sim: HW_NALLOC: new alloc helper
[deliverable/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
27struct objfile;
28struct ui_file;
29struct mem_attrib;
30struct target_ops;
31struct bp_target_info;
32struct regcache;
33struct target_section_table;
34struct trace_state_variable;
35struct trace_status;
36struct uploaded_tsv;
37struct uploaded_tp;
38struct static_tracepoint_marker;
39
40struct expression;
41
42/* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61#include "bfd.h"
62#include "symtab.h"
63#include "memattr.h"
64#include "vec.h"
65#include "gdb_signals.h"
66
67enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83/* Stuff for target_wait. */
84
85/* Generally, what has the program done? */
86enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. This way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173/* Options that can be passed to target_wait. */
174
175/* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178#define TARGET_WNOHANG 1
179
180/* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195/* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199/* Possible types of events that the inferior handler will have to
200 deal with. */
201enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220\f
221/* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224enum target_object
225{
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). */
260 TARGET_OBJECT_OSDATA,
261 /* Extra signal info. Usually the contents of `siginfo_t' on unix
262 platforms. */
263 TARGET_OBJECT_SIGNAL_INFO,
264 /* The list of threads that are being debugged. */
265 TARGET_OBJECT_THREADS,
266 /* Collected static trace data. */
267 TARGET_OBJECT_STATIC_TRACE_DATA,
268 /* Possible future objects: TARGET_OBJECT_FILE, ... */
269};
270
271/* Enumeration of the kinds of traceframe searches that a target may
272 be able to perform. */
273
274enum trace_find_type
275 {
276 tfind_number,
277 tfind_pc,
278 tfind_tp,
279 tfind_range,
280 tfind_outside,
281 };
282
283typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
284DEF_VEC_P(static_tracepoint_marker_p);
285
286/* Request that OPS transfer up to LEN 8-bit bytes of the target's
287 OBJECT. The OFFSET, for a seekable object, specifies the
288 starting point. The ANNEX can be used to provide additional
289 data-specific information to the target.
290
291 Return the number of bytes actually transfered, or -1 if the
292 transfer is not supported or otherwise fails. Return of a positive
293 value less than LEN indicates that no further transfer is possible.
294 Unlike the raw to_xfer_partial interface, callers of these
295 functions do not need to retry partial transfers. */
296
297extern LONGEST target_read (struct target_ops *ops,
298 enum target_object object,
299 const char *annex, gdb_byte *buf,
300 ULONGEST offset, LONGEST len);
301
302struct memory_read_result
303 {
304 /* First address that was read. */
305 ULONGEST begin;
306 /* Past-the-end address. */
307 ULONGEST end;
308 /* The data. */
309 gdb_byte *data;
310};
311typedef struct memory_read_result memory_read_result_s;
312DEF_VEC_O(memory_read_result_s);
313
314extern void free_memory_read_result_vector (void *);
315
316extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
317 ULONGEST offset,
318 LONGEST len);
319
320extern LONGEST target_write (struct target_ops *ops,
321 enum target_object object,
322 const char *annex, const gdb_byte *buf,
323 ULONGEST offset, LONGEST len);
324
325/* Similar to target_write, except that it also calls PROGRESS with
326 the number of bytes written and the opaque BATON after every
327 successful partial write (and before the first write). This is
328 useful for progress reporting and user interaction while writing
329 data. To abort the transfer, the progress callback can throw an
330 exception. */
331
332LONGEST target_write_with_progress (struct target_ops *ops,
333 enum target_object object,
334 const char *annex, const gdb_byte *buf,
335 ULONGEST offset, LONGEST len,
336 void (*progress) (ULONGEST, void *),
337 void *baton);
338
339/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
340 be read using OPS. The return value will be -1 if the transfer
341 fails or is not supported; 0 if the object is empty; or the length
342 of the object otherwise. If a positive value is returned, a
343 sufficiently large buffer will be allocated using xmalloc and
344 returned in *BUF_P containing the contents of the object.
345
346 This method should be used for objects sufficiently small to store
347 in a single xmalloc'd buffer, when no fixed bound on the object's
348 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
349 through this function. */
350
351extern LONGEST target_read_alloc (struct target_ops *ops,
352 enum target_object object,
353 const char *annex, gdb_byte **buf_p);
354
355/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
356 returned as a string, allocated using xmalloc. If an error occurs
357 or the transfer is unsupported, NULL is returned. Empty objects
358 are returned as allocated but empty strings. A warning is issued
359 if the result contains any embedded NUL bytes. */
360
361extern char *target_read_stralloc (struct target_ops *ops,
362 enum target_object object,
363 const char *annex);
364
365/* Wrappers to target read/write that perform memory transfers. They
366 throw an error if the memory transfer fails.
367
368 NOTE: cagney/2003-10-23: The naming schema is lifted from
369 "frame.h". The parameter order is lifted from get_frame_memory,
370 which in turn lifted it from read_memory. */
371
372extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
373 gdb_byte *buf, LONGEST len);
374extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
375 CORE_ADDR addr, int len,
376 enum bfd_endian byte_order);
377\f
378struct thread_info; /* fwd decl for parameter list below: */
379
380struct target_ops
381 {
382 struct target_ops *beneath; /* To the target under this one. */
383 char *to_shortname; /* Name this target type */
384 char *to_longname; /* Name for printing */
385 char *to_doc; /* Documentation. Does not include trailing
386 newline, and starts with a one-line descrip-
387 tion (probably similar to to_longname). */
388 /* Per-target scratch pad. */
389 void *to_data;
390 /* The open routine takes the rest of the parameters from the
391 command, and (if successful) pushes a new target onto the
392 stack. Targets should supply this routine, if only to provide
393 an error message. */
394 void (*to_open) (char *, int);
395 /* Old targets with a static target vector provide "to_close".
396 New re-entrant targets provide "to_xclose" and that is expected
397 to xfree everything (including the "struct target_ops"). */
398 void (*to_xclose) (struct target_ops *targ, int quitting);
399 void (*to_close) (int);
400 void (*to_attach) (struct target_ops *ops, char *, int);
401 void (*to_post_attach) (int);
402 void (*to_detach) (struct target_ops *ops, char *, int);
403 void (*to_disconnect) (struct target_ops *, char *, int);
404 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
405 ptid_t (*to_wait) (struct target_ops *,
406 ptid_t, struct target_waitstatus *, int);
407 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
408 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
409 void (*to_prepare_to_store) (struct regcache *);
410
411 /* Transfer LEN bytes of memory between GDB address MYADDR and
412 target address MEMADDR. If WRITE, transfer them to the target, else
413 transfer them from the target. TARGET is the target from which we
414 get this function.
415
416 Return value, N, is one of the following:
417
418 0 means that we can't handle this. If errno has been set, it is the
419 error which prevented us from doing it (FIXME: What about bfd_error?).
420
421 positive (call it N) means that we have transferred N bytes
422 starting at MEMADDR. We might be able to handle more bytes
423 beyond this length, but no promises.
424
425 negative (call its absolute value N) means that we cannot
426 transfer right at MEMADDR, but we could transfer at least
427 something at MEMADDR + N.
428
429 NOTE: cagney/2004-10-01: This has been entirely superseeded by
430 to_xfer_partial and inferior inheritance. */
431
432 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
433 int len, int write,
434 struct mem_attrib *attrib,
435 struct target_ops *target);
436
437 void (*to_files_info) (struct target_ops *);
438 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
439 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
440 int (*to_can_use_hw_breakpoint) (int, int, int);
441 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
442 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
443
444 /* Documentation of what the two routines below are expected to do is
445 provided with the corresponding target_* macros. */
446 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
447 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
448
449 int (*to_stopped_by_watchpoint) (void);
450 int to_have_steppable_watchpoint;
451 int to_have_continuable_watchpoint;
452 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
453 int (*to_watchpoint_addr_within_range) (struct target_ops *,
454 CORE_ADDR, CORE_ADDR, int);
455 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
456 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
457 struct expression *);
458 void (*to_terminal_init) (void);
459 void (*to_terminal_inferior) (void);
460 void (*to_terminal_ours_for_output) (void);
461 void (*to_terminal_ours) (void);
462 void (*to_terminal_save_ours) (void);
463 void (*to_terminal_info) (char *, int);
464 void (*to_kill) (struct target_ops *);
465 void (*to_load) (char *, int);
466 int (*to_lookup_symbol) (char *, CORE_ADDR *);
467 void (*to_create_inferior) (struct target_ops *,
468 char *, char *, char **, int);
469 void (*to_post_startup_inferior) (ptid_t);
470 void (*to_insert_fork_catchpoint) (int);
471 int (*to_remove_fork_catchpoint) (int);
472 void (*to_insert_vfork_catchpoint) (int);
473 int (*to_remove_vfork_catchpoint) (int);
474 int (*to_follow_fork) (struct target_ops *, int);
475 void (*to_insert_exec_catchpoint) (int);
476 int (*to_remove_exec_catchpoint) (int);
477 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
478 int (*to_has_exited) (int, int, int *);
479 void (*to_mourn_inferior) (struct target_ops *);
480 int (*to_can_run) (void);
481 void (*to_notice_signals) (ptid_t ptid);
482 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
483 void (*to_find_new_threads) (struct target_ops *);
484 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
485 char *(*to_extra_thread_info) (struct thread_info *);
486 void (*to_stop) (ptid_t);
487 void (*to_rcmd) (char *command, struct ui_file *output);
488 char *(*to_pid_to_exec_file) (int pid);
489 void (*to_log_command) (const char *);
490 struct target_section_table *(*to_get_section_table) (struct target_ops *);
491 enum strata to_stratum;
492 int (*to_has_all_memory) (struct target_ops *);
493 int (*to_has_memory) (struct target_ops *);
494 int (*to_has_stack) (struct target_ops *);
495 int (*to_has_registers) (struct target_ops *);
496 int (*to_has_execution) (struct target_ops *);
497 int to_has_thread_control; /* control thread execution */
498 int to_attach_no_wait;
499 /* ASYNC target controls */
500 int (*to_can_async_p) (void);
501 int (*to_is_async_p) (void);
502 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
503 int (*to_async_mask) (int);
504 int (*to_supports_non_stop) (void);
505 /* find_memory_regions support method for gcore */
506 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
507 /* make_corefile_notes support method for gcore */
508 char * (*to_make_corefile_notes) (bfd *, int *);
509 /* get_bookmark support method for bookmarks */
510 gdb_byte * (*to_get_bookmark) (char *, int);
511 /* goto_bookmark support method for bookmarks */
512 void (*to_goto_bookmark) (gdb_byte *, int);
513 /* Return the thread-local address at OFFSET in the
514 thread-local storage for the thread PTID and the shared library
515 or executable file given by OBJFILE. If that block of
516 thread-local storage hasn't been allocated yet, this function
517 may return an error. */
518 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
519 ptid_t ptid,
520 CORE_ADDR load_module_addr,
521 CORE_ADDR offset);
522
523 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
524 OBJECT. The OFFSET, for a seekable object, specifies the
525 starting point. The ANNEX can be used to provide additional
526 data-specific information to the target.
527
528 Return the number of bytes actually transfered, zero when no
529 further transfer is possible, and -1 when the transfer is not
530 supported. Return of a positive value smaller than LEN does
531 not indicate the end of the object, only the end of the
532 transfer; higher level code should continue transferring if
533 desired. This is handled in target.c.
534
535 The interface does not support a "retry" mechanism. Instead it
536 assumes that at least one byte will be transfered on each
537 successful call.
538
539 NOTE: cagney/2003-10-17: The current interface can lead to
540 fragmented transfers. Lower target levels should not implement
541 hacks, such as enlarging the transfer, in an attempt to
542 compensate for this. Instead, the target stack should be
543 extended so that it implements supply/collect methods and a
544 look-aside object cache. With that available, the lowest
545 target can safely and freely "push" data up the stack.
546
547 See target_read and target_write for more information. One,
548 and only one, of readbuf or writebuf must be non-NULL. */
549
550 LONGEST (*to_xfer_partial) (struct target_ops *ops,
551 enum target_object object, const char *annex,
552 gdb_byte *readbuf, const gdb_byte *writebuf,
553 ULONGEST offset, LONGEST len);
554
555 /* Returns the memory map for the target. A return value of NULL
556 means that no memory map is available. If a memory address
557 does not fall within any returned regions, it's assumed to be
558 RAM. The returned memory regions should not overlap.
559
560 The order of regions does not matter; target_memory_map will
561 sort regions by starting address. For that reason, this
562 function should not be called directly except via
563 target_memory_map.
564
565 This method should not cache data; if the memory map could
566 change unexpectedly, it should be invalidated, and higher
567 layers will re-fetch it. */
568 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
569
570 /* Erases the region of flash memory starting at ADDRESS, of
571 length LENGTH.
572
573 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
574 on flash block boundaries, as reported by 'to_memory_map'. */
575 void (*to_flash_erase) (struct target_ops *,
576 ULONGEST address, LONGEST length);
577
578 /* Finishes a flash memory write sequence. After this operation
579 all flash memory should be available for writing and the result
580 of reading from areas written by 'to_flash_write' should be
581 equal to what was written. */
582 void (*to_flash_done) (struct target_ops *);
583
584 /* Describe the architecture-specific features of this target.
585 Returns the description found, or NULL if no description
586 was available. */
587 const struct target_desc *(*to_read_description) (struct target_ops *ops);
588
589 /* Build the PTID of the thread on which a given task is running,
590 based on LWP and THREAD. These values are extracted from the
591 task Private_Data section of the Ada Task Control Block, and
592 their interpretation depends on the target. */
593 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
594
595 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
596 Return 0 if *READPTR is already at the end of the buffer.
597 Return -1 if there is insufficient buffer for a whole entry.
598 Return 1 if an entry was read into *TYPEP and *VALP. */
599 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
600 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
601
602 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
603 sequence of bytes in PATTERN with length PATTERN_LEN.
604
605 The result is 1 if found, 0 if not found, and -1 if there was an error
606 requiring halting of the search (e.g. memory read error).
607 If the pattern is found the address is recorded in FOUND_ADDRP. */
608 int (*to_search_memory) (struct target_ops *ops,
609 CORE_ADDR start_addr, ULONGEST search_space_len,
610 const gdb_byte *pattern, ULONGEST pattern_len,
611 CORE_ADDR *found_addrp);
612
613 /* Can target execute in reverse? */
614 int (*to_can_execute_reverse) (void);
615
616 /* Does this target support debugging multiple processes
617 simultaneously? */
618 int (*to_supports_multi_process) (void);
619
620 /* Determine current architecture of thread PTID.
621
622 The target is supposed to determine the architecture of the code where
623 the target is currently stopped at (on Cell, if a target is in spu_run,
624 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
625 This is architecture used to perform decr_pc_after_break adjustment,
626 and also determines the frame architecture of the innermost frame.
627 ptrace operations need to operate according to target_gdbarch.
628
629 The default implementation always returns target_gdbarch. */
630 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
631
632 /* Determine current address space of thread PTID.
633
634 The default implementation always returns the inferior's
635 address space. */
636 struct address_space *(*to_thread_address_space) (struct target_ops *,
637 ptid_t);
638
639 /* Tracepoint-related operations. */
640
641 /* Prepare the target for a tracing run. */
642 void (*to_trace_init) (void);
643
644 /* Send full details of a tracepoint to the target. */
645 void (*to_download_tracepoint) (struct breakpoint *t);
646
647 /* Send full details of a trace state variable to the target. */
648 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
649
650 /* Inform the target info of memory regions that are readonly
651 (such as text sections), and so it should return data from
652 those rather than look in the trace buffer. */
653 void (*to_trace_set_readonly_regions) (void);
654
655 /* Start a trace run. */
656 void (*to_trace_start) (void);
657
658 /* Get the current status of a tracing run. */
659 int (*to_get_trace_status) (struct trace_status *ts);
660
661 /* Stop a trace run. */
662 void (*to_trace_stop) (void);
663
664 /* Ask the target to find a trace frame of the given type TYPE,
665 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
666 number of the trace frame, and also the tracepoint number at
667 TPP. If no trace frame matches, return -1. May throw if the
668 operation fails. */
669 int (*to_trace_find) (enum trace_find_type type, int num,
670 ULONGEST addr1, ULONGEST addr2, int *tpp);
671
672 /* Get the value of the trace state variable number TSV, returning
673 1 if the value is known and writing the value itself into the
674 location pointed to by VAL, else returning 0. */
675 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
676
677 int (*to_save_trace_data) (const char *filename);
678
679 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
680
681 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
682
683 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
684 ULONGEST offset, LONGEST len);
685
686 /* Set the target's tracing behavior in response to unexpected
687 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
688 void (*to_set_disconnected_tracing) (int val);
689 void (*to_set_circular_trace_buffer) (int val);
690
691 /* Return the processor core that thread PTID was last seen on.
692 This information is updated only when:
693 - update_thread_list is called
694 - thread stops
695 If the core cannot be determined -- either for the specified thread, or
696 right now, or in this debug session, or for this target -- return -1. */
697 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
698
699 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
700 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
701 a match, 0 if there's a mismatch, and -1 if an error is
702 encountered while reading memory. */
703 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
704 CORE_ADDR memaddr, ULONGEST size);
705
706 /* Return the address of the start of the Thread Information Block
707 a Windows OS specific feature. */
708 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
709
710 /* Send the new settings of write permission variables. */
711 void (*to_set_permissions) (void);
712
713 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
714 with its details. Return 1 on success, 0 on failure. */
715 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
716 struct static_tracepoint_marker *marker);
717
718 /* Return a vector of all tracepoints markers string id ID, or all
719 markers if ID is NULL. */
720 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
721 (const char *id);
722
723 int to_magic;
724 /* Need sub-structure for target machine related rather than comm related?
725 */
726 };
727
728/* Magic number for checking ops size. If a struct doesn't end with this
729 number, somebody changed the declaration but didn't change all the
730 places that initialize one. */
731
732#define OPS_MAGIC 3840
733
734/* The ops structure for our "current" target process. This should
735 never be NULL. If there is no target, it points to the dummy_target. */
736
737extern struct target_ops current_target;
738
739/* Define easy words for doing these operations on our current target. */
740
741#define target_shortname (current_target.to_shortname)
742#define target_longname (current_target.to_longname)
743
744/* Does whatever cleanup is required for a target that we are no
745 longer going to be calling. QUITTING indicates that GDB is exiting
746 and should not get hung on an error (otherwise it is important to
747 perform clean termination, even if it takes a while). This routine
748 is automatically always called when popping the target off the
749 target stack (to_beneath is undefined). Closing file descriptors
750 and freeing all memory allocated memory are typical things it
751 should do. */
752
753void target_close (struct target_ops *targ, int quitting);
754
755/* Attaches to a process on the target side. Arguments are as passed
756 to the `attach' command by the user. This routine can be called
757 when the target is not on the target-stack, if the target_can_run
758 routine returns 1; in that case, it must push itself onto the stack.
759 Upon exit, the target should be ready for normal operations, and
760 should be ready to deliver the status of the process immediately
761 (without waiting) to an upcoming target_wait call. */
762
763void target_attach (char *, int);
764
765/* Some targets don't generate traps when attaching to the inferior,
766 or their target_attach implementation takes care of the waiting.
767 These targets must set to_attach_no_wait. */
768
769#define target_attach_no_wait \
770 (current_target.to_attach_no_wait)
771
772/* The target_attach operation places a process under debugger control,
773 and stops the process.
774
775 This operation provides a target-specific hook that allows the
776 necessary bookkeeping to be performed after an attach completes. */
777#define target_post_attach(pid) \
778 (*current_target.to_post_attach) (pid)
779
780/* Takes a program previously attached to and detaches it.
781 The program may resume execution (some targets do, some don't) and will
782 no longer stop on signals, etc. We better not have left any breakpoints
783 in the program or it'll die when it hits one. ARGS is arguments
784 typed by the user (e.g. a signal to send the process). FROM_TTY
785 says whether to be verbose or not. */
786
787extern void target_detach (char *, int);
788
789/* Disconnect from the current target without resuming it (leaving it
790 waiting for a debugger). */
791
792extern void target_disconnect (char *, int);
793
794/* Resume execution of the target process PTID. STEP says whether to
795 single-step or to run free; SIGGNAL is the signal to be given to
796 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
797 pass TARGET_SIGNAL_DEFAULT. */
798
799extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
800
801/* Wait for process pid to do something. PTID = -1 to wait for any
802 pid to do something. Return pid of child, or -1 in case of error;
803 store status through argument pointer STATUS. Note that it is
804 _NOT_ OK to throw_exception() out of target_wait() without popping
805 the debugging target from the stack; GDB isn't prepared to get back
806 to the prompt with a debugging target but without the frame cache,
807 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
808 options. */
809
810extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
811 int options);
812
813/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
814
815extern void target_fetch_registers (struct regcache *regcache, int regno);
816
817/* Store at least register REGNO, or all regs if REGNO == -1.
818 It can store as many registers as it wants to, so target_prepare_to_store
819 must have been previously called. Calls error() if there are problems. */
820
821extern void target_store_registers (struct regcache *regcache, int regs);
822
823/* Get ready to modify the registers array. On machines which store
824 individual registers, this doesn't need to do anything. On machines
825 which store all the registers in one fell swoop, this makes sure
826 that REGISTERS contains all the registers from the program being
827 debugged. */
828
829#define target_prepare_to_store(regcache) \
830 (*current_target.to_prepare_to_store) (regcache)
831
832/* Determine current address space of thread PTID. */
833
834struct address_space *target_thread_address_space (ptid_t);
835
836/* Returns true if this target can debug multiple processes
837 simultaneously. */
838
839#define target_supports_multi_process() \
840 (*current_target.to_supports_multi_process) ()
841
842/* Invalidate all target dcaches. */
843extern void target_dcache_invalidate (void);
844
845extern int target_read_string (CORE_ADDR, char **, int, int *);
846
847extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
848
849extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
850
851extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
852 int len);
853
854/* Fetches the target's memory map. If one is found it is sorted
855 and returned, after some consistency checking. Otherwise, NULL
856 is returned. */
857VEC(mem_region_s) *target_memory_map (void);
858
859/* Erase the specified flash region. */
860void target_flash_erase (ULONGEST address, LONGEST length);
861
862/* Finish a sequence of flash operations. */
863void target_flash_done (void);
864
865/* Describes a request for a memory write operation. */
866struct memory_write_request
867 {
868 /* Begining address that must be written. */
869 ULONGEST begin;
870 /* Past-the-end address. */
871 ULONGEST end;
872 /* The data to write. */
873 gdb_byte *data;
874 /* A callback baton for progress reporting for this request. */
875 void *baton;
876 };
877typedef struct memory_write_request memory_write_request_s;
878DEF_VEC_O(memory_write_request_s);
879
880/* Enumeration specifying different flash preservation behaviour. */
881enum flash_preserve_mode
882 {
883 flash_preserve,
884 flash_discard
885 };
886
887/* Write several memory blocks at once. This version can be more
888 efficient than making several calls to target_write_memory, in
889 particular because it can optimize accesses to flash memory.
890
891 Moreover, this is currently the only memory access function in gdb
892 that supports writing to flash memory, and it should be used for
893 all cases where access to flash memory is desirable.
894
895 REQUESTS is the vector (see vec.h) of memory_write_request.
896 PRESERVE_FLASH_P indicates what to do with blocks which must be
897 erased, but not completely rewritten.
898 PROGRESS_CB is a function that will be periodically called to provide
899 feedback to user. It will be called with the baton corresponding
900 to the request currently being written. It may also be called
901 with a NULL baton, when preserved flash sectors are being rewritten.
902
903 The function returns 0 on success, and error otherwise. */
904int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
905 enum flash_preserve_mode preserve_flash_p,
906 void (*progress_cb) (ULONGEST, void *));
907
908/* From infrun.c. */
909
910extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
911
912extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
913
914extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
915
916extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
917
918/* Print a line about the current target. */
919
920#define target_files_info() \
921 (*current_target.to_files_info) (&current_target)
922
923/* Insert a breakpoint at address BP_TGT->placed_address in the target
924 machine. Result is 0 for success, or an errno value. */
925
926extern int target_insert_breakpoint (struct gdbarch *gdbarch,
927 struct bp_target_info *bp_tgt);
928
929/* Remove a breakpoint at address BP_TGT->placed_address in the target
930 machine. Result is 0 for success, or an errno value. */
931
932extern int target_remove_breakpoint (struct gdbarch *gdbarch,
933 struct bp_target_info *bp_tgt);
934
935/* Initialize the terminal settings we record for the inferior,
936 before we actually run the inferior. */
937
938#define target_terminal_init() \
939 (*current_target.to_terminal_init) ()
940
941/* Put the inferior's terminal settings into effect.
942 This is preparation for starting or resuming the inferior. */
943
944extern void target_terminal_inferior (void);
945
946/* Put some of our terminal settings into effect,
947 enough to get proper results from our output,
948 but do not change into or out of RAW mode
949 so that no input is discarded.
950
951 After doing this, either terminal_ours or terminal_inferior
952 should be called to get back to a normal state of affairs. */
953
954#define target_terminal_ours_for_output() \
955 (*current_target.to_terminal_ours_for_output) ()
956
957/* Put our terminal settings into effect.
958 First record the inferior's terminal settings
959 so they can be restored properly later. */
960
961#define target_terminal_ours() \
962 (*current_target.to_terminal_ours) ()
963
964/* Save our terminal settings.
965 This is called from TUI after entering or leaving the curses
966 mode. Since curses modifies our terminal this call is here
967 to take this change into account. */
968
969#define target_terminal_save_ours() \
970 (*current_target.to_terminal_save_ours) ()
971
972/* Print useful information about our terminal status, if such a thing
973 exists. */
974
975#define target_terminal_info(arg, from_tty) \
976 (*current_target.to_terminal_info) (arg, from_tty)
977
978/* Kill the inferior process. Make it go away. */
979
980extern void target_kill (void);
981
982/* Load an executable file into the target process. This is expected
983 to not only bring new code into the target process, but also to
984 update GDB's symbol tables to match.
985
986 ARG contains command-line arguments, to be broken down with
987 buildargv (). The first non-switch argument is the filename to
988 load, FILE; the second is a number (as parsed by strtoul (..., ...,
989 0)), which is an offset to apply to the load addresses of FILE's
990 sections. The target may define switches, or other non-switch
991 arguments, as it pleases. */
992
993extern void target_load (char *arg, int from_tty);
994
995/* Look up a symbol in the target's symbol table. NAME is the symbol
996 name. ADDRP is a CORE_ADDR * pointing to where the value of the
997 symbol should be returned. The result is 0 if successful, nonzero
998 if the symbol does not exist in the target environment. This
999 function should not call error() if communication with the target
1000 is interrupted, since it is called from symbol reading, but should
1001 return nonzero, possibly doing a complain(). */
1002
1003#define target_lookup_symbol(name, addrp) \
1004 (*current_target.to_lookup_symbol) (name, addrp)
1005
1006/* Start an inferior process and set inferior_ptid to its pid.
1007 EXEC_FILE is the file to run.
1008 ALLARGS is a string containing the arguments to the program.
1009 ENV is the environment vector to pass. Errors reported with error().
1010 On VxWorks and various standalone systems, we ignore exec_file. */
1011
1012void target_create_inferior (char *exec_file, char *args,
1013 char **env, int from_tty);
1014
1015/* Some targets (such as ttrace-based HPUX) don't allow us to request
1016 notification of inferior events such as fork and vork immediately
1017 after the inferior is created. (This because of how gdb gets an
1018 inferior created via invoking a shell to do it. In such a scenario,
1019 if the shell init file has commands in it, the shell will fork and
1020 exec for each of those commands, and we will see each such fork
1021 event. Very bad.)
1022
1023 Such targets will supply an appropriate definition for this function. */
1024
1025#define target_post_startup_inferior(ptid) \
1026 (*current_target.to_post_startup_inferior) (ptid)
1027
1028/* On some targets, we can catch an inferior fork or vfork event when
1029 it occurs. These functions insert/remove an already-created
1030 catchpoint for such events. */
1031
1032#define target_insert_fork_catchpoint(pid) \
1033 (*current_target.to_insert_fork_catchpoint) (pid)
1034
1035#define target_remove_fork_catchpoint(pid) \
1036 (*current_target.to_remove_fork_catchpoint) (pid)
1037
1038#define target_insert_vfork_catchpoint(pid) \
1039 (*current_target.to_insert_vfork_catchpoint) (pid)
1040
1041#define target_remove_vfork_catchpoint(pid) \
1042 (*current_target.to_remove_vfork_catchpoint) (pid)
1043
1044/* If the inferior forks or vforks, this function will be called at
1045 the next resume in order to perform any bookkeeping and fiddling
1046 necessary to continue debugging either the parent or child, as
1047 requested, and releasing the other. Information about the fork
1048 or vfork event is available via get_last_target_status ().
1049 This function returns 1 if the inferior should not be resumed
1050 (i.e. there is another event pending). */
1051
1052int target_follow_fork (int follow_child);
1053
1054/* On some targets, we can catch an inferior exec event when it
1055 occurs. These functions insert/remove an already-created
1056 catchpoint for such events. */
1057
1058#define target_insert_exec_catchpoint(pid) \
1059 (*current_target.to_insert_exec_catchpoint) (pid)
1060
1061#define target_remove_exec_catchpoint(pid) \
1062 (*current_target.to_remove_exec_catchpoint) (pid)
1063
1064/* Syscall catch.
1065
1066 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1067 If NEEDED is zero, it means the target can disable the mechanism to
1068 catch system calls because there are no more catchpoints of this type.
1069
1070 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1071 being requested. In this case, both TABLE_SIZE and TABLE should
1072 be ignored.
1073
1074 TABLE_SIZE is the number of elements in TABLE. It only matters if
1075 ANY_COUNT is zero.
1076
1077 TABLE is an array of ints, indexed by syscall number. An element in
1078 this array is nonzero if that syscall should be caught. This argument
1079 only matters if ANY_COUNT is zero. */
1080
1081#define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1082 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1083 table_size, table)
1084
1085/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1086 exit code of PID, if any. */
1087
1088#define target_has_exited(pid,wait_status,exit_status) \
1089 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1090
1091/* The debugger has completed a blocking wait() call. There is now
1092 some process event that must be processed. This function should
1093 be defined by those targets that require the debugger to perform
1094 cleanup or internal state changes in response to the process event. */
1095
1096/* The inferior process has died. Do what is right. */
1097
1098void target_mourn_inferior (void);
1099
1100/* Does target have enough data to do a run or attach command? */
1101
1102#define target_can_run(t) \
1103 ((t)->to_can_run) ()
1104
1105/* post process changes to signal handling in the inferior. */
1106
1107#define target_notice_signals(ptid) \
1108 (*current_target.to_notice_signals) (ptid)
1109
1110/* Check to see if a thread is still alive. */
1111
1112extern int target_thread_alive (ptid_t ptid);
1113
1114/* Query for new threads and add them to the thread list. */
1115
1116extern void target_find_new_threads (void);
1117
1118/* Make target stop in a continuable fashion. (For instance, under
1119 Unix, this should act like SIGSTOP). This function is normally
1120 used by GUIs to implement a stop button. */
1121
1122extern void target_stop (ptid_t ptid);
1123
1124/* Send the specified COMMAND to the target's monitor
1125 (shell,interpreter) for execution. The result of the query is
1126 placed in OUTBUF. */
1127
1128#define target_rcmd(command, outbuf) \
1129 (*current_target.to_rcmd) (command, outbuf)
1130
1131
1132/* Does the target include all of memory, or only part of it? This
1133 determines whether we look up the target chain for other parts of
1134 memory if this target can't satisfy a request. */
1135
1136extern int target_has_all_memory_1 (void);
1137#define target_has_all_memory target_has_all_memory_1 ()
1138
1139/* Does the target include memory? (Dummy targets don't.) */
1140
1141extern int target_has_memory_1 (void);
1142#define target_has_memory target_has_memory_1 ()
1143
1144/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1145 we start a process.) */
1146
1147extern int target_has_stack_1 (void);
1148#define target_has_stack target_has_stack_1 ()
1149
1150/* Does the target have registers? (Exec files don't.) */
1151
1152extern int target_has_registers_1 (void);
1153#define target_has_registers target_has_registers_1 ()
1154
1155/* Does the target have execution? Can we make it jump (through
1156 hoops), or pop its stack a few times? This means that the current
1157 target is currently executing; for some targets, that's the same as
1158 whether or not the target is capable of execution, but there are
1159 also targets which can be current while not executing. In that
1160 case this will become true after target_create_inferior or
1161 target_attach. */
1162
1163extern int target_has_execution_1 (void);
1164#define target_has_execution target_has_execution_1 ()
1165
1166/* Default implementations for process_stratum targets. Return true
1167 if there's a selected inferior, false otherwise. */
1168
1169extern int default_child_has_all_memory (struct target_ops *ops);
1170extern int default_child_has_memory (struct target_ops *ops);
1171extern int default_child_has_stack (struct target_ops *ops);
1172extern int default_child_has_registers (struct target_ops *ops);
1173extern int default_child_has_execution (struct target_ops *ops);
1174
1175/* Can the target support the debugger control of thread execution?
1176 Can it lock the thread scheduler? */
1177
1178#define target_can_lock_scheduler \
1179 (current_target.to_has_thread_control & tc_schedlock)
1180
1181/* Should the target enable async mode if it is supported? Temporary
1182 cludge until async mode is a strict superset of sync mode. */
1183extern int target_async_permitted;
1184
1185/* Can the target support asynchronous execution? */
1186#define target_can_async_p() (current_target.to_can_async_p ())
1187
1188/* Is the target in asynchronous execution mode? */
1189#define target_is_async_p() (current_target.to_is_async_p ())
1190
1191int target_supports_non_stop (void);
1192
1193/* Put the target in async mode with the specified callback function. */
1194#define target_async(CALLBACK,CONTEXT) \
1195 (current_target.to_async ((CALLBACK), (CONTEXT)))
1196
1197/* This is to be used ONLY within call_function_by_hand(). It provides
1198 a workaround, to have inferior function calls done in sychronous
1199 mode, even though the target is asynchronous. After
1200 target_async_mask(0) is called, calls to target_can_async_p() will
1201 return FALSE , so that target_resume() will not try to start the
1202 target asynchronously. After the inferior stops, we IMMEDIATELY
1203 restore the previous nature of the target, by calling
1204 target_async_mask(1). After that, target_can_async_p() will return
1205 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1206
1207 FIXME ezannoni 1999-12-13: we won't need this once we move
1208 the turning async on and off to the single execution commands,
1209 from where it is done currently, in remote_resume(). */
1210
1211#define target_async_mask(MASK) \
1212 (current_target.to_async_mask (MASK))
1213
1214/* Converts a process id to a string. Usually, the string just contains
1215 `process xyz', but on some systems it may contain
1216 `process xyz thread abc'. */
1217
1218extern char *target_pid_to_str (ptid_t ptid);
1219
1220extern char *normal_pid_to_str (ptid_t ptid);
1221
1222/* Return a short string describing extra information about PID,
1223 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1224 is okay. */
1225
1226#define target_extra_thread_info(TP) \
1227 (current_target.to_extra_thread_info (TP))
1228
1229/* Attempts to find the pathname of the executable file
1230 that was run to create a specified process.
1231
1232 The process PID must be stopped when this operation is used.
1233
1234 If the executable file cannot be determined, NULL is returned.
1235
1236 Else, a pointer to a character string containing the pathname
1237 is returned. This string should be copied into a buffer by
1238 the client if the string will not be immediately used, or if
1239 it must persist. */
1240
1241#define target_pid_to_exec_file(pid) \
1242 (current_target.to_pid_to_exec_file) (pid)
1243
1244/* See the to_thread_architecture description in struct target_ops. */
1245
1246#define target_thread_architecture(ptid) \
1247 (current_target.to_thread_architecture (&current_target, ptid))
1248
1249/*
1250 * Iterator function for target memory regions.
1251 * Calls a callback function once for each memory region 'mapped'
1252 * in the child process. Defined as a simple macro rather than
1253 * as a function macro so that it can be tested for nullity.
1254 */
1255
1256#define target_find_memory_regions(FUNC, DATA) \
1257 (current_target.to_find_memory_regions) (FUNC, DATA)
1258
1259/*
1260 * Compose corefile .note section.
1261 */
1262
1263#define target_make_corefile_notes(BFD, SIZE_P) \
1264 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1265
1266/* Bookmark interfaces. */
1267#define target_get_bookmark(ARGS, FROM_TTY) \
1268 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1269
1270#define target_goto_bookmark(ARG, FROM_TTY) \
1271 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1272
1273/* Hardware watchpoint interfaces. */
1274
1275/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1276 write). Only the INFERIOR_PTID task is being queried. */
1277
1278#define target_stopped_by_watchpoint \
1279 (*current_target.to_stopped_by_watchpoint)
1280
1281/* Non-zero if we have steppable watchpoints */
1282
1283#define target_have_steppable_watchpoint \
1284 (current_target.to_have_steppable_watchpoint)
1285
1286/* Non-zero if we have continuable watchpoints */
1287
1288#define target_have_continuable_watchpoint \
1289 (current_target.to_have_continuable_watchpoint)
1290
1291/* Provide defaults for hardware watchpoint functions. */
1292
1293/* If the *_hw_beakpoint functions have not been defined
1294 elsewhere use the definitions in the target vector. */
1295
1296/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1297 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1298 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1299 (including this one?). OTHERTYPE is who knows what... */
1300
1301#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1302 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1303
1304#define target_region_ok_for_hw_watchpoint(addr, len) \
1305 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1306
1307
1308/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1309 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1310 COND is the expression for its condition, or NULL if there's none.
1311 Returns 0 for success, 1 if the watchpoint type is not supported,
1312 -1 for failure. */
1313
1314#define target_insert_watchpoint(addr, len, type, cond) \
1315 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1316
1317#define target_remove_watchpoint(addr, len, type, cond) \
1318 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1319
1320#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1321 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1322
1323#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1324 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1325
1326/* Return non-zero if target knows the data address which triggered this
1327 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1328 INFERIOR_PTID task is being queried. */
1329#define target_stopped_data_address(target, addr_p) \
1330 (*target.to_stopped_data_address) (target, addr_p)
1331
1332#define target_watchpoint_addr_within_range(target, addr, start, length) \
1333 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1334
1335/* Return non-zero if the target is capable of using hardware to evaluate
1336 the condition expression. In this case, if the condition is false when
1337 the watched memory location changes, execution may continue without the
1338 debugger being notified.
1339
1340 Due to limitations in the hardware implementation, it may be capable of
1341 avoiding triggering the watchpoint in some cases where the condition
1342 expression is false, but may report some false positives as well.
1343 For this reason, GDB will still evaluate the condition expression when
1344 the watchpoint triggers. */
1345#define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1346 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1347
1348/* Target can execute in reverse? */
1349#define target_can_execute_reverse \
1350 (current_target.to_can_execute_reverse ? \
1351 current_target.to_can_execute_reverse () : 0)
1352
1353extern const struct target_desc *target_read_description (struct target_ops *);
1354
1355#define target_get_ada_task_ptid(lwp, tid) \
1356 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1357
1358/* Utility implementation of searching memory. */
1359extern int simple_search_memory (struct target_ops* ops,
1360 CORE_ADDR start_addr,
1361 ULONGEST search_space_len,
1362 const gdb_byte *pattern,
1363 ULONGEST pattern_len,
1364 CORE_ADDR *found_addrp);
1365
1366/* Main entry point for searching memory. */
1367extern int target_search_memory (CORE_ADDR start_addr,
1368 ULONGEST search_space_len,
1369 const gdb_byte *pattern,
1370 ULONGEST pattern_len,
1371 CORE_ADDR *found_addrp);
1372
1373/* Tracepoint-related operations. */
1374
1375#define target_trace_init() \
1376 (*current_target.to_trace_init) ()
1377
1378#define target_download_tracepoint(t) \
1379 (*current_target.to_download_tracepoint) (t)
1380
1381#define target_download_trace_state_variable(tsv) \
1382 (*current_target.to_download_trace_state_variable) (tsv)
1383
1384#define target_trace_start() \
1385 (*current_target.to_trace_start) ()
1386
1387#define target_trace_set_readonly_regions() \
1388 (*current_target.to_trace_set_readonly_regions) ()
1389
1390#define target_get_trace_status(ts) \
1391 (*current_target.to_get_trace_status) (ts)
1392
1393#define target_trace_stop() \
1394 (*current_target.to_trace_stop) ()
1395
1396#define target_trace_find(type,num,addr1,addr2,tpp) \
1397 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1398
1399#define target_get_trace_state_variable_value(tsv,val) \
1400 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1401
1402#define target_save_trace_data(filename) \
1403 (*current_target.to_save_trace_data) (filename)
1404
1405#define target_upload_tracepoints(utpp) \
1406 (*current_target.to_upload_tracepoints) (utpp)
1407
1408#define target_upload_trace_state_variables(utsvp) \
1409 (*current_target.to_upload_trace_state_variables) (utsvp)
1410
1411#define target_get_raw_trace_data(buf,offset,len) \
1412 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1413
1414#define target_set_disconnected_tracing(val) \
1415 (*current_target.to_set_disconnected_tracing) (val)
1416
1417#define target_set_circular_trace_buffer(val) \
1418 (*current_target.to_set_circular_trace_buffer) (val)
1419
1420#define target_get_tib_address(ptid, addr) \
1421 (*current_target.to_get_tib_address) ((ptid), (addr))
1422
1423#define target_set_permissions() \
1424 (*current_target.to_set_permissions) ()
1425
1426#define target_static_tracepoint_marker_at(addr, marker) \
1427 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1428
1429#define target_static_tracepoint_markers_by_strid(marker_id) \
1430 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1431
1432/* Command logging facility. */
1433
1434#define target_log_command(p) \
1435 do \
1436 if (current_target.to_log_command) \
1437 (*current_target.to_log_command) (p); \
1438 while (0)
1439
1440
1441extern int target_core_of_thread (ptid_t ptid);
1442
1443/* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1444 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1445 if there's a mismatch, and -1 if an error is encountered while
1446 reading memory. Throws an error if the functionality is found not
1447 to be supported by the current target. */
1448int target_verify_memory (const gdb_byte *data,
1449 CORE_ADDR memaddr, ULONGEST size);
1450
1451/* Routines for maintenance of the target structures...
1452
1453 add_target: Add a target to the list of all possible targets.
1454
1455 push_target: Make this target the top of the stack of currently used
1456 targets, within its particular stratum of the stack. Result
1457 is 0 if now atop the stack, nonzero if not on top (maybe
1458 should warn user).
1459
1460 unpush_target: Remove this from the stack of currently used targets,
1461 no matter where it is on the list. Returns 0 if no
1462 change, 1 if removed from stack.
1463
1464 pop_target: Remove the top thing on the stack of current targets. */
1465
1466extern void add_target (struct target_ops *);
1467
1468extern void push_target (struct target_ops *);
1469
1470extern int unpush_target (struct target_ops *);
1471
1472extern void target_pre_inferior (int);
1473
1474extern void target_preopen (int);
1475
1476extern void pop_target (void);
1477
1478/* Does whatever cleanup is required to get rid of all pushed targets.
1479 QUITTING is propagated to target_close; it indicates that GDB is
1480 exiting and should not get hung on an error (otherwise it is
1481 important to perform clean termination, even if it takes a
1482 while). */
1483extern void pop_all_targets (int quitting);
1484
1485/* Like pop_all_targets, but pops only targets whose stratum is
1486 strictly above ABOVE_STRATUM. */
1487extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1488
1489extern int target_is_pushed (struct target_ops *t);
1490
1491extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1492 CORE_ADDR offset);
1493
1494/* Struct target_section maps address ranges to file sections. It is
1495 mostly used with BFD files, but can be used without (e.g. for handling
1496 raw disks, or files not in formats handled by BFD). */
1497
1498struct target_section
1499 {
1500 CORE_ADDR addr; /* Lowest address in section */
1501 CORE_ADDR endaddr; /* 1+highest address in section */
1502
1503 struct bfd_section *the_bfd_section;
1504
1505 bfd *bfd; /* BFD file pointer */
1506 };
1507
1508/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1509
1510struct target_section_table
1511{
1512 struct target_section *sections;
1513 struct target_section *sections_end;
1514};
1515
1516/* Return the "section" containing the specified address. */
1517struct target_section *target_section_by_addr (struct target_ops *target,
1518 CORE_ADDR addr);
1519
1520/* Return the target section table this target (or the targets
1521 beneath) currently manipulate. */
1522
1523extern struct target_section_table *target_get_section_table
1524 (struct target_ops *target);
1525
1526/* From mem-break.c */
1527
1528extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1529
1530extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1531
1532extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1533
1534extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1535
1536
1537/* From target.c */
1538
1539extern void initialize_targets (void);
1540
1541extern void noprocess (void) ATTRIBUTE_NORETURN;
1542
1543extern void target_require_runnable (void);
1544
1545extern void find_default_attach (struct target_ops *, char *, int);
1546
1547extern void find_default_create_inferior (struct target_ops *,
1548 char *, char *, char **, int);
1549
1550extern struct target_ops *find_run_target (void);
1551
1552extern struct target_ops *find_target_beneath (struct target_ops *);
1553
1554/* Read OS data object of type TYPE from the target, and return it in
1555 XML format. The result is NUL-terminated and returned as a string,
1556 allocated using xmalloc. If an error occurs or the transfer is
1557 unsupported, NULL is returned. Empty objects are returned as
1558 allocated but empty strings. */
1559
1560extern char *target_get_osdata (const char *type);
1561
1562\f
1563/* Stuff that should be shared among the various remote targets. */
1564
1565/* Debugging level. 0 is off, and non-zero values mean to print some debug
1566 information (higher values, more information). */
1567extern int remote_debug;
1568
1569/* Speed in bits per second, or -1 which means don't mess with the speed. */
1570extern int baud_rate;
1571/* Timeout limit for response from target. */
1572extern int remote_timeout;
1573
1574\f
1575/* Functions for helping to write a native target. */
1576
1577/* This is for native targets which use a unix/POSIX-style waitstatus. */
1578extern void store_waitstatus (struct target_waitstatus *, int);
1579
1580/* These are in common/signals.c, but they're only used by gdb. */
1581extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1582 int);
1583extern int default_target_signal_to_host (struct gdbarch *,
1584 enum target_signal);
1585
1586/* Convert from a number used in a GDB command to an enum target_signal. */
1587extern enum target_signal target_signal_from_command (int);
1588/* End of files in common/signals.c. */
1589
1590/* Set the show memory breakpoints mode to show, and installs a cleanup
1591 to restore it back to the current value. */
1592extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1593
1594extern int may_write_registers;
1595extern int may_write_memory;
1596extern int may_insert_breakpoints;
1597extern int may_insert_tracepoints;
1598extern int may_insert_fast_tracepoints;
1599extern int may_stop;
1600
1601extern void update_target_permissions (void);
1602
1603\f
1604/* Imported from machine dependent code */
1605
1606/* Blank target vector entries are initialized to target_ignore. */
1607void target_ignore (void);
1608
1609extern struct target_ops deprecated_child_ops;
1610
1611#endif /* !defined (TARGET_H) */
This page took 0.031971 seconds and 4 git commands to generate.