import gnulib dirent module
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
... / ...
CommitLineData
1/* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "inferior.h"
22#include "target.h"
23#include "nat/linux-nat.h"
24#include "nat/linux-waitpid.h"
25#include <string.h>
26#include "gdb_wait.h"
27#include "gdb_assert.h"
28#ifdef HAVE_TKILL_SYSCALL
29#include <unistd.h>
30#include <sys/syscall.h>
31#endif
32#include <sys/ptrace.h>
33#include "linux-nat.h"
34#include "linux-ptrace.h"
35#include "linux-procfs.h"
36#include "linux-fork.h"
37#include "gdbthread.h"
38#include "gdbcmd.h"
39#include "regcache.h"
40#include "regset.h"
41#include "inf-child.h"
42#include "inf-ptrace.h"
43#include "auxv.h"
44#include <sys/procfs.h> /* for elf_gregset etc. */
45#include "elf-bfd.h" /* for elfcore_write_* */
46#include "gregset.h" /* for gregset */
47#include "gdbcore.h" /* for get_exec_file */
48#include <ctype.h> /* for isdigit */
49#include "gdbthread.h" /* for struct thread_info etc. */
50#include "gdb_stat.h" /* for struct stat */
51#include <fcntl.h> /* for O_RDONLY */
52#include "inf-loop.h"
53#include "event-loop.h"
54#include "event-top.h"
55#include <pwd.h>
56#include <sys/types.h>
57#include "gdb_dirent.h"
58#include "xml-support.h"
59#include "terminal.h"
60#include <sys/vfs.h>
61#include "solib.h"
62#include "linux-osdata.h"
63#include "linux-tdep.h"
64#include "symfile.h"
65#include "agent.h"
66#include "tracepoint.h"
67#include "exceptions.h"
68#include "linux-ptrace.h"
69#include "buffer.h"
70#include "target-descriptions.h"
71#include "filestuff.h"
72
73#ifndef SPUFS_MAGIC
74#define SPUFS_MAGIC 0x23c9b64e
75#endif
76
77#ifdef HAVE_PERSONALITY
78# include <sys/personality.h>
79# if !HAVE_DECL_ADDR_NO_RANDOMIZE
80# define ADDR_NO_RANDOMIZE 0x0040000
81# endif
82#endif /* HAVE_PERSONALITY */
83
84/* This comment documents high-level logic of this file.
85
86Waiting for events in sync mode
87===============================
88
89When waiting for an event in a specific thread, we just use waitpid, passing
90the specific pid, and not passing WNOHANG.
91
92When waiting for an event in all threads, waitpid is not quite good. Prior to
93version 2.4, Linux can either wait for event in main thread, or in secondary
94threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
95miss an event. The solution is to use non-blocking waitpid, together with
96sigsuspend. First, we use non-blocking waitpid to get an event in the main
97process, if any. Second, we use non-blocking waitpid with the __WCLONED
98flag to check for events in cloned processes. If nothing is found, we use
99sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
100happened to a child process -- and SIGCHLD will be delivered both for events
101in main debugged process and in cloned processes. As soon as we know there's
102an event, we get back to calling nonblocking waitpid with and without
103__WCLONED.
104
105Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
106so that we don't miss a signal. If SIGCHLD arrives in between, when it's
107blocked, the signal becomes pending and sigsuspend immediately
108notices it and returns.
109
110Waiting for events in async mode
111================================
112
113In async mode, GDB should always be ready to handle both user input
114and target events, so neither blocking waitpid nor sigsuspend are
115viable options. Instead, we should asynchronously notify the GDB main
116event loop whenever there's an unprocessed event from the target. We
117detect asynchronous target events by handling SIGCHLD signals. To
118notify the event loop about target events, the self-pipe trick is used
119--- a pipe is registered as waitable event source in the event loop,
120the event loop select/poll's on the read end of this pipe (as well on
121other event sources, e.g., stdin), and the SIGCHLD handler writes a
122byte to this pipe. This is more portable than relying on
123pselect/ppoll, since on kernels that lack those syscalls, libc
124emulates them with select/poll+sigprocmask, and that is racy
125(a.k.a. plain broken).
126
127Obviously, if we fail to notify the event loop if there's a target
128event, it's bad. OTOH, if we notify the event loop when there's no
129event from the target, linux_nat_wait will detect that there's no real
130event to report, and return event of type TARGET_WAITKIND_IGNORE.
131This is mostly harmless, but it will waste time and is better avoided.
132
133The main design point is that every time GDB is outside linux-nat.c,
134we have a SIGCHLD handler installed that is called when something
135happens to the target and notifies the GDB event loop. Whenever GDB
136core decides to handle the event, and calls into linux-nat.c, we
137process things as in sync mode, except that the we never block in
138sigsuspend.
139
140While processing an event, we may end up momentarily blocked in
141waitpid calls. Those waitpid calls, while blocking, are guarantied to
142return quickly. E.g., in all-stop mode, before reporting to the core
143that an LWP hit a breakpoint, all LWPs are stopped by sending them
144SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
145Note that this is different from blocking indefinitely waiting for the
146next event --- here, we're already handling an event.
147
148Use of signals
149==============
150
151We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
152signal is not entirely significant; we just need for a signal to be delivered,
153so that we can intercept it. SIGSTOP's advantage is that it can not be
154blocked. A disadvantage is that it is not a real-time signal, so it can only
155be queued once; we do not keep track of other sources of SIGSTOP.
156
157Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
158use them, because they have special behavior when the signal is generated -
159not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
160kills the entire thread group.
161
162A delivered SIGSTOP would stop the entire thread group, not just the thread we
163tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
164cancel it (by PTRACE_CONT without passing SIGSTOP).
165
166We could use a real-time signal instead. This would solve those problems; we
167could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
168But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
169generates it, and there are races with trying to find a signal that is not
170blocked. */
171
172#ifndef O_LARGEFILE
173#define O_LARGEFILE 0
174#endif
175
176/* The single-threaded native GNU/Linux target_ops. We save a pointer for
177 the use of the multi-threaded target. */
178static struct target_ops *linux_ops;
179static struct target_ops linux_ops_saved;
180
181/* The method to call, if any, when a new thread is attached. */
182static void (*linux_nat_new_thread) (struct lwp_info *);
183
184/* The method to call, if any, when a new fork is attached. */
185static linux_nat_new_fork_ftype *linux_nat_new_fork;
186
187/* The method to call, if any, when a process is no longer
188 attached. */
189static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
190
191/* Hook to call prior to resuming a thread. */
192static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
193
194/* The method to call, if any, when the siginfo object needs to be
195 converted between the layout returned by ptrace, and the layout in
196 the architecture of the inferior. */
197static int (*linux_nat_siginfo_fixup) (siginfo_t *,
198 gdb_byte *,
199 int);
200
201/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
202 Called by our to_xfer_partial. */
203static LONGEST (*super_xfer_partial) (struct target_ops *,
204 enum target_object,
205 const char *, gdb_byte *,
206 const gdb_byte *,
207 ULONGEST, LONGEST);
208
209static unsigned int debug_linux_nat;
210static void
211show_debug_linux_nat (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213{
214 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
215 value);
216}
217
218struct simple_pid_list
219{
220 int pid;
221 int status;
222 struct simple_pid_list *next;
223};
224struct simple_pid_list *stopped_pids;
225
226/* Async mode support. */
227
228/* The read/write ends of the pipe registered as waitable file in the
229 event loop. */
230static int linux_nat_event_pipe[2] = { -1, -1 };
231
232/* Flush the event pipe. */
233
234static void
235async_file_flush (void)
236{
237 int ret;
238 char buf;
239
240 do
241 {
242 ret = read (linux_nat_event_pipe[0], &buf, 1);
243 }
244 while (ret >= 0 || (ret == -1 && errno == EINTR));
245}
246
247/* Put something (anything, doesn't matter what, or how much) in event
248 pipe, so that the select/poll in the event-loop realizes we have
249 something to process. */
250
251static void
252async_file_mark (void)
253{
254 int ret;
255
256 /* It doesn't really matter what the pipe contains, as long we end
257 up with something in it. Might as well flush the previous
258 left-overs. */
259 async_file_flush ();
260
261 do
262 {
263 ret = write (linux_nat_event_pipe[1], "+", 1);
264 }
265 while (ret == -1 && errno == EINTR);
266
267 /* Ignore EAGAIN. If the pipe is full, the event loop will already
268 be awakened anyway. */
269}
270
271static void linux_nat_async (void (*callback)
272 (enum inferior_event_type event_type,
273 void *context),
274 void *context);
275static int kill_lwp (int lwpid, int signo);
276
277static int stop_callback (struct lwp_info *lp, void *data);
278
279static void block_child_signals (sigset_t *prev_mask);
280static void restore_child_signals_mask (sigset_t *prev_mask);
281
282struct lwp_info;
283static struct lwp_info *add_lwp (ptid_t ptid);
284static void purge_lwp_list (int pid);
285static void delete_lwp (ptid_t ptid);
286static struct lwp_info *find_lwp_pid (ptid_t ptid);
287
288\f
289/* Trivial list manipulation functions to keep track of a list of
290 new stopped processes. */
291static void
292add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
293{
294 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
295
296 new_pid->pid = pid;
297 new_pid->status = status;
298 new_pid->next = *listp;
299 *listp = new_pid;
300}
301
302static int
303in_pid_list_p (struct simple_pid_list *list, int pid)
304{
305 struct simple_pid_list *p;
306
307 for (p = list; p != NULL; p = p->next)
308 if (p->pid == pid)
309 return 1;
310 return 0;
311}
312
313static int
314pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
315{
316 struct simple_pid_list **p;
317
318 for (p = listp; *p != NULL; p = &(*p)->next)
319 if ((*p)->pid == pid)
320 {
321 struct simple_pid_list *next = (*p)->next;
322
323 *statusp = (*p)->status;
324 xfree (*p);
325 *p = next;
326 return 1;
327 }
328 return 0;
329}
330
331/* Initialize ptrace warnings and check for supported ptrace
332 features given PID. */
333
334static void
335linux_init_ptrace (pid_t pid)
336{
337 linux_enable_event_reporting (pid);
338 linux_ptrace_init_warnings ();
339}
340
341static void
342linux_child_post_attach (int pid)
343{
344 linux_init_ptrace (pid);
345}
346
347static void
348linux_child_post_startup_inferior (ptid_t ptid)
349{
350 linux_init_ptrace (ptid_get_pid (ptid));
351}
352
353/* Return the number of known LWPs in the tgid given by PID. */
354
355static int
356num_lwps (int pid)
357{
358 int count = 0;
359 struct lwp_info *lp;
360
361 for (lp = lwp_list; lp; lp = lp->next)
362 if (ptid_get_pid (lp->ptid) == pid)
363 count++;
364
365 return count;
366}
367
368/* Call delete_lwp with prototype compatible for make_cleanup. */
369
370static void
371delete_lwp_cleanup (void *lp_voidp)
372{
373 struct lwp_info *lp = lp_voidp;
374
375 delete_lwp (lp->ptid);
376}
377
378static int
379linux_child_follow_fork (struct target_ops *ops, int follow_child,
380 int detach_fork)
381{
382 int has_vforked;
383 int parent_pid, child_pid;
384
385 has_vforked = (inferior_thread ()->pending_follow.kind
386 == TARGET_WAITKIND_VFORKED);
387 parent_pid = ptid_get_lwp (inferior_ptid);
388 if (parent_pid == 0)
389 parent_pid = ptid_get_pid (inferior_ptid);
390 child_pid
391 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
392
393 if (has_vforked
394 && !non_stop /* Non-stop always resumes both branches. */
395 && (!target_is_async_p () || sync_execution)
396 && !(follow_child || detach_fork || sched_multi))
397 {
398 /* The parent stays blocked inside the vfork syscall until the
399 child execs or exits. If we don't let the child run, then
400 the parent stays blocked. If we're telling the parent to run
401 in the foreground, the user will not be able to ctrl-c to get
402 back the terminal, effectively hanging the debug session. */
403 fprintf_filtered (gdb_stderr, _("\
404Can not resume the parent process over vfork in the foreground while\n\
405holding the child stopped. Try \"set detach-on-fork\" or \
406\"set schedule-multiple\".\n"));
407 /* FIXME output string > 80 columns. */
408 return 1;
409 }
410
411 if (! follow_child)
412 {
413 struct lwp_info *child_lp = NULL;
414
415 /* We're already attached to the parent, by default. */
416
417 /* Detach new forked process? */
418 if (detach_fork)
419 {
420 struct cleanup *old_chain;
421
422 /* Before detaching from the child, remove all breakpoints
423 from it. If we forked, then this has already been taken
424 care of by infrun.c. If we vforked however, any
425 breakpoint inserted in the parent is visible in the
426 child, even those added while stopped in a vfork
427 catchpoint. This will remove the breakpoints from the
428 parent also, but they'll be reinserted below. */
429 if (has_vforked)
430 {
431 /* keep breakpoints list in sync. */
432 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
433 }
434
435 if (info_verbose || debug_linux_nat)
436 {
437 target_terminal_ours ();
438 fprintf_filtered (gdb_stdlog,
439 "Detaching after fork from "
440 "child process %d.\n",
441 child_pid);
442 }
443
444 old_chain = save_inferior_ptid ();
445 inferior_ptid = ptid_build (child_pid, child_pid, 0);
446
447 child_lp = add_lwp (inferior_ptid);
448 child_lp->stopped = 1;
449 child_lp->last_resume_kind = resume_stop;
450 make_cleanup (delete_lwp_cleanup, child_lp);
451
452 if (linux_nat_prepare_to_resume != NULL)
453 linux_nat_prepare_to_resume (child_lp);
454 ptrace (PTRACE_DETACH, child_pid, 0, 0);
455
456 do_cleanups (old_chain);
457 }
458 else
459 {
460 struct inferior *parent_inf, *child_inf;
461 struct cleanup *old_chain;
462
463 /* Add process to GDB's tables. */
464 child_inf = add_inferior (child_pid);
465
466 parent_inf = current_inferior ();
467 child_inf->attach_flag = parent_inf->attach_flag;
468 copy_terminal_info (child_inf, parent_inf);
469 child_inf->gdbarch = parent_inf->gdbarch;
470 copy_inferior_target_desc_info (child_inf, parent_inf);
471
472 old_chain = save_inferior_ptid ();
473 save_current_program_space ();
474
475 inferior_ptid = ptid_build (child_pid, child_pid, 0);
476 add_thread (inferior_ptid);
477 child_lp = add_lwp (inferior_ptid);
478 child_lp->stopped = 1;
479 child_lp->last_resume_kind = resume_stop;
480 child_inf->symfile_flags = SYMFILE_NO_READ;
481
482 /* If this is a vfork child, then the address-space is
483 shared with the parent. */
484 if (has_vforked)
485 {
486 child_inf->pspace = parent_inf->pspace;
487 child_inf->aspace = parent_inf->aspace;
488
489 /* The parent will be frozen until the child is done
490 with the shared region. Keep track of the
491 parent. */
492 child_inf->vfork_parent = parent_inf;
493 child_inf->pending_detach = 0;
494 parent_inf->vfork_child = child_inf;
495 parent_inf->pending_detach = 0;
496 }
497 else
498 {
499 child_inf->aspace = new_address_space ();
500 child_inf->pspace = add_program_space (child_inf->aspace);
501 child_inf->removable = 1;
502 set_current_program_space (child_inf->pspace);
503 clone_program_space (child_inf->pspace, parent_inf->pspace);
504
505 /* Let the shared library layer (solib-svr4) learn about
506 this new process, relocate the cloned exec, pull in
507 shared libraries, and install the solib event
508 breakpoint. If a "cloned-VM" event was propagated
509 better throughout the core, this wouldn't be
510 required. */
511 solib_create_inferior_hook (0);
512 }
513
514 /* Let the thread_db layer learn about this new process. */
515 check_for_thread_db ();
516
517 do_cleanups (old_chain);
518 }
519
520 if (has_vforked)
521 {
522 struct lwp_info *parent_lp;
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536
537 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
538 gdb_assert (linux_supports_tracefork () >= 0);
539
540 if (linux_supports_tracevforkdone ())
541 {
542 if (debug_linux_nat)
543 fprintf_unfiltered (gdb_stdlog,
544 "LCFF: waiting for VFORK_DONE on %d\n",
545 parent_pid);
546 parent_lp->stopped = 1;
547
548 /* We'll handle the VFORK_DONE event like any other
549 event, in target_wait. */
550 }
551 else
552 {
553 /* We can't insert breakpoints until the child has
554 finished with the shared memory region. We need to
555 wait until that happens. Ideal would be to just
556 call:
557 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
558 - waitpid (parent_pid, &status, __WALL);
559 However, most architectures can't handle a syscall
560 being traced on the way out if it wasn't traced on
561 the way in.
562
563 We might also think to loop, continuing the child
564 until it exits or gets a SIGTRAP. One problem is
565 that the child might call ptrace with PTRACE_TRACEME.
566
567 There's no simple and reliable way to figure out when
568 the vforked child will be done with its copy of the
569 shared memory. We could step it out of the syscall,
570 two instructions, let it go, and then single-step the
571 parent once. When we have hardware single-step, this
572 would work; with software single-step it could still
573 be made to work but we'd have to be able to insert
574 single-step breakpoints in the child, and we'd have
575 to insert -just- the single-step breakpoint in the
576 parent. Very awkward.
577
578 In the end, the best we can do is to make sure it
579 runs for a little while. Hopefully it will be out of
580 range of any breakpoints we reinsert. Usually this
581 is only the single-step breakpoint at vfork's return
582 point. */
583
584 if (debug_linux_nat)
585 fprintf_unfiltered (gdb_stdlog,
586 "LCFF: no VFORK_DONE "
587 "support, sleeping a bit\n");
588
589 usleep (10000);
590
591 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
592 and leave it pending. The next linux_nat_resume call
593 will notice a pending event, and bypasses actually
594 resuming the inferior. */
595 parent_lp->status = 0;
596 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
597 parent_lp->stopped = 1;
598
599 /* If we're in async mode, need to tell the event loop
600 there's something here to process. */
601 if (target_can_async_p ())
602 async_file_mark ();
603 }
604 }
605 }
606 else
607 {
608 struct inferior *parent_inf, *child_inf;
609 struct lwp_info *child_lp;
610 struct program_space *parent_pspace;
611
612 if (info_verbose || debug_linux_nat)
613 {
614 target_terminal_ours ();
615 if (has_vforked)
616 fprintf_filtered (gdb_stdlog,
617 _("Attaching after process %d "
618 "vfork to child process %d.\n"),
619 parent_pid, child_pid);
620 else
621 fprintf_filtered (gdb_stdlog,
622 _("Attaching after process %d "
623 "fork to child process %d.\n"),
624 parent_pid, child_pid);
625 }
626
627 /* Add the new inferior first, so that the target_detach below
628 doesn't unpush the target. */
629
630 child_inf = add_inferior (child_pid);
631
632 parent_inf = current_inferior ();
633 child_inf->attach_flag = parent_inf->attach_flag;
634 copy_terminal_info (child_inf, parent_inf);
635 child_inf->gdbarch = parent_inf->gdbarch;
636 copy_inferior_target_desc_info (child_inf, parent_inf);
637
638 parent_pspace = parent_inf->pspace;
639
640 /* If we're vforking, we want to hold on to the parent until the
641 child exits or execs. At child exec or exit time we can
642 remove the old breakpoints from the parent and detach or
643 resume debugging it. Otherwise, detach the parent now; we'll
644 want to reuse it's program/address spaces, but we can't set
645 them to the child before removing breakpoints from the
646 parent, otherwise, the breakpoints module could decide to
647 remove breakpoints from the wrong process (since they'd be
648 assigned to the same address space). */
649
650 if (has_vforked)
651 {
652 gdb_assert (child_inf->vfork_parent == NULL);
653 gdb_assert (parent_inf->vfork_child == NULL);
654 child_inf->vfork_parent = parent_inf;
655 child_inf->pending_detach = 0;
656 parent_inf->vfork_child = child_inf;
657 parent_inf->pending_detach = detach_fork;
658 parent_inf->waiting_for_vfork_done = 0;
659 }
660 else if (detach_fork)
661 target_detach (NULL, 0);
662
663 /* Note that the detach above makes PARENT_INF dangling. */
664
665 /* Add the child thread to the appropriate lists, and switch to
666 this new thread, before cloning the program space, and
667 informing the solib layer about this new process. */
668
669 inferior_ptid = ptid_build (child_pid, child_pid, 0);
670 add_thread (inferior_ptid);
671 child_lp = add_lwp (inferior_ptid);
672 child_lp->stopped = 1;
673 child_lp->last_resume_kind = resume_stop;
674
675 /* If this is a vfork child, then the address-space is shared
676 with the parent. If we detached from the parent, then we can
677 reuse the parent's program/address spaces. */
678 if (has_vforked || detach_fork)
679 {
680 child_inf->pspace = parent_pspace;
681 child_inf->aspace = child_inf->pspace->aspace;
682 }
683 else
684 {
685 child_inf->aspace = new_address_space ();
686 child_inf->pspace = add_program_space (child_inf->aspace);
687 child_inf->removable = 1;
688 child_inf->symfile_flags = SYMFILE_NO_READ;
689 set_current_program_space (child_inf->pspace);
690 clone_program_space (child_inf->pspace, parent_pspace);
691
692 /* Let the shared library layer (solib-svr4) learn about
693 this new process, relocate the cloned exec, pull in
694 shared libraries, and install the solib event breakpoint.
695 If a "cloned-VM" event was propagated better throughout
696 the core, this wouldn't be required. */
697 solib_create_inferior_hook (0);
698 }
699
700 /* Let the thread_db layer learn about this new process. */
701 check_for_thread_db ();
702 }
703
704 return 0;
705}
706
707\f
708static int
709linux_child_insert_fork_catchpoint (int pid)
710{
711 return !linux_supports_tracefork ();
712}
713
714static int
715linux_child_remove_fork_catchpoint (int pid)
716{
717 return 0;
718}
719
720static int
721linux_child_insert_vfork_catchpoint (int pid)
722{
723 return !linux_supports_tracefork ();
724}
725
726static int
727linux_child_remove_vfork_catchpoint (int pid)
728{
729 return 0;
730}
731
732static int
733linux_child_insert_exec_catchpoint (int pid)
734{
735 return !linux_supports_tracefork ();
736}
737
738static int
739linux_child_remove_exec_catchpoint (int pid)
740{
741 return 0;
742}
743
744static int
745linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
746 int table_size, int *table)
747{
748 if (!linux_supports_tracesysgood ())
749 return 1;
750
751 /* On GNU/Linux, we ignore the arguments. It means that we only
752 enable the syscall catchpoints, but do not disable them.
753
754 Also, we do not use the `table' information because we do not
755 filter system calls here. We let GDB do the logic for us. */
756 return 0;
757}
758
759/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
760 are processes sharing the same VM space. A multi-threaded process
761 is basically a group of such processes. However, such a grouping
762 is almost entirely a user-space issue; the kernel doesn't enforce
763 such a grouping at all (this might change in the future). In
764 general, we'll rely on the threads library (i.e. the GNU/Linux
765 Threads library) to provide such a grouping.
766
767 It is perfectly well possible to write a multi-threaded application
768 without the assistance of a threads library, by using the clone
769 system call directly. This module should be able to give some
770 rudimentary support for debugging such applications if developers
771 specify the CLONE_PTRACE flag in the clone system call, and are
772 using the Linux kernel 2.4 or above.
773
774 Note that there are some peculiarities in GNU/Linux that affect
775 this code:
776
777 - In general one should specify the __WCLONE flag to waitpid in
778 order to make it report events for any of the cloned processes
779 (and leave it out for the initial process). However, if a cloned
780 process has exited the exit status is only reported if the
781 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
782 we cannot use it since GDB must work on older systems too.
783
784 - When a traced, cloned process exits and is waited for by the
785 debugger, the kernel reassigns it to the original parent and
786 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
787 library doesn't notice this, which leads to the "zombie problem":
788 When debugged a multi-threaded process that spawns a lot of
789 threads will run out of processes, even if the threads exit,
790 because the "zombies" stay around. */
791
792/* List of known LWPs. */
793struct lwp_info *lwp_list;
794\f
795
796/* Original signal mask. */
797static sigset_t normal_mask;
798
799/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
800 _initialize_linux_nat. */
801static sigset_t suspend_mask;
802
803/* Signals to block to make that sigsuspend work. */
804static sigset_t blocked_mask;
805
806/* SIGCHLD action. */
807struct sigaction sigchld_action;
808
809/* Block child signals (SIGCHLD and linux threads signals), and store
810 the previous mask in PREV_MASK. */
811
812static void
813block_child_signals (sigset_t *prev_mask)
814{
815 /* Make sure SIGCHLD is blocked. */
816 if (!sigismember (&blocked_mask, SIGCHLD))
817 sigaddset (&blocked_mask, SIGCHLD);
818
819 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
820}
821
822/* Restore child signals mask, previously returned by
823 block_child_signals. */
824
825static void
826restore_child_signals_mask (sigset_t *prev_mask)
827{
828 sigprocmask (SIG_SETMASK, prev_mask, NULL);
829}
830
831/* Mask of signals to pass directly to the inferior. */
832static sigset_t pass_mask;
833
834/* Update signals to pass to the inferior. */
835static void
836linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
837{
838 int signo;
839
840 sigemptyset (&pass_mask);
841
842 for (signo = 1; signo < NSIG; signo++)
843 {
844 int target_signo = gdb_signal_from_host (signo);
845 if (target_signo < numsigs && pass_signals[target_signo])
846 sigaddset (&pass_mask, signo);
847 }
848}
849
850\f
851
852/* Prototypes for local functions. */
853static int stop_wait_callback (struct lwp_info *lp, void *data);
854static int linux_thread_alive (ptid_t ptid);
855static char *linux_child_pid_to_exec_file (int pid);
856
857\f
858/* Convert wait status STATUS to a string. Used for printing debug
859 messages only. */
860
861static char *
862status_to_str (int status)
863{
864 static char buf[64];
865
866 if (WIFSTOPPED (status))
867 {
868 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
869 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
870 strsignal (SIGTRAP));
871 else
872 snprintf (buf, sizeof (buf), "%s (stopped)",
873 strsignal (WSTOPSIG (status)));
874 }
875 else if (WIFSIGNALED (status))
876 snprintf (buf, sizeof (buf), "%s (terminated)",
877 strsignal (WTERMSIG (status)));
878 else
879 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
880
881 return buf;
882}
883
884/* Destroy and free LP. */
885
886static void
887lwp_free (struct lwp_info *lp)
888{
889 xfree (lp->arch_private);
890 xfree (lp);
891}
892
893/* Remove all LWPs belong to PID from the lwp list. */
894
895static void
896purge_lwp_list (int pid)
897{
898 struct lwp_info *lp, *lpprev, *lpnext;
899
900 lpprev = NULL;
901
902 for (lp = lwp_list; lp; lp = lpnext)
903 {
904 lpnext = lp->next;
905
906 if (ptid_get_pid (lp->ptid) == pid)
907 {
908 if (lp == lwp_list)
909 lwp_list = lp->next;
910 else
911 lpprev->next = lp->next;
912
913 lwp_free (lp);
914 }
915 else
916 lpprev = lp;
917 }
918}
919
920/* Add the LWP specified by PTID to the list. PTID is the first LWP
921 in the process. Return a pointer to the structure describing the
922 new LWP.
923
924 This differs from add_lwp in that we don't let the arch specific
925 bits know about this new thread. Current clients of this callback
926 take the opportunity to install watchpoints in the new thread, and
927 we shouldn't do that for the first thread. If we're spawning a
928 child ("run"), the thread executes the shell wrapper first, and we
929 shouldn't touch it until it execs the program we want to debug.
930 For "attach", it'd be okay to call the callback, but it's not
931 necessary, because watchpoints can't yet have been inserted into
932 the inferior. */
933
934static struct lwp_info *
935add_initial_lwp (ptid_t ptid)
936{
937 struct lwp_info *lp;
938
939 gdb_assert (ptid_lwp_p (ptid));
940
941 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
942
943 memset (lp, 0, sizeof (struct lwp_info));
944
945 lp->last_resume_kind = resume_continue;
946 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
947
948 lp->ptid = ptid;
949 lp->core = -1;
950
951 lp->next = lwp_list;
952 lwp_list = lp;
953
954 return lp;
955}
956
957/* Add the LWP specified by PID to the list. Return a pointer to the
958 structure describing the new LWP. The LWP should already be
959 stopped. */
960
961static struct lwp_info *
962add_lwp (ptid_t ptid)
963{
964 struct lwp_info *lp;
965
966 lp = add_initial_lwp (ptid);
967
968 /* Let the arch specific bits know about this new thread. Current
969 clients of this callback take the opportunity to install
970 watchpoints in the new thread. We don't do this for the first
971 thread though. See add_initial_lwp. */
972 if (linux_nat_new_thread != NULL)
973 linux_nat_new_thread (lp);
974
975 return lp;
976}
977
978/* Remove the LWP specified by PID from the list. */
979
980static void
981delete_lwp (ptid_t ptid)
982{
983 struct lwp_info *lp, *lpprev;
984
985 lpprev = NULL;
986
987 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
988 if (ptid_equal (lp->ptid, ptid))
989 break;
990
991 if (!lp)
992 return;
993
994 if (lpprev)
995 lpprev->next = lp->next;
996 else
997 lwp_list = lp->next;
998
999 lwp_free (lp);
1000}
1001
1002/* Return a pointer to the structure describing the LWP corresponding
1003 to PID. If no corresponding LWP could be found, return NULL. */
1004
1005static struct lwp_info *
1006find_lwp_pid (ptid_t ptid)
1007{
1008 struct lwp_info *lp;
1009 int lwp;
1010
1011 if (ptid_lwp_p (ptid))
1012 lwp = ptid_get_lwp (ptid);
1013 else
1014 lwp = ptid_get_pid (ptid);
1015
1016 for (lp = lwp_list; lp; lp = lp->next)
1017 if (lwp == ptid_get_lwp (lp->ptid))
1018 return lp;
1019
1020 return NULL;
1021}
1022
1023/* Call CALLBACK with its second argument set to DATA for every LWP in
1024 the list. If CALLBACK returns 1 for a particular LWP, return a
1025 pointer to the structure describing that LWP immediately.
1026 Otherwise return NULL. */
1027
1028struct lwp_info *
1029iterate_over_lwps (ptid_t filter,
1030 int (*callback) (struct lwp_info *, void *),
1031 void *data)
1032{
1033 struct lwp_info *lp, *lpnext;
1034
1035 for (lp = lwp_list; lp; lp = lpnext)
1036 {
1037 lpnext = lp->next;
1038
1039 if (ptid_match (lp->ptid, filter))
1040 {
1041 if ((*callback) (lp, data))
1042 return lp;
1043 }
1044 }
1045
1046 return NULL;
1047}
1048
1049/* Update our internal state when changing from one checkpoint to
1050 another indicated by NEW_PTID. We can only switch single-threaded
1051 applications, so we only create one new LWP, and the previous list
1052 is discarded. */
1053
1054void
1055linux_nat_switch_fork (ptid_t new_ptid)
1056{
1057 struct lwp_info *lp;
1058
1059 purge_lwp_list (ptid_get_pid (inferior_ptid));
1060
1061 lp = add_lwp (new_ptid);
1062 lp->stopped = 1;
1063
1064 /* This changes the thread's ptid while preserving the gdb thread
1065 num. Also changes the inferior pid, while preserving the
1066 inferior num. */
1067 thread_change_ptid (inferior_ptid, new_ptid);
1068
1069 /* We've just told GDB core that the thread changed target id, but,
1070 in fact, it really is a different thread, with different register
1071 contents. */
1072 registers_changed ();
1073}
1074
1075/* Handle the exit of a single thread LP. */
1076
1077static void
1078exit_lwp (struct lwp_info *lp)
1079{
1080 struct thread_info *th = find_thread_ptid (lp->ptid);
1081
1082 if (th)
1083 {
1084 if (print_thread_events)
1085 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1086
1087 delete_thread (lp->ptid);
1088 }
1089
1090 delete_lwp (lp->ptid);
1091}
1092
1093/* Wait for the LWP specified by LP, which we have just attached to.
1094 Returns a wait status for that LWP, to cache. */
1095
1096static int
1097linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1098 int *signalled)
1099{
1100 pid_t new_pid, pid = ptid_get_lwp (ptid);
1101 int status;
1102
1103 if (linux_proc_pid_is_stopped (pid))
1104 {
1105 if (debug_linux_nat)
1106 fprintf_unfiltered (gdb_stdlog,
1107 "LNPAW: Attaching to a stopped process\n");
1108
1109 /* The process is definitely stopped. It is in a job control
1110 stop, unless the kernel predates the TASK_STOPPED /
1111 TASK_TRACED distinction, in which case it might be in a
1112 ptrace stop. Make sure it is in a ptrace stop; from there we
1113 can kill it, signal it, et cetera.
1114
1115 First make sure there is a pending SIGSTOP. Since we are
1116 already attached, the process can not transition from stopped
1117 to running without a PTRACE_CONT; so we know this signal will
1118 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1119 probably already in the queue (unless this kernel is old
1120 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1121 is not an RT signal, it can only be queued once. */
1122 kill_lwp (pid, SIGSTOP);
1123
1124 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1125 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1126 ptrace (PTRACE_CONT, pid, 0, 0);
1127 }
1128
1129 /* Make sure the initial process is stopped. The user-level threads
1130 layer might want to poke around in the inferior, and that won't
1131 work if things haven't stabilized yet. */
1132 new_pid = my_waitpid (pid, &status, 0);
1133 if (new_pid == -1 && errno == ECHILD)
1134 {
1135 if (first)
1136 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1137
1138 /* Try again with __WCLONE to check cloned processes. */
1139 new_pid = my_waitpid (pid, &status, __WCLONE);
1140 *cloned = 1;
1141 }
1142
1143 gdb_assert (pid == new_pid);
1144
1145 if (!WIFSTOPPED (status))
1146 {
1147 /* The pid we tried to attach has apparently just exited. */
1148 if (debug_linux_nat)
1149 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1150 pid, status_to_str (status));
1151 return status;
1152 }
1153
1154 if (WSTOPSIG (status) != SIGSTOP)
1155 {
1156 *signalled = 1;
1157 if (debug_linux_nat)
1158 fprintf_unfiltered (gdb_stdlog,
1159 "LNPAW: Received %s after attaching\n",
1160 status_to_str (status));
1161 }
1162
1163 return status;
1164}
1165
1166/* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1167 the new LWP could not be attached, or 1 if we're already auto
1168 attached to this thread, but haven't processed the
1169 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1170 its existance, without considering it an error. */
1171
1172int
1173lin_lwp_attach_lwp (ptid_t ptid)
1174{
1175 struct lwp_info *lp;
1176 int lwpid;
1177
1178 gdb_assert (ptid_lwp_p (ptid));
1179
1180 lp = find_lwp_pid (ptid);
1181 lwpid = ptid_get_lwp (ptid);
1182
1183 /* We assume that we're already attached to any LWP that has an id
1184 equal to the overall process id, and to any LWP that is already
1185 in our list of LWPs. If we're not seeing exit events from threads
1186 and we've had PID wraparound since we last tried to stop all threads,
1187 this assumption might be wrong; fortunately, this is very unlikely
1188 to happen. */
1189 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1190 {
1191 int status, cloned = 0, signalled = 0;
1192
1193 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1194 {
1195 if (linux_supports_tracefork ())
1196 {
1197 /* If we haven't stopped all threads when we get here,
1198 we may have seen a thread listed in thread_db's list,
1199 but not processed the PTRACE_EVENT_CLONE yet. If
1200 that's the case, ignore this new thread, and let
1201 normal event handling discover it later. */
1202 if (in_pid_list_p (stopped_pids, lwpid))
1203 {
1204 /* We've already seen this thread stop, but we
1205 haven't seen the PTRACE_EVENT_CLONE extended
1206 event yet. */
1207 return 0;
1208 }
1209 else
1210 {
1211 int new_pid;
1212 int status;
1213
1214 /* See if we've got a stop for this new child
1215 pending. If so, we're already attached. */
1216 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1217 if (new_pid == -1 && errno == ECHILD)
1218 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1219 if (new_pid != -1)
1220 {
1221 if (WIFSTOPPED (status))
1222 add_to_pid_list (&stopped_pids, lwpid, status);
1223 return 1;
1224 }
1225 }
1226 }
1227
1228 /* If we fail to attach to the thread, issue a warning,
1229 but continue. One way this can happen is if thread
1230 creation is interrupted; as of Linux kernel 2.6.19, a
1231 bug may place threads in the thread list and then fail
1232 to create them. */
1233 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1234 safe_strerror (errno));
1235 return -1;
1236 }
1237
1238 if (debug_linux_nat)
1239 fprintf_unfiltered (gdb_stdlog,
1240 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1241 target_pid_to_str (ptid));
1242
1243 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1244 if (!WIFSTOPPED (status))
1245 return 1;
1246
1247 lp = add_lwp (ptid);
1248 lp->stopped = 1;
1249 lp->cloned = cloned;
1250 lp->signalled = signalled;
1251 if (WSTOPSIG (status) != SIGSTOP)
1252 {
1253 lp->resumed = 1;
1254 lp->status = status;
1255 }
1256
1257 target_post_attach (ptid_get_lwp (lp->ptid));
1258
1259 if (debug_linux_nat)
1260 {
1261 fprintf_unfiltered (gdb_stdlog,
1262 "LLAL: waitpid %s received %s\n",
1263 target_pid_to_str (ptid),
1264 status_to_str (status));
1265 }
1266 }
1267 else
1268 {
1269 /* We assume that the LWP representing the original process is
1270 already stopped. Mark it as stopped in the data structure
1271 that the GNU/linux ptrace layer uses to keep track of
1272 threads. Note that this won't have already been done since
1273 the main thread will have, we assume, been stopped by an
1274 attach from a different layer. */
1275 if (lp == NULL)
1276 lp = add_lwp (ptid);
1277 lp->stopped = 1;
1278 }
1279
1280 lp->last_resume_kind = resume_stop;
1281 return 0;
1282}
1283
1284static void
1285linux_nat_create_inferior (struct target_ops *ops,
1286 char *exec_file, char *allargs, char **env,
1287 int from_tty)
1288{
1289#ifdef HAVE_PERSONALITY
1290 int personality_orig = 0, personality_set = 0;
1291#endif /* HAVE_PERSONALITY */
1292
1293 /* The fork_child mechanism is synchronous and calls target_wait, so
1294 we have to mask the async mode. */
1295
1296#ifdef HAVE_PERSONALITY
1297 if (disable_randomization)
1298 {
1299 errno = 0;
1300 personality_orig = personality (0xffffffff);
1301 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1302 {
1303 personality_set = 1;
1304 personality (personality_orig | ADDR_NO_RANDOMIZE);
1305 }
1306 if (errno != 0 || (personality_set
1307 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1308 warning (_("Error disabling address space randomization: %s"),
1309 safe_strerror (errno));
1310 }
1311#endif /* HAVE_PERSONALITY */
1312
1313 /* Make sure we report all signals during startup. */
1314 linux_nat_pass_signals (0, NULL);
1315
1316 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1317
1318#ifdef HAVE_PERSONALITY
1319 if (personality_set)
1320 {
1321 errno = 0;
1322 personality (personality_orig);
1323 if (errno != 0)
1324 warning (_("Error restoring address space randomization: %s"),
1325 safe_strerror (errno));
1326 }
1327#endif /* HAVE_PERSONALITY */
1328}
1329
1330static void
1331linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1332{
1333 struct lwp_info *lp;
1334 int status;
1335 ptid_t ptid;
1336 volatile struct gdb_exception ex;
1337
1338 /* Make sure we report all signals during attach. */
1339 linux_nat_pass_signals (0, NULL);
1340
1341 TRY_CATCH (ex, RETURN_MASK_ERROR)
1342 {
1343 linux_ops->to_attach (ops, args, from_tty);
1344 }
1345 if (ex.reason < 0)
1346 {
1347 pid_t pid = parse_pid_to_attach (args);
1348 struct buffer buffer;
1349 char *message, *buffer_s;
1350
1351 message = xstrdup (ex.message);
1352 make_cleanup (xfree, message);
1353
1354 buffer_init (&buffer);
1355 linux_ptrace_attach_warnings (pid, &buffer);
1356
1357 buffer_grow_str0 (&buffer, "");
1358 buffer_s = buffer_finish (&buffer);
1359 make_cleanup (xfree, buffer_s);
1360
1361 throw_error (ex.error, "%s%s", buffer_s, message);
1362 }
1363
1364 /* The ptrace base target adds the main thread with (pid,0,0)
1365 format. Decorate it with lwp info. */
1366 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1367 ptid_get_pid (inferior_ptid),
1368 0);
1369 thread_change_ptid (inferior_ptid, ptid);
1370
1371 /* Add the initial process as the first LWP to the list. */
1372 lp = add_initial_lwp (ptid);
1373
1374 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1375 &lp->signalled);
1376 if (!WIFSTOPPED (status))
1377 {
1378 if (WIFEXITED (status))
1379 {
1380 int exit_code = WEXITSTATUS (status);
1381
1382 target_terminal_ours ();
1383 target_mourn_inferior ();
1384 if (exit_code == 0)
1385 error (_("Unable to attach: program exited normally."));
1386 else
1387 error (_("Unable to attach: program exited with code %d."),
1388 exit_code);
1389 }
1390 else if (WIFSIGNALED (status))
1391 {
1392 enum gdb_signal signo;
1393
1394 target_terminal_ours ();
1395 target_mourn_inferior ();
1396
1397 signo = gdb_signal_from_host (WTERMSIG (status));
1398 error (_("Unable to attach: program terminated with signal "
1399 "%s, %s."),
1400 gdb_signal_to_name (signo),
1401 gdb_signal_to_string (signo));
1402 }
1403
1404 internal_error (__FILE__, __LINE__,
1405 _("unexpected status %d for PID %ld"),
1406 status, (long) ptid_get_lwp (ptid));
1407 }
1408
1409 lp->stopped = 1;
1410
1411 /* Save the wait status to report later. */
1412 lp->resumed = 1;
1413 if (debug_linux_nat)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "LNA: waitpid %ld, saving status %s\n",
1416 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1417
1418 lp->status = status;
1419
1420 if (target_can_async_p ())
1421 target_async (inferior_event_handler, 0);
1422}
1423
1424/* Get pending status of LP. */
1425static int
1426get_pending_status (struct lwp_info *lp, int *status)
1427{
1428 enum gdb_signal signo = GDB_SIGNAL_0;
1429
1430 /* If we paused threads momentarily, we may have stored pending
1431 events in lp->status or lp->waitstatus (see stop_wait_callback),
1432 and GDB core hasn't seen any signal for those threads.
1433 Otherwise, the last signal reported to the core is found in the
1434 thread object's stop_signal.
1435
1436 There's a corner case that isn't handled here at present. Only
1437 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1438 stop_signal make sense as a real signal to pass to the inferior.
1439 Some catchpoint related events, like
1440 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1441 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1442 those traps are debug API (ptrace in our case) related and
1443 induced; the inferior wouldn't see them if it wasn't being
1444 traced. Hence, we should never pass them to the inferior, even
1445 when set to pass state. Since this corner case isn't handled by
1446 infrun.c when proceeding with a signal, for consistency, neither
1447 do we handle it here (or elsewhere in the file we check for
1448 signal pass state). Normally SIGTRAP isn't set to pass state, so
1449 this is really a corner case. */
1450
1451 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1452 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1453 else if (lp->status)
1454 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1455 else if (non_stop && !is_executing (lp->ptid))
1456 {
1457 struct thread_info *tp = find_thread_ptid (lp->ptid);
1458
1459 signo = tp->suspend.stop_signal;
1460 }
1461 else if (!non_stop)
1462 {
1463 struct target_waitstatus last;
1464 ptid_t last_ptid;
1465
1466 get_last_target_status (&last_ptid, &last);
1467
1468 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1469 {
1470 struct thread_info *tp = find_thread_ptid (lp->ptid);
1471
1472 signo = tp->suspend.stop_signal;
1473 }
1474 }
1475
1476 *status = 0;
1477
1478 if (signo == GDB_SIGNAL_0)
1479 {
1480 if (debug_linux_nat)
1481 fprintf_unfiltered (gdb_stdlog,
1482 "GPT: lwp %s has no pending signal\n",
1483 target_pid_to_str (lp->ptid));
1484 }
1485 else if (!signal_pass_state (signo))
1486 {
1487 if (debug_linux_nat)
1488 fprintf_unfiltered (gdb_stdlog,
1489 "GPT: lwp %s had signal %s, "
1490 "but it is in no pass state\n",
1491 target_pid_to_str (lp->ptid),
1492 gdb_signal_to_string (signo));
1493 }
1494 else
1495 {
1496 *status = W_STOPCODE (gdb_signal_to_host (signo));
1497
1498 if (debug_linux_nat)
1499 fprintf_unfiltered (gdb_stdlog,
1500 "GPT: lwp %s has pending signal %s\n",
1501 target_pid_to_str (lp->ptid),
1502 gdb_signal_to_string (signo));
1503 }
1504
1505 return 0;
1506}
1507
1508static int
1509detach_callback (struct lwp_info *lp, void *data)
1510{
1511 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1512
1513 if (debug_linux_nat && lp->status)
1514 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1515 strsignal (WSTOPSIG (lp->status)),
1516 target_pid_to_str (lp->ptid));
1517
1518 /* If there is a pending SIGSTOP, get rid of it. */
1519 if (lp->signalled)
1520 {
1521 if (debug_linux_nat)
1522 fprintf_unfiltered (gdb_stdlog,
1523 "DC: Sending SIGCONT to %s\n",
1524 target_pid_to_str (lp->ptid));
1525
1526 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1527 lp->signalled = 0;
1528 }
1529
1530 /* We don't actually detach from the LWP that has an id equal to the
1531 overall process id just yet. */
1532 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1533 {
1534 int status = 0;
1535
1536 /* Pass on any pending signal for this LWP. */
1537 get_pending_status (lp, &status);
1538
1539 if (linux_nat_prepare_to_resume != NULL)
1540 linux_nat_prepare_to_resume (lp);
1541 errno = 0;
1542 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1543 WSTOPSIG (status)) < 0)
1544 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1545 safe_strerror (errno));
1546
1547 if (debug_linux_nat)
1548 fprintf_unfiltered (gdb_stdlog,
1549 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1550 target_pid_to_str (lp->ptid),
1551 strsignal (WSTOPSIG (status)));
1552
1553 delete_lwp (lp->ptid);
1554 }
1555
1556 return 0;
1557}
1558
1559static void
1560linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1561{
1562 int pid;
1563 int status;
1564 struct lwp_info *main_lwp;
1565
1566 pid = ptid_get_pid (inferior_ptid);
1567
1568 /* Don't unregister from the event loop, as there may be other
1569 inferiors running. */
1570
1571 /* Stop all threads before detaching. ptrace requires that the
1572 thread is stopped to sucessfully detach. */
1573 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1574 /* ... and wait until all of them have reported back that
1575 they're no longer running. */
1576 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1577
1578 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1579
1580 /* Only the initial process should be left right now. */
1581 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1582
1583 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1584
1585 /* Pass on any pending signal for the last LWP. */
1586 if ((args == NULL || *args == '\0')
1587 && get_pending_status (main_lwp, &status) != -1
1588 && WIFSTOPPED (status))
1589 {
1590 char *tem;
1591
1592 /* Put the signal number in ARGS so that inf_ptrace_detach will
1593 pass it along with PTRACE_DETACH. */
1594 tem = alloca (8);
1595 sprintf (tem, "%d", (int) WSTOPSIG (status));
1596 args = tem;
1597 if (debug_linux_nat)
1598 fprintf_unfiltered (gdb_stdlog,
1599 "LND: Sending signal %s to %s\n",
1600 args,
1601 target_pid_to_str (main_lwp->ptid));
1602 }
1603
1604 if (linux_nat_prepare_to_resume != NULL)
1605 linux_nat_prepare_to_resume (main_lwp);
1606 delete_lwp (main_lwp->ptid);
1607
1608 if (forks_exist_p ())
1609 {
1610 /* Multi-fork case. The current inferior_ptid is being detached
1611 from, but there are other viable forks to debug. Detach from
1612 the current fork, and context-switch to the first
1613 available. */
1614 linux_fork_detach (args, from_tty);
1615 }
1616 else
1617 linux_ops->to_detach (ops, args, from_tty);
1618}
1619
1620/* Resume LP. */
1621
1622static void
1623resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1624{
1625 if (lp->stopped)
1626 {
1627 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1628
1629 if (inf->vfork_child != NULL)
1630 {
1631 if (debug_linux_nat)
1632 fprintf_unfiltered (gdb_stdlog,
1633 "RC: Not resuming %s (vfork parent)\n",
1634 target_pid_to_str (lp->ptid));
1635 }
1636 else if (lp->status == 0
1637 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1638 {
1639 if (debug_linux_nat)
1640 fprintf_unfiltered (gdb_stdlog,
1641 "RC: Resuming sibling %s, %s, %s\n",
1642 target_pid_to_str (lp->ptid),
1643 (signo != GDB_SIGNAL_0
1644 ? strsignal (gdb_signal_to_host (signo))
1645 : "0"),
1646 step ? "step" : "resume");
1647
1648 if (linux_nat_prepare_to_resume != NULL)
1649 linux_nat_prepare_to_resume (lp);
1650 linux_ops->to_resume (linux_ops,
1651 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1652 step, signo);
1653 lp->stopped = 0;
1654 lp->step = step;
1655 lp->stopped_by_watchpoint = 0;
1656 }
1657 else
1658 {
1659 if (debug_linux_nat)
1660 fprintf_unfiltered (gdb_stdlog,
1661 "RC: Not resuming sibling %s (has pending)\n",
1662 target_pid_to_str (lp->ptid));
1663 }
1664 }
1665 else
1666 {
1667 if (debug_linux_nat)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "RC: Not resuming sibling %s (not stopped)\n",
1670 target_pid_to_str (lp->ptid));
1671 }
1672}
1673
1674/* Resume LWP, with the last stop signal, if it is in pass state. */
1675
1676static int
1677linux_nat_resume_callback (struct lwp_info *lp, void *data)
1678{
1679 enum gdb_signal signo = GDB_SIGNAL_0;
1680
1681 if (lp->stopped)
1682 {
1683 struct thread_info *thread;
1684
1685 thread = find_thread_ptid (lp->ptid);
1686 if (thread != NULL)
1687 {
1688 if (signal_pass_state (thread->suspend.stop_signal))
1689 signo = thread->suspend.stop_signal;
1690 thread->suspend.stop_signal = GDB_SIGNAL_0;
1691 }
1692 }
1693
1694 resume_lwp (lp, 0, signo);
1695 return 0;
1696}
1697
1698static int
1699resume_clear_callback (struct lwp_info *lp, void *data)
1700{
1701 lp->resumed = 0;
1702 lp->last_resume_kind = resume_stop;
1703 return 0;
1704}
1705
1706static int
1707resume_set_callback (struct lwp_info *lp, void *data)
1708{
1709 lp->resumed = 1;
1710 lp->last_resume_kind = resume_continue;
1711 return 0;
1712}
1713
1714static void
1715linux_nat_resume (struct target_ops *ops,
1716 ptid_t ptid, int step, enum gdb_signal signo)
1717{
1718 struct lwp_info *lp;
1719 int resume_many;
1720
1721 if (debug_linux_nat)
1722 fprintf_unfiltered (gdb_stdlog,
1723 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1724 step ? "step" : "resume",
1725 target_pid_to_str (ptid),
1726 (signo != GDB_SIGNAL_0
1727 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1728 target_pid_to_str (inferior_ptid));
1729
1730 /* A specific PTID means `step only this process id'. */
1731 resume_many = (ptid_equal (minus_one_ptid, ptid)
1732 || ptid_is_pid (ptid));
1733
1734 /* Mark the lwps we're resuming as resumed. */
1735 iterate_over_lwps (ptid, resume_set_callback, NULL);
1736
1737 /* See if it's the current inferior that should be handled
1738 specially. */
1739 if (resume_many)
1740 lp = find_lwp_pid (inferior_ptid);
1741 else
1742 lp = find_lwp_pid (ptid);
1743 gdb_assert (lp != NULL);
1744
1745 /* Remember if we're stepping. */
1746 lp->step = step;
1747 lp->last_resume_kind = step ? resume_step : resume_continue;
1748
1749 /* If we have a pending wait status for this thread, there is no
1750 point in resuming the process. But first make sure that
1751 linux_nat_wait won't preemptively handle the event - we
1752 should never take this short-circuit if we are going to
1753 leave LP running, since we have skipped resuming all the
1754 other threads. This bit of code needs to be synchronized
1755 with linux_nat_wait. */
1756
1757 if (lp->status && WIFSTOPPED (lp->status))
1758 {
1759 if (!lp->step
1760 && WSTOPSIG (lp->status)
1761 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1762 {
1763 if (debug_linux_nat)
1764 fprintf_unfiltered (gdb_stdlog,
1765 "LLR: Not short circuiting for ignored "
1766 "status 0x%x\n", lp->status);
1767
1768 /* FIXME: What should we do if we are supposed to continue
1769 this thread with a signal? */
1770 gdb_assert (signo == GDB_SIGNAL_0);
1771 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1772 lp->status = 0;
1773 }
1774 }
1775
1776 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1777 {
1778 /* FIXME: What should we do if we are supposed to continue
1779 this thread with a signal? */
1780 gdb_assert (signo == GDB_SIGNAL_0);
1781
1782 if (debug_linux_nat)
1783 fprintf_unfiltered (gdb_stdlog,
1784 "LLR: Short circuiting for status 0x%x\n",
1785 lp->status);
1786
1787 if (target_can_async_p ())
1788 {
1789 target_async (inferior_event_handler, 0);
1790 /* Tell the event loop we have something to process. */
1791 async_file_mark ();
1792 }
1793 return;
1794 }
1795
1796 /* Mark LWP as not stopped to prevent it from being continued by
1797 linux_nat_resume_callback. */
1798 lp->stopped = 0;
1799
1800 if (resume_many)
1801 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1802
1803 /* Convert to something the lower layer understands. */
1804 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1805
1806 if (linux_nat_prepare_to_resume != NULL)
1807 linux_nat_prepare_to_resume (lp);
1808 linux_ops->to_resume (linux_ops, ptid, step, signo);
1809 lp->stopped_by_watchpoint = 0;
1810
1811 if (debug_linux_nat)
1812 fprintf_unfiltered (gdb_stdlog,
1813 "LLR: %s %s, %s (resume event thread)\n",
1814 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1815 target_pid_to_str (ptid),
1816 (signo != GDB_SIGNAL_0
1817 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1818
1819 if (target_can_async_p ())
1820 target_async (inferior_event_handler, 0);
1821}
1822
1823/* Send a signal to an LWP. */
1824
1825static int
1826kill_lwp (int lwpid, int signo)
1827{
1828 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1829 fails, then we are not using nptl threads and we should be using kill. */
1830
1831#ifdef HAVE_TKILL_SYSCALL
1832 {
1833 static int tkill_failed;
1834
1835 if (!tkill_failed)
1836 {
1837 int ret;
1838
1839 errno = 0;
1840 ret = syscall (__NR_tkill, lwpid, signo);
1841 if (errno != ENOSYS)
1842 return ret;
1843 tkill_failed = 1;
1844 }
1845 }
1846#endif
1847
1848 return kill (lwpid, signo);
1849}
1850
1851/* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1852 event, check if the core is interested in it: if not, ignore the
1853 event, and keep waiting; otherwise, we need to toggle the LWP's
1854 syscall entry/exit status, since the ptrace event itself doesn't
1855 indicate it, and report the trap to higher layers. */
1856
1857static int
1858linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1859{
1860 struct target_waitstatus *ourstatus = &lp->waitstatus;
1861 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1862 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1863
1864 if (stopping)
1865 {
1866 /* If we're stopping threads, there's a SIGSTOP pending, which
1867 makes it so that the LWP reports an immediate syscall return,
1868 followed by the SIGSTOP. Skip seeing that "return" using
1869 PTRACE_CONT directly, and let stop_wait_callback collect the
1870 SIGSTOP. Later when the thread is resumed, a new syscall
1871 entry event. If we didn't do this (and returned 0), we'd
1872 leave a syscall entry pending, and our caller, by using
1873 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1874 itself. Later, when the user re-resumes this LWP, we'd see
1875 another syscall entry event and we'd mistake it for a return.
1876
1877 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1878 (leaving immediately with LWP->signalled set, without issuing
1879 a PTRACE_CONT), it would still be problematic to leave this
1880 syscall enter pending, as later when the thread is resumed,
1881 it would then see the same syscall exit mentioned above,
1882 followed by the delayed SIGSTOP, while the syscall didn't
1883 actually get to execute. It seems it would be even more
1884 confusing to the user. */
1885
1886 if (debug_linux_nat)
1887 fprintf_unfiltered (gdb_stdlog,
1888 "LHST: ignoring syscall %d "
1889 "for LWP %ld (stopping threads), "
1890 "resuming with PTRACE_CONT for SIGSTOP\n",
1891 syscall_number,
1892 ptid_get_lwp (lp->ptid));
1893
1894 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1895 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1896 return 1;
1897 }
1898
1899 if (catch_syscall_enabled ())
1900 {
1901 /* Always update the entry/return state, even if this particular
1902 syscall isn't interesting to the core now. In async mode,
1903 the user could install a new catchpoint for this syscall
1904 between syscall enter/return, and we'll need to know to
1905 report a syscall return if that happens. */
1906 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1907 ? TARGET_WAITKIND_SYSCALL_RETURN
1908 : TARGET_WAITKIND_SYSCALL_ENTRY);
1909
1910 if (catching_syscall_number (syscall_number))
1911 {
1912 /* Alright, an event to report. */
1913 ourstatus->kind = lp->syscall_state;
1914 ourstatus->value.syscall_number = syscall_number;
1915
1916 if (debug_linux_nat)
1917 fprintf_unfiltered (gdb_stdlog,
1918 "LHST: stopping for %s of syscall %d"
1919 " for LWP %ld\n",
1920 lp->syscall_state
1921 == TARGET_WAITKIND_SYSCALL_ENTRY
1922 ? "entry" : "return",
1923 syscall_number,
1924 ptid_get_lwp (lp->ptid));
1925 return 0;
1926 }
1927
1928 if (debug_linux_nat)
1929 fprintf_unfiltered (gdb_stdlog,
1930 "LHST: ignoring %s of syscall %d "
1931 "for LWP %ld\n",
1932 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1933 ? "entry" : "return",
1934 syscall_number,
1935 ptid_get_lwp (lp->ptid));
1936 }
1937 else
1938 {
1939 /* If we had been syscall tracing, and hence used PT_SYSCALL
1940 before on this LWP, it could happen that the user removes all
1941 syscall catchpoints before we get to process this event.
1942 There are two noteworthy issues here:
1943
1944 - When stopped at a syscall entry event, resuming with
1945 PT_STEP still resumes executing the syscall and reports a
1946 syscall return.
1947
1948 - Only PT_SYSCALL catches syscall enters. If we last
1949 single-stepped this thread, then this event can't be a
1950 syscall enter. If we last single-stepped this thread, this
1951 has to be a syscall exit.
1952
1953 The points above mean that the next resume, be it PT_STEP or
1954 PT_CONTINUE, can not trigger a syscall trace event. */
1955 if (debug_linux_nat)
1956 fprintf_unfiltered (gdb_stdlog,
1957 "LHST: caught syscall event "
1958 "with no syscall catchpoints."
1959 " %d for LWP %ld, ignoring\n",
1960 syscall_number,
1961 ptid_get_lwp (lp->ptid));
1962 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1963 }
1964
1965 /* The core isn't interested in this event. For efficiency, avoid
1966 stopping all threads only to have the core resume them all again.
1967 Since we're not stopping threads, if we're still syscall tracing
1968 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1969 subsequent syscall. Simply resume using the inf-ptrace layer,
1970 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1971
1972 /* Note that gdbarch_get_syscall_number may access registers, hence
1973 fill a regcache. */
1974 registers_changed ();
1975 if (linux_nat_prepare_to_resume != NULL)
1976 linux_nat_prepare_to_resume (lp);
1977 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1978 lp->step, GDB_SIGNAL_0);
1979 return 1;
1980}
1981
1982/* Handle a GNU/Linux extended wait response. If we see a clone
1983 event, we need to add the new LWP to our list (and not report the
1984 trap to higher layers). This function returns non-zero if the
1985 event should be ignored and we should wait again. If STOPPING is
1986 true, the new LWP remains stopped, otherwise it is continued. */
1987
1988static int
1989linux_handle_extended_wait (struct lwp_info *lp, int status,
1990 int stopping)
1991{
1992 int pid = ptid_get_lwp (lp->ptid);
1993 struct target_waitstatus *ourstatus = &lp->waitstatus;
1994 int event = status >> 16;
1995
1996 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1997 || event == PTRACE_EVENT_CLONE)
1998 {
1999 unsigned long new_pid;
2000 int ret;
2001
2002 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2003
2004 /* If we haven't already seen the new PID stop, wait for it now. */
2005 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2006 {
2007 /* The new child has a pending SIGSTOP. We can't affect it until it
2008 hits the SIGSTOP, but we're already attached. */
2009 ret = my_waitpid (new_pid, &status,
2010 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2011 if (ret == -1)
2012 perror_with_name (_("waiting for new child"));
2013 else if (ret != new_pid)
2014 internal_error (__FILE__, __LINE__,
2015 _("wait returned unexpected PID %d"), ret);
2016 else if (!WIFSTOPPED (status))
2017 internal_error (__FILE__, __LINE__,
2018 _("wait returned unexpected status 0x%x"), status);
2019 }
2020
2021 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2022
2023 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2024 {
2025 /* The arch-specific native code may need to know about new
2026 forks even if those end up never mapped to an
2027 inferior. */
2028 if (linux_nat_new_fork != NULL)
2029 linux_nat_new_fork (lp, new_pid);
2030 }
2031
2032 if (event == PTRACE_EVENT_FORK
2033 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2034 {
2035 /* Handle checkpointing by linux-fork.c here as a special
2036 case. We don't want the follow-fork-mode or 'catch fork'
2037 to interfere with this. */
2038
2039 /* This won't actually modify the breakpoint list, but will
2040 physically remove the breakpoints from the child. */
2041 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2042
2043 /* Retain child fork in ptrace (stopped) state. */
2044 if (!find_fork_pid (new_pid))
2045 add_fork (new_pid);
2046
2047 /* Report as spurious, so that infrun doesn't want to follow
2048 this fork. We're actually doing an infcall in
2049 linux-fork.c. */
2050 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2051
2052 /* Report the stop to the core. */
2053 return 0;
2054 }
2055
2056 if (event == PTRACE_EVENT_FORK)
2057 ourstatus->kind = TARGET_WAITKIND_FORKED;
2058 else if (event == PTRACE_EVENT_VFORK)
2059 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2060 else
2061 {
2062 struct lwp_info *new_lp;
2063
2064 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2065
2066 if (debug_linux_nat)
2067 fprintf_unfiltered (gdb_stdlog,
2068 "LHEW: Got clone event "
2069 "from LWP %d, new child is LWP %ld\n",
2070 pid, new_pid);
2071
2072 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2073 new_lp->cloned = 1;
2074 new_lp->stopped = 1;
2075
2076 if (WSTOPSIG (status) != SIGSTOP)
2077 {
2078 /* This can happen if someone starts sending signals to
2079 the new thread before it gets a chance to run, which
2080 have a lower number than SIGSTOP (e.g. SIGUSR1).
2081 This is an unlikely case, and harder to handle for
2082 fork / vfork than for clone, so we do not try - but
2083 we handle it for clone events here. We'll send
2084 the other signal on to the thread below. */
2085
2086 new_lp->signalled = 1;
2087 }
2088 else
2089 {
2090 struct thread_info *tp;
2091
2092 /* When we stop for an event in some other thread, and
2093 pull the thread list just as this thread has cloned,
2094 we'll have seen the new thread in the thread_db list
2095 before handling the CLONE event (glibc's
2096 pthread_create adds the new thread to the thread list
2097 before clone'ing, and has the kernel fill in the
2098 thread's tid on the clone call with
2099 CLONE_PARENT_SETTID). If that happened, and the core
2100 had requested the new thread to stop, we'll have
2101 killed it with SIGSTOP. But since SIGSTOP is not an
2102 RT signal, it can only be queued once. We need to be
2103 careful to not resume the LWP if we wanted it to
2104 stop. In that case, we'll leave the SIGSTOP pending.
2105 It will later be reported as GDB_SIGNAL_0. */
2106 tp = find_thread_ptid (new_lp->ptid);
2107 if (tp != NULL && tp->stop_requested)
2108 new_lp->last_resume_kind = resume_stop;
2109 else
2110 status = 0;
2111 }
2112
2113 if (non_stop)
2114 {
2115 /* Add the new thread to GDB's lists as soon as possible
2116 so that:
2117
2118 1) the frontend doesn't have to wait for a stop to
2119 display them, and,
2120
2121 2) we tag it with the correct running state. */
2122
2123 /* If the thread_db layer is active, let it know about
2124 this new thread, and add it to GDB's list. */
2125 if (!thread_db_attach_lwp (new_lp->ptid))
2126 {
2127 /* We're not using thread_db. Add it to GDB's
2128 list. */
2129 target_post_attach (ptid_get_lwp (new_lp->ptid));
2130 add_thread (new_lp->ptid);
2131 }
2132
2133 if (!stopping)
2134 {
2135 set_running (new_lp->ptid, 1);
2136 set_executing (new_lp->ptid, 1);
2137 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2138 resume_stop. */
2139 new_lp->last_resume_kind = resume_continue;
2140 }
2141 }
2142
2143 if (status != 0)
2144 {
2145 /* We created NEW_LP so it cannot yet contain STATUS. */
2146 gdb_assert (new_lp->status == 0);
2147
2148 /* Save the wait status to report later. */
2149 if (debug_linux_nat)
2150 fprintf_unfiltered (gdb_stdlog,
2151 "LHEW: waitpid of new LWP %ld, "
2152 "saving status %s\n",
2153 (long) ptid_get_lwp (new_lp->ptid),
2154 status_to_str (status));
2155 new_lp->status = status;
2156 }
2157
2158 /* Note the need to use the low target ops to resume, to
2159 handle resuming with PT_SYSCALL if we have syscall
2160 catchpoints. */
2161 if (!stopping)
2162 {
2163 new_lp->resumed = 1;
2164
2165 if (status == 0)
2166 {
2167 gdb_assert (new_lp->last_resume_kind == resume_continue);
2168 if (debug_linux_nat)
2169 fprintf_unfiltered (gdb_stdlog,
2170 "LHEW: resuming new LWP %ld\n",
2171 ptid_get_lwp (new_lp->ptid));
2172 if (linux_nat_prepare_to_resume != NULL)
2173 linux_nat_prepare_to_resume (new_lp);
2174 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2175 0, GDB_SIGNAL_0);
2176 new_lp->stopped = 0;
2177 }
2178 }
2179
2180 if (debug_linux_nat)
2181 fprintf_unfiltered (gdb_stdlog,
2182 "LHEW: resuming parent LWP %d\n", pid);
2183 if (linux_nat_prepare_to_resume != NULL)
2184 linux_nat_prepare_to_resume (lp);
2185 linux_ops->to_resume (linux_ops,
2186 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2187 0, GDB_SIGNAL_0);
2188
2189 return 1;
2190 }
2191
2192 return 0;
2193 }
2194
2195 if (event == PTRACE_EVENT_EXEC)
2196 {
2197 if (debug_linux_nat)
2198 fprintf_unfiltered (gdb_stdlog,
2199 "LHEW: Got exec event from LWP %ld\n",
2200 ptid_get_lwp (lp->ptid));
2201
2202 ourstatus->kind = TARGET_WAITKIND_EXECD;
2203 ourstatus->value.execd_pathname
2204 = xstrdup (linux_child_pid_to_exec_file (pid));
2205
2206 return 0;
2207 }
2208
2209 if (event == PTRACE_EVENT_VFORK_DONE)
2210 {
2211 if (current_inferior ()->waiting_for_vfork_done)
2212 {
2213 if (debug_linux_nat)
2214 fprintf_unfiltered (gdb_stdlog,
2215 "LHEW: Got expected PTRACE_EVENT_"
2216 "VFORK_DONE from LWP %ld: stopping\n",
2217 ptid_get_lwp (lp->ptid));
2218
2219 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2220 return 0;
2221 }
2222
2223 if (debug_linux_nat)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2226 "from LWP %ld: resuming\n",
2227 ptid_get_lwp (lp->ptid));
2228 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2229 return 1;
2230 }
2231
2232 internal_error (__FILE__, __LINE__,
2233 _("unknown ptrace event %d"), event);
2234}
2235
2236/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2237 exited. */
2238
2239static int
2240wait_lwp (struct lwp_info *lp)
2241{
2242 pid_t pid;
2243 int status = 0;
2244 int thread_dead = 0;
2245 sigset_t prev_mask;
2246
2247 gdb_assert (!lp->stopped);
2248 gdb_assert (lp->status == 0);
2249
2250 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2251 block_child_signals (&prev_mask);
2252
2253 for (;;)
2254 {
2255 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2256 was right and we should just call sigsuspend. */
2257
2258 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2259 if (pid == -1 && errno == ECHILD)
2260 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2261 if (pid == -1 && errno == ECHILD)
2262 {
2263 /* The thread has previously exited. We need to delete it
2264 now because, for some vendor 2.4 kernels with NPTL
2265 support backported, there won't be an exit event unless
2266 it is the main thread. 2.6 kernels will report an exit
2267 event for each thread that exits, as expected. */
2268 thread_dead = 1;
2269 if (debug_linux_nat)
2270 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2271 target_pid_to_str (lp->ptid));
2272 }
2273 if (pid != 0)
2274 break;
2275
2276 /* Bugs 10970, 12702.
2277 Thread group leader may have exited in which case we'll lock up in
2278 waitpid if there are other threads, even if they are all zombies too.
2279 Basically, we're not supposed to use waitpid this way.
2280 __WCLONE is not applicable for the leader so we can't use that.
2281 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2282 process; it gets ESRCH both for the zombie and for running processes.
2283
2284 As a workaround, check if we're waiting for the thread group leader and
2285 if it's a zombie, and avoid calling waitpid if it is.
2286
2287 This is racy, what if the tgl becomes a zombie right after we check?
2288 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2289 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2290
2291 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2292 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2293 {
2294 thread_dead = 1;
2295 if (debug_linux_nat)
2296 fprintf_unfiltered (gdb_stdlog,
2297 "WL: Thread group leader %s vanished.\n",
2298 target_pid_to_str (lp->ptid));
2299 break;
2300 }
2301
2302 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2303 get invoked despite our caller had them intentionally blocked by
2304 block_child_signals. This is sensitive only to the loop of
2305 linux_nat_wait_1 and there if we get called my_waitpid gets called
2306 again before it gets to sigsuspend so we can safely let the handlers
2307 get executed here. */
2308
2309 sigsuspend (&suspend_mask);
2310 }
2311
2312 restore_child_signals_mask (&prev_mask);
2313
2314 if (!thread_dead)
2315 {
2316 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2317
2318 if (debug_linux_nat)
2319 {
2320 fprintf_unfiltered (gdb_stdlog,
2321 "WL: waitpid %s received %s\n",
2322 target_pid_to_str (lp->ptid),
2323 status_to_str (status));
2324 }
2325
2326 /* Check if the thread has exited. */
2327 if (WIFEXITED (status) || WIFSIGNALED (status))
2328 {
2329 thread_dead = 1;
2330 if (debug_linux_nat)
2331 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2332 target_pid_to_str (lp->ptid));
2333 }
2334 }
2335
2336 if (thread_dead)
2337 {
2338 exit_lwp (lp);
2339 return 0;
2340 }
2341
2342 gdb_assert (WIFSTOPPED (status));
2343
2344 /* Handle GNU/Linux's syscall SIGTRAPs. */
2345 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2346 {
2347 /* No longer need the sysgood bit. The ptrace event ends up
2348 recorded in lp->waitstatus if we care for it. We can carry
2349 on handling the event like a regular SIGTRAP from here
2350 on. */
2351 status = W_STOPCODE (SIGTRAP);
2352 if (linux_handle_syscall_trap (lp, 1))
2353 return wait_lwp (lp);
2354 }
2355
2356 /* Handle GNU/Linux's extended waitstatus for trace events. */
2357 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2358 {
2359 if (debug_linux_nat)
2360 fprintf_unfiltered (gdb_stdlog,
2361 "WL: Handling extended status 0x%06x\n",
2362 status);
2363 if (linux_handle_extended_wait (lp, status, 1))
2364 return wait_lwp (lp);
2365 }
2366
2367 return status;
2368}
2369
2370/* Send a SIGSTOP to LP. */
2371
2372static int
2373stop_callback (struct lwp_info *lp, void *data)
2374{
2375 if (!lp->stopped && !lp->signalled)
2376 {
2377 int ret;
2378
2379 if (debug_linux_nat)
2380 {
2381 fprintf_unfiltered (gdb_stdlog,
2382 "SC: kill %s **<SIGSTOP>**\n",
2383 target_pid_to_str (lp->ptid));
2384 }
2385 errno = 0;
2386 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2387 if (debug_linux_nat)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "SC: lwp kill %d %s\n",
2391 ret,
2392 errno ? safe_strerror (errno) : "ERRNO-OK");
2393 }
2394
2395 lp->signalled = 1;
2396 gdb_assert (lp->status == 0);
2397 }
2398
2399 return 0;
2400}
2401
2402/* Request a stop on LWP. */
2403
2404void
2405linux_stop_lwp (struct lwp_info *lwp)
2406{
2407 stop_callback (lwp, NULL);
2408}
2409
2410/* Return non-zero if LWP PID has a pending SIGINT. */
2411
2412static int
2413linux_nat_has_pending_sigint (int pid)
2414{
2415 sigset_t pending, blocked, ignored;
2416
2417 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2418
2419 if (sigismember (&pending, SIGINT)
2420 && !sigismember (&ignored, SIGINT))
2421 return 1;
2422
2423 return 0;
2424}
2425
2426/* Set a flag in LP indicating that we should ignore its next SIGINT. */
2427
2428static int
2429set_ignore_sigint (struct lwp_info *lp, void *data)
2430{
2431 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2432 flag to consume the next one. */
2433 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2434 && WSTOPSIG (lp->status) == SIGINT)
2435 lp->status = 0;
2436 else
2437 lp->ignore_sigint = 1;
2438
2439 return 0;
2440}
2441
2442/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2443 This function is called after we know the LWP has stopped; if the LWP
2444 stopped before the expected SIGINT was delivered, then it will never have
2445 arrived. Also, if the signal was delivered to a shared queue and consumed
2446 by a different thread, it will never be delivered to this LWP. */
2447
2448static void
2449maybe_clear_ignore_sigint (struct lwp_info *lp)
2450{
2451 if (!lp->ignore_sigint)
2452 return;
2453
2454 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2455 {
2456 if (debug_linux_nat)
2457 fprintf_unfiltered (gdb_stdlog,
2458 "MCIS: Clearing bogus flag for %s\n",
2459 target_pid_to_str (lp->ptid));
2460 lp->ignore_sigint = 0;
2461 }
2462}
2463
2464/* Fetch the possible triggered data watchpoint info and store it in
2465 LP.
2466
2467 On some archs, like x86, that use debug registers to set
2468 watchpoints, it's possible that the way to know which watched
2469 address trapped, is to check the register that is used to select
2470 which address to watch. Problem is, between setting the watchpoint
2471 and reading back which data address trapped, the user may change
2472 the set of watchpoints, and, as a consequence, GDB changes the
2473 debug registers in the inferior. To avoid reading back a stale
2474 stopped-data-address when that happens, we cache in LP the fact
2475 that a watchpoint trapped, and the corresponding data address, as
2476 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2477 registers meanwhile, we have the cached data we can rely on. */
2478
2479static void
2480save_sigtrap (struct lwp_info *lp)
2481{
2482 struct cleanup *old_chain;
2483
2484 if (linux_ops->to_stopped_by_watchpoint == NULL)
2485 {
2486 lp->stopped_by_watchpoint = 0;
2487 return;
2488 }
2489
2490 old_chain = save_inferior_ptid ();
2491 inferior_ptid = lp->ptid;
2492
2493 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2494
2495 if (lp->stopped_by_watchpoint)
2496 {
2497 if (linux_ops->to_stopped_data_address != NULL)
2498 lp->stopped_data_address_p =
2499 linux_ops->to_stopped_data_address (&current_target,
2500 &lp->stopped_data_address);
2501 else
2502 lp->stopped_data_address_p = 0;
2503 }
2504
2505 do_cleanups (old_chain);
2506}
2507
2508/* See save_sigtrap. */
2509
2510static int
2511linux_nat_stopped_by_watchpoint (void)
2512{
2513 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2514
2515 gdb_assert (lp != NULL);
2516
2517 return lp->stopped_by_watchpoint;
2518}
2519
2520static int
2521linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2522{
2523 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2524
2525 gdb_assert (lp != NULL);
2526
2527 *addr_p = lp->stopped_data_address;
2528
2529 return lp->stopped_data_address_p;
2530}
2531
2532/* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2533
2534static int
2535sigtrap_is_event (int status)
2536{
2537 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2538}
2539
2540/* SIGTRAP-like events recognizer. */
2541
2542static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2543
2544/* Check for SIGTRAP-like events in LP. */
2545
2546static int
2547linux_nat_lp_status_is_event (struct lwp_info *lp)
2548{
2549 /* We check for lp->waitstatus in addition to lp->status, because we can
2550 have pending process exits recorded in lp->status
2551 and W_EXITCODE(0,0) == 0. We should probably have an additional
2552 lp->status_p flag. */
2553
2554 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2555 && linux_nat_status_is_event (lp->status));
2556}
2557
2558/* Set alternative SIGTRAP-like events recognizer. If
2559 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2560 applied. */
2561
2562void
2563linux_nat_set_status_is_event (struct target_ops *t,
2564 int (*status_is_event) (int status))
2565{
2566 linux_nat_status_is_event = status_is_event;
2567}
2568
2569/* Wait until LP is stopped. */
2570
2571static int
2572stop_wait_callback (struct lwp_info *lp, void *data)
2573{
2574 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2575
2576 /* If this is a vfork parent, bail out, it is not going to report
2577 any SIGSTOP until the vfork is done with. */
2578 if (inf->vfork_child != NULL)
2579 return 0;
2580
2581 if (!lp->stopped)
2582 {
2583 int status;
2584
2585 status = wait_lwp (lp);
2586 if (status == 0)
2587 return 0;
2588
2589 if (lp->ignore_sigint && WIFSTOPPED (status)
2590 && WSTOPSIG (status) == SIGINT)
2591 {
2592 lp->ignore_sigint = 0;
2593
2594 errno = 0;
2595 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2596 if (debug_linux_nat)
2597 fprintf_unfiltered (gdb_stdlog,
2598 "PTRACE_CONT %s, 0, 0 (%s) "
2599 "(discarding SIGINT)\n",
2600 target_pid_to_str (lp->ptid),
2601 errno ? safe_strerror (errno) : "OK");
2602
2603 return stop_wait_callback (lp, NULL);
2604 }
2605
2606 maybe_clear_ignore_sigint (lp);
2607
2608 if (WSTOPSIG (status) != SIGSTOP)
2609 {
2610 /* The thread was stopped with a signal other than SIGSTOP. */
2611
2612 save_sigtrap (lp);
2613
2614 if (debug_linux_nat)
2615 fprintf_unfiltered (gdb_stdlog,
2616 "SWC: Pending event %s in %s\n",
2617 status_to_str ((int) status),
2618 target_pid_to_str (lp->ptid));
2619
2620 /* Save the sigtrap event. */
2621 lp->status = status;
2622 gdb_assert (!lp->stopped);
2623 gdb_assert (lp->signalled);
2624 lp->stopped = 1;
2625 }
2626 else
2627 {
2628 /* We caught the SIGSTOP that we intended to catch, so
2629 there's no SIGSTOP pending. */
2630
2631 if (debug_linux_nat)
2632 fprintf_unfiltered (gdb_stdlog,
2633 "SWC: Delayed SIGSTOP caught for %s.\n",
2634 target_pid_to_str (lp->ptid));
2635
2636 lp->stopped = 1;
2637
2638 /* Reset SIGNALLED only after the stop_wait_callback call
2639 above as it does gdb_assert on SIGNALLED. */
2640 lp->signalled = 0;
2641 }
2642 }
2643
2644 return 0;
2645}
2646
2647/* Return non-zero if LP has a wait status pending. */
2648
2649static int
2650status_callback (struct lwp_info *lp, void *data)
2651{
2652 /* Only report a pending wait status if we pretend that this has
2653 indeed been resumed. */
2654 if (!lp->resumed)
2655 return 0;
2656
2657 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2658 {
2659 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2660 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2661 0', so a clean process exit can not be stored pending in
2662 lp->status, it is indistinguishable from
2663 no-pending-status. */
2664 return 1;
2665 }
2666
2667 if (lp->status != 0)
2668 return 1;
2669
2670 return 0;
2671}
2672
2673/* Return non-zero if LP isn't stopped. */
2674
2675static int
2676running_callback (struct lwp_info *lp, void *data)
2677{
2678 return (!lp->stopped
2679 || ((lp->status != 0
2680 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2681 && lp->resumed));
2682}
2683
2684/* Count the LWP's that have had events. */
2685
2686static int
2687count_events_callback (struct lwp_info *lp, void *data)
2688{
2689 int *count = data;
2690
2691 gdb_assert (count != NULL);
2692
2693 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2694 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2695 (*count)++;
2696
2697 return 0;
2698}
2699
2700/* Select the LWP (if any) that is currently being single-stepped. */
2701
2702static int
2703select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2704{
2705 if (lp->last_resume_kind == resume_step
2706 && lp->status != 0)
2707 return 1;
2708 else
2709 return 0;
2710}
2711
2712/* Select the Nth LWP that has had a SIGTRAP event. */
2713
2714static int
2715select_event_lwp_callback (struct lwp_info *lp, void *data)
2716{
2717 int *selector = data;
2718
2719 gdb_assert (selector != NULL);
2720
2721 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2722 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2723 if ((*selector)-- == 0)
2724 return 1;
2725
2726 return 0;
2727}
2728
2729static int
2730cancel_breakpoint (struct lwp_info *lp)
2731{
2732 /* Arrange for a breakpoint to be hit again later. We don't keep
2733 the SIGTRAP status and don't forward the SIGTRAP signal to the
2734 LWP. We will handle the current event, eventually we will resume
2735 this LWP, and this breakpoint will trap again.
2736
2737 If we do not do this, then we run the risk that the user will
2738 delete or disable the breakpoint, but the LWP will have already
2739 tripped on it. */
2740
2741 struct regcache *regcache = get_thread_regcache (lp->ptid);
2742 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2743 CORE_ADDR pc;
2744
2745 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2746 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2747 {
2748 if (debug_linux_nat)
2749 fprintf_unfiltered (gdb_stdlog,
2750 "CB: Push back breakpoint for %s\n",
2751 target_pid_to_str (lp->ptid));
2752
2753 /* Back up the PC if necessary. */
2754 if (gdbarch_decr_pc_after_break (gdbarch))
2755 regcache_write_pc (regcache, pc);
2756
2757 return 1;
2758 }
2759 return 0;
2760}
2761
2762static int
2763cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2764{
2765 struct lwp_info *event_lp = data;
2766
2767 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2768 if (lp == event_lp)
2769 return 0;
2770
2771 /* If a LWP other than the LWP that we're reporting an event for has
2772 hit a GDB breakpoint (as opposed to some random trap signal),
2773 then just arrange for it to hit it again later. We don't keep
2774 the SIGTRAP status and don't forward the SIGTRAP signal to the
2775 LWP. We will handle the current event, eventually we will resume
2776 all LWPs, and this one will get its breakpoint trap again.
2777
2778 If we do not do this, then we run the risk that the user will
2779 delete or disable the breakpoint, but the LWP will have already
2780 tripped on it. */
2781
2782 if (linux_nat_lp_status_is_event (lp)
2783 && cancel_breakpoint (lp))
2784 /* Throw away the SIGTRAP. */
2785 lp->status = 0;
2786
2787 return 0;
2788}
2789
2790/* Select one LWP out of those that have events pending. */
2791
2792static void
2793select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2794{
2795 int num_events = 0;
2796 int random_selector;
2797 struct lwp_info *event_lp;
2798
2799 /* Record the wait status for the original LWP. */
2800 (*orig_lp)->status = *status;
2801
2802 /* Give preference to any LWP that is being single-stepped. */
2803 event_lp = iterate_over_lwps (filter,
2804 select_singlestep_lwp_callback, NULL);
2805 if (event_lp != NULL)
2806 {
2807 if (debug_linux_nat)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "SEL: Select single-step %s\n",
2810 target_pid_to_str (event_lp->ptid));
2811 }
2812 else
2813 {
2814 /* No single-stepping LWP. Select one at random, out of those
2815 which have had SIGTRAP events. */
2816
2817 /* First see how many SIGTRAP events we have. */
2818 iterate_over_lwps (filter, count_events_callback, &num_events);
2819
2820 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2821 random_selector = (int)
2822 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2823
2824 if (debug_linux_nat && num_events > 1)
2825 fprintf_unfiltered (gdb_stdlog,
2826 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2827 num_events, random_selector);
2828
2829 event_lp = iterate_over_lwps (filter,
2830 select_event_lwp_callback,
2831 &random_selector);
2832 }
2833
2834 if (event_lp != NULL)
2835 {
2836 /* Switch the event LWP. */
2837 *orig_lp = event_lp;
2838 *status = event_lp->status;
2839 }
2840
2841 /* Flush the wait status for the event LWP. */
2842 (*orig_lp)->status = 0;
2843}
2844
2845/* Return non-zero if LP has been resumed. */
2846
2847static int
2848resumed_callback (struct lwp_info *lp, void *data)
2849{
2850 return lp->resumed;
2851}
2852
2853/* Stop an active thread, verify it still exists, then resume it. If
2854 the thread ends up with a pending status, then it is not resumed,
2855 and *DATA (really a pointer to int), is set. */
2856
2857static int
2858stop_and_resume_callback (struct lwp_info *lp, void *data)
2859{
2860 int *new_pending_p = data;
2861
2862 if (!lp->stopped)
2863 {
2864 ptid_t ptid = lp->ptid;
2865
2866 stop_callback (lp, NULL);
2867 stop_wait_callback (lp, NULL);
2868
2869 /* Resume if the lwp still exists, and the core wanted it
2870 running. */
2871 lp = find_lwp_pid (ptid);
2872 if (lp != NULL)
2873 {
2874 if (lp->last_resume_kind == resume_stop
2875 && lp->status == 0)
2876 {
2877 /* The core wanted the LWP to stop. Even if it stopped
2878 cleanly (with SIGSTOP), leave the event pending. */
2879 if (debug_linux_nat)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "SARC: core wanted LWP %ld stopped "
2882 "(leaving SIGSTOP pending)\n",
2883 ptid_get_lwp (lp->ptid));
2884 lp->status = W_STOPCODE (SIGSTOP);
2885 }
2886
2887 if (lp->status == 0)
2888 {
2889 if (debug_linux_nat)
2890 fprintf_unfiltered (gdb_stdlog,
2891 "SARC: re-resuming LWP %ld\n",
2892 ptid_get_lwp (lp->ptid));
2893 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2894 }
2895 else
2896 {
2897 if (debug_linux_nat)
2898 fprintf_unfiltered (gdb_stdlog,
2899 "SARC: not re-resuming LWP %ld "
2900 "(has pending)\n",
2901 ptid_get_lwp (lp->ptid));
2902 if (new_pending_p)
2903 *new_pending_p = 1;
2904 }
2905 }
2906 }
2907 return 0;
2908}
2909
2910/* Check if we should go on and pass this event to common code.
2911 Return the affected lwp if we are, or NULL otherwise. If we stop
2912 all lwps temporarily, we may end up with new pending events in some
2913 other lwp. In that case set *NEW_PENDING_P to true. */
2914
2915static struct lwp_info *
2916linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2917{
2918 struct lwp_info *lp;
2919
2920 *new_pending_p = 0;
2921
2922 lp = find_lwp_pid (pid_to_ptid (lwpid));
2923
2924 /* Check for stop events reported by a process we didn't already
2925 know about - anything not already in our LWP list.
2926
2927 If we're expecting to receive stopped processes after
2928 fork, vfork, and clone events, then we'll just add the
2929 new one to our list and go back to waiting for the event
2930 to be reported - the stopped process might be returned
2931 from waitpid before or after the event is.
2932
2933 But note the case of a non-leader thread exec'ing after the
2934 leader having exited, and gone from our lists. The non-leader
2935 thread changes its tid to the tgid. */
2936
2937 if (WIFSTOPPED (status) && lp == NULL
2938 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2939 {
2940 /* A multi-thread exec after we had seen the leader exiting. */
2941 if (debug_linux_nat)
2942 fprintf_unfiltered (gdb_stdlog,
2943 "LLW: Re-adding thread group leader LWP %d.\n",
2944 lwpid);
2945
2946 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2947 lp->stopped = 1;
2948 lp->resumed = 1;
2949 add_thread (lp->ptid);
2950 }
2951
2952 if (WIFSTOPPED (status) && !lp)
2953 {
2954 add_to_pid_list (&stopped_pids, lwpid, status);
2955 return NULL;
2956 }
2957
2958 /* Make sure we don't report an event for the exit of an LWP not in
2959 our list, i.e. not part of the current process. This can happen
2960 if we detach from a program we originally forked and then it
2961 exits. */
2962 if (!WIFSTOPPED (status) && !lp)
2963 return NULL;
2964
2965 /* Handle GNU/Linux's syscall SIGTRAPs. */
2966 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2967 {
2968 /* No longer need the sysgood bit. The ptrace event ends up
2969 recorded in lp->waitstatus if we care for it. We can carry
2970 on handling the event like a regular SIGTRAP from here
2971 on. */
2972 status = W_STOPCODE (SIGTRAP);
2973 if (linux_handle_syscall_trap (lp, 0))
2974 return NULL;
2975 }
2976
2977 /* Handle GNU/Linux's extended waitstatus for trace events. */
2978 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2979 {
2980 if (debug_linux_nat)
2981 fprintf_unfiltered (gdb_stdlog,
2982 "LLW: Handling extended status 0x%06x\n",
2983 status);
2984 if (linux_handle_extended_wait (lp, status, 0))
2985 return NULL;
2986 }
2987
2988 if (linux_nat_status_is_event (status))
2989 save_sigtrap (lp);
2990
2991 /* Check if the thread has exited. */
2992 if ((WIFEXITED (status) || WIFSIGNALED (status))
2993 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2994 {
2995 /* If this is the main thread, we must stop all threads and verify
2996 if they are still alive. This is because in the nptl thread model
2997 on Linux 2.4, there is no signal issued for exiting LWPs
2998 other than the main thread. We only get the main thread exit
2999 signal once all child threads have already exited. If we
3000 stop all the threads and use the stop_wait_callback to check
3001 if they have exited we can determine whether this signal
3002 should be ignored or whether it means the end of the debugged
3003 application, regardless of which threading model is being
3004 used. */
3005 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3006 {
3007 lp->stopped = 1;
3008 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3009 stop_and_resume_callback, new_pending_p);
3010 }
3011
3012 if (debug_linux_nat)
3013 fprintf_unfiltered (gdb_stdlog,
3014 "LLW: %s exited.\n",
3015 target_pid_to_str (lp->ptid));
3016
3017 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3018 {
3019 /* If there is at least one more LWP, then the exit signal
3020 was not the end of the debugged application and should be
3021 ignored. */
3022 exit_lwp (lp);
3023 return NULL;
3024 }
3025 }
3026
3027 /* Check if the current LWP has previously exited. In the nptl
3028 thread model, LWPs other than the main thread do not issue
3029 signals when they exit so we must check whenever the thread has
3030 stopped. A similar check is made in stop_wait_callback(). */
3031 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3032 {
3033 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3034
3035 if (debug_linux_nat)
3036 fprintf_unfiltered (gdb_stdlog,
3037 "LLW: %s exited.\n",
3038 target_pid_to_str (lp->ptid));
3039
3040 exit_lwp (lp);
3041
3042 /* Make sure there is at least one thread running. */
3043 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3044
3045 /* Discard the event. */
3046 return NULL;
3047 }
3048
3049 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3050 an attempt to stop an LWP. */
3051 if (lp->signalled
3052 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3053 {
3054 if (debug_linux_nat)
3055 fprintf_unfiltered (gdb_stdlog,
3056 "LLW: Delayed SIGSTOP caught for %s.\n",
3057 target_pid_to_str (lp->ptid));
3058
3059 lp->signalled = 0;
3060
3061 if (lp->last_resume_kind != resume_stop)
3062 {
3063 /* This is a delayed SIGSTOP. */
3064
3065 registers_changed ();
3066
3067 if (linux_nat_prepare_to_resume != NULL)
3068 linux_nat_prepare_to_resume (lp);
3069 linux_ops->to_resume (linux_ops,
3070 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3071 lp->step, GDB_SIGNAL_0);
3072 if (debug_linux_nat)
3073 fprintf_unfiltered (gdb_stdlog,
3074 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3075 lp->step ?
3076 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3077 target_pid_to_str (lp->ptid));
3078
3079 lp->stopped = 0;
3080 gdb_assert (lp->resumed);
3081
3082 /* Discard the event. */
3083 return NULL;
3084 }
3085 }
3086
3087 /* Make sure we don't report a SIGINT that we have already displayed
3088 for another thread. */
3089 if (lp->ignore_sigint
3090 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3091 {
3092 if (debug_linux_nat)
3093 fprintf_unfiltered (gdb_stdlog,
3094 "LLW: Delayed SIGINT caught for %s.\n",
3095 target_pid_to_str (lp->ptid));
3096
3097 /* This is a delayed SIGINT. */
3098 lp->ignore_sigint = 0;
3099
3100 registers_changed ();
3101 if (linux_nat_prepare_to_resume != NULL)
3102 linux_nat_prepare_to_resume (lp);
3103 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3104 lp->step, GDB_SIGNAL_0);
3105 if (debug_linux_nat)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3108 lp->step ?
3109 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3110 target_pid_to_str (lp->ptid));
3111
3112 lp->stopped = 0;
3113 gdb_assert (lp->resumed);
3114
3115 /* Discard the event. */
3116 return NULL;
3117 }
3118
3119 /* An interesting event. */
3120 gdb_assert (lp);
3121 lp->status = status;
3122 return lp;
3123}
3124
3125/* Detect zombie thread group leaders, and "exit" them. We can't reap
3126 their exits until all other threads in the group have exited. */
3127
3128static void
3129check_zombie_leaders (void)
3130{
3131 struct inferior *inf;
3132
3133 ALL_INFERIORS (inf)
3134 {
3135 struct lwp_info *leader_lp;
3136
3137 if (inf->pid == 0)
3138 continue;
3139
3140 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3141 if (leader_lp != NULL
3142 /* Check if there are other threads in the group, as we may
3143 have raced with the inferior simply exiting. */
3144 && num_lwps (inf->pid) > 1
3145 && linux_proc_pid_is_zombie (inf->pid))
3146 {
3147 if (debug_linux_nat)
3148 fprintf_unfiltered (gdb_stdlog,
3149 "CZL: Thread group leader %d zombie "
3150 "(it exited, or another thread execd).\n",
3151 inf->pid);
3152
3153 /* A leader zombie can mean one of two things:
3154
3155 - It exited, and there's an exit status pending
3156 available, or only the leader exited (not the whole
3157 program). In the latter case, we can't waitpid the
3158 leader's exit status until all other threads are gone.
3159
3160 - There are 3 or more threads in the group, and a thread
3161 other than the leader exec'd. On an exec, the Linux
3162 kernel destroys all other threads (except the execing
3163 one) in the thread group, and resets the execing thread's
3164 tid to the tgid. No exit notification is sent for the
3165 execing thread -- from the ptracer's perspective, it
3166 appears as though the execing thread just vanishes.
3167 Until we reap all other threads except the leader and the
3168 execing thread, the leader will be zombie, and the
3169 execing thread will be in `D (disc sleep)'. As soon as
3170 all other threads are reaped, the execing thread changes
3171 it's tid to the tgid, and the previous (zombie) leader
3172 vanishes, giving place to the "new" leader. We could try
3173 distinguishing the exit and exec cases, by waiting once
3174 more, and seeing if something comes out, but it doesn't
3175 sound useful. The previous leader _does_ go away, and
3176 we'll re-add the new one once we see the exec event
3177 (which is just the same as what would happen if the
3178 previous leader did exit voluntarily before some other
3179 thread execs). */
3180
3181 if (debug_linux_nat)
3182 fprintf_unfiltered (gdb_stdlog,
3183 "CZL: Thread group leader %d vanished.\n",
3184 inf->pid);
3185 exit_lwp (leader_lp);
3186 }
3187 }
3188}
3189
3190static ptid_t
3191linux_nat_wait_1 (struct target_ops *ops,
3192 ptid_t ptid, struct target_waitstatus *ourstatus,
3193 int target_options)
3194{
3195 static sigset_t prev_mask;
3196 enum resume_kind last_resume_kind;
3197 struct lwp_info *lp;
3198 int status;
3199
3200 if (debug_linux_nat)
3201 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3202
3203 /* The first time we get here after starting a new inferior, we may
3204 not have added it to the LWP list yet - this is the earliest
3205 moment at which we know its PID. */
3206 if (ptid_is_pid (inferior_ptid))
3207 {
3208 /* Upgrade the main thread's ptid. */
3209 thread_change_ptid (inferior_ptid,
3210 ptid_build (ptid_get_pid (inferior_ptid),
3211 ptid_get_pid (inferior_ptid), 0));
3212
3213 lp = add_initial_lwp (inferior_ptid);
3214 lp->resumed = 1;
3215 }
3216
3217 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3218 block_child_signals (&prev_mask);
3219
3220retry:
3221 lp = NULL;
3222 status = 0;
3223
3224 /* First check if there is a LWP with a wait status pending. */
3225 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3226 {
3227 /* Any LWP in the PTID group that's been resumed will do. */
3228 lp = iterate_over_lwps (ptid, status_callback, NULL);
3229 if (lp)
3230 {
3231 if (debug_linux_nat && lp->status)
3232 fprintf_unfiltered (gdb_stdlog,
3233 "LLW: Using pending wait status %s for %s.\n",
3234 status_to_str (lp->status),
3235 target_pid_to_str (lp->ptid));
3236 }
3237 }
3238 else if (ptid_lwp_p (ptid))
3239 {
3240 if (debug_linux_nat)
3241 fprintf_unfiltered (gdb_stdlog,
3242 "LLW: Waiting for specific LWP %s.\n",
3243 target_pid_to_str (ptid));
3244
3245 /* We have a specific LWP to check. */
3246 lp = find_lwp_pid (ptid);
3247 gdb_assert (lp);
3248
3249 if (debug_linux_nat && lp->status)
3250 fprintf_unfiltered (gdb_stdlog,
3251 "LLW: Using pending wait status %s for %s.\n",
3252 status_to_str (lp->status),
3253 target_pid_to_str (lp->ptid));
3254
3255 /* We check for lp->waitstatus in addition to lp->status,
3256 because we can have pending process exits recorded in
3257 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3258 an additional lp->status_p flag. */
3259 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3260 lp = NULL;
3261 }
3262
3263 if (!target_can_async_p ())
3264 {
3265 /* Causes SIGINT to be passed on to the attached process. */
3266 set_sigint_trap ();
3267 }
3268
3269 /* But if we don't find a pending event, we'll have to wait. */
3270
3271 while (lp == NULL)
3272 {
3273 pid_t lwpid;
3274
3275 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3276 quirks:
3277
3278 - If the thread group leader exits while other threads in the
3279 thread group still exist, waitpid(TGID, ...) hangs. That
3280 waitpid won't return an exit status until the other threads
3281 in the group are reapped.
3282
3283 - When a non-leader thread execs, that thread just vanishes
3284 without reporting an exit (so we'd hang if we waited for it
3285 explicitly in that case). The exec event is reported to
3286 the TGID pid. */
3287
3288 errno = 0;
3289 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3290 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3291 lwpid = my_waitpid (-1, &status, WNOHANG);
3292
3293 if (debug_linux_nat)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "LNW: waitpid(-1, ...) returned %d, %s\n",
3296 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3297
3298 if (lwpid > 0)
3299 {
3300 /* If this is true, then we paused LWPs momentarily, and may
3301 now have pending events to handle. */
3302 int new_pending;
3303
3304 if (debug_linux_nat)
3305 {
3306 fprintf_unfiltered (gdb_stdlog,
3307 "LLW: waitpid %ld received %s\n",
3308 (long) lwpid, status_to_str (status));
3309 }
3310
3311 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3312
3313 /* STATUS is now no longer valid, use LP->STATUS instead. */
3314 status = 0;
3315
3316 if (lp && !ptid_match (lp->ptid, ptid))
3317 {
3318 gdb_assert (lp->resumed);
3319
3320 if (debug_linux_nat)
3321 fprintf (stderr,
3322 "LWP %ld got an event %06x, leaving pending.\n",
3323 ptid_get_lwp (lp->ptid), lp->status);
3324
3325 if (WIFSTOPPED (lp->status))
3326 {
3327 if (WSTOPSIG (lp->status) != SIGSTOP)
3328 {
3329 /* Cancel breakpoint hits. The breakpoint may
3330 be removed before we fetch events from this
3331 process to report to the core. It is best
3332 not to assume the moribund breakpoints
3333 heuristic always handles these cases --- it
3334 could be too many events go through to the
3335 core before this one is handled. All-stop
3336 always cancels breakpoint hits in all
3337 threads. */
3338 if (non_stop
3339 && linux_nat_lp_status_is_event (lp)
3340 && cancel_breakpoint (lp))
3341 {
3342 /* Throw away the SIGTRAP. */
3343 lp->status = 0;
3344
3345 if (debug_linux_nat)
3346 fprintf (stderr,
3347 "LLW: LWP %ld hit a breakpoint while"
3348 " waiting for another process;"
3349 " cancelled it\n",
3350 ptid_get_lwp (lp->ptid));
3351 }
3352 lp->stopped = 1;
3353 }
3354 else
3355 {
3356 lp->stopped = 1;
3357 lp->signalled = 0;
3358 }
3359 }
3360 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3361 {
3362 if (debug_linux_nat)
3363 fprintf (stderr,
3364 "Process %ld exited while stopping LWPs\n",
3365 ptid_get_lwp (lp->ptid));
3366
3367 /* This was the last lwp in the process. Since
3368 events are serialized to GDB core, and we can't
3369 report this one right now, but GDB core and the
3370 other target layers will want to be notified
3371 about the exit code/signal, leave the status
3372 pending for the next time we're able to report
3373 it. */
3374
3375 /* Prevent trying to stop this thread again. We'll
3376 never try to resume it because it has a pending
3377 status. */
3378 lp->stopped = 1;
3379
3380 /* Dead LWP's aren't expected to reported a pending
3381 sigstop. */
3382 lp->signalled = 0;
3383
3384 /* Store the pending event in the waitstatus as
3385 well, because W_EXITCODE(0,0) == 0. */
3386 store_waitstatus (&lp->waitstatus, lp->status);
3387 }
3388
3389 /* Keep looking. */
3390 lp = NULL;
3391 }
3392
3393 if (new_pending)
3394 {
3395 /* Some LWP now has a pending event. Go all the way
3396 back to check it. */
3397 goto retry;
3398 }
3399
3400 if (lp)
3401 {
3402 /* We got an event to report to the core. */
3403 break;
3404 }
3405
3406 /* Retry until nothing comes out of waitpid. A single
3407 SIGCHLD can indicate more than one child stopped. */
3408 continue;
3409 }
3410
3411 /* Check for zombie thread group leaders. Those can't be reaped
3412 until all other threads in the thread group are. */
3413 check_zombie_leaders ();
3414
3415 /* If there are no resumed children left, bail. We'd be stuck
3416 forever in the sigsuspend call below otherwise. */
3417 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3418 {
3419 if (debug_linux_nat)
3420 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3421
3422 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3423
3424 if (!target_can_async_p ())
3425 clear_sigint_trap ();
3426
3427 restore_child_signals_mask (&prev_mask);
3428 return minus_one_ptid;
3429 }
3430
3431 /* No interesting event to report to the core. */
3432
3433 if (target_options & TARGET_WNOHANG)
3434 {
3435 if (debug_linux_nat)
3436 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3437
3438 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3439 restore_child_signals_mask (&prev_mask);
3440 return minus_one_ptid;
3441 }
3442
3443 /* We shouldn't end up here unless we want to try again. */
3444 gdb_assert (lp == NULL);
3445
3446 /* Block until we get an event reported with SIGCHLD. */
3447 sigsuspend (&suspend_mask);
3448 }
3449
3450 if (!target_can_async_p ())
3451 clear_sigint_trap ();
3452
3453 gdb_assert (lp);
3454
3455 status = lp->status;
3456 lp->status = 0;
3457
3458 /* Don't report signals that GDB isn't interested in, such as
3459 signals that are neither printed nor stopped upon. Stopping all
3460 threads can be a bit time-consuming so if we want decent
3461 performance with heavily multi-threaded programs, especially when
3462 they're using a high frequency timer, we'd better avoid it if we
3463 can. */
3464
3465 if (WIFSTOPPED (status))
3466 {
3467 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3468
3469 /* When using hardware single-step, we need to report every signal.
3470 Otherwise, signals in pass_mask may be short-circuited. */
3471 if (!lp->step
3472 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3473 {
3474 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3475 here? It is not clear we should. GDB may not expect
3476 other threads to run. On the other hand, not resuming
3477 newly attached threads may cause an unwanted delay in
3478 getting them running. */
3479 registers_changed ();
3480 if (linux_nat_prepare_to_resume != NULL)
3481 linux_nat_prepare_to_resume (lp);
3482 linux_ops->to_resume (linux_ops,
3483 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3484 lp->step, signo);
3485 if (debug_linux_nat)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "LLW: %s %s, %s (preempt 'handle')\n",
3488 lp->step ?
3489 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3490 target_pid_to_str (lp->ptid),
3491 (signo != GDB_SIGNAL_0
3492 ? strsignal (gdb_signal_to_host (signo))
3493 : "0"));
3494 lp->stopped = 0;
3495 goto retry;
3496 }
3497
3498 if (!non_stop)
3499 {
3500 /* Only do the below in all-stop, as we currently use SIGINT
3501 to implement target_stop (see linux_nat_stop) in
3502 non-stop. */
3503 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3504 {
3505 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3506 forwarded to the entire process group, that is, all LWPs
3507 will receive it - unless they're using CLONE_THREAD to
3508 share signals. Since we only want to report it once, we
3509 mark it as ignored for all LWPs except this one. */
3510 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3511 set_ignore_sigint, NULL);
3512 lp->ignore_sigint = 0;
3513 }
3514 else
3515 maybe_clear_ignore_sigint (lp);
3516 }
3517 }
3518
3519 /* This LWP is stopped now. */
3520 lp->stopped = 1;
3521
3522 if (debug_linux_nat)
3523 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3524 status_to_str (status), target_pid_to_str (lp->ptid));
3525
3526 if (!non_stop)
3527 {
3528 /* Now stop all other LWP's ... */
3529 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3530
3531 /* ... and wait until all of them have reported back that
3532 they're no longer running. */
3533 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3534
3535 /* If we're not waiting for a specific LWP, choose an event LWP
3536 from among those that have had events. Giving equal priority
3537 to all LWPs that have had events helps prevent
3538 starvation. */
3539 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3540 select_event_lwp (ptid, &lp, &status);
3541
3542 /* Now that we've selected our final event LWP, cancel any
3543 breakpoints in other LWPs that have hit a GDB breakpoint.
3544 See the comment in cancel_breakpoints_callback to find out
3545 why. */
3546 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3547
3548 /* We'll need this to determine whether to report a SIGSTOP as
3549 TARGET_WAITKIND_0. Need to take a copy because
3550 resume_clear_callback clears it. */
3551 last_resume_kind = lp->last_resume_kind;
3552
3553 /* In all-stop, from the core's perspective, all LWPs are now
3554 stopped until a new resume action is sent over. */
3555 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3556 }
3557 else
3558 {
3559 /* See above. */
3560 last_resume_kind = lp->last_resume_kind;
3561 resume_clear_callback (lp, NULL);
3562 }
3563
3564 if (linux_nat_status_is_event (status))
3565 {
3566 if (debug_linux_nat)
3567 fprintf_unfiltered (gdb_stdlog,
3568 "LLW: trap ptid is %s.\n",
3569 target_pid_to_str (lp->ptid));
3570 }
3571
3572 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3573 {
3574 *ourstatus = lp->waitstatus;
3575 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3576 }
3577 else
3578 store_waitstatus (ourstatus, status);
3579
3580 if (debug_linux_nat)
3581 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3582
3583 restore_child_signals_mask (&prev_mask);
3584
3585 if (last_resume_kind == resume_stop
3586 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3587 && WSTOPSIG (status) == SIGSTOP)
3588 {
3589 /* A thread that has been requested to stop by GDB with
3590 target_stop, and it stopped cleanly, so report as SIG0. The
3591 use of SIGSTOP is an implementation detail. */
3592 ourstatus->value.sig = GDB_SIGNAL_0;
3593 }
3594
3595 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3596 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3597 lp->core = -1;
3598 else
3599 lp->core = linux_common_core_of_thread (lp->ptid);
3600
3601 return lp->ptid;
3602}
3603
3604/* Resume LWPs that are currently stopped without any pending status
3605 to report, but are resumed from the core's perspective. */
3606
3607static int
3608resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3609{
3610 ptid_t *wait_ptid_p = data;
3611
3612 if (lp->stopped
3613 && lp->resumed
3614 && lp->status == 0
3615 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3616 {
3617 struct regcache *regcache = get_thread_regcache (lp->ptid);
3618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3619 CORE_ADDR pc = regcache_read_pc (regcache);
3620
3621 gdb_assert (is_executing (lp->ptid));
3622
3623 /* Don't bother if there's a breakpoint at PC that we'd hit
3624 immediately, and we're not waiting for this LWP. */
3625 if (!ptid_match (lp->ptid, *wait_ptid_p))
3626 {
3627 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3628 return 0;
3629 }
3630
3631 if (debug_linux_nat)
3632 fprintf_unfiltered (gdb_stdlog,
3633 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3634 target_pid_to_str (lp->ptid),
3635 paddress (gdbarch, pc),
3636 lp->step);
3637
3638 registers_changed ();
3639 if (linux_nat_prepare_to_resume != NULL)
3640 linux_nat_prepare_to_resume (lp);
3641 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3642 lp->step, GDB_SIGNAL_0);
3643 lp->stopped = 0;
3644 lp->stopped_by_watchpoint = 0;
3645 }
3646
3647 return 0;
3648}
3649
3650static ptid_t
3651linux_nat_wait (struct target_ops *ops,
3652 ptid_t ptid, struct target_waitstatus *ourstatus,
3653 int target_options)
3654{
3655 ptid_t event_ptid;
3656
3657 if (debug_linux_nat)
3658 {
3659 char *options_string;
3660
3661 options_string = target_options_to_string (target_options);
3662 fprintf_unfiltered (gdb_stdlog,
3663 "linux_nat_wait: [%s], [%s]\n",
3664 target_pid_to_str (ptid),
3665 options_string);
3666 xfree (options_string);
3667 }
3668
3669 /* Flush the async file first. */
3670 if (target_can_async_p ())
3671 async_file_flush ();
3672
3673 /* Resume LWPs that are currently stopped without any pending status
3674 to report, but are resumed from the core's perspective. LWPs get
3675 in this state if we find them stopping at a time we're not
3676 interested in reporting the event (target_wait on a
3677 specific_process, for example, see linux_nat_wait_1), and
3678 meanwhile the event became uninteresting. Don't bother resuming
3679 LWPs we're not going to wait for if they'd stop immediately. */
3680 if (non_stop)
3681 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3682
3683 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3684
3685 /* If we requested any event, and something came out, assume there
3686 may be more. If we requested a specific lwp or process, also
3687 assume there may be more. */
3688 if (target_can_async_p ()
3689 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3690 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3691 || !ptid_equal (ptid, minus_one_ptid)))
3692 async_file_mark ();
3693
3694 /* Get ready for the next event. */
3695 if (target_can_async_p ())
3696 target_async (inferior_event_handler, 0);
3697
3698 return event_ptid;
3699}
3700
3701static int
3702kill_callback (struct lwp_info *lp, void *data)
3703{
3704 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3705
3706 errno = 0;
3707 kill (ptid_get_lwp (lp->ptid), SIGKILL);
3708 if (debug_linux_nat)
3709 fprintf_unfiltered (gdb_stdlog,
3710 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3711 target_pid_to_str (lp->ptid),
3712 errno ? safe_strerror (errno) : "OK");
3713
3714 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3715
3716 errno = 0;
3717 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3718 if (debug_linux_nat)
3719 fprintf_unfiltered (gdb_stdlog,
3720 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3721 target_pid_to_str (lp->ptid),
3722 errno ? safe_strerror (errno) : "OK");
3723
3724 return 0;
3725}
3726
3727static int
3728kill_wait_callback (struct lwp_info *lp, void *data)
3729{
3730 pid_t pid;
3731
3732 /* We must make sure that there are no pending events (delayed
3733 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3734 program doesn't interfere with any following debugging session. */
3735
3736 /* For cloned processes we must check both with __WCLONE and
3737 without, since the exit status of a cloned process isn't reported
3738 with __WCLONE. */
3739 if (lp->cloned)
3740 {
3741 do
3742 {
3743 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3744 if (pid != (pid_t) -1)
3745 {
3746 if (debug_linux_nat)
3747 fprintf_unfiltered (gdb_stdlog,
3748 "KWC: wait %s received unknown.\n",
3749 target_pid_to_str (lp->ptid));
3750 /* The Linux kernel sometimes fails to kill a thread
3751 completely after PTRACE_KILL; that goes from the stop
3752 point in do_fork out to the one in
3753 get_signal_to_deliever and waits again. So kill it
3754 again. */
3755 kill_callback (lp, NULL);
3756 }
3757 }
3758 while (pid == ptid_get_lwp (lp->ptid));
3759
3760 gdb_assert (pid == -1 && errno == ECHILD);
3761 }
3762
3763 do
3764 {
3765 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3766 if (pid != (pid_t) -1)
3767 {
3768 if (debug_linux_nat)
3769 fprintf_unfiltered (gdb_stdlog,
3770 "KWC: wait %s received unk.\n",
3771 target_pid_to_str (lp->ptid));
3772 /* See the call to kill_callback above. */
3773 kill_callback (lp, NULL);
3774 }
3775 }
3776 while (pid == ptid_get_lwp (lp->ptid));
3777
3778 gdb_assert (pid == -1 && errno == ECHILD);
3779 return 0;
3780}
3781
3782static void
3783linux_nat_kill (struct target_ops *ops)
3784{
3785 struct target_waitstatus last;
3786 ptid_t last_ptid;
3787 int status;
3788
3789 /* If we're stopped while forking and we haven't followed yet,
3790 kill the other task. We need to do this first because the
3791 parent will be sleeping if this is a vfork. */
3792
3793 get_last_target_status (&last_ptid, &last);
3794
3795 if (last.kind == TARGET_WAITKIND_FORKED
3796 || last.kind == TARGET_WAITKIND_VFORKED)
3797 {
3798 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3799 wait (&status);
3800
3801 /* Let the arch-specific native code know this process is
3802 gone. */
3803 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3804 }
3805
3806 if (forks_exist_p ())
3807 linux_fork_killall ();
3808 else
3809 {
3810 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3811
3812 /* Stop all threads before killing them, since ptrace requires
3813 that the thread is stopped to sucessfully PTRACE_KILL. */
3814 iterate_over_lwps (ptid, stop_callback, NULL);
3815 /* ... and wait until all of them have reported back that
3816 they're no longer running. */
3817 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3818
3819 /* Kill all LWP's ... */
3820 iterate_over_lwps (ptid, kill_callback, NULL);
3821
3822 /* ... and wait until we've flushed all events. */
3823 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3824 }
3825
3826 target_mourn_inferior ();
3827}
3828
3829static void
3830linux_nat_mourn_inferior (struct target_ops *ops)
3831{
3832 int pid = ptid_get_pid (inferior_ptid);
3833
3834 purge_lwp_list (pid);
3835
3836 if (! forks_exist_p ())
3837 /* Normal case, no other forks available. */
3838 linux_ops->to_mourn_inferior (ops);
3839 else
3840 /* Multi-fork case. The current inferior_ptid has exited, but
3841 there are other viable forks to debug. Delete the exiting
3842 one and context-switch to the first available. */
3843 linux_fork_mourn_inferior ();
3844
3845 /* Let the arch-specific native code know this process is gone. */
3846 linux_nat_forget_process (pid);
3847}
3848
3849/* Convert a native/host siginfo object, into/from the siginfo in the
3850 layout of the inferiors' architecture. */
3851
3852static void
3853siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3854{
3855 int done = 0;
3856
3857 if (linux_nat_siginfo_fixup != NULL)
3858 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3859
3860 /* If there was no callback, or the callback didn't do anything,
3861 then just do a straight memcpy. */
3862 if (!done)
3863 {
3864 if (direction == 1)
3865 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3866 else
3867 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3868 }
3869}
3870
3871static LONGEST
3872linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3873 const char *annex, gdb_byte *readbuf,
3874 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3875{
3876 int pid;
3877 siginfo_t siginfo;
3878 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3879
3880 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3881 gdb_assert (readbuf || writebuf);
3882
3883 pid = ptid_get_lwp (inferior_ptid);
3884 if (pid == 0)
3885 pid = ptid_get_pid (inferior_ptid);
3886
3887 if (offset > sizeof (siginfo))
3888 return -1;
3889
3890 errno = 0;
3891 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3892 if (errno != 0)
3893 return -1;
3894
3895 /* When GDB is built as a 64-bit application, ptrace writes into
3896 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3897 inferior with a 64-bit GDB should look the same as debugging it
3898 with a 32-bit GDB, we need to convert it. GDB core always sees
3899 the converted layout, so any read/write will have to be done
3900 post-conversion. */
3901 siginfo_fixup (&siginfo, inf_siginfo, 0);
3902
3903 if (offset + len > sizeof (siginfo))
3904 len = sizeof (siginfo) - offset;
3905
3906 if (readbuf != NULL)
3907 memcpy (readbuf, inf_siginfo + offset, len);
3908 else
3909 {
3910 memcpy (inf_siginfo + offset, writebuf, len);
3911
3912 /* Convert back to ptrace layout before flushing it out. */
3913 siginfo_fixup (&siginfo, inf_siginfo, 1);
3914
3915 errno = 0;
3916 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3917 if (errno != 0)
3918 return -1;
3919 }
3920
3921 return len;
3922}
3923
3924static LONGEST
3925linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3926 const char *annex, gdb_byte *readbuf,
3927 const gdb_byte *writebuf,
3928 ULONGEST offset, LONGEST len)
3929{
3930 struct cleanup *old_chain;
3931 LONGEST xfer;
3932
3933 if (object == TARGET_OBJECT_SIGNAL_INFO)
3934 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3935 offset, len);
3936
3937 /* The target is connected but no live inferior is selected. Pass
3938 this request down to a lower stratum (e.g., the executable
3939 file). */
3940 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3941 return 0;
3942
3943 old_chain = save_inferior_ptid ();
3944
3945 if (ptid_lwp_p (inferior_ptid))
3946 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3947
3948 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3949 offset, len);
3950
3951 do_cleanups (old_chain);
3952 return xfer;
3953}
3954
3955static int
3956linux_thread_alive (ptid_t ptid)
3957{
3958 int err, tmp_errno;
3959
3960 gdb_assert (ptid_lwp_p (ptid));
3961
3962 /* Send signal 0 instead of anything ptrace, because ptracing a
3963 running thread errors out claiming that the thread doesn't
3964 exist. */
3965 err = kill_lwp (ptid_get_lwp (ptid), 0);
3966 tmp_errno = errno;
3967 if (debug_linux_nat)
3968 fprintf_unfiltered (gdb_stdlog,
3969 "LLTA: KILL(SIG0) %s (%s)\n",
3970 target_pid_to_str (ptid),
3971 err ? safe_strerror (tmp_errno) : "OK");
3972
3973 if (err != 0)
3974 return 0;
3975
3976 return 1;
3977}
3978
3979static int
3980linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3981{
3982 return linux_thread_alive (ptid);
3983}
3984
3985static char *
3986linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3987{
3988 static char buf[64];
3989
3990 if (ptid_lwp_p (ptid)
3991 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3992 || num_lwps (ptid_get_pid (ptid)) > 1))
3993 {
3994 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3995 return buf;
3996 }
3997
3998 return normal_pid_to_str (ptid);
3999}
4000
4001static char *
4002linux_nat_thread_name (struct thread_info *thr)
4003{
4004 int pid = ptid_get_pid (thr->ptid);
4005 long lwp = ptid_get_lwp (thr->ptid);
4006#define FORMAT "/proc/%d/task/%ld/comm"
4007 char buf[sizeof (FORMAT) + 30];
4008 FILE *comm_file;
4009 char *result = NULL;
4010
4011 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4012 comm_file = gdb_fopen_cloexec (buf, "r");
4013 if (comm_file)
4014 {
4015 /* Not exported by the kernel, so we define it here. */
4016#define COMM_LEN 16
4017 static char line[COMM_LEN + 1];
4018
4019 if (fgets (line, sizeof (line), comm_file))
4020 {
4021 char *nl = strchr (line, '\n');
4022
4023 if (nl)
4024 *nl = '\0';
4025 if (*line != '\0')
4026 result = line;
4027 }
4028
4029 fclose (comm_file);
4030 }
4031
4032#undef COMM_LEN
4033#undef FORMAT
4034
4035 return result;
4036}
4037
4038/* Accepts an integer PID; Returns a string representing a file that
4039 can be opened to get the symbols for the child process. */
4040
4041static char *
4042linux_child_pid_to_exec_file (int pid)
4043{
4044 char *name1, *name2;
4045
4046 name1 = xmalloc (PATH_MAX);
4047 name2 = xmalloc (PATH_MAX);
4048 make_cleanup (xfree, name1);
4049 make_cleanup (xfree, name2);
4050 memset (name2, 0, PATH_MAX);
4051
4052 sprintf (name1, "/proc/%d/exe", pid);
4053 if (readlink (name1, name2, PATH_MAX - 1) > 0)
4054 return name2;
4055 else
4056 return name1;
4057}
4058
4059/* Records the thread's register state for the corefile note
4060 section. */
4061
4062static char *
4063linux_nat_collect_thread_registers (const struct regcache *regcache,
4064 ptid_t ptid, bfd *obfd,
4065 char *note_data, int *note_size,
4066 enum gdb_signal stop_signal)
4067{
4068 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4069 const struct regset *regset;
4070 int core_regset_p;
4071 gdb_gregset_t gregs;
4072 gdb_fpregset_t fpregs;
4073
4074 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4075
4076 if (core_regset_p
4077 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4078 sizeof (gregs)))
4079 != NULL && regset->collect_regset != NULL)
4080 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4081 else
4082 fill_gregset (regcache, &gregs, -1);
4083
4084 note_data = (char *) elfcore_write_prstatus
4085 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4086 gdb_signal_to_host (stop_signal), &gregs);
4087
4088 if (core_regset_p
4089 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4090 sizeof (fpregs)))
4091 != NULL && regset->collect_regset != NULL)
4092 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4093 else
4094 fill_fpregset (regcache, &fpregs, -1);
4095
4096 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4097 &fpregs, sizeof (fpregs));
4098
4099 return note_data;
4100}
4101
4102/* Fills the "to_make_corefile_note" target vector. Builds the note
4103 section for a corefile, and returns it in a malloc buffer. */
4104
4105static char *
4106linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4107{
4108 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4109 converted to gdbarch_core_regset_sections, this function can go away. */
4110 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4111 linux_nat_collect_thread_registers);
4112}
4113
4114/* Implement the to_xfer_partial interface for memory reads using the /proc
4115 filesystem. Because we can use a single read() call for /proc, this
4116 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4117 but it doesn't support writes. */
4118
4119static LONGEST
4120linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4121 const char *annex, gdb_byte *readbuf,
4122 const gdb_byte *writebuf,
4123 ULONGEST offset, LONGEST len)
4124{
4125 LONGEST ret;
4126 int fd;
4127 char filename[64];
4128
4129 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4130 return 0;
4131
4132 /* Don't bother for one word. */
4133 if (len < 3 * sizeof (long))
4134 return 0;
4135
4136 /* We could keep this file open and cache it - possibly one per
4137 thread. That requires some juggling, but is even faster. */
4138 sprintf (filename, "/proc/%d/mem", ptid_get_pid (inferior_ptid));
4139 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4140 if (fd == -1)
4141 return 0;
4142
4143 /* If pread64 is available, use it. It's faster if the kernel
4144 supports it (only one syscall), and it's 64-bit safe even on
4145 32-bit platforms (for instance, SPARC debugging a SPARC64
4146 application). */
4147#ifdef HAVE_PREAD64
4148 if (pread64 (fd, readbuf, len, offset) != len)
4149#else
4150 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4151#endif
4152 ret = 0;
4153 else
4154 ret = len;
4155
4156 close (fd);
4157 return ret;
4158}
4159
4160
4161/* Enumerate spufs IDs for process PID. */
4162static LONGEST
4163spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4164{
4165 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4166 LONGEST pos = 0;
4167 LONGEST written = 0;
4168 char path[128];
4169 DIR *dir;
4170 struct dirent *entry;
4171
4172 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4173 dir = opendir (path);
4174 if (!dir)
4175 return -1;
4176
4177 rewinddir (dir);
4178 while ((entry = readdir (dir)) != NULL)
4179 {
4180 struct stat st;
4181 struct statfs stfs;
4182 int fd;
4183
4184 fd = atoi (entry->d_name);
4185 if (!fd)
4186 continue;
4187
4188 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4189 if (stat (path, &st) != 0)
4190 continue;
4191 if (!S_ISDIR (st.st_mode))
4192 continue;
4193
4194 if (statfs (path, &stfs) != 0)
4195 continue;
4196 if (stfs.f_type != SPUFS_MAGIC)
4197 continue;
4198
4199 if (pos >= offset && pos + 4 <= offset + len)
4200 {
4201 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4202 written += 4;
4203 }
4204 pos += 4;
4205 }
4206
4207 closedir (dir);
4208 return written;
4209}
4210
4211/* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4212 object type, using the /proc file system. */
4213static LONGEST
4214linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4215 const char *annex, gdb_byte *readbuf,
4216 const gdb_byte *writebuf,
4217 ULONGEST offset, LONGEST len)
4218{
4219 char buf[128];
4220 int fd = 0;
4221 int ret = -1;
4222 int pid = ptid_get_pid (inferior_ptid);
4223
4224 if (!annex)
4225 {
4226 if (!readbuf)
4227 return -1;
4228 else
4229 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4230 }
4231
4232 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4233 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4234 if (fd <= 0)
4235 return -1;
4236
4237 if (offset != 0
4238 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4239 {
4240 close (fd);
4241 return 0;
4242 }
4243
4244 if (writebuf)
4245 ret = write (fd, writebuf, (size_t) len);
4246 else if (readbuf)
4247 ret = read (fd, readbuf, (size_t) len);
4248
4249 close (fd);
4250 return ret;
4251}
4252
4253
4254/* Parse LINE as a signal set and add its set bits to SIGS. */
4255
4256static void
4257add_line_to_sigset (const char *line, sigset_t *sigs)
4258{
4259 int len = strlen (line) - 1;
4260 const char *p;
4261 int signum;
4262
4263 if (line[len] != '\n')
4264 error (_("Could not parse signal set: %s"), line);
4265
4266 p = line;
4267 signum = len * 4;
4268 while (len-- > 0)
4269 {
4270 int digit;
4271
4272 if (*p >= '0' && *p <= '9')
4273 digit = *p - '0';
4274 else if (*p >= 'a' && *p <= 'f')
4275 digit = *p - 'a' + 10;
4276 else
4277 error (_("Could not parse signal set: %s"), line);
4278
4279 signum -= 4;
4280
4281 if (digit & 1)
4282 sigaddset (sigs, signum + 1);
4283 if (digit & 2)
4284 sigaddset (sigs, signum + 2);
4285 if (digit & 4)
4286 sigaddset (sigs, signum + 3);
4287 if (digit & 8)
4288 sigaddset (sigs, signum + 4);
4289
4290 p++;
4291 }
4292}
4293
4294/* Find process PID's pending signals from /proc/pid/status and set
4295 SIGS to match. */
4296
4297void
4298linux_proc_pending_signals (int pid, sigset_t *pending,
4299 sigset_t *blocked, sigset_t *ignored)
4300{
4301 FILE *procfile;
4302 char buffer[PATH_MAX], fname[PATH_MAX];
4303 struct cleanup *cleanup;
4304
4305 sigemptyset (pending);
4306 sigemptyset (blocked);
4307 sigemptyset (ignored);
4308 sprintf (fname, "/proc/%d/status", pid);
4309 procfile = gdb_fopen_cloexec (fname, "r");
4310 if (procfile == NULL)
4311 error (_("Could not open %s"), fname);
4312 cleanup = make_cleanup_fclose (procfile);
4313
4314 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4315 {
4316 /* Normal queued signals are on the SigPnd line in the status
4317 file. However, 2.6 kernels also have a "shared" pending
4318 queue for delivering signals to a thread group, so check for
4319 a ShdPnd line also.
4320
4321 Unfortunately some Red Hat kernels include the shared pending
4322 queue but not the ShdPnd status field. */
4323
4324 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4325 add_line_to_sigset (buffer + 8, pending);
4326 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4327 add_line_to_sigset (buffer + 8, pending);
4328 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4329 add_line_to_sigset (buffer + 8, blocked);
4330 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4331 add_line_to_sigset (buffer + 8, ignored);
4332 }
4333
4334 do_cleanups (cleanup);
4335}
4336
4337static LONGEST
4338linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4339 const char *annex, gdb_byte *readbuf,
4340 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4341{
4342 gdb_assert (object == TARGET_OBJECT_OSDATA);
4343
4344 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4345}
4346
4347static LONGEST
4348linux_xfer_partial (struct target_ops *ops, enum target_object object,
4349 const char *annex, gdb_byte *readbuf,
4350 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4351{
4352 LONGEST xfer;
4353
4354 if (object == TARGET_OBJECT_AUXV)
4355 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4356 offset, len);
4357
4358 if (object == TARGET_OBJECT_OSDATA)
4359 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4360 offset, len);
4361
4362 if (object == TARGET_OBJECT_SPU)
4363 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4364 offset, len);
4365
4366 /* GDB calculates all the addresses in possibly larget width of the address.
4367 Address width needs to be masked before its final use - either by
4368 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4369
4370 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4371
4372 if (object == TARGET_OBJECT_MEMORY)
4373 {
4374 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4375
4376 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4377 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4378 }
4379
4380 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4381 offset, len);
4382 if (xfer != 0)
4383 return xfer;
4384
4385 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4386 offset, len);
4387}
4388
4389static void
4390cleanup_target_stop (void *arg)
4391{
4392 ptid_t *ptid = (ptid_t *) arg;
4393
4394 gdb_assert (arg != NULL);
4395
4396 /* Unpause all */
4397 target_resume (*ptid, 0, GDB_SIGNAL_0);
4398}
4399
4400static VEC(static_tracepoint_marker_p) *
4401linux_child_static_tracepoint_markers_by_strid (const char *strid)
4402{
4403 char s[IPA_CMD_BUF_SIZE];
4404 struct cleanup *old_chain;
4405 int pid = ptid_get_pid (inferior_ptid);
4406 VEC(static_tracepoint_marker_p) *markers = NULL;
4407 struct static_tracepoint_marker *marker = NULL;
4408 char *p = s;
4409 ptid_t ptid = ptid_build (pid, 0, 0);
4410
4411 /* Pause all */
4412 target_stop (ptid);
4413
4414 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4415 s[sizeof ("qTfSTM")] = 0;
4416
4417 agent_run_command (pid, s, strlen (s) + 1);
4418
4419 old_chain = make_cleanup (free_current_marker, &marker);
4420 make_cleanup (cleanup_target_stop, &ptid);
4421
4422 while (*p++ == 'm')
4423 {
4424 if (marker == NULL)
4425 marker = XCNEW (struct static_tracepoint_marker);
4426
4427 do
4428 {
4429 parse_static_tracepoint_marker_definition (p, &p, marker);
4430
4431 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4432 {
4433 VEC_safe_push (static_tracepoint_marker_p,
4434 markers, marker);
4435 marker = NULL;
4436 }
4437 else
4438 {
4439 release_static_tracepoint_marker (marker);
4440 memset (marker, 0, sizeof (*marker));
4441 }
4442 }
4443 while (*p++ == ','); /* comma-separated list */
4444
4445 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4446 s[sizeof ("qTsSTM")] = 0;
4447 agent_run_command (pid, s, strlen (s) + 1);
4448 p = s;
4449 }
4450
4451 do_cleanups (old_chain);
4452
4453 return markers;
4454}
4455
4456/* Create a prototype generic GNU/Linux target. The client can override
4457 it with local methods. */
4458
4459static void
4460linux_target_install_ops (struct target_ops *t)
4461{
4462 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4463 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4464 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4465 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4466 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4467 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4468 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4469 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4470 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4471 t->to_post_attach = linux_child_post_attach;
4472 t->to_follow_fork = linux_child_follow_fork;
4473 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4474
4475 super_xfer_partial = t->to_xfer_partial;
4476 t->to_xfer_partial = linux_xfer_partial;
4477
4478 t->to_static_tracepoint_markers_by_strid
4479 = linux_child_static_tracepoint_markers_by_strid;
4480}
4481
4482struct target_ops *
4483linux_target (void)
4484{
4485 struct target_ops *t;
4486
4487 t = inf_ptrace_target ();
4488 linux_target_install_ops (t);
4489
4490 return t;
4491}
4492
4493struct target_ops *
4494linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4495{
4496 struct target_ops *t;
4497
4498 t = inf_ptrace_trad_target (register_u_offset);
4499 linux_target_install_ops (t);
4500
4501 return t;
4502}
4503
4504/* target_is_async_p implementation. */
4505
4506static int
4507linux_nat_is_async_p (void)
4508{
4509 /* NOTE: palves 2008-03-21: We're only async when the user requests
4510 it explicitly with the "set target-async" command.
4511 Someday, linux will always be async. */
4512 return target_async_permitted;
4513}
4514
4515/* target_can_async_p implementation. */
4516
4517static int
4518linux_nat_can_async_p (void)
4519{
4520 /* NOTE: palves 2008-03-21: We're only async when the user requests
4521 it explicitly with the "set target-async" command.
4522 Someday, linux will always be async. */
4523 return target_async_permitted;
4524}
4525
4526static int
4527linux_nat_supports_non_stop (void)
4528{
4529 return 1;
4530}
4531
4532/* True if we want to support multi-process. To be removed when GDB
4533 supports multi-exec. */
4534
4535int linux_multi_process = 1;
4536
4537static int
4538linux_nat_supports_multi_process (void)
4539{
4540 return linux_multi_process;
4541}
4542
4543static int
4544linux_nat_supports_disable_randomization (void)
4545{
4546#ifdef HAVE_PERSONALITY
4547 return 1;
4548#else
4549 return 0;
4550#endif
4551}
4552
4553static int async_terminal_is_ours = 1;
4554
4555/* target_terminal_inferior implementation. */
4556
4557static void
4558linux_nat_terminal_inferior (void)
4559{
4560 if (!target_is_async_p ())
4561 {
4562 /* Async mode is disabled. */
4563 terminal_inferior ();
4564 return;
4565 }
4566
4567 terminal_inferior ();
4568
4569 /* Calls to target_terminal_*() are meant to be idempotent. */
4570 if (!async_terminal_is_ours)
4571 return;
4572
4573 delete_file_handler (input_fd);
4574 async_terminal_is_ours = 0;
4575 set_sigint_trap ();
4576}
4577
4578/* target_terminal_ours implementation. */
4579
4580static void
4581linux_nat_terminal_ours (void)
4582{
4583 if (!target_is_async_p ())
4584 {
4585 /* Async mode is disabled. */
4586 terminal_ours ();
4587 return;
4588 }
4589
4590 /* GDB should never give the terminal to the inferior if the
4591 inferior is running in the background (run&, continue&, etc.),
4592 but claiming it sure should. */
4593 terminal_ours ();
4594
4595 if (async_terminal_is_ours)
4596 return;
4597
4598 clear_sigint_trap ();
4599 add_file_handler (input_fd, stdin_event_handler, 0);
4600 async_terminal_is_ours = 1;
4601}
4602
4603static void (*async_client_callback) (enum inferior_event_type event_type,
4604 void *context);
4605static void *async_client_context;
4606
4607/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4608 so we notice when any child changes state, and notify the
4609 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4610 above to wait for the arrival of a SIGCHLD. */
4611
4612static void
4613sigchld_handler (int signo)
4614{
4615 int old_errno = errno;
4616
4617 if (debug_linux_nat)
4618 ui_file_write_async_safe (gdb_stdlog,
4619 "sigchld\n", sizeof ("sigchld\n") - 1);
4620
4621 if (signo == SIGCHLD
4622 && linux_nat_event_pipe[0] != -1)
4623 async_file_mark (); /* Let the event loop know that there are
4624 events to handle. */
4625
4626 errno = old_errno;
4627}
4628
4629/* Callback registered with the target events file descriptor. */
4630
4631static void
4632handle_target_event (int error, gdb_client_data client_data)
4633{
4634 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4635}
4636
4637/* Create/destroy the target events pipe. Returns previous state. */
4638
4639static int
4640linux_async_pipe (int enable)
4641{
4642 int previous = (linux_nat_event_pipe[0] != -1);
4643
4644 if (previous != enable)
4645 {
4646 sigset_t prev_mask;
4647
4648 /* Block child signals while we create/destroy the pipe, as
4649 their handler writes to it. */
4650 block_child_signals (&prev_mask);
4651
4652 if (enable)
4653 {
4654 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4655 internal_error (__FILE__, __LINE__,
4656 "creating event pipe failed.");
4657
4658 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4659 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4660 }
4661 else
4662 {
4663 close (linux_nat_event_pipe[0]);
4664 close (linux_nat_event_pipe[1]);
4665 linux_nat_event_pipe[0] = -1;
4666 linux_nat_event_pipe[1] = -1;
4667 }
4668
4669 restore_child_signals_mask (&prev_mask);
4670 }
4671
4672 return previous;
4673}
4674
4675/* target_async implementation. */
4676
4677static void
4678linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4679 void *context), void *context)
4680{
4681 if (callback != NULL)
4682 {
4683 async_client_callback = callback;
4684 async_client_context = context;
4685 if (!linux_async_pipe (1))
4686 {
4687 add_file_handler (linux_nat_event_pipe[0],
4688 handle_target_event, NULL);
4689 /* There may be pending events to handle. Tell the event loop
4690 to poll them. */
4691 async_file_mark ();
4692 }
4693 }
4694 else
4695 {
4696 async_client_callback = callback;
4697 async_client_context = context;
4698 delete_file_handler (linux_nat_event_pipe[0]);
4699 linux_async_pipe (0);
4700 }
4701 return;
4702}
4703
4704/* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4705 event came out. */
4706
4707static int
4708linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4709{
4710 if (!lwp->stopped)
4711 {
4712 if (debug_linux_nat)
4713 fprintf_unfiltered (gdb_stdlog,
4714 "LNSL: running -> suspending %s\n",
4715 target_pid_to_str (lwp->ptid));
4716
4717
4718 if (lwp->last_resume_kind == resume_stop)
4719 {
4720 if (debug_linux_nat)
4721 fprintf_unfiltered (gdb_stdlog,
4722 "linux-nat: already stopping LWP %ld at "
4723 "GDB's request\n",
4724 ptid_get_lwp (lwp->ptid));
4725 return 0;
4726 }
4727
4728 stop_callback (lwp, NULL);
4729 lwp->last_resume_kind = resume_stop;
4730 }
4731 else
4732 {
4733 /* Already known to be stopped; do nothing. */
4734
4735 if (debug_linux_nat)
4736 {
4737 if (find_thread_ptid (lwp->ptid)->stop_requested)
4738 fprintf_unfiltered (gdb_stdlog,
4739 "LNSL: already stopped/stop_requested %s\n",
4740 target_pid_to_str (lwp->ptid));
4741 else
4742 fprintf_unfiltered (gdb_stdlog,
4743 "LNSL: already stopped/no "
4744 "stop_requested yet %s\n",
4745 target_pid_to_str (lwp->ptid));
4746 }
4747 }
4748 return 0;
4749}
4750
4751static void
4752linux_nat_stop (ptid_t ptid)
4753{
4754 if (non_stop)
4755 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4756 else
4757 linux_ops->to_stop (ptid);
4758}
4759
4760static void
4761linux_nat_close (void)
4762{
4763 /* Unregister from the event loop. */
4764 if (linux_nat_is_async_p ())
4765 linux_nat_async (NULL, 0);
4766
4767 if (linux_ops->to_close)
4768 linux_ops->to_close ();
4769}
4770
4771/* When requests are passed down from the linux-nat layer to the
4772 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4773 used. The address space pointer is stored in the inferior object,
4774 but the common code that is passed such ptid can't tell whether
4775 lwpid is a "main" process id or not (it assumes so). We reverse
4776 look up the "main" process id from the lwp here. */
4777
4778static struct address_space *
4779linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4780{
4781 struct lwp_info *lwp;
4782 struct inferior *inf;
4783 int pid;
4784
4785 pid = ptid_get_lwp (ptid);
4786 if (ptid_get_lwp (ptid) == 0)
4787 {
4788 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4789 tgid. */
4790 lwp = find_lwp_pid (ptid);
4791 pid = ptid_get_pid (lwp->ptid);
4792 }
4793 else
4794 {
4795 /* A (pid,lwpid,0) ptid. */
4796 pid = ptid_get_pid (ptid);
4797 }
4798
4799 inf = find_inferior_pid (pid);
4800 gdb_assert (inf != NULL);
4801 return inf->aspace;
4802}
4803
4804/* Return the cached value of the processor core for thread PTID. */
4805
4806static int
4807linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4808{
4809 struct lwp_info *info = find_lwp_pid (ptid);
4810
4811 if (info)
4812 return info->core;
4813 return -1;
4814}
4815
4816void
4817linux_nat_add_target (struct target_ops *t)
4818{
4819 /* Save the provided single-threaded target. We save this in a separate
4820 variable because another target we've inherited from (e.g. inf-ptrace)
4821 may have saved a pointer to T; we want to use it for the final
4822 process stratum target. */
4823 linux_ops_saved = *t;
4824 linux_ops = &linux_ops_saved;
4825
4826 /* Override some methods for multithreading. */
4827 t->to_create_inferior = linux_nat_create_inferior;
4828 t->to_attach = linux_nat_attach;
4829 t->to_detach = linux_nat_detach;
4830 t->to_resume = linux_nat_resume;
4831 t->to_wait = linux_nat_wait;
4832 t->to_pass_signals = linux_nat_pass_signals;
4833 t->to_xfer_partial = linux_nat_xfer_partial;
4834 t->to_kill = linux_nat_kill;
4835 t->to_mourn_inferior = linux_nat_mourn_inferior;
4836 t->to_thread_alive = linux_nat_thread_alive;
4837 t->to_pid_to_str = linux_nat_pid_to_str;
4838 t->to_thread_name = linux_nat_thread_name;
4839 t->to_has_thread_control = tc_schedlock;
4840 t->to_thread_address_space = linux_nat_thread_address_space;
4841 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4842 t->to_stopped_data_address = linux_nat_stopped_data_address;
4843
4844 t->to_can_async_p = linux_nat_can_async_p;
4845 t->to_is_async_p = linux_nat_is_async_p;
4846 t->to_supports_non_stop = linux_nat_supports_non_stop;
4847 t->to_async = linux_nat_async;
4848 t->to_terminal_inferior = linux_nat_terminal_inferior;
4849 t->to_terminal_ours = linux_nat_terminal_ours;
4850 t->to_close = linux_nat_close;
4851
4852 /* Methods for non-stop support. */
4853 t->to_stop = linux_nat_stop;
4854
4855 t->to_supports_multi_process = linux_nat_supports_multi_process;
4856
4857 t->to_supports_disable_randomization
4858 = linux_nat_supports_disable_randomization;
4859
4860 t->to_core_of_thread = linux_nat_core_of_thread;
4861
4862 /* We don't change the stratum; this target will sit at
4863 process_stratum and thread_db will set at thread_stratum. This
4864 is a little strange, since this is a multi-threaded-capable
4865 target, but we want to be on the stack below thread_db, and we
4866 also want to be used for single-threaded processes. */
4867
4868 add_target (t);
4869}
4870
4871/* Register a method to call whenever a new thread is attached. */
4872void
4873linux_nat_set_new_thread (struct target_ops *t,
4874 void (*new_thread) (struct lwp_info *))
4875{
4876 /* Save the pointer. We only support a single registered instance
4877 of the GNU/Linux native target, so we do not need to map this to
4878 T. */
4879 linux_nat_new_thread = new_thread;
4880}
4881
4882/* See declaration in linux-nat.h. */
4883
4884void
4885linux_nat_set_new_fork (struct target_ops *t,
4886 linux_nat_new_fork_ftype *new_fork)
4887{
4888 /* Save the pointer. */
4889 linux_nat_new_fork = new_fork;
4890}
4891
4892/* See declaration in linux-nat.h. */
4893
4894void
4895linux_nat_set_forget_process (struct target_ops *t,
4896 linux_nat_forget_process_ftype *fn)
4897{
4898 /* Save the pointer. */
4899 linux_nat_forget_process_hook = fn;
4900}
4901
4902/* See declaration in linux-nat.h. */
4903
4904void
4905linux_nat_forget_process (pid_t pid)
4906{
4907 if (linux_nat_forget_process_hook != NULL)
4908 linux_nat_forget_process_hook (pid);
4909}
4910
4911/* Register a method that converts a siginfo object between the layout
4912 that ptrace returns, and the layout in the architecture of the
4913 inferior. */
4914void
4915linux_nat_set_siginfo_fixup (struct target_ops *t,
4916 int (*siginfo_fixup) (siginfo_t *,
4917 gdb_byte *,
4918 int))
4919{
4920 /* Save the pointer. */
4921 linux_nat_siginfo_fixup = siginfo_fixup;
4922}
4923
4924/* Register a method to call prior to resuming a thread. */
4925
4926void
4927linux_nat_set_prepare_to_resume (struct target_ops *t,
4928 void (*prepare_to_resume) (struct lwp_info *))
4929{
4930 /* Save the pointer. */
4931 linux_nat_prepare_to_resume = prepare_to_resume;
4932}
4933
4934/* See linux-nat.h. */
4935
4936int
4937linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4938{
4939 int pid;
4940
4941 pid = ptid_get_lwp (ptid);
4942 if (pid == 0)
4943 pid = ptid_get_pid (ptid);
4944
4945 errno = 0;
4946 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4947 if (errno != 0)
4948 {
4949 memset (siginfo, 0, sizeof (*siginfo));
4950 return 0;
4951 }
4952 return 1;
4953}
4954
4955/* Provide a prototype to silence -Wmissing-prototypes. */
4956extern initialize_file_ftype _initialize_linux_nat;
4957
4958void
4959_initialize_linux_nat (void)
4960{
4961 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4962 &debug_linux_nat, _("\
4963Set debugging of GNU/Linux lwp module."), _("\
4964Show debugging of GNU/Linux lwp module."), _("\
4965Enables printf debugging output."),
4966 NULL,
4967 show_debug_linux_nat,
4968 &setdebuglist, &showdebuglist);
4969
4970 /* Save this mask as the default. */
4971 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4972
4973 /* Install a SIGCHLD handler. */
4974 sigchld_action.sa_handler = sigchld_handler;
4975 sigemptyset (&sigchld_action.sa_mask);
4976 sigchld_action.sa_flags = SA_RESTART;
4977
4978 /* Make it the default. */
4979 sigaction (SIGCHLD, &sigchld_action, NULL);
4980
4981 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4982 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4983 sigdelset (&suspend_mask, SIGCHLD);
4984
4985 sigemptyset (&blocked_mask);
4986}
4987\f
4988
4989/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4990 the GNU/Linux Threads library and therefore doesn't really belong
4991 here. */
4992
4993/* Read variable NAME in the target and return its value if found.
4994 Otherwise return zero. It is assumed that the type of the variable
4995 is `int'. */
4996
4997static int
4998get_signo (const char *name)
4999{
5000 struct minimal_symbol *ms;
5001 int signo;
5002
5003 ms = lookup_minimal_symbol (name, NULL, NULL);
5004 if (ms == NULL)
5005 return 0;
5006
5007 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5008 sizeof (signo)) != 0)
5009 return 0;
5010
5011 return signo;
5012}
5013
5014/* Return the set of signals used by the threads library in *SET. */
5015
5016void
5017lin_thread_get_thread_signals (sigset_t *set)
5018{
5019 struct sigaction action;
5020 int restart, cancel;
5021
5022 sigemptyset (&blocked_mask);
5023 sigemptyset (set);
5024
5025 restart = get_signo ("__pthread_sig_restart");
5026 cancel = get_signo ("__pthread_sig_cancel");
5027
5028 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5029 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5030 not provide any way for the debugger to query the signal numbers -
5031 fortunately they don't change! */
5032
5033 if (restart == 0)
5034 restart = __SIGRTMIN;
5035
5036 if (cancel == 0)
5037 cancel = __SIGRTMIN + 1;
5038
5039 sigaddset (set, restart);
5040 sigaddset (set, cancel);
5041
5042 /* The GNU/Linux Threads library makes terminating threads send a
5043 special "cancel" signal instead of SIGCHLD. Make sure we catch
5044 those (to prevent them from terminating GDB itself, which is
5045 likely to be their default action) and treat them the same way as
5046 SIGCHLD. */
5047
5048 action.sa_handler = sigchld_handler;
5049 sigemptyset (&action.sa_mask);
5050 action.sa_flags = SA_RESTART;
5051 sigaction (cancel, &action, NULL);
5052
5053 /* We block the "cancel" signal throughout this code ... */
5054 sigaddset (&blocked_mask, cancel);
5055 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5056
5057 /* ... except during a sigsuspend. */
5058 sigdelset (&suspend_mask, cancel);
5059}
This page took 0.0483 seconds and 4 git commands to generate.