visible_resume_target (finish_ptid), finish_ptid);
8446 }
8447
8448 /* As we're presenting a stop, and potentially removing breakpoints,
8449 update the thread list so we can tell whether there are threads
8450 running on the target. With target remote, for example, we can
8451 only learn about new threads when we explicitly update the thread
8452 list. Do this before notifying the interpreters about signal
8453 stops, end of stepping ranges, etc., so that the "new thread"
8454 output is emitted before e.g., "Program received signal FOO",
8455 instead of after. */
8456 update_thread_list ();
8457
8458 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8459 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8460
8461 /* As with the notification of thread events, we want to delay
8462 notifying the user that we've switched thread context until
8463 the inferior actually stops.
8464
8465 There's no point in saying anything if the inferior has exited.
8466 Note that SIGNALLED here means "exited with a signal", not
8467 "received a signal".
8468
8469 Also skip saying anything in non-stop mode. In that mode, as we
8470 don't want GDB to switch threads behind the user's back, to avoid
8471 races where the user is typing a command to apply to thread x,
8472 but GDB switches to thread y before the user finishes entering
8473 the command, fetch_inferior_event installs a cleanup to restore
8474 the current thread back to the thread the user had selected right
8475 after this event is handled, so we're not really switching, only
8476 informing of a stop. */
8477 if (!non_stop
8478 && previous_inferior_ptid != inferior_ptid
8479 && target_has_execution
8480 && last.kind != TARGET_WAITKIND_SIGNALLED
8481 && last.kind != TARGET_WAITKIND_EXITED
8482 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8483 {
8484 SWITCH_THRU_ALL_UIS ()
8485 {
8486 target_terminal::ours_for_output ();
8487 printf_filtered (_("[Switching to %s]\n"),
8488 target_pid_to_str (inferior_ptid).c_str ());
8489 annotate_thread_changed ();
8490 }
8491 previous_inferior_ptid = inferior_ptid;
8492 }
8493
8494 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8495 {
8496 SWITCH_THRU_ALL_UIS ()
8497 if (current_ui->prompt_state == PROMPT_BLOCKED)
8498 {
8499 target_terminal::ours_for_output ();
8500 printf_filtered (_("No unwaited-for children left.\n"));
8501 }
8502 }
8503
8504 /* Note: this depends on the update_thread_list call above. */
8505 maybe_remove_breakpoints ();
8506
8507 /* If an auto-display called a function and that got a signal,
8508 delete that auto-display to avoid an infinite recursion. */
8509
8510 if (stopped_by_random_signal)
8511 disable_current_display ();
8512
8513 SWITCH_THRU_ALL_UIS ()
8514 {
8515 async_enable_stdin ();
8516 }
8517
8518 /* Let the user/frontend see the threads as stopped. */
8519 maybe_finish_thread_state.reset ();
8520
8521 /* Select innermost stack frame - i.e., current frame is frame 0,
8522 and current location is based on that. Handle the case where the
8523 dummy call is returning after being stopped. E.g. the dummy call
8524 previously hit a breakpoint. (If the dummy call returns
8525 normally, we won't reach here.) Do this before the stop hook is
8526 run, so that it doesn't get to see the temporary dummy frame,
8527 which is not where we'll present the stop. */
8528 if (has_stack_frames ())
8529 {
8530 if (stop_stack_dummy == STOP_STACK_DUMMY)
8531 {
8532 /* Pop the empty frame that contains the stack dummy. This
8533 also restores inferior state prior to the call (struct
8534 infcall_suspend_state). */
8535 struct frame_info *frame = get_current_frame ();
8536
8537 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8538 frame_pop (frame);
8539 /* frame_pop calls reinit_frame_cache as the last thing it
8540 does which means there's now no selected frame. */
8541 }
8542
8543 select_frame (get_current_frame ());
8544
8545 /* Set the current source location. */
8546 set_current_sal_from_frame (get_current_frame ());
8547 }
8548
8549 /* Look up the hook_stop and run it (CLI internally handles problem
8550 of stop_command's pre-hook not existing). */
8551 if (stop_command != NULL)
8552 {
8553 stop_context saved_context;
8554
8555 try
8556 {
8557 execute_cmd_pre_hook (stop_command);
8558 }
8559 catch (const gdb_exception &ex)
8560 {
8561 exception_fprintf (gdb_stderr, ex,
8562 "Error while running hook_stop:\n");
8563 }
8564
8565 /* If the stop hook resumes the target, then there's no point in
8566 trying to notify about the previous stop; its context is
8567 gone. Likewise if the command switches thread or inferior --
8568 the observers would print a stop for the wrong
8569 thread/inferior. */
8570 if (saved_context.changed ())
8571 return 1;
8572 }
8573
8574 /* Notify observers about the stop. This is where the interpreters
8575 print the stop event. */
8576 if (inferior_ptid != null_ptid)
8577 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8578 stop_print_frame);
8579 else
8580 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8581
8582 annotate_stopped ();
8583
8584 if (target_has_execution)
8585 {
8586 if (last.kind != TARGET_WAITKIND_SIGNALLED
8587 && last.kind != TARGET_WAITKIND_EXITED
8588 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8589 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8590 Delete any breakpoint that is to be deleted at the next stop. */
8591 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8592 }
8593
8594 /* Try to get rid of automatically added inferiors that are no
8595 longer needed. Keeping those around slows down things linearly.
8596 Note that this never removes the current inferior. */
8597 prune_inferiors ();
8598
8599 return 0;
8600}
8601\f
8602int
8603signal_stop_state (int signo)
8604{
8605 return signal_stop[signo];
8606}
8607
8608int
8609signal_print_state (int signo)
8610{
8611 return signal_print[signo];
8612}
8613
8614int
8615signal_pass_state (int signo)
8616{
8617 return signal_program[signo];
8618}
8619
8620static void
8621signal_cache_update (int signo)
8622{
8623 if (signo == -1)
8624 {
8625 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8626 signal_cache_update (signo);
8627
8628 return;
8629 }
8630
8631 signal_pass[signo] = (signal_stop[signo] == 0
8632 && signal_print[signo] == 0
8633 && signal_program[signo] == 1
8634 && signal_catch[signo] == 0);
8635}
8636
8637int
8638signal_stop_update (int signo, int state)
8639{
8640 int ret = signal_stop[signo];
8641
8642 signal_stop[signo] = state;
8643 signal_cache_update (signo);
8644 return ret;
8645}
8646
8647int
8648signal_print_update (int signo, int state)
8649{
8650 int ret = signal_print[signo];
8651
8652 signal_print[signo] = state;
8653 signal_cache_update (signo);
8654 return ret;
8655}
8656
8657int
8658signal_pass_update (int signo, int state)
8659{
8660 int ret = signal_program[signo];
8661
8662 signal_program[signo] = state;
8663 signal_cache_update (signo);
8664 return ret;
8665}
8666
8667/* Update the global 'signal_catch' from INFO and notify the
8668 target. */
8669
8670void
8671signal_catch_update (const unsigned int *info)
8672{
8673 int i;
8674
8675 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8676 signal_catch[i] = info[i] > 0;
8677 signal_cache_update (-1);
8678 target_pass_signals (signal_pass);
8679}
8680
8681static void
8682sig_print_header (void)
8683{
8684 printf_filtered (_("Signal Stop\tPrint\tPass "
8685 "to program\tDescription\n"));
8686}
8687
8688static void
8689sig_print_info (enum gdb_signal oursig)
8690{
8691 const char *name = gdb_signal_to_name (oursig);
8692 int name_padding = 13 - strlen (name);
8693
8694 if (name_padding <= 0)
8695 name_padding = 0;
8696
8697 printf_filtered ("%s", name);
8698 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8699 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8700 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8701 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8702 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8703}
8704
8705/* Specify how various signals in the inferior should be handled. */
8706
8707static void
8708handle_command (const char *args, int from_tty)
8709{
8710 int digits, wordlen;
8711 int sigfirst, siglast;
8712 enum gdb_signal oursig;
8713 int allsigs;
8714
8715 if (args == NULL)
8716 {
8717 error_no_arg (_("signal to handle"));
8718 }
8719
8720 /* Allocate and zero an array of flags for which signals to handle. */
8721
8722 const size_t nsigs = GDB_SIGNAL_LAST;
8723 unsigned char sigs[nsigs] {};
8724
8725 /* Break the command line up into args. */
8726
8727 gdb_argv built_argv (args);
8728
8729 /* Walk through the args, looking for signal oursigs, signal names, and
8730 actions. Signal numbers and signal names may be interspersed with
8731 actions, with the actions being performed for all signals cumulatively
8732 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8733
8734 for (char *arg : built_argv)
8735 {
8736 wordlen = strlen (arg);
8737 for (digits = 0; isdigit (arg[digits]); digits++)
8738 {;
8739 }
8740 allsigs = 0;
8741 sigfirst = siglast = -1;
8742
8743 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8744 {
8745 /* Apply action to all signals except those used by the
8746 debugger. Silently skip those. */
8747 allsigs = 1;
8748 sigfirst = 0;
8749 siglast = nsigs - 1;
8750 }
8751 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8752 {
8753 SET_SIGS (nsigs, sigs, signal_stop);
8754 SET_SIGS (nsigs, sigs, signal_print);
8755 }
8756 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8757 {
8758 UNSET_SIGS (nsigs, sigs, signal_program);
8759 }
8760 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8761 {
8762 SET_SIGS (nsigs, sigs, signal_print);
8763 }
8764 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8765 {
8766 SET_SIGS (nsigs, sigs, signal_program);
8767 }
8768 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8769 {
8770 UNSET_SIGS (nsigs, sigs, signal_stop);
8771 }
8772 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8773 {
8774 SET_SIGS (nsigs, sigs, signal_program);
8775 }
8776 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8777 {
8778 UNSET_SIGS (nsigs, sigs, signal_print);
8779 UNSET_SIGS (nsigs, sigs, signal_stop);
8780 }
8781 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8782 {
8783 UNSET_SIGS (nsigs, sigs, signal_program);
8784 }
8785 else if (digits > 0)
8786 {
8787 /* It is numeric. The numeric signal refers to our own
8788 internal signal numbering from target.h, not to host/target
8789 signal number. This is a feature; users really should be
8790 using symbolic names anyway, and the common ones like
8791 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8792
8793 sigfirst = siglast = (int)
8794 gdb_signal_from_command (atoi (arg));
8795 if (arg[digits] == '-')
8796 {
8797 siglast = (int)
8798 gdb_signal_from_command (atoi (arg + digits + 1));
8799 }
8800 if (sigfirst > siglast)
8801 {
8802 /* Bet he didn't figure we'd think of this case... */
8803 std::swap (sigfirst, siglast);
8804 }
8805 }
8806 else
8807 {
8808 oursig = gdb_signal_from_name (arg);
8809 if (oursig != GDB_SIGNAL_UNKNOWN)
8810 {
8811 sigfirst = siglast = (int) oursig;
8812 }
8813 else
8814 {
8815 /* Not a number and not a recognized flag word => complain. */
8816 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8817 }
8818 }
8819
8820 /* If any signal numbers or symbol names were found, set flags for
8821 which signals to apply actions to. */
8822
8823 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8824 {
8825 switch ((enum gdb_signal) signum)
8826 {
8827 case GDB_SIGNAL_TRAP:
8828 case GDB_SIGNAL_INT:
8829 if (!allsigs && !sigs[signum])
8830 {
8831 if (query (_("%s is used by the debugger.\n\
8832Are you sure you want to change it? "),
8833 gdb_signal_to_name ((enum gdb_signal) signum)))
8834 {
8835 sigs[signum] = 1;
8836 }
8837 else
8838 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8839 }
8840 break;
8841 case GDB_SIGNAL_0:
8842 case GDB_SIGNAL_DEFAULT:
8843 case GDB_SIGNAL_UNKNOWN:
8844 /* Make sure that "all" doesn't print these. */
8845 break;
8846 default:
8847 sigs[signum] = 1;
8848 break;
8849 }
8850 }
8851 }
8852
8853 for (int signum = 0; signum < nsigs; signum++)
8854 if (sigs[signum])
8855 {
8856 signal_cache_update (-1);
8857 target_pass_signals (signal_pass);
8858 target_program_signals (signal_program);
8859
8860 if (from_tty)
8861 {
8862 /* Show the results. */
8863 sig_print_header ();
8864 for (; signum < nsigs; signum++)
8865 if (sigs[signum])
8866 sig_print_info ((enum gdb_signal) signum);
8867 }
8868
8869 break;
8870 }
8871}
8872
8873/* Complete the "handle" command. */
8874
8875static void
8876handle_completer (struct cmd_list_element *ignore,
8877 completion_tracker &tracker,
8878 const char *text, const char *word)
8879{
8880 static const char * const keywords[] =
8881 {
8882 "all",
8883 "stop",
8884 "ignore",
8885 "print",
8886 "pass",
8887 "nostop",
8888 "noignore",
8889 "noprint",
8890 "nopass",
8891 NULL,
8892 };
8893
8894 signal_completer (ignore, tracker, text, word);
8895 complete_on_enum (tracker, keywords, word, word);
8896}
8897
8898enum gdb_signal
8899gdb_signal_from_command (int num)
8900{
8901 if (num >= 1 && num <= 15)
8902 return (enum gdb_signal) num;
8903 error (_("Only signals 1-15 are valid as numeric signals.\n\
8904Use \"info signals\" for a list of symbolic signals."));
8905}
8906
8907/* Print current contents of the tables set by the handle command.
8908 It is possible we should just be printing signals actually used
8909 by the current target (but for things to work right when switching
8910 targets, all signals should be in the signal tables). */
8911
8912static void
8913info_signals_command (const char *signum_exp, int from_tty)
8914{
8915 enum gdb_signal oursig;
8916
8917 sig_print_header ();
8918
8919 if (signum_exp)
8920 {
8921 /* First see if this is a symbol name. */
8922 oursig = gdb_signal_from_name (signum_exp);
8923 if (oursig == GDB_SIGNAL_UNKNOWN)
8924 {
8925 /* No, try numeric. */
8926 oursig =
8927 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8928 }
8929 sig_print_info (oursig);
8930 return;
8931 }
8932
8933 printf_filtered ("\n");
8934 /* These ugly casts brought to you by the native VAX compiler. */
8935 for (oursig = GDB_SIGNAL_FIRST;
8936 (int) oursig < (int) GDB_SIGNAL_LAST;
8937 oursig = (enum gdb_signal) ((int) oursig + 1))
8938 {
8939 QUIT;
8940
8941 if (oursig != GDB_SIGNAL_UNKNOWN
8942 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8943 sig_print_info (oursig);
8944 }
8945
8946 printf_filtered (_("\nUse the \"handle\" command "
8947 "to change these tables.\n"));
8948}
8949
8950/* The $_siginfo convenience variable is a bit special. We don't know
8951 for sure the type of the value until we actually have a chance to
8952 fetch the data. The type can change depending on gdbarch, so it is
8953 also dependent on which thread you have selected.
8954
8955 1. making $_siginfo be an internalvar that creates a new value on
8956 access.
8957
8958 2. making the value of $_siginfo be an lval_computed value. */
8959
8960/* This function implements the lval_computed support for reading a
8961 $_siginfo value. */
8962
8963static void
8964siginfo_value_read (struct value *v)
8965{
8966 LONGEST transferred;
8967
8968 /* If we can access registers, so can we access $_siginfo. Likewise
8969 vice versa. */
8970 validate_registers_access ();
8971
8972 transferred =
8973 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8974 NULL,
8975 value_contents_all_raw (v),
8976 value_offset (v),
8977 TYPE_LENGTH (value_type (v)));
8978
8979 if (transferred != TYPE_LENGTH (value_type (v)))
8980 error (_("Unable to read siginfo"));
8981}
8982
8983/* This function implements the lval_computed support for writing a
8984 $_siginfo value. */
8985
8986static void
8987siginfo_value_write (struct value *v, struct value *fromval)
8988{
8989 LONGEST transferred;
8990
8991 /* If we can access registers, so can we access $_siginfo. Likewise
8992 vice versa. */
8993 validate_registers_access ();
8994
8995 transferred = target_write (current_top_target (),
8996 TARGET_OBJECT_SIGNAL_INFO,
8997 NULL,
8998 value_contents_all_raw (fromval),
8999 value_offset (v),
9000 TYPE_LENGTH (value_type (fromval)));
9001
9002 if (transferred != TYPE_LENGTH (value_type (fromval)))
9003 error (_("Unable to write siginfo"));
9004}
9005
9006static const struct lval_funcs siginfo_value_funcs =
9007 {
9008 siginfo_value_read,
9009 siginfo_value_write
9010 };
9011
9012/* Return a new value with the correct type for the siginfo object of
9013 the current thread using architecture GDBARCH. Return a void value
9014 if there's no object available. */
9015
9016static struct value *
9017siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9018 void *ignore)
9019{
9020 if (target_has_stack
9021 && inferior_ptid != null_ptid
9022 && gdbarch_get_siginfo_type_p (gdbarch))
9023 {
9024 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9025
9026 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9027 }
9028
9029 return allocate_value (builtin_type (gdbarch)->builtin_void);
9030}
9031
9032\f
9033/* infcall_suspend_state contains state about the program itself like its
9034 registers and any signal it received when it last stopped.
9035 This state must be restored regardless of how the inferior function call
9036 ends (either successfully, or after it hits a breakpoint or signal)
9037 if the program is to properly continue where it left off. */
9038
9039class infcall_suspend_state
9040{
9041public:
9042 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9043 once the inferior function call has finished. */
9044 infcall_suspend_state (struct gdbarch *gdbarch,
9045 const struct thread_info *tp,
9046 struct regcache *regcache)
9047 : m_thread_suspend (tp->suspend),
9048 m_registers (new readonly_detached_regcache (*regcache))
9049 {
9050 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9051
9052 if (gdbarch_get_siginfo_type_p (gdbarch))
9053 {
9054 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9055 size_t len = TYPE_LENGTH (type);
9056
9057 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9058
9059 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9060 siginfo_data.get (), 0, len) != len)
9061 {
9062 /* Errors ignored. */
9063 siginfo_data.reset (nullptr);
9064 }
9065 }
9066
9067 if (siginfo_data)
9068 {
9069 m_siginfo_gdbarch = gdbarch;
9070 m_siginfo_data = std::move (siginfo_data);
9071 }
9072 }
9073
9074 /* Return a pointer to the stored register state. */
9075
9076 readonly_detached_regcache *registers () const
9077 {
9078 return m_registers.get ();
9079 }
9080
9081 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9082
9083 void restore (struct gdbarch *gdbarch,
9084 struct thread_info *tp,
9085 struct regcache *regcache) const
9086 {
9087 tp->suspend = m_thread_suspend;
9088
9089 if (m_siginfo_gdbarch == gdbarch)
9090 {
9091 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9092
9093 /* Errors ignored. */
9094 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9095 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9096 }
9097
9098 /* The inferior can be gone if the user types "print exit(0)"
9099 (and perhaps other times). */
9100 if (target_has_execution)
9101 /* NB: The register write goes through to the target. */
9102 regcache->restore (registers ());
9103 }
9104
9105private:
9106 /* How the current thread stopped before the inferior function call was
9107 executed. */
9108 struct thread_suspend_state m_thread_suspend;
9109
9110 /* The registers before the inferior function call was executed. */
9111 std::unique_ptr<readonly_detached_regcache> m_registers;
9112
9113 /* Format of SIGINFO_DATA or NULL if it is not present. */
9114 struct gdbarch *m_siginfo_gdbarch = nullptr;
9115
9116 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9117 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9118 content would be invalid. */
9119 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9120};
9121
9122infcall_suspend_state_up
9123save_infcall_suspend_state ()
9124{
9125 struct thread_info *tp = inferior_thread ();
9126 struct regcache *regcache = get_current_regcache ();
9127 struct gdbarch *gdbarch = regcache->arch ();
9128
9129 infcall_suspend_state_up inf_state
9130 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9131
9132 /* Having saved the current state, adjust the thread state, discarding
9133 any stop signal information. The stop signal is not useful when
9134 starting an inferior function call, and run_inferior_call will not use
9135 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9136 tp->suspend.stop_signal = GDB_SIGNAL_0;
9137
9138 return inf_state;
9139}
9140
9141/* Restore inferior session state to INF_STATE. */
9142
9143void
9144restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9145{
9146 struct thread_info *tp = inferior_thread ();
9147 struct regcache *regcache = get_current_regcache ();
9148 struct gdbarch *gdbarch = regcache->arch ();
9149
9150 inf_state->restore (gdbarch, tp, regcache);
9151 discard_infcall_suspend_state (inf_state);
9152}
9153
9154void
9155discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9156{
9157 delete inf_state;
9158}
9159
9160readonly_detached_regcache *
9161get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9162{
9163 return inf_state->registers ();
9164}
9165
9166/* infcall_control_state contains state regarding gdb's control of the
9167 inferior itself like stepping control. It also contains session state like
9168 the user's currently selected frame. */
9169
9170struct infcall_control_state
9171{
9172 struct thread_control_state thread_control;
9173 struct inferior_control_state inferior_control;
9174
9175 /* Other fields: */
9176 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9177 int stopped_by_random_signal = 0;
9178
9179 /* ID if the selected frame when the inferior function call was made. */
9180 struct frame_id selected_frame_id {};
9181};
9182
9183/* Save all of the information associated with the inferior<==>gdb
9184 connection. */
9185
9186infcall_control_state_up
9187save_infcall_control_state ()
9188{
9189 infcall_control_state_up inf_status (new struct infcall_control_state);
9190 struct thread_info *tp = inferior_thread ();
9191 struct inferior *inf = current_inferior ();
9192
9193 inf_status->thread_control = tp->control;
9194 inf_status->inferior_control = inf->control;
9195
9196 tp->control.step_resume_breakpoint = NULL;
9197 tp->control.exception_resume_breakpoint = NULL;
9198
9199 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9200 chain. If caller's caller is walking the chain, they'll be happier if we
9201 hand them back the original chain when restore_infcall_control_state is
9202 called. */
9203 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9204
9205 /* Other fields: */
9206 inf_status->stop_stack_dummy = stop_stack_dummy;
9207 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9208
9209 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9210
9211 return inf_status;
9212}
9213
9214static void
9215restore_selected_frame (const frame_id &fid)
9216{
9217 frame_info *frame = frame_find_by_id (fid);
9218
9219 /* If inf_status->selected_frame_id is NULL, there was no previously
9220 selected frame. */
9221 if (frame == NULL)
9222 {
9223 warning (_("Unable to restore previously selected frame."));
9224 return;
9225 }
9226
9227 select_frame (frame);
9228}
9229
9230/* Restore inferior session state to INF_STATUS. */
9231
9232void
9233restore_infcall_control_state (struct infcall_control_state *inf_status)
9234{
9235 struct thread_info *tp = inferior_thread ();
9236 struct inferior *inf = current_inferior ();
9237
9238 if (tp->control.step_resume_breakpoint)
9239 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9240
9241 if (tp->control.exception_resume_breakpoint)
9242 tp->control.exception_resume_breakpoint->disposition
9243 = disp_del_at_next_stop;
9244
9245 /* Handle the bpstat_copy of the chain. */
9246 bpstat_clear (&tp->control.stop_bpstat);
9247
9248 tp->control = inf_status->thread_control;
9249 inf->control = inf_status->inferior_control;
9250
9251 /* Other fields: */
9252 stop_stack_dummy = inf_status->stop_stack_dummy;
9253 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9254
9255 if (target_has_stack)
9256 {
9257 /* The point of the try/catch is that if the stack is clobbered,
9258 walking the stack might encounter a garbage pointer and
9259 error() trying to dereference it. */
9260 try
9261 {
9262 restore_selected_frame (inf_status->selected_frame_id);
9263 }
9264 catch (const gdb_exception_error &ex)
9265 {
9266 exception_fprintf (gdb_stderr, ex,
9267 "Unable to restore previously selected frame:\n");
9268 /* Error in restoring the selected frame. Select the
9269 innermost frame. */
9270 select_frame (get_current_frame ());
9271 }
9272 }
9273
9274 delete inf_status;
9275}
9276
9277void
9278discard_infcall_control_state (struct infcall_control_state *inf_status)
9279{
9280 if (inf_status->thread_control.step_resume_breakpoint)
9281 inf_status->thread_control.step_resume_breakpoint->disposition
9282 = disp_del_at_next_stop;
9283
9284 if (inf_status->thread_control.exception_resume_breakpoint)
9285 inf_status->thread_control.exception_resume_breakpoint->disposition
9286 = disp_del_at_next_stop;
9287
9288 /* See save_infcall_control_state for info on stop_bpstat. */
9289 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9290
9291 delete inf_status;
9292}
9293\f
9294/* See infrun.h. */
9295
9296void
9297clear_exit_convenience_vars (void)
9298{
9299 clear_internalvar (lookup_internalvar ("_exitsignal"));
9300 clear_internalvar (lookup_internalvar ("_exitcode"));
9301}
9302\f
9303
9304/* User interface for reverse debugging:
9305 Set exec-direction / show exec-direction commands
9306 (returns error unless target implements to_set_exec_direction method). */
9307
9308enum exec_direction_kind execution_direction = EXEC_FORWARD;
9309static const char exec_forward[] = "forward";
9310static const char exec_reverse[] = "reverse";
9311static const char *exec_direction = exec_forward;
9312static const char *const exec_direction_names[] = {
9313 exec_forward,
9314 exec_reverse,
9315 NULL
9316};
9317
9318static void
9319set_exec_direction_func (const char *args, int from_tty,
9320 struct cmd_list_element *cmd)
9321{
9322 if (target_can_execute_reverse)
9323 {
9324 if (!strcmp (exec_direction, exec_forward))
9325 execution_direction = EXEC_FORWARD;
9326 else if (!strcmp (exec_direction, exec_reverse))
9327 execution_direction = EXEC_REVERSE;
9328 }
9329 else
9330 {
9331 exec_direction = exec_forward;
9332 error (_("Target does not support this operation."));
9333 }
9334}
9335
9336static void
9337show_exec_direction_func (struct ui_file *out, int from_tty,
9338 struct cmd_list_element *cmd, const char *value)
9339{
9340 switch (execution_direction) {
9341 case EXEC_FORWARD:
9342 fprintf_filtered (out, _("Forward.\n"));
9343 break;
9344 case EXEC_REVERSE:
9345 fprintf_filtered (out, _("Reverse.\n"));
9346 break;
9347 default:
9348 internal_error (__FILE__, __LINE__,
9349 _("bogus execution_direction value: %d"),
9350 (int) execution_direction);
9351 }
9352}
9353
9354static void
9355show_schedule_multiple (struct ui_file *file, int from_tty,
9356 struct cmd_list_element *c, const char *value)
9357{
9358 fprintf_filtered (file, _("Resuming the execution of threads "
9359 "of all processes is %s.\n"), value);
9360}
9361
9362/* Implementation of `siginfo' variable. */
9363
9364static const struct internalvar_funcs siginfo_funcs =
9365{
9366 siginfo_make_value,
9367 NULL,
9368 NULL
9369};
9370
9371/* Callback for infrun's target events source. This is marked when a
9372 thread has a pending status to process. */
9373
9374static void
9375infrun_async_inferior_event_handler (gdb_client_data data)
9376{
9377 inferior_event_handler (INF_REG_EVENT, NULL);
9378}
9379
9380void _initialize_infrun ();
9381void
9382_initialize_infrun ()
9383{
9384 struct cmd_list_element *c;
9385
9386 /* Register extra event sources in the event loop. */
9387 infrun_async_inferior_event_token
9388 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9389
9390 add_info ("signals", info_signals_command, _("\
9391What debugger does when program gets various signals.\n\
9392Specify a signal as argument to print info on that signal only."));
9393 add_info_alias ("handle", "signals", 0);
9394
9395 c = add_com ("handle", class_run, handle_command, _("\
9396Specify how to handle signals.\n\
9397Usage: handle SIGNAL [ACTIONS]\n\
9398Args are signals and actions to apply to those signals.\n\
9399If no actions are specified, the current settings for the specified signals\n\
9400will be displayed instead.\n\
9401\n\
9402Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9403from 1-15 are allowed for compatibility with old versions of GDB.\n\
9404Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9405The special arg \"all\" is recognized to mean all signals except those\n\
9406used by the debugger, typically SIGTRAP and SIGINT.\n\
9407\n\
9408Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9409\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9410Stop means reenter debugger if this signal happens (implies print).\n\
9411Print means print a message if this signal happens.\n\
9412Pass means let program see this signal; otherwise program doesn't know.\n\
9413Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9414Pass and Stop may be combined.\n\
9415\n\
9416Multiple signals may be specified. Signal numbers and signal names\n\
9417may be interspersed with actions, with the actions being performed for\n\
9418all signals cumulatively specified."));
9419 set_cmd_completer (c, handle_completer);
9420
9421 if (!dbx_commands)
9422 stop_command = add_cmd ("stop", class_obscure,
9423 not_just_help_class_command, _("\
9424There is no `stop' command, but you can set a hook on `stop'.\n\
9425This allows you to set a list of commands to be run each time execution\n\
9426of the program stops."), &cmdlist);
9427
9428 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9429Set inferior debugging."), _("\
9430Show inferior debugging."), _("\
9431When non-zero, inferior specific debugging is enabled."),
9432 NULL,
9433 show_debug_infrun,
9434 &setdebuglist, &showdebuglist);
9435
9436 add_setshow_boolean_cmd ("displaced", class_maintenance,
9437 &debug_displaced, _("\
9438Set displaced stepping debugging."), _("\
9439Show displaced stepping debugging."), _("\
9440When non-zero, displaced stepping specific debugging is enabled."),
9441 NULL,
9442 show_debug_displaced,
9443 &setdebuglist, &showdebuglist);
9444
9445 add_setshow_boolean_cmd ("non-stop", no_class,
9446 &non_stop_1, _("\
9447Set whether gdb controls the inferior in non-stop mode."), _("\
9448Show whether gdb controls the inferior in non-stop mode."), _("\
9449When debugging a multi-threaded program and this setting is\n\
9450off (the default, also called all-stop mode), when one thread stops\n\
9451(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9452all other threads in the program while you interact with the thread of\n\
9453interest. When you continue or step a thread, you can allow the other\n\
9454threads to run, or have them remain stopped, but while you inspect any\n\
9455thread's state, all threads stop.\n\
9456\n\
9457In non-stop mode, when one thread stops, other threads can continue\n\
9458to run freely. You'll be able to step each thread independently,\n\
9459leave it stopped or free to run as needed."),
9460 set_non_stop,
9461 show_non_stop,
9462 &setlist,
9463 &showlist);
9464
9465 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9466 {
9467 signal_stop[i] = 1;
9468 signal_print[i] = 1;
9469 signal_program[i] = 1;
9470 signal_catch[i] = 0;
9471 }
9472
9473 /* Signals caused by debugger's own actions should not be given to
9474 the program afterwards.
9475
9476 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9477 explicitly specifies that it should be delivered to the target
9478 program. Typically, that would occur when a user is debugging a
9479 target monitor on a simulator: the target monitor sets a
9480 breakpoint; the simulator encounters this breakpoint and halts
9481 the simulation handing control to GDB; GDB, noting that the stop
9482 address doesn't map to any known breakpoint, returns control back
9483 to the simulator; the simulator then delivers the hardware
9484 equivalent of a GDB_SIGNAL_TRAP to the program being
9485 debugged. */
9486 signal_program[GDB_SIGNAL_TRAP] = 0;
9487 signal_program[GDB_SIGNAL_INT] = 0;
9488
9489 /* Signals that are not errors should not normally enter the debugger. */
9490 signal_stop[GDB_SIGNAL_ALRM] = 0;
9491 signal_print[GDB_SIGNAL_ALRM] = 0;
9492 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9493 signal_print[GDB_SIGNAL_VTALRM] = 0;
9494 signal_stop[GDB_SIGNAL_PROF] = 0;
9495 signal_print[GDB_SIGNAL_PROF] = 0;
9496 signal_stop[GDB_SIGNAL_CHLD] = 0;
9497 signal_print[GDB_SIGNAL_CHLD] = 0;
9498 signal_stop[GDB_SIGNAL_IO] = 0;
9499 signal_print[GDB_SIGNAL_IO] = 0;
9500 signal_stop[GDB_SIGNAL_POLL] = 0;
9501 signal_print[GDB_SIGNAL_POLL] = 0;
9502 signal_stop[GDB_SIGNAL_URG] = 0;
9503 signal_print[GDB_SIGNAL_URG] = 0;
9504 signal_stop[GDB_SIGNAL_WINCH] = 0;
9505 signal_print[GDB_SIGNAL_WINCH] = 0;
9506 signal_stop[GDB_SIGNAL_PRIO] = 0;
9507 signal_print[GDB_SIGNAL_PRIO] = 0;
9508
9509 /* These signals are used internally by user-level thread
9510 implementations. (See signal(5) on Solaris.) Like the above
9511 signals, a healthy program receives and handles them as part of
9512 its normal operation. */
9513 signal_stop[GDB_SIGNAL_LWP] = 0;
9514 signal_print[GDB_SIGNAL_LWP] = 0;
9515 signal_stop[GDB_SIGNAL_WAITING] = 0;
9516 signal_print[GDB_SIGNAL_WAITING] = 0;
9517 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9518 signal_print[GDB_SIGNAL_CANCEL] = 0;
9519 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9520 signal_print[GDB_SIGNAL_LIBRT] = 0;
9521
9522 /* Update cached state. */
9523 signal_cache_update (-1);
9524
9525 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9526 &stop_on_solib_events, _("\
9527Set stopping for shared library events."), _("\
9528Show stopping for shared library events."), _("\
9529If nonzero, gdb will give control to the user when the dynamic linker\n\
9530notifies gdb of shared library events. The most common event of interest\n\
9531to the user would be loading/unloading of a new library."),
9532 set_stop_on_solib_events,
9533 show_stop_on_solib_events,
9534 &setlist, &showlist);
9535
9536 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9537 follow_fork_mode_kind_names,
9538 &follow_fork_mode_string, _("\
9539Set debugger response to a program call of fork or vfork."), _("\
9540Show debugger response to a program call of fork or vfork."), _("\
9541A fork or vfork creates a new process. follow-fork-mode can be:\n\
9542 parent - the original process is debugged after a fork\n\
9543 child - the new process is debugged after a fork\n\
9544The unfollowed process will continue to run.\n\
9545By default, the debugger will follow the parent process."),
9546 NULL,
9547 show_follow_fork_mode_string,
9548 &setlist, &showlist);
9549
9550 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9551 follow_exec_mode_names,
9552 &follow_exec_mode_string, _("\
9553Set debugger response to a program call of exec."), _("\
9554Show debugger response to a program call of exec."), _("\
9555An exec call replaces the program image of a process.\n\
9556\n\
9557follow-exec-mode can be:\n\
9558\n\
9559 new - the debugger creates a new inferior and rebinds the process\n\
9560to this new inferior. The program the process was running before\n\
9561the exec call can be restarted afterwards by restarting the original\n\
9562inferior.\n\
9563\n\
9564 same - the debugger keeps the process bound to the same inferior.\n\
9565The new executable image replaces the previous executable loaded in\n\
9566the inferior. Restarting the inferior after the exec call restarts\n\
9567the executable the process was running after the exec call.\n\
9568\n\
9569By default, the debugger will use the same inferior."),
9570 NULL,
9571 show_follow_exec_mode_string,
9572 &setlist, &showlist);
9573
9574 add_setshow_enum_cmd ("scheduler-locking", class_run,
9575 scheduler_enums, &scheduler_mode, _("\
9576Set mode for locking scheduler during execution."), _("\
9577Show mode for locking scheduler during execution."), _("\
9578off == no locking (threads may preempt at any time)\n\
9579on == full locking (no thread except the current thread may run)\n\
9580 This applies to both normal execution and replay mode.\n\
9581step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9582 In this mode, other threads may run during other commands.\n\
9583 This applies to both normal execution and replay mode.\n\
9584replay == scheduler locked in replay mode and unlocked during normal execution."),
9585 set_schedlock_func, /* traps on target vector */
9586 show_scheduler_mode,
9587 &setlist, &showlist);
9588
9589 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9590Set mode for resuming threads of all processes."), _("\
9591Show mode for resuming threads of all processes."), _("\
9592When on, execution commands (such as 'continue' or 'next') resume all\n\
9593threads of all processes. When off (which is the default), execution\n\
9594commands only resume the threads of the current process. The set of\n\
9595threads that are resumed is further refined by the scheduler-locking\n\
9596mode (see help set scheduler-locking)."),
9597 NULL,
9598 show_schedule_multiple,
9599 &setlist, &showlist);
9600
9601 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9602Set mode of the step operation."), _("\
9603Show mode of the step operation."), _("\
9604When set, doing a step over a function without debug line information\n\
9605will stop at the first instruction of that function. Otherwise, the\n\
9606function is skipped and the step command stops at a different source line."),
9607 NULL,
9608 show_step_stop_if_no_debug,
9609 &setlist, &showlist);
9610
9611 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9612 &can_use_displaced_stepping, _("\
9613Set debugger's willingness to use displaced stepping."), _("\
9614Show debugger's willingness to use displaced stepping."), _("\
9615If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9616supported by the target architecture. If off, gdb will not use displaced\n\
9617stepping to step over breakpoints, even if such is supported by the target\n\
9618architecture. If auto (which is the default), gdb will use displaced stepping\n\
9619if the target architecture supports it and non-stop mode is active, but will not\n\
9620use it in all-stop mode (see help set non-stop)."),
9621 NULL,
9622 show_can_use_displaced_stepping,
9623 &setlist, &showlist);
9624
9625 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9626 &exec_direction, _("Set direction of execution.\n\
9627Options are 'forward' or 'reverse'."),
9628 _("Show direction of execution (forward/reverse)."),
9629 _("Tells gdb whether to execute forward or backward."),
9630 set_exec_direction_func, show_exec_direction_func,
9631 &setlist, &showlist);
9632
9633 /* Set/show detach-on-fork: user-settable mode. */
9634
9635 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9636Set whether gdb will detach the child of a fork."), _("\
9637Show whether gdb will detach the child of a fork."), _("\
9638Tells gdb whether to detach the child of a fork."),
9639 NULL, NULL, &setlist, &showlist);
9640
9641 /* Set/show disable address space randomization mode. */
9642
9643 add_setshow_boolean_cmd ("disable-randomization", class_support,
9644 &disable_randomization, _("\
9645Set disabling of debuggee's virtual address space randomization."), _("\
9646Show disabling of debuggee's virtual address space randomization."), _("\
9647When this mode is on (which is the default), randomization of the virtual\n\
9648address space is disabled. Standalone programs run with the randomization\n\
9649enabled by default on some platforms."),
9650 &set_disable_randomization,
9651 &show_disable_randomization,
9652 &setlist, &showlist);
9653
9654 /* ptid initializations */
9655 inferior_ptid = null_ptid;
9656 target_last_wait_ptid = minus_one_ptid;
9657
9658 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9659 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9660 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9661 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9662
9663 /* Explicitly create without lookup, since that tries to create a
9664 value with a void typed value, and when we get here, gdbarch
9665 isn't initialized yet. At this point, we're quite sure there
9666 isn't another convenience variable of the same name. */
9667 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9668
9669 add_setshow_boolean_cmd ("observer", no_class,
9670 &observer_mode_1, _("\
9671Set whether gdb controls the inferior in observer mode."), _("\
9672Show whether gdb controls the inferior in observer mode."), _("\
9673In observer mode, GDB can get data from the inferior, but not\n\
9674affect its execution. Registers and memory may not be changed,\n\
9675breakpoints may not be set, and the program cannot be interrupted\n\
9676or signalled."),
9677 set_observer_mode,
9678 show_observer_mode,
9679 &setlist,
9680 &showlist);
9681}
This page took 0.08792 seconds and 4 git commands to generate.