* rl78-tdep.c (rl78_register_reggroup_p): Include SP in the
[deliverable/binutils-gdb.git] / gdb / symfile.c
... / ...
CommitLineData
1/* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "bfdlink.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "source.h"
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
39#include "inferior.h"
40#include "regcache.h"
41#include "filenames.h" /* for DOSish file names */
42#include "gdb-stabs.h"
43#include "gdb_obstack.h"
44#include "completer.h"
45#include "bcache.h"
46#include "hashtab.h"
47#include "readline/readline.h"
48#include "gdb_assert.h"
49#include "block.h"
50#include "observer.h"
51#include "exec.h"
52#include "parser-defs.h"
53#include "varobj.h"
54#include "elf-bfd.h"
55#include "solib.h"
56#include "remote.h"
57#include "stack.h"
58#include "gdb_bfd.h"
59#include "cli/cli-utils.h"
60
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
67#include <sys/time.h>
68
69#include "psymtab.h"
70
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
80
81static void clear_symtab_users_cleanup (void *ignore);
82
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
85
86/* Functions this file defines. */
87
88static void load_command (char *, int);
89
90static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92static void add_symbol_file_command (char *, int);
93
94bfd *symfile_bfd_open (char *);
95
96int get_section_index (struct objfile *, char *);
97
98static const struct sym_fns *find_sym_fns (bfd *);
99
100static void decrement_reading_symtab (void *);
101
102static void overlay_invalidate_all (void);
103
104static void overlay_auto_command (char *, int);
105
106static void overlay_manual_command (char *, int);
107
108static void overlay_off_command (char *, int);
109
110static void overlay_load_command (char *, int);
111
112static void overlay_command (char *, int);
113
114static void simple_free_overlay_table (void);
115
116static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119static int simple_read_overlay_table (void);
120
121static int simple_overlay_update_1 (struct obj_section *);
122
123static void add_filename_language (char *ext, enum language lang);
124
125static void info_ext_lang_command (char *args, int from_tty);
126
127static void init_filename_language_table (void);
128
129static void symfile_find_segment_sections (struct objfile *objfile);
130
131void _initialize_symfile (void);
132
133/* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137typedef const struct sym_fns *sym_fns_ptr;
138DEF_VEC_P (sym_fns_ptr);
139
140static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142/* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152int auto_solib_add = 1;
153\f
154
155/* True if we are reading a symbol table. */
156
157int currently_reading_symtab = 0;
158
159static void
160decrement_reading_symtab (void *dummy)
161{
162 currently_reading_symtab--;
163}
164
165/* Increment currently_reading_symtab and return a cleanup that can be
166 used to decrement it. */
167struct cleanup *
168increment_reading_symtab (void)
169{
170 ++currently_reading_symtab;
171 return make_cleanup (decrement_reading_symtab, NULL);
172}
173
174/* Remember the lowest-addressed loadable section we've seen.
175 This function is called via bfd_map_over_sections.
176
177 In case of equal vmas, the section with the largest size becomes the
178 lowest-addressed loadable section.
179
180 If the vmas and sizes are equal, the last section is considered the
181 lowest-addressed loadable section. */
182
183void
184find_lowest_section (bfd *abfd, asection *sect, void *obj)
185{
186 asection **lowest = (asection **) obj;
187
188 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
189 return;
190 if (!*lowest)
191 *lowest = sect; /* First loadable section */
192 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
193 *lowest = sect; /* A lower loadable section */
194 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
195 && (bfd_section_size (abfd, (*lowest))
196 <= bfd_section_size (abfd, sect)))
197 *lowest = sect;
198}
199
200/* Create a new section_addr_info, with room for NUM_SECTIONS. The
201 new object's 'num_sections' field is set to 0; it must be updated
202 by the caller. */
203
204struct section_addr_info *
205alloc_section_addr_info (size_t num_sections)
206{
207 struct section_addr_info *sap;
208 size_t size;
209
210 size = (sizeof (struct section_addr_info)
211 + sizeof (struct other_sections) * (num_sections - 1));
212 sap = (struct section_addr_info *) xmalloc (size);
213 memset (sap, 0, size);
214
215 return sap;
216}
217
218/* Build (allocate and populate) a section_addr_info struct from
219 an existing section table. */
220
221extern struct section_addr_info *
222build_section_addr_info_from_section_table (const struct target_section *start,
223 const struct target_section *end)
224{
225 struct section_addr_info *sap;
226 const struct target_section *stp;
227 int oidx;
228
229 sap = alloc_section_addr_info (end - start);
230
231 for (stp = start, oidx = 0; stp != end; stp++)
232 {
233 if (bfd_get_section_flags (stp->bfd,
234 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
235 && oidx < end - start)
236 {
237 sap->other[oidx].addr = stp->addr;
238 sap->other[oidx].name
239 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
240 sap->other[oidx].sectindex
241 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
242 oidx++;
243 }
244 }
245
246 sap->num_sections = oidx;
247
248 return sap;
249}
250
251/* Create a section_addr_info from section offsets in ABFD. */
252
253static struct section_addr_info *
254build_section_addr_info_from_bfd (bfd *abfd)
255{
256 struct section_addr_info *sap;
257 int i;
258 struct bfd_section *sec;
259
260 sap = alloc_section_addr_info (bfd_count_sections (abfd));
261 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
262 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
263 {
264 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
265 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
266 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
267 i++;
268 }
269
270 sap->num_sections = i;
271
272 return sap;
273}
274
275/* Create a section_addr_info from section offsets in OBJFILE. */
276
277struct section_addr_info *
278build_section_addr_info_from_objfile (const struct objfile *objfile)
279{
280 struct section_addr_info *sap;
281 int i;
282
283 /* Before reread_symbols gets rewritten it is not safe to call:
284 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
285 */
286 sap = build_section_addr_info_from_bfd (objfile->obfd);
287 for (i = 0; i < sap->num_sections; i++)
288 {
289 int sectindex = sap->other[i].sectindex;
290
291 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
292 }
293 return sap;
294}
295
296/* Free all memory allocated by build_section_addr_info_from_section_table. */
297
298extern void
299free_section_addr_info (struct section_addr_info *sap)
300{
301 int idx;
302
303 for (idx = 0; idx < sap->num_sections; idx++)
304 xfree (sap->other[idx].name);
305 xfree (sap);
306}
307
308
309/* Initialize OBJFILE's sect_index_* members. */
310static void
311init_objfile_sect_indices (struct objfile *objfile)
312{
313 asection *sect;
314 int i;
315
316 sect = bfd_get_section_by_name (objfile->obfd, ".text");
317 if (sect)
318 objfile->sect_index_text = sect->index;
319
320 sect = bfd_get_section_by_name (objfile->obfd, ".data");
321 if (sect)
322 objfile->sect_index_data = sect->index;
323
324 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
325 if (sect)
326 objfile->sect_index_bss = sect->index;
327
328 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
329 if (sect)
330 objfile->sect_index_rodata = sect->index;
331
332 /* This is where things get really weird... We MUST have valid
333 indices for the various sect_index_* members or gdb will abort.
334 So if for example, there is no ".text" section, we have to
335 accomodate that. First, check for a file with the standard
336 one or two segments. */
337
338 symfile_find_segment_sections (objfile);
339
340 /* Except when explicitly adding symbol files at some address,
341 section_offsets contains nothing but zeros, so it doesn't matter
342 which slot in section_offsets the individual sect_index_* members
343 index into. So if they are all zero, it is safe to just point
344 all the currently uninitialized indices to the first slot. But
345 beware: if this is the main executable, it may be relocated
346 later, e.g. by the remote qOffsets packet, and then this will
347 be wrong! That's why we try segments first. */
348
349 for (i = 0; i < objfile->num_sections; i++)
350 {
351 if (ANOFFSET (objfile->section_offsets, i) != 0)
352 {
353 break;
354 }
355 }
356 if (i == objfile->num_sections)
357 {
358 if (objfile->sect_index_text == -1)
359 objfile->sect_index_text = 0;
360 if (objfile->sect_index_data == -1)
361 objfile->sect_index_data = 0;
362 if (objfile->sect_index_bss == -1)
363 objfile->sect_index_bss = 0;
364 if (objfile->sect_index_rodata == -1)
365 objfile->sect_index_rodata = 0;
366 }
367}
368
369/* The arguments to place_section. */
370
371struct place_section_arg
372{
373 struct section_offsets *offsets;
374 CORE_ADDR lowest;
375};
376
377/* Find a unique offset to use for loadable section SECT if
378 the user did not provide an offset. */
379
380static void
381place_section (bfd *abfd, asection *sect, void *obj)
382{
383 struct place_section_arg *arg = obj;
384 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
385 int done;
386 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
387
388 /* We are only interested in allocated sections. */
389 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
390 return;
391
392 /* If the user specified an offset, honor it. */
393 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
394 return;
395
396 /* Otherwise, let's try to find a place for the section. */
397 start_addr = (arg->lowest + align - 1) & -align;
398
399 do {
400 asection *cur_sec;
401
402 done = 1;
403
404 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
405 {
406 int indx = cur_sec->index;
407
408 /* We don't need to compare against ourself. */
409 if (cur_sec == sect)
410 continue;
411
412 /* We can only conflict with allocated sections. */
413 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
414 continue;
415
416 /* If the section offset is 0, either the section has not been placed
417 yet, or it was the lowest section placed (in which case LOWEST
418 will be past its end). */
419 if (offsets[indx] == 0)
420 continue;
421
422 /* If this section would overlap us, then we must move up. */
423 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
424 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
425 {
426 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
427 start_addr = (start_addr + align - 1) & -align;
428 done = 0;
429 break;
430 }
431
432 /* Otherwise, we appear to be OK. So far. */
433 }
434 }
435 while (!done);
436
437 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
438 arg->lowest = start_addr + bfd_get_section_size (sect);
439}
440
441/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
442 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
443 entries. */
444
445void
446relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
447 int num_sections,
448 struct section_addr_info *addrs)
449{
450 int i;
451
452 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
453
454 /* Now calculate offsets for section that were specified by the caller. */
455 for (i = 0; i < addrs->num_sections; i++)
456 {
457 struct other_sections *osp;
458
459 osp = &addrs->other[i];
460 if (osp->sectindex == -1)
461 continue;
462
463 /* Record all sections in offsets. */
464 /* The section_offsets in the objfile are here filled in using
465 the BFD index. */
466 section_offsets->offsets[osp->sectindex] = osp->addr;
467 }
468}
469
470/* Transform section name S for a name comparison. prelink can split section
471 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
472 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
473 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
474 (`.sbss') section has invalid (increased) virtual address. */
475
476static const char *
477addr_section_name (const char *s)
478{
479 if (strcmp (s, ".dynbss") == 0)
480 return ".bss";
481 if (strcmp (s, ".sdynbss") == 0)
482 return ".sbss";
483
484 return s;
485}
486
487/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
488 their (name, sectindex) pair. sectindex makes the sort by name stable. */
489
490static int
491addrs_section_compar (const void *ap, const void *bp)
492{
493 const struct other_sections *a = *((struct other_sections **) ap);
494 const struct other_sections *b = *((struct other_sections **) bp);
495 int retval;
496
497 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
498 if (retval)
499 return retval;
500
501 return a->sectindex - b->sectindex;
502}
503
504/* Provide sorted array of pointers to sections of ADDRS. The array is
505 terminated by NULL. Caller is responsible to call xfree for it. */
506
507static struct other_sections **
508addrs_section_sort (struct section_addr_info *addrs)
509{
510 struct other_sections **array;
511 int i;
512
513 /* `+ 1' for the NULL terminator. */
514 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
515 for (i = 0; i < addrs->num_sections; i++)
516 array[i] = &addrs->other[i];
517 array[i] = NULL;
518
519 qsort (array, i, sizeof (*array), addrs_section_compar);
520
521 return array;
522}
523
524/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
525 also SECTINDEXes specific to ABFD there. This function can be used to
526 rebase ADDRS to start referencing different BFD than before. */
527
528void
529addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
530{
531 asection *lower_sect;
532 CORE_ADDR lower_offset;
533 int i;
534 struct cleanup *my_cleanup;
535 struct section_addr_info *abfd_addrs;
536 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
537 struct other_sections **addrs_to_abfd_addrs;
538
539 /* Find lowest loadable section to be used as starting point for
540 continguous sections. */
541 lower_sect = NULL;
542 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
543 if (lower_sect == NULL)
544 {
545 warning (_("no loadable sections found in added symbol-file %s"),
546 bfd_get_filename (abfd));
547 lower_offset = 0;
548 }
549 else
550 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
551
552 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
553 in ABFD. Section names are not unique - there can be multiple sections of
554 the same name. Also the sections of the same name do not have to be
555 adjacent to each other. Some sections may be present only in one of the
556 files. Even sections present in both files do not have to be in the same
557 order.
558
559 Use stable sort by name for the sections in both files. Then linearly
560 scan both lists matching as most of the entries as possible. */
561
562 addrs_sorted = addrs_section_sort (addrs);
563 my_cleanup = make_cleanup (xfree, addrs_sorted);
564
565 abfd_addrs = build_section_addr_info_from_bfd (abfd);
566 make_cleanup_free_section_addr_info (abfd_addrs);
567 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
568 make_cleanup (xfree, abfd_addrs_sorted);
569
570 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
571 ABFD_ADDRS_SORTED. */
572
573 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
574 * addrs->num_sections);
575 make_cleanup (xfree, addrs_to_abfd_addrs);
576
577 while (*addrs_sorted)
578 {
579 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
580
581 while (*abfd_addrs_sorted
582 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
583 sect_name) < 0)
584 abfd_addrs_sorted++;
585
586 if (*abfd_addrs_sorted
587 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
588 sect_name) == 0)
589 {
590 int index_in_addrs;
591
592 /* Make the found item directly addressable from ADDRS. */
593 index_in_addrs = *addrs_sorted - addrs->other;
594 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
595 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
596
597 /* Never use the same ABFD entry twice. */
598 abfd_addrs_sorted++;
599 }
600
601 addrs_sorted++;
602 }
603
604 /* Calculate offsets for the loadable sections.
605 FIXME! Sections must be in order of increasing loadable section
606 so that contiguous sections can use the lower-offset!!!
607
608 Adjust offsets if the segments are not contiguous.
609 If the section is contiguous, its offset should be set to
610 the offset of the highest loadable section lower than it
611 (the loadable section directly below it in memory).
612 this_offset = lower_offset = lower_addr - lower_orig_addr */
613
614 for (i = 0; i < addrs->num_sections; i++)
615 {
616 struct other_sections *sect = addrs_to_abfd_addrs[i];
617
618 if (sect)
619 {
620 /* This is the index used by BFD. */
621 addrs->other[i].sectindex = sect->sectindex;
622
623 if (addrs->other[i].addr != 0)
624 {
625 addrs->other[i].addr -= sect->addr;
626 lower_offset = addrs->other[i].addr;
627 }
628 else
629 addrs->other[i].addr = lower_offset;
630 }
631 else
632 {
633 /* addr_section_name transformation is not used for SECT_NAME. */
634 const char *sect_name = addrs->other[i].name;
635
636 /* This section does not exist in ABFD, which is normally
637 unexpected and we want to issue a warning.
638
639 However, the ELF prelinker does create a few sections which are
640 marked in the main executable as loadable (they are loaded in
641 memory from the DYNAMIC segment) and yet are not present in
642 separate debug info files. This is fine, and should not cause
643 a warning. Shared libraries contain just the section
644 ".gnu.liblist" but it is not marked as loadable there. There is
645 no other way to identify them than by their name as the sections
646 created by prelink have no special flags.
647
648 For the sections `.bss' and `.sbss' see addr_section_name. */
649
650 if (!(strcmp (sect_name, ".gnu.liblist") == 0
651 || strcmp (sect_name, ".gnu.conflict") == 0
652 || (strcmp (sect_name, ".bss") == 0
653 && i > 0
654 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
655 && addrs_to_abfd_addrs[i - 1] != NULL)
656 || (strcmp (sect_name, ".sbss") == 0
657 && i > 0
658 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
659 && addrs_to_abfd_addrs[i - 1] != NULL)))
660 warning (_("section %s not found in %s"), sect_name,
661 bfd_get_filename (abfd));
662
663 addrs->other[i].addr = 0;
664 addrs->other[i].sectindex = -1;
665 }
666 }
667
668 do_cleanups (my_cleanup);
669}
670
671/* Parse the user's idea of an offset for dynamic linking, into our idea
672 of how to represent it for fast symbol reading. This is the default
673 version of the sym_fns.sym_offsets function for symbol readers that
674 don't need to do anything special. It allocates a section_offsets table
675 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
676
677void
678default_symfile_offsets (struct objfile *objfile,
679 struct section_addr_info *addrs)
680{
681 objfile->num_sections = bfd_count_sections (objfile->obfd);
682 objfile->section_offsets = (struct section_offsets *)
683 obstack_alloc (&objfile->objfile_obstack,
684 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
685 relative_addr_info_to_section_offsets (objfile->section_offsets,
686 objfile->num_sections, addrs);
687
688 /* For relocatable files, all loadable sections will start at zero.
689 The zero is meaningless, so try to pick arbitrary addresses such
690 that no loadable sections overlap. This algorithm is quadratic,
691 but the number of sections in a single object file is generally
692 small. */
693 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
694 {
695 struct place_section_arg arg;
696 bfd *abfd = objfile->obfd;
697 asection *cur_sec;
698
699 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
700 /* We do not expect this to happen; just skip this step if the
701 relocatable file has a section with an assigned VMA. */
702 if (bfd_section_vma (abfd, cur_sec) != 0)
703 break;
704
705 if (cur_sec == NULL)
706 {
707 CORE_ADDR *offsets = objfile->section_offsets->offsets;
708
709 /* Pick non-overlapping offsets for sections the user did not
710 place explicitly. */
711 arg.offsets = objfile->section_offsets;
712 arg.lowest = 0;
713 bfd_map_over_sections (objfile->obfd, place_section, &arg);
714
715 /* Correctly filling in the section offsets is not quite
716 enough. Relocatable files have two properties that
717 (most) shared objects do not:
718
719 - Their debug information will contain relocations. Some
720 shared libraries do also, but many do not, so this can not
721 be assumed.
722
723 - If there are multiple code sections they will be loaded
724 at different relative addresses in memory than they are
725 in the objfile, since all sections in the file will start
726 at address zero.
727
728 Because GDB has very limited ability to map from an
729 address in debug info to the correct code section,
730 it relies on adding SECT_OFF_TEXT to things which might be
731 code. If we clear all the section offsets, and set the
732 section VMAs instead, then symfile_relocate_debug_section
733 will return meaningful debug information pointing at the
734 correct sections.
735
736 GDB has too many different data structures for section
737 addresses - a bfd, objfile, and so_list all have section
738 tables, as does exec_ops. Some of these could probably
739 be eliminated. */
740
741 for (cur_sec = abfd->sections; cur_sec != NULL;
742 cur_sec = cur_sec->next)
743 {
744 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
745 continue;
746
747 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
748 exec_set_section_address (bfd_get_filename (abfd),
749 cur_sec->index,
750 offsets[cur_sec->index]);
751 offsets[cur_sec->index] = 0;
752 }
753 }
754 }
755
756 /* Remember the bfd indexes for the .text, .data, .bss and
757 .rodata sections. */
758 init_objfile_sect_indices (objfile);
759}
760
761
762/* Divide the file into segments, which are individual relocatable units.
763 This is the default version of the sym_fns.sym_segments function for
764 symbol readers that do not have an explicit representation of segments.
765 It assumes that object files do not have segments, and fully linked
766 files have a single segment. */
767
768struct symfile_segment_data *
769default_symfile_segments (bfd *abfd)
770{
771 int num_sections, i;
772 asection *sect;
773 struct symfile_segment_data *data;
774 CORE_ADDR low, high;
775
776 /* Relocatable files contain enough information to position each
777 loadable section independently; they should not be relocated
778 in segments. */
779 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
780 return NULL;
781
782 /* Make sure there is at least one loadable section in the file. */
783 for (sect = abfd->sections; sect != NULL; sect = sect->next)
784 {
785 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
786 continue;
787
788 break;
789 }
790 if (sect == NULL)
791 return NULL;
792
793 low = bfd_get_section_vma (abfd, sect);
794 high = low + bfd_get_section_size (sect);
795
796 data = XZALLOC (struct symfile_segment_data);
797 data->num_segments = 1;
798 data->segment_bases = XCALLOC (1, CORE_ADDR);
799 data->segment_sizes = XCALLOC (1, CORE_ADDR);
800
801 num_sections = bfd_count_sections (abfd);
802 data->segment_info = XCALLOC (num_sections, int);
803
804 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
805 {
806 CORE_ADDR vma;
807
808 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
809 continue;
810
811 vma = bfd_get_section_vma (abfd, sect);
812 if (vma < low)
813 low = vma;
814 if (vma + bfd_get_section_size (sect) > high)
815 high = vma + bfd_get_section_size (sect);
816
817 data->segment_info[i] = 1;
818 }
819
820 data->segment_bases[0] = low;
821 data->segment_sizes[0] = high - low;
822
823 return data;
824}
825
826/* This is a convenience function to call sym_read for OBJFILE and
827 possibly force the partial symbols to be read. */
828
829static void
830read_symbols (struct objfile *objfile, int add_flags)
831{
832 (*objfile->sf->sym_read) (objfile, add_flags);
833
834 /* find_separate_debug_file_in_section should be called only if there is
835 single binary with no existing separate debug info file. */
836 if (!objfile_has_partial_symbols (objfile)
837 && objfile->separate_debug_objfile == NULL
838 && objfile->separate_debug_objfile_backlink == NULL)
839 {
840 bfd *abfd = find_separate_debug_file_in_section (objfile);
841 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
842
843 if (abfd != NULL)
844 symbol_file_add_separate (abfd, add_flags, objfile);
845
846 do_cleanups (cleanup);
847 }
848 if ((add_flags & SYMFILE_NO_READ) == 0)
849 require_partial_symbols (objfile, 0);
850}
851
852/* Initialize entry point information for this objfile. */
853
854static void
855init_entry_point_info (struct objfile *objfile)
856{
857 /* Save startup file's range of PC addresses to help blockframe.c
858 decide where the bottom of the stack is. */
859
860 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
861 {
862 /* Executable file -- record its entry point so we'll recognize
863 the startup file because it contains the entry point. */
864 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
865 objfile->ei.entry_point_p = 1;
866 }
867 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
868 && bfd_get_start_address (objfile->obfd) != 0)
869 {
870 /* Some shared libraries may have entry points set and be
871 runnable. There's no clear way to indicate this, so just check
872 for values other than zero. */
873 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
874 objfile->ei.entry_point_p = 1;
875 }
876 else
877 {
878 /* Examination of non-executable.o files. Short-circuit this stuff. */
879 objfile->ei.entry_point_p = 0;
880 }
881
882 if (objfile->ei.entry_point_p)
883 {
884 CORE_ADDR entry_point = objfile->ei.entry_point;
885
886 /* Make certain that the address points at real code, and not a
887 function descriptor. */
888 entry_point
889 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
890 entry_point,
891 &current_target);
892
893 /* Remove any ISA markers, so that this matches entries in the
894 symbol table. */
895 objfile->ei.entry_point
896 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
897 }
898}
899
900/* Process a symbol file, as either the main file or as a dynamically
901 loaded file.
902
903 This function does not set the OBJFILE's entry-point info.
904
905 OBJFILE is where the symbols are to be read from.
906
907 ADDRS is the list of section load addresses. If the user has given
908 an 'add-symbol-file' command, then this is the list of offsets and
909 addresses he or she provided as arguments to the command; or, if
910 we're handling a shared library, these are the actual addresses the
911 sections are loaded at, according to the inferior's dynamic linker
912 (as gleaned by GDB's shared library code). We convert each address
913 into an offset from the section VMA's as it appears in the object
914 file, and then call the file's sym_offsets function to convert this
915 into a format-specific offset table --- a `struct section_offsets'.
916 If ADDRS is non-zero, OFFSETS must be zero.
917
918 OFFSETS is a table of section offsets already in the right
919 format-specific representation. NUM_OFFSETS is the number of
920 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
921 assume this is the proper table the call to sym_offsets described
922 above would produce. Instead of calling sym_offsets, we just dump
923 it right into objfile->section_offsets. (When we're re-reading
924 symbols from an objfile, we don't have the original load address
925 list any more; all we have is the section offset table.) If
926 OFFSETS is non-zero, ADDRS must be zero.
927
928 ADD_FLAGS encodes verbosity level, whether this is main symbol or
929 an extra symbol file such as dynamically loaded code, and wether
930 breakpoint reset should be deferred. */
931
932static void
933syms_from_objfile_1 (struct objfile *objfile,
934 struct section_addr_info *addrs,
935 struct section_offsets *offsets,
936 int num_offsets,
937 int add_flags)
938{
939 struct section_addr_info *local_addr = NULL;
940 struct cleanup *old_chain;
941 const int mainline = add_flags & SYMFILE_MAINLINE;
942
943 gdb_assert (! (addrs && offsets));
944
945 objfile->sf = find_sym_fns (objfile->obfd);
946
947 if (objfile->sf == NULL)
948 {
949 /* No symbols to load, but we still need to make sure
950 that the section_offsets table is allocated. */
951 int num_sections = bfd_count_sections (objfile->obfd);
952 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
953
954 objfile->num_sections = num_sections;
955 objfile->section_offsets
956 = obstack_alloc (&objfile->objfile_obstack, size);
957 memset (objfile->section_offsets, 0, size);
958 return;
959 }
960
961 /* Make sure that partially constructed symbol tables will be cleaned up
962 if an error occurs during symbol reading. */
963 old_chain = make_cleanup_free_objfile (objfile);
964
965 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
966 list. We now establish the convention that an addr of zero means
967 no load address was specified. */
968 if (! addrs && ! offsets)
969 {
970 local_addr
971 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
972 make_cleanup (xfree, local_addr);
973 addrs = local_addr;
974 }
975
976 /* Now either addrs or offsets is non-zero. */
977
978 if (mainline)
979 {
980 /* We will modify the main symbol table, make sure that all its users
981 will be cleaned up if an error occurs during symbol reading. */
982 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
983
984 /* Since no error yet, throw away the old symbol table. */
985
986 if (symfile_objfile != NULL)
987 {
988 free_objfile (symfile_objfile);
989 gdb_assert (symfile_objfile == NULL);
990 }
991
992 /* Currently we keep symbols from the add-symbol-file command.
993 If the user wants to get rid of them, they should do "symbol-file"
994 without arguments first. Not sure this is the best behavior
995 (PR 2207). */
996
997 (*objfile->sf->sym_new_init) (objfile);
998 }
999
1000 /* Convert addr into an offset rather than an absolute address.
1001 We find the lowest address of a loaded segment in the objfile,
1002 and assume that <addr> is where that got loaded.
1003
1004 We no longer warn if the lowest section is not a text segment (as
1005 happens for the PA64 port. */
1006 if (addrs && addrs->num_sections > 0)
1007 addr_info_make_relative (addrs, objfile->obfd);
1008
1009 /* Initialize symbol reading routines for this objfile, allow complaints to
1010 appear for this new file, and record how verbose to be, then do the
1011 initial symbol reading for this file. */
1012
1013 (*objfile->sf->sym_init) (objfile);
1014 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1015
1016 if (addrs)
1017 (*objfile->sf->sym_offsets) (objfile, addrs);
1018 else
1019 {
1020 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1021
1022 /* Just copy in the offset table directly as given to us. */
1023 objfile->num_sections = num_offsets;
1024 objfile->section_offsets
1025 = ((struct section_offsets *)
1026 obstack_alloc (&objfile->objfile_obstack, size));
1027 memcpy (objfile->section_offsets, offsets, size);
1028
1029 init_objfile_sect_indices (objfile);
1030 }
1031
1032 read_symbols (objfile, add_flags);
1033
1034 /* Discard cleanups as symbol reading was successful. */
1035
1036 discard_cleanups (old_chain);
1037 xfree (local_addr);
1038}
1039
1040/* Same as syms_from_objfile_1, but also initializes the objfile
1041 entry-point info. */
1042
1043void
1044syms_from_objfile (struct objfile *objfile,
1045 struct section_addr_info *addrs,
1046 struct section_offsets *offsets,
1047 int num_offsets,
1048 int add_flags)
1049{
1050 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1051 init_entry_point_info (objfile);
1052}
1053
1054/* Perform required actions after either reading in the initial
1055 symbols for a new objfile, or mapping in the symbols from a reusable
1056 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1057
1058void
1059new_symfile_objfile (struct objfile *objfile, int add_flags)
1060{
1061 /* If this is the main symbol file we have to clean up all users of the
1062 old main symbol file. Otherwise it is sufficient to fixup all the
1063 breakpoints that may have been redefined by this symbol file. */
1064 if (add_flags & SYMFILE_MAINLINE)
1065 {
1066 /* OK, make it the "real" symbol file. */
1067 symfile_objfile = objfile;
1068
1069 clear_symtab_users (add_flags);
1070 }
1071 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1072 {
1073 breakpoint_re_set ();
1074 }
1075
1076 /* We're done reading the symbol file; finish off complaints. */
1077 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1078}
1079
1080/* Process a symbol file, as either the main file or as a dynamically
1081 loaded file.
1082
1083 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1084 A new reference is acquired by this function.
1085
1086 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1087 extra, such as dynamically loaded code, and what to do with breakpoins.
1088
1089 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1090 syms_from_objfile, above.
1091 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1092
1093 PARENT is the original objfile if ABFD is a separate debug info file.
1094 Otherwise PARENT is NULL.
1095
1096 Upon success, returns a pointer to the objfile that was added.
1097 Upon failure, jumps back to command level (never returns). */
1098
1099static struct objfile *
1100symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1101 int add_flags,
1102 struct section_addr_info *addrs,
1103 struct section_offsets *offsets,
1104 int num_offsets,
1105 int flags, struct objfile *parent)
1106{
1107 struct objfile *objfile;
1108 const char *name = bfd_get_filename (abfd);
1109 const int from_tty = add_flags & SYMFILE_VERBOSE;
1110 const int mainline = add_flags & SYMFILE_MAINLINE;
1111 const int should_print = ((from_tty || info_verbose)
1112 && (readnow_symbol_files
1113 || (add_flags & SYMFILE_NO_READ) == 0));
1114
1115 if (readnow_symbol_files)
1116 {
1117 flags |= OBJF_READNOW;
1118 add_flags &= ~SYMFILE_NO_READ;
1119 }
1120
1121 /* Give user a chance to burp if we'd be
1122 interactively wiping out any existing symbols. */
1123
1124 if ((have_full_symbols () || have_partial_symbols ())
1125 && mainline
1126 && from_tty
1127 && !query (_("Load new symbol table from \"%s\"? "), name))
1128 error (_("Not confirmed."));
1129
1130 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1131
1132 if (parent)
1133 add_separate_debug_objfile (objfile, parent);
1134
1135 /* We either created a new mapped symbol table, mapped an existing
1136 symbol table file which has not had initial symbol reading
1137 performed, or need to read an unmapped symbol table. */
1138 if (should_print)
1139 {
1140 if (deprecated_pre_add_symbol_hook)
1141 deprecated_pre_add_symbol_hook (name);
1142 else
1143 {
1144 printf_unfiltered (_("Reading symbols from %s..."), name);
1145 wrap_here ("");
1146 gdb_flush (gdb_stdout);
1147 }
1148 }
1149 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1150 add_flags);
1151
1152 /* We now have at least a partial symbol table. Check to see if the
1153 user requested that all symbols be read on initial access via either
1154 the gdb startup command line or on a per symbol file basis. Expand
1155 all partial symbol tables for this objfile if so. */
1156
1157 if ((flags & OBJF_READNOW))
1158 {
1159 if (should_print)
1160 {
1161 printf_unfiltered (_("expanding to full symbols..."));
1162 wrap_here ("");
1163 gdb_flush (gdb_stdout);
1164 }
1165
1166 if (objfile->sf)
1167 objfile->sf->qf->expand_all_symtabs (objfile);
1168 }
1169
1170 if (should_print && !objfile_has_symbols (objfile))
1171 {
1172 wrap_here ("");
1173 printf_unfiltered (_("(no debugging symbols found)..."));
1174 wrap_here ("");
1175 }
1176
1177 if (should_print)
1178 {
1179 if (deprecated_post_add_symbol_hook)
1180 deprecated_post_add_symbol_hook ();
1181 else
1182 printf_unfiltered (_("done.\n"));
1183 }
1184
1185 /* We print some messages regardless of whether 'from_tty ||
1186 info_verbose' is true, so make sure they go out at the right
1187 time. */
1188 gdb_flush (gdb_stdout);
1189
1190 if (objfile->sf == NULL)
1191 {
1192 observer_notify_new_objfile (objfile);
1193 return objfile; /* No symbols. */
1194 }
1195
1196 new_symfile_objfile (objfile, add_flags);
1197
1198 observer_notify_new_objfile (objfile);
1199
1200 bfd_cache_close_all ();
1201 return (objfile);
1202}
1203
1204/* Add BFD as a separate debug file for OBJFILE. */
1205
1206void
1207symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1208{
1209 struct objfile *new_objfile;
1210 struct section_addr_info *sap;
1211 struct cleanup *my_cleanup;
1212
1213 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1214 because sections of BFD may not match sections of OBJFILE and because
1215 vma may have been modified by tools such as prelink. */
1216 sap = build_section_addr_info_from_objfile (objfile);
1217 my_cleanup = make_cleanup_free_section_addr_info (sap);
1218
1219 new_objfile = symbol_file_add_with_addrs_or_offsets
1220 (bfd, symfile_flags,
1221 sap, NULL, 0,
1222 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1223 | OBJF_USERLOADED),
1224 objfile);
1225
1226 do_cleanups (my_cleanup);
1227}
1228
1229/* Process the symbol file ABFD, as either the main file or as a
1230 dynamically loaded file.
1231
1232 See symbol_file_add_with_addrs_or_offsets's comments for
1233 details. */
1234struct objfile *
1235symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1236 struct section_addr_info *addrs,
1237 int flags, struct objfile *parent)
1238{
1239 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1240 flags, parent);
1241}
1242
1243
1244/* Process a symbol file, as either the main file or as a dynamically
1245 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1246 for details. */
1247struct objfile *
1248symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1249 int flags)
1250{
1251 bfd *bfd = symfile_bfd_open (name);
1252 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1253 struct objfile *objf;
1254
1255 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1256 do_cleanups (cleanup);
1257 return objf;
1258}
1259
1260
1261/* Call symbol_file_add() with default values and update whatever is
1262 affected by the loading of a new main().
1263 Used when the file is supplied in the gdb command line
1264 and by some targets with special loading requirements.
1265 The auxiliary function, symbol_file_add_main_1(), has the flags
1266 argument for the switches that can only be specified in the symbol_file
1267 command itself. */
1268
1269void
1270symbol_file_add_main (char *args, int from_tty)
1271{
1272 symbol_file_add_main_1 (args, from_tty, 0);
1273}
1274
1275static void
1276symbol_file_add_main_1 (char *args, int from_tty, int flags)
1277{
1278 const int add_flags = (current_inferior ()->symfile_flags
1279 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1280
1281 symbol_file_add (args, add_flags, NULL, flags);
1282
1283 /* Getting new symbols may change our opinion about
1284 what is frameless. */
1285 reinit_frame_cache ();
1286
1287 if ((flags & SYMFILE_NO_READ) == 0)
1288 set_initial_language ();
1289}
1290
1291void
1292symbol_file_clear (int from_tty)
1293{
1294 if ((have_full_symbols () || have_partial_symbols ())
1295 && from_tty
1296 && (symfile_objfile
1297 ? !query (_("Discard symbol table from `%s'? "),
1298 symfile_objfile->name)
1299 : !query (_("Discard symbol table? "))))
1300 error (_("Not confirmed."));
1301
1302 /* solib descriptors may have handles to objfiles. Wipe them before their
1303 objfiles get stale by free_all_objfiles. */
1304 no_shared_libraries (NULL, from_tty);
1305
1306 free_all_objfiles ();
1307
1308 gdb_assert (symfile_objfile == NULL);
1309 if (from_tty)
1310 printf_unfiltered (_("No symbol file now.\n"));
1311}
1312
1313static int
1314separate_debug_file_exists (const char *name, unsigned long crc,
1315 struct objfile *parent_objfile)
1316{
1317 unsigned long file_crc;
1318 int file_crc_p;
1319 bfd *abfd;
1320 struct stat parent_stat, abfd_stat;
1321 int verified_as_different;
1322
1323 /* Find a separate debug info file as if symbols would be present in
1324 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1325 section can contain just the basename of PARENT_OBJFILE without any
1326 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1327 the separate debug infos with the same basename can exist. */
1328
1329 if (filename_cmp (name, parent_objfile->name) == 0)
1330 return 0;
1331
1332 abfd = gdb_bfd_open_maybe_remote (name);
1333
1334 if (!abfd)
1335 return 0;
1336
1337 /* Verify symlinks were not the cause of filename_cmp name difference above.
1338
1339 Some operating systems, e.g. Windows, do not provide a meaningful
1340 st_ino; they always set it to zero. (Windows does provide a
1341 meaningful st_dev.) Do not indicate a duplicate library in that
1342 case. While there is no guarantee that a system that provides
1343 meaningful inode numbers will never set st_ino to zero, this is
1344 merely an optimization, so we do not need to worry about false
1345 negatives. */
1346
1347 if (bfd_stat (abfd, &abfd_stat) == 0
1348 && abfd_stat.st_ino != 0
1349 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1350 {
1351 if (abfd_stat.st_dev == parent_stat.st_dev
1352 && abfd_stat.st_ino == parent_stat.st_ino)
1353 {
1354 gdb_bfd_unref (abfd);
1355 return 0;
1356 }
1357 verified_as_different = 1;
1358 }
1359 else
1360 verified_as_different = 0;
1361
1362 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1363
1364 gdb_bfd_unref (abfd);
1365
1366 if (!file_crc_p)
1367 return 0;
1368
1369 if (crc != file_crc)
1370 {
1371 unsigned long parent_crc;
1372
1373 /* If one (or both) the files are accessed for example the via "remote:"
1374 gdbserver way it does not support the bfd_stat operation. Verify
1375 whether those two files are not the same manually. */
1376
1377 if (!verified_as_different)
1378 {
1379 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1380 return 0;
1381 }
1382
1383 if (verified_as_different || parent_crc != file_crc)
1384 warning (_("the debug information found in \"%s\""
1385 " does not match \"%s\" (CRC mismatch).\n"),
1386 name, parent_objfile->name);
1387
1388 return 0;
1389 }
1390
1391 return 1;
1392}
1393
1394char *debug_file_directory = NULL;
1395static void
1396show_debug_file_directory (struct ui_file *file, int from_tty,
1397 struct cmd_list_element *c, const char *value)
1398{
1399 fprintf_filtered (file,
1400 _("The directory where separate debug "
1401 "symbols are searched for is \"%s\".\n"),
1402 value);
1403}
1404
1405#if ! defined (DEBUG_SUBDIRECTORY)
1406#define DEBUG_SUBDIRECTORY ".debug"
1407#endif
1408
1409/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1410 where the original file resides (may not be the same as
1411 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1412 looking for. CANON_DIR is the "realpath" form of DIR.
1413 DIR must contain a trailing '/'.
1414 Returns the path of the file with separate debug info, of NULL. */
1415
1416static char *
1417find_separate_debug_file (const char *dir,
1418 const char *canon_dir,
1419 const char *debuglink,
1420 unsigned long crc32, struct objfile *objfile)
1421{
1422 char *debugdir;
1423 char *debugfile;
1424 int i;
1425 VEC (char_ptr) *debugdir_vec;
1426 struct cleanup *back_to;
1427 int ix;
1428
1429 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1430 i = strlen (dir);
1431 if (canon_dir != NULL && strlen (canon_dir) > i)
1432 i = strlen (canon_dir);
1433
1434 debugfile = xmalloc (strlen (debug_file_directory) + 1
1435 + i
1436 + strlen (DEBUG_SUBDIRECTORY)
1437 + strlen ("/")
1438 + strlen (debuglink)
1439 + 1);
1440
1441 /* First try in the same directory as the original file. */
1442 strcpy (debugfile, dir);
1443 strcat (debugfile, debuglink);
1444
1445 if (separate_debug_file_exists (debugfile, crc32, objfile))
1446 return debugfile;
1447
1448 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1449 strcpy (debugfile, dir);
1450 strcat (debugfile, DEBUG_SUBDIRECTORY);
1451 strcat (debugfile, "/");
1452 strcat (debugfile, debuglink);
1453
1454 if (separate_debug_file_exists (debugfile, crc32, objfile))
1455 return debugfile;
1456
1457 /* Then try in the global debugfile directories.
1458
1459 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1460 cause "/..." lookups. */
1461
1462 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1463 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1464
1465 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1466 {
1467 strcpy (debugfile, debugdir);
1468 strcat (debugfile, "/");
1469 strcat (debugfile, dir);
1470 strcat (debugfile, debuglink);
1471
1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1473 return debugfile;
1474
1475 /* If the file is in the sysroot, try using its base path in the
1476 global debugfile directory. */
1477 if (canon_dir != NULL
1478 && filename_ncmp (canon_dir, gdb_sysroot,
1479 strlen (gdb_sysroot)) == 0
1480 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1481 {
1482 strcpy (debugfile, debugdir);
1483 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1484 strcat (debugfile, "/");
1485 strcat (debugfile, debuglink);
1486
1487 if (separate_debug_file_exists (debugfile, crc32, objfile))
1488 return debugfile;
1489 }
1490 }
1491
1492 do_cleanups (back_to);
1493 xfree (debugfile);
1494 return NULL;
1495}
1496
1497/* Modify PATH to contain only "[/]directory/" part of PATH.
1498 If there were no directory separators in PATH, PATH will be empty
1499 string on return. */
1500
1501static void
1502terminate_after_last_dir_separator (char *path)
1503{
1504 int i;
1505
1506 /* Strip off the final filename part, leaving the directory name,
1507 followed by a slash. The directory can be relative or absolute. */
1508 for (i = strlen(path) - 1; i >= 0; i--)
1509 if (IS_DIR_SEPARATOR (path[i]))
1510 break;
1511
1512 /* If I is -1 then no directory is present there and DIR will be "". */
1513 path[i + 1] = '\0';
1514}
1515
1516/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1517 Returns pathname, or NULL. */
1518
1519char *
1520find_separate_debug_file_by_debuglink (struct objfile *objfile)
1521{
1522 char *debuglink;
1523 char *dir, *canon_dir;
1524 char *debugfile;
1525 unsigned long crc32;
1526 struct cleanup *cleanups;
1527
1528 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1529
1530 if (debuglink == NULL)
1531 {
1532 /* There's no separate debug info, hence there's no way we could
1533 load it => no warning. */
1534 return NULL;
1535 }
1536
1537 cleanups = make_cleanup (xfree, debuglink);
1538 dir = xstrdup (objfile->name);
1539 make_cleanup (xfree, dir);
1540 terminate_after_last_dir_separator (dir);
1541 canon_dir = lrealpath (dir);
1542
1543 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1544 crc32, objfile);
1545 xfree (canon_dir);
1546
1547 if (debugfile == NULL)
1548 {
1549#ifdef HAVE_LSTAT
1550 /* For PR gdb/9538, try again with realpath (if different from the
1551 original). */
1552
1553 struct stat st_buf;
1554
1555 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1556 {
1557 char *symlink_dir;
1558
1559 symlink_dir = lrealpath (objfile->name);
1560 if (symlink_dir != NULL)
1561 {
1562 make_cleanup (xfree, symlink_dir);
1563 terminate_after_last_dir_separator (symlink_dir);
1564 if (strcmp (dir, symlink_dir) != 0)
1565 {
1566 /* Different directory, so try using it. */
1567 debugfile = find_separate_debug_file (symlink_dir,
1568 symlink_dir,
1569 debuglink,
1570 crc32,
1571 objfile);
1572 }
1573 }
1574 }
1575#endif /* HAVE_LSTAT */
1576 }
1577
1578 do_cleanups (cleanups);
1579 return debugfile;
1580}
1581
1582
1583/* This is the symbol-file command. Read the file, analyze its
1584 symbols, and add a struct symtab to a symtab list. The syntax of
1585 the command is rather bizarre:
1586
1587 1. The function buildargv implements various quoting conventions
1588 which are undocumented and have little or nothing in common with
1589 the way things are quoted (or not quoted) elsewhere in GDB.
1590
1591 2. Options are used, which are not generally used in GDB (perhaps
1592 "set mapped on", "set readnow on" would be better)
1593
1594 3. The order of options matters, which is contrary to GNU
1595 conventions (because it is confusing and inconvenient). */
1596
1597void
1598symbol_file_command (char *args, int from_tty)
1599{
1600 dont_repeat ();
1601
1602 if (args == NULL)
1603 {
1604 symbol_file_clear (from_tty);
1605 }
1606 else
1607 {
1608 char **argv = gdb_buildargv (args);
1609 int flags = OBJF_USERLOADED;
1610 struct cleanup *cleanups;
1611 char *name = NULL;
1612
1613 cleanups = make_cleanup_freeargv (argv);
1614 while (*argv != NULL)
1615 {
1616 if (strcmp (*argv, "-readnow") == 0)
1617 flags |= OBJF_READNOW;
1618 else if (**argv == '-')
1619 error (_("unknown option `%s'"), *argv);
1620 else
1621 {
1622 symbol_file_add_main_1 (*argv, from_tty, flags);
1623 name = *argv;
1624 }
1625
1626 argv++;
1627 }
1628
1629 if (name == NULL)
1630 error (_("no symbol file name was specified"));
1631
1632 do_cleanups (cleanups);
1633 }
1634}
1635
1636/* Set the initial language.
1637
1638 FIXME: A better solution would be to record the language in the
1639 psymtab when reading partial symbols, and then use it (if known) to
1640 set the language. This would be a win for formats that encode the
1641 language in an easily discoverable place, such as DWARF. For
1642 stabs, we can jump through hoops looking for specially named
1643 symbols or try to intuit the language from the specific type of
1644 stabs we find, but we can't do that until later when we read in
1645 full symbols. */
1646
1647void
1648set_initial_language (void)
1649{
1650 enum language lang = language_unknown;
1651
1652 if (language_of_main != language_unknown)
1653 lang = language_of_main;
1654 else
1655 {
1656 const char *filename;
1657
1658 filename = find_main_filename ();
1659 if (filename != NULL)
1660 lang = deduce_language_from_filename (filename);
1661 }
1662
1663 if (lang == language_unknown)
1664 {
1665 /* Make C the default language */
1666 lang = language_c;
1667 }
1668
1669 set_language (lang);
1670 expected_language = current_language; /* Don't warn the user. */
1671}
1672
1673/* If NAME is a remote name open the file using remote protocol, otherwise
1674 open it normally. Returns a new reference to the BFD. On error,
1675 returns NULL with the BFD error set. */
1676
1677bfd *
1678gdb_bfd_open_maybe_remote (const char *name)
1679{
1680 bfd *result;
1681
1682 if (remote_filename_p (name))
1683 result = remote_bfd_open (name, gnutarget);
1684 else
1685 result = gdb_bfd_open (name, gnutarget, -1);
1686
1687 return result;
1688}
1689
1690
1691/* Open the file specified by NAME and hand it off to BFD for
1692 preliminary analysis. Return a newly initialized bfd *, which
1693 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1694 absolute). In case of trouble, error() is called. */
1695
1696bfd *
1697symfile_bfd_open (char *name)
1698{
1699 bfd *sym_bfd;
1700 int desc;
1701 char *absolute_name;
1702
1703 if (remote_filename_p (name))
1704 {
1705 sym_bfd = remote_bfd_open (name, gnutarget);
1706 if (!sym_bfd)
1707 error (_("`%s': can't open to read symbols: %s."), name,
1708 bfd_errmsg (bfd_get_error ()));
1709
1710 if (!bfd_check_format (sym_bfd, bfd_object))
1711 {
1712 make_cleanup_bfd_unref (sym_bfd);
1713 error (_("`%s': can't read symbols: %s."), name,
1714 bfd_errmsg (bfd_get_error ()));
1715 }
1716
1717 return sym_bfd;
1718 }
1719
1720 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1721
1722 /* Look down path for it, allocate 2nd new malloc'd copy. */
1723 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1724 O_RDONLY | O_BINARY, &absolute_name);
1725#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1726 if (desc < 0)
1727 {
1728 char *exename = alloca (strlen (name) + 5);
1729
1730 strcat (strcpy (exename, name), ".exe");
1731 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1732 O_RDONLY | O_BINARY, &absolute_name);
1733 }
1734#endif
1735 if (desc < 0)
1736 {
1737 make_cleanup (xfree, name);
1738 perror_with_name (name);
1739 }
1740
1741 xfree (name);
1742 name = absolute_name;
1743 make_cleanup (xfree, name);
1744
1745 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1746 if (!sym_bfd)
1747 {
1748 make_cleanup (xfree, name);
1749 error (_("`%s': can't open to read symbols: %s."), name,
1750 bfd_errmsg (bfd_get_error ()));
1751 }
1752 bfd_set_cacheable (sym_bfd, 1);
1753
1754 if (!bfd_check_format (sym_bfd, bfd_object))
1755 {
1756 make_cleanup_bfd_unref (sym_bfd);
1757 error (_("`%s': can't read symbols: %s."), name,
1758 bfd_errmsg (bfd_get_error ()));
1759 }
1760
1761 return sym_bfd;
1762}
1763
1764/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1765 the section was not found. */
1766
1767int
1768get_section_index (struct objfile *objfile, char *section_name)
1769{
1770 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1771
1772 if (sect)
1773 return sect->index;
1774 else
1775 return -1;
1776}
1777
1778/* Link SF into the global symtab_fns list. Called on startup by the
1779 _initialize routine in each object file format reader, to register
1780 information about each format the reader is prepared to handle. */
1781
1782void
1783add_symtab_fns (const struct sym_fns *sf)
1784{
1785 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1786}
1787
1788/* Initialize OBJFILE to read symbols from its associated BFD. It
1789 either returns or calls error(). The result is an initialized
1790 struct sym_fns in the objfile structure, that contains cached
1791 information about the symbol file. */
1792
1793static const struct sym_fns *
1794find_sym_fns (bfd *abfd)
1795{
1796 const struct sym_fns *sf;
1797 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1798 int i;
1799
1800 if (our_flavour == bfd_target_srec_flavour
1801 || our_flavour == bfd_target_ihex_flavour
1802 || our_flavour == bfd_target_tekhex_flavour)
1803 return NULL; /* No symbols. */
1804
1805 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1806 if (our_flavour == sf->sym_flavour)
1807 return sf;
1808
1809 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1810 bfd_get_target (abfd));
1811}
1812\f
1813
1814/* This function runs the load command of our current target. */
1815
1816static void
1817load_command (char *arg, int from_tty)
1818{
1819 dont_repeat ();
1820
1821 /* The user might be reloading because the binary has changed. Take
1822 this opportunity to check. */
1823 reopen_exec_file ();
1824 reread_symbols ();
1825
1826 if (arg == NULL)
1827 {
1828 char *parg;
1829 int count = 0;
1830
1831 parg = arg = get_exec_file (1);
1832
1833 /* Count how many \ " ' tab space there are in the name. */
1834 while ((parg = strpbrk (parg, "\\\"'\t ")))
1835 {
1836 parg++;
1837 count++;
1838 }
1839
1840 if (count)
1841 {
1842 /* We need to quote this string so buildargv can pull it apart. */
1843 char *temp = xmalloc (strlen (arg) + count + 1 );
1844 char *ptemp = temp;
1845 char *prev;
1846
1847 make_cleanup (xfree, temp);
1848
1849 prev = parg = arg;
1850 while ((parg = strpbrk (parg, "\\\"'\t ")))
1851 {
1852 strncpy (ptemp, prev, parg - prev);
1853 ptemp += parg - prev;
1854 prev = parg++;
1855 *ptemp++ = '\\';
1856 }
1857 strcpy (ptemp, prev);
1858
1859 arg = temp;
1860 }
1861 }
1862
1863 target_load (arg, from_tty);
1864
1865 /* After re-loading the executable, we don't really know which
1866 overlays are mapped any more. */
1867 overlay_cache_invalid = 1;
1868}
1869
1870/* This version of "load" should be usable for any target. Currently
1871 it is just used for remote targets, not inftarg.c or core files,
1872 on the theory that only in that case is it useful.
1873
1874 Avoiding xmodem and the like seems like a win (a) because we don't have
1875 to worry about finding it, and (b) On VMS, fork() is very slow and so
1876 we don't want to run a subprocess. On the other hand, I'm not sure how
1877 performance compares. */
1878
1879static int validate_download = 0;
1880
1881/* Callback service function for generic_load (bfd_map_over_sections). */
1882
1883static void
1884add_section_size_callback (bfd *abfd, asection *asec, void *data)
1885{
1886 bfd_size_type *sum = data;
1887
1888 *sum += bfd_get_section_size (asec);
1889}
1890
1891/* Opaque data for load_section_callback. */
1892struct load_section_data {
1893 CORE_ADDR load_offset;
1894 struct load_progress_data *progress_data;
1895 VEC(memory_write_request_s) *requests;
1896};
1897
1898/* Opaque data for load_progress. */
1899struct load_progress_data {
1900 /* Cumulative data. */
1901 unsigned long write_count;
1902 unsigned long data_count;
1903 bfd_size_type total_size;
1904};
1905
1906/* Opaque data for load_progress for a single section. */
1907struct load_progress_section_data {
1908 struct load_progress_data *cumulative;
1909
1910 /* Per-section data. */
1911 const char *section_name;
1912 ULONGEST section_sent;
1913 ULONGEST section_size;
1914 CORE_ADDR lma;
1915 gdb_byte *buffer;
1916};
1917
1918/* Target write callback routine for progress reporting. */
1919
1920static void
1921load_progress (ULONGEST bytes, void *untyped_arg)
1922{
1923 struct load_progress_section_data *args = untyped_arg;
1924 struct load_progress_data *totals;
1925
1926 if (args == NULL)
1927 /* Writing padding data. No easy way to get at the cumulative
1928 stats, so just ignore this. */
1929 return;
1930
1931 totals = args->cumulative;
1932
1933 if (bytes == 0 && args->section_sent == 0)
1934 {
1935 /* The write is just starting. Let the user know we've started
1936 this section. */
1937 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1938 args->section_name, hex_string (args->section_size),
1939 paddress (target_gdbarch (), args->lma));
1940 return;
1941 }
1942
1943 if (validate_download)
1944 {
1945 /* Broken memories and broken monitors manifest themselves here
1946 when bring new computers to life. This doubles already slow
1947 downloads. */
1948 /* NOTE: cagney/1999-10-18: A more efficient implementation
1949 might add a verify_memory() method to the target vector and
1950 then use that. remote.c could implement that method using
1951 the ``qCRC'' packet. */
1952 gdb_byte *check = xmalloc (bytes);
1953 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1954
1955 if (target_read_memory (args->lma, check, bytes) != 0)
1956 error (_("Download verify read failed at %s"),
1957 paddress (target_gdbarch (), args->lma));
1958 if (memcmp (args->buffer, check, bytes) != 0)
1959 error (_("Download verify compare failed at %s"),
1960 paddress (target_gdbarch (), args->lma));
1961 do_cleanups (verify_cleanups);
1962 }
1963 totals->data_count += bytes;
1964 args->lma += bytes;
1965 args->buffer += bytes;
1966 totals->write_count += 1;
1967 args->section_sent += bytes;
1968 if (check_quit_flag ()
1969 || (deprecated_ui_load_progress_hook != NULL
1970 && deprecated_ui_load_progress_hook (args->section_name,
1971 args->section_sent)))
1972 error (_("Canceled the download"));
1973
1974 if (deprecated_show_load_progress != NULL)
1975 deprecated_show_load_progress (args->section_name,
1976 args->section_sent,
1977 args->section_size,
1978 totals->data_count,
1979 totals->total_size);
1980}
1981
1982/* Callback service function for generic_load (bfd_map_over_sections). */
1983
1984static void
1985load_section_callback (bfd *abfd, asection *asec, void *data)
1986{
1987 struct memory_write_request *new_request;
1988 struct load_section_data *args = data;
1989 struct load_progress_section_data *section_data;
1990 bfd_size_type size = bfd_get_section_size (asec);
1991 gdb_byte *buffer;
1992 const char *sect_name = bfd_get_section_name (abfd, asec);
1993
1994 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1995 return;
1996
1997 if (size == 0)
1998 return;
1999
2000 new_request = VEC_safe_push (memory_write_request_s,
2001 args->requests, NULL);
2002 memset (new_request, 0, sizeof (struct memory_write_request));
2003 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2004 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2005 new_request->end = new_request->begin + size; /* FIXME Should size
2006 be in instead? */
2007 new_request->data = xmalloc (size);
2008 new_request->baton = section_data;
2009
2010 buffer = new_request->data;
2011
2012 section_data->cumulative = args->progress_data;
2013 section_data->section_name = sect_name;
2014 section_data->section_size = size;
2015 section_data->lma = new_request->begin;
2016 section_data->buffer = buffer;
2017
2018 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2019}
2020
2021/* Clean up an entire memory request vector, including load
2022 data and progress records. */
2023
2024static void
2025clear_memory_write_data (void *arg)
2026{
2027 VEC(memory_write_request_s) **vec_p = arg;
2028 VEC(memory_write_request_s) *vec = *vec_p;
2029 int i;
2030 struct memory_write_request *mr;
2031
2032 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2033 {
2034 xfree (mr->data);
2035 xfree (mr->baton);
2036 }
2037 VEC_free (memory_write_request_s, vec);
2038}
2039
2040void
2041generic_load (char *args, int from_tty)
2042{
2043 bfd *loadfile_bfd;
2044 struct timeval start_time, end_time;
2045 char *filename;
2046 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2047 struct load_section_data cbdata;
2048 struct load_progress_data total_progress;
2049 struct ui_out *uiout = current_uiout;
2050
2051 CORE_ADDR entry;
2052 char **argv;
2053
2054 memset (&cbdata, 0, sizeof (cbdata));
2055 memset (&total_progress, 0, sizeof (total_progress));
2056 cbdata.progress_data = &total_progress;
2057
2058 make_cleanup (clear_memory_write_data, &cbdata.requests);
2059
2060 if (args == NULL)
2061 error_no_arg (_("file to load"));
2062
2063 argv = gdb_buildargv (args);
2064 make_cleanup_freeargv (argv);
2065
2066 filename = tilde_expand (argv[0]);
2067 make_cleanup (xfree, filename);
2068
2069 if (argv[1] != NULL)
2070 {
2071 const char *endptr;
2072
2073 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2074
2075 /* If the last word was not a valid number then
2076 treat it as a file name with spaces in. */
2077 if (argv[1] == endptr)
2078 error (_("Invalid download offset:%s."), argv[1]);
2079
2080 if (argv[2] != NULL)
2081 error (_("Too many parameters."));
2082 }
2083
2084 /* Open the file for loading. */
2085 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2086 if (loadfile_bfd == NULL)
2087 {
2088 perror_with_name (filename);
2089 return;
2090 }
2091
2092 make_cleanup_bfd_unref (loadfile_bfd);
2093
2094 if (!bfd_check_format (loadfile_bfd, bfd_object))
2095 {
2096 error (_("\"%s\" is not an object file: %s"), filename,
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2101 (void *) &total_progress.total_size);
2102
2103 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2104
2105 gettimeofday (&start_time, NULL);
2106
2107 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2108 load_progress) != 0)
2109 error (_("Load failed"));
2110
2111 gettimeofday (&end_time, NULL);
2112
2113 entry = bfd_get_start_address (loadfile_bfd);
2114 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2115 ui_out_text (uiout, "Start address ");
2116 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2117 ui_out_text (uiout, ", load size ");
2118 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2119 ui_out_text (uiout, "\n");
2120 /* We were doing this in remote-mips.c, I suspect it is right
2121 for other targets too. */
2122 regcache_write_pc (get_current_regcache (), entry);
2123
2124 /* Reset breakpoints, now that we have changed the load image. For
2125 instance, breakpoints may have been set (or reset, by
2126 post_create_inferior) while connected to the target but before we
2127 loaded the program. In that case, the prologue analyzer could
2128 have read instructions from the target to find the right
2129 breakpoint locations. Loading has changed the contents of that
2130 memory. */
2131
2132 breakpoint_re_set ();
2133
2134 /* FIXME: are we supposed to call symbol_file_add or not? According
2135 to a comment from remote-mips.c (where a call to symbol_file_add
2136 was commented out), making the call confuses GDB if more than one
2137 file is loaded in. Some targets do (e.g., remote-vx.c) but
2138 others don't (or didn't - perhaps they have all been deleted). */
2139
2140 print_transfer_performance (gdb_stdout, total_progress.data_count,
2141 total_progress.write_count,
2142 &start_time, &end_time);
2143
2144 do_cleanups (old_cleanups);
2145}
2146
2147/* Report how fast the transfer went. */
2148
2149void
2150print_transfer_performance (struct ui_file *stream,
2151 unsigned long data_count,
2152 unsigned long write_count,
2153 const struct timeval *start_time,
2154 const struct timeval *end_time)
2155{
2156 ULONGEST time_count;
2157 struct ui_out *uiout = current_uiout;
2158
2159 /* Compute the elapsed time in milliseconds, as a tradeoff between
2160 accuracy and overflow. */
2161 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2162 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2163
2164 ui_out_text (uiout, "Transfer rate: ");
2165 if (time_count > 0)
2166 {
2167 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2168
2169 if (ui_out_is_mi_like_p (uiout))
2170 {
2171 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2172 ui_out_text (uiout, " bits/sec");
2173 }
2174 else if (rate < 1024)
2175 {
2176 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2177 ui_out_text (uiout, " bytes/sec");
2178 }
2179 else
2180 {
2181 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2182 ui_out_text (uiout, " KB/sec");
2183 }
2184 }
2185 else
2186 {
2187 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2188 ui_out_text (uiout, " bits in <1 sec");
2189 }
2190 if (write_count > 0)
2191 {
2192 ui_out_text (uiout, ", ");
2193 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2194 ui_out_text (uiout, " bytes/write");
2195 }
2196 ui_out_text (uiout, ".\n");
2197}
2198
2199/* This function allows the addition of incrementally linked object files.
2200 It does not modify any state in the target, only in the debugger. */
2201/* Note: ezannoni 2000-04-13 This function/command used to have a
2202 special case syntax for the rombug target (Rombug is the boot
2203 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2204 rombug case, the user doesn't need to supply a text address,
2205 instead a call to target_link() (in target.c) would supply the
2206 value to use. We are now discontinuing this type of ad hoc syntax. */
2207
2208static void
2209add_symbol_file_command (char *args, int from_tty)
2210{
2211 struct gdbarch *gdbarch = get_current_arch ();
2212 char *filename = NULL;
2213 int flags = OBJF_USERLOADED;
2214 char *arg;
2215 int section_index = 0;
2216 int argcnt = 0;
2217 int sec_num = 0;
2218 int i;
2219 int expecting_sec_name = 0;
2220 int expecting_sec_addr = 0;
2221 char **argv;
2222
2223 struct sect_opt
2224 {
2225 char *name;
2226 char *value;
2227 };
2228
2229 struct section_addr_info *section_addrs;
2230 struct sect_opt *sect_opts = NULL;
2231 size_t num_sect_opts = 0;
2232 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2233
2234 num_sect_opts = 16;
2235 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2236 * sizeof (struct sect_opt));
2237
2238 dont_repeat ();
2239
2240 if (args == NULL)
2241 error (_("add-symbol-file takes a file name and an address"));
2242
2243 argv = gdb_buildargv (args);
2244 make_cleanup_freeargv (argv);
2245
2246 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2247 {
2248 /* Process the argument. */
2249 if (argcnt == 0)
2250 {
2251 /* The first argument is the file name. */
2252 filename = tilde_expand (arg);
2253 make_cleanup (xfree, filename);
2254 }
2255 else
2256 if (argcnt == 1)
2257 {
2258 /* The second argument is always the text address at which
2259 to load the program. */
2260 sect_opts[section_index].name = ".text";
2261 sect_opts[section_index].value = arg;
2262 if (++section_index >= num_sect_opts)
2263 {
2264 num_sect_opts *= 2;
2265 sect_opts = ((struct sect_opt *)
2266 xrealloc (sect_opts,
2267 num_sect_opts
2268 * sizeof (struct sect_opt)));
2269 }
2270 }
2271 else
2272 {
2273 /* It's an option (starting with '-') or it's an argument
2274 to an option. */
2275
2276 if (*arg == '-')
2277 {
2278 if (strcmp (arg, "-readnow") == 0)
2279 flags |= OBJF_READNOW;
2280 else if (strcmp (arg, "-s") == 0)
2281 {
2282 expecting_sec_name = 1;
2283 expecting_sec_addr = 1;
2284 }
2285 }
2286 else
2287 {
2288 if (expecting_sec_name)
2289 {
2290 sect_opts[section_index].name = arg;
2291 expecting_sec_name = 0;
2292 }
2293 else
2294 if (expecting_sec_addr)
2295 {
2296 sect_opts[section_index].value = arg;
2297 expecting_sec_addr = 0;
2298 if (++section_index >= num_sect_opts)
2299 {
2300 num_sect_opts *= 2;
2301 sect_opts = ((struct sect_opt *)
2302 xrealloc (sect_opts,
2303 num_sect_opts
2304 * sizeof (struct sect_opt)));
2305 }
2306 }
2307 else
2308 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2309 " [-readnow] [-s <secname> <addr>]*"));
2310 }
2311 }
2312 }
2313
2314 /* This command takes at least two arguments. The first one is a
2315 filename, and the second is the address where this file has been
2316 loaded. Abort now if this address hasn't been provided by the
2317 user. */
2318 if (section_index < 1)
2319 error (_("The address where %s has been loaded is missing"), filename);
2320
2321 /* Print the prompt for the query below. And save the arguments into
2322 a sect_addr_info structure to be passed around to other
2323 functions. We have to split this up into separate print
2324 statements because hex_string returns a local static
2325 string. */
2326
2327 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2328 section_addrs = alloc_section_addr_info (section_index);
2329 make_cleanup (xfree, section_addrs);
2330 for (i = 0; i < section_index; i++)
2331 {
2332 CORE_ADDR addr;
2333 char *val = sect_opts[i].value;
2334 char *sec = sect_opts[i].name;
2335
2336 addr = parse_and_eval_address (val);
2337
2338 /* Here we store the section offsets in the order they were
2339 entered on the command line. */
2340 section_addrs->other[sec_num].name = sec;
2341 section_addrs->other[sec_num].addr = addr;
2342 printf_unfiltered ("\t%s_addr = %s\n", sec,
2343 paddress (gdbarch, addr));
2344 sec_num++;
2345
2346 /* The object's sections are initialized when a
2347 call is made to build_objfile_section_table (objfile).
2348 This happens in reread_symbols.
2349 At this point, we don't know what file type this is,
2350 so we can't determine what section names are valid. */
2351 }
2352 section_addrs->num_sections = sec_num;
2353
2354 if (from_tty && (!query ("%s", "")))
2355 error (_("Not confirmed."));
2356
2357 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2358 section_addrs, flags);
2359
2360 /* Getting new symbols may change our opinion about what is
2361 frameless. */
2362 reinit_frame_cache ();
2363 do_cleanups (my_cleanups);
2364}
2365\f
2366
2367typedef struct objfile *objfilep;
2368
2369DEF_VEC_P (objfilep);
2370
2371/* Re-read symbols if a symbol-file has changed. */
2372void
2373reread_symbols (void)
2374{
2375 struct objfile *objfile;
2376 long new_modtime;
2377 struct stat new_statbuf;
2378 int res;
2379 VEC (objfilep) *new_objfiles = NULL;
2380 struct cleanup *all_cleanups;
2381
2382 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2383
2384 /* With the addition of shared libraries, this should be modified,
2385 the load time should be saved in the partial symbol tables, since
2386 different tables may come from different source files. FIXME.
2387 This routine should then walk down each partial symbol table
2388 and see if the symbol table that it originates from has been changed. */
2389
2390 for (objfile = object_files; objfile; objfile = objfile->next)
2391 {
2392 /* solib-sunos.c creates one objfile with obfd. */
2393 if (objfile->obfd == NULL)
2394 continue;
2395
2396 /* Separate debug objfiles are handled in the main objfile. */
2397 if (objfile->separate_debug_objfile_backlink)
2398 continue;
2399
2400 /* If this object is from an archive (what you usually create with
2401 `ar', often called a `static library' on most systems, though
2402 a `shared library' on AIX is also an archive), then you should
2403 stat on the archive name, not member name. */
2404 if (objfile->obfd->my_archive)
2405 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2406 else
2407 res = stat (objfile->name, &new_statbuf);
2408 if (res != 0)
2409 {
2410 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2411 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2412 objfile->name);
2413 continue;
2414 }
2415 new_modtime = new_statbuf.st_mtime;
2416 if (new_modtime != objfile->mtime)
2417 {
2418 struct cleanup *old_cleanups;
2419 struct section_offsets *offsets;
2420 int num_offsets;
2421 char *obfd_filename;
2422
2423 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2424 objfile->name);
2425
2426 /* There are various functions like symbol_file_add,
2427 symfile_bfd_open, syms_from_objfile, etc., which might
2428 appear to do what we want. But they have various other
2429 effects which we *don't* want. So we just do stuff
2430 ourselves. We don't worry about mapped files (for one thing,
2431 any mapped file will be out of date). */
2432
2433 /* If we get an error, blow away this objfile (not sure if
2434 that is the correct response for things like shared
2435 libraries). */
2436 old_cleanups = make_cleanup_free_objfile (objfile);
2437 /* We need to do this whenever any symbols go away. */
2438 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2439
2440 if (exec_bfd != NULL
2441 && filename_cmp (bfd_get_filename (objfile->obfd),
2442 bfd_get_filename (exec_bfd)) == 0)
2443 {
2444 /* Reload EXEC_BFD without asking anything. */
2445
2446 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2447 }
2448
2449 /* Keep the calls order approx. the same as in free_objfile. */
2450
2451 /* Free the separate debug objfiles. It will be
2452 automatically recreated by sym_read. */
2453 free_objfile_separate_debug (objfile);
2454
2455 /* Remove any references to this objfile in the global
2456 value lists. */
2457 preserve_values (objfile);
2458
2459 /* Nuke all the state that we will re-read. Much of the following
2460 code which sets things to NULL really is necessary to tell
2461 other parts of GDB that there is nothing currently there.
2462
2463 Try to keep the freeing order compatible with free_objfile. */
2464
2465 if (objfile->sf != NULL)
2466 {
2467 (*objfile->sf->sym_finish) (objfile);
2468 }
2469
2470 clear_objfile_data (objfile);
2471
2472 /* Clean up any state BFD has sitting around. */
2473 {
2474 struct bfd *obfd = objfile->obfd;
2475
2476 obfd_filename = bfd_get_filename (objfile->obfd);
2477 /* Open the new BFD before freeing the old one, so that
2478 the filename remains live. */
2479 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2480 if (objfile->obfd == NULL)
2481 {
2482 /* We have to make a cleanup and error here, rather
2483 than erroring later, because once we unref OBFD,
2484 OBFD_FILENAME will be freed. */
2485 make_cleanup_bfd_unref (obfd);
2486 error (_("Can't open %s to read symbols."), obfd_filename);
2487 }
2488 gdb_bfd_unref (obfd);
2489 }
2490
2491 objfile->name = bfd_get_filename (objfile->obfd);
2492 /* bfd_openr sets cacheable to true, which is what we want. */
2493 if (!bfd_check_format (objfile->obfd, bfd_object))
2494 error (_("Can't read symbols from %s: %s."), objfile->name,
2495 bfd_errmsg (bfd_get_error ()));
2496
2497 /* Save the offsets, we will nuke them with the rest of the
2498 objfile_obstack. */
2499 num_offsets = objfile->num_sections;
2500 offsets = ((struct section_offsets *)
2501 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2502 memcpy (offsets, objfile->section_offsets,
2503 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2504
2505 /* FIXME: Do we have to free a whole linked list, or is this
2506 enough? */
2507 if (objfile->global_psymbols.list)
2508 xfree (objfile->global_psymbols.list);
2509 memset (&objfile->global_psymbols, 0,
2510 sizeof (objfile->global_psymbols));
2511 if (objfile->static_psymbols.list)
2512 xfree (objfile->static_psymbols.list);
2513 memset (&objfile->static_psymbols, 0,
2514 sizeof (objfile->static_psymbols));
2515
2516 /* Free the obstacks for non-reusable objfiles. */
2517 psymbol_bcache_free (objfile->psymbol_cache);
2518 objfile->psymbol_cache = psymbol_bcache_init ();
2519 if (objfile->demangled_names_hash != NULL)
2520 {
2521 htab_delete (objfile->demangled_names_hash);
2522 objfile->demangled_names_hash = NULL;
2523 }
2524 obstack_free (&objfile->objfile_obstack, 0);
2525 objfile->sections = NULL;
2526 objfile->symtabs = NULL;
2527 objfile->psymtabs = NULL;
2528 objfile->psymtabs_addrmap = NULL;
2529 objfile->free_psymtabs = NULL;
2530 objfile->template_symbols = NULL;
2531 objfile->msymbols = NULL;
2532 objfile->minimal_symbol_count = 0;
2533 memset (&objfile->msymbol_hash, 0,
2534 sizeof (objfile->msymbol_hash));
2535 memset (&objfile->msymbol_demangled_hash, 0,
2536 sizeof (objfile->msymbol_demangled_hash));
2537
2538 set_objfile_per_bfd (objfile);
2539
2540 /* obstack_init also initializes the obstack so it is
2541 empty. We could use obstack_specify_allocation but
2542 gdb_obstack.h specifies the alloc/dealloc functions. */
2543 obstack_init (&objfile->objfile_obstack);
2544 build_objfile_section_table (objfile);
2545 terminate_minimal_symbol_table (objfile);
2546
2547 /* We use the same section offsets as from last time. I'm not
2548 sure whether that is always correct for shared libraries. */
2549 objfile->section_offsets = (struct section_offsets *)
2550 obstack_alloc (&objfile->objfile_obstack,
2551 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2552 memcpy (objfile->section_offsets, offsets,
2553 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2554 objfile->num_sections = num_offsets;
2555
2556 /* What the hell is sym_new_init for, anyway? The concept of
2557 distinguishing between the main file and additional files
2558 in this way seems rather dubious. */
2559 if (objfile == symfile_objfile)
2560 {
2561 (*objfile->sf->sym_new_init) (objfile);
2562 }
2563
2564 (*objfile->sf->sym_init) (objfile);
2565 clear_complaints (&symfile_complaints, 1, 1);
2566
2567 objfile->flags &= ~OBJF_PSYMTABS_READ;
2568 read_symbols (objfile, 0);
2569
2570 if (!objfile_has_symbols (objfile))
2571 {
2572 wrap_here ("");
2573 printf_unfiltered (_("(no debugging symbols found)\n"));
2574 wrap_here ("");
2575 }
2576
2577 /* We're done reading the symbol file; finish off complaints. */
2578 clear_complaints (&symfile_complaints, 0, 1);
2579
2580 /* Getting new symbols may change our opinion about what is
2581 frameless. */
2582
2583 reinit_frame_cache ();
2584
2585 /* Discard cleanups as symbol reading was successful. */
2586 discard_cleanups (old_cleanups);
2587
2588 /* If the mtime has changed between the time we set new_modtime
2589 and now, we *want* this to be out of date, so don't call stat
2590 again now. */
2591 objfile->mtime = new_modtime;
2592 init_entry_point_info (objfile);
2593
2594 VEC_safe_push (objfilep, new_objfiles, objfile);
2595 }
2596 }
2597
2598 if (new_objfiles)
2599 {
2600 int ix;
2601
2602 /* Notify objfiles that we've modified objfile sections. */
2603 objfiles_changed ();
2604
2605 clear_symtab_users (0);
2606
2607 /* clear_objfile_data for each objfile was called before freeing it and
2608 observer_notify_new_objfile (NULL) has been called by
2609 clear_symtab_users above. Notify the new files now. */
2610 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2611 observer_notify_new_objfile (objfile);
2612
2613 /* At least one objfile has changed, so we can consider that
2614 the executable we're debugging has changed too. */
2615 observer_notify_executable_changed ();
2616 }
2617
2618 do_cleanups (all_cleanups);
2619}
2620\f
2621
2622
2623typedef struct
2624{
2625 char *ext;
2626 enum language lang;
2627}
2628filename_language;
2629
2630static filename_language *filename_language_table;
2631static int fl_table_size, fl_table_next;
2632
2633static void
2634add_filename_language (char *ext, enum language lang)
2635{
2636 if (fl_table_next >= fl_table_size)
2637 {
2638 fl_table_size += 10;
2639 filename_language_table =
2640 xrealloc (filename_language_table,
2641 fl_table_size * sizeof (*filename_language_table));
2642 }
2643
2644 filename_language_table[fl_table_next].ext = xstrdup (ext);
2645 filename_language_table[fl_table_next].lang = lang;
2646 fl_table_next++;
2647}
2648
2649static char *ext_args;
2650static void
2651show_ext_args (struct ui_file *file, int from_tty,
2652 struct cmd_list_element *c, const char *value)
2653{
2654 fprintf_filtered (file,
2655 _("Mapping between filename extension "
2656 "and source language is \"%s\".\n"),
2657 value);
2658}
2659
2660static void
2661set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2662{
2663 int i;
2664 char *cp = ext_args;
2665 enum language lang;
2666
2667 /* First arg is filename extension, starting with '.' */
2668 if (*cp != '.')
2669 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2670
2671 /* Find end of first arg. */
2672 while (*cp && !isspace (*cp))
2673 cp++;
2674
2675 if (*cp == '\0')
2676 error (_("'%s': two arguments required -- "
2677 "filename extension and language"),
2678 ext_args);
2679
2680 /* Null-terminate first arg. */
2681 *cp++ = '\0';
2682
2683 /* Find beginning of second arg, which should be a source language. */
2684 cp = skip_spaces (cp);
2685
2686 if (*cp == '\0')
2687 error (_("'%s': two arguments required -- "
2688 "filename extension and language"),
2689 ext_args);
2690
2691 /* Lookup the language from among those we know. */
2692 lang = language_enum (cp);
2693
2694 /* Now lookup the filename extension: do we already know it? */
2695 for (i = 0; i < fl_table_next; i++)
2696 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2697 break;
2698
2699 if (i >= fl_table_next)
2700 {
2701 /* New file extension. */
2702 add_filename_language (ext_args, lang);
2703 }
2704 else
2705 {
2706 /* Redefining a previously known filename extension. */
2707
2708 /* if (from_tty) */
2709 /* query ("Really make files of type %s '%s'?", */
2710 /* ext_args, language_str (lang)); */
2711
2712 xfree (filename_language_table[i].ext);
2713 filename_language_table[i].ext = xstrdup (ext_args);
2714 filename_language_table[i].lang = lang;
2715 }
2716}
2717
2718static void
2719info_ext_lang_command (char *args, int from_tty)
2720{
2721 int i;
2722
2723 printf_filtered (_("Filename extensions and the languages they represent:"));
2724 printf_filtered ("\n\n");
2725 for (i = 0; i < fl_table_next; i++)
2726 printf_filtered ("\t%s\t- %s\n",
2727 filename_language_table[i].ext,
2728 language_str (filename_language_table[i].lang));
2729}
2730
2731static void
2732init_filename_language_table (void)
2733{
2734 if (fl_table_size == 0) /* Protect against repetition. */
2735 {
2736 fl_table_size = 20;
2737 fl_table_next = 0;
2738 filename_language_table =
2739 xmalloc (fl_table_size * sizeof (*filename_language_table));
2740 add_filename_language (".c", language_c);
2741 add_filename_language (".d", language_d);
2742 add_filename_language (".C", language_cplus);
2743 add_filename_language (".cc", language_cplus);
2744 add_filename_language (".cp", language_cplus);
2745 add_filename_language (".cpp", language_cplus);
2746 add_filename_language (".cxx", language_cplus);
2747 add_filename_language (".c++", language_cplus);
2748 add_filename_language (".java", language_java);
2749 add_filename_language (".class", language_java);
2750 add_filename_language (".m", language_objc);
2751 add_filename_language (".f", language_fortran);
2752 add_filename_language (".F", language_fortran);
2753 add_filename_language (".for", language_fortran);
2754 add_filename_language (".FOR", language_fortran);
2755 add_filename_language (".ftn", language_fortran);
2756 add_filename_language (".FTN", language_fortran);
2757 add_filename_language (".fpp", language_fortran);
2758 add_filename_language (".FPP", language_fortran);
2759 add_filename_language (".f90", language_fortran);
2760 add_filename_language (".F90", language_fortran);
2761 add_filename_language (".f95", language_fortran);
2762 add_filename_language (".F95", language_fortran);
2763 add_filename_language (".f03", language_fortran);
2764 add_filename_language (".F03", language_fortran);
2765 add_filename_language (".f08", language_fortran);
2766 add_filename_language (".F08", language_fortran);
2767 add_filename_language (".s", language_asm);
2768 add_filename_language (".sx", language_asm);
2769 add_filename_language (".S", language_asm);
2770 add_filename_language (".pas", language_pascal);
2771 add_filename_language (".p", language_pascal);
2772 add_filename_language (".pp", language_pascal);
2773 add_filename_language (".adb", language_ada);
2774 add_filename_language (".ads", language_ada);
2775 add_filename_language (".a", language_ada);
2776 add_filename_language (".ada", language_ada);
2777 add_filename_language (".dg", language_ada);
2778 }
2779}
2780
2781enum language
2782deduce_language_from_filename (const char *filename)
2783{
2784 int i;
2785 char *cp;
2786
2787 if (filename != NULL)
2788 if ((cp = strrchr (filename, '.')) != NULL)
2789 for (i = 0; i < fl_table_next; i++)
2790 if (strcmp (cp, filename_language_table[i].ext) == 0)
2791 return filename_language_table[i].lang;
2792
2793 return language_unknown;
2794}
2795\f
2796/* allocate_symtab:
2797
2798 Allocate and partly initialize a new symbol table. Return a pointer
2799 to it. error() if no space.
2800
2801 Caller must set these fields:
2802 LINETABLE(symtab)
2803 symtab->blockvector
2804 symtab->dirname
2805 symtab->free_code
2806 symtab->free_ptr
2807 */
2808
2809struct symtab *
2810allocate_symtab (const char *filename, struct objfile *objfile)
2811{
2812 struct symtab *symtab;
2813
2814 symtab = (struct symtab *)
2815 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2816 memset (symtab, 0, sizeof (*symtab));
2817 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2818 objfile->per_bfd->filename_cache);
2819 symtab->fullname = NULL;
2820 symtab->language = deduce_language_from_filename (filename);
2821 symtab->debugformat = "unknown";
2822
2823 /* Hook it to the objfile it comes from. */
2824
2825 symtab->objfile = objfile;
2826 symtab->next = objfile->symtabs;
2827 objfile->symtabs = symtab;
2828
2829 if (symtab_create_debug)
2830 {
2831 /* Be a bit clever with debugging messages, and don't print objfile
2832 every time, only when it changes. */
2833 static char *last_objfile_name = NULL;
2834
2835 if (last_objfile_name == NULL
2836 || strcmp (last_objfile_name, objfile->name) != 0)
2837 {
2838 xfree (last_objfile_name);
2839 last_objfile_name = xstrdup (objfile->name);
2840 fprintf_unfiltered (gdb_stdlog,
2841 "Creating one or more symtabs for objfile %s ...\n",
2842 last_objfile_name);
2843 }
2844 fprintf_unfiltered (gdb_stdlog,
2845 "Created symtab %s for module %s.\n",
2846 host_address_to_string (symtab), filename);
2847 }
2848
2849 return (symtab);
2850}
2851\f
2852
2853/* Reset all data structures in gdb which may contain references to symbol
2854 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2855
2856void
2857clear_symtab_users (int add_flags)
2858{
2859 /* Someday, we should do better than this, by only blowing away
2860 the things that really need to be blown. */
2861
2862 /* Clear the "current" symtab first, because it is no longer valid.
2863 breakpoint_re_set may try to access the current symtab. */
2864 clear_current_source_symtab_and_line ();
2865
2866 clear_displays ();
2867 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2868 breakpoint_re_set ();
2869 clear_last_displayed_sal ();
2870 clear_pc_function_cache ();
2871 observer_notify_new_objfile (NULL);
2872
2873 /* Clear globals which might have pointed into a removed objfile.
2874 FIXME: It's not clear which of these are supposed to persist
2875 between expressions and which ought to be reset each time. */
2876 expression_context_block = NULL;
2877 innermost_block = NULL;
2878
2879 /* Varobj may refer to old symbols, perform a cleanup. */
2880 varobj_invalidate ();
2881
2882}
2883
2884static void
2885clear_symtab_users_cleanup (void *ignore)
2886{
2887 clear_symtab_users (0);
2888}
2889\f
2890/* OVERLAYS:
2891 The following code implements an abstraction for debugging overlay sections.
2892
2893 The target model is as follows:
2894 1) The gnu linker will permit multiple sections to be mapped into the
2895 same VMA, each with its own unique LMA (or load address).
2896 2) It is assumed that some runtime mechanism exists for mapping the
2897 sections, one by one, from the load address into the VMA address.
2898 3) This code provides a mechanism for gdb to keep track of which
2899 sections should be considered to be mapped from the VMA to the LMA.
2900 This information is used for symbol lookup, and memory read/write.
2901 For instance, if a section has been mapped then its contents
2902 should be read from the VMA, otherwise from the LMA.
2903
2904 Two levels of debugger support for overlays are available. One is
2905 "manual", in which the debugger relies on the user to tell it which
2906 overlays are currently mapped. This level of support is
2907 implemented entirely in the core debugger, and the information about
2908 whether a section is mapped is kept in the objfile->obj_section table.
2909
2910 The second level of support is "automatic", and is only available if
2911 the target-specific code provides functionality to read the target's
2912 overlay mapping table, and translate its contents for the debugger
2913 (by updating the mapped state information in the obj_section tables).
2914
2915 The interface is as follows:
2916 User commands:
2917 overlay map <name> -- tell gdb to consider this section mapped
2918 overlay unmap <name> -- tell gdb to consider this section unmapped
2919 overlay list -- list the sections that GDB thinks are mapped
2920 overlay read-target -- get the target's state of what's mapped
2921 overlay off/manual/auto -- set overlay debugging state
2922 Functional interface:
2923 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2924 section, return that section.
2925 find_pc_overlay(pc): find any overlay section that contains
2926 the pc, either in its VMA or its LMA
2927 section_is_mapped(sect): true if overlay is marked as mapped
2928 section_is_overlay(sect): true if section's VMA != LMA
2929 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2930 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2931 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2932 overlay_mapped_address(...): map an address from section's LMA to VMA
2933 overlay_unmapped_address(...): map an address from section's VMA to LMA
2934 symbol_overlayed_address(...): Return a "current" address for symbol:
2935 either in VMA or LMA depending on whether
2936 the symbol's section is currently mapped. */
2937
2938/* Overlay debugging state: */
2939
2940enum overlay_debugging_state overlay_debugging = ovly_off;
2941int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2942
2943/* Function: section_is_overlay (SECTION)
2944 Returns true if SECTION has VMA not equal to LMA, ie.
2945 SECTION is loaded at an address different from where it will "run". */
2946
2947int
2948section_is_overlay (struct obj_section *section)
2949{
2950 if (overlay_debugging && section)
2951 {
2952 bfd *abfd = section->objfile->obfd;
2953 asection *bfd_section = section->the_bfd_section;
2954
2955 if (bfd_section_lma (abfd, bfd_section) != 0
2956 && bfd_section_lma (abfd, bfd_section)
2957 != bfd_section_vma (abfd, bfd_section))
2958 return 1;
2959 }
2960
2961 return 0;
2962}
2963
2964/* Function: overlay_invalidate_all (void)
2965 Invalidate the mapped state of all overlay sections (mark it as stale). */
2966
2967static void
2968overlay_invalidate_all (void)
2969{
2970 struct objfile *objfile;
2971 struct obj_section *sect;
2972
2973 ALL_OBJSECTIONS (objfile, sect)
2974 if (section_is_overlay (sect))
2975 sect->ovly_mapped = -1;
2976}
2977
2978/* Function: section_is_mapped (SECTION)
2979 Returns true if section is an overlay, and is currently mapped.
2980
2981 Access to the ovly_mapped flag is restricted to this function, so
2982 that we can do automatic update. If the global flag
2983 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2984 overlay_invalidate_all. If the mapped state of the particular
2985 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2986
2987int
2988section_is_mapped (struct obj_section *osect)
2989{
2990 struct gdbarch *gdbarch;
2991
2992 if (osect == 0 || !section_is_overlay (osect))
2993 return 0;
2994
2995 switch (overlay_debugging)
2996 {
2997 default:
2998 case ovly_off:
2999 return 0; /* overlay debugging off */
3000 case ovly_auto: /* overlay debugging automatic */
3001 /* Unles there is a gdbarch_overlay_update function,
3002 there's really nothing useful to do here (can't really go auto). */
3003 gdbarch = get_objfile_arch (osect->objfile);
3004 if (gdbarch_overlay_update_p (gdbarch))
3005 {
3006 if (overlay_cache_invalid)
3007 {
3008 overlay_invalidate_all ();
3009 overlay_cache_invalid = 0;
3010 }
3011 if (osect->ovly_mapped == -1)
3012 gdbarch_overlay_update (gdbarch, osect);
3013 }
3014 /* fall thru to manual case */
3015 case ovly_on: /* overlay debugging manual */
3016 return osect->ovly_mapped == 1;
3017 }
3018}
3019
3020/* Function: pc_in_unmapped_range
3021 If PC falls into the lma range of SECTION, return true, else false. */
3022
3023CORE_ADDR
3024pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3025{
3026 if (section_is_overlay (section))
3027 {
3028 bfd *abfd = section->objfile->obfd;
3029 asection *bfd_section = section->the_bfd_section;
3030
3031 /* We assume the LMA is relocated by the same offset as the VMA. */
3032 bfd_vma size = bfd_get_section_size (bfd_section);
3033 CORE_ADDR offset = obj_section_offset (section);
3034
3035 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3036 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3037 return 1;
3038 }
3039
3040 return 0;
3041}
3042
3043/* Function: pc_in_mapped_range
3044 If PC falls into the vma range of SECTION, return true, else false. */
3045
3046CORE_ADDR
3047pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3048{
3049 if (section_is_overlay (section))
3050 {
3051 if (obj_section_addr (section) <= pc
3052 && pc < obj_section_endaddr (section))
3053 return 1;
3054 }
3055
3056 return 0;
3057}
3058
3059
3060/* Return true if the mapped ranges of sections A and B overlap, false
3061 otherwise. */
3062static int
3063sections_overlap (struct obj_section *a, struct obj_section *b)
3064{
3065 CORE_ADDR a_start = obj_section_addr (a);
3066 CORE_ADDR a_end = obj_section_endaddr (a);
3067 CORE_ADDR b_start = obj_section_addr (b);
3068 CORE_ADDR b_end = obj_section_endaddr (b);
3069
3070 return (a_start < b_end && b_start < a_end);
3071}
3072
3073/* Function: overlay_unmapped_address (PC, SECTION)
3074 Returns the address corresponding to PC in the unmapped (load) range.
3075 May be the same as PC. */
3076
3077CORE_ADDR
3078overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3079{
3080 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3081 {
3082 bfd *abfd = section->objfile->obfd;
3083 asection *bfd_section = section->the_bfd_section;
3084
3085 return pc + bfd_section_lma (abfd, bfd_section)
3086 - bfd_section_vma (abfd, bfd_section);
3087 }
3088
3089 return pc;
3090}
3091
3092/* Function: overlay_mapped_address (PC, SECTION)
3093 Returns the address corresponding to PC in the mapped (runtime) range.
3094 May be the same as PC. */
3095
3096CORE_ADDR
3097overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3098{
3099 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3100 {
3101 bfd *abfd = section->objfile->obfd;
3102 asection *bfd_section = section->the_bfd_section;
3103
3104 return pc + bfd_section_vma (abfd, bfd_section)
3105 - bfd_section_lma (abfd, bfd_section);
3106 }
3107
3108 return pc;
3109}
3110
3111
3112/* Function: symbol_overlayed_address
3113 Return one of two addresses (relative to the VMA or to the LMA),
3114 depending on whether the section is mapped or not. */
3115
3116CORE_ADDR
3117symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3118{
3119 if (overlay_debugging)
3120 {
3121 /* If the symbol has no section, just return its regular address. */
3122 if (section == 0)
3123 return address;
3124 /* If the symbol's section is not an overlay, just return its
3125 address. */
3126 if (!section_is_overlay (section))
3127 return address;
3128 /* If the symbol's section is mapped, just return its address. */
3129 if (section_is_mapped (section))
3130 return address;
3131 /*
3132 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3133 * then return its LOADED address rather than its vma address!!
3134 */
3135 return overlay_unmapped_address (address, section);
3136 }
3137 return address;
3138}
3139
3140/* Function: find_pc_overlay (PC)
3141 Return the best-match overlay section for PC:
3142 If PC matches a mapped overlay section's VMA, return that section.
3143 Else if PC matches an unmapped section's VMA, return that section.
3144 Else if PC matches an unmapped section's LMA, return that section. */
3145
3146struct obj_section *
3147find_pc_overlay (CORE_ADDR pc)
3148{
3149 struct objfile *objfile;
3150 struct obj_section *osect, *best_match = NULL;
3151
3152 if (overlay_debugging)
3153 ALL_OBJSECTIONS (objfile, osect)
3154 if (section_is_overlay (osect))
3155 {
3156 if (pc_in_mapped_range (pc, osect))
3157 {
3158 if (section_is_mapped (osect))
3159 return osect;
3160 else
3161 best_match = osect;
3162 }
3163 else if (pc_in_unmapped_range (pc, osect))
3164 best_match = osect;
3165 }
3166 return best_match;
3167}
3168
3169/* Function: find_pc_mapped_section (PC)
3170 If PC falls into the VMA address range of an overlay section that is
3171 currently marked as MAPPED, return that section. Else return NULL. */
3172
3173struct obj_section *
3174find_pc_mapped_section (CORE_ADDR pc)
3175{
3176 struct objfile *objfile;
3177 struct obj_section *osect;
3178
3179 if (overlay_debugging)
3180 ALL_OBJSECTIONS (objfile, osect)
3181 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3182 return osect;
3183
3184 return NULL;
3185}
3186
3187/* Function: list_overlays_command
3188 Print a list of mapped sections and their PC ranges. */
3189
3190static void
3191list_overlays_command (char *args, int from_tty)
3192{
3193 int nmapped = 0;
3194 struct objfile *objfile;
3195 struct obj_section *osect;
3196
3197 if (overlay_debugging)
3198 ALL_OBJSECTIONS (objfile, osect)
3199 if (section_is_mapped (osect))
3200 {
3201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3202 const char *name;
3203 bfd_vma lma, vma;
3204 int size;
3205
3206 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3207 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3208 size = bfd_get_section_size (osect->the_bfd_section);
3209 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3210
3211 printf_filtered ("Section %s, loaded at ", name);
3212 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3213 puts_filtered (" - ");
3214 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3215 printf_filtered (", mapped at ");
3216 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3217 puts_filtered (" - ");
3218 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3219 puts_filtered ("\n");
3220
3221 nmapped++;
3222 }
3223 if (nmapped == 0)
3224 printf_filtered (_("No sections are mapped.\n"));
3225}
3226
3227/* Function: map_overlay_command
3228 Mark the named section as mapped (ie. residing at its VMA address). */
3229
3230static void
3231map_overlay_command (char *args, int from_tty)
3232{
3233 struct objfile *objfile, *objfile2;
3234 struct obj_section *sec, *sec2;
3235
3236 if (!overlay_debugging)
3237 error (_("Overlay debugging not enabled. Use "
3238 "either the 'overlay auto' or\n"
3239 "the 'overlay manual' command."));
3240
3241 if (args == 0 || *args == 0)
3242 error (_("Argument required: name of an overlay section"));
3243
3244 /* First, find a section matching the user supplied argument. */
3245 ALL_OBJSECTIONS (objfile, sec)
3246 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3247 {
3248 /* Now, check to see if the section is an overlay. */
3249 if (!section_is_overlay (sec))
3250 continue; /* not an overlay section */
3251
3252 /* Mark the overlay as "mapped". */
3253 sec->ovly_mapped = 1;
3254
3255 /* Next, make a pass and unmap any sections that are
3256 overlapped by this new section: */
3257 ALL_OBJSECTIONS (objfile2, sec2)
3258 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3259 {
3260 if (info_verbose)
3261 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3262 bfd_section_name (objfile->obfd,
3263 sec2->the_bfd_section));
3264 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3265 }
3266 return;
3267 }
3268 error (_("No overlay section called %s"), args);
3269}
3270
3271/* Function: unmap_overlay_command
3272 Mark the overlay section as unmapped
3273 (ie. resident in its LMA address range, rather than the VMA range). */
3274
3275static void
3276unmap_overlay_command (char *args, int from_tty)
3277{
3278 struct objfile *objfile;
3279 struct obj_section *sec;
3280
3281 if (!overlay_debugging)
3282 error (_("Overlay debugging not enabled. "
3283 "Use either the 'overlay auto' or\n"
3284 "the 'overlay manual' command."));
3285
3286 if (args == 0 || *args == 0)
3287 error (_("Argument required: name of an overlay section"));
3288
3289 /* First, find a section matching the user supplied argument. */
3290 ALL_OBJSECTIONS (objfile, sec)
3291 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3292 {
3293 if (!sec->ovly_mapped)
3294 error (_("Section %s is not mapped"), args);
3295 sec->ovly_mapped = 0;
3296 return;
3297 }
3298 error (_("No overlay section called %s"), args);
3299}
3300
3301/* Function: overlay_auto_command
3302 A utility command to turn on overlay debugging.
3303 Possibly this should be done via a set/show command. */
3304
3305static void
3306overlay_auto_command (char *args, int from_tty)
3307{
3308 overlay_debugging = ovly_auto;
3309 enable_overlay_breakpoints ();
3310 if (info_verbose)
3311 printf_unfiltered (_("Automatic overlay debugging enabled."));
3312}
3313
3314/* Function: overlay_manual_command
3315 A utility command to turn on overlay debugging.
3316 Possibly this should be done via a set/show command. */
3317
3318static void
3319overlay_manual_command (char *args, int from_tty)
3320{
3321 overlay_debugging = ovly_on;
3322 disable_overlay_breakpoints ();
3323 if (info_verbose)
3324 printf_unfiltered (_("Overlay debugging enabled."));
3325}
3326
3327/* Function: overlay_off_command
3328 A utility command to turn on overlay debugging.
3329 Possibly this should be done via a set/show command. */
3330
3331static void
3332overlay_off_command (char *args, int from_tty)
3333{
3334 overlay_debugging = ovly_off;
3335 disable_overlay_breakpoints ();
3336 if (info_verbose)
3337 printf_unfiltered (_("Overlay debugging disabled."));
3338}
3339
3340static void
3341overlay_load_command (char *args, int from_tty)
3342{
3343 struct gdbarch *gdbarch = get_current_arch ();
3344
3345 if (gdbarch_overlay_update_p (gdbarch))
3346 gdbarch_overlay_update (gdbarch, NULL);
3347 else
3348 error (_("This target does not know how to read its overlay state."));
3349}
3350
3351/* Function: overlay_command
3352 A place-holder for a mis-typed command. */
3353
3354/* Command list chain containing all defined "overlay" subcommands. */
3355static struct cmd_list_element *overlaylist;
3356
3357static void
3358overlay_command (char *args, int from_tty)
3359{
3360 printf_unfiltered
3361 ("\"overlay\" must be followed by the name of an overlay command.\n");
3362 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3363}
3364
3365
3366/* Target Overlays for the "Simplest" overlay manager:
3367
3368 This is GDB's default target overlay layer. It works with the
3369 minimal overlay manager supplied as an example by Cygnus. The
3370 entry point is via a function pointer "gdbarch_overlay_update",
3371 so targets that use a different runtime overlay manager can
3372 substitute their own overlay_update function and take over the
3373 function pointer.
3374
3375 The overlay_update function pokes around in the target's data structures
3376 to see what overlays are mapped, and updates GDB's overlay mapping with
3377 this information.
3378
3379 In this simple implementation, the target data structures are as follows:
3380 unsigned _novlys; /# number of overlay sections #/
3381 unsigned _ovly_table[_novlys][4] = {
3382 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3383 {..., ..., ..., ...},
3384 }
3385 unsigned _novly_regions; /# number of overlay regions #/
3386 unsigned _ovly_region_table[_novly_regions][3] = {
3387 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3388 {..., ..., ...},
3389 }
3390 These functions will attempt to update GDB's mappedness state in the
3391 symbol section table, based on the target's mappedness state.
3392
3393 To do this, we keep a cached copy of the target's _ovly_table, and
3394 attempt to detect when the cached copy is invalidated. The main
3395 entry point is "simple_overlay_update(SECT), which looks up SECT in
3396 the cached table and re-reads only the entry for that section from
3397 the target (whenever possible). */
3398
3399/* Cached, dynamically allocated copies of the target data structures: */
3400static unsigned (*cache_ovly_table)[4] = 0;
3401static unsigned cache_novlys = 0;
3402static CORE_ADDR cache_ovly_table_base = 0;
3403enum ovly_index
3404 {
3405 VMA, SIZE, LMA, MAPPED
3406 };
3407
3408/* Throw away the cached copy of _ovly_table. */
3409static void
3410simple_free_overlay_table (void)
3411{
3412 if (cache_ovly_table)
3413 xfree (cache_ovly_table);
3414 cache_novlys = 0;
3415 cache_ovly_table = NULL;
3416 cache_ovly_table_base = 0;
3417}
3418
3419/* Read an array of ints of size SIZE from the target into a local buffer.
3420 Convert to host order. int LEN is number of ints. */
3421static void
3422read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3423 int len, int size, enum bfd_endian byte_order)
3424{
3425 /* FIXME (alloca): Not safe if array is very large. */
3426 gdb_byte *buf = alloca (len * size);
3427 int i;
3428
3429 read_memory (memaddr, buf, len * size);
3430 for (i = 0; i < len; i++)
3431 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3432}
3433
3434/* Find and grab a copy of the target _ovly_table
3435 (and _novlys, which is needed for the table's size). */
3436static int
3437simple_read_overlay_table (void)
3438{
3439 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3440 struct gdbarch *gdbarch;
3441 int word_size;
3442 enum bfd_endian byte_order;
3443
3444 simple_free_overlay_table ();
3445 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3446 if (! novlys_msym)
3447 {
3448 error (_("Error reading inferior's overlay table: "
3449 "couldn't find `_novlys' variable\n"
3450 "in inferior. Use `overlay manual' mode."));
3451 return 0;
3452 }
3453
3454 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3455 if (! ovly_table_msym)
3456 {
3457 error (_("Error reading inferior's overlay table: couldn't find "
3458 "`_ovly_table' array\n"
3459 "in inferior. Use `overlay manual' mode."));
3460 return 0;
3461 }
3462
3463 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3464 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3465 byte_order = gdbarch_byte_order (gdbarch);
3466
3467 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3468 4, byte_order);
3469 cache_ovly_table
3470 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3471 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3472 read_target_long_array (cache_ovly_table_base,
3473 (unsigned int *) cache_ovly_table,
3474 cache_novlys * 4, word_size, byte_order);
3475
3476 return 1; /* SUCCESS */
3477}
3478
3479/* Function: simple_overlay_update_1
3480 A helper function for simple_overlay_update. Assuming a cached copy
3481 of _ovly_table exists, look through it to find an entry whose vma,
3482 lma and size match those of OSECT. Re-read the entry and make sure
3483 it still matches OSECT (else the table may no longer be valid).
3484 Set OSECT's mapped state to match the entry. Return: 1 for
3485 success, 0 for failure. */
3486
3487static int
3488simple_overlay_update_1 (struct obj_section *osect)
3489{
3490 int i, size;
3491 bfd *obfd = osect->objfile->obfd;
3492 asection *bsect = osect->the_bfd_section;
3493 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3494 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3496
3497 size = bfd_get_section_size (osect->the_bfd_section);
3498 for (i = 0; i < cache_novlys; i++)
3499 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3500 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3501 /* && cache_ovly_table[i][SIZE] == size */ )
3502 {
3503 read_target_long_array (cache_ovly_table_base + i * word_size,
3504 (unsigned int *) cache_ovly_table[i],
3505 4, word_size, byte_order);
3506 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3507 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3508 /* && cache_ovly_table[i][SIZE] == size */ )
3509 {
3510 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3511 return 1;
3512 }
3513 else /* Warning! Warning! Target's ovly table has changed! */
3514 return 0;
3515 }
3516 return 0;
3517}
3518
3519/* Function: simple_overlay_update
3520 If OSECT is NULL, then update all sections' mapped state
3521 (after re-reading the entire target _ovly_table).
3522 If OSECT is non-NULL, then try to find a matching entry in the
3523 cached ovly_table and update only OSECT's mapped state.
3524 If a cached entry can't be found or the cache isn't valid, then
3525 re-read the entire cache, and go ahead and update all sections. */
3526
3527void
3528simple_overlay_update (struct obj_section *osect)
3529{
3530 struct objfile *objfile;
3531
3532 /* Were we given an osect to look up? NULL means do all of them. */
3533 if (osect)
3534 /* Have we got a cached copy of the target's overlay table? */
3535 if (cache_ovly_table != NULL)
3536 {
3537 /* Does its cached location match what's currently in the
3538 symtab? */
3539 struct minimal_symbol *minsym
3540 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3541
3542 if (minsym == NULL)
3543 error (_("Error reading inferior's overlay table: couldn't "
3544 "find `_ovly_table' array\n"
3545 "in inferior. Use `overlay manual' mode."));
3546
3547 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3548 /* Then go ahead and try to look up this single section in
3549 the cache. */
3550 if (simple_overlay_update_1 (osect))
3551 /* Found it! We're done. */
3552 return;
3553 }
3554
3555 /* Cached table no good: need to read the entire table anew.
3556 Or else we want all the sections, in which case it's actually
3557 more efficient to read the whole table in one block anyway. */
3558
3559 if (! simple_read_overlay_table ())
3560 return;
3561
3562 /* Now may as well update all sections, even if only one was requested. */
3563 ALL_OBJSECTIONS (objfile, osect)
3564 if (section_is_overlay (osect))
3565 {
3566 int i, size;
3567 bfd *obfd = osect->objfile->obfd;
3568 asection *bsect = osect->the_bfd_section;
3569
3570 size = bfd_get_section_size (bsect);
3571 for (i = 0; i < cache_novlys; i++)
3572 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3573 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3574 /* && cache_ovly_table[i][SIZE] == size */ )
3575 { /* obj_section matches i'th entry in ovly_table. */
3576 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3577 break; /* finished with inner for loop: break out. */
3578 }
3579 }
3580}
3581
3582/* Set the output sections and output offsets for section SECTP in
3583 ABFD. The relocation code in BFD will read these offsets, so we
3584 need to be sure they're initialized. We map each section to itself,
3585 with no offset; this means that SECTP->vma will be honored. */
3586
3587static void
3588symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3589{
3590 sectp->output_section = sectp;
3591 sectp->output_offset = 0;
3592}
3593
3594/* Default implementation for sym_relocate. */
3595
3596
3597bfd_byte *
3598default_symfile_relocate (struct objfile *objfile, asection *sectp,
3599 bfd_byte *buf)
3600{
3601 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3602 DWO file. */
3603 bfd *abfd = sectp->owner;
3604
3605 /* We're only interested in sections with relocation
3606 information. */
3607 if ((sectp->flags & SEC_RELOC) == 0)
3608 return NULL;
3609
3610 /* We will handle section offsets properly elsewhere, so relocate as if
3611 all sections begin at 0. */
3612 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3613
3614 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3615}
3616
3617/* Relocate the contents of a debug section SECTP in ABFD. The
3618 contents are stored in BUF if it is non-NULL, or returned in a
3619 malloc'd buffer otherwise.
3620
3621 For some platforms and debug info formats, shared libraries contain
3622 relocations against the debug sections (particularly for DWARF-2;
3623 one affected platform is PowerPC GNU/Linux, although it depends on
3624 the version of the linker in use). Also, ELF object files naturally
3625 have unresolved relocations for their debug sections. We need to apply
3626 the relocations in order to get the locations of symbols correct.
3627 Another example that may require relocation processing, is the
3628 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3629 debug section. */
3630
3631bfd_byte *
3632symfile_relocate_debug_section (struct objfile *objfile,
3633 asection *sectp, bfd_byte *buf)
3634{
3635 gdb_assert (objfile->sf->sym_relocate);
3636
3637 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3638}
3639
3640struct symfile_segment_data *
3641get_symfile_segment_data (bfd *abfd)
3642{
3643 const struct sym_fns *sf = find_sym_fns (abfd);
3644
3645 if (sf == NULL)
3646 return NULL;
3647
3648 return sf->sym_segments (abfd);
3649}
3650
3651void
3652free_symfile_segment_data (struct symfile_segment_data *data)
3653{
3654 xfree (data->segment_bases);
3655 xfree (data->segment_sizes);
3656 xfree (data->segment_info);
3657 xfree (data);
3658}
3659
3660
3661/* Given:
3662 - DATA, containing segment addresses from the object file ABFD, and
3663 the mapping from ABFD's sections onto the segments that own them,
3664 and
3665 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3666 segment addresses reported by the target,
3667 store the appropriate offsets for each section in OFFSETS.
3668
3669 If there are fewer entries in SEGMENT_BASES than there are segments
3670 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3671
3672 If there are more entries, then ignore the extra. The target may
3673 not be able to distinguish between an empty data segment and a
3674 missing data segment; a missing text segment is less plausible. */
3675int
3676symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3677 struct section_offsets *offsets,
3678 int num_segment_bases,
3679 const CORE_ADDR *segment_bases)
3680{
3681 int i;
3682 asection *sect;
3683
3684 /* It doesn't make sense to call this function unless you have some
3685 segment base addresses. */
3686 gdb_assert (num_segment_bases > 0);
3687
3688 /* If we do not have segment mappings for the object file, we
3689 can not relocate it by segments. */
3690 gdb_assert (data != NULL);
3691 gdb_assert (data->num_segments > 0);
3692
3693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3694 {
3695 int which = data->segment_info[i];
3696
3697 gdb_assert (0 <= which && which <= data->num_segments);
3698
3699 /* Don't bother computing offsets for sections that aren't
3700 loaded as part of any segment. */
3701 if (! which)
3702 continue;
3703
3704 /* Use the last SEGMENT_BASES entry as the address of any extra
3705 segments mentioned in DATA->segment_info. */
3706 if (which > num_segment_bases)
3707 which = num_segment_bases;
3708
3709 offsets->offsets[i] = (segment_bases[which - 1]
3710 - data->segment_bases[which - 1]);
3711 }
3712
3713 return 1;
3714}
3715
3716static void
3717symfile_find_segment_sections (struct objfile *objfile)
3718{
3719 bfd *abfd = objfile->obfd;
3720 int i;
3721 asection *sect;
3722 struct symfile_segment_data *data;
3723
3724 data = get_symfile_segment_data (objfile->obfd);
3725 if (data == NULL)
3726 return;
3727
3728 if (data->num_segments != 1 && data->num_segments != 2)
3729 {
3730 free_symfile_segment_data (data);
3731 return;
3732 }
3733
3734 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3735 {
3736 int which = data->segment_info[i];
3737
3738 if (which == 1)
3739 {
3740 if (objfile->sect_index_text == -1)
3741 objfile->sect_index_text = sect->index;
3742
3743 if (objfile->sect_index_rodata == -1)
3744 objfile->sect_index_rodata = sect->index;
3745 }
3746 else if (which == 2)
3747 {
3748 if (objfile->sect_index_data == -1)
3749 objfile->sect_index_data = sect->index;
3750
3751 if (objfile->sect_index_bss == -1)
3752 objfile->sect_index_bss = sect->index;
3753 }
3754 }
3755
3756 free_symfile_segment_data (data);
3757}
3758
3759void
3760_initialize_symfile (void)
3761{
3762 struct cmd_list_element *c;
3763
3764 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3765Load symbol table from executable file FILE.\n\
3766The `file' command can also load symbol tables, as well as setting the file\n\
3767to execute."), &cmdlist);
3768 set_cmd_completer (c, filename_completer);
3769
3770 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3771Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3772Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3773 ...]\nADDR is the starting address of the file's text.\n\
3774The optional arguments are section-name section-address pairs and\n\
3775should be specified if the data and bss segments are not contiguous\n\
3776with the text. SECT is a section name to be loaded at SECT_ADDR."),
3777 &cmdlist);
3778 set_cmd_completer (c, filename_completer);
3779
3780 c = add_cmd ("load", class_files, load_command, _("\
3781Dynamically load FILE into the running program, and record its symbols\n\
3782for access from GDB.\n\
3783A load OFFSET may also be given."), &cmdlist);
3784 set_cmd_completer (c, filename_completer);
3785
3786 add_prefix_cmd ("overlay", class_support, overlay_command,
3787 _("Commands for debugging overlays."), &overlaylist,
3788 "overlay ", 0, &cmdlist);
3789
3790 add_com_alias ("ovly", "overlay", class_alias, 1);
3791 add_com_alias ("ov", "overlay", class_alias, 1);
3792
3793 add_cmd ("map-overlay", class_support, map_overlay_command,
3794 _("Assert that an overlay section is mapped."), &overlaylist);
3795
3796 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3797 _("Assert that an overlay section is unmapped."), &overlaylist);
3798
3799 add_cmd ("list-overlays", class_support, list_overlays_command,
3800 _("List mappings of overlay sections."), &overlaylist);
3801
3802 add_cmd ("manual", class_support, overlay_manual_command,
3803 _("Enable overlay debugging."), &overlaylist);
3804 add_cmd ("off", class_support, overlay_off_command,
3805 _("Disable overlay debugging."), &overlaylist);
3806 add_cmd ("auto", class_support, overlay_auto_command,
3807 _("Enable automatic overlay debugging."), &overlaylist);
3808 add_cmd ("load-target", class_support, overlay_load_command,
3809 _("Read the overlay mapping state from the target."), &overlaylist);
3810
3811 /* Filename extension to source language lookup table: */
3812 init_filename_language_table ();
3813 add_setshow_string_noescape_cmd ("extension-language", class_files,
3814 &ext_args, _("\
3815Set mapping between filename extension and source language."), _("\
3816Show mapping between filename extension and source language."), _("\
3817Usage: set extension-language .foo bar"),
3818 set_ext_lang_command,
3819 show_ext_args,
3820 &setlist, &showlist);
3821
3822 add_info ("extensions", info_ext_lang_command,
3823 _("All filename extensions associated with a source language."));
3824
3825 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3826 &debug_file_directory, _("\
3827Set the directories where separate debug symbols are searched for."), _("\
3828Show the directories where separate debug symbols are searched for."), _("\
3829Separate debug symbols are first searched for in the same\n\
3830directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3831and lastly at the path of the directory of the binary with\n\
3832each global debug-file-directory component prepended."),
3833 NULL,
3834 show_debug_file_directory,
3835 &setlist, &showlist);
3836}
This page took 0.036539 seconds and 4 git commands to generate.