Add support for inlining scripts into .debug_gdb_scripts.
[deliverable/binutils-gdb.git] / gdb / symfile.c
... / ...
CommitLineData
1/* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "bfdlink.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "source.h"
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
39#include "inferior.h"
40#include "regcache.h"
41#include "filenames.h" /* for DOSish file names */
42#include "gdb-stabs.h"
43#include "gdb_obstack.h"
44#include "completer.h"
45#include "bcache.h"
46#include "hashtab.h"
47#include "readline/readline.h"
48#include "block.h"
49#include "observer.h"
50#include "exec.h"
51#include "parser-defs.h"
52#include "varobj.h"
53#include "elf-bfd.h"
54#include "solib.h"
55#include "remote.h"
56#include "stack.h"
57#include "gdb_bfd.h"
58#include "cli/cli-utils.h"
59
60#include <sys/types.h>
61#include <fcntl.h>
62#include <sys/stat.h>
63#include <ctype.h>
64#include <time.h>
65#include <sys/time.h>
66
67#include "psymtab.h"
68
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
78
79static void clear_symtab_users_cleanup (void *ignore);
80
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
83
84/* Functions this file defines. */
85
86static void load_command (char *, int);
87
88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89
90static void add_symbol_file_command (char *, int);
91
92static const struct sym_fns *find_sym_fns (bfd *);
93
94static void decrement_reading_symtab (void *);
95
96static void overlay_invalidate_all (void);
97
98static void overlay_auto_command (char *, int);
99
100static void overlay_manual_command (char *, int);
101
102static void overlay_off_command (char *, int);
103
104static void overlay_load_command (char *, int);
105
106static void overlay_command (char *, int);
107
108static void simple_free_overlay_table (void);
109
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113static int simple_read_overlay_table (void);
114
115static int simple_overlay_update_1 (struct obj_section *);
116
117static void add_filename_language (char *ext, enum language lang);
118
119static void info_ext_lang_command (char *args, int from_tty);
120
121static void init_filename_language_table (void);
122
123static void symfile_find_segment_sections (struct objfile *objfile);
124
125void _initialize_symfile (void);
126
127/* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
129 prepared to read. */
130
131typedef struct
132{
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138} registered_sym_fns;
139
140DEF_VEC_O (registered_sym_fns);
141
142static VEC (registered_sym_fns) *symtab_fns = NULL;
143
144/* Values for "set print symbol-loading". */
145
146const char print_symbol_loading_off[] = "off";
147const char print_symbol_loading_brief[] = "brief";
148const char print_symbol_loading_full[] = "full";
149static const char *print_symbol_loading_enums[] =
150{
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155};
156static const char *print_symbol_loading = print_symbol_loading_full;
157
158/* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
167
168int auto_solib_add = 1;
169\f
170
171/* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179int
180print_symbol_loading_p (int from_tty, int exec, int full)
181{
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194}
195
196/* True if we are reading a symbol table. */
197
198int currently_reading_symtab = 0;
199
200static void
201decrement_reading_symtab (void *dummy)
202{
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
205}
206
207/* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
209
210struct cleanup *
211increment_reading_symtab (void)
212{
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
216}
217
218/* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227void
228find_lowest_section (bfd *abfd, asection *sect, void *obj)
229{
230 asection **lowest = (asection **) obj;
231
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242}
243
244/* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
247
248struct section_addr_info *
249alloc_section_addr_info (size_t num_sections)
250{
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
258
259 return sap;
260}
261
262/* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
264
265extern struct section_addr_info *
266build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
268{
269 struct section_addr_info *sap;
270 const struct target_section *stp;
271 int oidx;
272
273 sap = alloc_section_addr_info (end - start);
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
282 {
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 oidx++;
287 }
288 }
289
290 sap->num_sections = oidx;
291
292 return sap;
293}
294
295/* Create a section_addr_info from section offsets in ABFD. */
296
297static struct section_addr_info *
298build_section_addr_info_from_bfd (bfd *abfd)
299{
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307 {
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 i++;
312 }
313
314 sap->num_sections = i;
315
316 return sap;
317}
318
319/* Create a section_addr_info from section offsets in OBJFILE. */
320
321struct section_addr_info *
322build_section_addr_info_from_objfile (const struct objfile *objfile)
323{
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338}
339
340/* Free all memory allocated by build_section_addr_info_from_section_table. */
341
342extern void
343free_section_addr_info (struct section_addr_info *sap)
344{
345 int idx;
346
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
349 xfree (sap);
350}
351
352/* Initialize OBJFILE's sect_index_* members. */
353
354static void
355init_objfile_sect_indices (struct objfile *objfile)
356{
357 asection *sect;
358 int i;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
361 if (sect)
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
365 if (sect)
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369 if (sect)
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373 if (sect)
374 objfile->sect_index_rodata = sect->index;
375
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
411}
412
413/* The arguments to place_section. */
414
415struct place_section_arg
416{
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419};
420
421/* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
424static void
425place_section (bfd *abfd, asection *sect, void *obj)
426{
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434 return;
435
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
442
443 do {
444 asection *cur_sec;
445
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
473 break;
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
483}
484
485/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
488
489void
490relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
492 const struct section_addr_info *addrs)
493{
494 int i;
495
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
500 {
501 const struct other_sections *osp;
502
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
505 continue;
506
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
509 the BFD index. */
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512}
513
514/* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520static const char *
521addr_section_name (const char *s)
522{
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529}
530
531/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534static int
535addrs_section_compar (const void *ap, const void *bp)
536{
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
539 int retval;
540
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542 if (retval)
543 return retval;
544
545 return a->sectindex - b->sectindex;
546}
547
548/* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551static struct other_sections **
552addrs_section_sort (struct section_addr_info *addrs)
553{
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566}
567
568/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
571
572void
573addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574{
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
577 int i;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
592 }
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
624
625 while (*abfd_addrs_sorted
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
658 for (i = 0; i < addrs->num_sections; i++)
659 {
660 struct other_sections *sect = addrs_to_abfd_addrs[i];
661
662 if (sect)
663 {
664 /* This is the index used by BFD. */
665 addrs->other[i].sectindex = sect->sectindex;
666
667 if (addrs->other[i].addr != 0)
668 {
669 addrs->other[i].addr -= sect->addr;
670 lower_offset = addrs->other[i].addr;
671 }
672 else
673 addrs->other[i].addr = lower_offset;
674 }
675 else
676 {
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
695 || strcmp (sect_name, ".gnu.conflict") == 0
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
707 addrs->other[i].addr = 0;
708 addrs->other[i].sectindex = -1;
709 }
710 }
711
712 do_cleanups (my_cleanup);
713}
714
715/* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721void
722default_symfile_offsets (struct objfile *objfile,
723 const struct section_addr_info *addrs)
724{
725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
731
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
794 offsets[cur_sec->index]);
795 offsets[cur_sec->index] = 0;
796 }
797 }
798 }
799
800 /* Remember the bfd indexes for the .text, .data, .bss and
801 .rodata sections. */
802 init_objfile_sect_indices (objfile);
803}
804
805/* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811struct symfile_segment_data *
812default_symfile_segments (bfd *abfd)
813{
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
839 data = XCNEW (struct symfile_segment_data);
840 data->num_segments = 1;
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
843
844 num_sections = bfd_count_sections (abfd);
845 data->segment_info = XCNEWVEC (int, num_sections);
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867}
868
869/* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872static void
873read_symbols (struct objfile *objfile, int add_flags)
874{
875 (*objfile->sf->sym_read) (objfile, add_flags);
876 objfile->per_bfd->minsyms_read = 1;
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901}
902
903/* Initialize entry point information for this objfile. */
904
905static void
906init_entry_point_info (struct objfile *objfile)
907{
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
936 ei->entry_point_p = 0;
937 }
938
939 if (ei->entry_point_p)
940 {
941 struct obj_section *osect;
942 CORE_ADDR entry_point = ei->entry_point;
943 int found;
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
954 ei->entry_point
955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
966 ei->the_bfd_section_index
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
975 }
976}
977
978/* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
981 This function does not set the OBJFILE's entry-point info.
982
983 OBJFILE is where the symbols are to be read from.
984
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
994
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
998
999static void
1000syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
1002 int add_flags)
1003{
1004 struct section_addr_info *local_addr = NULL;
1005 struct cleanup *old_chain;
1006 const int mainline = add_flags & SYMFILE_MAINLINE;
1007
1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1009
1010 if (objfile->sf == NULL)
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
1023
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1027
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1031 if (! addrs)
1032 {
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
1038 if (mainline)
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
1056
1057 (*objfile->sf->sym_new_init) (objfile);
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1063
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1072
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1075
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1077
1078 read_symbols (objfile, add_flags);
1079
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
1083 xfree (local_addr);
1084}
1085
1086/* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
1089static void
1090syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1092 int add_flags)
1093{
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1096}
1097
1098/* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1101
1102void
1103new_symfile_objfile (struct objfile *objfile, int add_flags)
1104{
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
1113 clear_symtab_users (add_flags);
1114 }
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116 {
1117 breakpoint_re_set ();
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122}
1123
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1129
1130 For NAME description see allocate_objfile's definition.
1131
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1134
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1137
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1143
1144static struct objfile *
1145symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1148{
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1155
1156 if (readnow_symbol_files)
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
1161
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
1166 && mainline
1167 && from_tty
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1170
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1173
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1180 if (should_print)
1181 {
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1184 else
1185 {
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190 }
1191 syms_from_objfile (objfile, addrs, add_flags);
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1197
1198 if ((flags & OBJF_READNOW))
1199 {
1200 if (should_print)
1201 {
1202 printf_unfiltered (_("expanding to full symbols..."));
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1209 }
1210
1211 if (should_print && !objfile_has_symbols (objfile))
1212 {
1213 wrap_here ("");
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1215 wrap_here ("");
1216 }
1217
1218 if (should_print)
1219 {
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1222 else
1223 printf_unfiltered (_("done.\n"));
1224 }
1225
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
1231 if (objfile->sf == NULL)
1232 {
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1235 }
1236
1237 new_symfile_objfile (objfile, add_flags);
1238
1239 observer_notify_new_objfile (objfile);
1240
1241 bfd_cache_close_all ();
1242 return (objfile);
1243}
1244
1245/* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1247
1248void
1249symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1251{
1252 struct objfile *new_objfile;
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
1261
1262 new_objfile = symbol_file_add_with_addrs
1263 (bfd, name, symfile_flags, sap,
1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1265 | OBJF_USERLOADED),
1266 objfile);
1267
1268 do_cleanups (my_cleanup);
1269}
1270
1271/* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
1273 See symbol_file_add_with_addrs's comments for details. */
1274
1275struct objfile *
1276symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1277 struct section_addr_info *addrs,
1278 int flags, struct objfile *parent)
1279{
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
1282}
1283
1284/* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1286
1287struct objfile *
1288symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
1290{
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1297 return objf;
1298}
1299
1300/* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
1307
1308void
1309symbol_file_add_main (const char *args, int from_tty)
1310{
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312}
1313
1314static void
1315symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1316{
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
1320 symbol_file_add (args, add_flags, NULL, flags);
1321
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1328}
1329
1330void
1331symbol_file_clear (int from_tty)
1332{
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
1337 objfile_name (symfile_objfile))
1338 : !query (_("Discard symbol table? "))))
1339 error (_("Not confirmed."));
1340
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
1343 no_shared_libraries (NULL, from_tty);
1344
1345 free_all_objfiles ();
1346
1347 gdb_assert (symfile_objfile == NULL);
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1350}
1351
1352static int
1353separate_debug_file_exists (const char *name, unsigned long crc,
1354 struct objfile *parent_objfile)
1355{
1356 unsigned long file_crc;
1357 int file_crc_p;
1358 bfd *abfd;
1359 struct stat parent_stat, abfd_stat;
1360 int verified_as_different;
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366 the separate debug infos with the same basename can exist. */
1367
1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1369 return 0;
1370
1371 abfd = gdb_bfd_open_maybe_remote (name);
1372
1373 if (!abfd)
1374 return 0;
1375
1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Do not indicate a duplicate library in that
1381 case. While there is no guarantee that a system that provides
1382 meaningful inode numbers will never set st_ino to zero, this is
1383 merely an optimization, so we do not need to worry about false
1384 negatives. */
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1389 {
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
1393 gdb_bfd_unref (abfd);
1394 return 0;
1395 }
1396 verified_as_different = 1;
1397 }
1398 else
1399 verified_as_different = 0;
1400
1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1402
1403 gdb_bfd_unref (abfd);
1404
1405 if (!file_crc_p)
1406 return 0;
1407
1408 if (crc != file_crc)
1409 {
1410 unsigned long parent_crc;
1411
1412 /* If one (or both) the files are accessed for example the via "remote:"
1413 gdbserver way it does not support the bfd_stat operation. Verify
1414 whether those two files are not the same manually. */
1415
1416 if (!verified_as_different)
1417 {
1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1419 return 0;
1420 }
1421
1422 if (verified_as_different || parent_crc != file_crc)
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
1425 name, objfile_name (parent_objfile));
1426
1427 return 0;
1428 }
1429
1430 return 1;
1431}
1432
1433char *debug_file_directory = NULL;
1434static void
1435show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437{
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
1441 value);
1442}
1443
1444#if ! defined (DEBUG_SUBDIRECTORY)
1445#define DEBUG_SUBDIRECTORY ".debug"
1446#endif
1447
1448/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1454
1455static char *
1456find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
1460{
1461 char *debugdir;
1462 char *debugfile;
1463 int i;
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
1467
1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1469 i = strlen (dir);
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1472
1473 debugfile = xmalloc (strlen (debug_file_directory) + 1
1474 + i
1475 + strlen (DEBUG_SUBDIRECTORY)
1476 + strlen ("/")
1477 + strlen (debuglink)
1478 + 1);
1479
1480 /* First try in the same directory as the original file. */
1481 strcpy (debugfile, dir);
1482 strcat (debugfile, debuglink);
1483
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 return debugfile;
1486
1487 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1488 strcpy (debugfile, dir);
1489 strcat (debugfile, DEBUG_SUBDIRECTORY);
1490 strcat (debugfile, "/");
1491 strcat (debugfile, debuglink);
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495
1496 /* Then try in the global debugfile directories.
1497
1498 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1499 cause "/..." lookups. */
1500
1501 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1502 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1503
1504 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1505 {
1506 strcpy (debugfile, debugdir);
1507 strcat (debugfile, "/");
1508 strcat (debugfile, dir);
1509 strcat (debugfile, debuglink);
1510
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 {
1513 do_cleanups (back_to);
1514 return debugfile;
1515 }
1516
1517 /* If the file is in the sysroot, try using its base path in the
1518 global debugfile directory. */
1519 if (canon_dir != NULL
1520 && filename_ncmp (canon_dir, gdb_sysroot,
1521 strlen (gdb_sysroot)) == 0
1522 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1523 {
1524 strcpy (debugfile, debugdir);
1525 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1526 strcat (debugfile, "/");
1527 strcat (debugfile, debuglink);
1528
1529 if (separate_debug_file_exists (debugfile, crc32, objfile))
1530 {
1531 do_cleanups (back_to);
1532 return debugfile;
1533 }
1534 }
1535 }
1536
1537 do_cleanups (back_to);
1538 xfree (debugfile);
1539 return NULL;
1540}
1541
1542/* Modify PATH to contain only "[/]directory/" part of PATH.
1543 If there were no directory separators in PATH, PATH will be empty
1544 string on return. */
1545
1546static void
1547terminate_after_last_dir_separator (char *path)
1548{
1549 int i;
1550
1551 /* Strip off the final filename part, leaving the directory name,
1552 followed by a slash. The directory can be relative or absolute. */
1553 for (i = strlen(path) - 1; i >= 0; i--)
1554 if (IS_DIR_SEPARATOR (path[i]))
1555 break;
1556
1557 /* If I is -1 then no directory is present there and DIR will be "". */
1558 path[i + 1] = '\0';
1559}
1560
1561/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1562 Returns pathname, or NULL. */
1563
1564char *
1565find_separate_debug_file_by_debuglink (struct objfile *objfile)
1566{
1567 char *debuglink;
1568 char *dir, *canon_dir;
1569 char *debugfile;
1570 unsigned long crc32;
1571 struct cleanup *cleanups;
1572
1573 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1574
1575 if (debuglink == NULL)
1576 {
1577 /* There's no separate debug info, hence there's no way we could
1578 load it => no warning. */
1579 return NULL;
1580 }
1581
1582 cleanups = make_cleanup (xfree, debuglink);
1583 dir = xstrdup (objfile_name (objfile));
1584 make_cleanup (xfree, dir);
1585 terminate_after_last_dir_separator (dir);
1586 canon_dir = lrealpath (dir);
1587
1588 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1589 crc32, objfile);
1590 xfree (canon_dir);
1591
1592 if (debugfile == NULL)
1593 {
1594 /* For PR gdb/9538, try again with realpath (if different from the
1595 original). */
1596
1597 struct stat st_buf;
1598
1599 if (lstat (objfile_name (objfile), &st_buf) == 0
1600 && S_ISLNK (st_buf.st_mode))
1601 {
1602 char *symlink_dir;
1603
1604 symlink_dir = lrealpath (objfile_name (objfile));
1605 if (symlink_dir != NULL)
1606 {
1607 make_cleanup (xfree, symlink_dir);
1608 terminate_after_last_dir_separator (symlink_dir);
1609 if (strcmp (dir, symlink_dir) != 0)
1610 {
1611 /* Different directory, so try using it. */
1612 debugfile = find_separate_debug_file (symlink_dir,
1613 symlink_dir,
1614 debuglink,
1615 crc32,
1616 objfile);
1617 }
1618 }
1619 }
1620 }
1621
1622 do_cleanups (cleanups);
1623 return debugfile;
1624}
1625
1626/* This is the symbol-file command. Read the file, analyze its
1627 symbols, and add a struct symtab to a symtab list. The syntax of
1628 the command is rather bizarre:
1629
1630 1. The function buildargv implements various quoting conventions
1631 which are undocumented and have little or nothing in common with
1632 the way things are quoted (or not quoted) elsewhere in GDB.
1633
1634 2. Options are used, which are not generally used in GDB (perhaps
1635 "set mapped on", "set readnow on" would be better)
1636
1637 3. The order of options matters, which is contrary to GNU
1638 conventions (because it is confusing and inconvenient). */
1639
1640void
1641symbol_file_command (char *args, int from_tty)
1642{
1643 dont_repeat ();
1644
1645 if (args == NULL)
1646 {
1647 symbol_file_clear (from_tty);
1648 }
1649 else
1650 {
1651 char **argv = gdb_buildargv (args);
1652 int flags = OBJF_USERLOADED;
1653 struct cleanup *cleanups;
1654 char *name = NULL;
1655
1656 cleanups = make_cleanup_freeargv (argv);
1657 while (*argv != NULL)
1658 {
1659 if (strcmp (*argv, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
1661 else if (**argv == '-')
1662 error (_("unknown option `%s'"), *argv);
1663 else
1664 {
1665 symbol_file_add_main_1 (*argv, from_tty, flags);
1666 name = *argv;
1667 }
1668
1669 argv++;
1670 }
1671
1672 if (name == NULL)
1673 error (_("no symbol file name was specified"));
1674
1675 do_cleanups (cleanups);
1676 }
1677}
1678
1679/* Set the initial language.
1680
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1688 full symbols. */
1689
1690void
1691set_initial_language (void)
1692{
1693 enum language lang = main_language ();
1694
1695 if (lang == language_unknown)
1696 {
1697 char *name = main_name ();
1698 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1699
1700 if (sym != NULL)
1701 lang = SYMBOL_LANGUAGE (sym);
1702 }
1703
1704 if (lang == language_unknown)
1705 {
1706 /* Make C the default language */
1707 lang = language_c;
1708 }
1709
1710 set_language (lang);
1711 expected_language = current_language; /* Don't warn the user. */
1712}
1713
1714/* If NAME is a remote name open the file using remote protocol, otherwise
1715 open it normally. Returns a new reference to the BFD. On error,
1716 returns NULL with the BFD error set. */
1717
1718bfd *
1719gdb_bfd_open_maybe_remote (const char *name)
1720{
1721 bfd *result;
1722
1723 if (remote_filename_p (name))
1724 result = remote_bfd_open (name, gnutarget);
1725 else
1726 result = gdb_bfd_open (name, gnutarget, -1);
1727
1728 return result;
1729}
1730
1731/* Open the file specified by NAME and hand it off to BFD for
1732 preliminary analysis. Return a newly initialized bfd *, which
1733 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1734 absolute). In case of trouble, error() is called. */
1735
1736bfd *
1737symfile_bfd_open (const char *cname)
1738{
1739 bfd *sym_bfd;
1740 int desc;
1741 char *name, *absolute_name;
1742 struct cleanup *back_to;
1743
1744 if (remote_filename_p (cname))
1745 {
1746 sym_bfd = remote_bfd_open (cname, gnutarget);
1747 if (!sym_bfd)
1748 error (_("`%s': can't open to read symbols: %s."), cname,
1749 bfd_errmsg (bfd_get_error ()));
1750
1751 if (!bfd_check_format (sym_bfd, bfd_object))
1752 {
1753 make_cleanup_bfd_unref (sym_bfd);
1754 error (_("`%s': can't read symbols: %s."), cname,
1755 bfd_errmsg (bfd_get_error ()));
1756 }
1757
1758 return sym_bfd;
1759 }
1760
1761 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1762
1763 /* Look down path for it, allocate 2nd new malloc'd copy. */
1764 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1765 O_RDONLY | O_BINARY, &absolute_name);
1766#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1767 if (desc < 0)
1768 {
1769 char *exename = alloca (strlen (name) + 5);
1770
1771 strcat (strcpy (exename, name), ".exe");
1772 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1773 exename, O_RDONLY | O_BINARY, &absolute_name);
1774 }
1775#endif
1776 if (desc < 0)
1777 {
1778 make_cleanup (xfree, name);
1779 perror_with_name (name);
1780 }
1781
1782 xfree (name);
1783 name = absolute_name;
1784 back_to = make_cleanup (xfree, name);
1785
1786 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1787 if (!sym_bfd)
1788 error (_("`%s': can't open to read symbols: %s."), name,
1789 bfd_errmsg (bfd_get_error ()));
1790 bfd_set_cacheable (sym_bfd, 1);
1791
1792 if (!bfd_check_format (sym_bfd, bfd_object))
1793 {
1794 make_cleanup_bfd_unref (sym_bfd);
1795 error (_("`%s': can't read symbols: %s."), name,
1796 bfd_errmsg (bfd_get_error ()));
1797 }
1798
1799 do_cleanups (back_to);
1800
1801 return sym_bfd;
1802}
1803
1804/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1805 the section was not found. */
1806
1807int
1808get_section_index (struct objfile *objfile, char *section_name)
1809{
1810 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1811
1812 if (sect)
1813 return sect->index;
1814 else
1815 return -1;
1816}
1817
1818/* Link SF into the global symtab_fns list.
1819 FLAVOUR is the file format that SF handles.
1820 Called on startup by the _initialize routine in each object file format
1821 reader, to register information about each format the reader is prepared
1822 to handle. */
1823
1824void
1825add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1826{
1827 registered_sym_fns fns = { flavour, sf };
1828
1829 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1830}
1831
1832/* Initialize OBJFILE to read symbols from its associated BFD. It
1833 either returns or calls error(). The result is an initialized
1834 struct sym_fns in the objfile structure, that contains cached
1835 information about the symbol file. */
1836
1837static const struct sym_fns *
1838find_sym_fns (bfd *abfd)
1839{
1840 registered_sym_fns *rsf;
1841 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1842 int i;
1843
1844 if (our_flavour == bfd_target_srec_flavour
1845 || our_flavour == bfd_target_ihex_flavour
1846 || our_flavour == bfd_target_tekhex_flavour)
1847 return NULL; /* No symbols. */
1848
1849 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1850 if (our_flavour == rsf->sym_flavour)
1851 return rsf->sym_fns;
1852
1853 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1854 bfd_get_target (abfd));
1855}
1856\f
1857
1858/* This function runs the load command of our current target. */
1859
1860static void
1861load_command (char *arg, int from_tty)
1862{
1863 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1864
1865 dont_repeat ();
1866
1867 /* The user might be reloading because the binary has changed. Take
1868 this opportunity to check. */
1869 reopen_exec_file ();
1870 reread_symbols ();
1871
1872 if (arg == NULL)
1873 {
1874 char *parg;
1875 int count = 0;
1876
1877 parg = arg = get_exec_file (1);
1878
1879 /* Count how many \ " ' tab space there are in the name. */
1880 while ((parg = strpbrk (parg, "\\\"'\t ")))
1881 {
1882 parg++;
1883 count++;
1884 }
1885
1886 if (count)
1887 {
1888 /* We need to quote this string so buildargv can pull it apart. */
1889 char *temp = xmalloc (strlen (arg) + count + 1 );
1890 char *ptemp = temp;
1891 char *prev;
1892
1893 make_cleanup (xfree, temp);
1894
1895 prev = parg = arg;
1896 while ((parg = strpbrk (parg, "\\\"'\t ")))
1897 {
1898 strncpy (ptemp, prev, parg - prev);
1899 ptemp += parg - prev;
1900 prev = parg++;
1901 *ptemp++ = '\\';
1902 }
1903 strcpy (ptemp, prev);
1904
1905 arg = temp;
1906 }
1907 }
1908
1909 target_load (arg, from_tty);
1910
1911 /* After re-loading the executable, we don't really know which
1912 overlays are mapped any more. */
1913 overlay_cache_invalid = 1;
1914
1915 do_cleanups (cleanup);
1916}
1917
1918/* This version of "load" should be usable for any target. Currently
1919 it is just used for remote targets, not inftarg.c or core files,
1920 on the theory that only in that case is it useful.
1921
1922 Avoiding xmodem and the like seems like a win (a) because we don't have
1923 to worry about finding it, and (b) On VMS, fork() is very slow and so
1924 we don't want to run a subprocess. On the other hand, I'm not sure how
1925 performance compares. */
1926
1927static int validate_download = 0;
1928
1929/* Callback service function for generic_load (bfd_map_over_sections). */
1930
1931static void
1932add_section_size_callback (bfd *abfd, asection *asec, void *data)
1933{
1934 bfd_size_type *sum = data;
1935
1936 *sum += bfd_get_section_size (asec);
1937}
1938
1939/* Opaque data for load_section_callback. */
1940struct load_section_data {
1941 CORE_ADDR load_offset;
1942 struct load_progress_data *progress_data;
1943 VEC(memory_write_request_s) *requests;
1944};
1945
1946/* Opaque data for load_progress. */
1947struct load_progress_data {
1948 /* Cumulative data. */
1949 unsigned long write_count;
1950 unsigned long data_count;
1951 bfd_size_type total_size;
1952};
1953
1954/* Opaque data for load_progress for a single section. */
1955struct load_progress_section_data {
1956 struct load_progress_data *cumulative;
1957
1958 /* Per-section data. */
1959 const char *section_name;
1960 ULONGEST section_sent;
1961 ULONGEST section_size;
1962 CORE_ADDR lma;
1963 gdb_byte *buffer;
1964};
1965
1966/* Target write callback routine for progress reporting. */
1967
1968static void
1969load_progress (ULONGEST bytes, void *untyped_arg)
1970{
1971 struct load_progress_section_data *args = untyped_arg;
1972 struct load_progress_data *totals;
1973
1974 if (args == NULL)
1975 /* Writing padding data. No easy way to get at the cumulative
1976 stats, so just ignore this. */
1977 return;
1978
1979 totals = args->cumulative;
1980
1981 if (bytes == 0 && args->section_sent == 0)
1982 {
1983 /* The write is just starting. Let the user know we've started
1984 this section. */
1985 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1986 args->section_name, hex_string (args->section_size),
1987 paddress (target_gdbarch (), args->lma));
1988 return;
1989 }
1990
1991 if (validate_download)
1992 {
1993 /* Broken memories and broken monitors manifest themselves here
1994 when bring new computers to life. This doubles already slow
1995 downloads. */
1996 /* NOTE: cagney/1999-10-18: A more efficient implementation
1997 might add a verify_memory() method to the target vector and
1998 then use that. remote.c could implement that method using
1999 the ``qCRC'' packet. */
2000 gdb_byte *check = xmalloc (bytes);
2001 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2002
2003 if (target_read_memory (args->lma, check, bytes) != 0)
2004 error (_("Download verify read failed at %s"),
2005 paddress (target_gdbarch (), args->lma));
2006 if (memcmp (args->buffer, check, bytes) != 0)
2007 error (_("Download verify compare failed at %s"),
2008 paddress (target_gdbarch (), args->lma));
2009 do_cleanups (verify_cleanups);
2010 }
2011 totals->data_count += bytes;
2012 args->lma += bytes;
2013 args->buffer += bytes;
2014 totals->write_count += 1;
2015 args->section_sent += bytes;
2016 if (check_quit_flag ()
2017 || (deprecated_ui_load_progress_hook != NULL
2018 && deprecated_ui_load_progress_hook (args->section_name,
2019 args->section_sent)))
2020 error (_("Canceled the download"));
2021
2022 if (deprecated_show_load_progress != NULL)
2023 deprecated_show_load_progress (args->section_name,
2024 args->section_sent,
2025 args->section_size,
2026 totals->data_count,
2027 totals->total_size);
2028}
2029
2030/* Callback service function for generic_load (bfd_map_over_sections). */
2031
2032static void
2033load_section_callback (bfd *abfd, asection *asec, void *data)
2034{
2035 struct memory_write_request *new_request;
2036 struct load_section_data *args = data;
2037 struct load_progress_section_data *section_data;
2038 bfd_size_type size = bfd_get_section_size (asec);
2039 gdb_byte *buffer;
2040 const char *sect_name = bfd_get_section_name (abfd, asec);
2041
2042 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2043 return;
2044
2045 if (size == 0)
2046 return;
2047
2048 new_request = VEC_safe_push (memory_write_request_s,
2049 args->requests, NULL);
2050 memset (new_request, 0, sizeof (struct memory_write_request));
2051 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2052 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2053 new_request->end = new_request->begin + size; /* FIXME Should size
2054 be in instead? */
2055 new_request->data = xmalloc (size);
2056 new_request->baton = section_data;
2057
2058 buffer = new_request->data;
2059
2060 section_data->cumulative = args->progress_data;
2061 section_data->section_name = sect_name;
2062 section_data->section_size = size;
2063 section_data->lma = new_request->begin;
2064 section_data->buffer = buffer;
2065
2066 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2067}
2068
2069/* Clean up an entire memory request vector, including load
2070 data and progress records. */
2071
2072static void
2073clear_memory_write_data (void *arg)
2074{
2075 VEC(memory_write_request_s) **vec_p = arg;
2076 VEC(memory_write_request_s) *vec = *vec_p;
2077 int i;
2078 struct memory_write_request *mr;
2079
2080 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2081 {
2082 xfree (mr->data);
2083 xfree (mr->baton);
2084 }
2085 VEC_free (memory_write_request_s, vec);
2086}
2087
2088void
2089generic_load (const char *args, int from_tty)
2090{
2091 bfd *loadfile_bfd;
2092 struct timeval start_time, end_time;
2093 char *filename;
2094 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2095 struct load_section_data cbdata;
2096 struct load_progress_data total_progress;
2097 struct ui_out *uiout = current_uiout;
2098
2099 CORE_ADDR entry;
2100 char **argv;
2101
2102 memset (&cbdata, 0, sizeof (cbdata));
2103 memset (&total_progress, 0, sizeof (total_progress));
2104 cbdata.progress_data = &total_progress;
2105
2106 make_cleanup (clear_memory_write_data, &cbdata.requests);
2107
2108 if (args == NULL)
2109 error_no_arg (_("file to load"));
2110
2111 argv = gdb_buildargv (args);
2112 make_cleanup_freeargv (argv);
2113
2114 filename = tilde_expand (argv[0]);
2115 make_cleanup (xfree, filename);
2116
2117 if (argv[1] != NULL)
2118 {
2119 const char *endptr;
2120
2121 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2122
2123 /* If the last word was not a valid number then
2124 treat it as a file name with spaces in. */
2125 if (argv[1] == endptr)
2126 error (_("Invalid download offset:%s."), argv[1]);
2127
2128 if (argv[2] != NULL)
2129 error (_("Too many parameters."));
2130 }
2131
2132 /* Open the file for loading. */
2133 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2134 if (loadfile_bfd == NULL)
2135 {
2136 perror_with_name (filename);
2137 return;
2138 }
2139
2140 make_cleanup_bfd_unref (loadfile_bfd);
2141
2142 if (!bfd_check_format (loadfile_bfd, bfd_object))
2143 {
2144 error (_("\"%s\" is not an object file: %s"), filename,
2145 bfd_errmsg (bfd_get_error ()));
2146 }
2147
2148 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2149 (void *) &total_progress.total_size);
2150
2151 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2152
2153 gettimeofday (&start_time, NULL);
2154
2155 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2156 load_progress) != 0)
2157 error (_("Load failed"));
2158
2159 gettimeofday (&end_time, NULL);
2160
2161 entry = bfd_get_start_address (loadfile_bfd);
2162 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2163 ui_out_text (uiout, "Start address ");
2164 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2165 ui_out_text (uiout, ", load size ");
2166 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2167 ui_out_text (uiout, "\n");
2168 /* We were doing this in remote-mips.c, I suspect it is right
2169 for other targets too. */
2170 regcache_write_pc (get_current_regcache (), entry);
2171
2172 /* Reset breakpoints, now that we have changed the load image. For
2173 instance, breakpoints may have been set (or reset, by
2174 post_create_inferior) while connected to the target but before we
2175 loaded the program. In that case, the prologue analyzer could
2176 have read instructions from the target to find the right
2177 breakpoint locations. Loading has changed the contents of that
2178 memory. */
2179
2180 breakpoint_re_set ();
2181
2182 /* FIXME: are we supposed to call symbol_file_add or not? According
2183 to a comment from remote-mips.c (where a call to symbol_file_add
2184 was commented out), making the call confuses GDB if more than one
2185 file is loaded in. Some targets do (e.g., remote-vx.c) but
2186 others don't (or didn't - perhaps they have all been deleted). */
2187
2188 print_transfer_performance (gdb_stdout, total_progress.data_count,
2189 total_progress.write_count,
2190 &start_time, &end_time);
2191
2192 do_cleanups (old_cleanups);
2193}
2194
2195/* Report how fast the transfer went. */
2196
2197void
2198print_transfer_performance (struct ui_file *stream,
2199 unsigned long data_count,
2200 unsigned long write_count,
2201 const struct timeval *start_time,
2202 const struct timeval *end_time)
2203{
2204 ULONGEST time_count;
2205 struct ui_out *uiout = current_uiout;
2206
2207 /* Compute the elapsed time in milliseconds, as a tradeoff between
2208 accuracy and overflow. */
2209 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2210 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2211
2212 ui_out_text (uiout, "Transfer rate: ");
2213 if (time_count > 0)
2214 {
2215 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2216
2217 if (ui_out_is_mi_like_p (uiout))
2218 {
2219 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2220 ui_out_text (uiout, " bits/sec");
2221 }
2222 else if (rate < 1024)
2223 {
2224 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2225 ui_out_text (uiout, " bytes/sec");
2226 }
2227 else
2228 {
2229 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2230 ui_out_text (uiout, " KB/sec");
2231 }
2232 }
2233 else
2234 {
2235 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2236 ui_out_text (uiout, " bits in <1 sec");
2237 }
2238 if (write_count > 0)
2239 {
2240 ui_out_text (uiout, ", ");
2241 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2242 ui_out_text (uiout, " bytes/write");
2243 }
2244 ui_out_text (uiout, ".\n");
2245}
2246
2247/* This function allows the addition of incrementally linked object files.
2248 It does not modify any state in the target, only in the debugger. */
2249/* Note: ezannoni 2000-04-13 This function/command used to have a
2250 special case syntax for the rombug target (Rombug is the boot
2251 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2252 rombug case, the user doesn't need to supply a text address,
2253 instead a call to target_link() (in target.c) would supply the
2254 value to use. We are now discontinuing this type of ad hoc syntax. */
2255
2256static void
2257add_symbol_file_command (char *args, int from_tty)
2258{
2259 struct gdbarch *gdbarch = get_current_arch ();
2260 char *filename = NULL;
2261 int flags = OBJF_USERLOADED | OBJF_SHARED;
2262 char *arg;
2263 int section_index = 0;
2264 int argcnt = 0;
2265 int sec_num = 0;
2266 int i;
2267 int expecting_sec_name = 0;
2268 int expecting_sec_addr = 0;
2269 char **argv;
2270 struct objfile *objf;
2271
2272 struct sect_opt
2273 {
2274 char *name;
2275 char *value;
2276 };
2277
2278 struct section_addr_info *section_addrs;
2279 struct sect_opt *sect_opts = NULL;
2280 size_t num_sect_opts = 0;
2281 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2282
2283 num_sect_opts = 16;
2284 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2285 * sizeof (struct sect_opt));
2286
2287 dont_repeat ();
2288
2289 if (args == NULL)
2290 error (_("add-symbol-file takes a file name and an address"));
2291
2292 argv = gdb_buildargv (args);
2293 make_cleanup_freeargv (argv);
2294
2295 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2296 {
2297 /* Process the argument. */
2298 if (argcnt == 0)
2299 {
2300 /* The first argument is the file name. */
2301 filename = tilde_expand (arg);
2302 make_cleanup (xfree, filename);
2303 }
2304 else if (argcnt == 1)
2305 {
2306 /* The second argument is always the text address at which
2307 to load the program. */
2308 sect_opts[section_index].name = ".text";
2309 sect_opts[section_index].value = arg;
2310 if (++section_index >= num_sect_opts)
2311 {
2312 num_sect_opts *= 2;
2313 sect_opts = ((struct sect_opt *)
2314 xrealloc (sect_opts,
2315 num_sect_opts
2316 * sizeof (struct sect_opt)));
2317 }
2318 }
2319 else
2320 {
2321 /* It's an option (starting with '-') or it's an argument
2322 to an option. */
2323 if (expecting_sec_name)
2324 {
2325 sect_opts[section_index].name = arg;
2326 expecting_sec_name = 0;
2327 }
2328 else if (expecting_sec_addr)
2329 {
2330 sect_opts[section_index].value = arg;
2331 expecting_sec_addr = 0;
2332 if (++section_index >= num_sect_opts)
2333 {
2334 num_sect_opts *= 2;
2335 sect_opts = ((struct sect_opt *)
2336 xrealloc (sect_opts,
2337 num_sect_opts
2338 * sizeof (struct sect_opt)));
2339 }
2340 }
2341 else if (strcmp (arg, "-readnow") == 0)
2342 flags |= OBJF_READNOW;
2343 else if (strcmp (arg, "-s") == 0)
2344 {
2345 expecting_sec_name = 1;
2346 expecting_sec_addr = 1;
2347 }
2348 else
2349 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2350 " [-readnow] [-s <secname> <addr>]*"));
2351 }
2352 }
2353
2354 /* This command takes at least two arguments. The first one is a
2355 filename, and the second is the address where this file has been
2356 loaded. Abort now if this address hasn't been provided by the
2357 user. */
2358 if (section_index < 1)
2359 error (_("The address where %s has been loaded is missing"), filename);
2360
2361 /* Print the prompt for the query below. And save the arguments into
2362 a sect_addr_info structure to be passed around to other
2363 functions. We have to split this up into separate print
2364 statements because hex_string returns a local static
2365 string. */
2366
2367 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2368 section_addrs = alloc_section_addr_info (section_index);
2369 make_cleanup (xfree, section_addrs);
2370 for (i = 0; i < section_index; i++)
2371 {
2372 CORE_ADDR addr;
2373 char *val = sect_opts[i].value;
2374 char *sec = sect_opts[i].name;
2375
2376 addr = parse_and_eval_address (val);
2377
2378 /* Here we store the section offsets in the order they were
2379 entered on the command line. */
2380 section_addrs->other[sec_num].name = sec;
2381 section_addrs->other[sec_num].addr = addr;
2382 printf_unfiltered ("\t%s_addr = %s\n", sec,
2383 paddress (gdbarch, addr));
2384 sec_num++;
2385
2386 /* The object's sections are initialized when a
2387 call is made to build_objfile_section_table (objfile).
2388 This happens in reread_symbols.
2389 At this point, we don't know what file type this is,
2390 so we can't determine what section names are valid. */
2391 }
2392 section_addrs->num_sections = sec_num;
2393
2394 if (from_tty && (!query ("%s", "")))
2395 error (_("Not confirmed."));
2396
2397 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2398 section_addrs, flags);
2399
2400 add_target_sections_of_objfile (objf);
2401
2402 /* Getting new symbols may change our opinion about what is
2403 frameless. */
2404 reinit_frame_cache ();
2405 do_cleanups (my_cleanups);
2406}
2407\f
2408
2409/* This function removes a symbol file that was added via add-symbol-file. */
2410
2411static void
2412remove_symbol_file_command (char *args, int from_tty)
2413{
2414 char **argv;
2415 struct objfile *objf = NULL;
2416 struct cleanup *my_cleanups;
2417 struct program_space *pspace = current_program_space;
2418 struct gdbarch *gdbarch = get_current_arch ();
2419
2420 dont_repeat ();
2421
2422 if (args == NULL)
2423 error (_("remove-symbol-file: no symbol file provided"));
2424
2425 my_cleanups = make_cleanup (null_cleanup, NULL);
2426
2427 argv = gdb_buildargv (args);
2428
2429 if (strcmp (argv[0], "-a") == 0)
2430 {
2431 /* Interpret the next argument as an address. */
2432 CORE_ADDR addr;
2433
2434 if (argv[1] == NULL)
2435 error (_("Missing address argument"));
2436
2437 if (argv[2] != NULL)
2438 error (_("Junk after %s"), argv[1]);
2439
2440 addr = parse_and_eval_address (argv[1]);
2441
2442 ALL_OBJFILES (objf)
2443 {
2444 if ((objf->flags & OBJF_USERLOADED) != 0
2445 && (objf->flags & OBJF_SHARED) != 0
2446 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2447 break;
2448 }
2449 }
2450 else if (argv[0] != NULL)
2451 {
2452 /* Interpret the current argument as a file name. */
2453 char *filename;
2454
2455 if (argv[1] != NULL)
2456 error (_("Junk after %s"), argv[0]);
2457
2458 filename = tilde_expand (argv[0]);
2459 make_cleanup (xfree, filename);
2460
2461 ALL_OBJFILES (objf)
2462 {
2463 if ((objf->flags & OBJF_USERLOADED) != 0
2464 && (objf->flags & OBJF_SHARED) != 0
2465 && objf->pspace == pspace
2466 && filename_cmp (filename, objfile_name (objf)) == 0)
2467 break;
2468 }
2469 }
2470
2471 if (objf == NULL)
2472 error (_("No symbol file found"));
2473
2474 if (from_tty
2475 && !query (_("Remove symbol table from file \"%s\"? "),
2476 objfile_name (objf)))
2477 error (_("Not confirmed."));
2478
2479 free_objfile (objf);
2480 clear_symtab_users (0);
2481
2482 do_cleanups (my_cleanups);
2483}
2484
2485typedef struct objfile *objfilep;
2486
2487DEF_VEC_P (objfilep);
2488
2489/* Re-read symbols if a symbol-file has changed. */
2490
2491void
2492reread_symbols (void)
2493{
2494 struct objfile *objfile;
2495 long new_modtime;
2496 struct stat new_statbuf;
2497 int res;
2498 VEC (objfilep) *new_objfiles = NULL;
2499 struct cleanup *all_cleanups;
2500
2501 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2502
2503 /* With the addition of shared libraries, this should be modified,
2504 the load time should be saved in the partial symbol tables, since
2505 different tables may come from different source files. FIXME.
2506 This routine should then walk down each partial symbol table
2507 and see if the symbol table that it originates from has been changed. */
2508
2509 for (objfile = object_files; objfile; objfile = objfile->next)
2510 {
2511 if (objfile->obfd == NULL)
2512 continue;
2513
2514 /* Separate debug objfiles are handled in the main objfile. */
2515 if (objfile->separate_debug_objfile_backlink)
2516 continue;
2517
2518 /* If this object is from an archive (what you usually create with
2519 `ar', often called a `static library' on most systems, though
2520 a `shared library' on AIX is also an archive), then you should
2521 stat on the archive name, not member name. */
2522 if (objfile->obfd->my_archive)
2523 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2524 else
2525 res = stat (objfile_name (objfile), &new_statbuf);
2526 if (res != 0)
2527 {
2528 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2529 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2530 objfile_name (objfile));
2531 continue;
2532 }
2533 new_modtime = new_statbuf.st_mtime;
2534 if (new_modtime != objfile->mtime)
2535 {
2536 struct cleanup *old_cleanups;
2537 struct section_offsets *offsets;
2538 int num_offsets;
2539 char *original_name;
2540
2541 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2542 objfile_name (objfile));
2543
2544 /* There are various functions like symbol_file_add,
2545 symfile_bfd_open, syms_from_objfile, etc., which might
2546 appear to do what we want. But they have various other
2547 effects which we *don't* want. So we just do stuff
2548 ourselves. We don't worry about mapped files (for one thing,
2549 any mapped file will be out of date). */
2550
2551 /* If we get an error, blow away this objfile (not sure if
2552 that is the correct response for things like shared
2553 libraries). */
2554 old_cleanups = make_cleanup_free_objfile (objfile);
2555 /* We need to do this whenever any symbols go away. */
2556 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2557
2558 if (exec_bfd != NULL
2559 && filename_cmp (bfd_get_filename (objfile->obfd),
2560 bfd_get_filename (exec_bfd)) == 0)
2561 {
2562 /* Reload EXEC_BFD without asking anything. */
2563
2564 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2565 }
2566
2567 /* Keep the calls order approx. the same as in free_objfile. */
2568
2569 /* Free the separate debug objfiles. It will be
2570 automatically recreated by sym_read. */
2571 free_objfile_separate_debug (objfile);
2572
2573 /* Remove any references to this objfile in the global
2574 value lists. */
2575 preserve_values (objfile);
2576
2577 /* Nuke all the state that we will re-read. Much of the following
2578 code which sets things to NULL really is necessary to tell
2579 other parts of GDB that there is nothing currently there.
2580
2581 Try to keep the freeing order compatible with free_objfile. */
2582
2583 if (objfile->sf != NULL)
2584 {
2585 (*objfile->sf->sym_finish) (objfile);
2586 }
2587
2588 clear_objfile_data (objfile);
2589
2590 /* Clean up any state BFD has sitting around. */
2591 {
2592 struct bfd *obfd = objfile->obfd;
2593 char *obfd_filename;
2594
2595 obfd_filename = bfd_get_filename (objfile->obfd);
2596 /* Open the new BFD before freeing the old one, so that
2597 the filename remains live. */
2598 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2599 if (objfile->obfd == NULL)
2600 {
2601 /* We have to make a cleanup and error here, rather
2602 than erroring later, because once we unref OBFD,
2603 OBFD_FILENAME will be freed. */
2604 make_cleanup_bfd_unref (obfd);
2605 error (_("Can't open %s to read symbols."), obfd_filename);
2606 }
2607 gdb_bfd_unref (obfd);
2608 }
2609
2610 original_name = xstrdup (objfile->original_name);
2611 make_cleanup (xfree, original_name);
2612
2613 /* bfd_openr sets cacheable to true, which is what we want. */
2614 if (!bfd_check_format (objfile->obfd, bfd_object))
2615 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2616 bfd_errmsg (bfd_get_error ()));
2617
2618 /* Save the offsets, we will nuke them with the rest of the
2619 objfile_obstack. */
2620 num_offsets = objfile->num_sections;
2621 offsets = ((struct section_offsets *)
2622 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2623 memcpy (offsets, objfile->section_offsets,
2624 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2625
2626 /* FIXME: Do we have to free a whole linked list, or is this
2627 enough? */
2628 if (objfile->global_psymbols.list)
2629 xfree (objfile->global_psymbols.list);
2630 memset (&objfile->global_psymbols, 0,
2631 sizeof (objfile->global_psymbols));
2632 if (objfile->static_psymbols.list)
2633 xfree (objfile->static_psymbols.list);
2634 memset (&objfile->static_psymbols, 0,
2635 sizeof (objfile->static_psymbols));
2636
2637 /* Free the obstacks for non-reusable objfiles. */
2638 psymbol_bcache_free (objfile->psymbol_cache);
2639 objfile->psymbol_cache = psymbol_bcache_init ();
2640 obstack_free (&objfile->objfile_obstack, 0);
2641 objfile->sections = NULL;
2642 objfile->compunit_symtabs = NULL;
2643 objfile->psymtabs = NULL;
2644 objfile->psymtabs_addrmap = NULL;
2645 objfile->free_psymtabs = NULL;
2646 objfile->template_symbols = NULL;
2647
2648 /* obstack_init also initializes the obstack so it is
2649 empty. We could use obstack_specify_allocation but
2650 gdb_obstack.h specifies the alloc/dealloc functions. */
2651 obstack_init (&objfile->objfile_obstack);
2652
2653 /* set_objfile_per_bfd potentially allocates the per-bfd
2654 data on the objfile's obstack (if sharing data across
2655 multiple users is not possible), so it's important to
2656 do it *after* the obstack has been initialized. */
2657 set_objfile_per_bfd (objfile);
2658
2659 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2660 original_name,
2661 strlen (original_name));
2662
2663 /* Reset the sym_fns pointer. The ELF reader can change it
2664 based on whether .gdb_index is present, and we need it to
2665 start over. PR symtab/15885 */
2666 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2667
2668 build_objfile_section_table (objfile);
2669 terminate_minimal_symbol_table (objfile);
2670
2671 /* We use the same section offsets as from last time. I'm not
2672 sure whether that is always correct for shared libraries. */
2673 objfile->section_offsets = (struct section_offsets *)
2674 obstack_alloc (&objfile->objfile_obstack,
2675 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2676 memcpy (objfile->section_offsets, offsets,
2677 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2678 objfile->num_sections = num_offsets;
2679
2680 /* What the hell is sym_new_init for, anyway? The concept of
2681 distinguishing between the main file and additional files
2682 in this way seems rather dubious. */
2683 if (objfile == symfile_objfile)
2684 {
2685 (*objfile->sf->sym_new_init) (objfile);
2686 }
2687
2688 (*objfile->sf->sym_init) (objfile);
2689 clear_complaints (&symfile_complaints, 1, 1);
2690
2691 objfile->flags &= ~OBJF_PSYMTABS_READ;
2692 read_symbols (objfile, 0);
2693
2694 if (!objfile_has_symbols (objfile))
2695 {
2696 wrap_here ("");
2697 printf_unfiltered (_("(no debugging symbols found)\n"));
2698 wrap_here ("");
2699 }
2700
2701 /* We're done reading the symbol file; finish off complaints. */
2702 clear_complaints (&symfile_complaints, 0, 1);
2703
2704 /* Getting new symbols may change our opinion about what is
2705 frameless. */
2706
2707 reinit_frame_cache ();
2708
2709 /* Discard cleanups as symbol reading was successful. */
2710 discard_cleanups (old_cleanups);
2711
2712 /* If the mtime has changed between the time we set new_modtime
2713 and now, we *want* this to be out of date, so don't call stat
2714 again now. */
2715 objfile->mtime = new_modtime;
2716 init_entry_point_info (objfile);
2717
2718 VEC_safe_push (objfilep, new_objfiles, objfile);
2719 }
2720 }
2721
2722 if (new_objfiles)
2723 {
2724 int ix;
2725
2726 /* Notify objfiles that we've modified objfile sections. */
2727 objfiles_changed ();
2728
2729 clear_symtab_users (0);
2730
2731 /* clear_objfile_data for each objfile was called before freeing it and
2732 observer_notify_new_objfile (NULL) has been called by
2733 clear_symtab_users above. Notify the new files now. */
2734 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2735 observer_notify_new_objfile (objfile);
2736
2737 /* At least one objfile has changed, so we can consider that
2738 the executable we're debugging has changed too. */
2739 observer_notify_executable_changed ();
2740 }
2741
2742 do_cleanups (all_cleanups);
2743}
2744\f
2745
2746typedef struct
2747{
2748 char *ext;
2749 enum language lang;
2750}
2751filename_language;
2752
2753static filename_language *filename_language_table;
2754static int fl_table_size, fl_table_next;
2755
2756static void
2757add_filename_language (char *ext, enum language lang)
2758{
2759 if (fl_table_next >= fl_table_size)
2760 {
2761 fl_table_size += 10;
2762 filename_language_table =
2763 xrealloc (filename_language_table,
2764 fl_table_size * sizeof (*filename_language_table));
2765 }
2766
2767 filename_language_table[fl_table_next].ext = xstrdup (ext);
2768 filename_language_table[fl_table_next].lang = lang;
2769 fl_table_next++;
2770}
2771
2772static char *ext_args;
2773static void
2774show_ext_args (struct ui_file *file, int from_tty,
2775 struct cmd_list_element *c, const char *value)
2776{
2777 fprintf_filtered (file,
2778 _("Mapping between filename extension "
2779 "and source language is \"%s\".\n"),
2780 value);
2781}
2782
2783static void
2784set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2785{
2786 int i;
2787 char *cp = ext_args;
2788 enum language lang;
2789
2790 /* First arg is filename extension, starting with '.' */
2791 if (*cp != '.')
2792 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2793
2794 /* Find end of first arg. */
2795 while (*cp && !isspace (*cp))
2796 cp++;
2797
2798 if (*cp == '\0')
2799 error (_("'%s': two arguments required -- "
2800 "filename extension and language"),
2801 ext_args);
2802
2803 /* Null-terminate first arg. */
2804 *cp++ = '\0';
2805
2806 /* Find beginning of second arg, which should be a source language. */
2807 cp = skip_spaces (cp);
2808
2809 if (*cp == '\0')
2810 error (_("'%s': two arguments required -- "
2811 "filename extension and language"),
2812 ext_args);
2813
2814 /* Lookup the language from among those we know. */
2815 lang = language_enum (cp);
2816
2817 /* Now lookup the filename extension: do we already know it? */
2818 for (i = 0; i < fl_table_next; i++)
2819 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2820 break;
2821
2822 if (i >= fl_table_next)
2823 {
2824 /* New file extension. */
2825 add_filename_language (ext_args, lang);
2826 }
2827 else
2828 {
2829 /* Redefining a previously known filename extension. */
2830
2831 /* if (from_tty) */
2832 /* query ("Really make files of type %s '%s'?", */
2833 /* ext_args, language_str (lang)); */
2834
2835 xfree (filename_language_table[i].ext);
2836 filename_language_table[i].ext = xstrdup (ext_args);
2837 filename_language_table[i].lang = lang;
2838 }
2839}
2840
2841static void
2842info_ext_lang_command (char *args, int from_tty)
2843{
2844 int i;
2845
2846 printf_filtered (_("Filename extensions and the languages they represent:"));
2847 printf_filtered ("\n\n");
2848 for (i = 0; i < fl_table_next; i++)
2849 printf_filtered ("\t%s\t- %s\n",
2850 filename_language_table[i].ext,
2851 language_str (filename_language_table[i].lang));
2852}
2853
2854static void
2855init_filename_language_table (void)
2856{
2857 if (fl_table_size == 0) /* Protect against repetition. */
2858 {
2859 fl_table_size = 20;
2860 fl_table_next = 0;
2861 filename_language_table =
2862 xmalloc (fl_table_size * sizeof (*filename_language_table));
2863 add_filename_language (".c", language_c);
2864 add_filename_language (".d", language_d);
2865 add_filename_language (".C", language_cplus);
2866 add_filename_language (".cc", language_cplus);
2867 add_filename_language (".cp", language_cplus);
2868 add_filename_language (".cpp", language_cplus);
2869 add_filename_language (".cxx", language_cplus);
2870 add_filename_language (".c++", language_cplus);
2871 add_filename_language (".java", language_java);
2872 add_filename_language (".class", language_java);
2873 add_filename_language (".m", language_objc);
2874 add_filename_language (".f", language_fortran);
2875 add_filename_language (".F", language_fortran);
2876 add_filename_language (".for", language_fortran);
2877 add_filename_language (".FOR", language_fortran);
2878 add_filename_language (".ftn", language_fortran);
2879 add_filename_language (".FTN", language_fortran);
2880 add_filename_language (".fpp", language_fortran);
2881 add_filename_language (".FPP", language_fortran);
2882 add_filename_language (".f90", language_fortran);
2883 add_filename_language (".F90", language_fortran);
2884 add_filename_language (".f95", language_fortran);
2885 add_filename_language (".F95", language_fortran);
2886 add_filename_language (".f03", language_fortran);
2887 add_filename_language (".F03", language_fortran);
2888 add_filename_language (".f08", language_fortran);
2889 add_filename_language (".F08", language_fortran);
2890 add_filename_language (".s", language_asm);
2891 add_filename_language (".sx", language_asm);
2892 add_filename_language (".S", language_asm);
2893 add_filename_language (".pas", language_pascal);
2894 add_filename_language (".p", language_pascal);
2895 add_filename_language (".pp", language_pascal);
2896 add_filename_language (".adb", language_ada);
2897 add_filename_language (".ads", language_ada);
2898 add_filename_language (".a", language_ada);
2899 add_filename_language (".ada", language_ada);
2900 add_filename_language (".dg", language_ada);
2901 }
2902}
2903
2904enum language
2905deduce_language_from_filename (const char *filename)
2906{
2907 int i;
2908 char *cp;
2909
2910 if (filename != NULL)
2911 if ((cp = strrchr (filename, '.')) != NULL)
2912 for (i = 0; i < fl_table_next; i++)
2913 if (strcmp (cp, filename_language_table[i].ext) == 0)
2914 return filename_language_table[i].lang;
2915
2916 return language_unknown;
2917}
2918\f
2919/* Allocate and initialize a new symbol table.
2920 CUST is from the result of allocate_compunit_symtab. */
2921
2922struct symtab *
2923allocate_symtab (struct compunit_symtab *cust, const char *filename)
2924{
2925 struct objfile *objfile = cust->objfile;
2926 struct symtab *symtab
2927 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2928
2929 symtab->filename = bcache (filename, strlen (filename) + 1,
2930 objfile->per_bfd->filename_cache);
2931 symtab->fullname = NULL;
2932 symtab->language = deduce_language_from_filename (filename);
2933
2934 /* This can be very verbose with lots of headers.
2935 Only print at higher debug levels. */
2936 if (symtab_create_debug >= 2)
2937 {
2938 /* Be a bit clever with debugging messages, and don't print objfile
2939 every time, only when it changes. */
2940 static char *last_objfile_name = NULL;
2941
2942 if (last_objfile_name == NULL
2943 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2944 {
2945 xfree (last_objfile_name);
2946 last_objfile_name = xstrdup (objfile_name (objfile));
2947 fprintf_unfiltered (gdb_stdlog,
2948 "Creating one or more symtabs for objfile %s ...\n",
2949 last_objfile_name);
2950 }
2951 fprintf_unfiltered (gdb_stdlog,
2952 "Created symtab %s for module %s.\n",
2953 host_address_to_string (symtab), filename);
2954 }
2955
2956 /* Add it to CUST's list of symtabs. */
2957 if (cust->filetabs == NULL)
2958 {
2959 cust->filetabs = symtab;
2960 cust->last_filetab = symtab;
2961 }
2962 else
2963 {
2964 cust->last_filetab->next = symtab;
2965 cust->last_filetab = symtab;
2966 }
2967
2968 /* Backlink to the containing compunit symtab. */
2969 symtab->compunit_symtab = cust;
2970
2971 return symtab;
2972}
2973
2974/* Allocate and initialize a new compunit.
2975 NAME is the name of the main source file, if there is one, or some
2976 descriptive text if there are no source files. */
2977
2978struct compunit_symtab *
2979allocate_compunit_symtab (struct objfile *objfile, const char *name)
2980{
2981 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2982 struct compunit_symtab);
2983 const char *saved_name;
2984
2985 cu->objfile = objfile;
2986
2987 /* The name we record here is only for display/debugging purposes.
2988 Just save the basename to avoid path issues (too long for display,
2989 relative vs absolute, etc.). */
2990 saved_name = lbasename (name);
2991 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2992 strlen (saved_name));
2993
2994 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2995
2996 if (symtab_create_debug)
2997 {
2998 fprintf_unfiltered (gdb_stdlog,
2999 "Created compunit symtab %s for %s.\n",
3000 host_address_to_string (cu),
3001 cu->name);
3002 }
3003
3004 return cu;
3005}
3006
3007/* Hook CU to the objfile it comes from. */
3008
3009void
3010add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
3011{
3012 cu->next = cu->objfile->compunit_symtabs;
3013 cu->objfile->compunit_symtabs = cu;
3014}
3015\f
3016
3017/* Reset all data structures in gdb which may contain references to symbol
3018 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
3019
3020void
3021clear_symtab_users (int add_flags)
3022{
3023 /* Someday, we should do better than this, by only blowing away
3024 the things that really need to be blown. */
3025
3026 /* Clear the "current" symtab first, because it is no longer valid.
3027 breakpoint_re_set may try to access the current symtab. */
3028 clear_current_source_symtab_and_line ();
3029
3030 clear_displays ();
3031 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3032 breakpoint_re_set ();
3033 clear_last_displayed_sal ();
3034 clear_pc_function_cache ();
3035 observer_notify_new_objfile (NULL);
3036
3037 /* Clear globals which might have pointed into a removed objfile.
3038 FIXME: It's not clear which of these are supposed to persist
3039 between expressions and which ought to be reset each time. */
3040 expression_context_block = NULL;
3041 innermost_block = NULL;
3042
3043 /* Varobj may refer to old symbols, perform a cleanup. */
3044 varobj_invalidate ();
3045
3046}
3047
3048static void
3049clear_symtab_users_cleanup (void *ignore)
3050{
3051 clear_symtab_users (0);
3052}
3053\f
3054/* OVERLAYS:
3055 The following code implements an abstraction for debugging overlay sections.
3056
3057 The target model is as follows:
3058 1) The gnu linker will permit multiple sections to be mapped into the
3059 same VMA, each with its own unique LMA (or load address).
3060 2) It is assumed that some runtime mechanism exists for mapping the
3061 sections, one by one, from the load address into the VMA address.
3062 3) This code provides a mechanism for gdb to keep track of which
3063 sections should be considered to be mapped from the VMA to the LMA.
3064 This information is used for symbol lookup, and memory read/write.
3065 For instance, if a section has been mapped then its contents
3066 should be read from the VMA, otherwise from the LMA.
3067
3068 Two levels of debugger support for overlays are available. One is
3069 "manual", in which the debugger relies on the user to tell it which
3070 overlays are currently mapped. This level of support is
3071 implemented entirely in the core debugger, and the information about
3072 whether a section is mapped is kept in the objfile->obj_section table.
3073
3074 The second level of support is "automatic", and is only available if
3075 the target-specific code provides functionality to read the target's
3076 overlay mapping table, and translate its contents for the debugger
3077 (by updating the mapped state information in the obj_section tables).
3078
3079 The interface is as follows:
3080 User commands:
3081 overlay map <name> -- tell gdb to consider this section mapped
3082 overlay unmap <name> -- tell gdb to consider this section unmapped
3083 overlay list -- list the sections that GDB thinks are mapped
3084 overlay read-target -- get the target's state of what's mapped
3085 overlay off/manual/auto -- set overlay debugging state
3086 Functional interface:
3087 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3088 section, return that section.
3089 find_pc_overlay(pc): find any overlay section that contains
3090 the pc, either in its VMA or its LMA
3091 section_is_mapped(sect): true if overlay is marked as mapped
3092 section_is_overlay(sect): true if section's VMA != LMA
3093 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3094 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3095 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3096 overlay_mapped_address(...): map an address from section's LMA to VMA
3097 overlay_unmapped_address(...): map an address from section's VMA to LMA
3098 symbol_overlayed_address(...): Return a "current" address for symbol:
3099 either in VMA or LMA depending on whether
3100 the symbol's section is currently mapped. */
3101
3102/* Overlay debugging state: */
3103
3104enum overlay_debugging_state overlay_debugging = ovly_off;
3105int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3106
3107/* Function: section_is_overlay (SECTION)
3108 Returns true if SECTION has VMA not equal to LMA, ie.
3109 SECTION is loaded at an address different from where it will "run". */
3110
3111int
3112section_is_overlay (struct obj_section *section)
3113{
3114 if (overlay_debugging && section)
3115 {
3116 bfd *abfd = section->objfile->obfd;
3117 asection *bfd_section = section->the_bfd_section;
3118
3119 if (bfd_section_lma (abfd, bfd_section) != 0
3120 && bfd_section_lma (abfd, bfd_section)
3121 != bfd_section_vma (abfd, bfd_section))
3122 return 1;
3123 }
3124
3125 return 0;
3126}
3127
3128/* Function: overlay_invalidate_all (void)
3129 Invalidate the mapped state of all overlay sections (mark it as stale). */
3130
3131static void
3132overlay_invalidate_all (void)
3133{
3134 struct objfile *objfile;
3135 struct obj_section *sect;
3136
3137 ALL_OBJSECTIONS (objfile, sect)
3138 if (section_is_overlay (sect))
3139 sect->ovly_mapped = -1;
3140}
3141
3142/* Function: section_is_mapped (SECTION)
3143 Returns true if section is an overlay, and is currently mapped.
3144
3145 Access to the ovly_mapped flag is restricted to this function, so
3146 that we can do automatic update. If the global flag
3147 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3148 overlay_invalidate_all. If the mapped state of the particular
3149 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3150
3151int
3152section_is_mapped (struct obj_section *osect)
3153{
3154 struct gdbarch *gdbarch;
3155
3156 if (osect == 0 || !section_is_overlay (osect))
3157 return 0;
3158
3159 switch (overlay_debugging)
3160 {
3161 default:
3162 case ovly_off:
3163 return 0; /* overlay debugging off */
3164 case ovly_auto: /* overlay debugging automatic */
3165 /* Unles there is a gdbarch_overlay_update function,
3166 there's really nothing useful to do here (can't really go auto). */
3167 gdbarch = get_objfile_arch (osect->objfile);
3168 if (gdbarch_overlay_update_p (gdbarch))
3169 {
3170 if (overlay_cache_invalid)
3171 {
3172 overlay_invalidate_all ();
3173 overlay_cache_invalid = 0;
3174 }
3175 if (osect->ovly_mapped == -1)
3176 gdbarch_overlay_update (gdbarch, osect);
3177 }
3178 /* fall thru to manual case */
3179 case ovly_on: /* overlay debugging manual */
3180 return osect->ovly_mapped == 1;
3181 }
3182}
3183
3184/* Function: pc_in_unmapped_range
3185 If PC falls into the lma range of SECTION, return true, else false. */
3186
3187CORE_ADDR
3188pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3189{
3190 if (section_is_overlay (section))
3191 {
3192 bfd *abfd = section->objfile->obfd;
3193 asection *bfd_section = section->the_bfd_section;
3194
3195 /* We assume the LMA is relocated by the same offset as the VMA. */
3196 bfd_vma size = bfd_get_section_size (bfd_section);
3197 CORE_ADDR offset = obj_section_offset (section);
3198
3199 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3200 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3201 return 1;
3202 }
3203
3204 return 0;
3205}
3206
3207/* Function: pc_in_mapped_range
3208 If PC falls into the vma range of SECTION, return true, else false. */
3209
3210CORE_ADDR
3211pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3212{
3213 if (section_is_overlay (section))
3214 {
3215 if (obj_section_addr (section) <= pc
3216 && pc < obj_section_endaddr (section))
3217 return 1;
3218 }
3219
3220 return 0;
3221}
3222
3223/* Return true if the mapped ranges of sections A and B overlap, false
3224 otherwise. */
3225
3226static int
3227sections_overlap (struct obj_section *a, struct obj_section *b)
3228{
3229 CORE_ADDR a_start = obj_section_addr (a);
3230 CORE_ADDR a_end = obj_section_endaddr (a);
3231 CORE_ADDR b_start = obj_section_addr (b);
3232 CORE_ADDR b_end = obj_section_endaddr (b);
3233
3234 return (a_start < b_end && b_start < a_end);
3235}
3236
3237/* Function: overlay_unmapped_address (PC, SECTION)
3238 Returns the address corresponding to PC in the unmapped (load) range.
3239 May be the same as PC. */
3240
3241CORE_ADDR
3242overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3243{
3244 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3245 {
3246 bfd *abfd = section->objfile->obfd;
3247 asection *bfd_section = section->the_bfd_section;
3248
3249 return pc + bfd_section_lma (abfd, bfd_section)
3250 - bfd_section_vma (abfd, bfd_section);
3251 }
3252
3253 return pc;
3254}
3255
3256/* Function: overlay_mapped_address (PC, SECTION)
3257 Returns the address corresponding to PC in the mapped (runtime) range.
3258 May be the same as PC. */
3259
3260CORE_ADDR
3261overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3262{
3263 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3264 {
3265 bfd *abfd = section->objfile->obfd;
3266 asection *bfd_section = section->the_bfd_section;
3267
3268 return pc + bfd_section_vma (abfd, bfd_section)
3269 - bfd_section_lma (abfd, bfd_section);
3270 }
3271
3272 return pc;
3273}
3274
3275/* Function: symbol_overlayed_address
3276 Return one of two addresses (relative to the VMA or to the LMA),
3277 depending on whether the section is mapped or not. */
3278
3279CORE_ADDR
3280symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3281{
3282 if (overlay_debugging)
3283 {
3284 /* If the symbol has no section, just return its regular address. */
3285 if (section == 0)
3286 return address;
3287 /* If the symbol's section is not an overlay, just return its
3288 address. */
3289 if (!section_is_overlay (section))
3290 return address;
3291 /* If the symbol's section is mapped, just return its address. */
3292 if (section_is_mapped (section))
3293 return address;
3294 /*
3295 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3296 * then return its LOADED address rather than its vma address!!
3297 */
3298 return overlay_unmapped_address (address, section);
3299 }
3300 return address;
3301}
3302
3303/* Function: find_pc_overlay (PC)
3304 Return the best-match overlay section for PC:
3305 If PC matches a mapped overlay section's VMA, return that section.
3306 Else if PC matches an unmapped section's VMA, return that section.
3307 Else if PC matches an unmapped section's LMA, return that section. */
3308
3309struct obj_section *
3310find_pc_overlay (CORE_ADDR pc)
3311{
3312 struct objfile *objfile;
3313 struct obj_section *osect, *best_match = NULL;
3314
3315 if (overlay_debugging)
3316 ALL_OBJSECTIONS (objfile, osect)
3317 if (section_is_overlay (osect))
3318 {
3319 if (pc_in_mapped_range (pc, osect))
3320 {
3321 if (section_is_mapped (osect))
3322 return osect;
3323 else
3324 best_match = osect;
3325 }
3326 else if (pc_in_unmapped_range (pc, osect))
3327 best_match = osect;
3328 }
3329 return best_match;
3330}
3331
3332/* Function: find_pc_mapped_section (PC)
3333 If PC falls into the VMA address range of an overlay section that is
3334 currently marked as MAPPED, return that section. Else return NULL. */
3335
3336struct obj_section *
3337find_pc_mapped_section (CORE_ADDR pc)
3338{
3339 struct objfile *objfile;
3340 struct obj_section *osect;
3341
3342 if (overlay_debugging)
3343 ALL_OBJSECTIONS (objfile, osect)
3344 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3345 return osect;
3346
3347 return NULL;
3348}
3349
3350/* Function: list_overlays_command
3351 Print a list of mapped sections and their PC ranges. */
3352
3353static void
3354list_overlays_command (char *args, int from_tty)
3355{
3356 int nmapped = 0;
3357 struct objfile *objfile;
3358 struct obj_section *osect;
3359
3360 if (overlay_debugging)
3361 ALL_OBJSECTIONS (objfile, osect)
3362 if (section_is_mapped (osect))
3363 {
3364 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3365 const char *name;
3366 bfd_vma lma, vma;
3367 int size;
3368
3369 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3370 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3371 size = bfd_get_section_size (osect->the_bfd_section);
3372 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3373
3374 printf_filtered ("Section %s, loaded at ", name);
3375 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3376 puts_filtered (" - ");
3377 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3378 printf_filtered (", mapped at ");
3379 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3380 puts_filtered (" - ");
3381 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3382 puts_filtered ("\n");
3383
3384 nmapped++;
3385 }
3386 if (nmapped == 0)
3387 printf_filtered (_("No sections are mapped.\n"));
3388}
3389
3390/* Function: map_overlay_command
3391 Mark the named section as mapped (ie. residing at its VMA address). */
3392
3393static void
3394map_overlay_command (char *args, int from_tty)
3395{
3396 struct objfile *objfile, *objfile2;
3397 struct obj_section *sec, *sec2;
3398
3399 if (!overlay_debugging)
3400 error (_("Overlay debugging not enabled. Use "
3401 "either the 'overlay auto' or\n"
3402 "the 'overlay manual' command."));
3403
3404 if (args == 0 || *args == 0)
3405 error (_("Argument required: name of an overlay section"));
3406
3407 /* First, find a section matching the user supplied argument. */
3408 ALL_OBJSECTIONS (objfile, sec)
3409 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3410 {
3411 /* Now, check to see if the section is an overlay. */
3412 if (!section_is_overlay (sec))
3413 continue; /* not an overlay section */
3414
3415 /* Mark the overlay as "mapped". */
3416 sec->ovly_mapped = 1;
3417
3418 /* Next, make a pass and unmap any sections that are
3419 overlapped by this new section: */
3420 ALL_OBJSECTIONS (objfile2, sec2)
3421 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3422 {
3423 if (info_verbose)
3424 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3425 bfd_section_name (objfile->obfd,
3426 sec2->the_bfd_section));
3427 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3428 }
3429 return;
3430 }
3431 error (_("No overlay section called %s"), args);
3432}
3433
3434/* Function: unmap_overlay_command
3435 Mark the overlay section as unmapped
3436 (ie. resident in its LMA address range, rather than the VMA range). */
3437
3438static void
3439unmap_overlay_command (char *args, int from_tty)
3440{
3441 struct objfile *objfile;
3442 struct obj_section *sec = NULL;
3443
3444 if (!overlay_debugging)
3445 error (_("Overlay debugging not enabled. "
3446 "Use either the 'overlay auto' or\n"
3447 "the 'overlay manual' command."));
3448
3449 if (args == 0 || *args == 0)
3450 error (_("Argument required: name of an overlay section"));
3451
3452 /* First, find a section matching the user supplied argument. */
3453 ALL_OBJSECTIONS (objfile, sec)
3454 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3455 {
3456 if (!sec->ovly_mapped)
3457 error (_("Section %s is not mapped"), args);
3458 sec->ovly_mapped = 0;
3459 return;
3460 }
3461 error (_("No overlay section called %s"), args);
3462}
3463
3464/* Function: overlay_auto_command
3465 A utility command to turn on overlay debugging.
3466 Possibly this should be done via a set/show command. */
3467
3468static void
3469overlay_auto_command (char *args, int from_tty)
3470{
3471 overlay_debugging = ovly_auto;
3472 enable_overlay_breakpoints ();
3473 if (info_verbose)
3474 printf_unfiltered (_("Automatic overlay debugging enabled."));
3475}
3476
3477/* Function: overlay_manual_command
3478 A utility command to turn on overlay debugging.
3479 Possibly this should be done via a set/show command. */
3480
3481static void
3482overlay_manual_command (char *args, int from_tty)
3483{
3484 overlay_debugging = ovly_on;
3485 disable_overlay_breakpoints ();
3486 if (info_verbose)
3487 printf_unfiltered (_("Overlay debugging enabled."));
3488}
3489
3490/* Function: overlay_off_command
3491 A utility command to turn on overlay debugging.
3492 Possibly this should be done via a set/show command. */
3493
3494static void
3495overlay_off_command (char *args, int from_tty)
3496{
3497 overlay_debugging = ovly_off;
3498 disable_overlay_breakpoints ();
3499 if (info_verbose)
3500 printf_unfiltered (_("Overlay debugging disabled."));
3501}
3502
3503static void
3504overlay_load_command (char *args, int from_tty)
3505{
3506 struct gdbarch *gdbarch = get_current_arch ();
3507
3508 if (gdbarch_overlay_update_p (gdbarch))
3509 gdbarch_overlay_update (gdbarch, NULL);
3510 else
3511 error (_("This target does not know how to read its overlay state."));
3512}
3513
3514/* Function: overlay_command
3515 A place-holder for a mis-typed command. */
3516
3517/* Command list chain containing all defined "overlay" subcommands. */
3518static struct cmd_list_element *overlaylist;
3519
3520static void
3521overlay_command (char *args, int from_tty)
3522{
3523 printf_unfiltered
3524 ("\"overlay\" must be followed by the name of an overlay command.\n");
3525 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3526}
3527
3528/* Target Overlays for the "Simplest" overlay manager:
3529
3530 This is GDB's default target overlay layer. It works with the
3531 minimal overlay manager supplied as an example by Cygnus. The
3532 entry point is via a function pointer "gdbarch_overlay_update",
3533 so targets that use a different runtime overlay manager can
3534 substitute their own overlay_update function and take over the
3535 function pointer.
3536
3537 The overlay_update function pokes around in the target's data structures
3538 to see what overlays are mapped, and updates GDB's overlay mapping with
3539 this information.
3540
3541 In this simple implementation, the target data structures are as follows:
3542 unsigned _novlys; /# number of overlay sections #/
3543 unsigned _ovly_table[_novlys][4] = {
3544 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3545 {..., ..., ..., ...},
3546 }
3547 unsigned _novly_regions; /# number of overlay regions #/
3548 unsigned _ovly_region_table[_novly_regions][3] = {
3549 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3550 {..., ..., ...},
3551 }
3552 These functions will attempt to update GDB's mappedness state in the
3553 symbol section table, based on the target's mappedness state.
3554
3555 To do this, we keep a cached copy of the target's _ovly_table, and
3556 attempt to detect when the cached copy is invalidated. The main
3557 entry point is "simple_overlay_update(SECT), which looks up SECT in
3558 the cached table and re-reads only the entry for that section from
3559 the target (whenever possible). */
3560
3561/* Cached, dynamically allocated copies of the target data structures: */
3562static unsigned (*cache_ovly_table)[4] = 0;
3563static unsigned cache_novlys = 0;
3564static CORE_ADDR cache_ovly_table_base = 0;
3565enum ovly_index
3566 {
3567 VMA, SIZE, LMA, MAPPED
3568 };
3569
3570/* Throw away the cached copy of _ovly_table. */
3571
3572static void
3573simple_free_overlay_table (void)
3574{
3575 if (cache_ovly_table)
3576 xfree (cache_ovly_table);
3577 cache_novlys = 0;
3578 cache_ovly_table = NULL;
3579 cache_ovly_table_base = 0;
3580}
3581
3582/* Read an array of ints of size SIZE from the target into a local buffer.
3583 Convert to host order. int LEN is number of ints. */
3584
3585static void
3586read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3587 int len, int size, enum bfd_endian byte_order)
3588{
3589 /* FIXME (alloca): Not safe if array is very large. */
3590 gdb_byte *buf = alloca (len * size);
3591 int i;
3592
3593 read_memory (memaddr, buf, len * size);
3594 for (i = 0; i < len; i++)
3595 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3596}
3597
3598/* Find and grab a copy of the target _ovly_table
3599 (and _novlys, which is needed for the table's size). */
3600
3601static int
3602simple_read_overlay_table (void)
3603{
3604 struct bound_minimal_symbol novlys_msym;
3605 struct bound_minimal_symbol ovly_table_msym;
3606 struct gdbarch *gdbarch;
3607 int word_size;
3608 enum bfd_endian byte_order;
3609
3610 simple_free_overlay_table ();
3611 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3612 if (! novlys_msym.minsym)
3613 {
3614 error (_("Error reading inferior's overlay table: "
3615 "couldn't find `_novlys' variable\n"
3616 "in inferior. Use `overlay manual' mode."));
3617 return 0;
3618 }
3619
3620 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3621 if (! ovly_table_msym.minsym)
3622 {
3623 error (_("Error reading inferior's overlay table: couldn't find "
3624 "`_ovly_table' array\n"
3625 "in inferior. Use `overlay manual' mode."));
3626 return 0;
3627 }
3628
3629 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3630 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3631 byte_order = gdbarch_byte_order (gdbarch);
3632
3633 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3634 4, byte_order);
3635 cache_ovly_table
3636 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3637 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3638 read_target_long_array (cache_ovly_table_base,
3639 (unsigned int *) cache_ovly_table,
3640 cache_novlys * 4, word_size, byte_order);
3641
3642 return 1; /* SUCCESS */
3643}
3644
3645/* Function: simple_overlay_update_1
3646 A helper function for simple_overlay_update. Assuming a cached copy
3647 of _ovly_table exists, look through it to find an entry whose vma,
3648 lma and size match those of OSECT. Re-read the entry and make sure
3649 it still matches OSECT (else the table may no longer be valid).
3650 Set OSECT's mapped state to match the entry. Return: 1 for
3651 success, 0 for failure. */
3652
3653static int
3654simple_overlay_update_1 (struct obj_section *osect)
3655{
3656 int i, size;
3657 bfd *obfd = osect->objfile->obfd;
3658 asection *bsect = osect->the_bfd_section;
3659 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3660 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3662
3663 size = bfd_get_section_size (osect->the_bfd_section);
3664 for (i = 0; i < cache_novlys; i++)
3665 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3666 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3667 /* && cache_ovly_table[i][SIZE] == size */ )
3668 {
3669 read_target_long_array (cache_ovly_table_base + i * word_size,
3670 (unsigned int *) cache_ovly_table[i],
3671 4, word_size, byte_order);
3672 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3673 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3674 /* && cache_ovly_table[i][SIZE] == size */ )
3675 {
3676 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3677 return 1;
3678 }
3679 else /* Warning! Warning! Target's ovly table has changed! */
3680 return 0;
3681 }
3682 return 0;
3683}
3684
3685/* Function: simple_overlay_update
3686 If OSECT is NULL, then update all sections' mapped state
3687 (after re-reading the entire target _ovly_table).
3688 If OSECT is non-NULL, then try to find a matching entry in the
3689 cached ovly_table and update only OSECT's mapped state.
3690 If a cached entry can't be found or the cache isn't valid, then
3691 re-read the entire cache, and go ahead and update all sections. */
3692
3693void
3694simple_overlay_update (struct obj_section *osect)
3695{
3696 struct objfile *objfile;
3697
3698 /* Were we given an osect to look up? NULL means do all of them. */
3699 if (osect)
3700 /* Have we got a cached copy of the target's overlay table? */
3701 if (cache_ovly_table != NULL)
3702 {
3703 /* Does its cached location match what's currently in the
3704 symtab? */
3705 struct bound_minimal_symbol minsym
3706 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3707
3708 if (minsym.minsym == NULL)
3709 error (_("Error reading inferior's overlay table: couldn't "
3710 "find `_ovly_table' array\n"
3711 "in inferior. Use `overlay manual' mode."));
3712
3713 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3714 /* Then go ahead and try to look up this single section in
3715 the cache. */
3716 if (simple_overlay_update_1 (osect))
3717 /* Found it! We're done. */
3718 return;
3719 }
3720
3721 /* Cached table no good: need to read the entire table anew.
3722 Or else we want all the sections, in which case it's actually
3723 more efficient to read the whole table in one block anyway. */
3724
3725 if (! simple_read_overlay_table ())
3726 return;
3727
3728 /* Now may as well update all sections, even if only one was requested. */
3729 ALL_OBJSECTIONS (objfile, osect)
3730 if (section_is_overlay (osect))
3731 {
3732 int i, size;
3733 bfd *obfd = osect->objfile->obfd;
3734 asection *bsect = osect->the_bfd_section;
3735
3736 size = bfd_get_section_size (bsect);
3737 for (i = 0; i < cache_novlys; i++)
3738 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3739 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3740 /* && cache_ovly_table[i][SIZE] == size */ )
3741 { /* obj_section matches i'th entry in ovly_table. */
3742 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3743 break; /* finished with inner for loop: break out. */
3744 }
3745 }
3746}
3747
3748/* Set the output sections and output offsets for section SECTP in
3749 ABFD. The relocation code in BFD will read these offsets, so we
3750 need to be sure they're initialized. We map each section to itself,
3751 with no offset; this means that SECTP->vma will be honored. */
3752
3753static void
3754symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3755{
3756 sectp->output_section = sectp;
3757 sectp->output_offset = 0;
3758}
3759
3760/* Default implementation for sym_relocate. */
3761
3762bfd_byte *
3763default_symfile_relocate (struct objfile *objfile, asection *sectp,
3764 bfd_byte *buf)
3765{
3766 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3767 DWO file. */
3768 bfd *abfd = sectp->owner;
3769
3770 /* We're only interested in sections with relocation
3771 information. */
3772 if ((sectp->flags & SEC_RELOC) == 0)
3773 return NULL;
3774
3775 /* We will handle section offsets properly elsewhere, so relocate as if
3776 all sections begin at 0. */
3777 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3778
3779 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3780}
3781
3782/* Relocate the contents of a debug section SECTP in ABFD. The
3783 contents are stored in BUF if it is non-NULL, or returned in a
3784 malloc'd buffer otherwise.
3785
3786 For some platforms and debug info formats, shared libraries contain
3787 relocations against the debug sections (particularly for DWARF-2;
3788 one affected platform is PowerPC GNU/Linux, although it depends on
3789 the version of the linker in use). Also, ELF object files naturally
3790 have unresolved relocations for their debug sections. We need to apply
3791 the relocations in order to get the locations of symbols correct.
3792 Another example that may require relocation processing, is the
3793 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3794 debug section. */
3795
3796bfd_byte *
3797symfile_relocate_debug_section (struct objfile *objfile,
3798 asection *sectp, bfd_byte *buf)
3799{
3800 gdb_assert (objfile->sf->sym_relocate);
3801
3802 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3803}
3804
3805struct symfile_segment_data *
3806get_symfile_segment_data (bfd *abfd)
3807{
3808 const struct sym_fns *sf = find_sym_fns (abfd);
3809
3810 if (sf == NULL)
3811 return NULL;
3812
3813 return sf->sym_segments (abfd);
3814}
3815
3816void
3817free_symfile_segment_data (struct symfile_segment_data *data)
3818{
3819 xfree (data->segment_bases);
3820 xfree (data->segment_sizes);
3821 xfree (data->segment_info);
3822 xfree (data);
3823}
3824
3825/* Given:
3826 - DATA, containing segment addresses from the object file ABFD, and
3827 the mapping from ABFD's sections onto the segments that own them,
3828 and
3829 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3830 segment addresses reported by the target,
3831 store the appropriate offsets for each section in OFFSETS.
3832
3833 If there are fewer entries in SEGMENT_BASES than there are segments
3834 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3835
3836 If there are more entries, then ignore the extra. The target may
3837 not be able to distinguish between an empty data segment and a
3838 missing data segment; a missing text segment is less plausible. */
3839
3840int
3841symfile_map_offsets_to_segments (bfd *abfd,
3842 const struct symfile_segment_data *data,
3843 struct section_offsets *offsets,
3844 int num_segment_bases,
3845 const CORE_ADDR *segment_bases)
3846{
3847 int i;
3848 asection *sect;
3849
3850 /* It doesn't make sense to call this function unless you have some
3851 segment base addresses. */
3852 gdb_assert (num_segment_bases > 0);
3853
3854 /* If we do not have segment mappings for the object file, we
3855 can not relocate it by segments. */
3856 gdb_assert (data != NULL);
3857 gdb_assert (data->num_segments > 0);
3858
3859 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3860 {
3861 int which = data->segment_info[i];
3862
3863 gdb_assert (0 <= which && which <= data->num_segments);
3864
3865 /* Don't bother computing offsets for sections that aren't
3866 loaded as part of any segment. */
3867 if (! which)
3868 continue;
3869
3870 /* Use the last SEGMENT_BASES entry as the address of any extra
3871 segments mentioned in DATA->segment_info. */
3872 if (which > num_segment_bases)
3873 which = num_segment_bases;
3874
3875 offsets->offsets[i] = (segment_bases[which - 1]
3876 - data->segment_bases[which - 1]);
3877 }
3878
3879 return 1;
3880}
3881
3882static void
3883symfile_find_segment_sections (struct objfile *objfile)
3884{
3885 bfd *abfd = objfile->obfd;
3886 int i;
3887 asection *sect;
3888 struct symfile_segment_data *data;
3889
3890 data = get_symfile_segment_data (objfile->obfd);
3891 if (data == NULL)
3892 return;
3893
3894 if (data->num_segments != 1 && data->num_segments != 2)
3895 {
3896 free_symfile_segment_data (data);
3897 return;
3898 }
3899
3900 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3901 {
3902 int which = data->segment_info[i];
3903
3904 if (which == 1)
3905 {
3906 if (objfile->sect_index_text == -1)
3907 objfile->sect_index_text = sect->index;
3908
3909 if (objfile->sect_index_rodata == -1)
3910 objfile->sect_index_rodata = sect->index;
3911 }
3912 else if (which == 2)
3913 {
3914 if (objfile->sect_index_data == -1)
3915 objfile->sect_index_data = sect->index;
3916
3917 if (objfile->sect_index_bss == -1)
3918 objfile->sect_index_bss = sect->index;
3919 }
3920 }
3921
3922 free_symfile_segment_data (data);
3923}
3924
3925/* Listen for free_objfile events. */
3926
3927static void
3928symfile_free_objfile (struct objfile *objfile)
3929{
3930 /* Remove the target sections owned by this objfile. */
3931 if (objfile != NULL)
3932 remove_target_sections ((void *) objfile);
3933}
3934
3935/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3936 Expand all symtabs that match the specified criteria.
3937 See quick_symbol_functions.expand_symtabs_matching for details. */
3938
3939void
3940expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3941 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3942 enum search_domain kind,
3943 void *data)
3944{
3945 struct objfile *objfile;
3946
3947 ALL_OBJFILES (objfile)
3948 {
3949 if (objfile->sf)
3950 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3951 symbol_matcher, kind,
3952 data);
3953 }
3954}
3955
3956/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3957 Map function FUN over every file.
3958 See quick_symbol_functions.map_symbol_filenames for details. */
3959
3960void
3961map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3962 int need_fullname)
3963{
3964 struct objfile *objfile;
3965
3966 ALL_OBJFILES (objfile)
3967 {
3968 if (objfile->sf)
3969 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3970 need_fullname);
3971 }
3972}
3973
3974void
3975_initialize_symfile (void)
3976{
3977 struct cmd_list_element *c;
3978
3979 observer_attach_free_objfile (symfile_free_objfile);
3980
3981 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3982Load symbol table from executable file FILE.\n\
3983The `file' command can also load symbol tables, as well as setting the file\n\
3984to execute."), &cmdlist);
3985 set_cmd_completer (c, filename_completer);
3986
3987 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3988Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3989Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3990 ...]\nADDR is the starting address of the file's text.\n\
3991The optional arguments are section-name section-address pairs and\n\
3992should be specified if the data and bss segments are not contiguous\n\
3993with the text. SECT is a section name to be loaded at SECT_ADDR."),
3994 &cmdlist);
3995 set_cmd_completer (c, filename_completer);
3996
3997 c = add_cmd ("remove-symbol-file", class_files,
3998 remove_symbol_file_command, _("\
3999Remove a symbol file added via the add-symbol-file command.\n\
4000Usage: remove-symbol-file FILENAME\n\
4001 remove-symbol-file -a ADDRESS\n\
4002The file to remove can be identified by its filename or by an address\n\
4003that lies within the boundaries of this symbol file in memory."),
4004 &cmdlist);
4005
4006 c = add_cmd ("load", class_files, load_command, _("\
4007Dynamically load FILE into the running program, and record its symbols\n\
4008for access from GDB.\n\
4009A load OFFSET may also be given."), &cmdlist);
4010 set_cmd_completer (c, filename_completer);
4011
4012 add_prefix_cmd ("overlay", class_support, overlay_command,
4013 _("Commands for debugging overlays."), &overlaylist,
4014 "overlay ", 0, &cmdlist);
4015
4016 add_com_alias ("ovly", "overlay", class_alias, 1);
4017 add_com_alias ("ov", "overlay", class_alias, 1);
4018
4019 add_cmd ("map-overlay", class_support, map_overlay_command,
4020 _("Assert that an overlay section is mapped."), &overlaylist);
4021
4022 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4023 _("Assert that an overlay section is unmapped."), &overlaylist);
4024
4025 add_cmd ("list-overlays", class_support, list_overlays_command,
4026 _("List mappings of overlay sections."), &overlaylist);
4027
4028 add_cmd ("manual", class_support, overlay_manual_command,
4029 _("Enable overlay debugging."), &overlaylist);
4030 add_cmd ("off", class_support, overlay_off_command,
4031 _("Disable overlay debugging."), &overlaylist);
4032 add_cmd ("auto", class_support, overlay_auto_command,
4033 _("Enable automatic overlay debugging."), &overlaylist);
4034 add_cmd ("load-target", class_support, overlay_load_command,
4035 _("Read the overlay mapping state from the target."), &overlaylist);
4036
4037 /* Filename extension to source language lookup table: */
4038 init_filename_language_table ();
4039 add_setshow_string_noescape_cmd ("extension-language", class_files,
4040 &ext_args, _("\
4041Set mapping between filename extension and source language."), _("\
4042Show mapping between filename extension and source language."), _("\
4043Usage: set extension-language .foo bar"),
4044 set_ext_lang_command,
4045 show_ext_args,
4046 &setlist, &showlist);
4047
4048 add_info ("extensions", info_ext_lang_command,
4049 _("All filename extensions associated with a source language."));
4050
4051 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4052 &debug_file_directory, _("\
4053Set the directories where separate debug symbols are searched for."), _("\
4054Show the directories where separate debug symbols are searched for."), _("\
4055Separate debug symbols are first searched for in the same\n\
4056directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4057and lastly at the path of the directory of the binary with\n\
4058each global debug-file-directory component prepended."),
4059 NULL,
4060 show_debug_file_directory,
4061 &setlist, &showlist);
4062
4063 add_setshow_enum_cmd ("symbol-loading", no_class,
4064 print_symbol_loading_enums, &print_symbol_loading,
4065 _("\
4066Set printing of symbol loading messages."), _("\
4067Show printing of symbol loading messages."), _("\
4068off == turn all messages off\n\
4069brief == print messages for the executable,\n\
4070 and brief messages for shared libraries\n\
4071full == print messages for the executable,\n\
4072 and messages for each shared library."),
4073 NULL,
4074 NULL,
4075 &setprintlist, &showprintlist);
4076}
This page took 0.038882 seconds and 4 git commands to generate.