2011-11-01 Justin Lebar <justin.lebar@gmail.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
... / ...
CommitLineData
1/* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24#include "defs.h"
25#include "arch-utils.h"
26#include "bfdlink.h"
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "source.h"
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
41#include "inferior.h"
42#include "regcache.h"
43#include "filenames.h" /* for DOSish file names */
44#include "gdb-stabs.h"
45#include "gdb_obstack.h"
46#include "completer.h"
47#include "bcache.h"
48#include "hashtab.h"
49#include "readline/readline.h"
50#include "gdb_assert.h"
51#include "block.h"
52#include "observer.h"
53#include "exec.h"
54#include "parser-defs.h"
55#include "varobj.h"
56#include "elf-bfd.h"
57#include "solib.h"
58#include "remote.h"
59
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
66#include <sys/time.h>
67
68#include "psymtab.h"
69
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
79
80static void clear_symtab_users_cleanup (void *ignore);
81
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
84
85/* External variables and functions referenced. */
86
87extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89/* Functions this file defines. */
90
91static void load_command (char *, int);
92
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95static void add_symbol_file_command (char *, int);
96
97bfd *symfile_bfd_open (char *);
98
99int get_section_index (struct objfile *, char *);
100
101static const struct sym_fns *find_sym_fns (bfd *);
102
103static void decrement_reading_symtab (void *);
104
105static void overlay_invalidate_all (void);
106
107void list_overlays_command (char *, int);
108
109void map_overlay_command (char *, int);
110
111void unmap_overlay_command (char *, int);
112
113static void overlay_auto_command (char *, int);
114
115static void overlay_manual_command (char *, int);
116
117static void overlay_off_command (char *, int);
118
119static void overlay_load_command (char *, int);
120
121static void overlay_command (char *, int);
122
123static void simple_free_overlay_table (void);
124
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128static int simple_read_overlay_table (void);
129
130static int simple_overlay_update_1 (struct obj_section *);
131
132static void add_filename_language (char *ext, enum language lang);
133
134static void info_ext_lang_command (char *args, int from_tty);
135
136static void init_filename_language_table (void);
137
138static void symfile_find_segment_sections (struct objfile *objfile);
139
140void _initialize_symfile (void);
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151/* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154#ifdef SYMBOL_RELOADING_DEFAULT
155int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156#else
157int symbol_reloading = 0;
158#endif
159static void
160show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
165 value);
166}
167
168/* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
177
178int auto_solib_add = 1;
179\f
180
181/* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
183 Note that the string at PTR does not have to be null terminated, I.e. it
184 may be part of a larger string and we are only saving a substring. */
185
186char *
187obsavestring (const char *ptr, int size, struct obstack *obstackp)
188{
189 char *p = (char *) obstack_alloc (obstackp, size + 1);
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
192 inline memcpy? */
193 {
194 const char *p1 = ptr;
195 char *p2 = p;
196 const char *end = ptr + size;
197
198 while (p1 != end)
199 *p2++ = *p1++;
200 }
201 p[size] = 0;
202 return p;
203}
204
205/* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
208 NULL'. */
209
210char *
211obconcat (struct obstack *obstackp, ...)
212{
213 va_list ap;
214
215 va_start (ap, obstackp);
216 for (;;)
217 {
218 const char *s = va_arg (ap, const char *);
219
220 if (s == NULL)
221 break;
222
223 obstack_grow_str (obstackp, s);
224 }
225 va_end (ap);
226 obstack_1grow (obstackp, 0);
227
228 return obstack_finish (obstackp);
229}
230
231/* True if we are reading a symbol table. */
232
233int currently_reading_symtab = 0;
234
235static void
236decrement_reading_symtab (void *dummy)
237{
238 currently_reading_symtab--;
239}
240
241/* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
243struct cleanup *
244increment_reading_symtab (void)
245{
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
248}
249
250/* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
252
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
255
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
258
259void
260find_lowest_section (bfd *abfd, asection *sect, void *obj)
261{
262 asection **lowest = (asection **) obj;
263
264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
265 return;
266 if (!*lowest)
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
273 *lowest = sect;
274}
275
276/* Create a new section_addr_info, with room for NUM_SECTIONS. */
277
278struct section_addr_info *
279alloc_section_addr_info (size_t num_sections)
280{
281 struct section_addr_info *sap;
282 size_t size;
283
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
289
290 return sap;
291}
292
293/* Build (allocate and populate) a section_addr_info struct from
294 an existing section table. */
295
296extern struct section_addr_info *
297build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
299{
300 struct section_addr_info *sap;
301 const struct target_section *stp;
302 int oidx;
303
304 sap = alloc_section_addr_info (end - start);
305
306 for (stp = start, oidx = 0; stp != end; stp++)
307 {
308 if (bfd_get_section_flags (stp->bfd,
309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
310 && oidx < end - start)
311 {
312 sap->other[oidx].addr = stp->addr;
313 sap->other[oidx].name
314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
316 oidx++;
317 }
318 }
319
320 return sap;
321}
322
323/* Create a section_addr_info from section offsets in ABFD. */
324
325static struct section_addr_info *
326build_section_addr_info_from_bfd (bfd *abfd)
327{
328 struct section_addr_info *sap;
329 int i;
330 struct bfd_section *sec;
331
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
335 {
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
338 sap->other[i].sectindex = sec->index;
339 i++;
340 }
341 return sap;
342}
343
344/* Create a section_addr_info from section offsets in OBJFILE. */
345
346struct section_addr_info *
347build_section_addr_info_from_objfile (const struct objfile *objfile)
348{
349 struct section_addr_info *sap;
350 int i;
351
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
354 */
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
357 {
358 int sectindex = sap->other[i].sectindex;
359
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
361 }
362 return sap;
363}
364
365/* Free all memory allocated by build_section_addr_info_from_section_table. */
366
367extern void
368free_section_addr_info (struct section_addr_info *sap)
369{
370 int idx;
371
372 for (idx = 0; idx < sap->num_sections; idx++)
373 if (sap->other[idx].name)
374 xfree (sap->other[idx].name);
375 xfree (sap);
376}
377
378
379/* Initialize OBJFILE's sect_index_* members. */
380static void
381init_objfile_sect_indices (struct objfile *objfile)
382{
383 asection *sect;
384 int i;
385
386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
387 if (sect)
388 objfile->sect_index_text = sect->index;
389
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
391 if (sect)
392 objfile->sect_index_data = sect->index;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
395 if (sect)
396 objfile->sect_index_bss = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
399 if (sect)
400 objfile->sect_index_rodata = sect->index;
401
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
407
408 symfile_find_segment_sections (objfile);
409
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
418
419 for (i = 0; i < objfile->num_sections; i++)
420 {
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
422 {
423 break;
424 }
425 }
426 if (i == objfile->num_sections)
427 {
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
436 }
437}
438
439/* The arguments to place_section. */
440
441struct place_section_arg
442{
443 struct section_offsets *offsets;
444 CORE_ADDR lowest;
445};
446
447/* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
449
450static void
451place_section (bfd *abfd, asection *sect, void *obj)
452{
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
455 int done;
456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
457
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
460 return;
461
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
464 return;
465
466 /* Otherwise, let's try to find a place for the section. */
467 start_addr = (arg->lowest + align - 1) & -align;
468
469 do {
470 asection *cur_sec;
471
472 done = 1;
473
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
475 {
476 int indx = cur_sec->index;
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
499 break;
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
509}
510
511/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
514
515void
516relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
519{
520 int i;
521
522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
523
524 /* Now calculate offsets for section that were specified by the caller. */
525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
526 {
527 struct other_sections *osp;
528
529 osp = &addrs->other[i];
530 if (osp->sectindex == -1)
531 continue;
532
533 /* Record all sections in offsets. */
534 /* The section_offsets in the objfile are here filled in using
535 the BFD index. */
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538}
539
540/* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
545
546static const char *
547addr_section_name (const char *s)
548{
549 if (strcmp (s, ".dynbss") == 0)
550 return ".bss";
551 if (strcmp (s, ".sdynbss") == 0)
552 return ".sbss";
553
554 return s;
555}
556
557/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
559
560static int
561addrs_section_compar (const void *ap, const void *bp)
562{
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
566
567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
568 if (retval)
569 return retval;
570
571 return a->sectindex - b->sectindex;
572}
573
574/* Provide sorted array of pointers to sections of ADDRS. The array is
575 terminated by NULL. Caller is responsible to call xfree for it. */
576
577static struct other_sections **
578addrs_section_sort (struct section_addr_info *addrs)
579{
580 struct other_sections **array;
581 int i;
582
583 /* `+ 1' for the NULL terminator. */
584 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
585 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
586 array[i] = &addrs->other[i];
587 array[i] = NULL;
588
589 qsort (array, i, sizeof (*array), addrs_section_compar);
590
591 return array;
592}
593
594/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
595 also SECTINDEXes specific to ABFD there. This function can be used to
596 rebase ADDRS to start referencing different BFD than before. */
597
598void
599addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
600{
601 asection *lower_sect;
602 CORE_ADDR lower_offset;
603 int i;
604 struct cleanup *my_cleanup;
605 struct section_addr_info *abfd_addrs;
606 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
607 struct other_sections **addrs_to_abfd_addrs;
608
609 /* Find lowest loadable section to be used as starting point for
610 continguous sections. */
611 lower_sect = NULL;
612 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
613 if (lower_sect == NULL)
614 {
615 warning (_("no loadable sections found in added symbol-file %s"),
616 bfd_get_filename (abfd));
617 lower_offset = 0;
618 }
619 else
620 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
621
622 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
623 in ABFD. Section names are not unique - there can be multiple sections of
624 the same name. Also the sections of the same name do not have to be
625 adjacent to each other. Some sections may be present only in one of the
626 files. Even sections present in both files do not have to be in the same
627 order.
628
629 Use stable sort by name for the sections in both files. Then linearly
630 scan both lists matching as most of the entries as possible. */
631
632 addrs_sorted = addrs_section_sort (addrs);
633 my_cleanup = make_cleanup (xfree, addrs_sorted);
634
635 abfd_addrs = build_section_addr_info_from_bfd (abfd);
636 make_cleanup_free_section_addr_info (abfd_addrs);
637 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
638 make_cleanup (xfree, abfd_addrs_sorted);
639
640 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
641 ABFD_ADDRS_SORTED. */
642
643 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
644 * addrs->num_sections);
645 make_cleanup (xfree, addrs_to_abfd_addrs);
646
647 while (*addrs_sorted)
648 {
649 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
650
651 while (*abfd_addrs_sorted
652 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
653 sect_name) < 0)
654 abfd_addrs_sorted++;
655
656 if (*abfd_addrs_sorted
657 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
658 sect_name) == 0)
659 {
660 int index_in_addrs;
661
662 /* Make the found item directly addressable from ADDRS. */
663 index_in_addrs = *addrs_sorted - addrs->other;
664 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
665 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
666
667 /* Never use the same ABFD entry twice. */
668 abfd_addrs_sorted++;
669 }
670
671 addrs_sorted++;
672 }
673
674 /* Calculate offsets for the loadable sections.
675 FIXME! Sections must be in order of increasing loadable section
676 so that contiguous sections can use the lower-offset!!!
677
678 Adjust offsets if the segments are not contiguous.
679 If the section is contiguous, its offset should be set to
680 the offset of the highest loadable section lower than it
681 (the loadable section directly below it in memory).
682 this_offset = lower_offset = lower_addr - lower_orig_addr */
683
684 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
685 {
686 struct other_sections *sect = addrs_to_abfd_addrs[i];
687
688 if (sect)
689 {
690 /* This is the index used by BFD. */
691 addrs->other[i].sectindex = sect->sectindex;
692
693 if (addrs->other[i].addr != 0)
694 {
695 addrs->other[i].addr -= sect->addr;
696 lower_offset = addrs->other[i].addr;
697 }
698 else
699 addrs->other[i].addr = lower_offset;
700 }
701 else
702 {
703 /* addr_section_name transformation is not used for SECT_NAME. */
704 const char *sect_name = addrs->other[i].name;
705
706 /* This section does not exist in ABFD, which is normally
707 unexpected and we want to issue a warning.
708
709 However, the ELF prelinker does create a few sections which are
710 marked in the main executable as loadable (they are loaded in
711 memory from the DYNAMIC segment) and yet are not present in
712 separate debug info files. This is fine, and should not cause
713 a warning. Shared libraries contain just the section
714 ".gnu.liblist" but it is not marked as loadable there. There is
715 no other way to identify them than by their name as the sections
716 created by prelink have no special flags.
717
718 For the sections `.bss' and `.sbss' see addr_section_name. */
719
720 if (!(strcmp (sect_name, ".gnu.liblist") == 0
721 || strcmp (sect_name, ".gnu.conflict") == 0
722 || (strcmp (sect_name, ".bss") == 0
723 && i > 0
724 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
725 && addrs_to_abfd_addrs[i - 1] != NULL)
726 || (strcmp (sect_name, ".sbss") == 0
727 && i > 0
728 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
729 && addrs_to_abfd_addrs[i - 1] != NULL)))
730 warning (_("section %s not found in %s"), sect_name,
731 bfd_get_filename (abfd));
732
733 addrs->other[i].addr = 0;
734 addrs->other[i].sectindex = -1;
735 }
736 }
737
738 do_cleanups (my_cleanup);
739}
740
741/* Parse the user's idea of an offset for dynamic linking, into our idea
742 of how to represent it for fast symbol reading. This is the default
743 version of the sym_fns.sym_offsets function for symbol readers that
744 don't need to do anything special. It allocates a section_offsets table
745 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
746
747void
748default_symfile_offsets (struct objfile *objfile,
749 struct section_addr_info *addrs)
750{
751 objfile->num_sections = bfd_count_sections (objfile->obfd);
752 objfile->section_offsets = (struct section_offsets *)
753 obstack_alloc (&objfile->objfile_obstack,
754 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
755 relative_addr_info_to_section_offsets (objfile->section_offsets,
756 objfile->num_sections, addrs);
757
758 /* For relocatable files, all loadable sections will start at zero.
759 The zero is meaningless, so try to pick arbitrary addresses such
760 that no loadable sections overlap. This algorithm is quadratic,
761 but the number of sections in a single object file is generally
762 small. */
763 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
764 {
765 struct place_section_arg arg;
766 bfd *abfd = objfile->obfd;
767 asection *cur_sec;
768
769 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
770 /* We do not expect this to happen; just skip this step if the
771 relocatable file has a section with an assigned VMA. */
772 if (bfd_section_vma (abfd, cur_sec) != 0)
773 break;
774
775 if (cur_sec == NULL)
776 {
777 CORE_ADDR *offsets = objfile->section_offsets->offsets;
778
779 /* Pick non-overlapping offsets for sections the user did not
780 place explicitly. */
781 arg.offsets = objfile->section_offsets;
782 arg.lowest = 0;
783 bfd_map_over_sections (objfile->obfd, place_section, &arg);
784
785 /* Correctly filling in the section offsets is not quite
786 enough. Relocatable files have two properties that
787 (most) shared objects do not:
788
789 - Their debug information will contain relocations. Some
790 shared libraries do also, but many do not, so this can not
791 be assumed.
792
793 - If there are multiple code sections they will be loaded
794 at different relative addresses in memory than they are
795 in the objfile, since all sections in the file will start
796 at address zero.
797
798 Because GDB has very limited ability to map from an
799 address in debug info to the correct code section,
800 it relies on adding SECT_OFF_TEXT to things which might be
801 code. If we clear all the section offsets, and set the
802 section VMAs instead, then symfile_relocate_debug_section
803 will return meaningful debug information pointing at the
804 correct sections.
805
806 GDB has too many different data structures for section
807 addresses - a bfd, objfile, and so_list all have section
808 tables, as does exec_ops. Some of these could probably
809 be eliminated. */
810
811 for (cur_sec = abfd->sections; cur_sec != NULL;
812 cur_sec = cur_sec->next)
813 {
814 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
815 continue;
816
817 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
818 exec_set_section_address (bfd_get_filename (abfd),
819 cur_sec->index,
820 offsets[cur_sec->index]);
821 offsets[cur_sec->index] = 0;
822 }
823 }
824 }
825
826 /* Remember the bfd indexes for the .text, .data, .bss and
827 .rodata sections. */
828 init_objfile_sect_indices (objfile);
829}
830
831
832/* Divide the file into segments, which are individual relocatable units.
833 This is the default version of the sym_fns.sym_segments function for
834 symbol readers that do not have an explicit representation of segments.
835 It assumes that object files do not have segments, and fully linked
836 files have a single segment. */
837
838struct symfile_segment_data *
839default_symfile_segments (bfd *abfd)
840{
841 int num_sections, i;
842 asection *sect;
843 struct symfile_segment_data *data;
844 CORE_ADDR low, high;
845
846 /* Relocatable files contain enough information to position each
847 loadable section independently; they should not be relocated
848 in segments. */
849 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
850 return NULL;
851
852 /* Make sure there is at least one loadable section in the file. */
853 for (sect = abfd->sections; sect != NULL; sect = sect->next)
854 {
855 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
856 continue;
857
858 break;
859 }
860 if (sect == NULL)
861 return NULL;
862
863 low = bfd_get_section_vma (abfd, sect);
864 high = low + bfd_get_section_size (sect);
865
866 data = XZALLOC (struct symfile_segment_data);
867 data->num_segments = 1;
868 data->segment_bases = XCALLOC (1, CORE_ADDR);
869 data->segment_sizes = XCALLOC (1, CORE_ADDR);
870
871 num_sections = bfd_count_sections (abfd);
872 data->segment_info = XCALLOC (num_sections, int);
873
874 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
875 {
876 CORE_ADDR vma;
877
878 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
879 continue;
880
881 vma = bfd_get_section_vma (abfd, sect);
882 if (vma < low)
883 low = vma;
884 if (vma + bfd_get_section_size (sect) > high)
885 high = vma + bfd_get_section_size (sect);
886
887 data->segment_info[i] = 1;
888 }
889
890 data->segment_bases[0] = low;
891 data->segment_sizes[0] = high - low;
892
893 return data;
894}
895
896/* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
899 OBJFILE is where the symbols are to be read from.
900
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
921
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
925
926void
927syms_from_objfile (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
931 int add_flags)
932{
933 struct section_addr_info *local_addr = NULL;
934 struct cleanup *old_chain;
935 const int mainline = add_flags & SYMFILE_MAINLINE;
936
937 gdb_assert (! (addrs && offsets));
938
939 init_entry_point_info (objfile);
940 objfile->sf = find_sym_fns (objfile->obfd);
941
942 if (objfile->sf == NULL)
943 return; /* No symbols. */
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup_free_objfile (objfile);
948
949 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
950 list. We now establish the convention that an addr of zero means
951 no load address was specified. */
952 if (! addrs && ! offsets)
953 {
954 local_addr
955 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
956 make_cleanup (xfree, local_addr);
957 addrs = local_addr;
958 }
959
960 /* Now either addrs or offsets is non-zero. */
961
962 if (mainline)
963 {
964 /* We will modify the main symbol table, make sure that all its users
965 will be cleaned up if an error occurs during symbol reading. */
966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
973 gdb_assert (symfile_objfile == NULL);
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
980
981 (*objfile->sf->sym_new_init) (objfile);
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
986 and assume that <addr> is where that got loaded.
987
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
990 if (addrs && addrs->other[0].name)
991 addr_info_make_relative (addrs, objfile->obfd);
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
995 initial symbol reading for this file. */
996
997 (*objfile->sf->sym_init) (objfile);
998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
999
1000 if (addrs)
1001 (*objfile->sf->sym_offsets) (objfile, addrs);
1002 else
1003 {
1004 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1005
1006 /* Just copy in the offset table directly as given to us. */
1007 objfile->num_sections = num_offsets;
1008 objfile->section_offsets
1009 = ((struct section_offsets *)
1010 obstack_alloc (&objfile->objfile_obstack, size));
1011 memcpy (objfile->section_offsets, offsets, size);
1012
1013 init_objfile_sect_indices (objfile);
1014 }
1015
1016 (*objfile->sf->sym_read) (objfile, add_flags);
1017
1018 if ((add_flags & SYMFILE_NO_READ) == 0)
1019 require_partial_symbols (objfile, 0);
1020
1021 /* Discard cleanups as symbol reading was successful. */
1022
1023 discard_cleanups (old_chain);
1024 xfree (local_addr);
1025}
1026
1027/* Perform required actions after either reading in the initial
1028 symbols for a new objfile, or mapping in the symbols from a reusable
1029 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1030
1031void
1032new_symfile_objfile (struct objfile *objfile, int add_flags)
1033{
1034 /* If this is the main symbol file we have to clean up all users of the
1035 old main symbol file. Otherwise it is sufficient to fixup all the
1036 breakpoints that may have been redefined by this symbol file. */
1037 if (add_flags & SYMFILE_MAINLINE)
1038 {
1039 /* OK, make it the "real" symbol file. */
1040 symfile_objfile = objfile;
1041
1042 clear_symtab_users (add_flags);
1043 }
1044 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1045 {
1046 breakpoint_re_set ();
1047 }
1048
1049 /* We're done reading the symbol file; finish off complaints. */
1050 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1051}
1052
1053/* Process a symbol file, as either the main file or as a dynamically
1054 loaded file.
1055
1056 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1057 This BFD will be closed on error, and is always consumed by this function.
1058
1059 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1060 extra, such as dynamically loaded code, and what to do with breakpoins.
1061
1062 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1063 syms_from_objfile, above.
1064 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1065
1066 PARENT is the original objfile if ABFD is a separate debug info file.
1067 Otherwise PARENT is NULL.
1068
1069 Upon success, returns a pointer to the objfile that was added.
1070 Upon failure, jumps back to command level (never returns). */
1071
1072static struct objfile *
1073symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1074 int add_flags,
1075 struct section_addr_info *addrs,
1076 struct section_offsets *offsets,
1077 int num_offsets,
1078 int flags, struct objfile *parent)
1079{
1080 struct objfile *objfile;
1081 struct cleanup *my_cleanups;
1082 const char *name = bfd_get_filename (abfd);
1083 const int from_tty = add_flags & SYMFILE_VERBOSE;
1084 const int mainline = add_flags & SYMFILE_MAINLINE;
1085 const int should_print = ((from_tty || info_verbose)
1086 && (readnow_symbol_files
1087 || (add_flags & SYMFILE_NO_READ) == 0));
1088
1089 if (readnow_symbol_files)
1090 {
1091 flags |= OBJF_READNOW;
1092 add_flags &= ~SYMFILE_NO_READ;
1093 }
1094
1095 my_cleanups = make_cleanup_bfd_close (abfd);
1096
1097 /* Give user a chance to burp if we'd be
1098 interactively wiping out any existing symbols. */
1099
1100 if ((have_full_symbols () || have_partial_symbols ())
1101 && mainline
1102 && from_tty
1103 && !query (_("Load new symbol table from \"%s\"? "), name))
1104 error (_("Not confirmed."));
1105
1106 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1107 discard_cleanups (my_cleanups);
1108
1109 if (parent)
1110 add_separate_debug_objfile (objfile, parent);
1111
1112 /* We either created a new mapped symbol table, mapped an existing
1113 symbol table file which has not had initial symbol reading
1114 performed, or need to read an unmapped symbol table. */
1115 if (should_print)
1116 {
1117 if (deprecated_pre_add_symbol_hook)
1118 deprecated_pre_add_symbol_hook (name);
1119 else
1120 {
1121 printf_unfiltered (_("Reading symbols from %s..."), name);
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125 }
1126 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1127 add_flags);
1128
1129 /* We now have at least a partial symbol table. Check to see if the
1130 user requested that all symbols be read on initial access via either
1131 the gdb startup command line or on a per symbol file basis. Expand
1132 all partial symbol tables for this objfile if so. */
1133
1134 if ((flags & OBJF_READNOW))
1135 {
1136 if (should_print)
1137 {
1138 printf_unfiltered (_("expanding to full symbols..."));
1139 wrap_here ("");
1140 gdb_flush (gdb_stdout);
1141 }
1142
1143 if (objfile->sf)
1144 objfile->sf->qf->expand_all_symtabs (objfile);
1145 }
1146
1147 if (should_print && !objfile_has_symbols (objfile))
1148 {
1149 wrap_here ("");
1150 printf_unfiltered (_("(no debugging symbols found)..."));
1151 wrap_here ("");
1152 }
1153
1154 if (should_print)
1155 {
1156 if (deprecated_post_add_symbol_hook)
1157 deprecated_post_add_symbol_hook ();
1158 else
1159 printf_unfiltered (_("done.\n"));
1160 }
1161
1162 /* We print some messages regardless of whether 'from_tty ||
1163 info_verbose' is true, so make sure they go out at the right
1164 time. */
1165 gdb_flush (gdb_stdout);
1166
1167 do_cleanups (my_cleanups);
1168
1169 if (objfile->sf == NULL)
1170 {
1171 observer_notify_new_objfile (objfile);
1172 return objfile; /* No symbols. */
1173 }
1174
1175 new_symfile_objfile (objfile, add_flags);
1176
1177 observer_notify_new_objfile (objfile);
1178
1179 bfd_cache_close_all ();
1180 return (objfile);
1181}
1182
1183/* Add BFD as a separate debug file for OBJFILE. */
1184
1185void
1186symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1187{
1188 struct objfile *new_objfile;
1189 struct section_addr_info *sap;
1190 struct cleanup *my_cleanup;
1191
1192 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1193 because sections of BFD may not match sections of OBJFILE and because
1194 vma may have been modified by tools such as prelink. */
1195 sap = build_section_addr_info_from_objfile (objfile);
1196 my_cleanup = make_cleanup_free_section_addr_info (sap);
1197
1198 new_objfile = symbol_file_add_with_addrs_or_offsets
1199 (bfd, symfile_flags,
1200 sap, NULL, 0,
1201 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1202 | OBJF_USERLOADED),
1203 objfile);
1204
1205 do_cleanups (my_cleanup);
1206}
1207
1208/* Process the symbol file ABFD, as either the main file or as a
1209 dynamically loaded file.
1210
1211 See symbol_file_add_with_addrs_or_offsets's comments for
1212 details. */
1213struct objfile *
1214symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1215 struct section_addr_info *addrs,
1216 int flags, struct objfile *parent)
1217{
1218 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1219 flags, parent);
1220}
1221
1222
1223/* Process a symbol file, as either the main file or as a dynamically
1224 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1225 for details. */
1226struct objfile *
1227symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1228 int flags)
1229{
1230 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1231 flags, NULL);
1232}
1233
1234
1235/* Call symbol_file_add() with default values and update whatever is
1236 affected by the loading of a new main().
1237 Used when the file is supplied in the gdb command line
1238 and by some targets with special loading requirements.
1239 The auxiliary function, symbol_file_add_main_1(), has the flags
1240 argument for the switches that can only be specified in the symbol_file
1241 command itself. */
1242
1243void
1244symbol_file_add_main (char *args, int from_tty)
1245{
1246 symbol_file_add_main_1 (args, from_tty, 0);
1247}
1248
1249static void
1250symbol_file_add_main_1 (char *args, int from_tty, int flags)
1251{
1252 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1253 symbol_file_add (args, add_flags, NULL, flags);
1254
1255 /* Getting new symbols may change our opinion about
1256 what is frameless. */
1257 reinit_frame_cache ();
1258
1259 set_initial_language ();
1260}
1261
1262void
1263symbol_file_clear (int from_tty)
1264{
1265 if ((have_full_symbols () || have_partial_symbols ())
1266 && from_tty
1267 && (symfile_objfile
1268 ? !query (_("Discard symbol table from `%s'? "),
1269 symfile_objfile->name)
1270 : !query (_("Discard symbol table? "))))
1271 error (_("Not confirmed."));
1272
1273 /* solib descriptors may have handles to objfiles. Wipe them before their
1274 objfiles get stale by free_all_objfiles. */
1275 no_shared_libraries (NULL, from_tty);
1276
1277 free_all_objfiles ();
1278
1279 gdb_assert (symfile_objfile == NULL);
1280 if (from_tty)
1281 printf_unfiltered (_("No symbol file now.\n"));
1282}
1283
1284static char *
1285get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1286{
1287 asection *sect;
1288 bfd_size_type debuglink_size;
1289 unsigned long crc32;
1290 char *contents;
1291 int crc_offset;
1292
1293 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1294
1295 if (sect == NULL)
1296 return NULL;
1297
1298 debuglink_size = bfd_section_size (objfile->obfd, sect);
1299
1300 contents = xmalloc (debuglink_size);
1301 bfd_get_section_contents (objfile->obfd, sect, contents,
1302 (file_ptr)0, (bfd_size_type)debuglink_size);
1303
1304 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1305 crc_offset = strlen (contents) + 1;
1306 crc_offset = (crc_offset + 3) & ~3;
1307
1308 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1309
1310 *crc32_out = crc32;
1311 return contents;
1312}
1313
1314/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1315 return 1. Otherwise print a warning and return 0. ABFD seek position is
1316 not preserved. */
1317
1318static int
1319get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1320{
1321 unsigned long file_crc = 0;
1322
1323 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1324 {
1325 warning (_("Problem reading \"%s\" for CRC: %s"),
1326 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1327 return 0;
1328 }
1329
1330 for (;;)
1331 {
1332 gdb_byte buffer[8 * 1024];
1333 bfd_size_type count;
1334
1335 count = bfd_bread (buffer, sizeof (buffer), abfd);
1336 if (count == (bfd_size_type) -1)
1337 {
1338 warning (_("Problem reading \"%s\" for CRC: %s"),
1339 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1340 return 0;
1341 }
1342 if (count == 0)
1343 break;
1344 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1345 }
1346
1347 *file_crc_return = file_crc;
1348 return 1;
1349}
1350
1351static int
1352separate_debug_file_exists (const char *name, unsigned long crc,
1353 struct objfile *parent_objfile)
1354{
1355 unsigned long file_crc;
1356 int file_crc_p;
1357 bfd *abfd;
1358 struct stat parent_stat, abfd_stat;
1359 int verified_as_different;
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1365 the separate debug infos with the same basename can exist. */
1366
1367 if (filename_cmp (name, parent_objfile->name) == 0)
1368 return 0;
1369
1370 abfd = bfd_open_maybe_remote (name);
1371
1372 if (!abfd)
1373 return 0;
1374
1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
1379 meaningful st_dev.) Do not indicate a duplicate library in that
1380 case. While there is no guarantee that a system that provides
1381 meaningful inode numbers will never set st_ino to zero, this is
1382 merely an optimization, so we do not need to worry about false
1383 negatives. */
1384
1385 if (bfd_stat (abfd, &abfd_stat) == 0
1386 && abfd_stat.st_ino != 0
1387 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1388 {
1389 if (abfd_stat.st_dev == parent_stat.st_dev
1390 && abfd_stat.st_ino == parent_stat.st_ino)
1391 {
1392 bfd_close (abfd);
1393 return 0;
1394 }
1395 verified_as_different = 1;
1396 }
1397 else
1398 verified_as_different = 0;
1399
1400 file_crc_p = get_file_crc (abfd, &file_crc);
1401
1402 bfd_close (abfd);
1403
1404 if (!file_crc_p)
1405 return 0;
1406
1407 if (crc != file_crc)
1408 {
1409 /* If one (or both) the files are accessed for example the via "remote:"
1410 gdbserver way it does not support the bfd_stat operation. Verify
1411 whether those two files are not the same manually. */
1412
1413 if (!verified_as_different && !parent_objfile->crc32_p)
1414 {
1415 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1416 &parent_objfile->crc32);
1417 if (!parent_objfile->crc32_p)
1418 return 0;
1419 }
1420
1421 if (verified_as_different || parent_objfile->crc32 != file_crc)
1422 warning (_("the debug information found in \"%s\""
1423 " does not match \"%s\" (CRC mismatch).\n"),
1424 name, parent_objfile->name);
1425
1426 return 0;
1427 }
1428
1429 return 1;
1430}
1431
1432char *debug_file_directory = NULL;
1433static void
1434show_debug_file_directory (struct ui_file *file, int from_tty,
1435 struct cmd_list_element *c, const char *value)
1436{
1437 fprintf_filtered (file,
1438 _("The directory where separate debug "
1439 "symbols are searched for is \"%s\".\n"),
1440 value);
1441}
1442
1443#if ! defined (DEBUG_SUBDIRECTORY)
1444#define DEBUG_SUBDIRECTORY ".debug"
1445#endif
1446
1447char *
1448find_separate_debug_file_by_debuglink (struct objfile *objfile)
1449{
1450 char *basename, *debugdir;
1451 char *dir = NULL;
1452 char *debugfile = NULL;
1453 char *canon_name = NULL;
1454 unsigned long crc32;
1455 int i;
1456
1457 basename = get_debug_link_info (objfile, &crc32);
1458
1459 if (basename == NULL)
1460 /* There's no separate debug info, hence there's no way we could
1461 load it => no warning. */
1462 goto cleanup_return_debugfile;
1463
1464 dir = xstrdup (objfile->name);
1465
1466 /* Strip off the final filename part, leaving the directory name,
1467 followed by a slash. The directory can be relative or absolute. */
1468 for (i = strlen(dir) - 1; i >= 0; i--)
1469 {
1470 if (IS_DIR_SEPARATOR (dir[i]))
1471 break;
1472 }
1473 /* If I is -1 then no directory is present there and DIR will be "". */
1474 dir[i+1] = '\0';
1475
1476 /* Set I to max (strlen (canon_name), strlen (dir)). */
1477 canon_name = lrealpath (dir);
1478 i = strlen (dir);
1479 if (canon_name && strlen (canon_name) > i)
1480 i = strlen (canon_name);
1481
1482 debugfile = xmalloc (strlen (debug_file_directory) + 1
1483 + i
1484 + strlen (DEBUG_SUBDIRECTORY)
1485 + strlen ("/")
1486 + strlen (basename)
1487 + 1);
1488
1489 /* First try in the same directory as the original file. */
1490 strcpy (debugfile, dir);
1491 strcat (debugfile, basename);
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 goto cleanup_return_debugfile;
1495
1496 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1497 strcpy (debugfile, dir);
1498 strcat (debugfile, DEBUG_SUBDIRECTORY);
1499 strcat (debugfile, "/");
1500 strcat (debugfile, basename);
1501
1502 if (separate_debug_file_exists (debugfile, crc32, objfile))
1503 goto cleanup_return_debugfile;
1504
1505 /* Then try in the global debugfile directories.
1506
1507 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1508 cause "/..." lookups. */
1509
1510 debugdir = debug_file_directory;
1511 do
1512 {
1513 char *debugdir_end;
1514
1515 while (*debugdir == DIRNAME_SEPARATOR)
1516 debugdir++;
1517
1518 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1519 if (debugdir_end == NULL)
1520 debugdir_end = &debugdir[strlen (debugdir)];
1521
1522 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1523 debugfile[debugdir_end - debugdir] = 0;
1524 strcat (debugfile, "/");
1525 strcat (debugfile, dir);
1526 strcat (debugfile, basename);
1527
1528 if (separate_debug_file_exists (debugfile, crc32, objfile))
1529 goto cleanup_return_debugfile;
1530
1531 /* If the file is in the sysroot, try using its base path in the
1532 global debugfile directory. */
1533 if (canon_name
1534 && filename_ncmp (canon_name, gdb_sysroot,
1535 strlen (gdb_sysroot)) == 0
1536 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1537 {
1538 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1539 debugfile[debugdir_end - debugdir] = 0;
1540 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1541 strcat (debugfile, "/");
1542 strcat (debugfile, basename);
1543
1544 if (separate_debug_file_exists (debugfile, crc32, objfile))
1545 goto cleanup_return_debugfile;
1546 }
1547
1548 debugdir = debugdir_end;
1549 }
1550 while (*debugdir != 0);
1551
1552 xfree (debugfile);
1553 debugfile = NULL;
1554
1555cleanup_return_debugfile:
1556 xfree (canon_name);
1557 xfree (basename);
1558 xfree (dir);
1559 return debugfile;
1560}
1561
1562
1563/* This is the symbol-file command. Read the file, analyze its
1564 symbols, and add a struct symtab to a symtab list. The syntax of
1565 the command is rather bizarre:
1566
1567 1. The function buildargv implements various quoting conventions
1568 which are undocumented and have little or nothing in common with
1569 the way things are quoted (or not quoted) elsewhere in GDB.
1570
1571 2. Options are used, which are not generally used in GDB (perhaps
1572 "set mapped on", "set readnow on" would be better)
1573
1574 3. The order of options matters, which is contrary to GNU
1575 conventions (because it is confusing and inconvenient). */
1576
1577void
1578symbol_file_command (char *args, int from_tty)
1579{
1580 dont_repeat ();
1581
1582 if (args == NULL)
1583 {
1584 symbol_file_clear (from_tty);
1585 }
1586 else
1587 {
1588 char **argv = gdb_buildargv (args);
1589 int flags = OBJF_USERLOADED;
1590 struct cleanup *cleanups;
1591 char *name = NULL;
1592
1593 cleanups = make_cleanup_freeargv (argv);
1594 while (*argv != NULL)
1595 {
1596 if (strcmp (*argv, "-readnow") == 0)
1597 flags |= OBJF_READNOW;
1598 else if (**argv == '-')
1599 error (_("unknown option `%s'"), *argv);
1600 else
1601 {
1602 symbol_file_add_main_1 (*argv, from_tty, flags);
1603 name = *argv;
1604 }
1605
1606 argv++;
1607 }
1608
1609 if (name == NULL)
1610 error (_("no symbol file name was specified"));
1611
1612 do_cleanups (cleanups);
1613 }
1614}
1615
1616/* Set the initial language.
1617
1618 FIXME: A better solution would be to record the language in the
1619 psymtab when reading partial symbols, and then use it (if known) to
1620 set the language. This would be a win for formats that encode the
1621 language in an easily discoverable place, such as DWARF. For
1622 stabs, we can jump through hoops looking for specially named
1623 symbols or try to intuit the language from the specific type of
1624 stabs we find, but we can't do that until later when we read in
1625 full symbols. */
1626
1627void
1628set_initial_language (void)
1629{
1630 enum language lang = language_unknown;
1631
1632 if (language_of_main != language_unknown)
1633 lang = language_of_main;
1634 else
1635 {
1636 const char *filename;
1637
1638 filename = find_main_filename ();
1639 if (filename != NULL)
1640 lang = deduce_language_from_filename (filename);
1641 }
1642
1643 if (lang == language_unknown)
1644 {
1645 /* Make C the default language */
1646 lang = language_c;
1647 }
1648
1649 set_language (lang);
1650 expected_language = current_language; /* Don't warn the user. */
1651}
1652
1653/* If NAME is a remote name open the file using remote protocol, otherwise
1654 open it normally. */
1655
1656bfd *
1657bfd_open_maybe_remote (const char *name)
1658{
1659 if (remote_filename_p (name))
1660 return remote_bfd_open (name, gnutarget);
1661 else
1662 return bfd_openr (name, gnutarget);
1663}
1664
1665
1666/* Open the file specified by NAME and hand it off to BFD for
1667 preliminary analysis. Return a newly initialized bfd *, which
1668 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1669 absolute). In case of trouble, error() is called. */
1670
1671bfd *
1672symfile_bfd_open (char *name)
1673{
1674 bfd *sym_bfd;
1675 int desc;
1676 char *absolute_name;
1677
1678 if (remote_filename_p (name))
1679 {
1680 name = xstrdup (name);
1681 sym_bfd = remote_bfd_open (name, gnutarget);
1682 if (!sym_bfd)
1683 {
1684 make_cleanup (xfree, name);
1685 error (_("`%s': can't open to read symbols: %s."), name,
1686 bfd_errmsg (bfd_get_error ()));
1687 }
1688
1689 if (!bfd_check_format (sym_bfd, bfd_object))
1690 {
1691 bfd_close (sym_bfd);
1692 make_cleanup (xfree, name);
1693 error (_("`%s': can't read symbols: %s."), name,
1694 bfd_errmsg (bfd_get_error ()));
1695 }
1696
1697 return sym_bfd;
1698 }
1699
1700 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1701
1702 /* Look down path for it, allocate 2nd new malloc'd copy. */
1703 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1704 O_RDONLY | O_BINARY, &absolute_name);
1705#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1706 if (desc < 0)
1707 {
1708 char *exename = alloca (strlen (name) + 5);
1709
1710 strcat (strcpy (exename, name), ".exe");
1711 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1712 O_RDONLY | O_BINARY, &absolute_name);
1713 }
1714#endif
1715 if (desc < 0)
1716 {
1717 make_cleanup (xfree, name);
1718 perror_with_name (name);
1719 }
1720
1721 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1722 bfd. It'll be freed in free_objfile(). */
1723 xfree (name);
1724 name = absolute_name;
1725
1726 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1727 if (!sym_bfd)
1728 {
1729 close (desc);
1730 make_cleanup (xfree, name);
1731 error (_("`%s': can't open to read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733 }
1734 bfd_set_cacheable (sym_bfd, 1);
1735
1736 if (!bfd_check_format (sym_bfd, bfd_object))
1737 {
1738 /* FIXME: should be checking for errors from bfd_close (for one
1739 thing, on error it does not free all the storage associated
1740 with the bfd). */
1741 bfd_close (sym_bfd); /* This also closes desc. */
1742 make_cleanup (xfree, name);
1743 error (_("`%s': can't read symbols: %s."), name,
1744 bfd_errmsg (bfd_get_error ()));
1745 }
1746
1747 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1748 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1749
1750 return sym_bfd;
1751}
1752
1753/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1754 the section was not found. */
1755
1756int
1757get_section_index (struct objfile *objfile, char *section_name)
1758{
1759 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1760
1761 if (sect)
1762 return sect->index;
1763 else
1764 return -1;
1765}
1766
1767/* Link SF into the global symtab_fns list. Called on startup by the
1768 _initialize routine in each object file format reader, to register
1769 information about each format the reader is prepared to handle. */
1770
1771void
1772add_symtab_fns (const struct sym_fns *sf)
1773{
1774 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1775}
1776
1777/* Initialize OBJFILE to read symbols from its associated BFD. It
1778 either returns or calls error(). The result is an initialized
1779 struct sym_fns in the objfile structure, that contains cached
1780 information about the symbol file. */
1781
1782static const struct sym_fns *
1783find_sym_fns (bfd *abfd)
1784{
1785 const struct sym_fns *sf;
1786 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1787 int i;
1788
1789 if (our_flavour == bfd_target_srec_flavour
1790 || our_flavour == bfd_target_ihex_flavour
1791 || our_flavour == bfd_target_tekhex_flavour)
1792 return NULL; /* No symbols. */
1793
1794 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1795 if (our_flavour == sf->sym_flavour)
1796 return sf;
1797
1798 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1799 bfd_get_target (abfd));
1800}
1801\f
1802
1803/* This function runs the load command of our current target. */
1804
1805static void
1806load_command (char *arg, int from_tty)
1807{
1808 dont_repeat ();
1809
1810 /* The user might be reloading because the binary has changed. Take
1811 this opportunity to check. */
1812 reopen_exec_file ();
1813 reread_symbols ();
1814
1815 if (arg == NULL)
1816 {
1817 char *parg;
1818 int count = 0;
1819
1820 parg = arg = get_exec_file (1);
1821
1822 /* Count how many \ " ' tab space there are in the name. */
1823 while ((parg = strpbrk (parg, "\\\"'\t ")))
1824 {
1825 parg++;
1826 count++;
1827 }
1828
1829 if (count)
1830 {
1831 /* We need to quote this string so buildargv can pull it apart. */
1832 char *temp = xmalloc (strlen (arg) + count + 1 );
1833 char *ptemp = temp;
1834 char *prev;
1835
1836 make_cleanup (xfree, temp);
1837
1838 prev = parg = arg;
1839 while ((parg = strpbrk (parg, "\\\"'\t ")))
1840 {
1841 strncpy (ptemp, prev, parg - prev);
1842 ptemp += parg - prev;
1843 prev = parg++;
1844 *ptemp++ = '\\';
1845 }
1846 strcpy (ptemp, prev);
1847
1848 arg = temp;
1849 }
1850 }
1851
1852 target_load (arg, from_tty);
1853
1854 /* After re-loading the executable, we don't really know which
1855 overlays are mapped any more. */
1856 overlay_cache_invalid = 1;
1857}
1858
1859/* This version of "load" should be usable for any target. Currently
1860 it is just used for remote targets, not inftarg.c or core files,
1861 on the theory that only in that case is it useful.
1862
1863 Avoiding xmodem and the like seems like a win (a) because we don't have
1864 to worry about finding it, and (b) On VMS, fork() is very slow and so
1865 we don't want to run a subprocess. On the other hand, I'm not sure how
1866 performance compares. */
1867
1868static int validate_download = 0;
1869
1870/* Callback service function for generic_load (bfd_map_over_sections). */
1871
1872static void
1873add_section_size_callback (bfd *abfd, asection *asec, void *data)
1874{
1875 bfd_size_type *sum = data;
1876
1877 *sum += bfd_get_section_size (asec);
1878}
1879
1880/* Opaque data for load_section_callback. */
1881struct load_section_data {
1882 unsigned long load_offset;
1883 struct load_progress_data *progress_data;
1884 VEC(memory_write_request_s) *requests;
1885};
1886
1887/* Opaque data for load_progress. */
1888struct load_progress_data {
1889 /* Cumulative data. */
1890 unsigned long write_count;
1891 unsigned long data_count;
1892 bfd_size_type total_size;
1893};
1894
1895/* Opaque data for load_progress for a single section. */
1896struct load_progress_section_data {
1897 struct load_progress_data *cumulative;
1898
1899 /* Per-section data. */
1900 const char *section_name;
1901 ULONGEST section_sent;
1902 ULONGEST section_size;
1903 CORE_ADDR lma;
1904 gdb_byte *buffer;
1905};
1906
1907/* Target write callback routine for progress reporting. */
1908
1909static void
1910load_progress (ULONGEST bytes, void *untyped_arg)
1911{
1912 struct load_progress_section_data *args = untyped_arg;
1913 struct load_progress_data *totals;
1914
1915 if (args == NULL)
1916 /* Writing padding data. No easy way to get at the cumulative
1917 stats, so just ignore this. */
1918 return;
1919
1920 totals = args->cumulative;
1921
1922 if (bytes == 0 && args->section_sent == 0)
1923 {
1924 /* The write is just starting. Let the user know we've started
1925 this section. */
1926 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1927 args->section_name, hex_string (args->section_size),
1928 paddress (target_gdbarch, args->lma));
1929 return;
1930 }
1931
1932 if (validate_download)
1933 {
1934 /* Broken memories and broken monitors manifest themselves here
1935 when bring new computers to life. This doubles already slow
1936 downloads. */
1937 /* NOTE: cagney/1999-10-18: A more efficient implementation
1938 might add a verify_memory() method to the target vector and
1939 then use that. remote.c could implement that method using
1940 the ``qCRC'' packet. */
1941 gdb_byte *check = xmalloc (bytes);
1942 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1943
1944 if (target_read_memory (args->lma, check, bytes) != 0)
1945 error (_("Download verify read failed at %s"),
1946 paddress (target_gdbarch, args->lma));
1947 if (memcmp (args->buffer, check, bytes) != 0)
1948 error (_("Download verify compare failed at %s"),
1949 paddress (target_gdbarch, args->lma));
1950 do_cleanups (verify_cleanups);
1951 }
1952 totals->data_count += bytes;
1953 args->lma += bytes;
1954 args->buffer += bytes;
1955 totals->write_count += 1;
1956 args->section_sent += bytes;
1957 if (quit_flag
1958 || (deprecated_ui_load_progress_hook != NULL
1959 && deprecated_ui_load_progress_hook (args->section_name,
1960 args->section_sent)))
1961 error (_("Canceled the download"));
1962
1963 if (deprecated_show_load_progress != NULL)
1964 deprecated_show_load_progress (args->section_name,
1965 args->section_sent,
1966 args->section_size,
1967 totals->data_count,
1968 totals->total_size);
1969}
1970
1971/* Callback service function for generic_load (bfd_map_over_sections). */
1972
1973static void
1974load_section_callback (bfd *abfd, asection *asec, void *data)
1975{
1976 struct memory_write_request *new_request;
1977 struct load_section_data *args = data;
1978 struct load_progress_section_data *section_data;
1979 bfd_size_type size = bfd_get_section_size (asec);
1980 gdb_byte *buffer;
1981 const char *sect_name = bfd_get_section_name (abfd, asec);
1982
1983 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1984 return;
1985
1986 if (size == 0)
1987 return;
1988
1989 new_request = VEC_safe_push (memory_write_request_s,
1990 args->requests, NULL);
1991 memset (new_request, 0, sizeof (struct memory_write_request));
1992 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1993 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1994 new_request->end = new_request->begin + size; /* FIXME Should size
1995 be in instead? */
1996 new_request->data = xmalloc (size);
1997 new_request->baton = section_data;
1998
1999 buffer = new_request->data;
2000
2001 section_data->cumulative = args->progress_data;
2002 section_data->section_name = sect_name;
2003 section_data->section_size = size;
2004 section_data->lma = new_request->begin;
2005 section_data->buffer = buffer;
2006
2007 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2008}
2009
2010/* Clean up an entire memory request vector, including load
2011 data and progress records. */
2012
2013static void
2014clear_memory_write_data (void *arg)
2015{
2016 VEC(memory_write_request_s) **vec_p = arg;
2017 VEC(memory_write_request_s) *vec = *vec_p;
2018 int i;
2019 struct memory_write_request *mr;
2020
2021 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2022 {
2023 xfree (mr->data);
2024 xfree (mr->baton);
2025 }
2026 VEC_free (memory_write_request_s, vec);
2027}
2028
2029void
2030generic_load (char *args, int from_tty)
2031{
2032 bfd *loadfile_bfd;
2033 struct timeval start_time, end_time;
2034 char *filename;
2035 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2036 struct load_section_data cbdata;
2037 struct load_progress_data total_progress;
2038 struct ui_out *uiout = current_uiout;
2039
2040 CORE_ADDR entry;
2041 char **argv;
2042
2043 memset (&cbdata, 0, sizeof (cbdata));
2044 memset (&total_progress, 0, sizeof (total_progress));
2045 cbdata.progress_data = &total_progress;
2046
2047 make_cleanup (clear_memory_write_data, &cbdata.requests);
2048
2049 if (args == NULL)
2050 error_no_arg (_("file to load"));
2051
2052 argv = gdb_buildargv (args);
2053 make_cleanup_freeargv (argv);
2054
2055 filename = tilde_expand (argv[0]);
2056 make_cleanup (xfree, filename);
2057
2058 if (argv[1] != NULL)
2059 {
2060 char *endptr;
2061
2062 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2063
2064 /* If the last word was not a valid number then
2065 treat it as a file name with spaces in. */
2066 if (argv[1] == endptr)
2067 error (_("Invalid download offset:%s."), argv[1]);
2068
2069 if (argv[2] != NULL)
2070 error (_("Too many parameters."));
2071 }
2072
2073 /* Open the file for loading. */
2074 loadfile_bfd = bfd_openr (filename, gnutarget);
2075 if (loadfile_bfd == NULL)
2076 {
2077 perror_with_name (filename);
2078 return;
2079 }
2080
2081 /* FIXME: should be checking for errors from bfd_close (for one thing,
2082 on error it does not free all the storage associated with the
2083 bfd). */
2084 make_cleanup_bfd_close (loadfile_bfd);
2085
2086 if (!bfd_check_format (loadfile_bfd, bfd_object))
2087 {
2088 error (_("\"%s\" is not an object file: %s"), filename,
2089 bfd_errmsg (bfd_get_error ()));
2090 }
2091
2092 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2093 (void *) &total_progress.total_size);
2094
2095 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2096
2097 gettimeofday (&start_time, NULL);
2098
2099 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2100 load_progress) != 0)
2101 error (_("Load failed"));
2102
2103 gettimeofday (&end_time, NULL);
2104
2105 entry = bfd_get_start_address (loadfile_bfd);
2106 ui_out_text (uiout, "Start address ");
2107 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2108 ui_out_text (uiout, ", load size ");
2109 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2110 ui_out_text (uiout, "\n");
2111 /* We were doing this in remote-mips.c, I suspect it is right
2112 for other targets too. */
2113 regcache_write_pc (get_current_regcache (), entry);
2114
2115 /* Reset breakpoints, now that we have changed the load image. For
2116 instance, breakpoints may have been set (or reset, by
2117 post_create_inferior) while connected to the target but before we
2118 loaded the program. In that case, the prologue analyzer could
2119 have read instructions from the target to find the right
2120 breakpoint locations. Loading has changed the contents of that
2121 memory. */
2122
2123 breakpoint_re_set ();
2124
2125 /* FIXME: are we supposed to call symbol_file_add or not? According
2126 to a comment from remote-mips.c (where a call to symbol_file_add
2127 was commented out), making the call confuses GDB if more than one
2128 file is loaded in. Some targets do (e.g., remote-vx.c) but
2129 others don't (or didn't - perhaps they have all been deleted). */
2130
2131 print_transfer_performance (gdb_stdout, total_progress.data_count,
2132 total_progress.write_count,
2133 &start_time, &end_time);
2134
2135 do_cleanups (old_cleanups);
2136}
2137
2138/* Report how fast the transfer went. */
2139
2140/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2141 replaced by print_transfer_performance (with a very different
2142 function signature). */
2143
2144void
2145report_transfer_performance (unsigned long data_count, time_t start_time,
2146 time_t end_time)
2147{
2148 struct timeval start, end;
2149
2150 start.tv_sec = start_time;
2151 start.tv_usec = 0;
2152 end.tv_sec = end_time;
2153 end.tv_usec = 0;
2154
2155 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2156}
2157
2158void
2159print_transfer_performance (struct ui_file *stream,
2160 unsigned long data_count,
2161 unsigned long write_count,
2162 const struct timeval *start_time,
2163 const struct timeval *end_time)
2164{
2165 ULONGEST time_count;
2166 struct ui_out *uiout = current_uiout;
2167
2168 /* Compute the elapsed time in milliseconds, as a tradeoff between
2169 accuracy and overflow. */
2170 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2171 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2172
2173 ui_out_text (uiout, "Transfer rate: ");
2174 if (time_count > 0)
2175 {
2176 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2177
2178 if (ui_out_is_mi_like_p (uiout))
2179 {
2180 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2181 ui_out_text (uiout, " bits/sec");
2182 }
2183 else if (rate < 1024)
2184 {
2185 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2186 ui_out_text (uiout, " bytes/sec");
2187 }
2188 else
2189 {
2190 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2191 ui_out_text (uiout, " KB/sec");
2192 }
2193 }
2194 else
2195 {
2196 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2197 ui_out_text (uiout, " bits in <1 sec");
2198 }
2199 if (write_count > 0)
2200 {
2201 ui_out_text (uiout, ", ");
2202 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2203 ui_out_text (uiout, " bytes/write");
2204 }
2205 ui_out_text (uiout, ".\n");
2206}
2207
2208/* This function allows the addition of incrementally linked object files.
2209 It does not modify any state in the target, only in the debugger. */
2210/* Note: ezannoni 2000-04-13 This function/command used to have a
2211 special case syntax for the rombug target (Rombug is the boot
2212 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2213 rombug case, the user doesn't need to supply a text address,
2214 instead a call to target_link() (in target.c) would supply the
2215 value to use. We are now discontinuing this type of ad hoc syntax. */
2216
2217static void
2218add_symbol_file_command (char *args, int from_tty)
2219{
2220 struct gdbarch *gdbarch = get_current_arch ();
2221 char *filename = NULL;
2222 int flags = OBJF_USERLOADED;
2223 char *arg;
2224 int section_index = 0;
2225 int argcnt = 0;
2226 int sec_num = 0;
2227 int i;
2228 int expecting_sec_name = 0;
2229 int expecting_sec_addr = 0;
2230 char **argv;
2231
2232 struct sect_opt
2233 {
2234 char *name;
2235 char *value;
2236 };
2237
2238 struct section_addr_info *section_addrs;
2239 struct sect_opt *sect_opts = NULL;
2240 size_t num_sect_opts = 0;
2241 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2242
2243 num_sect_opts = 16;
2244 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2245 * sizeof (struct sect_opt));
2246
2247 dont_repeat ();
2248
2249 if (args == NULL)
2250 error (_("add-symbol-file takes a file name and an address"));
2251
2252 argv = gdb_buildargv (args);
2253 make_cleanup_freeargv (argv);
2254
2255 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2256 {
2257 /* Process the argument. */
2258 if (argcnt == 0)
2259 {
2260 /* The first argument is the file name. */
2261 filename = tilde_expand (arg);
2262 make_cleanup (xfree, filename);
2263 }
2264 else
2265 if (argcnt == 1)
2266 {
2267 /* The second argument is always the text address at which
2268 to load the program. */
2269 sect_opts[section_index].name = ".text";
2270 sect_opts[section_index].value = arg;
2271 if (++section_index >= num_sect_opts)
2272 {
2273 num_sect_opts *= 2;
2274 sect_opts = ((struct sect_opt *)
2275 xrealloc (sect_opts,
2276 num_sect_opts
2277 * sizeof (struct sect_opt)));
2278 }
2279 }
2280 else
2281 {
2282 /* It's an option (starting with '-') or it's an argument
2283 to an option. */
2284
2285 if (*arg == '-')
2286 {
2287 if (strcmp (arg, "-readnow") == 0)
2288 flags |= OBJF_READNOW;
2289 else if (strcmp (arg, "-s") == 0)
2290 {
2291 expecting_sec_name = 1;
2292 expecting_sec_addr = 1;
2293 }
2294 }
2295 else
2296 {
2297 if (expecting_sec_name)
2298 {
2299 sect_opts[section_index].name = arg;
2300 expecting_sec_name = 0;
2301 }
2302 else
2303 if (expecting_sec_addr)
2304 {
2305 sect_opts[section_index].value = arg;
2306 expecting_sec_addr = 0;
2307 if (++section_index >= num_sect_opts)
2308 {
2309 num_sect_opts *= 2;
2310 sect_opts = ((struct sect_opt *)
2311 xrealloc (sect_opts,
2312 num_sect_opts
2313 * sizeof (struct sect_opt)));
2314 }
2315 }
2316 else
2317 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2318 " [-readnow] [-s <secname> <addr>]*"));
2319 }
2320 }
2321 }
2322
2323 /* This command takes at least two arguments. The first one is a
2324 filename, and the second is the address where this file has been
2325 loaded. Abort now if this address hasn't been provided by the
2326 user. */
2327 if (section_index < 1)
2328 error (_("The address where %s has been loaded is missing"), filename);
2329
2330 /* Print the prompt for the query below. And save the arguments into
2331 a sect_addr_info structure to be passed around to other
2332 functions. We have to split this up into separate print
2333 statements because hex_string returns a local static
2334 string. */
2335
2336 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2337 section_addrs = alloc_section_addr_info (section_index);
2338 make_cleanup (xfree, section_addrs);
2339 for (i = 0; i < section_index; i++)
2340 {
2341 CORE_ADDR addr;
2342 char *val = sect_opts[i].value;
2343 char *sec = sect_opts[i].name;
2344
2345 addr = parse_and_eval_address (val);
2346
2347 /* Here we store the section offsets in the order they were
2348 entered on the command line. */
2349 section_addrs->other[sec_num].name = sec;
2350 section_addrs->other[sec_num].addr = addr;
2351 printf_unfiltered ("\t%s_addr = %s\n", sec,
2352 paddress (gdbarch, addr));
2353 sec_num++;
2354
2355 /* The object's sections are initialized when a
2356 call is made to build_objfile_section_table (objfile).
2357 This happens in reread_symbols.
2358 At this point, we don't know what file type this is,
2359 so we can't determine what section names are valid. */
2360 }
2361
2362 if (from_tty && (!query ("%s", "")))
2363 error (_("Not confirmed."));
2364
2365 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2366 section_addrs, flags);
2367
2368 /* Getting new symbols may change our opinion about what is
2369 frameless. */
2370 reinit_frame_cache ();
2371 do_cleanups (my_cleanups);
2372}
2373\f
2374
2375/* Re-read symbols if a symbol-file has changed. */
2376void
2377reread_symbols (void)
2378{
2379 struct objfile *objfile;
2380 long new_modtime;
2381 int reread_one = 0;
2382 struct stat new_statbuf;
2383 int res;
2384
2385 /* With the addition of shared libraries, this should be modified,
2386 the load time should be saved in the partial symbol tables, since
2387 different tables may come from different source files. FIXME.
2388 This routine should then walk down each partial symbol table
2389 and see if the symbol table that it originates from has been changed. */
2390
2391 for (objfile = object_files; objfile; objfile = objfile->next)
2392 {
2393 /* solib-sunos.c creates one objfile with obfd. */
2394 if (objfile->obfd == NULL)
2395 continue;
2396
2397 /* Separate debug objfiles are handled in the main objfile. */
2398 if (objfile->separate_debug_objfile_backlink)
2399 continue;
2400
2401 /* If this object is from an archive (what you usually create with
2402 `ar', often called a `static library' on most systems, though
2403 a `shared library' on AIX is also an archive), then you should
2404 stat on the archive name, not member name. */
2405 if (objfile->obfd->my_archive)
2406 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2407 else
2408 res = stat (objfile->name, &new_statbuf);
2409 if (res != 0)
2410 {
2411 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2412 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2413 objfile->name);
2414 continue;
2415 }
2416 new_modtime = new_statbuf.st_mtime;
2417 if (new_modtime != objfile->mtime)
2418 {
2419 struct cleanup *old_cleanups;
2420 struct section_offsets *offsets;
2421 int num_offsets;
2422 char *obfd_filename;
2423
2424 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2425 objfile->name);
2426
2427 /* There are various functions like symbol_file_add,
2428 symfile_bfd_open, syms_from_objfile, etc., which might
2429 appear to do what we want. But they have various other
2430 effects which we *don't* want. So we just do stuff
2431 ourselves. We don't worry about mapped files (for one thing,
2432 any mapped file will be out of date). */
2433
2434 /* If we get an error, blow away this objfile (not sure if
2435 that is the correct response for things like shared
2436 libraries). */
2437 old_cleanups = make_cleanup_free_objfile (objfile);
2438 /* We need to do this whenever any symbols go away. */
2439 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2440
2441 if (exec_bfd != NULL
2442 && filename_cmp (bfd_get_filename (objfile->obfd),
2443 bfd_get_filename (exec_bfd)) == 0)
2444 {
2445 /* Reload EXEC_BFD without asking anything. */
2446
2447 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2448 }
2449
2450 /* Clean up any state BFD has sitting around. We don't need
2451 to close the descriptor but BFD lacks a way of closing the
2452 BFD without closing the descriptor. */
2453 obfd_filename = bfd_get_filename (objfile->obfd);
2454 if (!bfd_close (objfile->obfd))
2455 error (_("Can't close BFD for %s: %s"), objfile->name,
2456 bfd_errmsg (bfd_get_error ()));
2457 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2458 if (objfile->obfd == NULL)
2459 error (_("Can't open %s to read symbols."), objfile->name);
2460 else
2461 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2462 /* bfd_openr sets cacheable to true, which is what we want. */
2463 if (!bfd_check_format (objfile->obfd, bfd_object))
2464 error (_("Can't read symbols from %s: %s."), objfile->name,
2465 bfd_errmsg (bfd_get_error ()));
2466
2467 /* Save the offsets, we will nuke them with the rest of the
2468 objfile_obstack. */
2469 num_offsets = objfile->num_sections;
2470 offsets = ((struct section_offsets *)
2471 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2472 memcpy (offsets, objfile->section_offsets,
2473 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2474
2475 /* Remove any references to this objfile in the global
2476 value lists. */
2477 preserve_values (objfile);
2478
2479 /* Nuke all the state that we will re-read. Much of the following
2480 code which sets things to NULL really is necessary to tell
2481 other parts of GDB that there is nothing currently there.
2482
2483 Try to keep the freeing order compatible with free_objfile. */
2484
2485 if (objfile->sf != NULL)
2486 {
2487 (*objfile->sf->sym_finish) (objfile);
2488 }
2489
2490 clear_objfile_data (objfile);
2491
2492 /* Free the separate debug objfiles. It will be
2493 automatically recreated by sym_read. */
2494 free_objfile_separate_debug (objfile);
2495
2496 /* FIXME: Do we have to free a whole linked list, or is this
2497 enough? */
2498 if (objfile->global_psymbols.list)
2499 xfree (objfile->global_psymbols.list);
2500 memset (&objfile->global_psymbols, 0,
2501 sizeof (objfile->global_psymbols));
2502 if (objfile->static_psymbols.list)
2503 xfree (objfile->static_psymbols.list);
2504 memset (&objfile->static_psymbols, 0,
2505 sizeof (objfile->static_psymbols));
2506
2507 /* Free the obstacks for non-reusable objfiles. */
2508 psymbol_bcache_free (objfile->psymbol_cache);
2509 objfile->psymbol_cache = psymbol_bcache_init ();
2510 bcache_xfree (objfile->macro_cache);
2511 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2512 bcache_xfree (objfile->filename_cache);
2513 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2514 if (objfile->demangled_names_hash != NULL)
2515 {
2516 htab_delete (objfile->demangled_names_hash);
2517 objfile->demangled_names_hash = NULL;
2518 }
2519 obstack_free (&objfile->objfile_obstack, 0);
2520 objfile->sections = NULL;
2521 objfile->symtabs = NULL;
2522 objfile->psymtabs = NULL;
2523 objfile->psymtabs_addrmap = NULL;
2524 objfile->free_psymtabs = NULL;
2525 objfile->template_symbols = NULL;
2526 objfile->msymbols = NULL;
2527 objfile->deprecated_sym_private = NULL;
2528 objfile->minimal_symbol_count = 0;
2529 memset (&objfile->msymbol_hash, 0,
2530 sizeof (objfile->msymbol_hash));
2531 memset (&objfile->msymbol_demangled_hash, 0,
2532 sizeof (objfile->msymbol_demangled_hash));
2533
2534 /* obstack_init also initializes the obstack so it is
2535 empty. We could use obstack_specify_allocation but
2536 gdb_obstack.h specifies the alloc/dealloc
2537 functions. */
2538 obstack_init (&objfile->objfile_obstack);
2539 if (build_objfile_section_table (objfile))
2540 {
2541 error (_("Can't find the file sections in `%s': %s"),
2542 objfile->name, bfd_errmsg (bfd_get_error ()));
2543 }
2544 terminate_minimal_symbol_table (objfile);
2545
2546 /* We use the same section offsets as from last time. I'm not
2547 sure whether that is always correct for shared libraries. */
2548 objfile->section_offsets = (struct section_offsets *)
2549 obstack_alloc (&objfile->objfile_obstack,
2550 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2551 memcpy (objfile->section_offsets, offsets,
2552 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2553 objfile->num_sections = num_offsets;
2554
2555 /* What the hell is sym_new_init for, anyway? The concept of
2556 distinguishing between the main file and additional files
2557 in this way seems rather dubious. */
2558 if (objfile == symfile_objfile)
2559 {
2560 (*objfile->sf->sym_new_init) (objfile);
2561 }
2562
2563 (*objfile->sf->sym_init) (objfile);
2564 clear_complaints (&symfile_complaints, 1, 1);
2565 /* Do not set flags as this is safe and we don't want to be
2566 verbose. */
2567 (*objfile->sf->sym_read) (objfile, 0);
2568 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2569 {
2570 objfile->flags &= ~OBJF_PSYMTABS_READ;
2571 require_partial_symbols (objfile, 0);
2572 }
2573
2574 if (!objfile_has_symbols (objfile))
2575 {
2576 wrap_here ("");
2577 printf_unfiltered (_("(no debugging symbols found)\n"));
2578 wrap_here ("");
2579 }
2580
2581 /* We're done reading the symbol file; finish off complaints. */
2582 clear_complaints (&symfile_complaints, 0, 1);
2583
2584 /* Getting new symbols may change our opinion about what is
2585 frameless. */
2586
2587 reinit_frame_cache ();
2588
2589 /* Discard cleanups as symbol reading was successful. */
2590 discard_cleanups (old_cleanups);
2591
2592 /* If the mtime has changed between the time we set new_modtime
2593 and now, we *want* this to be out of date, so don't call stat
2594 again now. */
2595 objfile->mtime = new_modtime;
2596 reread_one = 1;
2597 init_entry_point_info (objfile);
2598 }
2599 }
2600
2601 if (reread_one)
2602 {
2603 /* Notify objfiles that we've modified objfile sections. */
2604 objfiles_changed ();
2605
2606 clear_symtab_users (0);
2607 /* At least one objfile has changed, so we can consider that
2608 the executable we're debugging has changed too. */
2609 observer_notify_executable_changed ();
2610 }
2611}
2612\f
2613
2614
2615typedef struct
2616{
2617 char *ext;
2618 enum language lang;
2619}
2620filename_language;
2621
2622static filename_language *filename_language_table;
2623static int fl_table_size, fl_table_next;
2624
2625static void
2626add_filename_language (char *ext, enum language lang)
2627{
2628 if (fl_table_next >= fl_table_size)
2629 {
2630 fl_table_size += 10;
2631 filename_language_table =
2632 xrealloc (filename_language_table,
2633 fl_table_size * sizeof (*filename_language_table));
2634 }
2635
2636 filename_language_table[fl_table_next].ext = xstrdup (ext);
2637 filename_language_table[fl_table_next].lang = lang;
2638 fl_table_next++;
2639}
2640
2641static char *ext_args;
2642static void
2643show_ext_args (struct ui_file *file, int from_tty,
2644 struct cmd_list_element *c, const char *value)
2645{
2646 fprintf_filtered (file,
2647 _("Mapping between filename extension "
2648 "and source language is \"%s\".\n"),
2649 value);
2650}
2651
2652static void
2653set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2654{
2655 int i;
2656 char *cp = ext_args;
2657 enum language lang;
2658
2659 /* First arg is filename extension, starting with '.' */
2660 if (*cp != '.')
2661 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2662
2663 /* Find end of first arg. */
2664 while (*cp && !isspace (*cp))
2665 cp++;
2666
2667 if (*cp == '\0')
2668 error (_("'%s': two arguments required -- "
2669 "filename extension and language"),
2670 ext_args);
2671
2672 /* Null-terminate first arg. */
2673 *cp++ = '\0';
2674
2675 /* Find beginning of second arg, which should be a source language. */
2676 while (*cp && isspace (*cp))
2677 cp++;
2678
2679 if (*cp == '\0')
2680 error (_("'%s': two arguments required -- "
2681 "filename extension and language"),
2682 ext_args);
2683
2684 /* Lookup the language from among those we know. */
2685 lang = language_enum (cp);
2686
2687 /* Now lookup the filename extension: do we already know it? */
2688 for (i = 0; i < fl_table_next; i++)
2689 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2690 break;
2691
2692 if (i >= fl_table_next)
2693 {
2694 /* New file extension. */
2695 add_filename_language (ext_args, lang);
2696 }
2697 else
2698 {
2699 /* Redefining a previously known filename extension. */
2700
2701 /* if (from_tty) */
2702 /* query ("Really make files of type %s '%s'?", */
2703 /* ext_args, language_str (lang)); */
2704
2705 xfree (filename_language_table[i].ext);
2706 filename_language_table[i].ext = xstrdup (ext_args);
2707 filename_language_table[i].lang = lang;
2708 }
2709}
2710
2711static void
2712info_ext_lang_command (char *args, int from_tty)
2713{
2714 int i;
2715
2716 printf_filtered (_("Filename extensions and the languages they represent:"));
2717 printf_filtered ("\n\n");
2718 for (i = 0; i < fl_table_next; i++)
2719 printf_filtered ("\t%s\t- %s\n",
2720 filename_language_table[i].ext,
2721 language_str (filename_language_table[i].lang));
2722}
2723
2724static void
2725init_filename_language_table (void)
2726{
2727 if (fl_table_size == 0) /* Protect against repetition. */
2728 {
2729 fl_table_size = 20;
2730 fl_table_next = 0;
2731 filename_language_table =
2732 xmalloc (fl_table_size * sizeof (*filename_language_table));
2733 add_filename_language (".c", language_c);
2734 add_filename_language (".d", language_d);
2735 add_filename_language (".C", language_cplus);
2736 add_filename_language (".cc", language_cplus);
2737 add_filename_language (".cp", language_cplus);
2738 add_filename_language (".cpp", language_cplus);
2739 add_filename_language (".cxx", language_cplus);
2740 add_filename_language (".c++", language_cplus);
2741 add_filename_language (".java", language_java);
2742 add_filename_language (".class", language_java);
2743 add_filename_language (".m", language_objc);
2744 add_filename_language (".f", language_fortran);
2745 add_filename_language (".F", language_fortran);
2746 add_filename_language (".for", language_fortran);
2747 add_filename_language (".FOR", language_fortran);
2748 add_filename_language (".ftn", language_fortran);
2749 add_filename_language (".FTN", language_fortran);
2750 add_filename_language (".fpp", language_fortran);
2751 add_filename_language (".FPP", language_fortran);
2752 add_filename_language (".f90", language_fortran);
2753 add_filename_language (".F90", language_fortran);
2754 add_filename_language (".f95", language_fortran);
2755 add_filename_language (".F95", language_fortran);
2756 add_filename_language (".f03", language_fortran);
2757 add_filename_language (".F03", language_fortran);
2758 add_filename_language (".f08", language_fortran);
2759 add_filename_language (".F08", language_fortran);
2760 add_filename_language (".s", language_asm);
2761 add_filename_language (".sx", language_asm);
2762 add_filename_language (".S", language_asm);
2763 add_filename_language (".pas", language_pascal);
2764 add_filename_language (".p", language_pascal);
2765 add_filename_language (".pp", language_pascal);
2766 add_filename_language (".adb", language_ada);
2767 add_filename_language (".ads", language_ada);
2768 add_filename_language (".a", language_ada);
2769 add_filename_language (".ada", language_ada);
2770 add_filename_language (".dg", language_ada);
2771 }
2772}
2773
2774enum language
2775deduce_language_from_filename (const char *filename)
2776{
2777 int i;
2778 char *cp;
2779
2780 if (filename != NULL)
2781 if ((cp = strrchr (filename, '.')) != NULL)
2782 for (i = 0; i < fl_table_next; i++)
2783 if (strcmp (cp, filename_language_table[i].ext) == 0)
2784 return filename_language_table[i].lang;
2785
2786 return language_unknown;
2787}
2788\f
2789/* allocate_symtab:
2790
2791 Allocate and partly initialize a new symbol table. Return a pointer
2792 to it. error() if no space.
2793
2794 Caller must set these fields:
2795 LINETABLE(symtab)
2796 symtab->blockvector
2797 symtab->dirname
2798 symtab->free_code
2799 symtab->free_ptr
2800 */
2801
2802struct symtab *
2803allocate_symtab (const char *filename, struct objfile *objfile)
2804{
2805 struct symtab *symtab;
2806
2807 symtab = (struct symtab *)
2808 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2809 memset (symtab, 0, sizeof (*symtab));
2810 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2811 objfile->filename_cache);
2812 symtab->fullname = NULL;
2813 symtab->language = deduce_language_from_filename (filename);
2814 symtab->debugformat = "unknown";
2815
2816 /* Hook it to the objfile it comes from. */
2817
2818 symtab->objfile = objfile;
2819 symtab->next = objfile->symtabs;
2820 objfile->symtabs = symtab;
2821
2822 return (symtab);
2823}
2824\f
2825
2826/* Reset all data structures in gdb which may contain references to symbol
2827 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2828
2829void
2830clear_symtab_users (int add_flags)
2831{
2832 /* Someday, we should do better than this, by only blowing away
2833 the things that really need to be blown. */
2834
2835 /* Clear the "current" symtab first, because it is no longer valid.
2836 breakpoint_re_set may try to access the current symtab. */
2837 clear_current_source_symtab_and_line ();
2838
2839 clear_displays ();
2840 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2841 breakpoint_re_set ();
2842 set_default_breakpoint (0, NULL, 0, 0, 0);
2843 clear_pc_function_cache ();
2844 observer_notify_new_objfile (NULL);
2845
2846 /* Clear globals which might have pointed into a removed objfile.
2847 FIXME: It's not clear which of these are supposed to persist
2848 between expressions and which ought to be reset each time. */
2849 expression_context_block = NULL;
2850 innermost_block = NULL;
2851
2852 /* Varobj may refer to old symbols, perform a cleanup. */
2853 varobj_invalidate ();
2854
2855}
2856
2857static void
2858clear_symtab_users_cleanup (void *ignore)
2859{
2860 clear_symtab_users (0);
2861}
2862\f
2863/* OVERLAYS:
2864 The following code implements an abstraction for debugging overlay sections.
2865
2866 The target model is as follows:
2867 1) The gnu linker will permit multiple sections to be mapped into the
2868 same VMA, each with its own unique LMA (or load address).
2869 2) It is assumed that some runtime mechanism exists for mapping the
2870 sections, one by one, from the load address into the VMA address.
2871 3) This code provides a mechanism for gdb to keep track of which
2872 sections should be considered to be mapped from the VMA to the LMA.
2873 This information is used for symbol lookup, and memory read/write.
2874 For instance, if a section has been mapped then its contents
2875 should be read from the VMA, otherwise from the LMA.
2876
2877 Two levels of debugger support for overlays are available. One is
2878 "manual", in which the debugger relies on the user to tell it which
2879 overlays are currently mapped. This level of support is
2880 implemented entirely in the core debugger, and the information about
2881 whether a section is mapped is kept in the objfile->obj_section table.
2882
2883 The second level of support is "automatic", and is only available if
2884 the target-specific code provides functionality to read the target's
2885 overlay mapping table, and translate its contents for the debugger
2886 (by updating the mapped state information in the obj_section tables).
2887
2888 The interface is as follows:
2889 User commands:
2890 overlay map <name> -- tell gdb to consider this section mapped
2891 overlay unmap <name> -- tell gdb to consider this section unmapped
2892 overlay list -- list the sections that GDB thinks are mapped
2893 overlay read-target -- get the target's state of what's mapped
2894 overlay off/manual/auto -- set overlay debugging state
2895 Functional interface:
2896 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2897 section, return that section.
2898 find_pc_overlay(pc): find any overlay section that contains
2899 the pc, either in its VMA or its LMA
2900 section_is_mapped(sect): true if overlay is marked as mapped
2901 section_is_overlay(sect): true if section's VMA != LMA
2902 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2903 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2904 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2905 overlay_mapped_address(...): map an address from section's LMA to VMA
2906 overlay_unmapped_address(...): map an address from section's VMA to LMA
2907 symbol_overlayed_address(...): Return a "current" address for symbol:
2908 either in VMA or LMA depending on whether
2909 the symbol's section is currently mapped. */
2910
2911/* Overlay debugging state: */
2912
2913enum overlay_debugging_state overlay_debugging = ovly_off;
2914int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2915
2916/* Function: section_is_overlay (SECTION)
2917 Returns true if SECTION has VMA not equal to LMA, ie.
2918 SECTION is loaded at an address different from where it will "run". */
2919
2920int
2921section_is_overlay (struct obj_section *section)
2922{
2923 if (overlay_debugging && section)
2924 {
2925 bfd *abfd = section->objfile->obfd;
2926 asection *bfd_section = section->the_bfd_section;
2927
2928 if (bfd_section_lma (abfd, bfd_section) != 0
2929 && bfd_section_lma (abfd, bfd_section)
2930 != bfd_section_vma (abfd, bfd_section))
2931 return 1;
2932 }
2933
2934 return 0;
2935}
2936
2937/* Function: overlay_invalidate_all (void)
2938 Invalidate the mapped state of all overlay sections (mark it as stale). */
2939
2940static void
2941overlay_invalidate_all (void)
2942{
2943 struct objfile *objfile;
2944 struct obj_section *sect;
2945
2946 ALL_OBJSECTIONS (objfile, sect)
2947 if (section_is_overlay (sect))
2948 sect->ovly_mapped = -1;
2949}
2950
2951/* Function: section_is_mapped (SECTION)
2952 Returns true if section is an overlay, and is currently mapped.
2953
2954 Access to the ovly_mapped flag is restricted to this function, so
2955 that we can do automatic update. If the global flag
2956 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2957 overlay_invalidate_all. If the mapped state of the particular
2958 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2959
2960int
2961section_is_mapped (struct obj_section *osect)
2962{
2963 struct gdbarch *gdbarch;
2964
2965 if (osect == 0 || !section_is_overlay (osect))
2966 return 0;
2967
2968 switch (overlay_debugging)
2969 {
2970 default:
2971 case ovly_off:
2972 return 0; /* overlay debugging off */
2973 case ovly_auto: /* overlay debugging automatic */
2974 /* Unles there is a gdbarch_overlay_update function,
2975 there's really nothing useful to do here (can't really go auto). */
2976 gdbarch = get_objfile_arch (osect->objfile);
2977 if (gdbarch_overlay_update_p (gdbarch))
2978 {
2979 if (overlay_cache_invalid)
2980 {
2981 overlay_invalidate_all ();
2982 overlay_cache_invalid = 0;
2983 }
2984 if (osect->ovly_mapped == -1)
2985 gdbarch_overlay_update (gdbarch, osect);
2986 }
2987 /* fall thru to manual case */
2988 case ovly_on: /* overlay debugging manual */
2989 return osect->ovly_mapped == 1;
2990 }
2991}
2992
2993/* Function: pc_in_unmapped_range
2994 If PC falls into the lma range of SECTION, return true, else false. */
2995
2996CORE_ADDR
2997pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2998{
2999 if (section_is_overlay (section))
3000 {
3001 bfd *abfd = section->objfile->obfd;
3002 asection *bfd_section = section->the_bfd_section;
3003
3004 /* We assume the LMA is relocated by the same offset as the VMA. */
3005 bfd_vma size = bfd_get_section_size (bfd_section);
3006 CORE_ADDR offset = obj_section_offset (section);
3007
3008 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3009 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3010 return 1;
3011 }
3012
3013 return 0;
3014}
3015
3016/* Function: pc_in_mapped_range
3017 If PC falls into the vma range of SECTION, return true, else false. */
3018
3019CORE_ADDR
3020pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3021{
3022 if (section_is_overlay (section))
3023 {
3024 if (obj_section_addr (section) <= pc
3025 && pc < obj_section_endaddr (section))
3026 return 1;
3027 }
3028
3029 return 0;
3030}
3031
3032
3033/* Return true if the mapped ranges of sections A and B overlap, false
3034 otherwise. */
3035static int
3036sections_overlap (struct obj_section *a, struct obj_section *b)
3037{
3038 CORE_ADDR a_start = obj_section_addr (a);
3039 CORE_ADDR a_end = obj_section_endaddr (a);
3040 CORE_ADDR b_start = obj_section_addr (b);
3041 CORE_ADDR b_end = obj_section_endaddr (b);
3042
3043 return (a_start < b_end && b_start < a_end);
3044}
3045
3046/* Function: overlay_unmapped_address (PC, SECTION)
3047 Returns the address corresponding to PC in the unmapped (load) range.
3048 May be the same as PC. */
3049
3050CORE_ADDR
3051overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3052{
3053 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3054 {
3055 bfd *abfd = section->objfile->obfd;
3056 asection *bfd_section = section->the_bfd_section;
3057
3058 return pc + bfd_section_lma (abfd, bfd_section)
3059 - bfd_section_vma (abfd, bfd_section);
3060 }
3061
3062 return pc;
3063}
3064
3065/* Function: overlay_mapped_address (PC, SECTION)
3066 Returns the address corresponding to PC in the mapped (runtime) range.
3067 May be the same as PC. */
3068
3069CORE_ADDR
3070overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3071{
3072 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3073 {
3074 bfd *abfd = section->objfile->obfd;
3075 asection *bfd_section = section->the_bfd_section;
3076
3077 return pc + bfd_section_vma (abfd, bfd_section)
3078 - bfd_section_lma (abfd, bfd_section);
3079 }
3080
3081 return pc;
3082}
3083
3084
3085/* Function: symbol_overlayed_address
3086 Return one of two addresses (relative to the VMA or to the LMA),
3087 depending on whether the section is mapped or not. */
3088
3089CORE_ADDR
3090symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3091{
3092 if (overlay_debugging)
3093 {
3094 /* If the symbol has no section, just return its regular address. */
3095 if (section == 0)
3096 return address;
3097 /* If the symbol's section is not an overlay, just return its
3098 address. */
3099 if (!section_is_overlay (section))
3100 return address;
3101 /* If the symbol's section is mapped, just return its address. */
3102 if (section_is_mapped (section))
3103 return address;
3104 /*
3105 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3106 * then return its LOADED address rather than its vma address!!
3107 */
3108 return overlay_unmapped_address (address, section);
3109 }
3110 return address;
3111}
3112
3113/* Function: find_pc_overlay (PC)
3114 Return the best-match overlay section for PC:
3115 If PC matches a mapped overlay section's VMA, return that section.
3116 Else if PC matches an unmapped section's VMA, return that section.
3117 Else if PC matches an unmapped section's LMA, return that section. */
3118
3119struct obj_section *
3120find_pc_overlay (CORE_ADDR pc)
3121{
3122 struct objfile *objfile;
3123 struct obj_section *osect, *best_match = NULL;
3124
3125 if (overlay_debugging)
3126 ALL_OBJSECTIONS (objfile, osect)
3127 if (section_is_overlay (osect))
3128 {
3129 if (pc_in_mapped_range (pc, osect))
3130 {
3131 if (section_is_mapped (osect))
3132 return osect;
3133 else
3134 best_match = osect;
3135 }
3136 else if (pc_in_unmapped_range (pc, osect))
3137 best_match = osect;
3138 }
3139 return best_match;
3140}
3141
3142/* Function: find_pc_mapped_section (PC)
3143 If PC falls into the VMA address range of an overlay section that is
3144 currently marked as MAPPED, return that section. Else return NULL. */
3145
3146struct obj_section *
3147find_pc_mapped_section (CORE_ADDR pc)
3148{
3149 struct objfile *objfile;
3150 struct obj_section *osect;
3151
3152 if (overlay_debugging)
3153 ALL_OBJSECTIONS (objfile, osect)
3154 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3155 return osect;
3156
3157 return NULL;
3158}
3159
3160/* Function: list_overlays_command
3161 Print a list of mapped sections and their PC ranges. */
3162
3163void
3164list_overlays_command (char *args, int from_tty)
3165{
3166 int nmapped = 0;
3167 struct objfile *objfile;
3168 struct obj_section *osect;
3169
3170 if (overlay_debugging)
3171 ALL_OBJSECTIONS (objfile, osect)
3172 if (section_is_mapped (osect))
3173 {
3174 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3175 const char *name;
3176 bfd_vma lma, vma;
3177 int size;
3178
3179 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3180 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3181 size = bfd_get_section_size (osect->the_bfd_section);
3182 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3183
3184 printf_filtered ("Section %s, loaded at ", name);
3185 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3186 puts_filtered (" - ");
3187 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3188 printf_filtered (", mapped at ");
3189 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3190 puts_filtered (" - ");
3191 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3192 puts_filtered ("\n");
3193
3194 nmapped++;
3195 }
3196 if (nmapped == 0)
3197 printf_filtered (_("No sections are mapped.\n"));
3198}
3199
3200/* Function: map_overlay_command
3201 Mark the named section as mapped (ie. residing at its VMA address). */
3202
3203void
3204map_overlay_command (char *args, int from_tty)
3205{
3206 struct objfile *objfile, *objfile2;
3207 struct obj_section *sec, *sec2;
3208
3209 if (!overlay_debugging)
3210 error (_("Overlay debugging not enabled. Use "
3211 "either the 'overlay auto' or\n"
3212 "the 'overlay manual' command."));
3213
3214 if (args == 0 || *args == 0)
3215 error (_("Argument required: name of an overlay section"));
3216
3217 /* First, find a section matching the user supplied argument. */
3218 ALL_OBJSECTIONS (objfile, sec)
3219 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3220 {
3221 /* Now, check to see if the section is an overlay. */
3222 if (!section_is_overlay (sec))
3223 continue; /* not an overlay section */
3224
3225 /* Mark the overlay as "mapped". */
3226 sec->ovly_mapped = 1;
3227
3228 /* Next, make a pass and unmap any sections that are
3229 overlapped by this new section: */
3230 ALL_OBJSECTIONS (objfile2, sec2)
3231 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3232 {
3233 if (info_verbose)
3234 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3235 bfd_section_name (objfile->obfd,
3236 sec2->the_bfd_section));
3237 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3238 }
3239 return;
3240 }
3241 error (_("No overlay section called %s"), args);
3242}
3243
3244/* Function: unmap_overlay_command
3245 Mark the overlay section as unmapped
3246 (ie. resident in its LMA address range, rather than the VMA range). */
3247
3248void
3249unmap_overlay_command (char *args, int from_tty)
3250{
3251 struct objfile *objfile;
3252 struct obj_section *sec;
3253
3254 if (!overlay_debugging)
3255 error (_("Overlay debugging not enabled. "
3256 "Use either the 'overlay auto' or\n"
3257 "the 'overlay manual' command."));
3258
3259 if (args == 0 || *args == 0)
3260 error (_("Argument required: name of an overlay section"));
3261
3262 /* First, find a section matching the user supplied argument. */
3263 ALL_OBJSECTIONS (objfile, sec)
3264 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3265 {
3266 if (!sec->ovly_mapped)
3267 error (_("Section %s is not mapped"), args);
3268 sec->ovly_mapped = 0;
3269 return;
3270 }
3271 error (_("No overlay section called %s"), args);
3272}
3273
3274/* Function: overlay_auto_command
3275 A utility command to turn on overlay debugging.
3276 Possibly this should be done via a set/show command. */
3277
3278static void
3279overlay_auto_command (char *args, int from_tty)
3280{
3281 overlay_debugging = ovly_auto;
3282 enable_overlay_breakpoints ();
3283 if (info_verbose)
3284 printf_unfiltered (_("Automatic overlay debugging enabled."));
3285}
3286
3287/* Function: overlay_manual_command
3288 A utility command to turn on overlay debugging.
3289 Possibly this should be done via a set/show command. */
3290
3291static void
3292overlay_manual_command (char *args, int from_tty)
3293{
3294 overlay_debugging = ovly_on;
3295 disable_overlay_breakpoints ();
3296 if (info_verbose)
3297 printf_unfiltered (_("Overlay debugging enabled."));
3298}
3299
3300/* Function: overlay_off_command
3301 A utility command to turn on overlay debugging.
3302 Possibly this should be done via a set/show command. */
3303
3304static void
3305overlay_off_command (char *args, int from_tty)
3306{
3307 overlay_debugging = ovly_off;
3308 disable_overlay_breakpoints ();
3309 if (info_verbose)
3310 printf_unfiltered (_("Overlay debugging disabled."));
3311}
3312
3313static void
3314overlay_load_command (char *args, int from_tty)
3315{
3316 struct gdbarch *gdbarch = get_current_arch ();
3317
3318 if (gdbarch_overlay_update_p (gdbarch))
3319 gdbarch_overlay_update (gdbarch, NULL);
3320 else
3321 error (_("This target does not know how to read its overlay state."));
3322}
3323
3324/* Function: overlay_command
3325 A place-holder for a mis-typed command. */
3326
3327/* Command list chain containing all defined "overlay" subcommands. */
3328struct cmd_list_element *overlaylist;
3329
3330static void
3331overlay_command (char *args, int from_tty)
3332{
3333 printf_unfiltered
3334 ("\"overlay\" must be followed by the name of an overlay command.\n");
3335 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3336}
3337
3338
3339/* Target Overlays for the "Simplest" overlay manager:
3340
3341 This is GDB's default target overlay layer. It works with the
3342 minimal overlay manager supplied as an example by Cygnus. The
3343 entry point is via a function pointer "gdbarch_overlay_update",
3344 so targets that use a different runtime overlay manager can
3345 substitute their own overlay_update function and take over the
3346 function pointer.
3347
3348 The overlay_update function pokes around in the target's data structures
3349 to see what overlays are mapped, and updates GDB's overlay mapping with
3350 this information.
3351
3352 In this simple implementation, the target data structures are as follows:
3353 unsigned _novlys; /# number of overlay sections #/
3354 unsigned _ovly_table[_novlys][4] = {
3355 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3356 {..., ..., ..., ...},
3357 }
3358 unsigned _novly_regions; /# number of overlay regions #/
3359 unsigned _ovly_region_table[_novly_regions][3] = {
3360 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3361 {..., ..., ...},
3362 }
3363 These functions will attempt to update GDB's mappedness state in the
3364 symbol section table, based on the target's mappedness state.
3365
3366 To do this, we keep a cached copy of the target's _ovly_table, and
3367 attempt to detect when the cached copy is invalidated. The main
3368 entry point is "simple_overlay_update(SECT), which looks up SECT in
3369 the cached table and re-reads only the entry for that section from
3370 the target (whenever possible). */
3371
3372/* Cached, dynamically allocated copies of the target data structures: */
3373static unsigned (*cache_ovly_table)[4] = 0;
3374static unsigned cache_novlys = 0;
3375static CORE_ADDR cache_ovly_table_base = 0;
3376enum ovly_index
3377 {
3378 VMA, SIZE, LMA, MAPPED
3379 };
3380
3381/* Throw away the cached copy of _ovly_table. */
3382static void
3383simple_free_overlay_table (void)
3384{
3385 if (cache_ovly_table)
3386 xfree (cache_ovly_table);
3387 cache_novlys = 0;
3388 cache_ovly_table = NULL;
3389 cache_ovly_table_base = 0;
3390}
3391
3392/* Read an array of ints of size SIZE from the target into a local buffer.
3393 Convert to host order. int LEN is number of ints. */
3394static void
3395read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3396 int len, int size, enum bfd_endian byte_order)
3397{
3398 /* FIXME (alloca): Not safe if array is very large. */
3399 gdb_byte *buf = alloca (len * size);
3400 int i;
3401
3402 read_memory (memaddr, buf, len * size);
3403 for (i = 0; i < len; i++)
3404 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3405}
3406
3407/* Find and grab a copy of the target _ovly_table
3408 (and _novlys, which is needed for the table's size). */
3409static int
3410simple_read_overlay_table (void)
3411{
3412 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3413 struct gdbarch *gdbarch;
3414 int word_size;
3415 enum bfd_endian byte_order;
3416
3417 simple_free_overlay_table ();
3418 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3419 if (! novlys_msym)
3420 {
3421 error (_("Error reading inferior's overlay table: "
3422 "couldn't find `_novlys' variable\n"
3423 "in inferior. Use `overlay manual' mode."));
3424 return 0;
3425 }
3426
3427 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3428 if (! ovly_table_msym)
3429 {
3430 error (_("Error reading inferior's overlay table: couldn't find "
3431 "`_ovly_table' array\n"
3432 "in inferior. Use `overlay manual' mode."));
3433 return 0;
3434 }
3435
3436 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3437 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3438 byte_order = gdbarch_byte_order (gdbarch);
3439
3440 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3441 4, byte_order);
3442 cache_ovly_table
3443 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3444 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3445 read_target_long_array (cache_ovly_table_base,
3446 (unsigned int *) cache_ovly_table,
3447 cache_novlys * 4, word_size, byte_order);
3448
3449 return 1; /* SUCCESS */
3450}
3451
3452/* Function: simple_overlay_update_1
3453 A helper function for simple_overlay_update. Assuming a cached copy
3454 of _ovly_table exists, look through it to find an entry whose vma,
3455 lma and size match those of OSECT. Re-read the entry and make sure
3456 it still matches OSECT (else the table may no longer be valid).
3457 Set OSECT's mapped state to match the entry. Return: 1 for
3458 success, 0 for failure. */
3459
3460static int
3461simple_overlay_update_1 (struct obj_section *osect)
3462{
3463 int i, size;
3464 bfd *obfd = osect->objfile->obfd;
3465 asection *bsect = osect->the_bfd_section;
3466 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3467 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3468 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3469
3470 size = bfd_get_section_size (osect->the_bfd_section);
3471 for (i = 0; i < cache_novlys; i++)
3472 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3473 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3474 /* && cache_ovly_table[i][SIZE] == size */ )
3475 {
3476 read_target_long_array (cache_ovly_table_base + i * word_size,
3477 (unsigned int *) cache_ovly_table[i],
3478 4, word_size, byte_order);
3479 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3480 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3481 /* && cache_ovly_table[i][SIZE] == size */ )
3482 {
3483 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3484 return 1;
3485 }
3486 else /* Warning! Warning! Target's ovly table has changed! */
3487 return 0;
3488 }
3489 return 0;
3490}
3491
3492/* Function: simple_overlay_update
3493 If OSECT is NULL, then update all sections' mapped state
3494 (after re-reading the entire target _ovly_table).
3495 If OSECT is non-NULL, then try to find a matching entry in the
3496 cached ovly_table and update only OSECT's mapped state.
3497 If a cached entry can't be found or the cache isn't valid, then
3498 re-read the entire cache, and go ahead and update all sections. */
3499
3500void
3501simple_overlay_update (struct obj_section *osect)
3502{
3503 struct objfile *objfile;
3504
3505 /* Were we given an osect to look up? NULL means do all of them. */
3506 if (osect)
3507 /* Have we got a cached copy of the target's overlay table? */
3508 if (cache_ovly_table != NULL)
3509 {
3510 /* Does its cached location match what's currently in the
3511 symtab? */
3512 struct minimal_symbol *minsym
3513 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3514
3515 if (minsym == NULL)
3516 error (_("Error reading inferior's overlay table: couldn't "
3517 "find `_ovly_table' array\n"
3518 "in inferior. Use `overlay manual' mode."));
3519
3520 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3521 /* Then go ahead and try to look up this single section in
3522 the cache. */
3523 if (simple_overlay_update_1 (osect))
3524 /* Found it! We're done. */
3525 return;
3526 }
3527
3528 /* Cached table no good: need to read the entire table anew.
3529 Or else we want all the sections, in which case it's actually
3530 more efficient to read the whole table in one block anyway. */
3531
3532 if (! simple_read_overlay_table ())
3533 return;
3534
3535 /* Now may as well update all sections, even if only one was requested. */
3536 ALL_OBJSECTIONS (objfile, osect)
3537 if (section_is_overlay (osect))
3538 {
3539 int i, size;
3540 bfd *obfd = osect->objfile->obfd;
3541 asection *bsect = osect->the_bfd_section;
3542
3543 size = bfd_get_section_size (bsect);
3544 for (i = 0; i < cache_novlys; i++)
3545 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3546 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3547 /* && cache_ovly_table[i][SIZE] == size */ )
3548 { /* obj_section matches i'th entry in ovly_table. */
3549 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3550 break; /* finished with inner for loop: break out. */
3551 }
3552 }
3553}
3554
3555/* Set the output sections and output offsets for section SECTP in
3556 ABFD. The relocation code in BFD will read these offsets, so we
3557 need to be sure they're initialized. We map each section to itself,
3558 with no offset; this means that SECTP->vma will be honored. */
3559
3560static void
3561symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3562{
3563 sectp->output_section = sectp;
3564 sectp->output_offset = 0;
3565}
3566
3567/* Default implementation for sym_relocate. */
3568
3569
3570bfd_byte *
3571default_symfile_relocate (struct objfile *objfile, asection *sectp,
3572 bfd_byte *buf)
3573{
3574 bfd *abfd = objfile->obfd;
3575
3576 /* We're only interested in sections with relocation
3577 information. */
3578 if ((sectp->flags & SEC_RELOC) == 0)
3579 return NULL;
3580
3581 /* We will handle section offsets properly elsewhere, so relocate as if
3582 all sections begin at 0. */
3583 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3584
3585 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3586}
3587
3588/* Relocate the contents of a debug section SECTP in ABFD. The
3589 contents are stored in BUF if it is non-NULL, or returned in a
3590 malloc'd buffer otherwise.
3591
3592 For some platforms and debug info formats, shared libraries contain
3593 relocations against the debug sections (particularly for DWARF-2;
3594 one affected platform is PowerPC GNU/Linux, although it depends on
3595 the version of the linker in use). Also, ELF object files naturally
3596 have unresolved relocations for their debug sections. We need to apply
3597 the relocations in order to get the locations of symbols correct.
3598 Another example that may require relocation processing, is the
3599 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3600 debug section. */
3601
3602bfd_byte *
3603symfile_relocate_debug_section (struct objfile *objfile,
3604 asection *sectp, bfd_byte *buf)
3605{
3606 gdb_assert (objfile->sf->sym_relocate);
3607
3608 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3609}
3610
3611struct symfile_segment_data *
3612get_symfile_segment_data (bfd *abfd)
3613{
3614 const struct sym_fns *sf = find_sym_fns (abfd);
3615
3616 if (sf == NULL)
3617 return NULL;
3618
3619 return sf->sym_segments (abfd);
3620}
3621
3622void
3623free_symfile_segment_data (struct symfile_segment_data *data)
3624{
3625 xfree (data->segment_bases);
3626 xfree (data->segment_sizes);
3627 xfree (data->segment_info);
3628 xfree (data);
3629}
3630
3631
3632/* Given:
3633 - DATA, containing segment addresses from the object file ABFD, and
3634 the mapping from ABFD's sections onto the segments that own them,
3635 and
3636 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3637 segment addresses reported by the target,
3638 store the appropriate offsets for each section in OFFSETS.
3639
3640 If there are fewer entries in SEGMENT_BASES than there are segments
3641 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3642
3643 If there are more entries, then ignore the extra. The target may
3644 not be able to distinguish between an empty data segment and a
3645 missing data segment; a missing text segment is less plausible. */
3646int
3647symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3648 struct section_offsets *offsets,
3649 int num_segment_bases,
3650 const CORE_ADDR *segment_bases)
3651{
3652 int i;
3653 asection *sect;
3654
3655 /* It doesn't make sense to call this function unless you have some
3656 segment base addresses. */
3657 gdb_assert (num_segment_bases > 0);
3658
3659 /* If we do not have segment mappings for the object file, we
3660 can not relocate it by segments. */
3661 gdb_assert (data != NULL);
3662 gdb_assert (data->num_segments > 0);
3663
3664 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3665 {
3666 int which = data->segment_info[i];
3667
3668 gdb_assert (0 <= which && which <= data->num_segments);
3669
3670 /* Don't bother computing offsets for sections that aren't
3671 loaded as part of any segment. */
3672 if (! which)
3673 continue;
3674
3675 /* Use the last SEGMENT_BASES entry as the address of any extra
3676 segments mentioned in DATA->segment_info. */
3677 if (which > num_segment_bases)
3678 which = num_segment_bases;
3679
3680 offsets->offsets[i] = (segment_bases[which - 1]
3681 - data->segment_bases[which - 1]);
3682 }
3683
3684 return 1;
3685}
3686
3687static void
3688symfile_find_segment_sections (struct objfile *objfile)
3689{
3690 bfd *abfd = objfile->obfd;
3691 int i;
3692 asection *sect;
3693 struct symfile_segment_data *data;
3694
3695 data = get_symfile_segment_data (objfile->obfd);
3696 if (data == NULL)
3697 return;
3698
3699 if (data->num_segments != 1 && data->num_segments != 2)
3700 {
3701 free_symfile_segment_data (data);
3702 return;
3703 }
3704
3705 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3706 {
3707 int which = data->segment_info[i];
3708
3709 if (which == 1)
3710 {
3711 if (objfile->sect_index_text == -1)
3712 objfile->sect_index_text = sect->index;
3713
3714 if (objfile->sect_index_rodata == -1)
3715 objfile->sect_index_rodata = sect->index;
3716 }
3717 else if (which == 2)
3718 {
3719 if (objfile->sect_index_data == -1)
3720 objfile->sect_index_data = sect->index;
3721
3722 if (objfile->sect_index_bss == -1)
3723 objfile->sect_index_bss = sect->index;
3724 }
3725 }
3726
3727 free_symfile_segment_data (data);
3728}
3729
3730void
3731_initialize_symfile (void)
3732{
3733 struct cmd_list_element *c;
3734
3735 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3736Load symbol table from executable file FILE.\n\
3737The `file' command can also load symbol tables, as well as setting the file\n\
3738to execute."), &cmdlist);
3739 set_cmd_completer (c, filename_completer);
3740
3741 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3742Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3743Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3744 ...]\nADDR is the starting address of the file's text.\n\
3745The optional arguments are section-name section-address pairs and\n\
3746should be specified if the data and bss segments are not contiguous\n\
3747with the text. SECT is a section name to be loaded at SECT_ADDR."),
3748 &cmdlist);
3749 set_cmd_completer (c, filename_completer);
3750
3751 c = add_cmd ("load", class_files, load_command, _("\
3752Dynamically load FILE into the running program, and record its symbols\n\
3753for access from GDB.\n\
3754A load OFFSET may also be given."), &cmdlist);
3755 set_cmd_completer (c, filename_completer);
3756
3757 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3758 &symbol_reloading, _("\
3759Set dynamic symbol table reloading multiple times in one run."), _("\
3760Show dynamic symbol table reloading multiple times in one run."), NULL,
3761 NULL,
3762 show_symbol_reloading,
3763 &setlist, &showlist);
3764
3765 add_prefix_cmd ("overlay", class_support, overlay_command,
3766 _("Commands for debugging overlays."), &overlaylist,
3767 "overlay ", 0, &cmdlist);
3768
3769 add_com_alias ("ovly", "overlay", class_alias, 1);
3770 add_com_alias ("ov", "overlay", class_alias, 1);
3771
3772 add_cmd ("map-overlay", class_support, map_overlay_command,
3773 _("Assert that an overlay section is mapped."), &overlaylist);
3774
3775 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3776 _("Assert that an overlay section is unmapped."), &overlaylist);
3777
3778 add_cmd ("list-overlays", class_support, list_overlays_command,
3779 _("List mappings of overlay sections."), &overlaylist);
3780
3781 add_cmd ("manual", class_support, overlay_manual_command,
3782 _("Enable overlay debugging."), &overlaylist);
3783 add_cmd ("off", class_support, overlay_off_command,
3784 _("Disable overlay debugging."), &overlaylist);
3785 add_cmd ("auto", class_support, overlay_auto_command,
3786 _("Enable automatic overlay debugging."), &overlaylist);
3787 add_cmd ("load-target", class_support, overlay_load_command,
3788 _("Read the overlay mapping state from the target."), &overlaylist);
3789
3790 /* Filename extension to source language lookup table: */
3791 init_filename_language_table ();
3792 add_setshow_string_noescape_cmd ("extension-language", class_files,
3793 &ext_args, _("\
3794Set mapping between filename extension and source language."), _("\
3795Show mapping between filename extension and source language."), _("\
3796Usage: set extension-language .foo bar"),
3797 set_ext_lang_command,
3798 show_ext_args,
3799 &setlist, &showlist);
3800
3801 add_info ("extensions", info_ext_lang_command,
3802 _("All filename extensions associated with a source language."));
3803
3804 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3805 &debug_file_directory, _("\
3806Set the directories where separate debug symbols are searched for."), _("\
3807Show the directories where separate debug symbols are searched for."), _("\
3808Separate debug symbols are first searched for in the same\n\
3809directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3810and lastly at the path of the directory of the binary with\n\
3811each global debug-file-directory component prepended."),
3812 NULL,
3813 show_debug_file_directory,
3814 &setlist, &showlist);
3815}
This page took 0.046227 seconds and 4 git commands to generate.