symtab.c: forward decl cleanup
[deliverable/binutils-gdb.git] / gdb / symtab.c
... / ...
CommitLineData
1/* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "target.h"
26#include "value.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbcmd.h"
30#include "gdb_regex.h"
31#include "expression.h"
32#include "language.h"
33#include "demangle.h"
34#include "inferior.h"
35#include "source.h"
36#include "filenames.h" /* for FILENAME_CMP */
37#include "objc-lang.h"
38#include "d-lang.h"
39#include "ada-lang.h"
40#include "go-lang.h"
41#include "p-lang.h"
42#include "addrmap.h"
43#include "cli/cli-utils.h"
44
45#include "hashtab.h"
46
47#include "gdb_obstack.h"
48#include "block.h"
49#include "dictionary.h"
50
51#include <sys/types.h>
52#include <fcntl.h>
53#include <sys/stat.h>
54#include <ctype.h>
55#include "cp-abi.h"
56#include "cp-support.h"
57#include "observer.h"
58#include "solist.h"
59#include "macrotab.h"
60#include "macroscope.h"
61
62#include "parser-defs.h"
63
64/* Forward declarations for local functions. */
65
66static void rbreak_command (char *, int);
67
68static int find_line_common (struct linetable *, int, int *, int);
69
70static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *is_a_field_of_this);
75
76static
77struct symbol *lookup_symbol_aux_local (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82static
83struct symbol *lookup_symbol_aux_symtabs (int block_index,
84 const char *name,
85 const domain_enum domain);
86
87static
88struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93extern initialize_file_ftype _initialize_symtab;
94
95/* Program space key for finding name and language of "main". */
96
97static const struct program_space_data *main_progspace_key;
98
99/* Type of the data stored on the program space. */
100
101struct main_info
102{
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110};
111
112/* When non-zero, print debugging messages related to symtab creation. */
113unsigned int symtab_create_debug = 0;
114
115/* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118int basenames_may_differ = 0;
119
120/* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124const char multiple_symbols_ask[] = "ask";
125const char multiple_symbols_all[] = "all";
126const char multiple_symbols_cancel[] = "cancel";
127static const char *const multiple_symbols_modes[] =
128{
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133};
134static const char *multiple_symbols_mode = multiple_symbols_all;
135
136/* Read-only accessor to AUTO_SELECT_MODE. */
137
138const char *
139multiple_symbols_select_mode (void)
140{
141 return multiple_symbols_mode;
142}
143
144/* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148const struct block *block_found;
149
150/* Return the name of a domain_enum. */
151
152const char *
153domain_name (domain_enum e)
154{
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164}
165
166/* Return the name of a search_domain . */
167
168const char *
169search_domain_name (enum search_domain e)
170{
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179}
180
181/* Set the primary field in SYMTAB. */
182
183void
184set_symtab_primary (struct symtab *symtab, int primary)
185{
186 symtab->primary = primary;
187
188 if (symtab_create_debug && primary)
189 {
190 fprintf_unfiltered (gdb_stdlog,
191 "Created primary symtab %s for %s.\n",
192 host_address_to_string (symtab),
193 symtab_to_filename_for_display (symtab));
194 }
195}
196
197/* See whether FILENAME matches SEARCH_NAME using the rule that we
198 advertise to the user. (The manual's description of linespecs
199 describes what we advertise). Returns true if they match, false
200 otherwise. */
201
202int
203compare_filenames_for_search (const char *filename, const char *search_name)
204{
205 int len = strlen (filename);
206 size_t search_len = strlen (search_name);
207
208 if (len < search_len)
209 return 0;
210
211 /* The tail of FILENAME must match. */
212 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
213 return 0;
214
215 /* Either the names must completely match, or the character
216 preceding the trailing SEARCH_NAME segment of FILENAME must be a
217 directory separator.
218
219 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
220 cannot match FILENAME "/path//dir/file.c" - as user has requested
221 absolute path. The sama applies for "c:\file.c" possibly
222 incorrectly hypothetically matching "d:\dir\c:\file.c".
223
224 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
225 compatible with SEARCH_NAME "file.c". In such case a compiler had
226 to put the "c:file.c" name into debug info. Such compatibility
227 works only on GDB built for DOS host. */
228 return (len == search_len
229 || (!IS_ABSOLUTE_PATH (search_name)
230 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
231 || (HAS_DRIVE_SPEC (filename)
232 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
233}
234
235/* Check for a symtab of a specific name by searching some symtabs.
236 This is a helper function for callbacks of iterate_over_symtabs.
237
238 If NAME is not absolute, then REAL_PATH is NULL
239 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
240
241 The return value, NAME, REAL_PATH, CALLBACK, and DATA
242 are identical to the `map_symtabs_matching_filename' method of
243 quick_symbol_functions.
244
245 FIRST and AFTER_LAST indicate the range of symtabs to search.
246 AFTER_LAST is one past the last symtab to search; NULL means to
247 search until the end of the list. */
248
249int
250iterate_over_some_symtabs (const char *name,
251 const char *real_path,
252 int (*callback) (struct symtab *symtab,
253 void *data),
254 void *data,
255 struct symtab *first,
256 struct symtab *after_last)
257{
258 struct symtab *s = NULL;
259 const char* base_name = lbasename (name);
260
261 for (s = first; s != NULL && s != after_last; s = s->next)
262 {
263 if (compare_filenames_for_search (s->filename, name))
264 {
265 if (callback (s, data))
266 return 1;
267 continue;
268 }
269
270 /* Before we invoke realpath, which can get expensive when many
271 files are involved, do a quick comparison of the basenames. */
272 if (! basenames_may_differ
273 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
274 continue;
275
276 if (compare_filenames_for_search (symtab_to_fullname (s), name))
277 {
278 if (callback (s, data))
279 return 1;
280 continue;
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (real_path != NULL)
286 {
287 const char *fullname = symtab_to_fullname (s);
288
289 gdb_assert (IS_ABSOLUTE_PATH (real_path));
290 gdb_assert (IS_ABSOLUTE_PATH (name));
291 if (FILENAME_CMP (real_path, fullname) == 0)
292 {
293 if (callback (s, data))
294 return 1;
295 continue;
296 }
297 }
298 }
299
300 return 0;
301}
302
303/* Check for a symtab of a specific name; first in symtabs, then in
304 psymtabs. *If* there is no '/' in the name, a match after a '/'
305 in the symtab filename will also work.
306
307 Calls CALLBACK with each symtab that is found and with the supplied
308 DATA. If CALLBACK returns true, the search stops. */
309
310void
311iterate_over_symtabs (const char *name,
312 int (*callback) (struct symtab *symtab,
313 void *data),
314 void *data)
315{
316 struct objfile *objfile;
317 char *real_path = NULL;
318 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
319
320 /* Here we are interested in canonicalizing an absolute path, not
321 absolutizing a relative path. */
322 if (IS_ABSOLUTE_PATH (name))
323 {
324 real_path = gdb_realpath (name);
325 make_cleanup (xfree, real_path);
326 gdb_assert (IS_ABSOLUTE_PATH (real_path));
327 }
328
329 ALL_OBJFILES (objfile)
330 {
331 if (iterate_over_some_symtabs (name, real_path, callback, data,
332 objfile->symtabs, NULL))
333 {
334 do_cleanups (cleanups);
335 return;
336 }
337 }
338
339 /* Same search rules as above apply here, but now we look thru the
340 psymtabs. */
341
342 ALL_OBJFILES (objfile)
343 {
344 if (objfile->sf
345 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
346 name,
347 real_path,
348 callback,
349 data))
350 {
351 do_cleanups (cleanups);
352 return;
353 }
354 }
355
356 do_cleanups (cleanups);
357}
358
359/* The callback function used by lookup_symtab. */
360
361static int
362lookup_symtab_callback (struct symtab *symtab, void *data)
363{
364 struct symtab **result_ptr = data;
365
366 *result_ptr = symtab;
367 return 1;
368}
369
370/* A wrapper for iterate_over_symtabs that returns the first matching
371 symtab, or NULL. */
372
373struct symtab *
374lookup_symtab (const char *name)
375{
376 struct symtab *result = NULL;
377
378 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 return result;
380}
381
382\f
383/* Mangle a GDB method stub type. This actually reassembles the pieces of the
384 full method name, which consist of the class name (from T), the unadorned
385 method name from METHOD_ID, and the signature for the specific overload,
386 specified by SIGNATURE_ID. Note that this function is g++ specific. */
387
388char *
389gdb_mangle_name (struct type *type, int method_id, int signature_id)
390{
391 int mangled_name_len;
392 char *mangled_name;
393 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
394 struct fn_field *method = &f[signature_id];
395 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
396 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
397 const char *newname = type_name_no_tag (type);
398
399 /* Does the form of physname indicate that it is the full mangled name
400 of a constructor (not just the args)? */
401 int is_full_physname_constructor;
402
403 int is_constructor;
404 int is_destructor = is_destructor_name (physname);
405 /* Need a new type prefix. */
406 char *const_prefix = method->is_const ? "C" : "";
407 char *volatile_prefix = method->is_volatile ? "V" : "";
408 char buf[20];
409 int len = (newname == NULL ? 0 : strlen (newname));
410
411 /* Nothing to do if physname already contains a fully mangled v3 abi name
412 or an operator name. */
413 if ((physname[0] == '_' && physname[1] == 'Z')
414 || is_operator_name (field_name))
415 return xstrdup (physname);
416
417 is_full_physname_constructor = is_constructor_name (physname);
418
419 is_constructor = is_full_physname_constructor
420 || (newname && strcmp (field_name, newname) == 0);
421
422 if (!is_destructor)
423 is_destructor = (strncmp (physname, "__dt", 4) == 0);
424
425 if (is_destructor || is_full_physname_constructor)
426 {
427 mangled_name = (char *) xmalloc (strlen (physname) + 1);
428 strcpy (mangled_name, physname);
429 return mangled_name;
430 }
431
432 if (len == 0)
433 {
434 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
435 }
436 else if (physname[0] == 't' || physname[0] == 'Q')
437 {
438 /* The physname for template and qualified methods already includes
439 the class name. */
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 newname = NULL;
442 len = 0;
443 }
444 else
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
447 volatile_prefix, len);
448 }
449 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
450 + strlen (buf) + len + strlen (physname) + 1);
451
452 mangled_name = (char *) xmalloc (mangled_name_len);
453 if (is_constructor)
454 mangled_name[0] = '\0';
455 else
456 strcpy (mangled_name, field_name);
457
458 strcat (mangled_name, buf);
459 /* If the class doesn't have a name, i.e. newname NULL, then we just
460 mangle it using 0 for the length of the class. Thus it gets mangled
461 as something starting with `::' rather than `classname::'. */
462 if (newname != NULL)
463 strcat (mangled_name, newname);
464
465 strcat (mangled_name, physname);
466 return (mangled_name);
467}
468
469/* Initialize the cplus_specific structure. 'cplus_specific' should
470 only be allocated for use with cplus symbols. */
471
472static void
473symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
474 struct obstack *obstack)
475{
476 /* A language_specific structure should not have been previously
477 initialized. */
478 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
479 gdb_assert (obstack != NULL);
480
481 gsymbol->language_specific.cplus_specific =
482 OBSTACK_ZALLOC (obstack, struct cplus_specific);
483}
484
485/* Set the demangled name of GSYMBOL to NAME. NAME must be already
486 correctly allocated. For C++ symbols a cplus_specific struct is
487 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
488 OBJFILE can be NULL. */
489
490void
491symbol_set_demangled_name (struct general_symbol_info *gsymbol,
492 const char *name,
493 struct obstack *obstack)
494{
495 if (gsymbol->language == language_cplus)
496 {
497 if (gsymbol->language_specific.cplus_specific == NULL)
498 symbol_init_cplus_specific (gsymbol, obstack);
499
500 gsymbol->language_specific.cplus_specific->demangled_name = name;
501 }
502 else if (gsymbol->language == language_ada)
503 {
504 if (name == NULL)
505 {
506 gsymbol->ada_mangled = 0;
507 gsymbol->language_specific.obstack = obstack;
508 }
509 else
510 {
511 gsymbol->ada_mangled = 1;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514 }
515 else
516 gsymbol->language_specific.mangled_lang.demangled_name = name;
517}
518
519/* Return the demangled name of GSYMBOL. */
520
521const char *
522symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
523{
524 if (gsymbol->language == language_cplus)
525 {
526 if (gsymbol->language_specific.cplus_specific != NULL)
527 return gsymbol->language_specific.cplus_specific->demangled_name;
528 else
529 return NULL;
530 }
531 else if (gsymbol->language == language_ada)
532 {
533 if (!gsymbol->ada_mangled)
534 return NULL;
535 /* Fall through. */
536 }
537
538 return gsymbol->language_specific.mangled_lang.demangled_name;
539}
540
541\f
542/* Initialize the language dependent portion of a symbol
543 depending upon the language for the symbol. */
544
545void
546symbol_set_language (struct general_symbol_info *gsymbol,
547 enum language language,
548 struct obstack *obstack)
549{
550 gsymbol->language = language;
551 if (gsymbol->language == language_d
552 || gsymbol->language == language_go
553 || gsymbol->language == language_java
554 || gsymbol->language == language_objc
555 || gsymbol->language == language_fortran)
556 {
557 symbol_set_demangled_name (gsymbol, NULL, obstack);
558 }
559 else if (gsymbol->language == language_ada)
560 {
561 gdb_assert (gsymbol->ada_mangled == 0);
562 gsymbol->language_specific.obstack = obstack;
563 }
564 else if (gsymbol->language == language_cplus)
565 gsymbol->language_specific.cplus_specific = NULL;
566 else
567 {
568 memset (&gsymbol->language_specific, 0,
569 sizeof (gsymbol->language_specific));
570 }
571}
572
573/* Functions to initialize a symbol's mangled name. */
574
575/* Objects of this type are stored in the demangled name hash table. */
576struct demangled_name_entry
577{
578 const char *mangled;
579 char demangled[1];
580};
581
582/* Hash function for the demangled name hash. */
583
584static hashval_t
585hash_demangled_name_entry (const void *data)
586{
587 const struct demangled_name_entry *e = data;
588
589 return htab_hash_string (e->mangled);
590}
591
592/* Equality function for the demangled name hash. */
593
594static int
595eq_demangled_name_entry (const void *a, const void *b)
596{
597 const struct demangled_name_entry *da = a;
598 const struct demangled_name_entry *db = b;
599
600 return strcmp (da->mangled, db->mangled) == 0;
601}
602
603/* Create the hash table used for demangled names. Each hash entry is
604 a pair of strings; one for the mangled name and one for the demangled
605 name. The entry is hashed via just the mangled name. */
606
607static void
608create_demangled_names_hash (struct objfile *objfile)
609{
610 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
611 The hash table code will round this up to the next prime number.
612 Choosing a much larger table size wastes memory, and saves only about
613 1% in symbol reading. */
614
615 objfile->per_bfd->demangled_names_hash = htab_create_alloc
616 (256, hash_demangled_name_entry, eq_demangled_name_entry,
617 NULL, xcalloc, xfree);
618}
619
620/* Try to determine the demangled name for a symbol, based on the
621 language of that symbol. If the language is set to language_auto,
622 it will attempt to find any demangling algorithm that works and
623 then set the language appropriately. The returned name is allocated
624 by the demangler and should be xfree'd. */
625
626static char *
627symbol_find_demangled_name (struct general_symbol_info *gsymbol,
628 const char *mangled)
629{
630 char *demangled = NULL;
631
632 if (gsymbol->language == language_unknown)
633 gsymbol->language = language_auto;
634
635 if (gsymbol->language == language_objc
636 || gsymbol->language == language_auto)
637 {
638 demangled =
639 objc_demangle (mangled, 0);
640 if (demangled != NULL)
641 {
642 gsymbol->language = language_objc;
643 return demangled;
644 }
645 }
646 if (gsymbol->language == language_cplus
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_cplus;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_java)
658 {
659 demangled =
660 gdb_demangle (mangled,
661 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_java;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_d
669 || gsymbol->language == language_auto)
670 {
671 demangled = d_demangle(mangled, 0);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_d;
675 return demangled;
676 }
677 }
678 /* FIXME(dje): Continually adding languages here is clumsy.
679 Better to just call la_demangle if !auto, and if auto then call
680 a utility routine that tries successive languages in turn and reports
681 which one it finds. I realize the la_demangle options may be different
682 for different languages but there's already a FIXME for that. */
683 if (gsymbol->language == language_go
684 || gsymbol->language == language_auto)
685 {
686 demangled = go_demangle (mangled, 0);
687 if (demangled != NULL)
688 {
689 gsymbol->language = language_go;
690 return demangled;
691 }
692 }
693
694 /* We could support `gsymbol->language == language_fortran' here to provide
695 module namespaces also for inferiors with only minimal symbol table (ELF
696 symbols). Just the mangling standard is not standardized across compilers
697 and there is no DW_AT_producer available for inferiors with only the ELF
698 symbols to check the mangling kind. */
699
700 /* Check for Ada symbols last. See comment below explaining why. */
701
702 if (gsymbol->language == language_auto)
703 {
704 const char *demangled = ada_decode (mangled);
705
706 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
707 {
708 /* Set the gsymbol language to Ada, but still return NULL.
709 Two reasons for that:
710
711 1. For Ada, we prefer computing the symbol's decoded name
712 on the fly rather than pre-compute it, in order to save
713 memory (Ada projects are typically very large).
714
715 2. There are some areas in the definition of the GNAT
716 encoding where, with a bit of bad luck, we might be able
717 to decode a non-Ada symbol, generating an incorrect
718 demangled name (Eg: names ending with "TB" for instance
719 are identified as task bodies and so stripped from
720 the decoded name returned).
721
722 Returning NULL, here, helps us get a little bit of
723 the best of both worlds. Because we're last, we should
724 not affect any of the other languages that were able to
725 demangle the symbol before us; we get to correctly tag
726 Ada symbols as such; and even if we incorrectly tagged
727 a non-Ada symbol, which should be rare, any routing
728 through the Ada language should be transparent (Ada
729 tries to behave much like C/C++ with non-Ada symbols). */
730 gsymbol->language = language_ada;
731 return NULL;
732 }
733 }
734
735 return NULL;
736}
737
738/* Set both the mangled and demangled (if any) names for GSYMBOL based
739 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
740 objfile's obstack; but if COPY_NAME is 0 and if NAME is
741 NUL-terminated, then this function assumes that NAME is already
742 correctly saved (either permanently or with a lifetime tied to the
743 objfile), and it will not be copied.
744
745 The hash table corresponding to OBJFILE is used, and the memory
746 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
747 so the pointer can be discarded after calling this function. */
748
749/* We have to be careful when dealing with Java names: when we run
750 into a Java minimal symbol, we don't know it's a Java symbol, so it
751 gets demangled as a C++ name. This is unfortunate, but there's not
752 much we can do about it: but when demangling partial symbols and
753 regular symbols, we'd better not reuse the wrong demangled name.
754 (See PR gdb/1039.) We solve this by putting a distinctive prefix
755 on Java names when storing them in the hash table. */
756
757/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
758 don't mind the Java prefix so much: different languages have
759 different demangling requirements, so it's only natural that we
760 need to keep language data around in our demangling cache. But
761 it's not good that the minimal symbol has the wrong demangled name.
762 Unfortunately, I can't think of any easy solution to that
763 problem. */
764
765#define JAVA_PREFIX "##JAVA$$"
766#define JAVA_PREFIX_LEN 8
767
768void
769symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772{
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 /* A copy of the linkage name that might have a special Java prefix
777 added to it, for use when looking names up in the hash table. */
778 const char *lookup_name;
779 /* The length of lookup_name. */
780 int lookup_len;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name.
788
789 As a side note, we have also observed some overlap between
790 the C++ mangling and Ada mangling, similarly to what has
791 been observed with Java. Because we don't store the demangled
792 name with the symbol, we don't need to use the same trick
793 as Java. */
794 if (!copy_name)
795 gsymbol->name = linkage_name;
796 else
797 {
798 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
799
800 memcpy (name, linkage_name, len);
801 name[len] = '\0';
802 gsymbol->name = name;
803 }
804 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805
806 return;
807 }
808
809 if (per_bfd->demangled_names_hash == NULL)
810 create_demangled_names_hash (objfile);
811
812 /* The stabs reader generally provides names that are not
813 NUL-terminated; most of the other readers don't do this, so we
814 can just use the given copy, unless we're in the Java case. */
815 if (gsymbol->language == language_java)
816 {
817 char *alloc_name;
818
819 lookup_len = len + JAVA_PREFIX_LEN;
820 alloc_name = alloca (lookup_len + 1);
821 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
822 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
823 alloc_name[lookup_len] = '\0';
824
825 lookup_name = alloc_name;
826 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
827 }
828 else if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 lookup_len = len;
833 alloc_name = alloca (lookup_len + 1);
834 memcpy (alloc_name, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name;
839 }
840 else
841 {
842 lookup_len = len;
843 lookup_name = linkage_name;
844 linkage_name_copy = linkage_name;
845 }
846
847 entry.mangled = lookup_name;
848 slot = ((struct demangled_name_entry **)
849 htab_find_slot (per_bfd->demangled_names_hash,
850 &entry, INSERT));
851
852 /* If this name is not in the hash table, add it. */
853 if (*slot == NULL
854 /* A C version of the symbol may have already snuck into the table.
855 This happens to, e.g., main.init (__go_init_main). Cope. */
856 || (gsymbol->language == language_go
857 && (*slot)->demangled[0] == '\0'))
858 {
859 char *demangled_name = symbol_find_demangled_name (gsymbol,
860 linkage_name_copy);
861 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
862
863 /* Suppose we have demangled_name==NULL, copy_name==0, and
864 lookup_name==linkage_name. In this case, we already have the
865 mangled name saved, and we don't have a demangled name. So,
866 you might think we could save a little space by not recording
867 this in the hash table at all.
868
869 It turns out that it is actually important to still save such
870 an entry in the hash table, because storing this name gives
871 us better bcache hit rates for partial symbols. */
872 if (!copy_name && lookup_name == linkage_name)
873 {
874 *slot = obstack_alloc (&per_bfd->storage_obstack,
875 offsetof (struct demangled_name_entry,
876 demangled)
877 + demangled_len + 1);
878 (*slot)->mangled = lookup_name;
879 }
880 else
881 {
882 char *mangled_ptr;
883
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
886 allocation. */
887 *slot = obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry,
889 demangled)
890 + lookup_len + demangled_len + 2);
891 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
892 strcpy (mangled_ptr, lookup_name);
893 (*slot)->mangled = mangled_ptr;
894 }
895
896 if (demangled_name != NULL)
897 {
898 strcpy ((*slot)->demangled, demangled_name);
899 xfree (demangled_name);
900 }
901 else
902 (*slot)->demangled[0] = '\0';
903 }
904
905 gsymbol->name = (*slot)->mangled + lookup_len - len;
906 if ((*slot)->demangled[0] != '\0')
907 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
908 &per_bfd->storage_obstack);
909 else
910 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
911}
912
913/* Return the source code name of a symbol. In languages where
914 demangling is necessary, this is the demangled name. */
915
916const char *
917symbol_natural_name (const struct general_symbol_info *gsymbol)
918{
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 if (symbol_get_demangled_name (gsymbol) != NULL)
928 return symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 return ada_decode_symbol (gsymbol);
932 default:
933 break;
934 }
935 return gsymbol->name;
936}
937
938/* Return the demangled name for a symbol based on the language for
939 that symbol. If no demangled name exists, return NULL. */
940
941const char *
942symbol_demangled_name (const struct general_symbol_info *gsymbol)
943{
944 const char *dem_name = NULL;
945
946 switch (gsymbol->language)
947 {
948 case language_cplus:
949 case language_d:
950 case language_go:
951 case language_java:
952 case language_objc:
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
955 break;
956 case language_ada:
957 dem_name = ada_decode_symbol (gsymbol);
958 break;
959 default:
960 break;
961 }
962 return dem_name;
963}
964
965/* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
969
970const char *
971symbol_search_name (const struct general_symbol_info *gsymbol)
972{
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
975 else
976 return symbol_natural_name (gsymbol);
977}
978
979/* Initialize the structure fields to zero values. */
980
981void
982init_sal (struct symtab_and_line *sal)
983{
984 memset (sal, 0, sizeof (*sal));
985}
986\f
987
988/* Return 1 if the two sections are the same, or if they could
989 plausibly be copies of each other, one in an original object
990 file and another in a separated debug file. */
991
992int
993matching_obj_sections (struct obj_section *obj_first,
994 struct obj_section *obj_second)
995{
996 asection *first = obj_first? obj_first->the_bfd_section : NULL;
997 asection *second = obj_second? obj_second->the_bfd_section : NULL;
998 struct objfile *obj;
999
1000 /* If they're the same section, then they match. */
1001 if (first == second)
1002 return 1;
1003
1004 /* If either is NULL, give up. */
1005 if (first == NULL || second == NULL)
1006 return 0;
1007
1008 /* This doesn't apply to absolute symbols. */
1009 if (first->owner == NULL || second->owner == NULL)
1010 return 0;
1011
1012 /* If they're in the same object file, they must be different sections. */
1013 if (first->owner == second->owner)
1014 return 0;
1015
1016 /* Check whether the two sections are potentially corresponding. They must
1017 have the same size, address, and name. We can't compare section indexes,
1018 which would be more reliable, because some sections may have been
1019 stripped. */
1020 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1021 return 0;
1022
1023 /* In-memory addresses may start at a different offset, relativize them. */
1024 if (bfd_get_section_vma (first->owner, first)
1025 - bfd_get_start_address (first->owner)
1026 != bfd_get_section_vma (second->owner, second)
1027 - bfd_get_start_address (second->owner))
1028 return 0;
1029
1030 if (bfd_get_section_name (first->owner, first) == NULL
1031 || bfd_get_section_name (second->owner, second) == NULL
1032 || strcmp (bfd_get_section_name (first->owner, first),
1033 bfd_get_section_name (second->owner, second)) != 0)
1034 return 0;
1035
1036 /* Otherwise check that they are in corresponding objfiles. */
1037
1038 ALL_OBJFILES (obj)
1039 if (obj->obfd == first->owner)
1040 break;
1041 gdb_assert (obj != NULL);
1042
1043 if (obj->separate_debug_objfile != NULL
1044 && obj->separate_debug_objfile->obfd == second->owner)
1045 return 1;
1046 if (obj->separate_debug_objfile_backlink != NULL
1047 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1048 return 1;
1049
1050 return 0;
1051}
1052
1053struct symtab *
1054find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1055{
1056 struct objfile *objfile;
1057 struct bound_minimal_symbol msymbol;
1058
1059 /* If we know that this is not a text address, return failure. This is
1060 necessary because we loop based on texthigh and textlow, which do
1061 not include the data ranges. */
1062 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1063 if (msymbol.minsym
1064 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1066 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1067 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1068 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1069 return NULL;
1070
1071 ALL_OBJFILES (objfile)
1072 {
1073 struct symtab *result = NULL;
1074
1075 if (objfile->sf)
1076 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1077 pc, section, 0);
1078 if (result)
1079 return result;
1080 }
1081
1082 return NULL;
1083}
1084\f
1085/* Debug symbols usually don't have section information. We need to dig that
1086 out of the minimal symbols and stash that in the debug symbol. */
1087
1088void
1089fixup_section (struct general_symbol_info *ginfo,
1090 CORE_ADDR addr, struct objfile *objfile)
1091{
1092 struct minimal_symbol *msym;
1093
1094 /* First, check whether a minimal symbol with the same name exists
1095 and points to the same address. The address check is required
1096 e.g. on PowerPC64, where the minimal symbol for a function will
1097 point to the function descriptor, while the debug symbol will
1098 point to the actual function code. */
1099 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1100 if (msym)
1101 ginfo->section = MSYMBOL_SECTION (msym);
1102 else
1103 {
1104 /* Static, function-local variables do appear in the linker
1105 (minimal) symbols, but are frequently given names that won't
1106 be found via lookup_minimal_symbol(). E.g., it has been
1107 observed in frv-uclinux (ELF) executables that a static,
1108 function-local variable named "foo" might appear in the
1109 linker symbols as "foo.6" or "foo.3". Thus, there is no
1110 point in attempting to extend the lookup-by-name mechanism to
1111 handle this case due to the fact that there can be multiple
1112 names.
1113
1114 So, instead, search the section table when lookup by name has
1115 failed. The ``addr'' and ``endaddr'' fields may have already
1116 been relocated. If so, the relocation offset (i.e. the
1117 ANOFFSET value) needs to be subtracted from these values when
1118 performing the comparison. We unconditionally subtract it,
1119 because, when no relocation has been performed, the ANOFFSET
1120 value will simply be zero.
1121
1122 The address of the symbol whose section we're fixing up HAS
1123 NOT BEEN adjusted (relocated) yet. It can't have been since
1124 the section isn't yet known and knowing the section is
1125 necessary in order to add the correct relocation value. In
1126 other words, we wouldn't even be in this function (attempting
1127 to compute the section) if it were already known.
1128
1129 Note that it is possible to search the minimal symbols
1130 (subtracting the relocation value if necessary) to find the
1131 matching minimal symbol, but this is overkill and much less
1132 efficient. It is not necessary to find the matching minimal
1133 symbol, only its section.
1134
1135 Note that this technique (of doing a section table search)
1136 can fail when unrelocated section addresses overlap. For
1137 this reason, we still attempt a lookup by name prior to doing
1138 a search of the section table. */
1139
1140 struct obj_section *s;
1141 int fallback = -1;
1142
1143 ALL_OBJFILE_OSECTIONS (objfile, s)
1144 {
1145 int idx = s - objfile->sections;
1146 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1147
1148 if (fallback == -1)
1149 fallback = idx;
1150
1151 if (obj_section_addr (s) - offset <= addr
1152 && addr < obj_section_endaddr (s) - offset)
1153 {
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158
1159 /* If we didn't find the section, assume it is in the first
1160 section. If there is no allocated section, then it hardly
1161 matters what we pick, so just pick zero. */
1162 if (fallback == -1)
1163 ginfo->section = 0;
1164 else
1165 ginfo->section = fallback;
1166 }
1167}
1168
1169struct symbol *
1170fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1171{
1172 CORE_ADDR addr;
1173
1174 if (!sym)
1175 return NULL;
1176
1177 /* We either have an OBJFILE, or we can get at it from the sym's
1178 symtab. Anything else is a bug. */
1179 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1180
1181 if (objfile == NULL)
1182 objfile = SYMBOL_SYMTAB (sym)->objfile;
1183
1184 if (SYMBOL_OBJ_SECTION (objfile, sym))
1185 return sym;
1186
1187 /* We should have an objfile by now. */
1188 gdb_assert (objfile);
1189
1190 switch (SYMBOL_CLASS (sym))
1191 {
1192 case LOC_STATIC:
1193 case LOC_LABEL:
1194 addr = SYMBOL_VALUE_ADDRESS (sym);
1195 break;
1196 case LOC_BLOCK:
1197 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1198 break;
1199
1200 default:
1201 /* Nothing else will be listed in the minsyms -- no use looking
1202 it up. */
1203 return sym;
1204 }
1205
1206 fixup_section (&sym->ginfo, addr, objfile);
1207
1208 return sym;
1209}
1210
1211/* Compute the demangled form of NAME as used by the various symbol
1212 lookup functions. The result is stored in *RESULT_NAME. Returns a
1213 cleanup which can be used to clean up the result.
1214
1215 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1216 Normally, Ada symbol lookups are performed using the encoded name
1217 rather than the demangled name, and so it might seem to make sense
1218 for this function to return an encoded version of NAME.
1219 Unfortunately, we cannot do this, because this function is used in
1220 circumstances where it is not appropriate to try to encode NAME.
1221 For instance, when displaying the frame info, we demangle the name
1222 of each parameter, and then perform a symbol lookup inside our
1223 function using that demangled name. In Ada, certain functions
1224 have internally-generated parameters whose name contain uppercase
1225 characters. Encoding those name would result in those uppercase
1226 characters to become lowercase, and thus cause the symbol lookup
1227 to fail. */
1228
1229struct cleanup *
1230demangle_for_lookup (const char *name, enum language lang,
1231 const char **result_name)
1232{
1233 char *demangled_name = NULL;
1234 const char *modified_name = NULL;
1235 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1236
1237 modified_name = name;
1238
1239 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1240 lookup, so we can always binary search. */
1241 if (lang == language_cplus)
1242 {
1243 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 else
1250 {
1251 /* If we were given a non-mangled name, canonicalize it
1252 according to the language (so far only for C++). */
1253 demangled_name = cp_canonicalize_string (name);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 }
1261 else if (lang == language_java)
1262 {
1263 demangled_name = gdb_demangle (name,
1264 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 else if (lang == language_d)
1272 {
1273 demangled_name = d_demangle (name, 0);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 else if (lang == language_go)
1281 {
1282 demangled_name = go_demangle (name, 0);
1283 if (demangled_name)
1284 {
1285 modified_name = demangled_name;
1286 make_cleanup (xfree, demangled_name);
1287 }
1288 }
1289
1290 *result_name = modified_name;
1291 return cleanup;
1292}
1293
1294/* Find the definition for a specified symbol name NAME
1295 in domain DOMAIN, visible from lexical block BLOCK.
1296 Returns the struct symbol pointer, or zero if no symbol is found.
1297 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1298 NAME is a field of the current implied argument `this'. If so set
1299 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1300 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1301 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1302
1303/* This function (or rather its subordinates) have a bunch of loops and
1304 it would seem to be attractive to put in some QUIT's (though I'm not really
1305 sure whether it can run long enough to be really important). But there
1306 are a few calls for which it would appear to be bad news to quit
1307 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1308 that there is C++ code below which can error(), but that probably
1309 doesn't affect these calls since they are looking for a known
1310 variable and thus can probably assume it will never hit the C++
1311 code). */
1312
1313struct symbol *
1314lookup_symbol_in_language (const char *name, const struct block *block,
1315 const domain_enum domain, enum language lang,
1316 struct field_of_this_result *is_a_field_of_this)
1317{
1318 const char *modified_name;
1319 struct symbol *returnval;
1320 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1321
1322 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1323 is_a_field_of_this);
1324 do_cleanups (cleanup);
1325
1326 return returnval;
1327}
1328
1329/* Behave like lookup_symbol_in_language, but performed with the
1330 current language. */
1331
1332struct symbol *
1333lookup_symbol (const char *name, const struct block *block,
1334 domain_enum domain,
1335 struct field_of_this_result *is_a_field_of_this)
1336{
1337 return lookup_symbol_in_language (name, block, domain,
1338 current_language->la_language,
1339 is_a_field_of_this);
1340}
1341
1342/* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1343 found, or NULL if not found. */
1344
1345struct symbol *
1346lookup_language_this (const struct language_defn *lang,
1347 const struct block *block)
1348{
1349 if (lang->la_name_of_this == NULL || block == NULL)
1350 return NULL;
1351
1352 while (block)
1353 {
1354 struct symbol *sym;
1355
1356 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1357 if (sym != NULL)
1358 {
1359 block_found = block;
1360 return sym;
1361 }
1362 if (BLOCK_FUNCTION (block))
1363 break;
1364 block = BLOCK_SUPERBLOCK (block);
1365 }
1366
1367 return NULL;
1368}
1369
1370/* Given TYPE, a structure/union,
1371 return 1 if the component named NAME from the ultimate target
1372 structure/union is defined, otherwise, return 0. */
1373
1374static int
1375check_field (struct type *type, const char *name,
1376 struct field_of_this_result *is_a_field_of_this)
1377{
1378 int i;
1379
1380 /* The type may be a stub. */
1381 CHECK_TYPEDEF (type);
1382
1383 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1384 {
1385 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1386
1387 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1388 {
1389 is_a_field_of_this->type = type;
1390 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1391 return 1;
1392 }
1393 }
1394
1395 /* C++: If it was not found as a data field, then try to return it
1396 as a pointer to a method. */
1397
1398 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1399 {
1400 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1401 {
1402 is_a_field_of_this->type = type;
1403 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1404 return 1;
1405 }
1406 }
1407
1408 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1409 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1410 return 1;
1411
1412 return 0;
1413}
1414
1415/* Behave like lookup_symbol except that NAME is the natural name
1416 (e.g., demangled name) of the symbol that we're looking for. */
1417
1418static struct symbol *
1419lookup_symbol_aux (const char *name, const struct block *block,
1420 const domain_enum domain, enum language language,
1421 struct field_of_this_result *is_a_field_of_this)
1422{
1423 struct symbol *sym;
1424 const struct language_defn *langdef;
1425
1426 /* Make sure we do something sensible with is_a_field_of_this, since
1427 the callers that set this parameter to some non-null value will
1428 certainly use it later. If we don't set it, the contents of
1429 is_a_field_of_this are undefined. */
1430 if (is_a_field_of_this != NULL)
1431 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1432
1433 /* Search specified block and its superiors. Don't search
1434 STATIC_BLOCK or GLOBAL_BLOCK. */
1435
1436 sym = lookup_symbol_aux_local (name, block, domain, language);
1437 if (sym != NULL)
1438 return sym;
1439
1440 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1441 check to see if NAME is a field of `this'. */
1442
1443 langdef = language_def (language);
1444
1445 /* Don't do this check if we are searching for a struct. It will
1446 not be found by check_field, but will be found by other
1447 means. */
1448 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1449 {
1450 struct symbol *sym = lookup_language_this (langdef, block);
1451
1452 if (sym)
1453 {
1454 struct type *t = sym->type;
1455
1456 /* I'm not really sure that type of this can ever
1457 be typedefed; just be safe. */
1458 CHECK_TYPEDEF (t);
1459 if (TYPE_CODE (t) == TYPE_CODE_PTR
1460 || TYPE_CODE (t) == TYPE_CODE_REF)
1461 t = TYPE_TARGET_TYPE (t);
1462
1463 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1464 && TYPE_CODE (t) != TYPE_CODE_UNION)
1465 error (_("Internal error: `%s' is not an aggregate"),
1466 langdef->la_name_of_this);
1467
1468 if (check_field (t, name, is_a_field_of_this))
1469 return NULL;
1470 }
1471 }
1472
1473 /* Now do whatever is appropriate for LANGUAGE to look
1474 up static and global variables. */
1475
1476 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1477 if (sym != NULL)
1478 return sym;
1479
1480 /* Now search all static file-level symbols. Not strictly correct,
1481 but more useful than an error. */
1482
1483 return lookup_static_symbol_aux (name, domain);
1484}
1485
1486/* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1487 first, then check the psymtabs. If a psymtab indicates the existence of the
1488 desired name as a file-level static, then do psymtab-to-symtab conversion on
1489 the fly and return the found symbol. */
1490
1491struct symbol *
1492lookup_static_symbol_aux (const char *name, const domain_enum domain)
1493{
1494 struct objfile *objfile;
1495 struct symbol *sym;
1496
1497 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1498 if (sym != NULL)
1499 return sym;
1500
1501 ALL_OBJFILES (objfile)
1502 {
1503 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1504 if (sym != NULL)
1505 return sym;
1506 }
1507
1508 return NULL;
1509}
1510
1511/* Check to see if the symbol is defined in BLOCK or its superiors.
1512 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1513
1514static struct symbol *
1515lookup_symbol_aux_local (const char *name, const struct block *block,
1516 const domain_enum domain,
1517 enum language language)
1518{
1519 struct symbol *sym;
1520 const struct block *static_block = block_static_block (block);
1521 const char *scope = block_scope (block);
1522
1523 /* Check if either no block is specified or it's a global block. */
1524
1525 if (static_block == NULL)
1526 return NULL;
1527
1528 while (block != static_block)
1529 {
1530 sym = lookup_symbol_aux_block (name, block, domain);
1531 if (sym != NULL)
1532 return sym;
1533
1534 if (language == language_cplus || language == language_fortran)
1535 {
1536 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1537 domain);
1538 if (sym != NULL)
1539 return sym;
1540 }
1541
1542 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1543 break;
1544 block = BLOCK_SUPERBLOCK (block);
1545 }
1546
1547 /* We've reached the edge of the function without finding a result. */
1548
1549 return NULL;
1550}
1551
1552/* Look up OBJFILE to BLOCK. */
1553
1554struct objfile *
1555lookup_objfile_from_block (const struct block *block)
1556{
1557 struct objfile *obj;
1558 struct symtab *s;
1559
1560 if (block == NULL)
1561 return NULL;
1562
1563 block = block_global_block (block);
1564 /* Go through SYMTABS. */
1565 ALL_SYMTABS (obj, s)
1566 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1567 {
1568 if (obj->separate_debug_objfile_backlink)
1569 obj = obj->separate_debug_objfile_backlink;
1570
1571 return obj;
1572 }
1573
1574 return NULL;
1575}
1576
1577/* Look up a symbol in a block; if found, fixup the symbol, and set
1578 block_found appropriately. */
1579
1580struct symbol *
1581lookup_symbol_aux_block (const char *name, const struct block *block,
1582 const domain_enum domain)
1583{
1584 struct symbol *sym;
1585
1586 sym = lookup_block_symbol (block, name, domain);
1587 if (sym)
1588 {
1589 block_found = block;
1590 return fixup_symbol_section (sym, NULL);
1591 }
1592
1593 return NULL;
1594}
1595
1596/* Check all global symbols in OBJFILE in symtabs and
1597 psymtabs. */
1598
1599struct symbol *
1600lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1601 const char *name,
1602 const domain_enum domain)
1603{
1604 const struct objfile *objfile;
1605 struct symbol *sym;
1606 const struct blockvector *bv;
1607 const struct block *block;
1608 struct symtab *s;
1609
1610 for (objfile = main_objfile;
1611 objfile;
1612 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1613 {
1614 /* Go through symtabs. */
1615 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1616 {
1617 bv = BLOCKVECTOR (s);
1618 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1619 sym = lookup_block_symbol (block, name, domain);
1620 if (sym)
1621 {
1622 block_found = block;
1623 return fixup_symbol_section (sym, (struct objfile *)objfile);
1624 }
1625 }
1626
1627 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1628 name, domain);
1629 if (sym)
1630 return sym;
1631 }
1632
1633 return NULL;
1634}
1635
1636/* Check to see if the symbol is defined in one of the OBJFILE's
1637 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1638 depending on whether or not we want to search global symbols or
1639 static symbols. */
1640
1641static struct symbol *
1642lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1643 const char *name, const domain_enum domain)
1644{
1645 struct symbol *sym = NULL;
1646 const struct blockvector *bv;
1647 const struct block *block;
1648 struct symtab *s;
1649
1650 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1651 {
1652 bv = BLOCKVECTOR (s);
1653 block = BLOCKVECTOR_BLOCK (bv, block_index);
1654 sym = lookup_block_symbol (block, name, domain);
1655 if (sym)
1656 {
1657 block_found = block;
1658 return fixup_symbol_section (sym, objfile);
1659 }
1660 }
1661
1662 return NULL;
1663}
1664
1665/* Same as lookup_symbol_aux_objfile, except that it searches all
1666 objfiles. Return the first match found. */
1667
1668static struct symbol *
1669lookup_symbol_aux_symtabs (int block_index, const char *name,
1670 const domain_enum domain)
1671{
1672 struct symbol *sym;
1673 struct objfile *objfile;
1674
1675 ALL_OBJFILES (objfile)
1676 {
1677 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1678 if (sym)
1679 return sym;
1680 }
1681
1682 return NULL;
1683}
1684
1685/* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1686 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1687 and all related objfiles. */
1688
1689static struct symbol *
1690lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1691 const char *linkage_name,
1692 domain_enum domain)
1693{
1694 enum language lang = current_language->la_language;
1695 const char *modified_name;
1696 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1697 &modified_name);
1698 struct objfile *main_objfile, *cur_objfile;
1699
1700 if (objfile->separate_debug_objfile_backlink)
1701 main_objfile = objfile->separate_debug_objfile_backlink;
1702 else
1703 main_objfile = objfile;
1704
1705 for (cur_objfile = main_objfile;
1706 cur_objfile;
1707 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1708 {
1709 struct symbol *sym;
1710
1711 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1712 modified_name, domain);
1713 if (sym == NULL)
1714 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1715 modified_name, domain);
1716 if (sym != NULL)
1717 {
1718 do_cleanups (cleanup);
1719 return sym;
1720 }
1721 }
1722
1723 do_cleanups (cleanup);
1724 return NULL;
1725}
1726
1727/* A helper function that throws an exception when a symbol was found
1728 in a psymtab but not in a symtab. */
1729
1730static void ATTRIBUTE_NORETURN
1731error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1732{
1733 error (_("\
1734Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1735%s may be an inlined function, or may be a template function\n \
1736(if a template, try specifying an instantiation: %s<type>)."),
1737 kind == GLOBAL_BLOCK ? "global" : "static",
1738 name, symtab_to_filename_for_display (symtab), name, name);
1739}
1740
1741/* A helper function for lookup_symbol_aux that interfaces with the
1742 "quick" symbol table functions. */
1743
1744static struct symbol *
1745lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1746 const char *name, const domain_enum domain)
1747{
1748 struct symtab *symtab;
1749 const struct blockvector *bv;
1750 const struct block *block;
1751 struct symbol *sym;
1752
1753 if (!objfile->sf)
1754 return NULL;
1755 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1756 if (!symtab)
1757 return NULL;
1758
1759 bv = BLOCKVECTOR (symtab);
1760 block = BLOCKVECTOR_BLOCK (bv, kind);
1761 sym = lookup_block_symbol (block, name, domain);
1762 if (!sym)
1763 error_in_psymtab_expansion (kind, name, symtab);
1764 block_found = block;
1765 return fixup_symbol_section (sym, objfile);
1766}
1767
1768/* A default version of lookup_symbol_nonlocal for use by languages
1769 that can't think of anything better to do. This implements the C
1770 lookup rules. */
1771
1772struct symbol *
1773basic_lookup_symbol_nonlocal (const char *name,
1774 const struct block *block,
1775 const domain_enum domain)
1776{
1777 struct symbol *sym;
1778
1779 /* NOTE: carlton/2003-05-19: The comments below were written when
1780 this (or what turned into this) was part of lookup_symbol_aux;
1781 I'm much less worried about these questions now, since these
1782 decisions have turned out well, but I leave these comments here
1783 for posterity. */
1784
1785 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1786 not it would be appropriate to search the current global block
1787 here as well. (That's what this code used to do before the
1788 is_a_field_of_this check was moved up.) On the one hand, it's
1789 redundant with the lookup_symbol_aux_symtabs search that happens
1790 next. On the other hand, if decode_line_1 is passed an argument
1791 like filename:var, then the user presumably wants 'var' to be
1792 searched for in filename. On the third hand, there shouldn't be
1793 multiple global variables all of which are named 'var', and it's
1794 not like decode_line_1 has ever restricted its search to only
1795 global variables in a single filename. All in all, only
1796 searching the static block here seems best: it's correct and it's
1797 cleanest. */
1798
1799 /* NOTE: carlton/2002-12-05: There's also a possible performance
1800 issue here: if you usually search for global symbols in the
1801 current file, then it would be slightly better to search the
1802 current global block before searching all the symtabs. But there
1803 are other factors that have a much greater effect on performance
1804 than that one, so I don't think we should worry about that for
1805 now. */
1806
1807 sym = lookup_symbol_static (name, block, domain);
1808 if (sym != NULL)
1809 return sym;
1810
1811 return lookup_symbol_global (name, block, domain);
1812}
1813
1814/* Lookup a symbol in the static block associated to BLOCK, if there
1815 is one; do nothing if BLOCK is NULL or a global block. */
1816
1817struct symbol *
1818lookup_symbol_static (const char *name,
1819 const struct block *block,
1820 const domain_enum domain)
1821{
1822 const struct block *static_block = block_static_block (block);
1823
1824 if (static_block != NULL)
1825 return lookup_symbol_aux_block (name, static_block, domain);
1826 else
1827 return NULL;
1828}
1829
1830/* Private data to be used with lookup_symbol_global_iterator_cb. */
1831
1832struct global_sym_lookup_data
1833{
1834 /* The name of the symbol we are searching for. */
1835 const char *name;
1836
1837 /* The domain to use for our search. */
1838 domain_enum domain;
1839
1840 /* The field where the callback should store the symbol if found.
1841 It should be initialized to NULL before the search is started. */
1842 struct symbol *result;
1843};
1844
1845/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1846 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1847 OBJFILE. The arguments for the search are passed via CB_DATA,
1848 which in reality is a pointer to struct global_sym_lookup_data. */
1849
1850static int
1851lookup_symbol_global_iterator_cb (struct objfile *objfile,
1852 void *cb_data)
1853{
1854 struct global_sym_lookup_data *data =
1855 (struct global_sym_lookup_data *) cb_data;
1856
1857 gdb_assert (data->result == NULL);
1858
1859 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1860 data->name, data->domain);
1861 if (data->result == NULL)
1862 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1863 data->name, data->domain);
1864
1865 /* If we found a match, tell the iterator to stop. Otherwise,
1866 keep going. */
1867 return (data->result != NULL);
1868}
1869
1870/* Lookup a symbol in all files' global blocks (searching psymtabs if
1871 necessary). */
1872
1873struct symbol *
1874lookup_symbol_global (const char *name,
1875 const struct block *block,
1876 const domain_enum domain)
1877{
1878 struct symbol *sym = NULL;
1879 struct objfile *objfile = NULL;
1880 struct global_sym_lookup_data lookup_data;
1881
1882 /* Call library-specific lookup procedure. */
1883 objfile = lookup_objfile_from_block (block);
1884 if (objfile != NULL)
1885 sym = solib_global_lookup (objfile, name, domain);
1886 if (sym != NULL)
1887 return sym;
1888
1889 memset (&lookup_data, 0, sizeof (lookup_data));
1890 lookup_data.name = name;
1891 lookup_data.domain = domain;
1892 gdbarch_iterate_over_objfiles_in_search_order
1893 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1894 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1895
1896 return lookup_data.result;
1897}
1898
1899int
1900symbol_matches_domain (enum language symbol_language,
1901 domain_enum symbol_domain,
1902 domain_enum domain)
1903{
1904 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1905 A Java class declaration also defines a typedef for the class.
1906 Similarly, any Ada type declaration implicitly defines a typedef. */
1907 if (symbol_language == language_cplus
1908 || symbol_language == language_d
1909 || symbol_language == language_java
1910 || symbol_language == language_ada)
1911 {
1912 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1913 && symbol_domain == STRUCT_DOMAIN)
1914 return 1;
1915 }
1916 /* For all other languages, strict match is required. */
1917 return (symbol_domain == domain);
1918}
1919
1920/* Look up a type named NAME in the struct_domain. The type returned
1921 must not be opaque -- i.e., must have at least one field
1922 defined. */
1923
1924struct type *
1925lookup_transparent_type (const char *name)
1926{
1927 return current_language->la_lookup_transparent_type (name);
1928}
1929
1930/* A helper for basic_lookup_transparent_type that interfaces with the
1931 "quick" symbol table functions. */
1932
1933static struct type *
1934basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1935 const char *name)
1936{
1937 struct symtab *symtab;
1938 const struct blockvector *bv;
1939 struct block *block;
1940 struct symbol *sym;
1941
1942 if (!objfile->sf)
1943 return NULL;
1944 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1945 if (!symtab)
1946 return NULL;
1947
1948 bv = BLOCKVECTOR (symtab);
1949 block = BLOCKVECTOR_BLOCK (bv, kind);
1950 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1951 if (!sym)
1952 error_in_psymtab_expansion (kind, name, symtab);
1953
1954 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1955 return SYMBOL_TYPE (sym);
1956
1957 return NULL;
1958}
1959
1960/* The standard implementation of lookup_transparent_type. This code
1961 was modeled on lookup_symbol -- the parts not relevant to looking
1962 up types were just left out. In particular it's assumed here that
1963 types are available in struct_domain and only at file-static or
1964 global blocks. */
1965
1966struct type *
1967basic_lookup_transparent_type (const char *name)
1968{
1969 struct symbol *sym;
1970 struct symtab *s = NULL;
1971 const struct blockvector *bv;
1972 struct objfile *objfile;
1973 struct block *block;
1974 struct type *t;
1975
1976 /* Now search all the global symbols. Do the symtab's first, then
1977 check the psymtab's. If a psymtab indicates the existence
1978 of the desired name as a global, then do psymtab-to-symtab
1979 conversion on the fly and return the found symbol. */
1980
1981 ALL_OBJFILES (objfile)
1982 {
1983 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1984 {
1985 bv = BLOCKVECTOR (s);
1986 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1987 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1988 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1989 {
1990 return SYMBOL_TYPE (sym);
1991 }
1992 }
1993 }
1994
1995 ALL_OBJFILES (objfile)
1996 {
1997 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1998 if (t)
1999 return t;
2000 }
2001
2002 /* Now search the static file-level symbols.
2003 Not strictly correct, but more useful than an error.
2004 Do the symtab's first, then
2005 check the psymtab's. If a psymtab indicates the existence
2006 of the desired name as a file-level static, then do psymtab-to-symtab
2007 conversion on the fly and return the found symbol. */
2008
2009 ALL_OBJFILES (objfile)
2010 {
2011 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2012 {
2013 bv = BLOCKVECTOR (s);
2014 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2015 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2016 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2017 {
2018 return SYMBOL_TYPE (sym);
2019 }
2020 }
2021 }
2022
2023 ALL_OBJFILES (objfile)
2024 {
2025 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2026 if (t)
2027 return t;
2028 }
2029
2030 return (struct type *) 0;
2031}
2032
2033/* Search BLOCK for symbol NAME in DOMAIN.
2034
2035 Note that if NAME is the demangled form of a C++ symbol, we will fail
2036 to find a match during the binary search of the non-encoded names, but
2037 for now we don't worry about the slight inefficiency of looking for
2038 a match we'll never find, since it will go pretty quick. Once the
2039 binary search terminates, we drop through and do a straight linear
2040 search on the symbols. Each symbol which is marked as being a ObjC/C++
2041 symbol (language_cplus or language_objc set) has both the encoded and
2042 non-encoded names tested for a match. */
2043
2044struct symbol *
2045lookup_block_symbol (const struct block *block, const char *name,
2046 const domain_enum domain)
2047{
2048 struct block_iterator iter;
2049 struct symbol *sym;
2050
2051 if (!BLOCK_FUNCTION (block))
2052 {
2053 for (sym = block_iter_name_first (block, name, &iter);
2054 sym != NULL;
2055 sym = block_iter_name_next (name, &iter))
2056 {
2057 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2058 SYMBOL_DOMAIN (sym), domain))
2059 return sym;
2060 }
2061 return NULL;
2062 }
2063 else
2064 {
2065 /* Note that parameter symbols do not always show up last in the
2066 list; this loop makes sure to take anything else other than
2067 parameter symbols first; it only uses parameter symbols as a
2068 last resort. Note that this only takes up extra computation
2069 time on a match. */
2070
2071 struct symbol *sym_found = NULL;
2072
2073 for (sym = block_iter_name_first (block, name, &iter);
2074 sym != NULL;
2075 sym = block_iter_name_next (name, &iter))
2076 {
2077 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2078 SYMBOL_DOMAIN (sym), domain))
2079 {
2080 sym_found = sym;
2081 if (!SYMBOL_IS_ARGUMENT (sym))
2082 {
2083 break;
2084 }
2085 }
2086 }
2087 return (sym_found); /* Will be NULL if not found. */
2088 }
2089}
2090
2091/* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2092
2093 For each symbol that matches, CALLBACK is called. The symbol and
2094 DATA are passed to the callback.
2095
2096 If CALLBACK returns zero, the iteration ends. Otherwise, the
2097 search continues. */
2098
2099void
2100iterate_over_symbols (const struct block *block, const char *name,
2101 const domain_enum domain,
2102 symbol_found_callback_ftype *callback,
2103 void *data)
2104{
2105 struct block_iterator iter;
2106 struct symbol *sym;
2107
2108 for (sym = block_iter_name_first (block, name, &iter);
2109 sym != NULL;
2110 sym = block_iter_name_next (name, &iter))
2111 {
2112 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2113 SYMBOL_DOMAIN (sym), domain))
2114 {
2115 if (!callback (sym, data))
2116 return;
2117 }
2118 }
2119}
2120
2121/* Find the symtab associated with PC and SECTION. Look through the
2122 psymtabs and read in another symtab if necessary. */
2123
2124struct symtab *
2125find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2126{
2127 struct block *b;
2128 const struct blockvector *bv;
2129 struct symtab *s = NULL;
2130 struct symtab *best_s = NULL;
2131 struct objfile *objfile;
2132 CORE_ADDR distance = 0;
2133 struct bound_minimal_symbol msymbol;
2134
2135 /* If we know that this is not a text address, return failure. This is
2136 necessary because we loop based on the block's high and low code
2137 addresses, which do not include the data ranges, and because
2138 we call find_pc_sect_psymtab which has a similar restriction based
2139 on the partial_symtab's texthigh and textlow. */
2140 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2141 if (msymbol.minsym
2142 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2143 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2144 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2145 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2146 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2147 return NULL;
2148
2149 /* Search all symtabs for the one whose file contains our address, and which
2150 is the smallest of all the ones containing the address. This is designed
2151 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2152 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2153 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2154
2155 This happens for native ecoff format, where code from included files
2156 gets its own symtab. The symtab for the included file should have
2157 been read in already via the dependency mechanism.
2158 It might be swifter to create several symtabs with the same name
2159 like xcoff does (I'm not sure).
2160
2161 It also happens for objfiles that have their functions reordered.
2162 For these, the symtab we are looking for is not necessarily read in. */
2163
2164 ALL_PRIMARY_SYMTABS (objfile, s)
2165 {
2166 bv = BLOCKVECTOR (s);
2167 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2168
2169 if (BLOCK_START (b) <= pc
2170 && BLOCK_END (b) > pc
2171 && (distance == 0
2172 || BLOCK_END (b) - BLOCK_START (b) < distance))
2173 {
2174 /* For an objfile that has its functions reordered,
2175 find_pc_psymtab will find the proper partial symbol table
2176 and we simply return its corresponding symtab. */
2177 /* In order to better support objfiles that contain both
2178 stabs and coff debugging info, we continue on if a psymtab
2179 can't be found. */
2180 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2181 {
2182 struct symtab *result;
2183
2184 result
2185 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2186 msymbol,
2187 pc, section,
2188 0);
2189 if (result)
2190 return result;
2191 }
2192 if (section != 0)
2193 {
2194 struct block_iterator iter;
2195 struct symbol *sym = NULL;
2196
2197 ALL_BLOCK_SYMBOLS (b, iter, sym)
2198 {
2199 fixup_symbol_section (sym, objfile);
2200 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2201 section))
2202 break;
2203 }
2204 if (sym == NULL)
2205 continue; /* No symbol in this symtab matches
2206 section. */
2207 }
2208 distance = BLOCK_END (b) - BLOCK_START (b);
2209 best_s = s;
2210 }
2211 }
2212
2213 if (best_s != NULL)
2214 return (best_s);
2215
2216 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2217
2218 ALL_OBJFILES (objfile)
2219 {
2220 struct symtab *result;
2221
2222 if (!objfile->sf)
2223 continue;
2224 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2225 msymbol,
2226 pc, section,
2227 1);
2228 if (result)
2229 return result;
2230 }
2231
2232 return NULL;
2233}
2234
2235/* Find the symtab associated with PC. Look through the psymtabs and read
2236 in another symtab if necessary. Backward compatibility, no section. */
2237
2238struct symtab *
2239find_pc_symtab (CORE_ADDR pc)
2240{
2241 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2242}
2243\f
2244
2245/* Find the source file and line number for a given PC value and SECTION.
2246 Return a structure containing a symtab pointer, a line number,
2247 and a pc range for the entire source line.
2248 The value's .pc field is NOT the specified pc.
2249 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2250 use the line that ends there. Otherwise, in that case, the line
2251 that begins there is used. */
2252
2253/* The big complication here is that a line may start in one file, and end just
2254 before the start of another file. This usually occurs when you #include
2255 code in the middle of a subroutine. To properly find the end of a line's PC
2256 range, we must search all symtabs associated with this compilation unit, and
2257 find the one whose first PC is closer than that of the next line in this
2258 symtab. */
2259
2260/* If it's worth the effort, we could be using a binary search. */
2261
2262struct symtab_and_line
2263find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2264{
2265 struct symtab *s;
2266 struct linetable *l;
2267 int len;
2268 int i;
2269 struct linetable_entry *item;
2270 struct symtab_and_line val;
2271 const struct blockvector *bv;
2272 struct bound_minimal_symbol msymbol;
2273 struct objfile *objfile;
2274
2275 /* Info on best line seen so far, and where it starts, and its file. */
2276
2277 struct linetable_entry *best = NULL;
2278 CORE_ADDR best_end = 0;
2279 struct symtab *best_symtab = 0;
2280
2281 /* Store here the first line number
2282 of a file which contains the line at the smallest pc after PC.
2283 If we don't find a line whose range contains PC,
2284 we will use a line one less than this,
2285 with a range from the start of that file to the first line's pc. */
2286 struct linetable_entry *alt = NULL;
2287
2288 /* Info on best line seen in this file. */
2289
2290 struct linetable_entry *prev;
2291
2292 /* If this pc is not from the current frame,
2293 it is the address of the end of a call instruction.
2294 Quite likely that is the start of the following statement.
2295 But what we want is the statement containing the instruction.
2296 Fudge the pc to make sure we get that. */
2297
2298 init_sal (&val); /* initialize to zeroes */
2299
2300 val.pspace = current_program_space;
2301
2302 /* It's tempting to assume that, if we can't find debugging info for
2303 any function enclosing PC, that we shouldn't search for line
2304 number info, either. However, GAS can emit line number info for
2305 assembly files --- very helpful when debugging hand-written
2306 assembly code. In such a case, we'd have no debug info for the
2307 function, but we would have line info. */
2308
2309 if (notcurrent)
2310 pc -= 1;
2311
2312 /* elz: added this because this function returned the wrong
2313 information if the pc belongs to a stub (import/export)
2314 to call a shlib function. This stub would be anywhere between
2315 two functions in the target, and the line info was erroneously
2316 taken to be the one of the line before the pc. */
2317
2318 /* RT: Further explanation:
2319
2320 * We have stubs (trampolines) inserted between procedures.
2321 *
2322 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2323 * exists in the main image.
2324 *
2325 * In the minimal symbol table, we have a bunch of symbols
2326 * sorted by start address. The stubs are marked as "trampoline",
2327 * the others appear as text. E.g.:
2328 *
2329 * Minimal symbol table for main image
2330 * main: code for main (text symbol)
2331 * shr1: stub (trampoline symbol)
2332 * foo: code for foo (text symbol)
2333 * ...
2334 * Minimal symbol table for "shr1" image:
2335 * ...
2336 * shr1: code for shr1 (text symbol)
2337 * ...
2338 *
2339 * So the code below is trying to detect if we are in the stub
2340 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2341 * and if found, do the symbolization from the real-code address
2342 * rather than the stub address.
2343 *
2344 * Assumptions being made about the minimal symbol table:
2345 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2346 * if we're really in the trampoline.s If we're beyond it (say
2347 * we're in "foo" in the above example), it'll have a closer
2348 * symbol (the "foo" text symbol for example) and will not
2349 * return the trampoline.
2350 * 2. lookup_minimal_symbol_text() will find a real text symbol
2351 * corresponding to the trampoline, and whose address will
2352 * be different than the trampoline address. I put in a sanity
2353 * check for the address being the same, to avoid an
2354 * infinite recursion.
2355 */
2356 msymbol = lookup_minimal_symbol_by_pc (pc);
2357 if (msymbol.minsym != NULL)
2358 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2359 {
2360 struct bound_minimal_symbol mfunsym
2361 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2362 NULL);
2363
2364 if (mfunsym.minsym == NULL)
2365 /* I eliminated this warning since it is coming out
2366 * in the following situation:
2367 * gdb shmain // test program with shared libraries
2368 * (gdb) break shr1 // function in shared lib
2369 * Warning: In stub for ...
2370 * In the above situation, the shared lib is not loaded yet,
2371 * so of course we can't find the real func/line info,
2372 * but the "break" still works, and the warning is annoying.
2373 * So I commented out the warning. RT */
2374 /* warning ("In stub for %s; unable to find real function/line info",
2375 SYMBOL_LINKAGE_NAME (msymbol)); */
2376 ;
2377 /* fall through */
2378 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2379 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2380 /* Avoid infinite recursion */
2381 /* See above comment about why warning is commented out. */
2382 /* warning ("In stub for %s; unable to find real function/line info",
2383 SYMBOL_LINKAGE_NAME (msymbol)); */
2384 ;
2385 /* fall through */
2386 else
2387 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2388 }
2389
2390
2391 s = find_pc_sect_symtab (pc, section);
2392 if (!s)
2393 {
2394 /* If no symbol information, return previous pc. */
2395 if (notcurrent)
2396 pc++;
2397 val.pc = pc;
2398 return val;
2399 }
2400
2401 bv = BLOCKVECTOR (s);
2402 objfile = s->objfile;
2403
2404 /* Look at all the symtabs that share this blockvector.
2405 They all have the same apriori range, that we found was right;
2406 but they have different line tables. */
2407
2408 ALL_OBJFILE_SYMTABS (objfile, s)
2409 {
2410 if (BLOCKVECTOR (s) != bv)
2411 continue;
2412
2413 /* Find the best line in this symtab. */
2414 l = LINETABLE (s);
2415 if (!l)
2416 continue;
2417 len = l->nitems;
2418 if (len <= 0)
2419 {
2420 /* I think len can be zero if the symtab lacks line numbers
2421 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2422 I'm not sure which, and maybe it depends on the symbol
2423 reader). */
2424 continue;
2425 }
2426
2427 prev = NULL;
2428 item = l->item; /* Get first line info. */
2429
2430 /* Is this file's first line closer than the first lines of other files?
2431 If so, record this file, and its first line, as best alternate. */
2432 if (item->pc > pc && (!alt || item->pc < alt->pc))
2433 alt = item;
2434
2435 for (i = 0; i < len; i++, item++)
2436 {
2437 /* Leave prev pointing to the linetable entry for the last line
2438 that started at or before PC. */
2439 if (item->pc > pc)
2440 break;
2441
2442 prev = item;
2443 }
2444
2445 /* At this point, prev points at the line whose start addr is <= pc, and
2446 item points at the next line. If we ran off the end of the linetable
2447 (pc >= start of the last line), then prev == item. If pc < start of
2448 the first line, prev will not be set. */
2449
2450 /* Is this file's best line closer than the best in the other files?
2451 If so, record this file, and its best line, as best so far. Don't
2452 save prev if it represents the end of a function (i.e. line number
2453 0) instead of a real line. */
2454
2455 if (prev && prev->line && (!best || prev->pc > best->pc))
2456 {
2457 best = prev;
2458 best_symtab = s;
2459
2460 /* Discard BEST_END if it's before the PC of the current BEST. */
2461 if (best_end <= best->pc)
2462 best_end = 0;
2463 }
2464
2465 /* If another line (denoted by ITEM) is in the linetable and its
2466 PC is after BEST's PC, but before the current BEST_END, then
2467 use ITEM's PC as the new best_end. */
2468 if (best && i < len && item->pc > best->pc
2469 && (best_end == 0 || best_end > item->pc))
2470 best_end = item->pc;
2471 }
2472
2473 if (!best_symtab)
2474 {
2475 /* If we didn't find any line number info, just return zeros.
2476 We used to return alt->line - 1 here, but that could be
2477 anywhere; if we don't have line number info for this PC,
2478 don't make some up. */
2479 val.pc = pc;
2480 }
2481 else if (best->line == 0)
2482 {
2483 /* If our best fit is in a range of PC's for which no line
2484 number info is available (line number is zero) then we didn't
2485 find any valid line information. */
2486 val.pc = pc;
2487 }
2488 else
2489 {
2490 val.symtab = best_symtab;
2491 val.line = best->line;
2492 val.pc = best->pc;
2493 if (best_end && (!alt || best_end < alt->pc))
2494 val.end = best_end;
2495 else if (alt)
2496 val.end = alt->pc;
2497 else
2498 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2499 }
2500 val.section = section;
2501 return val;
2502}
2503
2504/* Backward compatibility (no section). */
2505
2506struct symtab_and_line
2507find_pc_line (CORE_ADDR pc, int notcurrent)
2508{
2509 struct obj_section *section;
2510
2511 section = find_pc_overlay (pc);
2512 if (pc_in_unmapped_range (pc, section))
2513 pc = overlay_mapped_address (pc, section);
2514 return find_pc_sect_line (pc, section, notcurrent);
2515}
2516\f
2517/* Find line number LINE in any symtab whose name is the same as
2518 SYMTAB.
2519
2520 If found, return the symtab that contains the linetable in which it was
2521 found, set *INDEX to the index in the linetable of the best entry
2522 found, and set *EXACT_MATCH nonzero if the value returned is an
2523 exact match.
2524
2525 If not found, return NULL. */
2526
2527struct symtab *
2528find_line_symtab (struct symtab *symtab, int line,
2529 int *index, int *exact_match)
2530{
2531 int exact = 0; /* Initialized here to avoid a compiler warning. */
2532
2533 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2534 so far seen. */
2535
2536 int best_index;
2537 struct linetable *best_linetable;
2538 struct symtab *best_symtab;
2539
2540 /* First try looking it up in the given symtab. */
2541 best_linetable = LINETABLE (symtab);
2542 best_symtab = symtab;
2543 best_index = find_line_common (best_linetable, line, &exact, 0);
2544 if (best_index < 0 || !exact)
2545 {
2546 /* Didn't find an exact match. So we better keep looking for
2547 another symtab with the same name. In the case of xcoff,
2548 multiple csects for one source file (produced by IBM's FORTRAN
2549 compiler) produce multiple symtabs (this is unavoidable
2550 assuming csects can be at arbitrary places in memory and that
2551 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2552
2553 /* BEST is the smallest linenumber > LINE so far seen,
2554 or 0 if none has been seen so far.
2555 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2556 int best;
2557
2558 struct objfile *objfile;
2559 struct symtab *s;
2560
2561 if (best_index >= 0)
2562 best = best_linetable->item[best_index].line;
2563 else
2564 best = 0;
2565
2566 ALL_OBJFILES (objfile)
2567 {
2568 if (objfile->sf)
2569 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2570 symtab_to_fullname (symtab));
2571 }
2572
2573 ALL_SYMTABS (objfile, s)
2574 {
2575 struct linetable *l;
2576 int ind;
2577
2578 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2579 continue;
2580 if (FILENAME_CMP (symtab_to_fullname (symtab),
2581 symtab_to_fullname (s)) != 0)
2582 continue;
2583 l = LINETABLE (s);
2584 ind = find_line_common (l, line, &exact, 0);
2585 if (ind >= 0)
2586 {
2587 if (exact)
2588 {
2589 best_index = ind;
2590 best_linetable = l;
2591 best_symtab = s;
2592 goto done;
2593 }
2594 if (best == 0 || l->item[ind].line < best)
2595 {
2596 best = l->item[ind].line;
2597 best_index = ind;
2598 best_linetable = l;
2599 best_symtab = s;
2600 }
2601 }
2602 }
2603 }
2604done:
2605 if (best_index < 0)
2606 return NULL;
2607
2608 if (index)
2609 *index = best_index;
2610 if (exact_match)
2611 *exact_match = exact;
2612
2613 return best_symtab;
2614}
2615
2616/* Given SYMTAB, returns all the PCs function in the symtab that
2617 exactly match LINE. Returns NULL if there are no exact matches,
2618 but updates BEST_ITEM in this case. */
2619
2620VEC (CORE_ADDR) *
2621find_pcs_for_symtab_line (struct symtab *symtab, int line,
2622 struct linetable_entry **best_item)
2623{
2624 int start = 0;
2625 VEC (CORE_ADDR) *result = NULL;
2626
2627 /* First, collect all the PCs that are at this line. */
2628 while (1)
2629 {
2630 int was_exact;
2631 int idx;
2632
2633 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2634 if (idx < 0)
2635 break;
2636
2637 if (!was_exact)
2638 {
2639 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2640
2641 if (*best_item == NULL || item->line < (*best_item)->line)
2642 *best_item = item;
2643
2644 break;
2645 }
2646
2647 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2648 start = idx + 1;
2649 }
2650
2651 return result;
2652}
2653
2654\f
2655/* Set the PC value for a given source file and line number and return true.
2656 Returns zero for invalid line number (and sets the PC to 0).
2657 The source file is specified with a struct symtab. */
2658
2659int
2660find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2661{
2662 struct linetable *l;
2663 int ind;
2664
2665 *pc = 0;
2666 if (symtab == 0)
2667 return 0;
2668
2669 symtab = find_line_symtab (symtab, line, &ind, NULL);
2670 if (symtab != NULL)
2671 {
2672 l = LINETABLE (symtab);
2673 *pc = l->item[ind].pc;
2674 return 1;
2675 }
2676 else
2677 return 0;
2678}
2679
2680/* Find the range of pc values in a line.
2681 Store the starting pc of the line into *STARTPTR
2682 and the ending pc (start of next line) into *ENDPTR.
2683 Returns 1 to indicate success.
2684 Returns 0 if could not find the specified line. */
2685
2686int
2687find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2688 CORE_ADDR *endptr)
2689{
2690 CORE_ADDR startaddr;
2691 struct symtab_and_line found_sal;
2692
2693 startaddr = sal.pc;
2694 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2695 return 0;
2696
2697 /* This whole function is based on address. For example, if line 10 has
2698 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2699 "info line *0x123" should say the line goes from 0x100 to 0x200
2700 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2701 This also insures that we never give a range like "starts at 0x134
2702 and ends at 0x12c". */
2703
2704 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2705 if (found_sal.line != sal.line)
2706 {
2707 /* The specified line (sal) has zero bytes. */
2708 *startptr = found_sal.pc;
2709 *endptr = found_sal.pc;
2710 }
2711 else
2712 {
2713 *startptr = found_sal.pc;
2714 *endptr = found_sal.end;
2715 }
2716 return 1;
2717}
2718
2719/* Given a line table and a line number, return the index into the line
2720 table for the pc of the nearest line whose number is >= the specified one.
2721 Return -1 if none is found. The value is >= 0 if it is an index.
2722 START is the index at which to start searching the line table.
2723
2724 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2725
2726static int
2727find_line_common (struct linetable *l, int lineno,
2728 int *exact_match, int start)
2729{
2730 int i;
2731 int len;
2732
2733 /* BEST is the smallest linenumber > LINENO so far seen,
2734 or 0 if none has been seen so far.
2735 BEST_INDEX identifies the item for it. */
2736
2737 int best_index = -1;
2738 int best = 0;
2739
2740 *exact_match = 0;
2741
2742 if (lineno <= 0)
2743 return -1;
2744 if (l == 0)
2745 return -1;
2746
2747 len = l->nitems;
2748 for (i = start; i < len; i++)
2749 {
2750 struct linetable_entry *item = &(l->item[i]);
2751
2752 if (item->line == lineno)
2753 {
2754 /* Return the first (lowest address) entry which matches. */
2755 *exact_match = 1;
2756 return i;
2757 }
2758
2759 if (item->line > lineno && (best == 0 || item->line < best))
2760 {
2761 best = item->line;
2762 best_index = i;
2763 }
2764 }
2765
2766 /* If we got here, we didn't get an exact match. */
2767 return best_index;
2768}
2769
2770int
2771find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2772{
2773 struct symtab_and_line sal;
2774
2775 sal = find_pc_line (pc, 0);
2776 *startptr = sal.pc;
2777 *endptr = sal.end;
2778 return sal.symtab != 0;
2779}
2780
2781/* Given a function symbol SYM, find the symtab and line for the start
2782 of the function.
2783 If the argument FUNFIRSTLINE is nonzero, we want the first line
2784 of real code inside the function. */
2785
2786struct symtab_and_line
2787find_function_start_sal (struct symbol *sym, int funfirstline)
2788{
2789 struct symtab_and_line sal;
2790
2791 fixup_symbol_section (sym, NULL);
2792 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2793 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2794
2795 /* We always should have a line for the function start address.
2796 If we don't, something is odd. Create a plain SAL refering
2797 just the PC and hope that skip_prologue_sal (if requested)
2798 can find a line number for after the prologue. */
2799 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2800 {
2801 init_sal (&sal);
2802 sal.pspace = current_program_space;
2803 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2804 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2805 }
2806
2807 if (funfirstline)
2808 skip_prologue_sal (&sal);
2809
2810 return sal;
2811}
2812
2813/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2814 address for that function that has an entry in SYMTAB's line info
2815 table. If such an entry cannot be found, return FUNC_ADDR
2816 unaltered. */
2817
2818static CORE_ADDR
2819skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2820{
2821 CORE_ADDR func_start, func_end;
2822 struct linetable *l;
2823 int i;
2824
2825 /* Give up if this symbol has no lineinfo table. */
2826 l = LINETABLE (symtab);
2827 if (l == NULL)
2828 return func_addr;
2829
2830 /* Get the range for the function's PC values, or give up if we
2831 cannot, for some reason. */
2832 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2833 return func_addr;
2834
2835 /* Linetable entries are ordered by PC values, see the commentary in
2836 symtab.h where `struct linetable' is defined. Thus, the first
2837 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2838 address we are looking for. */
2839 for (i = 0; i < l->nitems; i++)
2840 {
2841 struct linetable_entry *item = &(l->item[i]);
2842
2843 /* Don't use line numbers of zero, they mark special entries in
2844 the table. See the commentary on symtab.h before the
2845 definition of struct linetable. */
2846 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2847 return item->pc;
2848 }
2849
2850 return func_addr;
2851}
2852
2853/* Adjust SAL to the first instruction past the function prologue.
2854 If the PC was explicitly specified, the SAL is not changed.
2855 If the line number was explicitly specified, at most the SAL's PC
2856 is updated. If SAL is already past the prologue, then do nothing. */
2857
2858void
2859skip_prologue_sal (struct symtab_and_line *sal)
2860{
2861 struct symbol *sym;
2862 struct symtab_and_line start_sal;
2863 struct cleanup *old_chain;
2864 CORE_ADDR pc, saved_pc;
2865 struct obj_section *section;
2866 const char *name;
2867 struct objfile *objfile;
2868 struct gdbarch *gdbarch;
2869 const struct block *b, *function_block;
2870 int force_skip, skip;
2871
2872 /* Do not change the SAL if PC was specified explicitly. */
2873 if (sal->explicit_pc)
2874 return;
2875
2876 old_chain = save_current_space_and_thread ();
2877 switch_to_program_space_and_thread (sal->pspace);
2878
2879 sym = find_pc_sect_function (sal->pc, sal->section);
2880 if (sym != NULL)
2881 {
2882 fixup_symbol_section (sym, NULL);
2883
2884 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2885 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2886 name = SYMBOL_LINKAGE_NAME (sym);
2887 objfile = SYMBOL_SYMTAB (sym)->objfile;
2888 }
2889 else
2890 {
2891 struct bound_minimal_symbol msymbol
2892 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2893
2894 if (msymbol.minsym == NULL)
2895 {
2896 do_cleanups (old_chain);
2897 return;
2898 }
2899
2900 objfile = msymbol.objfile;
2901 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2902 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2903 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2904 }
2905
2906 gdbarch = get_objfile_arch (objfile);
2907
2908 /* Process the prologue in two passes. In the first pass try to skip the
2909 prologue (SKIP is true) and verify there is a real need for it (indicated
2910 by FORCE_SKIP). If no such reason was found run a second pass where the
2911 prologue is not skipped (SKIP is false). */
2912
2913 skip = 1;
2914 force_skip = 1;
2915
2916 /* Be conservative - allow direct PC (without skipping prologue) only if we
2917 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2918 have to be set by the caller so we use SYM instead. */
2919 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2920 force_skip = 0;
2921
2922 saved_pc = pc;
2923 do
2924 {
2925 pc = saved_pc;
2926
2927 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2928 so that gdbarch_skip_prologue has something unique to work on. */
2929 if (section_is_overlay (section) && !section_is_mapped (section))
2930 pc = overlay_unmapped_address (pc, section);
2931
2932 /* Skip "first line" of function (which is actually its prologue). */
2933 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2934 if (gdbarch_skip_entrypoint_p (gdbarch))
2935 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2936 if (skip)
2937 pc = gdbarch_skip_prologue (gdbarch, pc);
2938
2939 /* For overlays, map pc back into its mapped VMA range. */
2940 pc = overlay_mapped_address (pc, section);
2941
2942 /* Calculate line number. */
2943 start_sal = find_pc_sect_line (pc, section, 0);
2944
2945 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2946 line is still part of the same function. */
2947 if (skip && start_sal.pc != pc
2948 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2949 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2950 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2951 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2952 {
2953 /* First pc of next line */
2954 pc = start_sal.end;
2955 /* Recalculate the line number (might not be N+1). */
2956 start_sal = find_pc_sect_line (pc, section, 0);
2957 }
2958
2959 /* On targets with executable formats that don't have a concept of
2960 constructors (ELF with .init has, PE doesn't), gcc emits a call
2961 to `__main' in `main' between the prologue and before user
2962 code. */
2963 if (gdbarch_skip_main_prologue_p (gdbarch)
2964 && name && strcmp_iw (name, "main") == 0)
2965 {
2966 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2967 /* Recalculate the line number (might not be N+1). */
2968 start_sal = find_pc_sect_line (pc, section, 0);
2969 force_skip = 1;
2970 }
2971 }
2972 while (!force_skip && skip--);
2973
2974 /* If we still don't have a valid source line, try to find the first
2975 PC in the lineinfo table that belongs to the same function. This
2976 happens with COFF debug info, which does not seem to have an
2977 entry in lineinfo table for the code after the prologue which has
2978 no direct relation to source. For example, this was found to be
2979 the case with the DJGPP target using "gcc -gcoff" when the
2980 compiler inserted code after the prologue to make sure the stack
2981 is aligned. */
2982 if (!force_skip && sym && start_sal.symtab == NULL)
2983 {
2984 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2985 /* Recalculate the line number. */
2986 start_sal = find_pc_sect_line (pc, section, 0);
2987 }
2988
2989 do_cleanups (old_chain);
2990
2991 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2992 forward SAL to the end of the prologue. */
2993 if (sal->pc >= pc)
2994 return;
2995
2996 sal->pc = pc;
2997 sal->section = section;
2998
2999 /* Unless the explicit_line flag was set, update the SAL line
3000 and symtab to correspond to the modified PC location. */
3001 if (sal->explicit_line)
3002 return;
3003
3004 sal->symtab = start_sal.symtab;
3005 sal->line = start_sal.line;
3006 sal->end = start_sal.end;
3007
3008 /* Check if we are now inside an inlined function. If we can,
3009 use the call site of the function instead. */
3010 b = block_for_pc_sect (sal->pc, sal->section);
3011 function_block = NULL;
3012 while (b != NULL)
3013 {
3014 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3015 function_block = b;
3016 else if (BLOCK_FUNCTION (b) != NULL)
3017 break;
3018 b = BLOCK_SUPERBLOCK (b);
3019 }
3020 if (function_block != NULL
3021 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3022 {
3023 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3024 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3025 }
3026}
3027
3028/* Determine if PC is in the prologue of a function. The prologue is the area
3029 between the first instruction of a function, and the first executable line.
3030 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3031
3032 If non-zero, func_start is where we think the prologue starts, possibly
3033 by previous examination of symbol table information. */
3034
3035int
3036in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
3037{
3038 struct symtab_and_line sal;
3039 CORE_ADDR func_addr, func_end;
3040
3041 /* We have several sources of information we can consult to figure
3042 this out.
3043 - Compilers usually emit line number info that marks the prologue
3044 as its own "source line". So the ending address of that "line"
3045 is the end of the prologue. If available, this is the most
3046 reliable method.
3047 - The minimal symbols and partial symbols, which can usually tell
3048 us the starting and ending addresses of a function.
3049 - If we know the function's start address, we can call the
3050 architecture-defined gdbarch_skip_prologue function to analyze the
3051 instruction stream and guess where the prologue ends.
3052 - Our `func_start' argument; if non-zero, this is the caller's
3053 best guess as to the function's entry point. At the time of
3054 this writing, handle_inferior_event doesn't get this right, so
3055 it should be our last resort. */
3056
3057 /* Consult the partial symbol table, to find which function
3058 the PC is in. */
3059 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3060 {
3061 CORE_ADDR prologue_end;
3062
3063 /* We don't even have minsym information, so fall back to using
3064 func_start, if given. */
3065 if (! func_start)
3066 return 1; /* We *might* be in a prologue. */
3067
3068 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
3069
3070 return func_start <= pc && pc < prologue_end;
3071 }
3072
3073 /* If we have line number information for the function, that's
3074 usually pretty reliable. */
3075 sal = find_pc_line (func_addr, 0);
3076
3077 /* Now sal describes the source line at the function's entry point,
3078 which (by convention) is the prologue. The end of that "line",
3079 sal.end, is the end of the prologue.
3080
3081 Note that, for functions whose source code is all on a single
3082 line, the line number information doesn't always end up this way.
3083 So we must verify that our purported end-of-prologue address is
3084 *within* the function, not at its start or end. */
3085 if (sal.line == 0
3086 || sal.end <= func_addr
3087 || func_end <= sal.end)
3088 {
3089 /* We don't have any good line number info, so use the minsym
3090 information, together with the architecture-specific prologue
3091 scanning code. */
3092 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3093
3094 return func_addr <= pc && pc < prologue_end;
3095 }
3096
3097 /* We have line number info, and it looks good. */
3098 return func_addr <= pc && pc < sal.end;
3099}
3100
3101/* Given PC at the function's start address, attempt to find the
3102 prologue end using SAL information. Return zero if the skip fails.
3103
3104 A non-optimized prologue traditionally has one SAL for the function
3105 and a second for the function body. A single line function has
3106 them both pointing at the same line.
3107
3108 An optimized prologue is similar but the prologue may contain
3109 instructions (SALs) from the instruction body. Need to skip those
3110 while not getting into the function body.
3111
3112 The functions end point and an increasing SAL line are used as
3113 indicators of the prologue's endpoint.
3114
3115 This code is based on the function refine_prologue_limit
3116 (found in ia64). */
3117
3118CORE_ADDR
3119skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3120{
3121 struct symtab_and_line prologue_sal;
3122 CORE_ADDR start_pc;
3123 CORE_ADDR end_pc;
3124 const struct block *bl;
3125
3126 /* Get an initial range for the function. */
3127 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3128 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3129
3130 prologue_sal = find_pc_line (start_pc, 0);
3131 if (prologue_sal.line != 0)
3132 {
3133 /* For languages other than assembly, treat two consecutive line
3134 entries at the same address as a zero-instruction prologue.
3135 The GNU assembler emits separate line notes for each instruction
3136 in a multi-instruction macro, but compilers generally will not
3137 do this. */
3138 if (prologue_sal.symtab->language != language_asm)
3139 {
3140 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3141 int idx = 0;
3142
3143 /* Skip any earlier lines, and any end-of-sequence marker
3144 from a previous function. */
3145 while (linetable->item[idx].pc != prologue_sal.pc
3146 || linetable->item[idx].line == 0)
3147 idx++;
3148
3149 if (idx+1 < linetable->nitems
3150 && linetable->item[idx+1].line != 0
3151 && linetable->item[idx+1].pc == start_pc)
3152 return start_pc;
3153 }
3154
3155 /* If there is only one sal that covers the entire function,
3156 then it is probably a single line function, like
3157 "foo(){}". */
3158 if (prologue_sal.end >= end_pc)
3159 return 0;
3160
3161 while (prologue_sal.end < end_pc)
3162 {
3163 struct symtab_and_line sal;
3164
3165 sal = find_pc_line (prologue_sal.end, 0);
3166 if (sal.line == 0)
3167 break;
3168 /* Assume that a consecutive SAL for the same (or larger)
3169 line mark the prologue -> body transition. */
3170 if (sal.line >= prologue_sal.line)
3171 break;
3172 /* Likewise if we are in a different symtab altogether
3173 (e.g. within a file included via #include).  */
3174 if (sal.symtab != prologue_sal.symtab)
3175 break;
3176
3177 /* The line number is smaller. Check that it's from the
3178 same function, not something inlined. If it's inlined,
3179 then there is no point comparing the line numbers. */
3180 bl = block_for_pc (prologue_sal.end);
3181 while (bl)
3182 {
3183 if (block_inlined_p (bl))
3184 break;
3185 if (BLOCK_FUNCTION (bl))
3186 {
3187 bl = NULL;
3188 break;
3189 }
3190 bl = BLOCK_SUPERBLOCK (bl);
3191 }
3192 if (bl != NULL)
3193 break;
3194
3195 /* The case in which compiler's optimizer/scheduler has
3196 moved instructions into the prologue. We look ahead in
3197 the function looking for address ranges whose
3198 corresponding line number is less the first one that we
3199 found for the function. This is more conservative then
3200 refine_prologue_limit which scans a large number of SALs
3201 looking for any in the prologue. */
3202 prologue_sal = sal;
3203 }
3204 }
3205
3206 if (prologue_sal.end < end_pc)
3207 /* Return the end of this line, or zero if we could not find a
3208 line. */
3209 return prologue_sal.end;
3210 else
3211 /* Don't return END_PC, which is past the end of the function. */
3212 return prologue_sal.pc;
3213}
3214\f
3215/* If P is of the form "operator[ \t]+..." where `...' is
3216 some legitimate operator text, return a pointer to the
3217 beginning of the substring of the operator text.
3218 Otherwise, return "". */
3219
3220static const char *
3221operator_chars (const char *p, const char **end)
3222{
3223 *end = "";
3224 if (strncmp (p, "operator", 8))
3225 return *end;
3226 p += 8;
3227
3228 /* Don't get faked out by `operator' being part of a longer
3229 identifier. */
3230 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3231 return *end;
3232
3233 /* Allow some whitespace between `operator' and the operator symbol. */
3234 while (*p == ' ' || *p == '\t')
3235 p++;
3236
3237 /* Recognize 'operator TYPENAME'. */
3238
3239 if (isalpha (*p) || *p == '_' || *p == '$')
3240 {
3241 const char *q = p + 1;
3242
3243 while (isalnum (*q) || *q == '_' || *q == '$')
3244 q++;
3245 *end = q;
3246 return p;
3247 }
3248
3249 while (*p)
3250 switch (*p)
3251 {
3252 case '\\': /* regexp quoting */
3253 if (p[1] == '*')
3254 {
3255 if (p[2] == '=') /* 'operator\*=' */
3256 *end = p + 3;
3257 else /* 'operator\*' */
3258 *end = p + 2;
3259 return p;
3260 }
3261 else if (p[1] == '[')
3262 {
3263 if (p[2] == ']')
3264 error (_("mismatched quoting on brackets, "
3265 "try 'operator\\[\\]'"));
3266 else if (p[2] == '\\' && p[3] == ']')
3267 {
3268 *end = p + 4; /* 'operator\[\]' */
3269 return p;
3270 }
3271 else
3272 error (_("nothing is allowed between '[' and ']'"));
3273 }
3274 else
3275 {
3276 /* Gratuitous qoute: skip it and move on. */
3277 p++;
3278 continue;
3279 }
3280 break;
3281 case '!':
3282 case '=':
3283 case '*':
3284 case '/':
3285 case '%':
3286 case '^':
3287 if (p[1] == '=')
3288 *end = p + 2;
3289 else
3290 *end = p + 1;
3291 return p;
3292 case '<':
3293 case '>':
3294 case '+':
3295 case '-':
3296 case '&':
3297 case '|':
3298 if (p[0] == '-' && p[1] == '>')
3299 {
3300 /* Struct pointer member operator 'operator->'. */
3301 if (p[2] == '*')
3302 {
3303 *end = p + 3; /* 'operator->*' */
3304 return p;
3305 }
3306 else if (p[2] == '\\')
3307 {
3308 *end = p + 4; /* Hopefully 'operator->\*' */
3309 return p;
3310 }
3311 else
3312 {
3313 *end = p + 2; /* 'operator->' */
3314 return p;
3315 }
3316 }
3317 if (p[1] == '=' || p[1] == p[0])
3318 *end = p + 2;
3319 else
3320 *end = p + 1;
3321 return p;
3322 case '~':
3323 case ',':
3324 *end = p + 1;
3325 return p;
3326 case '(':
3327 if (p[1] != ')')
3328 error (_("`operator ()' must be specified "
3329 "without whitespace in `()'"));
3330 *end = p + 2;
3331 return p;
3332 case '?':
3333 if (p[1] != ':')
3334 error (_("`operator ?:' must be specified "
3335 "without whitespace in `?:'"));
3336 *end = p + 2;
3337 return p;
3338 case '[':
3339 if (p[1] != ']')
3340 error (_("`operator []' must be specified "
3341 "without whitespace in `[]'"));
3342 *end = p + 2;
3343 return p;
3344 default:
3345 error (_("`operator %s' not supported"), p);
3346 break;
3347 }
3348
3349 *end = "";
3350 return *end;
3351}
3352\f
3353
3354/* Cache to watch for file names already seen by filename_seen. */
3355
3356struct filename_seen_cache
3357{
3358 /* Table of files seen so far. */
3359 htab_t tab;
3360 /* Initial size of the table. It automagically grows from here. */
3361#define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3362};
3363
3364/* filename_seen_cache constructor. */
3365
3366static struct filename_seen_cache *
3367create_filename_seen_cache (void)
3368{
3369 struct filename_seen_cache *cache;
3370
3371 cache = XNEW (struct filename_seen_cache);
3372 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3373 filename_hash, filename_eq,
3374 NULL, xcalloc, xfree);
3375
3376 return cache;
3377}
3378
3379/* Empty the cache, but do not delete it. */
3380
3381static void
3382clear_filename_seen_cache (struct filename_seen_cache *cache)
3383{
3384 htab_empty (cache->tab);
3385}
3386
3387/* filename_seen_cache destructor.
3388 This takes a void * argument as it is generally used as a cleanup. */
3389
3390static void
3391delete_filename_seen_cache (void *ptr)
3392{
3393 struct filename_seen_cache *cache = ptr;
3394
3395 htab_delete (cache->tab);
3396 xfree (cache);
3397}
3398
3399/* If FILE is not already in the table of files in CACHE, return zero;
3400 otherwise return non-zero. Optionally add FILE to the table if ADD
3401 is non-zero.
3402
3403 NOTE: We don't manage space for FILE, we assume FILE lives as long
3404 as the caller needs. */
3405
3406static int
3407filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3408{
3409 void **slot;
3410
3411 /* Is FILE in tab? */
3412 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3413 if (*slot != NULL)
3414 return 1;
3415
3416 /* No; maybe add it to tab. */
3417 if (add)
3418 *slot = (char *) file;
3419
3420 return 0;
3421}
3422
3423/* Data structure to maintain printing state for output_source_filename. */
3424
3425struct output_source_filename_data
3426{
3427 /* Cache of what we've seen so far. */
3428 struct filename_seen_cache *filename_seen_cache;
3429
3430 /* Flag of whether we're printing the first one. */
3431 int first;
3432};
3433
3434/* Slave routine for sources_info. Force line breaks at ,'s.
3435 NAME is the name to print.
3436 DATA contains the state for printing and watching for duplicates. */
3437
3438static void
3439output_source_filename (const char *name,
3440 struct output_source_filename_data *data)
3441{
3442 /* Since a single source file can result in several partial symbol
3443 tables, we need to avoid printing it more than once. Note: if
3444 some of the psymtabs are read in and some are not, it gets
3445 printed both under "Source files for which symbols have been
3446 read" and "Source files for which symbols will be read in on
3447 demand". I consider this a reasonable way to deal with the
3448 situation. I'm not sure whether this can also happen for
3449 symtabs; it doesn't hurt to check. */
3450
3451 /* Was NAME already seen? */
3452 if (filename_seen (data->filename_seen_cache, name, 1))
3453 {
3454 /* Yes; don't print it again. */
3455 return;
3456 }
3457
3458 /* No; print it and reset *FIRST. */
3459 if (! data->first)
3460 printf_filtered (", ");
3461 data->first = 0;
3462
3463 wrap_here ("");
3464 fputs_filtered (name, gdb_stdout);
3465}
3466
3467/* A callback for map_partial_symbol_filenames. */
3468
3469static void
3470output_partial_symbol_filename (const char *filename, const char *fullname,
3471 void *data)
3472{
3473 output_source_filename (fullname ? fullname : filename, data);
3474}
3475
3476static void
3477sources_info (char *ignore, int from_tty)
3478{
3479 struct symtab *s;
3480 struct objfile *objfile;
3481 struct output_source_filename_data data;
3482 struct cleanup *cleanups;
3483
3484 if (!have_full_symbols () && !have_partial_symbols ())
3485 {
3486 error (_("No symbol table is loaded. Use the \"file\" command."));
3487 }
3488
3489 data.filename_seen_cache = create_filename_seen_cache ();
3490 cleanups = make_cleanup (delete_filename_seen_cache,
3491 data.filename_seen_cache);
3492
3493 printf_filtered ("Source files for which symbols have been read in:\n\n");
3494
3495 data.first = 1;
3496 ALL_SYMTABS (objfile, s)
3497 {
3498 const char *fullname = symtab_to_fullname (s);
3499
3500 output_source_filename (fullname, &data);
3501 }
3502 printf_filtered ("\n\n");
3503
3504 printf_filtered ("Source files for which symbols "
3505 "will be read in on demand:\n\n");
3506
3507 clear_filename_seen_cache (data.filename_seen_cache);
3508 data.first = 1;
3509 map_symbol_filenames (output_partial_symbol_filename, &data,
3510 1 /*need_fullname*/);
3511 printf_filtered ("\n");
3512
3513 do_cleanups (cleanups);
3514}
3515
3516/* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3517 non-zero compare only lbasename of FILES. */
3518
3519static int
3520file_matches (const char *file, const char *files[], int nfiles, int basenames)
3521{
3522 int i;
3523
3524 if (file != NULL && nfiles != 0)
3525 {
3526 for (i = 0; i < nfiles; i++)
3527 {
3528 if (compare_filenames_for_search (file, (basenames
3529 ? lbasename (files[i])
3530 : files[i])))
3531 return 1;
3532 }
3533 }
3534 else if (nfiles == 0)
3535 return 1;
3536 return 0;
3537}
3538
3539/* Free any memory associated with a search. */
3540
3541void
3542free_search_symbols (struct symbol_search *symbols)
3543{
3544 struct symbol_search *p;
3545 struct symbol_search *next;
3546
3547 for (p = symbols; p != NULL; p = next)
3548 {
3549 next = p->next;
3550 xfree (p);
3551 }
3552}
3553
3554static void
3555do_free_search_symbols_cleanup (void *symbolsp)
3556{
3557 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3558
3559 free_search_symbols (symbols);
3560}
3561
3562struct cleanup *
3563make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3564{
3565 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3566}
3567
3568/* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3569 sort symbols, not minimal symbols. */
3570
3571static int
3572compare_search_syms (const void *sa, const void *sb)
3573{
3574 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3575 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3576 int c;
3577
3578 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3579 if (c != 0)
3580 return c;
3581
3582 if (sym_a->block != sym_b->block)
3583 return sym_a->block - sym_b->block;
3584
3585 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3586 SYMBOL_PRINT_NAME (sym_b->symbol));
3587}
3588
3589/* Sort the NFOUND symbols in list FOUND and remove duplicates.
3590 The duplicates are freed, and the new list is returned in
3591 *NEW_HEAD, *NEW_TAIL. */
3592
3593static void
3594sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3595 struct symbol_search **new_head,
3596 struct symbol_search **new_tail)
3597{
3598 struct symbol_search **symbols, *symp, *old_next;
3599 int i, j, nunique;
3600
3601 gdb_assert (found != NULL && nfound > 0);
3602
3603 /* Build an array out of the list so we can easily sort them. */
3604 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3605 * nfound);
3606 symp = found;
3607 for (i = 0; i < nfound; i++)
3608 {
3609 gdb_assert (symp != NULL);
3610 gdb_assert (symp->block >= 0 && symp->block <= 1);
3611 symbols[i] = symp;
3612 symp = symp->next;
3613 }
3614 gdb_assert (symp == NULL);
3615
3616 qsort (symbols, nfound, sizeof (struct symbol_search *),
3617 compare_search_syms);
3618
3619 /* Collapse out the dups. */
3620 for (i = 1, j = 1; i < nfound; ++i)
3621 {
3622 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3623 symbols[j++] = symbols[i];
3624 else
3625 xfree (symbols[i]);
3626 }
3627 nunique = j;
3628 symbols[j - 1]->next = NULL;
3629
3630 /* Rebuild the linked list. */
3631 for (i = 0; i < nunique - 1; i++)
3632 symbols[i]->next = symbols[i + 1];
3633 symbols[nunique - 1]->next = NULL;
3634
3635 *new_head = symbols[0];
3636 *new_tail = symbols[nunique - 1];
3637 xfree (symbols);
3638}
3639
3640/* An object of this type is passed as the user_data to the
3641 expand_symtabs_matching method. */
3642struct search_symbols_data
3643{
3644 int nfiles;
3645 const char **files;
3646
3647 /* It is true if PREG contains valid data, false otherwise. */
3648 unsigned preg_p : 1;
3649 regex_t preg;
3650};
3651
3652/* A callback for expand_symtabs_matching. */
3653
3654static int
3655search_symbols_file_matches (const char *filename, void *user_data,
3656 int basenames)
3657{
3658 struct search_symbols_data *data = user_data;
3659
3660 return file_matches (filename, data->files, data->nfiles, basenames);
3661}
3662
3663/* A callback for expand_symtabs_matching. */
3664
3665static int
3666search_symbols_name_matches (const char *symname, void *user_data)
3667{
3668 struct search_symbols_data *data = user_data;
3669
3670 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3671}
3672
3673/* Search the symbol table for matches to the regular expression REGEXP,
3674 returning the results in *MATCHES.
3675
3676 Only symbols of KIND are searched:
3677 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3678 and constants (enums)
3679 FUNCTIONS_DOMAIN - search all functions
3680 TYPES_DOMAIN - search all type names
3681 ALL_DOMAIN - an internal error for this function
3682
3683 free_search_symbols should be called when *MATCHES is no longer needed.
3684
3685 Within each file the results are sorted locally; each symtab's global and
3686 static blocks are separately alphabetized.
3687 Duplicate entries are removed. */
3688
3689void
3690search_symbols (const char *regexp, enum search_domain kind,
3691 int nfiles, const char *files[],
3692 struct symbol_search **matches)
3693{
3694 struct symtab *s;
3695 const struct blockvector *bv;
3696 struct block *b;
3697 int i = 0;
3698 struct block_iterator iter;
3699 struct symbol *sym;
3700 struct objfile *objfile;
3701 struct minimal_symbol *msymbol;
3702 int found_misc = 0;
3703 static const enum minimal_symbol_type types[]
3704 = {mst_data, mst_text, mst_abs};
3705 static const enum minimal_symbol_type types2[]
3706 = {mst_bss, mst_file_text, mst_abs};
3707 static const enum minimal_symbol_type types3[]
3708 = {mst_file_data, mst_solib_trampoline, mst_abs};
3709 static const enum minimal_symbol_type types4[]
3710 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3711 enum minimal_symbol_type ourtype;
3712 enum minimal_symbol_type ourtype2;
3713 enum minimal_symbol_type ourtype3;
3714 enum minimal_symbol_type ourtype4;
3715 struct symbol_search *found;
3716 struct symbol_search *tail;
3717 struct search_symbols_data datum;
3718 int nfound;
3719
3720 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3721 CLEANUP_CHAIN is freed only in the case of an error. */
3722 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3723 struct cleanup *retval_chain;
3724
3725 gdb_assert (kind <= TYPES_DOMAIN);
3726
3727 ourtype = types[kind];
3728 ourtype2 = types2[kind];
3729 ourtype3 = types3[kind];
3730 ourtype4 = types4[kind];
3731
3732 *matches = NULL;
3733 datum.preg_p = 0;
3734
3735 if (regexp != NULL)
3736 {
3737 /* Make sure spacing is right for C++ operators.
3738 This is just a courtesy to make the matching less sensitive
3739 to how many spaces the user leaves between 'operator'
3740 and <TYPENAME> or <OPERATOR>. */
3741 const char *opend;
3742 const char *opname = operator_chars (regexp, &opend);
3743 int errcode;
3744
3745 if (*opname)
3746 {
3747 int fix = -1; /* -1 means ok; otherwise number of
3748 spaces needed. */
3749
3750 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3751 {
3752 /* There should 1 space between 'operator' and 'TYPENAME'. */
3753 if (opname[-1] != ' ' || opname[-2] == ' ')
3754 fix = 1;
3755 }
3756 else
3757 {
3758 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3759 if (opname[-1] == ' ')
3760 fix = 0;
3761 }
3762 /* If wrong number of spaces, fix it. */
3763 if (fix >= 0)
3764 {
3765 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3766
3767 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3768 regexp = tmp;
3769 }
3770 }
3771
3772 errcode = regcomp (&datum.preg, regexp,
3773 REG_NOSUB | (case_sensitivity == case_sensitive_off
3774 ? REG_ICASE : 0));
3775 if (errcode != 0)
3776 {
3777 char *err = get_regcomp_error (errcode, &datum.preg);
3778
3779 make_cleanup (xfree, err);
3780 error (_("Invalid regexp (%s): %s"), err, regexp);
3781 }
3782 datum.preg_p = 1;
3783 make_regfree_cleanup (&datum.preg);
3784 }
3785
3786 /* Search through the partial symtabs *first* for all symbols
3787 matching the regexp. That way we don't have to reproduce all of
3788 the machinery below. */
3789
3790 datum.nfiles = nfiles;
3791 datum.files = files;
3792 expand_symtabs_matching ((nfiles == 0
3793 ? NULL
3794 : search_symbols_file_matches),
3795 search_symbols_name_matches,
3796 kind, &datum);
3797
3798 /* Here, we search through the minimal symbol tables for functions
3799 and variables that match, and force their symbols to be read.
3800 This is in particular necessary for demangled variable names,
3801 which are no longer put into the partial symbol tables.
3802 The symbol will then be found during the scan of symtabs below.
3803
3804 For functions, find_pc_symtab should succeed if we have debug info
3805 for the function, for variables we have to call
3806 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3807 has debug info.
3808 If the lookup fails, set found_misc so that we will rescan to print
3809 any matching symbols without debug info.
3810 We only search the objfile the msymbol came from, we no longer search
3811 all objfiles. In large programs (1000s of shared libs) searching all
3812 objfiles is not worth the pain. */
3813
3814 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3815 {
3816 ALL_MSYMBOLS (objfile, msymbol)
3817 {
3818 QUIT;
3819
3820 if (msymbol->created_by_gdb)
3821 continue;
3822
3823 if (MSYMBOL_TYPE (msymbol) == ourtype
3824 || MSYMBOL_TYPE (msymbol) == ourtype2
3825 || MSYMBOL_TYPE (msymbol) == ourtype3
3826 || MSYMBOL_TYPE (msymbol) == ourtype4)
3827 {
3828 if (!datum.preg_p
3829 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3830 NULL, 0) == 0)
3831 {
3832 /* Note: An important side-effect of these lookup functions
3833 is to expand the symbol table if msymbol is found, for the
3834 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3835 if (kind == FUNCTIONS_DOMAIN
3836 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3837 msymbol)) == NULL
3838 : (lookup_symbol_in_objfile_from_linkage_name
3839 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3840 == NULL))
3841 found_misc = 1;
3842 }
3843 }
3844 }
3845 }
3846
3847 found = NULL;
3848 tail = NULL;
3849 nfound = 0;
3850 retval_chain = make_cleanup_free_search_symbols (&found);
3851
3852 ALL_PRIMARY_SYMTABS (objfile, s)
3853 {
3854 bv = BLOCKVECTOR (s);
3855 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3856 {
3857 b = BLOCKVECTOR_BLOCK (bv, i);
3858 ALL_BLOCK_SYMBOLS (b, iter, sym)
3859 {
3860 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3861
3862 QUIT;
3863
3864 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3865 a substring of symtab_to_fullname as it may contain "./" etc. */
3866 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3867 || ((basenames_may_differ
3868 || file_matches (lbasename (real_symtab->filename),
3869 files, nfiles, 1))
3870 && file_matches (symtab_to_fullname (real_symtab),
3871 files, nfiles, 0)))
3872 && ((!datum.preg_p
3873 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3874 NULL, 0) == 0)
3875 && ((kind == VARIABLES_DOMAIN
3876 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3877 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3878 && SYMBOL_CLASS (sym) != LOC_BLOCK
3879 /* LOC_CONST can be used for more than just enums,
3880 e.g., c++ static const members.
3881 We only want to skip enums here. */
3882 && !(SYMBOL_CLASS (sym) == LOC_CONST
3883 && TYPE_CODE (SYMBOL_TYPE (sym))
3884 == TYPE_CODE_ENUM))
3885 || (kind == FUNCTIONS_DOMAIN
3886 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3887 || (kind == TYPES_DOMAIN
3888 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3889 {
3890 /* match */
3891 struct symbol_search *psr = (struct symbol_search *)
3892 xmalloc (sizeof (struct symbol_search));
3893 psr->block = i;
3894 psr->symtab = real_symtab;
3895 psr->symbol = sym;
3896 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3897 psr->next = NULL;
3898 if (tail == NULL)
3899 found = psr;
3900 else
3901 tail->next = psr;
3902 tail = psr;
3903 nfound ++;
3904 }
3905 }
3906 }
3907 }
3908
3909 if (found != NULL)
3910 {
3911 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3912 /* Note: nfound is no longer useful beyond this point. */
3913 }
3914
3915 /* If there are no eyes, avoid all contact. I mean, if there are
3916 no debug symbols, then print directly from the msymbol_vector. */
3917
3918 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3919 {
3920 ALL_MSYMBOLS (objfile, msymbol)
3921 {
3922 QUIT;
3923
3924 if (msymbol->created_by_gdb)
3925 continue;
3926
3927 if (MSYMBOL_TYPE (msymbol) == ourtype
3928 || MSYMBOL_TYPE (msymbol) == ourtype2
3929 || MSYMBOL_TYPE (msymbol) == ourtype3
3930 || MSYMBOL_TYPE (msymbol) == ourtype4)
3931 {
3932 if (!datum.preg_p
3933 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3934 NULL, 0) == 0)
3935 {
3936 /* For functions we can do a quick check of whether the
3937 symbol might be found via find_pc_symtab. */
3938 if (kind != FUNCTIONS_DOMAIN
3939 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3940 msymbol)) == NULL)
3941 {
3942 if (lookup_symbol_in_objfile_from_linkage_name
3943 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3944 == NULL)
3945 {
3946 /* match */
3947 struct symbol_search *psr = (struct symbol_search *)
3948 xmalloc (sizeof (struct symbol_search));
3949 psr->block = i;
3950 psr->msymbol.minsym = msymbol;
3951 psr->msymbol.objfile = objfile;
3952 psr->symtab = NULL;
3953 psr->symbol = NULL;
3954 psr->next = NULL;
3955 if (tail == NULL)
3956 found = psr;
3957 else
3958 tail->next = psr;
3959 tail = psr;
3960 }
3961 }
3962 }
3963 }
3964 }
3965 }
3966
3967 discard_cleanups (retval_chain);
3968 do_cleanups (old_chain);
3969 *matches = found;
3970}
3971
3972/* Helper function for symtab_symbol_info, this function uses
3973 the data returned from search_symbols() to print information
3974 regarding the match to gdb_stdout. */
3975
3976static void
3977print_symbol_info (enum search_domain kind,
3978 struct symtab *s, struct symbol *sym,
3979 int block, const char *last)
3980{
3981 const char *s_filename = symtab_to_filename_for_display (s);
3982
3983 if (last == NULL || filename_cmp (last, s_filename) != 0)
3984 {
3985 fputs_filtered ("\nFile ", gdb_stdout);
3986 fputs_filtered (s_filename, gdb_stdout);
3987 fputs_filtered (":\n", gdb_stdout);
3988 }
3989
3990 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3991 printf_filtered ("static ");
3992
3993 /* Typedef that is not a C++ class. */
3994 if (kind == TYPES_DOMAIN
3995 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3996 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3997 /* variable, func, or typedef-that-is-c++-class. */
3998 else if (kind < TYPES_DOMAIN
3999 || (kind == TYPES_DOMAIN
4000 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4001 {
4002 type_print (SYMBOL_TYPE (sym),
4003 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4004 ? "" : SYMBOL_PRINT_NAME (sym)),
4005 gdb_stdout, 0);
4006
4007 printf_filtered (";\n");
4008 }
4009}
4010
4011/* This help function for symtab_symbol_info() prints information
4012 for non-debugging symbols to gdb_stdout. */
4013
4014static void
4015print_msymbol_info (struct bound_minimal_symbol msymbol)
4016{
4017 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4018 char *tmp;
4019
4020 if (gdbarch_addr_bit (gdbarch) <= 32)
4021 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4022 & (CORE_ADDR) 0xffffffff,
4023 8);
4024 else
4025 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4026 16);
4027 printf_filtered ("%s %s\n",
4028 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4029}
4030
4031/* This is the guts of the commands "info functions", "info types", and
4032 "info variables". It calls search_symbols to find all matches and then
4033 print_[m]symbol_info to print out some useful information about the
4034 matches. */
4035
4036static void
4037symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4038{
4039 static const char * const classnames[] =
4040 {"variable", "function", "type"};
4041 struct symbol_search *symbols;
4042 struct symbol_search *p;
4043 struct cleanup *old_chain;
4044 const char *last_filename = NULL;
4045 int first = 1;
4046
4047 gdb_assert (kind <= TYPES_DOMAIN);
4048
4049 /* Must make sure that if we're interrupted, symbols gets freed. */
4050 search_symbols (regexp, kind, 0, NULL, &symbols);
4051 old_chain = make_cleanup_free_search_symbols (&symbols);
4052
4053 if (regexp != NULL)
4054 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4055 classnames[kind], regexp);
4056 else
4057 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4058
4059 for (p = symbols; p != NULL; p = p->next)
4060 {
4061 QUIT;
4062
4063 if (p->msymbol.minsym != NULL)
4064 {
4065 if (first)
4066 {
4067 printf_filtered (_("\nNon-debugging symbols:\n"));
4068 first = 0;
4069 }
4070 print_msymbol_info (p->msymbol);
4071 }
4072 else
4073 {
4074 print_symbol_info (kind,
4075 p->symtab,
4076 p->symbol,
4077 p->block,
4078 last_filename);
4079 last_filename = symtab_to_filename_for_display (p->symtab);
4080 }
4081 }
4082
4083 do_cleanups (old_chain);
4084}
4085
4086static void
4087variables_info (char *regexp, int from_tty)
4088{
4089 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4090}
4091
4092static void
4093functions_info (char *regexp, int from_tty)
4094{
4095 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4096}
4097
4098
4099static void
4100types_info (char *regexp, int from_tty)
4101{
4102 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4103}
4104
4105/* Breakpoint all functions matching regular expression. */
4106
4107void
4108rbreak_command_wrapper (char *regexp, int from_tty)
4109{
4110 rbreak_command (regexp, from_tty);
4111}
4112
4113/* A cleanup function that calls end_rbreak_breakpoints. */
4114
4115static void
4116do_end_rbreak_breakpoints (void *ignore)
4117{
4118 end_rbreak_breakpoints ();
4119}
4120
4121static void
4122rbreak_command (char *regexp, int from_tty)
4123{
4124 struct symbol_search *ss;
4125 struct symbol_search *p;
4126 struct cleanup *old_chain;
4127 char *string = NULL;
4128 int len = 0;
4129 const char **files = NULL;
4130 const char *file_name;
4131 int nfiles = 0;
4132
4133 if (regexp)
4134 {
4135 char *colon = strchr (regexp, ':');
4136
4137 if (colon && *(colon + 1) != ':')
4138 {
4139 int colon_index;
4140 char *local_name;
4141
4142 colon_index = colon - regexp;
4143 local_name = alloca (colon_index + 1);
4144 memcpy (local_name, regexp, colon_index);
4145 local_name[colon_index--] = 0;
4146 while (isspace (local_name[colon_index]))
4147 local_name[colon_index--] = 0;
4148 file_name = local_name;
4149 files = &file_name;
4150 nfiles = 1;
4151 regexp = skip_spaces (colon + 1);
4152 }
4153 }
4154
4155 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4156 old_chain = make_cleanup_free_search_symbols (&ss);
4157 make_cleanup (free_current_contents, &string);
4158
4159 start_rbreak_breakpoints ();
4160 make_cleanup (do_end_rbreak_breakpoints, NULL);
4161 for (p = ss; p != NULL; p = p->next)
4162 {
4163 if (p->msymbol.minsym == NULL)
4164 {
4165 const char *fullname = symtab_to_fullname (p->symtab);
4166
4167 int newlen = (strlen (fullname)
4168 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4169 + 4);
4170
4171 if (newlen > len)
4172 {
4173 string = xrealloc (string, newlen);
4174 len = newlen;
4175 }
4176 strcpy (string, fullname);
4177 strcat (string, ":'");
4178 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4179 strcat (string, "'");
4180 break_command (string, from_tty);
4181 print_symbol_info (FUNCTIONS_DOMAIN,
4182 p->symtab,
4183 p->symbol,
4184 p->block,
4185 symtab_to_filename_for_display (p->symtab));
4186 }
4187 else
4188 {
4189 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4190
4191 if (newlen > len)
4192 {
4193 string = xrealloc (string, newlen);
4194 len = newlen;
4195 }
4196 strcpy (string, "'");
4197 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4198 strcat (string, "'");
4199
4200 break_command (string, from_tty);
4201 printf_filtered ("<function, no debug info> %s;\n",
4202 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4203 }
4204 }
4205
4206 do_cleanups (old_chain);
4207}
4208\f
4209
4210/* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4211
4212 Either sym_text[sym_text_len] != '(' and then we search for any
4213 symbol starting with SYM_TEXT text.
4214
4215 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4216 be terminated at that point. Partial symbol tables do not have parameters
4217 information. */
4218
4219static int
4220compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4221{
4222 int (*ncmp) (const char *, const char *, size_t);
4223
4224 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4225
4226 if (ncmp (name, sym_text, sym_text_len) != 0)
4227 return 0;
4228
4229 if (sym_text[sym_text_len] == '(')
4230 {
4231 /* User searches for `name(someth...'. Require NAME to be terminated.
4232 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4233 present but accept even parameters presence. In this case this
4234 function is in fact strcmp_iw but whitespace skipping is not supported
4235 for tab completion. */
4236
4237 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4238 return 0;
4239 }
4240
4241 return 1;
4242}
4243
4244/* Free any memory associated with a completion list. */
4245
4246static void
4247free_completion_list (VEC (char_ptr) **list_ptr)
4248{
4249 int i;
4250 char *p;
4251
4252 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4253 xfree (p);
4254 VEC_free (char_ptr, *list_ptr);
4255}
4256
4257/* Callback for make_cleanup. */
4258
4259static void
4260do_free_completion_list (void *list)
4261{
4262 free_completion_list (list);
4263}
4264
4265/* Helper routine for make_symbol_completion_list. */
4266
4267static VEC (char_ptr) *return_val;
4268
4269#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4270 completion_list_add_name \
4271 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4272
4273#define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4274 completion_list_add_name \
4275 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4276
4277/* Test to see if the symbol specified by SYMNAME (which is already
4278 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4279 characters. If so, add it to the current completion list. */
4280
4281static void
4282completion_list_add_name (const char *symname,
4283 const char *sym_text, int sym_text_len,
4284 const char *text, const char *word)
4285{
4286 /* Clip symbols that cannot match. */
4287 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4288 return;
4289
4290 /* We have a match for a completion, so add SYMNAME to the current list
4291 of matches. Note that the name is moved to freshly malloc'd space. */
4292
4293 {
4294 char *new;
4295
4296 if (word == sym_text)
4297 {
4298 new = xmalloc (strlen (symname) + 5);
4299 strcpy (new, symname);
4300 }
4301 else if (word > sym_text)
4302 {
4303 /* Return some portion of symname. */
4304 new = xmalloc (strlen (symname) + 5);
4305 strcpy (new, symname + (word - sym_text));
4306 }
4307 else
4308 {
4309 /* Return some of SYM_TEXT plus symname. */
4310 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4311 strncpy (new, word, sym_text - word);
4312 new[sym_text - word] = '\0';
4313 strcat (new, symname);
4314 }
4315
4316 VEC_safe_push (char_ptr, return_val, new);
4317 }
4318}
4319
4320/* ObjC: In case we are completing on a selector, look as the msymbol
4321 again and feed all the selectors into the mill. */
4322
4323static void
4324completion_list_objc_symbol (struct minimal_symbol *msymbol,
4325 const char *sym_text, int sym_text_len,
4326 const char *text, const char *word)
4327{
4328 static char *tmp = NULL;
4329 static unsigned int tmplen = 0;
4330
4331 const char *method, *category, *selector;
4332 char *tmp2 = NULL;
4333
4334 method = MSYMBOL_NATURAL_NAME (msymbol);
4335
4336 /* Is it a method? */
4337 if ((method[0] != '-') && (method[0] != '+'))
4338 return;
4339
4340 if (sym_text[0] == '[')
4341 /* Complete on shortened method method. */
4342 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4343
4344 while ((strlen (method) + 1) >= tmplen)
4345 {
4346 if (tmplen == 0)
4347 tmplen = 1024;
4348 else
4349 tmplen *= 2;
4350 tmp = xrealloc (tmp, tmplen);
4351 }
4352 selector = strchr (method, ' ');
4353 if (selector != NULL)
4354 selector++;
4355
4356 category = strchr (method, '(');
4357
4358 if ((category != NULL) && (selector != NULL))
4359 {
4360 memcpy (tmp, method, (category - method));
4361 tmp[category - method] = ' ';
4362 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4363 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4364 if (sym_text[0] == '[')
4365 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4366 }
4367
4368 if (selector != NULL)
4369 {
4370 /* Complete on selector only. */
4371 strcpy (tmp, selector);
4372 tmp2 = strchr (tmp, ']');
4373 if (tmp2 != NULL)
4374 *tmp2 = '\0';
4375
4376 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4377 }
4378}
4379
4380/* Break the non-quoted text based on the characters which are in
4381 symbols. FIXME: This should probably be language-specific. */
4382
4383static const char *
4384language_search_unquoted_string (const char *text, const char *p)
4385{
4386 for (; p > text; --p)
4387 {
4388 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4389 continue;
4390 else
4391 {
4392 if ((current_language->la_language == language_objc))
4393 {
4394 if (p[-1] == ':') /* Might be part of a method name. */
4395 continue;
4396 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4397 p -= 2; /* Beginning of a method name. */
4398 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4399 { /* Might be part of a method name. */
4400 const char *t = p;
4401
4402 /* Seeing a ' ' or a '(' is not conclusive evidence
4403 that we are in the middle of a method name. However,
4404 finding "-[" or "+[" should be pretty un-ambiguous.
4405 Unfortunately we have to find it now to decide. */
4406
4407 while (t > text)
4408 if (isalnum (t[-1]) || t[-1] == '_' ||
4409 t[-1] == ' ' || t[-1] == ':' ||
4410 t[-1] == '(' || t[-1] == ')')
4411 --t;
4412 else
4413 break;
4414
4415 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4416 p = t - 2; /* Method name detected. */
4417 /* Else we leave with p unchanged. */
4418 }
4419 }
4420 break;
4421 }
4422 }
4423 return p;
4424}
4425
4426static void
4427completion_list_add_fields (struct symbol *sym, const char *sym_text,
4428 int sym_text_len, const char *text,
4429 const char *word)
4430{
4431 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4432 {
4433 struct type *t = SYMBOL_TYPE (sym);
4434 enum type_code c = TYPE_CODE (t);
4435 int j;
4436
4437 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4438 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4439 if (TYPE_FIELD_NAME (t, j))
4440 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4441 sym_text, sym_text_len, text, word);
4442 }
4443}
4444
4445/* Type of the user_data argument passed to add_macro_name or
4446 symbol_completion_matcher. The contents are simply whatever is
4447 needed by completion_list_add_name. */
4448struct add_name_data
4449{
4450 const char *sym_text;
4451 int sym_text_len;
4452 const char *text;
4453 const char *word;
4454};
4455
4456/* A callback used with macro_for_each and macro_for_each_in_scope.
4457 This adds a macro's name to the current completion list. */
4458
4459static void
4460add_macro_name (const char *name, const struct macro_definition *ignore,
4461 struct macro_source_file *ignore2, int ignore3,
4462 void *user_data)
4463{
4464 struct add_name_data *datum = (struct add_name_data *) user_data;
4465
4466 completion_list_add_name (name,
4467 datum->sym_text, datum->sym_text_len,
4468 datum->text, datum->word);
4469}
4470
4471/* A callback for expand_symtabs_matching. */
4472
4473static int
4474symbol_completion_matcher (const char *name, void *user_data)
4475{
4476 struct add_name_data *datum = (struct add_name_data *) user_data;
4477
4478 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4479}
4480
4481VEC (char_ptr) *
4482default_make_symbol_completion_list_break_on (const char *text,
4483 const char *word,
4484 const char *break_on,
4485 enum type_code code)
4486{
4487 /* Problem: All of the symbols have to be copied because readline
4488 frees them. I'm not going to worry about this; hopefully there
4489 won't be that many. */
4490
4491 struct symbol *sym;
4492 struct symtab *s;
4493 struct minimal_symbol *msymbol;
4494 struct objfile *objfile;
4495 const struct block *b;
4496 const struct block *surrounding_static_block, *surrounding_global_block;
4497 struct block_iterator iter;
4498 /* The symbol we are completing on. Points in same buffer as text. */
4499 const char *sym_text;
4500 /* Length of sym_text. */
4501 int sym_text_len;
4502 struct add_name_data datum;
4503 struct cleanup *back_to;
4504
4505 /* Now look for the symbol we are supposed to complete on. */
4506 {
4507 const char *p;
4508 char quote_found;
4509 const char *quote_pos = NULL;
4510
4511 /* First see if this is a quoted string. */
4512 quote_found = '\0';
4513 for (p = text; *p != '\0'; ++p)
4514 {
4515 if (quote_found != '\0')
4516 {
4517 if (*p == quote_found)
4518 /* Found close quote. */
4519 quote_found = '\0';
4520 else if (*p == '\\' && p[1] == quote_found)
4521 /* A backslash followed by the quote character
4522 doesn't end the string. */
4523 ++p;
4524 }
4525 else if (*p == '\'' || *p == '"')
4526 {
4527 quote_found = *p;
4528 quote_pos = p;
4529 }
4530 }
4531 if (quote_found == '\'')
4532 /* A string within single quotes can be a symbol, so complete on it. */
4533 sym_text = quote_pos + 1;
4534 else if (quote_found == '"')
4535 /* A double-quoted string is never a symbol, nor does it make sense
4536 to complete it any other way. */
4537 {
4538 return NULL;
4539 }
4540 else
4541 {
4542 /* It is not a quoted string. Break it based on the characters
4543 which are in symbols. */
4544 while (p > text)
4545 {
4546 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4547 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4548 --p;
4549 else
4550 break;
4551 }
4552 sym_text = p;
4553 }
4554 }
4555
4556 sym_text_len = strlen (sym_text);
4557
4558 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4559
4560 if (current_language->la_language == language_cplus
4561 || current_language->la_language == language_java
4562 || current_language->la_language == language_fortran)
4563 {
4564 /* These languages may have parameters entered by user but they are never
4565 present in the partial symbol tables. */
4566
4567 const char *cs = memchr (sym_text, '(', sym_text_len);
4568
4569 if (cs)
4570 sym_text_len = cs - sym_text;
4571 }
4572 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4573
4574 return_val = NULL;
4575 back_to = make_cleanup (do_free_completion_list, &return_val);
4576
4577 datum.sym_text = sym_text;
4578 datum.sym_text_len = sym_text_len;
4579 datum.text = text;
4580 datum.word = word;
4581
4582 /* Look through the partial symtabs for all symbols which begin
4583 by matching SYM_TEXT. Expand all CUs that you find to the list.
4584 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4585 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4586 &datum);
4587
4588 /* At this point scan through the misc symbol vectors and add each
4589 symbol you find to the list. Eventually we want to ignore
4590 anything that isn't a text symbol (everything else will be
4591 handled by the psymtab code above). */
4592
4593 if (code == TYPE_CODE_UNDEF)
4594 {
4595 ALL_MSYMBOLS (objfile, msymbol)
4596 {
4597 QUIT;
4598 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4599 word);
4600
4601 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4602 word);
4603 }
4604 }
4605
4606 /* Search upwards from currently selected frame (so that we can
4607 complete on local vars). Also catch fields of types defined in
4608 this places which match our text string. Only complete on types
4609 visible from current context. */
4610
4611 b = get_selected_block (0);
4612 surrounding_static_block = block_static_block (b);
4613 surrounding_global_block = block_global_block (b);
4614 if (surrounding_static_block != NULL)
4615 while (b != surrounding_static_block)
4616 {
4617 QUIT;
4618
4619 ALL_BLOCK_SYMBOLS (b, iter, sym)
4620 {
4621 if (code == TYPE_CODE_UNDEF)
4622 {
4623 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4624 word);
4625 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4626 word);
4627 }
4628 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4629 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4630 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4631 word);
4632 }
4633
4634 /* Stop when we encounter an enclosing function. Do not stop for
4635 non-inlined functions - the locals of the enclosing function
4636 are in scope for a nested function. */
4637 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4638 break;
4639 b = BLOCK_SUPERBLOCK (b);
4640 }
4641
4642 /* Add fields from the file's types; symbols will be added below. */
4643
4644 if (code == TYPE_CODE_UNDEF)
4645 {
4646 if (surrounding_static_block != NULL)
4647 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4648 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4649
4650 if (surrounding_global_block != NULL)
4651 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4652 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4653 }
4654
4655 /* Go through the symtabs and check the externs and statics for
4656 symbols which match. */
4657
4658 ALL_PRIMARY_SYMTABS (objfile, s)
4659 {
4660 QUIT;
4661 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4662 ALL_BLOCK_SYMBOLS (b, iter, sym)
4663 {
4664 if (code == TYPE_CODE_UNDEF
4665 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4666 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4667 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4668 }
4669 }
4670
4671 ALL_PRIMARY_SYMTABS (objfile, s)
4672 {
4673 QUIT;
4674 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4675 ALL_BLOCK_SYMBOLS (b, iter, sym)
4676 {
4677 if (code == TYPE_CODE_UNDEF
4678 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4679 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4680 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4681 }
4682 }
4683
4684 /* Skip macros if we are completing a struct tag -- arguable but
4685 usually what is expected. */
4686 if (current_language->la_macro_expansion == macro_expansion_c
4687 && code == TYPE_CODE_UNDEF)
4688 {
4689 struct macro_scope *scope;
4690
4691 /* Add any macros visible in the default scope. Note that this
4692 may yield the occasional wrong result, because an expression
4693 might be evaluated in a scope other than the default. For
4694 example, if the user types "break file:line if <TAB>", the
4695 resulting expression will be evaluated at "file:line" -- but
4696 at there does not seem to be a way to detect this at
4697 completion time. */
4698 scope = default_macro_scope ();
4699 if (scope)
4700 {
4701 macro_for_each_in_scope (scope->file, scope->line,
4702 add_macro_name, &datum);
4703 xfree (scope);
4704 }
4705
4706 /* User-defined macros are always visible. */
4707 macro_for_each (macro_user_macros, add_macro_name, &datum);
4708 }
4709
4710 discard_cleanups (back_to);
4711 return (return_val);
4712}
4713
4714VEC (char_ptr) *
4715default_make_symbol_completion_list (const char *text, const char *word,
4716 enum type_code code)
4717{
4718 return default_make_symbol_completion_list_break_on (text, word, "", code);
4719}
4720
4721/* Return a vector of all symbols (regardless of class) which begin by
4722 matching TEXT. If the answer is no symbols, then the return value
4723 is NULL. */
4724
4725VEC (char_ptr) *
4726make_symbol_completion_list (const char *text, const char *word)
4727{
4728 return current_language->la_make_symbol_completion_list (text, word,
4729 TYPE_CODE_UNDEF);
4730}
4731
4732/* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4733 symbols whose type code is CODE. */
4734
4735VEC (char_ptr) *
4736make_symbol_completion_type (const char *text, const char *word,
4737 enum type_code code)
4738{
4739 gdb_assert (code == TYPE_CODE_UNION
4740 || code == TYPE_CODE_STRUCT
4741 || code == TYPE_CODE_CLASS
4742 || code == TYPE_CODE_ENUM);
4743 return current_language->la_make_symbol_completion_list (text, word, code);
4744}
4745
4746/* Like make_symbol_completion_list, but suitable for use as a
4747 completion function. */
4748
4749VEC (char_ptr) *
4750make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4751 const char *text, const char *word)
4752{
4753 return make_symbol_completion_list (text, word);
4754}
4755
4756/* Like make_symbol_completion_list, but returns a list of symbols
4757 defined in a source file FILE. */
4758
4759VEC (char_ptr) *
4760make_file_symbol_completion_list (const char *text, const char *word,
4761 const char *srcfile)
4762{
4763 struct symbol *sym;
4764 struct symtab *s;
4765 struct block *b;
4766 struct block_iterator iter;
4767 /* The symbol we are completing on. Points in same buffer as text. */
4768 const char *sym_text;
4769 /* Length of sym_text. */
4770 int sym_text_len;
4771
4772 /* Now look for the symbol we are supposed to complete on.
4773 FIXME: This should be language-specific. */
4774 {
4775 const char *p;
4776 char quote_found;
4777 const char *quote_pos = NULL;
4778
4779 /* First see if this is a quoted string. */
4780 quote_found = '\0';
4781 for (p = text; *p != '\0'; ++p)
4782 {
4783 if (quote_found != '\0')
4784 {
4785 if (*p == quote_found)
4786 /* Found close quote. */
4787 quote_found = '\0';
4788 else if (*p == '\\' && p[1] == quote_found)
4789 /* A backslash followed by the quote character
4790 doesn't end the string. */
4791 ++p;
4792 }
4793 else if (*p == '\'' || *p == '"')
4794 {
4795 quote_found = *p;
4796 quote_pos = p;
4797 }
4798 }
4799 if (quote_found == '\'')
4800 /* A string within single quotes can be a symbol, so complete on it. */
4801 sym_text = quote_pos + 1;
4802 else if (quote_found == '"')
4803 /* A double-quoted string is never a symbol, nor does it make sense
4804 to complete it any other way. */
4805 {
4806 return NULL;
4807 }
4808 else
4809 {
4810 /* Not a quoted string. */
4811 sym_text = language_search_unquoted_string (text, p);
4812 }
4813 }
4814
4815 sym_text_len = strlen (sym_text);
4816
4817 return_val = NULL;
4818
4819 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4820 in). */
4821 s = lookup_symtab (srcfile);
4822 if (s == NULL)
4823 {
4824 /* Maybe they typed the file with leading directories, while the
4825 symbol tables record only its basename. */
4826 const char *tail = lbasename (srcfile);
4827
4828 if (tail > srcfile)
4829 s = lookup_symtab (tail);
4830 }
4831
4832 /* If we have no symtab for that file, return an empty list. */
4833 if (s == NULL)
4834 return (return_val);
4835
4836 /* Go through this symtab and check the externs and statics for
4837 symbols which match. */
4838
4839 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4840 ALL_BLOCK_SYMBOLS (b, iter, sym)
4841 {
4842 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4843 }
4844
4845 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4846 ALL_BLOCK_SYMBOLS (b, iter, sym)
4847 {
4848 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4849 }
4850
4851 return (return_val);
4852}
4853
4854/* A helper function for make_source_files_completion_list. It adds
4855 another file name to a list of possible completions, growing the
4856 list as necessary. */
4857
4858static void
4859add_filename_to_list (const char *fname, const char *text, const char *word,
4860 VEC (char_ptr) **list)
4861{
4862 char *new;
4863 size_t fnlen = strlen (fname);
4864
4865 if (word == text)
4866 {
4867 /* Return exactly fname. */
4868 new = xmalloc (fnlen + 5);
4869 strcpy (new, fname);
4870 }
4871 else if (word > text)
4872 {
4873 /* Return some portion of fname. */
4874 new = xmalloc (fnlen + 5);
4875 strcpy (new, fname + (word - text));
4876 }
4877 else
4878 {
4879 /* Return some of TEXT plus fname. */
4880 new = xmalloc (fnlen + (text - word) + 5);
4881 strncpy (new, word, text - word);
4882 new[text - word] = '\0';
4883 strcat (new, fname);
4884 }
4885 VEC_safe_push (char_ptr, *list, new);
4886}
4887
4888static int
4889not_interesting_fname (const char *fname)
4890{
4891 static const char *illegal_aliens[] = {
4892 "_globals_", /* inserted by coff_symtab_read */
4893 NULL
4894 };
4895 int i;
4896
4897 for (i = 0; illegal_aliens[i]; i++)
4898 {
4899 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4900 return 1;
4901 }
4902 return 0;
4903}
4904
4905/* An object of this type is passed as the user_data argument to
4906 map_partial_symbol_filenames. */
4907struct add_partial_filename_data
4908{
4909 struct filename_seen_cache *filename_seen_cache;
4910 const char *text;
4911 const char *word;
4912 int text_len;
4913 VEC (char_ptr) **list;
4914};
4915
4916/* A callback for map_partial_symbol_filenames. */
4917
4918static void
4919maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4920 void *user_data)
4921{
4922 struct add_partial_filename_data *data = user_data;
4923
4924 if (not_interesting_fname (filename))
4925 return;
4926 if (!filename_seen (data->filename_seen_cache, filename, 1)
4927 && filename_ncmp (filename, data->text, data->text_len) == 0)
4928 {
4929 /* This file matches for a completion; add it to the
4930 current list of matches. */
4931 add_filename_to_list (filename, data->text, data->word, data->list);
4932 }
4933 else
4934 {
4935 const char *base_name = lbasename (filename);
4936
4937 if (base_name != filename
4938 && !filename_seen (data->filename_seen_cache, base_name, 1)
4939 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4940 add_filename_to_list (base_name, data->text, data->word, data->list);
4941 }
4942}
4943
4944/* Return a vector of all source files whose names begin with matching
4945 TEXT. The file names are looked up in the symbol tables of this
4946 program. If the answer is no matchess, then the return value is
4947 NULL. */
4948
4949VEC (char_ptr) *
4950make_source_files_completion_list (const char *text, const char *word)
4951{
4952 struct symtab *s;
4953 struct objfile *objfile;
4954 size_t text_len = strlen (text);
4955 VEC (char_ptr) *list = NULL;
4956 const char *base_name;
4957 struct add_partial_filename_data datum;
4958 struct filename_seen_cache *filename_seen_cache;
4959 struct cleanup *back_to, *cache_cleanup;
4960
4961 if (!have_full_symbols () && !have_partial_symbols ())
4962 return list;
4963
4964 back_to = make_cleanup (do_free_completion_list, &list);
4965
4966 filename_seen_cache = create_filename_seen_cache ();
4967 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4968 filename_seen_cache);
4969
4970 ALL_SYMTABS (objfile, s)
4971 {
4972 if (not_interesting_fname (s->filename))
4973 continue;
4974 if (!filename_seen (filename_seen_cache, s->filename, 1)
4975 && filename_ncmp (s->filename, text, text_len) == 0)
4976 {
4977 /* This file matches for a completion; add it to the current
4978 list of matches. */
4979 add_filename_to_list (s->filename, text, word, &list);
4980 }
4981 else
4982 {
4983 /* NOTE: We allow the user to type a base name when the
4984 debug info records leading directories, but not the other
4985 way around. This is what subroutines of breakpoint
4986 command do when they parse file names. */
4987 base_name = lbasename (s->filename);
4988 if (base_name != s->filename
4989 && !filename_seen (filename_seen_cache, base_name, 1)
4990 && filename_ncmp (base_name, text, text_len) == 0)
4991 add_filename_to_list (base_name, text, word, &list);
4992 }
4993 }
4994
4995 datum.filename_seen_cache = filename_seen_cache;
4996 datum.text = text;
4997 datum.word = word;
4998 datum.text_len = text_len;
4999 datum.list = &list;
5000 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5001 0 /*need_fullname*/);
5002
5003 do_cleanups (cache_cleanup);
5004 discard_cleanups (back_to);
5005
5006 return list;
5007}
5008\f
5009/* Track MAIN */
5010
5011/* Return the "main_info" object for the current program space. If
5012 the object has not yet been created, create it and fill in some
5013 default values. */
5014
5015static struct main_info *
5016get_main_info (void)
5017{
5018 struct main_info *info = program_space_data (current_program_space,
5019 main_progspace_key);
5020
5021 if (info == NULL)
5022 {
5023 /* It may seem strange to store the main name in the progspace
5024 and also in whatever objfile happens to see a main name in
5025 its debug info. The reason for this is mainly historical:
5026 gdb returned "main" as the name even if no function named
5027 "main" was defined the program; and this approach lets us
5028 keep compatibility. */
5029 info = XCNEW (struct main_info);
5030 info->language_of_main = language_unknown;
5031 set_program_space_data (current_program_space, main_progspace_key,
5032 info);
5033 }
5034
5035 return info;
5036}
5037
5038/* A cleanup to destroy a struct main_info when a progspace is
5039 destroyed. */
5040
5041static void
5042main_info_cleanup (struct program_space *pspace, void *data)
5043{
5044 struct main_info *info = data;
5045
5046 if (info != NULL)
5047 xfree (info->name_of_main);
5048 xfree (info);
5049}
5050
5051static void
5052set_main_name (const char *name, enum language lang)
5053{
5054 struct main_info *info = get_main_info ();
5055
5056 if (info->name_of_main != NULL)
5057 {
5058 xfree (info->name_of_main);
5059 info->name_of_main = NULL;
5060 info->language_of_main = language_unknown;
5061 }
5062 if (name != NULL)
5063 {
5064 info->name_of_main = xstrdup (name);
5065 info->language_of_main = lang;
5066 }
5067}
5068
5069/* Deduce the name of the main procedure, and set NAME_OF_MAIN
5070 accordingly. */
5071
5072static void
5073find_main_name (void)
5074{
5075 const char *new_main_name;
5076 struct objfile *objfile;
5077
5078 /* First check the objfiles to see whether a debuginfo reader has
5079 picked up the appropriate main name. Historically the main name
5080 was found in a more or less random way; this approach instead
5081 relies on the order of objfile creation -- which still isn't
5082 guaranteed to get the correct answer, but is just probably more
5083 accurate. */
5084 ALL_OBJFILES (objfile)
5085 {
5086 if (objfile->per_bfd->name_of_main != NULL)
5087 {
5088 set_main_name (objfile->per_bfd->name_of_main,
5089 objfile->per_bfd->language_of_main);
5090 return;
5091 }
5092 }
5093
5094 /* Try to see if the main procedure is in Ada. */
5095 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5096 be to add a new method in the language vector, and call this
5097 method for each language until one of them returns a non-empty
5098 name. This would allow us to remove this hard-coded call to
5099 an Ada function. It is not clear that this is a better approach
5100 at this point, because all methods need to be written in a way
5101 such that false positives never be returned. For instance, it is
5102 important that a method does not return a wrong name for the main
5103 procedure if the main procedure is actually written in a different
5104 language. It is easy to guaranty this with Ada, since we use a
5105 special symbol generated only when the main in Ada to find the name
5106 of the main procedure. It is difficult however to see how this can
5107 be guarantied for languages such as C, for instance. This suggests
5108 that order of call for these methods becomes important, which means
5109 a more complicated approach. */
5110 new_main_name = ada_main_name ();
5111 if (new_main_name != NULL)
5112 {
5113 set_main_name (new_main_name, language_ada);
5114 return;
5115 }
5116
5117 new_main_name = d_main_name ();
5118 if (new_main_name != NULL)
5119 {
5120 set_main_name (new_main_name, language_d);
5121 return;
5122 }
5123
5124 new_main_name = go_main_name ();
5125 if (new_main_name != NULL)
5126 {
5127 set_main_name (new_main_name, language_go);
5128 return;
5129 }
5130
5131 new_main_name = pascal_main_name ();
5132 if (new_main_name != NULL)
5133 {
5134 set_main_name (new_main_name, language_pascal);
5135 return;
5136 }
5137
5138 /* The languages above didn't identify the name of the main procedure.
5139 Fallback to "main". */
5140 set_main_name ("main", language_unknown);
5141}
5142
5143char *
5144main_name (void)
5145{
5146 struct main_info *info = get_main_info ();
5147
5148 if (info->name_of_main == NULL)
5149 find_main_name ();
5150
5151 return info->name_of_main;
5152}
5153
5154/* Return the language of the main function. If it is not known,
5155 return language_unknown. */
5156
5157enum language
5158main_language (void)
5159{
5160 struct main_info *info = get_main_info ();
5161
5162 if (info->name_of_main == NULL)
5163 find_main_name ();
5164
5165 return info->language_of_main;
5166}
5167
5168/* Handle ``executable_changed'' events for the symtab module. */
5169
5170static void
5171symtab_observer_executable_changed (void)
5172{
5173 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5174 set_main_name (NULL, language_unknown);
5175}
5176
5177/* Return 1 if the supplied producer string matches the ARM RealView
5178 compiler (armcc). */
5179
5180int
5181producer_is_realview (const char *producer)
5182{
5183 static const char *const arm_idents[] = {
5184 "ARM C Compiler, ADS",
5185 "Thumb C Compiler, ADS",
5186 "ARM C++ Compiler, ADS",
5187 "Thumb C++ Compiler, ADS",
5188 "ARM/Thumb C/C++ Compiler, RVCT",
5189 "ARM C/C++ Compiler, RVCT"
5190 };
5191 int i;
5192
5193 if (producer == NULL)
5194 return 0;
5195
5196 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5197 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5198 return 1;
5199
5200 return 0;
5201}
5202
5203\f
5204
5205/* The next index to hand out in response to a registration request. */
5206
5207static int next_aclass_value = LOC_FINAL_VALUE;
5208
5209/* The maximum number of "aclass" registrations we support. This is
5210 constant for convenience. */
5211#define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5212
5213/* The objects representing the various "aclass" values. The elements
5214 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5215 elements are those registered at gdb initialization time. */
5216
5217static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5218
5219/* The globally visible pointer. This is separate from 'symbol_impl'
5220 so that it can be const. */
5221
5222const struct symbol_impl *symbol_impls = &symbol_impl[0];
5223
5224/* Make sure we saved enough room in struct symbol. */
5225
5226gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5227
5228/* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5229 is the ops vector associated with this index. This returns the new
5230 index, which should be used as the aclass_index field for symbols
5231 of this type. */
5232
5233int
5234register_symbol_computed_impl (enum address_class aclass,
5235 const struct symbol_computed_ops *ops)
5236{
5237 int result = next_aclass_value++;
5238
5239 gdb_assert (aclass == LOC_COMPUTED);
5240 gdb_assert (result < MAX_SYMBOL_IMPLS);
5241 symbol_impl[result].aclass = aclass;
5242 symbol_impl[result].ops_computed = ops;
5243
5244 /* Sanity check OPS. */
5245 gdb_assert (ops != NULL);
5246 gdb_assert (ops->tracepoint_var_ref != NULL);
5247 gdb_assert (ops->describe_location != NULL);
5248 gdb_assert (ops->read_needs_frame != NULL);
5249 gdb_assert (ops->read_variable != NULL);
5250
5251 return result;
5252}
5253
5254/* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5255 OPS is the ops vector associated with this index. This returns the
5256 new index, which should be used as the aclass_index field for symbols
5257 of this type. */
5258
5259int
5260register_symbol_block_impl (enum address_class aclass,
5261 const struct symbol_block_ops *ops)
5262{
5263 int result = next_aclass_value++;
5264
5265 gdb_assert (aclass == LOC_BLOCK);
5266 gdb_assert (result < MAX_SYMBOL_IMPLS);
5267 symbol_impl[result].aclass = aclass;
5268 symbol_impl[result].ops_block = ops;
5269
5270 /* Sanity check OPS. */
5271 gdb_assert (ops != NULL);
5272 gdb_assert (ops->find_frame_base_location != NULL);
5273
5274 return result;
5275}
5276
5277/* Register a register symbol type. ACLASS must be LOC_REGISTER or
5278 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5279 this index. This returns the new index, which should be used as
5280 the aclass_index field for symbols of this type. */
5281
5282int
5283register_symbol_register_impl (enum address_class aclass,
5284 const struct symbol_register_ops *ops)
5285{
5286 int result = next_aclass_value++;
5287
5288 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5289 gdb_assert (result < MAX_SYMBOL_IMPLS);
5290 symbol_impl[result].aclass = aclass;
5291 symbol_impl[result].ops_register = ops;
5292
5293 return result;
5294}
5295
5296/* Initialize elements of 'symbol_impl' for the constants in enum
5297 address_class. */
5298
5299static void
5300initialize_ordinary_address_classes (void)
5301{
5302 int i;
5303
5304 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5305 symbol_impl[i].aclass = i;
5306}
5307
5308\f
5309
5310/* Initialize the symbol SYM. */
5311
5312void
5313initialize_symbol (struct symbol *sym)
5314{
5315 memset (sym, 0, sizeof (*sym));
5316 SYMBOL_SECTION (sym) = -1;
5317}
5318
5319/* Allocate and initialize a new 'struct symbol' on OBJFILE's
5320 obstack. */
5321
5322struct symbol *
5323allocate_symbol (struct objfile *objfile)
5324{
5325 struct symbol *result;
5326
5327 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5328 SYMBOL_SECTION (result) = -1;
5329
5330 return result;
5331}
5332
5333/* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5334 obstack. */
5335
5336struct template_symbol *
5337allocate_template_symbol (struct objfile *objfile)
5338{
5339 struct template_symbol *result;
5340
5341 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5342 SYMBOL_SECTION (&result->base) = -1;
5343
5344 return result;
5345}
5346
5347\f
5348
5349void
5350_initialize_symtab (void)
5351{
5352 initialize_ordinary_address_classes ();
5353
5354 main_progspace_key
5355 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5356
5357 add_info ("variables", variables_info, _("\
5358All global and static variable names, or those matching REGEXP."));
5359 if (dbx_commands)
5360 add_com ("whereis", class_info, variables_info, _("\
5361All global and static variable names, or those matching REGEXP."));
5362
5363 add_info ("functions", functions_info,
5364 _("All function names, or those matching REGEXP."));
5365
5366 /* FIXME: This command has at least the following problems:
5367 1. It prints builtin types (in a very strange and confusing fashion).
5368 2. It doesn't print right, e.g. with
5369 typedef struct foo *FOO
5370 type_print prints "FOO" when we want to make it (in this situation)
5371 print "struct foo *".
5372 I also think "ptype" or "whatis" is more likely to be useful (but if
5373 there is much disagreement "info types" can be fixed). */
5374 add_info ("types", types_info,
5375 _("All type names, or those matching REGEXP."));
5376
5377 add_info ("sources", sources_info,
5378 _("Source files in the program."));
5379
5380 add_com ("rbreak", class_breakpoint, rbreak_command,
5381 _("Set a breakpoint for all functions matching REGEXP."));
5382
5383 if (xdb_commands)
5384 {
5385 add_com ("lf", class_info, sources_info,
5386 _("Source files in the program"));
5387 add_com ("lg", class_info, variables_info, _("\
5388All global and static variable names, or those matching REGEXP."));
5389 }
5390
5391 add_setshow_enum_cmd ("multiple-symbols", no_class,
5392 multiple_symbols_modes, &multiple_symbols_mode,
5393 _("\
5394Set the debugger behavior when more than one symbol are possible matches\n\
5395in an expression."), _("\
5396Show how the debugger handles ambiguities in expressions."), _("\
5397Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5398 NULL, NULL, &setlist, &showlist);
5399
5400 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5401 &basenames_may_differ, _("\
5402Set whether a source file may have multiple base names."), _("\
5403Show whether a source file may have multiple base names."), _("\
5404(A \"base name\" is the name of a file with the directory part removed.\n\
5405Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5406If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5407before comparing them. Canonicalization is an expensive operation,\n\
5408but it allows the same file be known by more than one base name.\n\
5409If not set (the default), all source files are assumed to have just\n\
5410one base name, and gdb will do file name comparisons more efficiently."),
5411 NULL, NULL,
5412 &setlist, &showlist);
5413
5414 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5415 _("Set debugging of symbol table creation."),
5416 _("Show debugging of symbol table creation."), _("\
5417When enabled (non-zero), debugging messages are printed when building\n\
5418symbol tables. A value of 1 (one) normally provides enough information.\n\
5419A value greater than 1 provides more verbose information."),
5420 NULL,
5421 NULL,
5422 &setdebuglist, &showdebuglist);
5423
5424 observer_attach_executable_changed (symtab_observer_executable_changed);
5425}
This page took 0.093603 seconds and 4 git commands to generate.