sched/fair: Convert arch_scale_cpu_capacity() from weak function to #define
[deliverable/linux.git] / include / linux / sched.h
... / ...
CommitLineData
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6#include <linux/sched/prio.h>
7
8
9struct sched_param {
10 int sched_priority;
11};
12
13#include <asm/param.h> /* for HZ */
14
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
21#include <linux/plist.h>
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
27#include <linux/mm_types.h>
28#include <linux/preempt.h>
29
30#include <asm/page.h>
31#include <asm/ptrace.h>
32#include <linux/cputime.h>
33
34#include <linux/smp.h>
35#include <linux/sem.h>
36#include <linux/shm.h>
37#include <linux/signal.h>
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/proportions.h>
44#include <linux/seccomp.h>
45#include <linux/rcupdate.h>
46#include <linux/rculist.h>
47#include <linux/rtmutex.h>
48
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
54#include <linux/task_io_accounting.h>
55#include <linux/latencytop.h>
56#include <linux/cred.h>
57#include <linux/llist.h>
58#include <linux/uidgid.h>
59#include <linux/gfp.h>
60#include <linux/magic.h>
61#include <linux/cgroup-defs.h>
62
63#include <asm/processor.h>
64
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
129struct futex_pi_state;
130struct robust_list_head;
131struct bio_list;
132struct fs_struct;
133struct perf_event_context;
134struct blk_plug;
135struct filename;
136struct nameidata;
137
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
172extern bool single_task_running(void);
173extern unsigned long nr_iowait(void);
174extern unsigned long nr_iowait_cpu(int cpu);
175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177extern void calc_global_load(unsigned long ticks);
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180extern void update_cpu_load_nohz(void);
181#else
182static inline void update_cpu_load_nohz(void) { }
183#endif
184
185extern unsigned long get_parent_ip(unsigned long addr);
186
187extern void dump_cpu_task(int cpu);
188
189struct seq_file;
190struct cfs_rq;
191struct task_group;
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
195#endif
196
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
212/* in tsk->exit_state */
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216/* in tsk->state again */
217#define TASK_DEAD 64
218#define TASK_WAKEKILL 128
219#define TASK_WAKING 256
220#define TASK_PARKED 512
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
223
224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247#define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249#define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
287 } while (0)
288
289#else
290
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
295
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
307#define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309#define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
311
312#endif
313
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
328struct task_struct;
329
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
334extern void sched_init(void);
335extern void sched_init_smp(void);
336extern asmlinkage void schedule_tail(struct task_struct *prev);
337extern void init_idle(struct task_struct *idle, int cpu);
338extern void init_idle_bootup_task(struct task_struct *idle);
339
340extern cpumask_var_t cpu_isolated_map;
341
342extern int runqueue_is_locked(int cpu);
343
344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345extern void nohz_balance_enter_idle(int cpu);
346extern void set_cpu_sd_state_idle(void);
347extern int get_nohz_timer_target(void);
348#else
349static inline void nohz_balance_enter_idle(int cpu) { }
350static inline void set_cpu_sd_state_idle(void) { }
351#endif
352
353/*
354 * Only dump TASK_* tasks. (0 for all tasks)
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
360 show_state_filter(0);
361}
362
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
377extern void sched_show_task(struct task_struct *p);
378
379#ifdef CONFIG_LOCKUP_DETECTOR
380extern void touch_softlockup_watchdog(void);
381extern void touch_softlockup_watchdog_sync(void);
382extern void touch_all_softlockup_watchdogs(void);
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386extern unsigned int softlockup_panic;
387void lockup_detector_init(void);
388#else
389static inline void touch_softlockup_watchdog(void)
390{
391}
392static inline void touch_softlockup_watchdog_sync(void)
393{
394}
395static inline void touch_all_softlockup_watchdogs(void)
396{
397}
398static inline void lockup_detector_init(void)
399{
400}
401#endif
402
403#ifdef CONFIG_DETECT_HUNG_TASK
404void reset_hung_task_detector(void);
405#else
406static inline void reset_hung_task_detector(void)
407{
408}
409#endif
410
411/* Attach to any functions which should be ignored in wchan output. */
412#define __sched __attribute__((__section__(".sched.text")))
413
414/* Linker adds these: start and end of __sched functions */
415extern char __sched_text_start[], __sched_text_end[];
416
417/* Is this address in the __sched functions? */
418extern int in_sched_functions(unsigned long addr);
419
420#define MAX_SCHEDULE_TIMEOUT LONG_MAX
421extern signed long schedule_timeout(signed long timeout);
422extern signed long schedule_timeout_interruptible(signed long timeout);
423extern signed long schedule_timeout_killable(signed long timeout);
424extern signed long schedule_timeout_uninterruptible(signed long timeout);
425asmlinkage void schedule(void);
426extern void schedule_preempt_disabled(void);
427
428extern long io_schedule_timeout(long timeout);
429
430static inline void io_schedule(void)
431{
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433}
434
435struct nsproxy;
436struct user_namespace;
437
438#ifdef CONFIG_MMU
439extern void arch_pick_mmap_layout(struct mm_struct *mm);
440extern unsigned long
441arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443extern unsigned long
444arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
447#else
448static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449#endif
450
451#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452#define SUID_DUMP_USER 1 /* Dump as user of process */
453#define SUID_DUMP_ROOT 2 /* Dump as root */
454
455/* mm flags */
456
457/* for SUID_DUMP_* above */
458#define MMF_DUMPABLE_BITS 2
459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
460
461extern void set_dumpable(struct mm_struct *mm, int value);
462/*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468static inline int __get_dumpable(unsigned long mm_flags)
469{
470 return mm_flags & MMF_DUMPABLE_MASK;
471}
472
473static inline int get_dumpable(struct mm_struct *mm)
474{
475 return __get_dumpable(mm->flags);
476}
477
478/* coredump filter bits */
479#define MMF_DUMP_ANON_PRIVATE 2
480#define MMF_DUMP_ANON_SHARED 3
481#define MMF_DUMP_MAPPED_PRIVATE 4
482#define MMF_DUMP_MAPPED_SHARED 5
483#define MMF_DUMP_ELF_HEADERS 6
484#define MMF_DUMP_HUGETLB_PRIVATE 7
485#define MMF_DUMP_HUGETLB_SHARED 8
486
487#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
488#define MMF_DUMP_FILTER_BITS 7
489#define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491#define MMF_DUMP_FILTER_DEFAULT \
492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497#else
498# define MMF_DUMP_MASK_DEFAULT_ELF 0
499#endif
500 /* leave room for more dump flags */
501#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
502#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
503#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
504
505#define MMF_HAS_UPROBES 19 /* has uprobes */
506#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
507
508#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
509
510struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
514 wait_queue_head_t signalfd_wqh;
515};
516
517struct pacct_struct {
518 int ac_flag;
519 long ac_exitcode;
520 unsigned long ac_mem;
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
523};
524
525struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
528 u32 error;
529 u32 incr_error;
530};
531
532/**
533 * struct prev_cputime - snaphsot of system and user cputime
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
536 * @lock: protects the above two fields
537 *
538 * Stores previous user/system time values such that we can guarantee
539 * monotonicity.
540 */
541struct prev_cputime {
542#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
543 cputime_t utime;
544 cputime_t stime;
545 raw_spinlock_t lock;
546#endif
547};
548
549static inline void prev_cputime_init(struct prev_cputime *prev)
550{
551#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
552 prev->utime = prev->stime = 0;
553 raw_spin_lock_init(&prev->lock);
554#endif
555}
556
557/**
558 * struct task_cputime - collected CPU time counts
559 * @utime: time spent in user mode, in &cputime_t units
560 * @stime: time spent in kernel mode, in &cputime_t units
561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
562 *
563 * This structure groups together three kinds of CPU time that are tracked for
564 * threads and thread groups. Most things considering CPU time want to group
565 * these counts together and treat all three of them in parallel.
566 */
567struct task_cputime {
568 cputime_t utime;
569 cputime_t stime;
570 unsigned long long sum_exec_runtime;
571};
572
573/* Alternate field names when used to cache expirations. */
574#define virt_exp utime
575#define prof_exp stime
576#define sched_exp sum_exec_runtime
577
578#define INIT_CPUTIME \
579 (struct task_cputime) { \
580 .utime = 0, \
581 .stime = 0, \
582 .sum_exec_runtime = 0, \
583 }
584
585/*
586 * This is the atomic variant of task_cputime, which can be used for
587 * storing and updating task_cputime statistics without locking.
588 */
589struct task_cputime_atomic {
590 atomic64_t utime;
591 atomic64_t stime;
592 atomic64_t sum_exec_runtime;
593};
594
595#define INIT_CPUTIME_ATOMIC \
596 (struct task_cputime_atomic) { \
597 .utime = ATOMIC64_INIT(0), \
598 .stime = ATOMIC64_INIT(0), \
599 .sum_exec_runtime = ATOMIC64_INIT(0), \
600 }
601
602#ifdef CONFIG_PREEMPT_COUNT
603#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
604#else
605#define PREEMPT_DISABLED PREEMPT_ENABLED
606#endif
607
608/*
609 * Disable preemption until the scheduler is running.
610 * Reset by start_kernel()->sched_init()->init_idle().
611 *
612 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
613 * before the scheduler is active -- see should_resched().
614 */
615#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
616
617/**
618 * struct thread_group_cputimer - thread group interval timer counts
619 * @cputime_atomic: atomic thread group interval timers.
620 * @running: non-zero when there are timers running and
621 * @cputime receives updates.
622 *
623 * This structure contains the version of task_cputime, above, that is
624 * used for thread group CPU timer calculations.
625 */
626struct thread_group_cputimer {
627 struct task_cputime_atomic cputime_atomic;
628 int running;
629};
630
631#include <linux/rwsem.h>
632struct autogroup;
633
634/*
635 * NOTE! "signal_struct" does not have its own
636 * locking, because a shared signal_struct always
637 * implies a shared sighand_struct, so locking
638 * sighand_struct is always a proper superset of
639 * the locking of signal_struct.
640 */
641struct signal_struct {
642 atomic_t sigcnt;
643 atomic_t live;
644 int nr_threads;
645 struct list_head thread_head;
646
647 wait_queue_head_t wait_chldexit; /* for wait4() */
648
649 /* current thread group signal load-balancing target: */
650 struct task_struct *curr_target;
651
652 /* shared signal handling: */
653 struct sigpending shared_pending;
654
655 /* thread group exit support */
656 int group_exit_code;
657 /* overloaded:
658 * - notify group_exit_task when ->count is equal to notify_count
659 * - everyone except group_exit_task is stopped during signal delivery
660 * of fatal signals, group_exit_task processes the signal.
661 */
662 int notify_count;
663 struct task_struct *group_exit_task;
664
665 /* thread group stop support, overloads group_exit_code too */
666 int group_stop_count;
667 unsigned int flags; /* see SIGNAL_* flags below */
668
669 /*
670 * PR_SET_CHILD_SUBREAPER marks a process, like a service
671 * manager, to re-parent orphan (double-forking) child processes
672 * to this process instead of 'init'. The service manager is
673 * able to receive SIGCHLD signals and is able to investigate
674 * the process until it calls wait(). All children of this
675 * process will inherit a flag if they should look for a
676 * child_subreaper process at exit.
677 */
678 unsigned int is_child_subreaper:1;
679 unsigned int has_child_subreaper:1;
680
681 /* POSIX.1b Interval Timers */
682 int posix_timer_id;
683 struct list_head posix_timers;
684
685 /* ITIMER_REAL timer for the process */
686 struct hrtimer real_timer;
687 struct pid *leader_pid;
688 ktime_t it_real_incr;
689
690 /*
691 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
692 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
693 * values are defined to 0 and 1 respectively
694 */
695 struct cpu_itimer it[2];
696
697 /*
698 * Thread group totals for process CPU timers.
699 * See thread_group_cputimer(), et al, for details.
700 */
701 struct thread_group_cputimer cputimer;
702
703 /* Earliest-expiration cache. */
704 struct task_cputime cputime_expires;
705
706 struct list_head cpu_timers[3];
707
708 struct pid *tty_old_pgrp;
709
710 /* boolean value for session group leader */
711 int leader;
712
713 struct tty_struct *tty; /* NULL if no tty */
714
715#ifdef CONFIG_SCHED_AUTOGROUP
716 struct autogroup *autogroup;
717#endif
718 /*
719 * Cumulative resource counters for dead threads in the group,
720 * and for reaped dead child processes forked by this group.
721 * Live threads maintain their own counters and add to these
722 * in __exit_signal, except for the group leader.
723 */
724 seqlock_t stats_lock;
725 cputime_t utime, stime, cutime, cstime;
726 cputime_t gtime;
727 cputime_t cgtime;
728 struct prev_cputime prev_cputime;
729 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
730 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
731 unsigned long inblock, oublock, cinblock, coublock;
732 unsigned long maxrss, cmaxrss;
733 struct task_io_accounting ioac;
734
735 /*
736 * Cumulative ns of schedule CPU time fo dead threads in the
737 * group, not including a zombie group leader, (This only differs
738 * from jiffies_to_ns(utime + stime) if sched_clock uses something
739 * other than jiffies.)
740 */
741 unsigned long long sum_sched_runtime;
742
743 /*
744 * We don't bother to synchronize most readers of this at all,
745 * because there is no reader checking a limit that actually needs
746 * to get both rlim_cur and rlim_max atomically, and either one
747 * alone is a single word that can safely be read normally.
748 * getrlimit/setrlimit use task_lock(current->group_leader) to
749 * protect this instead of the siglock, because they really
750 * have no need to disable irqs.
751 */
752 struct rlimit rlim[RLIM_NLIMITS];
753
754#ifdef CONFIG_BSD_PROCESS_ACCT
755 struct pacct_struct pacct; /* per-process accounting information */
756#endif
757#ifdef CONFIG_TASKSTATS
758 struct taskstats *stats;
759#endif
760#ifdef CONFIG_AUDIT
761 unsigned audit_tty;
762 unsigned audit_tty_log_passwd;
763 struct tty_audit_buf *tty_audit_buf;
764#endif
765
766 oom_flags_t oom_flags;
767 short oom_score_adj; /* OOM kill score adjustment */
768 short oom_score_adj_min; /* OOM kill score adjustment min value.
769 * Only settable by CAP_SYS_RESOURCE. */
770
771 struct mutex cred_guard_mutex; /* guard against foreign influences on
772 * credential calculations
773 * (notably. ptrace) */
774};
775
776/*
777 * Bits in flags field of signal_struct.
778 */
779#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
780#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
781#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
782#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
783/*
784 * Pending notifications to parent.
785 */
786#define SIGNAL_CLD_STOPPED 0x00000010
787#define SIGNAL_CLD_CONTINUED 0x00000020
788#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
789
790#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
791
792/* If true, all threads except ->group_exit_task have pending SIGKILL */
793static inline int signal_group_exit(const struct signal_struct *sig)
794{
795 return (sig->flags & SIGNAL_GROUP_EXIT) ||
796 (sig->group_exit_task != NULL);
797}
798
799/*
800 * Some day this will be a full-fledged user tracking system..
801 */
802struct user_struct {
803 atomic_t __count; /* reference count */
804 atomic_t processes; /* How many processes does this user have? */
805 atomic_t sigpending; /* How many pending signals does this user have? */
806#ifdef CONFIG_INOTIFY_USER
807 atomic_t inotify_watches; /* How many inotify watches does this user have? */
808 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
809#endif
810#ifdef CONFIG_FANOTIFY
811 atomic_t fanotify_listeners;
812#endif
813#ifdef CONFIG_EPOLL
814 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
815#endif
816#ifdef CONFIG_POSIX_MQUEUE
817 /* protected by mq_lock */
818 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
819#endif
820 unsigned long locked_shm; /* How many pages of mlocked shm ? */
821
822#ifdef CONFIG_KEYS
823 struct key *uid_keyring; /* UID specific keyring */
824 struct key *session_keyring; /* UID's default session keyring */
825#endif
826
827 /* Hash table maintenance information */
828 struct hlist_node uidhash_node;
829 kuid_t uid;
830
831#ifdef CONFIG_PERF_EVENTS
832 atomic_long_t locked_vm;
833#endif
834};
835
836extern int uids_sysfs_init(void);
837
838extern struct user_struct *find_user(kuid_t);
839
840extern struct user_struct root_user;
841#define INIT_USER (&root_user)
842
843
844struct backing_dev_info;
845struct reclaim_state;
846
847#ifdef CONFIG_SCHED_INFO
848struct sched_info {
849 /* cumulative counters */
850 unsigned long pcount; /* # of times run on this cpu */
851 unsigned long long run_delay; /* time spent waiting on a runqueue */
852
853 /* timestamps */
854 unsigned long long last_arrival,/* when we last ran on a cpu */
855 last_queued; /* when we were last queued to run */
856};
857#endif /* CONFIG_SCHED_INFO */
858
859#ifdef CONFIG_TASK_DELAY_ACCT
860struct task_delay_info {
861 spinlock_t lock;
862 unsigned int flags; /* Private per-task flags */
863
864 /* For each stat XXX, add following, aligned appropriately
865 *
866 * struct timespec XXX_start, XXX_end;
867 * u64 XXX_delay;
868 * u32 XXX_count;
869 *
870 * Atomicity of updates to XXX_delay, XXX_count protected by
871 * single lock above (split into XXX_lock if contention is an issue).
872 */
873
874 /*
875 * XXX_count is incremented on every XXX operation, the delay
876 * associated with the operation is added to XXX_delay.
877 * XXX_delay contains the accumulated delay time in nanoseconds.
878 */
879 u64 blkio_start; /* Shared by blkio, swapin */
880 u64 blkio_delay; /* wait for sync block io completion */
881 u64 swapin_delay; /* wait for swapin block io completion */
882 u32 blkio_count; /* total count of the number of sync block */
883 /* io operations performed */
884 u32 swapin_count; /* total count of the number of swapin block */
885 /* io operations performed */
886
887 u64 freepages_start;
888 u64 freepages_delay; /* wait for memory reclaim */
889 u32 freepages_count; /* total count of memory reclaim */
890};
891#endif /* CONFIG_TASK_DELAY_ACCT */
892
893static inline int sched_info_on(void)
894{
895#ifdef CONFIG_SCHEDSTATS
896 return 1;
897#elif defined(CONFIG_TASK_DELAY_ACCT)
898 extern int delayacct_on;
899 return delayacct_on;
900#else
901 return 0;
902#endif
903}
904
905enum cpu_idle_type {
906 CPU_IDLE,
907 CPU_NOT_IDLE,
908 CPU_NEWLY_IDLE,
909 CPU_MAX_IDLE_TYPES
910};
911
912/*
913 * Increase resolution of cpu_capacity calculations
914 */
915#define SCHED_CAPACITY_SHIFT 10
916#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
917
918/*
919 * Wake-queues are lists of tasks with a pending wakeup, whose
920 * callers have already marked the task as woken internally,
921 * and can thus carry on. A common use case is being able to
922 * do the wakeups once the corresponding user lock as been
923 * released.
924 *
925 * We hold reference to each task in the list across the wakeup,
926 * thus guaranteeing that the memory is still valid by the time
927 * the actual wakeups are performed in wake_up_q().
928 *
929 * One per task suffices, because there's never a need for a task to be
930 * in two wake queues simultaneously; it is forbidden to abandon a task
931 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
932 * already in a wake queue, the wakeup will happen soon and the second
933 * waker can just skip it.
934 *
935 * The WAKE_Q macro declares and initializes the list head.
936 * wake_up_q() does NOT reinitialize the list; it's expected to be
937 * called near the end of a function, where the fact that the queue is
938 * not used again will be easy to see by inspection.
939 *
940 * Note that this can cause spurious wakeups. schedule() callers
941 * must ensure the call is done inside a loop, confirming that the
942 * wakeup condition has in fact occurred.
943 */
944struct wake_q_node {
945 struct wake_q_node *next;
946};
947
948struct wake_q_head {
949 struct wake_q_node *first;
950 struct wake_q_node **lastp;
951};
952
953#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
954
955#define WAKE_Q(name) \
956 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
957
958extern void wake_q_add(struct wake_q_head *head,
959 struct task_struct *task);
960extern void wake_up_q(struct wake_q_head *head);
961
962/*
963 * sched-domains (multiprocessor balancing) declarations:
964 */
965#ifdef CONFIG_SMP
966#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
967#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
968#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
969#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
970#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
971#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
972#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
973#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
974#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
975#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
976#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
977#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
978#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
979#define SD_NUMA 0x4000 /* cross-node balancing */
980
981#ifdef CONFIG_SCHED_SMT
982static inline int cpu_smt_flags(void)
983{
984 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
985}
986#endif
987
988#ifdef CONFIG_SCHED_MC
989static inline int cpu_core_flags(void)
990{
991 return SD_SHARE_PKG_RESOURCES;
992}
993#endif
994
995#ifdef CONFIG_NUMA
996static inline int cpu_numa_flags(void)
997{
998 return SD_NUMA;
999}
1000#endif
1001
1002struct sched_domain_attr {
1003 int relax_domain_level;
1004};
1005
1006#define SD_ATTR_INIT (struct sched_domain_attr) { \
1007 .relax_domain_level = -1, \
1008}
1009
1010extern int sched_domain_level_max;
1011
1012struct sched_group;
1013
1014struct sched_domain {
1015 /* These fields must be setup */
1016 struct sched_domain *parent; /* top domain must be null terminated */
1017 struct sched_domain *child; /* bottom domain must be null terminated */
1018 struct sched_group *groups; /* the balancing groups of the domain */
1019 unsigned long min_interval; /* Minimum balance interval ms */
1020 unsigned long max_interval; /* Maximum balance interval ms */
1021 unsigned int busy_factor; /* less balancing by factor if busy */
1022 unsigned int imbalance_pct; /* No balance until over watermark */
1023 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1024 unsigned int busy_idx;
1025 unsigned int idle_idx;
1026 unsigned int newidle_idx;
1027 unsigned int wake_idx;
1028 unsigned int forkexec_idx;
1029 unsigned int smt_gain;
1030
1031 int nohz_idle; /* NOHZ IDLE status */
1032 int flags; /* See SD_* */
1033 int level;
1034
1035 /* Runtime fields. */
1036 unsigned long last_balance; /* init to jiffies. units in jiffies */
1037 unsigned int balance_interval; /* initialise to 1. units in ms. */
1038 unsigned int nr_balance_failed; /* initialise to 0 */
1039
1040 /* idle_balance() stats */
1041 u64 max_newidle_lb_cost;
1042 unsigned long next_decay_max_lb_cost;
1043
1044#ifdef CONFIG_SCHEDSTATS
1045 /* load_balance() stats */
1046 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1047 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1048 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1049 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1050 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1051 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1052 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1053 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1054
1055 /* Active load balancing */
1056 unsigned int alb_count;
1057 unsigned int alb_failed;
1058 unsigned int alb_pushed;
1059
1060 /* SD_BALANCE_EXEC stats */
1061 unsigned int sbe_count;
1062 unsigned int sbe_balanced;
1063 unsigned int sbe_pushed;
1064
1065 /* SD_BALANCE_FORK stats */
1066 unsigned int sbf_count;
1067 unsigned int sbf_balanced;
1068 unsigned int sbf_pushed;
1069
1070 /* try_to_wake_up() stats */
1071 unsigned int ttwu_wake_remote;
1072 unsigned int ttwu_move_affine;
1073 unsigned int ttwu_move_balance;
1074#endif
1075#ifdef CONFIG_SCHED_DEBUG
1076 char *name;
1077#endif
1078 union {
1079 void *private; /* used during construction */
1080 struct rcu_head rcu; /* used during destruction */
1081 };
1082
1083 unsigned int span_weight;
1084 /*
1085 * Span of all CPUs in this domain.
1086 *
1087 * NOTE: this field is variable length. (Allocated dynamically
1088 * by attaching extra space to the end of the structure,
1089 * depending on how many CPUs the kernel has booted up with)
1090 */
1091 unsigned long span[0];
1092};
1093
1094static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1095{
1096 return to_cpumask(sd->span);
1097}
1098
1099extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1100 struct sched_domain_attr *dattr_new);
1101
1102/* Allocate an array of sched domains, for partition_sched_domains(). */
1103cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1104void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1105
1106bool cpus_share_cache(int this_cpu, int that_cpu);
1107
1108typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1109typedef int (*sched_domain_flags_f)(void);
1110
1111#define SDTL_OVERLAP 0x01
1112
1113struct sd_data {
1114 struct sched_domain **__percpu sd;
1115 struct sched_group **__percpu sg;
1116 struct sched_group_capacity **__percpu sgc;
1117};
1118
1119struct sched_domain_topology_level {
1120 sched_domain_mask_f mask;
1121 sched_domain_flags_f sd_flags;
1122 int flags;
1123 int numa_level;
1124 struct sd_data data;
1125#ifdef CONFIG_SCHED_DEBUG
1126 char *name;
1127#endif
1128};
1129
1130extern struct sched_domain_topology_level *sched_domain_topology;
1131
1132extern void set_sched_topology(struct sched_domain_topology_level *tl);
1133extern void wake_up_if_idle(int cpu);
1134
1135#ifdef CONFIG_SCHED_DEBUG
1136# define SD_INIT_NAME(type) .name = #type
1137#else
1138# define SD_INIT_NAME(type)
1139#endif
1140
1141#else /* CONFIG_SMP */
1142
1143struct sched_domain_attr;
1144
1145static inline void
1146partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1147 struct sched_domain_attr *dattr_new)
1148{
1149}
1150
1151static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1152{
1153 return true;
1154}
1155
1156#endif /* !CONFIG_SMP */
1157
1158
1159struct io_context; /* See blkdev.h */
1160
1161
1162#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1163extern void prefetch_stack(struct task_struct *t);
1164#else
1165static inline void prefetch_stack(struct task_struct *t) { }
1166#endif
1167
1168struct audit_context; /* See audit.c */
1169struct mempolicy;
1170struct pipe_inode_info;
1171struct uts_namespace;
1172
1173struct load_weight {
1174 unsigned long weight;
1175 u32 inv_weight;
1176};
1177
1178/*
1179 * The load_avg/util_avg accumulates an infinite geometric series.
1180 * 1) load_avg factors frequency scaling into the amount of time that a
1181 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1182 * aggregated such weights of all runnable and blocked sched_entities.
1183 * 2) util_avg factors frequency scaling into the amount of time
1184 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1185 * For cfs_rq, it is the aggregated such times of all runnable and
1186 * blocked sched_entities.
1187 * The 64 bit load_sum can:
1188 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1189 * the highest weight (=88761) always runnable, we should not overflow
1190 * 2) for entity, support any load.weight always runnable
1191 */
1192struct sched_avg {
1193 u64 last_update_time, load_sum;
1194 u32 util_sum, period_contrib;
1195 unsigned long load_avg, util_avg;
1196};
1197
1198#ifdef CONFIG_SCHEDSTATS
1199struct sched_statistics {
1200 u64 wait_start;
1201 u64 wait_max;
1202 u64 wait_count;
1203 u64 wait_sum;
1204 u64 iowait_count;
1205 u64 iowait_sum;
1206
1207 u64 sleep_start;
1208 u64 sleep_max;
1209 s64 sum_sleep_runtime;
1210
1211 u64 block_start;
1212 u64 block_max;
1213 u64 exec_max;
1214 u64 slice_max;
1215
1216 u64 nr_migrations_cold;
1217 u64 nr_failed_migrations_affine;
1218 u64 nr_failed_migrations_running;
1219 u64 nr_failed_migrations_hot;
1220 u64 nr_forced_migrations;
1221
1222 u64 nr_wakeups;
1223 u64 nr_wakeups_sync;
1224 u64 nr_wakeups_migrate;
1225 u64 nr_wakeups_local;
1226 u64 nr_wakeups_remote;
1227 u64 nr_wakeups_affine;
1228 u64 nr_wakeups_affine_attempts;
1229 u64 nr_wakeups_passive;
1230 u64 nr_wakeups_idle;
1231};
1232#endif
1233
1234struct sched_entity {
1235 struct load_weight load; /* for load-balancing */
1236 struct rb_node run_node;
1237 struct list_head group_node;
1238 unsigned int on_rq;
1239
1240 u64 exec_start;
1241 u64 sum_exec_runtime;
1242 u64 vruntime;
1243 u64 prev_sum_exec_runtime;
1244
1245 u64 nr_migrations;
1246
1247#ifdef CONFIG_SCHEDSTATS
1248 struct sched_statistics statistics;
1249#endif
1250
1251#ifdef CONFIG_FAIR_GROUP_SCHED
1252 int depth;
1253 struct sched_entity *parent;
1254 /* rq on which this entity is (to be) queued: */
1255 struct cfs_rq *cfs_rq;
1256 /* rq "owned" by this entity/group: */
1257 struct cfs_rq *my_q;
1258#endif
1259
1260#ifdef CONFIG_SMP
1261 /* Per entity load average tracking */
1262 struct sched_avg avg;
1263#endif
1264};
1265
1266struct sched_rt_entity {
1267 struct list_head run_list;
1268 unsigned long timeout;
1269 unsigned long watchdog_stamp;
1270 unsigned int time_slice;
1271
1272 struct sched_rt_entity *back;
1273#ifdef CONFIG_RT_GROUP_SCHED
1274 struct sched_rt_entity *parent;
1275 /* rq on which this entity is (to be) queued: */
1276 struct rt_rq *rt_rq;
1277 /* rq "owned" by this entity/group: */
1278 struct rt_rq *my_q;
1279#endif
1280};
1281
1282struct sched_dl_entity {
1283 struct rb_node rb_node;
1284
1285 /*
1286 * Original scheduling parameters. Copied here from sched_attr
1287 * during sched_setattr(), they will remain the same until
1288 * the next sched_setattr().
1289 */
1290 u64 dl_runtime; /* maximum runtime for each instance */
1291 u64 dl_deadline; /* relative deadline of each instance */
1292 u64 dl_period; /* separation of two instances (period) */
1293 u64 dl_bw; /* dl_runtime / dl_deadline */
1294
1295 /*
1296 * Actual scheduling parameters. Initialized with the values above,
1297 * they are continously updated during task execution. Note that
1298 * the remaining runtime could be < 0 in case we are in overrun.
1299 */
1300 s64 runtime; /* remaining runtime for this instance */
1301 u64 deadline; /* absolute deadline for this instance */
1302 unsigned int flags; /* specifying the scheduler behaviour */
1303
1304 /*
1305 * Some bool flags:
1306 *
1307 * @dl_throttled tells if we exhausted the runtime. If so, the
1308 * task has to wait for a replenishment to be performed at the
1309 * next firing of dl_timer.
1310 *
1311 * @dl_new tells if a new instance arrived. If so we must
1312 * start executing it with full runtime and reset its absolute
1313 * deadline;
1314 *
1315 * @dl_boosted tells if we are boosted due to DI. If so we are
1316 * outside bandwidth enforcement mechanism (but only until we
1317 * exit the critical section);
1318 *
1319 * @dl_yielded tells if task gave up the cpu before consuming
1320 * all its available runtime during the last job.
1321 */
1322 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1323
1324 /*
1325 * Bandwidth enforcement timer. Each -deadline task has its
1326 * own bandwidth to be enforced, thus we need one timer per task.
1327 */
1328 struct hrtimer dl_timer;
1329};
1330
1331union rcu_special {
1332 struct {
1333 bool blocked;
1334 bool need_qs;
1335 } b;
1336 short s;
1337};
1338struct rcu_node;
1339
1340enum perf_event_task_context {
1341 perf_invalid_context = -1,
1342 perf_hw_context = 0,
1343 perf_sw_context,
1344 perf_nr_task_contexts,
1345};
1346
1347/* Track pages that require TLB flushes */
1348struct tlbflush_unmap_batch {
1349 /*
1350 * Each bit set is a CPU that potentially has a TLB entry for one of
1351 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1352 */
1353 struct cpumask cpumask;
1354
1355 /* True if any bit in cpumask is set */
1356 bool flush_required;
1357
1358 /*
1359 * If true then the PTE was dirty when unmapped. The entry must be
1360 * flushed before IO is initiated or a stale TLB entry potentially
1361 * allows an update without redirtying the page.
1362 */
1363 bool writable;
1364};
1365
1366struct task_struct {
1367 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1368 void *stack;
1369 atomic_t usage;
1370 unsigned int flags; /* per process flags, defined below */
1371 unsigned int ptrace;
1372
1373#ifdef CONFIG_SMP
1374 struct llist_node wake_entry;
1375 int on_cpu;
1376 unsigned int wakee_flips;
1377 unsigned long wakee_flip_decay_ts;
1378 struct task_struct *last_wakee;
1379
1380 int wake_cpu;
1381#endif
1382 int on_rq;
1383
1384 int prio, static_prio, normal_prio;
1385 unsigned int rt_priority;
1386 const struct sched_class *sched_class;
1387 struct sched_entity se;
1388 struct sched_rt_entity rt;
1389#ifdef CONFIG_CGROUP_SCHED
1390 struct task_group *sched_task_group;
1391#endif
1392 struct sched_dl_entity dl;
1393
1394#ifdef CONFIG_PREEMPT_NOTIFIERS
1395 /* list of struct preempt_notifier: */
1396 struct hlist_head preempt_notifiers;
1397#endif
1398
1399#ifdef CONFIG_BLK_DEV_IO_TRACE
1400 unsigned int btrace_seq;
1401#endif
1402
1403 unsigned int policy;
1404 int nr_cpus_allowed;
1405 cpumask_t cpus_allowed;
1406
1407#ifdef CONFIG_PREEMPT_RCU
1408 int rcu_read_lock_nesting;
1409 union rcu_special rcu_read_unlock_special;
1410 struct list_head rcu_node_entry;
1411 struct rcu_node *rcu_blocked_node;
1412#endif /* #ifdef CONFIG_PREEMPT_RCU */
1413#ifdef CONFIG_TASKS_RCU
1414 unsigned long rcu_tasks_nvcsw;
1415 bool rcu_tasks_holdout;
1416 struct list_head rcu_tasks_holdout_list;
1417 int rcu_tasks_idle_cpu;
1418#endif /* #ifdef CONFIG_TASKS_RCU */
1419
1420#ifdef CONFIG_SCHED_INFO
1421 struct sched_info sched_info;
1422#endif
1423
1424 struct list_head tasks;
1425#ifdef CONFIG_SMP
1426 struct plist_node pushable_tasks;
1427 struct rb_node pushable_dl_tasks;
1428#endif
1429
1430 struct mm_struct *mm, *active_mm;
1431 /* per-thread vma caching */
1432 u32 vmacache_seqnum;
1433 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1434#if defined(SPLIT_RSS_COUNTING)
1435 struct task_rss_stat rss_stat;
1436#endif
1437/* task state */
1438 int exit_state;
1439 int exit_code, exit_signal;
1440 int pdeath_signal; /* The signal sent when the parent dies */
1441 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1442
1443 /* Used for emulating ABI behavior of previous Linux versions */
1444 unsigned int personality;
1445
1446 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1447 * execve */
1448 unsigned in_iowait:1;
1449
1450 /* Revert to default priority/policy when forking */
1451 unsigned sched_reset_on_fork:1;
1452 unsigned sched_contributes_to_load:1;
1453 unsigned sched_migrated:1;
1454
1455#ifdef CONFIG_MEMCG_KMEM
1456 unsigned memcg_kmem_skip_account:1;
1457#endif
1458#ifdef CONFIG_COMPAT_BRK
1459 unsigned brk_randomized:1;
1460#endif
1461
1462 unsigned long atomic_flags; /* Flags needing atomic access. */
1463
1464 struct restart_block restart_block;
1465
1466 pid_t pid;
1467 pid_t tgid;
1468
1469#ifdef CONFIG_CC_STACKPROTECTOR
1470 /* Canary value for the -fstack-protector gcc feature */
1471 unsigned long stack_canary;
1472#endif
1473 /*
1474 * pointers to (original) parent process, youngest child, younger sibling,
1475 * older sibling, respectively. (p->father can be replaced with
1476 * p->real_parent->pid)
1477 */
1478 struct task_struct __rcu *real_parent; /* real parent process */
1479 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1480 /*
1481 * children/sibling forms the list of my natural children
1482 */
1483 struct list_head children; /* list of my children */
1484 struct list_head sibling; /* linkage in my parent's children list */
1485 struct task_struct *group_leader; /* threadgroup leader */
1486
1487 /*
1488 * ptraced is the list of tasks this task is using ptrace on.
1489 * This includes both natural children and PTRACE_ATTACH targets.
1490 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1491 */
1492 struct list_head ptraced;
1493 struct list_head ptrace_entry;
1494
1495 /* PID/PID hash table linkage. */
1496 struct pid_link pids[PIDTYPE_MAX];
1497 struct list_head thread_group;
1498 struct list_head thread_node;
1499
1500 struct completion *vfork_done; /* for vfork() */
1501 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1502 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1503
1504 cputime_t utime, stime, utimescaled, stimescaled;
1505 cputime_t gtime;
1506 struct prev_cputime prev_cputime;
1507#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1508 seqlock_t vtime_seqlock;
1509 unsigned long long vtime_snap;
1510 enum {
1511 VTIME_SLEEPING = 0,
1512 VTIME_USER,
1513 VTIME_SYS,
1514 } vtime_snap_whence;
1515#endif
1516 unsigned long nvcsw, nivcsw; /* context switch counts */
1517 u64 start_time; /* monotonic time in nsec */
1518 u64 real_start_time; /* boot based time in nsec */
1519/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1520 unsigned long min_flt, maj_flt;
1521
1522 struct task_cputime cputime_expires;
1523 struct list_head cpu_timers[3];
1524
1525/* process credentials */
1526 const struct cred __rcu *real_cred; /* objective and real subjective task
1527 * credentials (COW) */
1528 const struct cred __rcu *cred; /* effective (overridable) subjective task
1529 * credentials (COW) */
1530 char comm[TASK_COMM_LEN]; /* executable name excluding path
1531 - access with [gs]et_task_comm (which lock
1532 it with task_lock())
1533 - initialized normally by setup_new_exec */
1534/* file system info */
1535 struct nameidata *nameidata;
1536#ifdef CONFIG_SYSVIPC
1537/* ipc stuff */
1538 struct sysv_sem sysvsem;
1539 struct sysv_shm sysvshm;
1540#endif
1541#ifdef CONFIG_DETECT_HUNG_TASK
1542/* hung task detection */
1543 unsigned long last_switch_count;
1544#endif
1545/* filesystem information */
1546 struct fs_struct *fs;
1547/* open file information */
1548 struct files_struct *files;
1549/* namespaces */
1550 struct nsproxy *nsproxy;
1551/* signal handlers */
1552 struct signal_struct *signal;
1553 struct sighand_struct *sighand;
1554
1555 sigset_t blocked, real_blocked;
1556 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1557 struct sigpending pending;
1558
1559 unsigned long sas_ss_sp;
1560 size_t sas_ss_size;
1561 int (*notifier)(void *priv);
1562 void *notifier_data;
1563 sigset_t *notifier_mask;
1564 struct callback_head *task_works;
1565
1566 struct audit_context *audit_context;
1567#ifdef CONFIG_AUDITSYSCALL
1568 kuid_t loginuid;
1569 unsigned int sessionid;
1570#endif
1571 struct seccomp seccomp;
1572
1573/* Thread group tracking */
1574 u32 parent_exec_id;
1575 u32 self_exec_id;
1576/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1577 * mempolicy */
1578 spinlock_t alloc_lock;
1579
1580 /* Protection of the PI data structures: */
1581 raw_spinlock_t pi_lock;
1582
1583 struct wake_q_node wake_q;
1584
1585#ifdef CONFIG_RT_MUTEXES
1586 /* PI waiters blocked on a rt_mutex held by this task */
1587 struct rb_root pi_waiters;
1588 struct rb_node *pi_waiters_leftmost;
1589 /* Deadlock detection and priority inheritance handling */
1590 struct rt_mutex_waiter *pi_blocked_on;
1591#endif
1592
1593#ifdef CONFIG_DEBUG_MUTEXES
1594 /* mutex deadlock detection */
1595 struct mutex_waiter *blocked_on;
1596#endif
1597#ifdef CONFIG_TRACE_IRQFLAGS
1598 unsigned int irq_events;
1599 unsigned long hardirq_enable_ip;
1600 unsigned long hardirq_disable_ip;
1601 unsigned int hardirq_enable_event;
1602 unsigned int hardirq_disable_event;
1603 int hardirqs_enabled;
1604 int hardirq_context;
1605 unsigned long softirq_disable_ip;
1606 unsigned long softirq_enable_ip;
1607 unsigned int softirq_disable_event;
1608 unsigned int softirq_enable_event;
1609 int softirqs_enabled;
1610 int softirq_context;
1611#endif
1612#ifdef CONFIG_LOCKDEP
1613# define MAX_LOCK_DEPTH 48UL
1614 u64 curr_chain_key;
1615 int lockdep_depth;
1616 unsigned int lockdep_recursion;
1617 struct held_lock held_locks[MAX_LOCK_DEPTH];
1618 gfp_t lockdep_reclaim_gfp;
1619#endif
1620
1621/* journalling filesystem info */
1622 void *journal_info;
1623
1624/* stacked block device info */
1625 struct bio_list *bio_list;
1626
1627#ifdef CONFIG_BLOCK
1628/* stack plugging */
1629 struct blk_plug *plug;
1630#endif
1631
1632/* VM state */
1633 struct reclaim_state *reclaim_state;
1634
1635 struct backing_dev_info *backing_dev_info;
1636
1637 struct io_context *io_context;
1638
1639 unsigned long ptrace_message;
1640 siginfo_t *last_siginfo; /* For ptrace use. */
1641 struct task_io_accounting ioac;
1642#if defined(CONFIG_TASK_XACCT)
1643 u64 acct_rss_mem1; /* accumulated rss usage */
1644 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1645 cputime_t acct_timexpd; /* stime + utime since last update */
1646#endif
1647#ifdef CONFIG_CPUSETS
1648 nodemask_t mems_allowed; /* Protected by alloc_lock */
1649 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1650 int cpuset_mem_spread_rotor;
1651 int cpuset_slab_spread_rotor;
1652#endif
1653#ifdef CONFIG_CGROUPS
1654 /* Control Group info protected by css_set_lock */
1655 struct css_set __rcu *cgroups;
1656 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1657 struct list_head cg_list;
1658#endif
1659#ifdef CONFIG_FUTEX
1660 struct robust_list_head __user *robust_list;
1661#ifdef CONFIG_COMPAT
1662 struct compat_robust_list_head __user *compat_robust_list;
1663#endif
1664 struct list_head pi_state_list;
1665 struct futex_pi_state *pi_state_cache;
1666#endif
1667#ifdef CONFIG_PERF_EVENTS
1668 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1669 struct mutex perf_event_mutex;
1670 struct list_head perf_event_list;
1671#endif
1672#ifdef CONFIG_DEBUG_PREEMPT
1673 unsigned long preempt_disable_ip;
1674#endif
1675#ifdef CONFIG_NUMA
1676 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1677 short il_next;
1678 short pref_node_fork;
1679#endif
1680#ifdef CONFIG_NUMA_BALANCING
1681 int numa_scan_seq;
1682 unsigned int numa_scan_period;
1683 unsigned int numa_scan_period_max;
1684 int numa_preferred_nid;
1685 unsigned long numa_migrate_retry;
1686 u64 node_stamp; /* migration stamp */
1687 u64 last_task_numa_placement;
1688 u64 last_sum_exec_runtime;
1689 struct callback_head numa_work;
1690
1691 struct list_head numa_entry;
1692 struct numa_group *numa_group;
1693
1694 /*
1695 * numa_faults is an array split into four regions:
1696 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1697 * in this precise order.
1698 *
1699 * faults_memory: Exponential decaying average of faults on a per-node
1700 * basis. Scheduling placement decisions are made based on these
1701 * counts. The values remain static for the duration of a PTE scan.
1702 * faults_cpu: Track the nodes the process was running on when a NUMA
1703 * hinting fault was incurred.
1704 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1705 * during the current scan window. When the scan completes, the counts
1706 * in faults_memory and faults_cpu decay and these values are copied.
1707 */
1708 unsigned long *numa_faults;
1709 unsigned long total_numa_faults;
1710
1711 /*
1712 * numa_faults_locality tracks if faults recorded during the last
1713 * scan window were remote/local or failed to migrate. The task scan
1714 * period is adapted based on the locality of the faults with different
1715 * weights depending on whether they were shared or private faults
1716 */
1717 unsigned long numa_faults_locality[3];
1718
1719 unsigned long numa_pages_migrated;
1720#endif /* CONFIG_NUMA_BALANCING */
1721
1722#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1723 struct tlbflush_unmap_batch tlb_ubc;
1724#endif
1725
1726 struct rcu_head rcu;
1727
1728 /*
1729 * cache last used pipe for splice
1730 */
1731 struct pipe_inode_info *splice_pipe;
1732
1733 struct page_frag task_frag;
1734
1735#ifdef CONFIG_TASK_DELAY_ACCT
1736 struct task_delay_info *delays;
1737#endif
1738#ifdef CONFIG_FAULT_INJECTION
1739 int make_it_fail;
1740#endif
1741 /*
1742 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1743 * balance_dirty_pages() for some dirty throttling pause
1744 */
1745 int nr_dirtied;
1746 int nr_dirtied_pause;
1747 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1748
1749#ifdef CONFIG_LATENCYTOP
1750 int latency_record_count;
1751 struct latency_record latency_record[LT_SAVECOUNT];
1752#endif
1753 /*
1754 * time slack values; these are used to round up poll() and
1755 * select() etc timeout values. These are in nanoseconds.
1756 */
1757 unsigned long timer_slack_ns;
1758 unsigned long default_timer_slack_ns;
1759
1760#ifdef CONFIG_KASAN
1761 unsigned int kasan_depth;
1762#endif
1763#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1764 /* Index of current stored address in ret_stack */
1765 int curr_ret_stack;
1766 /* Stack of return addresses for return function tracing */
1767 struct ftrace_ret_stack *ret_stack;
1768 /* time stamp for last schedule */
1769 unsigned long long ftrace_timestamp;
1770 /*
1771 * Number of functions that haven't been traced
1772 * because of depth overrun.
1773 */
1774 atomic_t trace_overrun;
1775 /* Pause for the tracing */
1776 atomic_t tracing_graph_pause;
1777#endif
1778#ifdef CONFIG_TRACING
1779 /* state flags for use by tracers */
1780 unsigned long trace;
1781 /* bitmask and counter of trace recursion */
1782 unsigned long trace_recursion;
1783#endif /* CONFIG_TRACING */
1784#ifdef CONFIG_MEMCG
1785 struct memcg_oom_info {
1786 struct mem_cgroup *memcg;
1787 gfp_t gfp_mask;
1788 int order;
1789 unsigned int may_oom:1;
1790 } memcg_oom;
1791#endif
1792#ifdef CONFIG_UPROBES
1793 struct uprobe_task *utask;
1794#endif
1795#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1796 unsigned int sequential_io;
1797 unsigned int sequential_io_avg;
1798#endif
1799#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1800 unsigned long task_state_change;
1801#endif
1802 int pagefault_disabled;
1803/* CPU-specific state of this task */
1804 struct thread_struct thread;
1805/*
1806 * WARNING: on x86, 'thread_struct' contains a variable-sized
1807 * structure. It *MUST* be at the end of 'task_struct'.
1808 *
1809 * Do not put anything below here!
1810 */
1811};
1812
1813#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1814extern int arch_task_struct_size __read_mostly;
1815#else
1816# define arch_task_struct_size (sizeof(struct task_struct))
1817#endif
1818
1819/* Future-safe accessor for struct task_struct's cpus_allowed. */
1820#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1821
1822#define TNF_MIGRATED 0x01
1823#define TNF_NO_GROUP 0x02
1824#define TNF_SHARED 0x04
1825#define TNF_FAULT_LOCAL 0x08
1826#define TNF_MIGRATE_FAIL 0x10
1827
1828#ifdef CONFIG_NUMA_BALANCING
1829extern void task_numa_fault(int last_node, int node, int pages, int flags);
1830extern pid_t task_numa_group_id(struct task_struct *p);
1831extern void set_numabalancing_state(bool enabled);
1832extern void task_numa_free(struct task_struct *p);
1833extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1834 int src_nid, int dst_cpu);
1835#else
1836static inline void task_numa_fault(int last_node, int node, int pages,
1837 int flags)
1838{
1839}
1840static inline pid_t task_numa_group_id(struct task_struct *p)
1841{
1842 return 0;
1843}
1844static inline void set_numabalancing_state(bool enabled)
1845{
1846}
1847static inline void task_numa_free(struct task_struct *p)
1848{
1849}
1850static inline bool should_numa_migrate_memory(struct task_struct *p,
1851 struct page *page, int src_nid, int dst_cpu)
1852{
1853 return true;
1854}
1855#endif
1856
1857static inline struct pid *task_pid(struct task_struct *task)
1858{
1859 return task->pids[PIDTYPE_PID].pid;
1860}
1861
1862static inline struct pid *task_tgid(struct task_struct *task)
1863{
1864 return task->group_leader->pids[PIDTYPE_PID].pid;
1865}
1866
1867/*
1868 * Without tasklist or rcu lock it is not safe to dereference
1869 * the result of task_pgrp/task_session even if task == current,
1870 * we can race with another thread doing sys_setsid/sys_setpgid.
1871 */
1872static inline struct pid *task_pgrp(struct task_struct *task)
1873{
1874 return task->group_leader->pids[PIDTYPE_PGID].pid;
1875}
1876
1877static inline struct pid *task_session(struct task_struct *task)
1878{
1879 return task->group_leader->pids[PIDTYPE_SID].pid;
1880}
1881
1882struct pid_namespace;
1883
1884/*
1885 * the helpers to get the task's different pids as they are seen
1886 * from various namespaces
1887 *
1888 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1889 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1890 * current.
1891 * task_xid_nr_ns() : id seen from the ns specified;
1892 *
1893 * set_task_vxid() : assigns a virtual id to a task;
1894 *
1895 * see also pid_nr() etc in include/linux/pid.h
1896 */
1897pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1898 struct pid_namespace *ns);
1899
1900static inline pid_t task_pid_nr(struct task_struct *tsk)
1901{
1902 return tsk->pid;
1903}
1904
1905static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1906 struct pid_namespace *ns)
1907{
1908 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1909}
1910
1911static inline pid_t task_pid_vnr(struct task_struct *tsk)
1912{
1913 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1914}
1915
1916
1917static inline pid_t task_tgid_nr(struct task_struct *tsk)
1918{
1919 return tsk->tgid;
1920}
1921
1922pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1923
1924static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1925{
1926 return pid_vnr(task_tgid(tsk));
1927}
1928
1929
1930static inline int pid_alive(const struct task_struct *p);
1931static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1932{
1933 pid_t pid = 0;
1934
1935 rcu_read_lock();
1936 if (pid_alive(tsk))
1937 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1938 rcu_read_unlock();
1939
1940 return pid;
1941}
1942
1943static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1944{
1945 return task_ppid_nr_ns(tsk, &init_pid_ns);
1946}
1947
1948static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1949 struct pid_namespace *ns)
1950{
1951 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1952}
1953
1954static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1955{
1956 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1957}
1958
1959
1960static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1961 struct pid_namespace *ns)
1962{
1963 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1964}
1965
1966static inline pid_t task_session_vnr(struct task_struct *tsk)
1967{
1968 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1969}
1970
1971/* obsolete, do not use */
1972static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1973{
1974 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1975}
1976
1977/**
1978 * pid_alive - check that a task structure is not stale
1979 * @p: Task structure to be checked.
1980 *
1981 * Test if a process is not yet dead (at most zombie state)
1982 * If pid_alive fails, then pointers within the task structure
1983 * can be stale and must not be dereferenced.
1984 *
1985 * Return: 1 if the process is alive. 0 otherwise.
1986 */
1987static inline int pid_alive(const struct task_struct *p)
1988{
1989 return p->pids[PIDTYPE_PID].pid != NULL;
1990}
1991
1992/**
1993 * is_global_init - check if a task structure is init
1994 * @tsk: Task structure to be checked.
1995 *
1996 * Check if a task structure is the first user space task the kernel created.
1997 *
1998 * Return: 1 if the task structure is init. 0 otherwise.
1999 */
2000static inline int is_global_init(struct task_struct *tsk)
2001{
2002 return tsk->pid == 1;
2003}
2004
2005extern struct pid *cad_pid;
2006
2007extern void free_task(struct task_struct *tsk);
2008#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2009
2010extern void __put_task_struct(struct task_struct *t);
2011
2012static inline void put_task_struct(struct task_struct *t)
2013{
2014 if (atomic_dec_and_test(&t->usage))
2015 __put_task_struct(t);
2016}
2017
2018#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2019extern void task_cputime(struct task_struct *t,
2020 cputime_t *utime, cputime_t *stime);
2021extern void task_cputime_scaled(struct task_struct *t,
2022 cputime_t *utimescaled, cputime_t *stimescaled);
2023extern cputime_t task_gtime(struct task_struct *t);
2024#else
2025static inline void task_cputime(struct task_struct *t,
2026 cputime_t *utime, cputime_t *stime)
2027{
2028 if (utime)
2029 *utime = t->utime;
2030 if (stime)
2031 *stime = t->stime;
2032}
2033
2034static inline void task_cputime_scaled(struct task_struct *t,
2035 cputime_t *utimescaled,
2036 cputime_t *stimescaled)
2037{
2038 if (utimescaled)
2039 *utimescaled = t->utimescaled;
2040 if (stimescaled)
2041 *stimescaled = t->stimescaled;
2042}
2043
2044static inline cputime_t task_gtime(struct task_struct *t)
2045{
2046 return t->gtime;
2047}
2048#endif
2049extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2050extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2051
2052/*
2053 * Per process flags
2054 */
2055#define PF_EXITING 0x00000004 /* getting shut down */
2056#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2057#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2058#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2059#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2060#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2061#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2062#define PF_DUMPCORE 0x00000200 /* dumped core */
2063#define PF_SIGNALED 0x00000400 /* killed by a signal */
2064#define PF_MEMALLOC 0x00000800 /* Allocating memory */
2065#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2066#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2067#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2068#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2069#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2070#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2071#define PF_KSWAPD 0x00040000 /* I am kswapd */
2072#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2073#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2074#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2075#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2076#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2077#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2078#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2079#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2080#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2081#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2082
2083/*
2084 * Only the _current_ task can read/write to tsk->flags, but other
2085 * tasks can access tsk->flags in readonly mode for example
2086 * with tsk_used_math (like during threaded core dumping).
2087 * There is however an exception to this rule during ptrace
2088 * or during fork: the ptracer task is allowed to write to the
2089 * child->flags of its traced child (same goes for fork, the parent
2090 * can write to the child->flags), because we're guaranteed the
2091 * child is not running and in turn not changing child->flags
2092 * at the same time the parent does it.
2093 */
2094#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2095#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2096#define clear_used_math() clear_stopped_child_used_math(current)
2097#define set_used_math() set_stopped_child_used_math(current)
2098#define conditional_stopped_child_used_math(condition, child) \
2099 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2100#define conditional_used_math(condition) \
2101 conditional_stopped_child_used_math(condition, current)
2102#define copy_to_stopped_child_used_math(child) \
2103 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2104/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2105#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2106#define used_math() tsk_used_math(current)
2107
2108/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2109 * __GFP_FS is also cleared as it implies __GFP_IO.
2110 */
2111static inline gfp_t memalloc_noio_flags(gfp_t flags)
2112{
2113 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2114 flags &= ~(__GFP_IO | __GFP_FS);
2115 return flags;
2116}
2117
2118static inline unsigned int memalloc_noio_save(void)
2119{
2120 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2121 current->flags |= PF_MEMALLOC_NOIO;
2122 return flags;
2123}
2124
2125static inline void memalloc_noio_restore(unsigned int flags)
2126{
2127 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2128}
2129
2130/* Per-process atomic flags. */
2131#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2132#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2133#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2134
2135
2136#define TASK_PFA_TEST(name, func) \
2137 static inline bool task_##func(struct task_struct *p) \
2138 { return test_bit(PFA_##name, &p->atomic_flags); }
2139#define TASK_PFA_SET(name, func) \
2140 static inline void task_set_##func(struct task_struct *p) \
2141 { set_bit(PFA_##name, &p->atomic_flags); }
2142#define TASK_PFA_CLEAR(name, func) \
2143 static inline void task_clear_##func(struct task_struct *p) \
2144 { clear_bit(PFA_##name, &p->atomic_flags); }
2145
2146TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2147TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2148
2149TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2150TASK_PFA_SET(SPREAD_PAGE, spread_page)
2151TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2152
2153TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2154TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2155TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2156
2157/*
2158 * task->jobctl flags
2159 */
2160#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2161
2162#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2163#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2164#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2165#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2166#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2167#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2168#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2169
2170#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2171#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2172#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2173#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2174#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2175#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2176#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2177
2178#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2179#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2180
2181extern bool task_set_jobctl_pending(struct task_struct *task,
2182 unsigned long mask);
2183extern void task_clear_jobctl_trapping(struct task_struct *task);
2184extern void task_clear_jobctl_pending(struct task_struct *task,
2185 unsigned long mask);
2186
2187static inline void rcu_copy_process(struct task_struct *p)
2188{
2189#ifdef CONFIG_PREEMPT_RCU
2190 p->rcu_read_lock_nesting = 0;
2191 p->rcu_read_unlock_special.s = 0;
2192 p->rcu_blocked_node = NULL;
2193 INIT_LIST_HEAD(&p->rcu_node_entry);
2194#endif /* #ifdef CONFIG_PREEMPT_RCU */
2195#ifdef CONFIG_TASKS_RCU
2196 p->rcu_tasks_holdout = false;
2197 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2198 p->rcu_tasks_idle_cpu = -1;
2199#endif /* #ifdef CONFIG_TASKS_RCU */
2200}
2201
2202static inline void tsk_restore_flags(struct task_struct *task,
2203 unsigned long orig_flags, unsigned long flags)
2204{
2205 task->flags &= ~flags;
2206 task->flags |= orig_flags & flags;
2207}
2208
2209extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2210 const struct cpumask *trial);
2211extern int task_can_attach(struct task_struct *p,
2212 const struct cpumask *cs_cpus_allowed);
2213#ifdef CONFIG_SMP
2214extern void do_set_cpus_allowed(struct task_struct *p,
2215 const struct cpumask *new_mask);
2216
2217extern int set_cpus_allowed_ptr(struct task_struct *p,
2218 const struct cpumask *new_mask);
2219#else
2220static inline void do_set_cpus_allowed(struct task_struct *p,
2221 const struct cpumask *new_mask)
2222{
2223}
2224static inline int set_cpus_allowed_ptr(struct task_struct *p,
2225 const struct cpumask *new_mask)
2226{
2227 if (!cpumask_test_cpu(0, new_mask))
2228 return -EINVAL;
2229 return 0;
2230}
2231#endif
2232
2233#ifdef CONFIG_NO_HZ_COMMON
2234void calc_load_enter_idle(void);
2235void calc_load_exit_idle(void);
2236#else
2237static inline void calc_load_enter_idle(void) { }
2238static inline void calc_load_exit_idle(void) { }
2239#endif /* CONFIG_NO_HZ_COMMON */
2240
2241/*
2242 * Do not use outside of architecture code which knows its limitations.
2243 *
2244 * sched_clock() has no promise of monotonicity or bounded drift between
2245 * CPUs, use (which you should not) requires disabling IRQs.
2246 *
2247 * Please use one of the three interfaces below.
2248 */
2249extern unsigned long long notrace sched_clock(void);
2250/*
2251 * See the comment in kernel/sched/clock.c
2252 */
2253extern u64 cpu_clock(int cpu);
2254extern u64 local_clock(void);
2255extern u64 running_clock(void);
2256extern u64 sched_clock_cpu(int cpu);
2257
2258
2259extern void sched_clock_init(void);
2260
2261#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2262static inline void sched_clock_tick(void)
2263{
2264}
2265
2266static inline void sched_clock_idle_sleep_event(void)
2267{
2268}
2269
2270static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2271{
2272}
2273#else
2274/*
2275 * Architectures can set this to 1 if they have specified
2276 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2277 * but then during bootup it turns out that sched_clock()
2278 * is reliable after all:
2279 */
2280extern int sched_clock_stable(void);
2281extern void set_sched_clock_stable(void);
2282extern void clear_sched_clock_stable(void);
2283
2284extern void sched_clock_tick(void);
2285extern void sched_clock_idle_sleep_event(void);
2286extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2287#endif
2288
2289#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2290/*
2291 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2292 * The reason for this explicit opt-in is not to have perf penalty with
2293 * slow sched_clocks.
2294 */
2295extern void enable_sched_clock_irqtime(void);
2296extern void disable_sched_clock_irqtime(void);
2297#else
2298static inline void enable_sched_clock_irqtime(void) {}
2299static inline void disable_sched_clock_irqtime(void) {}
2300#endif
2301
2302extern unsigned long long
2303task_sched_runtime(struct task_struct *task);
2304
2305/* sched_exec is called by processes performing an exec */
2306#ifdef CONFIG_SMP
2307extern void sched_exec(void);
2308#else
2309#define sched_exec() {}
2310#endif
2311
2312extern void sched_clock_idle_sleep_event(void);
2313extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2314
2315#ifdef CONFIG_HOTPLUG_CPU
2316extern void idle_task_exit(void);
2317#else
2318static inline void idle_task_exit(void) {}
2319#endif
2320
2321#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2322extern void wake_up_nohz_cpu(int cpu);
2323#else
2324static inline void wake_up_nohz_cpu(int cpu) { }
2325#endif
2326
2327#ifdef CONFIG_NO_HZ_FULL
2328extern bool sched_can_stop_tick(void);
2329extern u64 scheduler_tick_max_deferment(void);
2330#else
2331static inline bool sched_can_stop_tick(void) { return false; }
2332#endif
2333
2334#ifdef CONFIG_SCHED_AUTOGROUP
2335extern void sched_autogroup_create_attach(struct task_struct *p);
2336extern void sched_autogroup_detach(struct task_struct *p);
2337extern void sched_autogroup_fork(struct signal_struct *sig);
2338extern void sched_autogroup_exit(struct signal_struct *sig);
2339#ifdef CONFIG_PROC_FS
2340extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2341extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2342#endif
2343#else
2344static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2345static inline void sched_autogroup_detach(struct task_struct *p) { }
2346static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2347static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2348#endif
2349
2350extern int yield_to(struct task_struct *p, bool preempt);
2351extern void set_user_nice(struct task_struct *p, long nice);
2352extern int task_prio(const struct task_struct *p);
2353/**
2354 * task_nice - return the nice value of a given task.
2355 * @p: the task in question.
2356 *
2357 * Return: The nice value [ -20 ... 0 ... 19 ].
2358 */
2359static inline int task_nice(const struct task_struct *p)
2360{
2361 return PRIO_TO_NICE((p)->static_prio);
2362}
2363extern int can_nice(const struct task_struct *p, const int nice);
2364extern int task_curr(const struct task_struct *p);
2365extern int idle_cpu(int cpu);
2366extern int sched_setscheduler(struct task_struct *, int,
2367 const struct sched_param *);
2368extern int sched_setscheduler_nocheck(struct task_struct *, int,
2369 const struct sched_param *);
2370extern int sched_setattr(struct task_struct *,
2371 const struct sched_attr *);
2372extern struct task_struct *idle_task(int cpu);
2373/**
2374 * is_idle_task - is the specified task an idle task?
2375 * @p: the task in question.
2376 *
2377 * Return: 1 if @p is an idle task. 0 otherwise.
2378 */
2379static inline bool is_idle_task(const struct task_struct *p)
2380{
2381 return p->pid == 0;
2382}
2383extern struct task_struct *curr_task(int cpu);
2384extern void set_curr_task(int cpu, struct task_struct *p);
2385
2386void yield(void);
2387
2388union thread_union {
2389 struct thread_info thread_info;
2390 unsigned long stack[THREAD_SIZE/sizeof(long)];
2391};
2392
2393#ifndef __HAVE_ARCH_KSTACK_END
2394static inline int kstack_end(void *addr)
2395{
2396 /* Reliable end of stack detection:
2397 * Some APM bios versions misalign the stack
2398 */
2399 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2400}
2401#endif
2402
2403extern union thread_union init_thread_union;
2404extern struct task_struct init_task;
2405
2406extern struct mm_struct init_mm;
2407
2408extern struct pid_namespace init_pid_ns;
2409
2410/*
2411 * find a task by one of its numerical ids
2412 *
2413 * find_task_by_pid_ns():
2414 * finds a task by its pid in the specified namespace
2415 * find_task_by_vpid():
2416 * finds a task by its virtual pid
2417 *
2418 * see also find_vpid() etc in include/linux/pid.h
2419 */
2420
2421extern struct task_struct *find_task_by_vpid(pid_t nr);
2422extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2423 struct pid_namespace *ns);
2424
2425/* per-UID process charging. */
2426extern struct user_struct * alloc_uid(kuid_t);
2427static inline struct user_struct *get_uid(struct user_struct *u)
2428{
2429 atomic_inc(&u->__count);
2430 return u;
2431}
2432extern void free_uid(struct user_struct *);
2433
2434#include <asm/current.h>
2435
2436extern void xtime_update(unsigned long ticks);
2437
2438extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2439extern int wake_up_process(struct task_struct *tsk);
2440extern void wake_up_new_task(struct task_struct *tsk);
2441#ifdef CONFIG_SMP
2442 extern void kick_process(struct task_struct *tsk);
2443#else
2444 static inline void kick_process(struct task_struct *tsk) { }
2445#endif
2446extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2447extern void sched_dead(struct task_struct *p);
2448
2449extern void proc_caches_init(void);
2450extern void flush_signals(struct task_struct *);
2451extern void ignore_signals(struct task_struct *);
2452extern void flush_signal_handlers(struct task_struct *, int force_default);
2453extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2454
2455static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2456{
2457 unsigned long flags;
2458 int ret;
2459
2460 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2461 ret = dequeue_signal(tsk, mask, info);
2462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2463
2464 return ret;
2465}
2466
2467extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2468 sigset_t *mask);
2469extern void unblock_all_signals(void);
2470extern void release_task(struct task_struct * p);
2471extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2472extern int force_sigsegv(int, struct task_struct *);
2473extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2474extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2475extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2476extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2477 const struct cred *, u32);
2478extern int kill_pgrp(struct pid *pid, int sig, int priv);
2479extern int kill_pid(struct pid *pid, int sig, int priv);
2480extern int kill_proc_info(int, struct siginfo *, pid_t);
2481extern __must_check bool do_notify_parent(struct task_struct *, int);
2482extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2483extern void force_sig(int, struct task_struct *);
2484extern int send_sig(int, struct task_struct *, int);
2485extern int zap_other_threads(struct task_struct *p);
2486extern struct sigqueue *sigqueue_alloc(void);
2487extern void sigqueue_free(struct sigqueue *);
2488extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2489extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2490
2491static inline void restore_saved_sigmask(void)
2492{
2493 if (test_and_clear_restore_sigmask())
2494 __set_current_blocked(&current->saved_sigmask);
2495}
2496
2497static inline sigset_t *sigmask_to_save(void)
2498{
2499 sigset_t *res = &current->blocked;
2500 if (unlikely(test_restore_sigmask()))
2501 res = &current->saved_sigmask;
2502 return res;
2503}
2504
2505static inline int kill_cad_pid(int sig, int priv)
2506{
2507 return kill_pid(cad_pid, sig, priv);
2508}
2509
2510/* These can be the second arg to send_sig_info/send_group_sig_info. */
2511#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2512#define SEND_SIG_PRIV ((struct siginfo *) 1)
2513#define SEND_SIG_FORCED ((struct siginfo *) 2)
2514
2515/*
2516 * True if we are on the alternate signal stack.
2517 */
2518static inline int on_sig_stack(unsigned long sp)
2519{
2520#ifdef CONFIG_STACK_GROWSUP
2521 return sp >= current->sas_ss_sp &&
2522 sp - current->sas_ss_sp < current->sas_ss_size;
2523#else
2524 return sp > current->sas_ss_sp &&
2525 sp - current->sas_ss_sp <= current->sas_ss_size;
2526#endif
2527}
2528
2529static inline int sas_ss_flags(unsigned long sp)
2530{
2531 if (!current->sas_ss_size)
2532 return SS_DISABLE;
2533
2534 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2535}
2536
2537static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2538{
2539 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2540#ifdef CONFIG_STACK_GROWSUP
2541 return current->sas_ss_sp;
2542#else
2543 return current->sas_ss_sp + current->sas_ss_size;
2544#endif
2545 return sp;
2546}
2547
2548/*
2549 * Routines for handling mm_structs
2550 */
2551extern struct mm_struct * mm_alloc(void);
2552
2553/* mmdrop drops the mm and the page tables */
2554extern void __mmdrop(struct mm_struct *);
2555static inline void mmdrop(struct mm_struct * mm)
2556{
2557 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2558 __mmdrop(mm);
2559}
2560
2561/* mmput gets rid of the mappings and all user-space */
2562extern void mmput(struct mm_struct *);
2563/* Grab a reference to a task's mm, if it is not already going away */
2564extern struct mm_struct *get_task_mm(struct task_struct *task);
2565/*
2566 * Grab a reference to a task's mm, if it is not already going away
2567 * and ptrace_may_access with the mode parameter passed to it
2568 * succeeds.
2569 */
2570extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2571/* Remove the current tasks stale references to the old mm_struct */
2572extern void mm_release(struct task_struct *, struct mm_struct *);
2573
2574#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2575extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2576 struct task_struct *, unsigned long);
2577#else
2578extern int copy_thread(unsigned long, unsigned long, unsigned long,
2579 struct task_struct *);
2580
2581/* Architectures that haven't opted into copy_thread_tls get the tls argument
2582 * via pt_regs, so ignore the tls argument passed via C. */
2583static inline int copy_thread_tls(
2584 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2585 struct task_struct *p, unsigned long tls)
2586{
2587 return copy_thread(clone_flags, sp, arg, p);
2588}
2589#endif
2590extern void flush_thread(void);
2591extern void exit_thread(void);
2592
2593extern void exit_files(struct task_struct *);
2594extern void __cleanup_sighand(struct sighand_struct *);
2595
2596extern void exit_itimers(struct signal_struct *);
2597extern void flush_itimer_signals(void);
2598
2599extern void do_group_exit(int);
2600
2601extern int do_execve(struct filename *,
2602 const char __user * const __user *,
2603 const char __user * const __user *);
2604extern int do_execveat(int, struct filename *,
2605 const char __user * const __user *,
2606 const char __user * const __user *,
2607 int);
2608extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2609extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2610struct task_struct *fork_idle(int);
2611extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2612
2613extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2614static inline void set_task_comm(struct task_struct *tsk, const char *from)
2615{
2616 __set_task_comm(tsk, from, false);
2617}
2618extern char *get_task_comm(char *to, struct task_struct *tsk);
2619
2620#ifdef CONFIG_SMP
2621void scheduler_ipi(void);
2622extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2623#else
2624static inline void scheduler_ipi(void) { }
2625static inline unsigned long wait_task_inactive(struct task_struct *p,
2626 long match_state)
2627{
2628 return 1;
2629}
2630#endif
2631
2632#define tasklist_empty() \
2633 list_empty(&init_task.tasks)
2634
2635#define next_task(p) \
2636 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2637
2638#define for_each_process(p) \
2639 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2640
2641extern bool current_is_single_threaded(void);
2642
2643/*
2644 * Careful: do_each_thread/while_each_thread is a double loop so
2645 * 'break' will not work as expected - use goto instead.
2646 */
2647#define do_each_thread(g, t) \
2648 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2649
2650#define while_each_thread(g, t) \
2651 while ((t = next_thread(t)) != g)
2652
2653#define __for_each_thread(signal, t) \
2654 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2655
2656#define for_each_thread(p, t) \
2657 __for_each_thread((p)->signal, t)
2658
2659/* Careful: this is a double loop, 'break' won't work as expected. */
2660#define for_each_process_thread(p, t) \
2661 for_each_process(p) for_each_thread(p, t)
2662
2663static inline int get_nr_threads(struct task_struct *tsk)
2664{
2665 return tsk->signal->nr_threads;
2666}
2667
2668static inline bool thread_group_leader(struct task_struct *p)
2669{
2670 return p->exit_signal >= 0;
2671}
2672
2673/* Do to the insanities of de_thread it is possible for a process
2674 * to have the pid of the thread group leader without actually being
2675 * the thread group leader. For iteration through the pids in proc
2676 * all we care about is that we have a task with the appropriate
2677 * pid, we don't actually care if we have the right task.
2678 */
2679static inline bool has_group_leader_pid(struct task_struct *p)
2680{
2681 return task_pid(p) == p->signal->leader_pid;
2682}
2683
2684static inline
2685bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2686{
2687 return p1->signal == p2->signal;
2688}
2689
2690static inline struct task_struct *next_thread(const struct task_struct *p)
2691{
2692 return list_entry_rcu(p->thread_group.next,
2693 struct task_struct, thread_group);
2694}
2695
2696static inline int thread_group_empty(struct task_struct *p)
2697{
2698 return list_empty(&p->thread_group);
2699}
2700
2701#define delay_group_leader(p) \
2702 (thread_group_leader(p) && !thread_group_empty(p))
2703
2704/*
2705 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2706 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2707 * pins the final release of task.io_context. Also protects ->cpuset and
2708 * ->cgroup.subsys[]. And ->vfork_done.
2709 *
2710 * Nests both inside and outside of read_lock(&tasklist_lock).
2711 * It must not be nested with write_lock_irq(&tasklist_lock),
2712 * neither inside nor outside.
2713 */
2714static inline void task_lock(struct task_struct *p)
2715{
2716 spin_lock(&p->alloc_lock);
2717}
2718
2719static inline void task_unlock(struct task_struct *p)
2720{
2721 spin_unlock(&p->alloc_lock);
2722}
2723
2724extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2725 unsigned long *flags);
2726
2727static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2728 unsigned long *flags)
2729{
2730 struct sighand_struct *ret;
2731
2732 ret = __lock_task_sighand(tsk, flags);
2733 (void)__cond_lock(&tsk->sighand->siglock, ret);
2734 return ret;
2735}
2736
2737static inline void unlock_task_sighand(struct task_struct *tsk,
2738 unsigned long *flags)
2739{
2740 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2741}
2742
2743/**
2744 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2745 * @tsk: task causing the changes
2746 *
2747 * All operations which modify a threadgroup - a new thread joining the
2748 * group, death of a member thread (the assertion of PF_EXITING) and
2749 * exec(2) dethreading the process and replacing the leader - are wrapped
2750 * by threadgroup_change_{begin|end}(). This is to provide a place which
2751 * subsystems needing threadgroup stability can hook into for
2752 * synchronization.
2753 */
2754static inline void threadgroup_change_begin(struct task_struct *tsk)
2755{
2756 might_sleep();
2757 cgroup_threadgroup_change_begin(tsk);
2758}
2759
2760/**
2761 * threadgroup_change_end - mark the end of changes to a threadgroup
2762 * @tsk: task causing the changes
2763 *
2764 * See threadgroup_change_begin().
2765 */
2766static inline void threadgroup_change_end(struct task_struct *tsk)
2767{
2768 cgroup_threadgroup_change_end(tsk);
2769}
2770
2771#ifndef __HAVE_THREAD_FUNCTIONS
2772
2773#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2774#define task_stack_page(task) ((task)->stack)
2775
2776static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2777{
2778 *task_thread_info(p) = *task_thread_info(org);
2779 task_thread_info(p)->task = p;
2780}
2781
2782/*
2783 * Return the address of the last usable long on the stack.
2784 *
2785 * When the stack grows down, this is just above the thread
2786 * info struct. Going any lower will corrupt the threadinfo.
2787 *
2788 * When the stack grows up, this is the highest address.
2789 * Beyond that position, we corrupt data on the next page.
2790 */
2791static inline unsigned long *end_of_stack(struct task_struct *p)
2792{
2793#ifdef CONFIG_STACK_GROWSUP
2794 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2795#else
2796 return (unsigned long *)(task_thread_info(p) + 1);
2797#endif
2798}
2799
2800#endif
2801#define task_stack_end_corrupted(task) \
2802 (*(end_of_stack(task)) != STACK_END_MAGIC)
2803
2804static inline int object_is_on_stack(void *obj)
2805{
2806 void *stack = task_stack_page(current);
2807
2808 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2809}
2810
2811extern void thread_info_cache_init(void);
2812
2813#ifdef CONFIG_DEBUG_STACK_USAGE
2814static inline unsigned long stack_not_used(struct task_struct *p)
2815{
2816 unsigned long *n = end_of_stack(p);
2817
2818 do { /* Skip over canary */
2819 n++;
2820 } while (!*n);
2821
2822 return (unsigned long)n - (unsigned long)end_of_stack(p);
2823}
2824#endif
2825extern void set_task_stack_end_magic(struct task_struct *tsk);
2826
2827/* set thread flags in other task's structures
2828 * - see asm/thread_info.h for TIF_xxxx flags available
2829 */
2830static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2831{
2832 set_ti_thread_flag(task_thread_info(tsk), flag);
2833}
2834
2835static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2836{
2837 clear_ti_thread_flag(task_thread_info(tsk), flag);
2838}
2839
2840static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2841{
2842 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2843}
2844
2845static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2846{
2847 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2848}
2849
2850static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2851{
2852 return test_ti_thread_flag(task_thread_info(tsk), flag);
2853}
2854
2855static inline void set_tsk_need_resched(struct task_struct *tsk)
2856{
2857 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2858}
2859
2860static inline void clear_tsk_need_resched(struct task_struct *tsk)
2861{
2862 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2863}
2864
2865static inline int test_tsk_need_resched(struct task_struct *tsk)
2866{
2867 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2868}
2869
2870static inline int restart_syscall(void)
2871{
2872 set_tsk_thread_flag(current, TIF_SIGPENDING);
2873 return -ERESTARTNOINTR;
2874}
2875
2876static inline int signal_pending(struct task_struct *p)
2877{
2878 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2879}
2880
2881static inline int __fatal_signal_pending(struct task_struct *p)
2882{
2883 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2884}
2885
2886static inline int fatal_signal_pending(struct task_struct *p)
2887{
2888 return signal_pending(p) && __fatal_signal_pending(p);
2889}
2890
2891static inline int signal_pending_state(long state, struct task_struct *p)
2892{
2893 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2894 return 0;
2895 if (!signal_pending(p))
2896 return 0;
2897
2898 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2899}
2900
2901/*
2902 * cond_resched() and cond_resched_lock(): latency reduction via
2903 * explicit rescheduling in places that are safe. The return
2904 * value indicates whether a reschedule was done in fact.
2905 * cond_resched_lock() will drop the spinlock before scheduling,
2906 * cond_resched_softirq() will enable bhs before scheduling.
2907 */
2908extern int _cond_resched(void);
2909
2910#define cond_resched() ({ \
2911 ___might_sleep(__FILE__, __LINE__, 0); \
2912 _cond_resched(); \
2913})
2914
2915extern int __cond_resched_lock(spinlock_t *lock);
2916
2917#define cond_resched_lock(lock) ({ \
2918 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2919 __cond_resched_lock(lock); \
2920})
2921
2922extern int __cond_resched_softirq(void);
2923
2924#define cond_resched_softirq() ({ \
2925 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2926 __cond_resched_softirq(); \
2927})
2928
2929static inline void cond_resched_rcu(void)
2930{
2931#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2932 rcu_read_unlock();
2933 cond_resched();
2934 rcu_read_lock();
2935#endif
2936}
2937
2938/*
2939 * Does a critical section need to be broken due to another
2940 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2941 * but a general need for low latency)
2942 */
2943static inline int spin_needbreak(spinlock_t *lock)
2944{
2945#ifdef CONFIG_PREEMPT
2946 return spin_is_contended(lock);
2947#else
2948 return 0;
2949#endif
2950}
2951
2952/*
2953 * Idle thread specific functions to determine the need_resched
2954 * polling state.
2955 */
2956#ifdef TIF_POLLING_NRFLAG
2957static inline int tsk_is_polling(struct task_struct *p)
2958{
2959 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2960}
2961
2962static inline void __current_set_polling(void)
2963{
2964 set_thread_flag(TIF_POLLING_NRFLAG);
2965}
2966
2967static inline bool __must_check current_set_polling_and_test(void)
2968{
2969 __current_set_polling();
2970
2971 /*
2972 * Polling state must be visible before we test NEED_RESCHED,
2973 * paired by resched_curr()
2974 */
2975 smp_mb__after_atomic();
2976
2977 return unlikely(tif_need_resched());
2978}
2979
2980static inline void __current_clr_polling(void)
2981{
2982 clear_thread_flag(TIF_POLLING_NRFLAG);
2983}
2984
2985static inline bool __must_check current_clr_polling_and_test(void)
2986{
2987 __current_clr_polling();
2988
2989 /*
2990 * Polling state must be visible before we test NEED_RESCHED,
2991 * paired by resched_curr()
2992 */
2993 smp_mb__after_atomic();
2994
2995 return unlikely(tif_need_resched());
2996}
2997
2998#else
2999static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3000static inline void __current_set_polling(void) { }
3001static inline void __current_clr_polling(void) { }
3002
3003static inline bool __must_check current_set_polling_and_test(void)
3004{
3005 return unlikely(tif_need_resched());
3006}
3007static inline bool __must_check current_clr_polling_and_test(void)
3008{
3009 return unlikely(tif_need_resched());
3010}
3011#endif
3012
3013static inline void current_clr_polling(void)
3014{
3015 __current_clr_polling();
3016
3017 /*
3018 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3019 * Once the bit is cleared, we'll get IPIs with every new
3020 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3021 * fold.
3022 */
3023 smp_mb(); /* paired with resched_curr() */
3024
3025 preempt_fold_need_resched();
3026}
3027
3028static __always_inline bool need_resched(void)
3029{
3030 return unlikely(tif_need_resched());
3031}
3032
3033/*
3034 * Thread group CPU time accounting.
3035 */
3036void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3037void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3038
3039/*
3040 * Reevaluate whether the task has signals pending delivery.
3041 * Wake the task if so.
3042 * This is required every time the blocked sigset_t changes.
3043 * callers must hold sighand->siglock.
3044 */
3045extern void recalc_sigpending_and_wake(struct task_struct *t);
3046extern void recalc_sigpending(void);
3047
3048extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3049
3050static inline void signal_wake_up(struct task_struct *t, bool resume)
3051{
3052 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3053}
3054static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3055{
3056 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3057}
3058
3059/*
3060 * Wrappers for p->thread_info->cpu access. No-op on UP.
3061 */
3062#ifdef CONFIG_SMP
3063
3064static inline unsigned int task_cpu(const struct task_struct *p)
3065{
3066 return task_thread_info(p)->cpu;
3067}
3068
3069static inline int task_node(const struct task_struct *p)
3070{
3071 return cpu_to_node(task_cpu(p));
3072}
3073
3074extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3075
3076#else
3077
3078static inline unsigned int task_cpu(const struct task_struct *p)
3079{
3080 return 0;
3081}
3082
3083static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3084{
3085}
3086
3087#endif /* CONFIG_SMP */
3088
3089extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3090extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3091
3092#ifdef CONFIG_CGROUP_SCHED
3093extern struct task_group root_task_group;
3094#endif /* CONFIG_CGROUP_SCHED */
3095
3096extern int task_can_switch_user(struct user_struct *up,
3097 struct task_struct *tsk);
3098
3099#ifdef CONFIG_TASK_XACCT
3100static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3101{
3102 tsk->ioac.rchar += amt;
3103}
3104
3105static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3106{
3107 tsk->ioac.wchar += amt;
3108}
3109
3110static inline void inc_syscr(struct task_struct *tsk)
3111{
3112 tsk->ioac.syscr++;
3113}
3114
3115static inline void inc_syscw(struct task_struct *tsk)
3116{
3117 tsk->ioac.syscw++;
3118}
3119#else
3120static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3121{
3122}
3123
3124static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3125{
3126}
3127
3128static inline void inc_syscr(struct task_struct *tsk)
3129{
3130}
3131
3132static inline void inc_syscw(struct task_struct *tsk)
3133{
3134}
3135#endif
3136
3137#ifndef TASK_SIZE_OF
3138#define TASK_SIZE_OF(tsk) TASK_SIZE
3139#endif
3140
3141#ifdef CONFIG_MEMCG
3142extern void mm_update_next_owner(struct mm_struct *mm);
3143#else
3144static inline void mm_update_next_owner(struct mm_struct *mm)
3145{
3146}
3147#endif /* CONFIG_MEMCG */
3148
3149static inline unsigned long task_rlimit(const struct task_struct *tsk,
3150 unsigned int limit)
3151{
3152 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3153}
3154
3155static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3156 unsigned int limit)
3157{
3158 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3159}
3160
3161static inline unsigned long rlimit(unsigned int limit)
3162{
3163 return task_rlimit(current, limit);
3164}
3165
3166static inline unsigned long rlimit_max(unsigned int limit)
3167{
3168 return task_rlimit_max(current, limit);
3169}
3170
3171#endif
This page took 0.041509 seconds and 5 git commands to generate.