sched: track highest prio task queued
[deliverable/linux.git] / kernel / sched.c
... / ...
CommitLineData
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
31#include <linux/uaccess.h>
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
36#include <linux/capability.h>
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
39#include <linux/debug_locks.h>
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
43#include <linux/freezer.h>
44#include <linux/vmalloc.h>
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/pid_namespace.h>
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
57#include <linux/sysctl.h>
58#include <linux/syscalls.h>
59#include <linux/times.h>
60#include <linux/tsacct_kern.h>
61#include <linux/kprobes.h>
62#include <linux/delayacct.h>
63#include <linux/reciprocal_div.h>
64#include <linux/unistd.h>
65#include <linux/pagemap.h>
66
67#include <asm/tlb.h>
68#include <asm/irq_regs.h>
69
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78}
79
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113#define DEF_TIMESLICE (100 * HZ / 1000)
114
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
148/*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
158#include <linux/cgroup.h>
159
160struct cfs_rq;
161
162/* task group related information */
163struct task_group {
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
206 unsigned long shares;
207
208 struct rcu_head rcu;
209};
210
211/* Default task group's sched entity on each cpu */
212static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213/* Default task group's cfs_rq on each cpu */
214static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
216static struct sched_entity *init_sched_entity_p[NR_CPUS];
217static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
218
219/* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222static DEFINE_MUTEX(task_group_mutex);
223
224/* doms_cur_mutex serializes access to doms_cur[] array */
225static DEFINE_MUTEX(doms_cur_mutex);
226
227#ifdef CONFIG_SMP
228/* kernel thread that runs rebalance_shares() periodically */
229static struct task_struct *lb_monitor_task;
230static int load_balance_monitor(void *unused);
231#endif
232
233static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
235/* Default task group.
236 * Every task in system belong to this group at bootup.
237 */
238struct task_group init_task_group = {
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241};
242
243#ifdef CONFIG_FAIR_USER_SCHED
244# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
245#else
246# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
247#endif
248
249#define MIN_GROUP_SHARES 2
250
251static int init_task_group_load = INIT_TASK_GROUP_LOAD;
252
253/* return group to which a task belongs */
254static inline struct task_group *task_group(struct task_struct *p)
255{
256 struct task_group *tg;
257
258#ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
260#elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
263#else
264 tg = &init_task_group;
265#endif
266 return tg;
267}
268
269/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
271{
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
274}
275
276static inline void lock_task_group_list(void)
277{
278 mutex_lock(&task_group_mutex);
279}
280
281static inline void unlock_task_group_list(void)
282{
283 mutex_unlock(&task_group_mutex);
284}
285
286static inline void lock_doms_cur(void)
287{
288 mutex_lock(&doms_cur_mutex);
289}
290
291static inline void unlock_doms_cur(void)
292{
293 mutex_unlock(&doms_cur_mutex);
294}
295
296#else
297
298static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299static inline void lock_task_group_list(void) { }
300static inline void unlock_task_group_list(void) { }
301static inline void lock_doms_cur(void) { }
302static inline void unlock_doms_cur(void) { }
303
304#endif /* CONFIG_FAIR_GROUP_SCHED */
305
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
311 u64 exec_clock;
312 u64 min_vruntime;
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
321
322 unsigned long nr_spread_over;
323
324#ifdef CONFIG_FAIR_GROUP_SCHED
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
337#endif
338};
339
340/* Real-Time classes' related field in a runqueue: */
341struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345 unsigned long rt_nr_running;
346 /* highest queued rt task prio */
347 int highest_prio;
348};
349
350/*
351 * This is the main, per-CPU runqueue data structure.
352 *
353 * Locking rule: those places that want to lock multiple runqueues
354 * (such as the load balancing or the thread migration code), lock
355 * acquire operations must be ordered by ascending &runqueue.
356 */
357struct rq {
358 /* runqueue lock: */
359 spinlock_t lock;
360
361 /*
362 * nr_running and cpu_load should be in the same cacheline because
363 * remote CPUs use both these fields when doing load calculation.
364 */
365 unsigned long nr_running;
366 #define CPU_LOAD_IDX_MAX 5
367 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
368 unsigned char idle_at_tick;
369#ifdef CONFIG_NO_HZ
370 unsigned char in_nohz_recently;
371#endif
372 /* capture load from *all* tasks on this cpu: */
373 struct load_weight load;
374 unsigned long nr_load_updates;
375 u64 nr_switches;
376
377 struct cfs_rq cfs;
378#ifdef CONFIG_FAIR_GROUP_SCHED
379 /* list of leaf cfs_rq on this cpu: */
380 struct list_head leaf_cfs_rq_list;
381#endif
382 struct rt_rq rt;
383
384 /*
385 * This is part of a global counter where only the total sum
386 * over all CPUs matters. A task can increase this counter on
387 * one CPU and if it got migrated afterwards it may decrease
388 * it on another CPU. Always updated under the runqueue lock:
389 */
390 unsigned long nr_uninterruptible;
391
392 struct task_struct *curr, *idle;
393 unsigned long next_balance;
394 struct mm_struct *prev_mm;
395
396 u64 clock, prev_clock_raw;
397 s64 clock_max_delta;
398
399 unsigned int clock_warps, clock_overflows;
400 u64 idle_clock;
401 unsigned int clock_deep_idle_events;
402 u64 tick_timestamp;
403
404 atomic_t nr_iowait;
405
406#ifdef CONFIG_SMP
407 struct sched_domain *sd;
408
409 /* For active balancing */
410 int active_balance;
411 int push_cpu;
412 /* cpu of this runqueue: */
413 int cpu;
414
415 struct task_struct *migration_thread;
416 struct list_head migration_queue;
417#endif
418
419#ifdef CONFIG_SCHEDSTATS
420 /* latency stats */
421 struct sched_info rq_sched_info;
422
423 /* sys_sched_yield() stats */
424 unsigned int yld_exp_empty;
425 unsigned int yld_act_empty;
426 unsigned int yld_both_empty;
427 unsigned int yld_count;
428
429 /* schedule() stats */
430 unsigned int sched_switch;
431 unsigned int sched_count;
432 unsigned int sched_goidle;
433
434 /* try_to_wake_up() stats */
435 unsigned int ttwu_count;
436 unsigned int ttwu_local;
437
438 /* BKL stats */
439 unsigned int bkl_count;
440#endif
441 struct lock_class_key rq_lock_key;
442};
443
444static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
445
446static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
447{
448 rq->curr->sched_class->check_preempt_curr(rq, p);
449}
450
451static inline int cpu_of(struct rq *rq)
452{
453#ifdef CONFIG_SMP
454 return rq->cpu;
455#else
456 return 0;
457#endif
458}
459
460/*
461 * Update the per-runqueue clock, as finegrained as the platform can give
462 * us, but without assuming monotonicity, etc.:
463 */
464static void __update_rq_clock(struct rq *rq)
465{
466 u64 prev_raw = rq->prev_clock_raw;
467 u64 now = sched_clock();
468 s64 delta = now - prev_raw;
469 u64 clock = rq->clock;
470
471#ifdef CONFIG_SCHED_DEBUG
472 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
473#endif
474 /*
475 * Protect against sched_clock() occasionally going backwards:
476 */
477 if (unlikely(delta < 0)) {
478 clock++;
479 rq->clock_warps++;
480 } else {
481 /*
482 * Catch too large forward jumps too:
483 */
484 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
485 if (clock < rq->tick_timestamp + TICK_NSEC)
486 clock = rq->tick_timestamp + TICK_NSEC;
487 else
488 clock++;
489 rq->clock_overflows++;
490 } else {
491 if (unlikely(delta > rq->clock_max_delta))
492 rq->clock_max_delta = delta;
493 clock += delta;
494 }
495 }
496
497 rq->prev_clock_raw = now;
498 rq->clock = clock;
499}
500
501static void update_rq_clock(struct rq *rq)
502{
503 if (likely(smp_processor_id() == cpu_of(rq)))
504 __update_rq_clock(rq);
505}
506
507/*
508 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
509 * See detach_destroy_domains: synchronize_sched for details.
510 *
511 * The domain tree of any CPU may only be accessed from within
512 * preempt-disabled sections.
513 */
514#define for_each_domain(cpu, __sd) \
515 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
516
517#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
518#define this_rq() (&__get_cpu_var(runqueues))
519#define task_rq(p) cpu_rq(task_cpu(p))
520#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
521
522/*
523 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
524 */
525#ifdef CONFIG_SCHED_DEBUG
526# define const_debug __read_mostly
527#else
528# define const_debug static const
529#endif
530
531/*
532 * Debugging: various feature bits
533 */
534enum {
535 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
536 SCHED_FEAT_WAKEUP_PREEMPT = 2,
537 SCHED_FEAT_START_DEBIT = 4,
538 SCHED_FEAT_TREE_AVG = 8,
539 SCHED_FEAT_APPROX_AVG = 16,
540};
541
542const_debug unsigned int sysctl_sched_features =
543 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
544 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
545 SCHED_FEAT_START_DEBIT * 1 |
546 SCHED_FEAT_TREE_AVG * 0 |
547 SCHED_FEAT_APPROX_AVG * 0;
548
549#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
550
551/*
552 * Number of tasks to iterate in a single balance run.
553 * Limited because this is done with IRQs disabled.
554 */
555const_debug unsigned int sysctl_sched_nr_migrate = 32;
556
557/*
558 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
559 * clock constructed from sched_clock():
560 */
561unsigned long long cpu_clock(int cpu)
562{
563 unsigned long long now;
564 unsigned long flags;
565 struct rq *rq;
566
567 local_irq_save(flags);
568 rq = cpu_rq(cpu);
569 /*
570 * Only call sched_clock() if the scheduler has already been
571 * initialized (some code might call cpu_clock() very early):
572 */
573 if (rq->idle)
574 update_rq_clock(rq);
575 now = rq->clock;
576 local_irq_restore(flags);
577
578 return now;
579}
580EXPORT_SYMBOL_GPL(cpu_clock);
581
582#ifndef prepare_arch_switch
583# define prepare_arch_switch(next) do { } while (0)
584#endif
585#ifndef finish_arch_switch
586# define finish_arch_switch(prev) do { } while (0)
587#endif
588
589static inline int task_current(struct rq *rq, struct task_struct *p)
590{
591 return rq->curr == p;
592}
593
594#ifndef __ARCH_WANT_UNLOCKED_CTXSW
595static inline int task_running(struct rq *rq, struct task_struct *p)
596{
597 return task_current(rq, p);
598}
599
600static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
601{
602}
603
604static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
605{
606#ifdef CONFIG_DEBUG_SPINLOCK
607 /* this is a valid case when another task releases the spinlock */
608 rq->lock.owner = current;
609#endif
610 /*
611 * If we are tracking spinlock dependencies then we have to
612 * fix up the runqueue lock - which gets 'carried over' from
613 * prev into current:
614 */
615 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
616
617 spin_unlock_irq(&rq->lock);
618}
619
620#else /* __ARCH_WANT_UNLOCKED_CTXSW */
621static inline int task_running(struct rq *rq, struct task_struct *p)
622{
623#ifdef CONFIG_SMP
624 return p->oncpu;
625#else
626 return task_current(rq, p);
627#endif
628}
629
630static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
631{
632#ifdef CONFIG_SMP
633 /*
634 * We can optimise this out completely for !SMP, because the
635 * SMP rebalancing from interrupt is the only thing that cares
636 * here.
637 */
638 next->oncpu = 1;
639#endif
640#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641 spin_unlock_irq(&rq->lock);
642#else
643 spin_unlock(&rq->lock);
644#endif
645}
646
647static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
648{
649#ifdef CONFIG_SMP
650 /*
651 * After ->oncpu is cleared, the task can be moved to a different CPU.
652 * We must ensure this doesn't happen until the switch is completely
653 * finished.
654 */
655 smp_wmb();
656 prev->oncpu = 0;
657#endif
658#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
659 local_irq_enable();
660#endif
661}
662#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
663
664/*
665 * __task_rq_lock - lock the runqueue a given task resides on.
666 * Must be called interrupts disabled.
667 */
668static inline struct rq *__task_rq_lock(struct task_struct *p)
669 __acquires(rq->lock)
670{
671 for (;;) {
672 struct rq *rq = task_rq(p);
673 spin_lock(&rq->lock);
674 if (likely(rq == task_rq(p)))
675 return rq;
676 spin_unlock(&rq->lock);
677 }
678}
679
680/*
681 * task_rq_lock - lock the runqueue a given task resides on and disable
682 * interrupts. Note the ordering: we can safely lookup the task_rq without
683 * explicitly disabling preemption.
684 */
685static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
686 __acquires(rq->lock)
687{
688 struct rq *rq;
689
690 for (;;) {
691 local_irq_save(*flags);
692 rq = task_rq(p);
693 spin_lock(&rq->lock);
694 if (likely(rq == task_rq(p)))
695 return rq;
696 spin_unlock_irqrestore(&rq->lock, *flags);
697 }
698}
699
700static void __task_rq_unlock(struct rq *rq)
701 __releases(rq->lock)
702{
703 spin_unlock(&rq->lock);
704}
705
706static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
707 __releases(rq->lock)
708{
709 spin_unlock_irqrestore(&rq->lock, *flags);
710}
711
712/*
713 * this_rq_lock - lock this runqueue and disable interrupts.
714 */
715static struct rq *this_rq_lock(void)
716 __acquires(rq->lock)
717{
718 struct rq *rq;
719
720 local_irq_disable();
721 rq = this_rq();
722 spin_lock(&rq->lock);
723
724 return rq;
725}
726
727/*
728 * We are going deep-idle (irqs are disabled):
729 */
730void sched_clock_idle_sleep_event(void)
731{
732 struct rq *rq = cpu_rq(smp_processor_id());
733
734 spin_lock(&rq->lock);
735 __update_rq_clock(rq);
736 spin_unlock(&rq->lock);
737 rq->clock_deep_idle_events++;
738}
739EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
740
741/*
742 * We just idled delta nanoseconds (called with irqs disabled):
743 */
744void sched_clock_idle_wakeup_event(u64 delta_ns)
745{
746 struct rq *rq = cpu_rq(smp_processor_id());
747 u64 now = sched_clock();
748
749 touch_softlockup_watchdog();
750 rq->idle_clock += delta_ns;
751 /*
752 * Override the previous timestamp and ignore all
753 * sched_clock() deltas that occured while we idled,
754 * and use the PM-provided delta_ns to advance the
755 * rq clock:
756 */
757 spin_lock(&rq->lock);
758 rq->prev_clock_raw = now;
759 rq->clock += delta_ns;
760 spin_unlock(&rq->lock);
761}
762EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
763
764/*
765 * resched_task - mark a task 'to be rescheduled now'.
766 *
767 * On UP this means the setting of the need_resched flag, on SMP it
768 * might also involve a cross-CPU call to trigger the scheduler on
769 * the target CPU.
770 */
771#ifdef CONFIG_SMP
772
773#ifndef tsk_is_polling
774#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
775#endif
776
777static void resched_task(struct task_struct *p)
778{
779 int cpu;
780
781 assert_spin_locked(&task_rq(p)->lock);
782
783 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
784 return;
785
786 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
787
788 cpu = task_cpu(p);
789 if (cpu == smp_processor_id())
790 return;
791
792 /* NEED_RESCHED must be visible before we test polling */
793 smp_mb();
794 if (!tsk_is_polling(p))
795 smp_send_reschedule(cpu);
796}
797
798static void resched_cpu(int cpu)
799{
800 struct rq *rq = cpu_rq(cpu);
801 unsigned long flags;
802
803 if (!spin_trylock_irqsave(&rq->lock, flags))
804 return;
805 resched_task(cpu_curr(cpu));
806 spin_unlock_irqrestore(&rq->lock, flags);
807}
808#else
809static inline void resched_task(struct task_struct *p)
810{
811 assert_spin_locked(&task_rq(p)->lock);
812 set_tsk_need_resched(p);
813}
814#endif
815
816#if BITS_PER_LONG == 32
817# define WMULT_CONST (~0UL)
818#else
819# define WMULT_CONST (1UL << 32)
820#endif
821
822#define WMULT_SHIFT 32
823
824/*
825 * Shift right and round:
826 */
827#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
828
829static unsigned long
830calc_delta_mine(unsigned long delta_exec, unsigned long weight,
831 struct load_weight *lw)
832{
833 u64 tmp;
834
835 if (unlikely(!lw->inv_weight))
836 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
837
838 tmp = (u64)delta_exec * weight;
839 /*
840 * Check whether we'd overflow the 64-bit multiplication:
841 */
842 if (unlikely(tmp > WMULT_CONST))
843 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
844 WMULT_SHIFT/2);
845 else
846 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
847
848 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
849}
850
851static inline unsigned long
852calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
853{
854 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
855}
856
857static inline void update_load_add(struct load_weight *lw, unsigned long inc)
858{
859 lw->weight += inc;
860}
861
862static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
863{
864 lw->weight -= dec;
865}
866
867/*
868 * To aid in avoiding the subversion of "niceness" due to uneven distribution
869 * of tasks with abnormal "nice" values across CPUs the contribution that
870 * each task makes to its run queue's load is weighted according to its
871 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
872 * scaled version of the new time slice allocation that they receive on time
873 * slice expiry etc.
874 */
875
876#define WEIGHT_IDLEPRIO 2
877#define WMULT_IDLEPRIO (1 << 31)
878
879/*
880 * Nice levels are multiplicative, with a gentle 10% change for every
881 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
882 * nice 1, it will get ~10% less CPU time than another CPU-bound task
883 * that remained on nice 0.
884 *
885 * The "10% effect" is relative and cumulative: from _any_ nice level,
886 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
887 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
888 * If a task goes up by ~10% and another task goes down by ~10% then
889 * the relative distance between them is ~25%.)
890 */
891static const int prio_to_weight[40] = {
892 /* -20 */ 88761, 71755, 56483, 46273, 36291,
893 /* -15 */ 29154, 23254, 18705, 14949, 11916,
894 /* -10 */ 9548, 7620, 6100, 4904, 3906,
895 /* -5 */ 3121, 2501, 1991, 1586, 1277,
896 /* 0 */ 1024, 820, 655, 526, 423,
897 /* 5 */ 335, 272, 215, 172, 137,
898 /* 10 */ 110, 87, 70, 56, 45,
899 /* 15 */ 36, 29, 23, 18, 15,
900};
901
902/*
903 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
904 *
905 * In cases where the weight does not change often, we can use the
906 * precalculated inverse to speed up arithmetics by turning divisions
907 * into multiplications:
908 */
909static const u32 prio_to_wmult[40] = {
910 /* -20 */ 48388, 59856, 76040, 92818, 118348,
911 /* -15 */ 147320, 184698, 229616, 287308, 360437,
912 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
913 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
914 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
915 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
916 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
917 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
918};
919
920static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
921
922/*
923 * runqueue iterator, to support SMP load-balancing between different
924 * scheduling classes, without having to expose their internal data
925 * structures to the load-balancing proper:
926 */
927struct rq_iterator {
928 void *arg;
929 struct task_struct *(*start)(void *);
930 struct task_struct *(*next)(void *);
931};
932
933#ifdef CONFIG_SMP
934static unsigned long
935balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
936 unsigned long max_load_move, struct sched_domain *sd,
937 enum cpu_idle_type idle, int *all_pinned,
938 int *this_best_prio, struct rq_iterator *iterator);
939
940static int
941iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
942 struct sched_domain *sd, enum cpu_idle_type idle,
943 struct rq_iterator *iterator);
944#endif
945
946#ifdef CONFIG_CGROUP_CPUACCT
947static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
948#else
949static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
950#endif
951
952static inline void inc_cpu_load(struct rq *rq, unsigned long load)
953{
954 update_load_add(&rq->load, load);
955}
956
957static inline void dec_cpu_load(struct rq *rq, unsigned long load)
958{
959 update_load_sub(&rq->load, load);
960}
961
962#include "sched_stats.h"
963#include "sched_idletask.c"
964#include "sched_fair.c"
965#include "sched_rt.c"
966#ifdef CONFIG_SCHED_DEBUG
967# include "sched_debug.c"
968#endif
969
970#define sched_class_highest (&rt_sched_class)
971
972static void inc_nr_running(struct task_struct *p, struct rq *rq)
973{
974 rq->nr_running++;
975}
976
977static void dec_nr_running(struct task_struct *p, struct rq *rq)
978{
979 rq->nr_running--;
980}
981
982static void set_load_weight(struct task_struct *p)
983{
984 if (task_has_rt_policy(p)) {
985 p->se.load.weight = prio_to_weight[0] * 2;
986 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
987 return;
988 }
989
990 /*
991 * SCHED_IDLE tasks get minimal weight:
992 */
993 if (p->policy == SCHED_IDLE) {
994 p->se.load.weight = WEIGHT_IDLEPRIO;
995 p->se.load.inv_weight = WMULT_IDLEPRIO;
996 return;
997 }
998
999 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1000 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1001}
1002
1003static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1004{
1005 sched_info_queued(p);
1006 p->sched_class->enqueue_task(rq, p, wakeup);
1007 p->se.on_rq = 1;
1008}
1009
1010static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1011{
1012 p->sched_class->dequeue_task(rq, p, sleep);
1013 p->se.on_rq = 0;
1014}
1015
1016/*
1017 * __normal_prio - return the priority that is based on the static prio
1018 */
1019static inline int __normal_prio(struct task_struct *p)
1020{
1021 return p->static_prio;
1022}
1023
1024/*
1025 * Calculate the expected normal priority: i.e. priority
1026 * without taking RT-inheritance into account. Might be
1027 * boosted by interactivity modifiers. Changes upon fork,
1028 * setprio syscalls, and whenever the interactivity
1029 * estimator recalculates.
1030 */
1031static inline int normal_prio(struct task_struct *p)
1032{
1033 int prio;
1034
1035 if (task_has_rt_policy(p))
1036 prio = MAX_RT_PRIO-1 - p->rt_priority;
1037 else
1038 prio = __normal_prio(p);
1039 return prio;
1040}
1041
1042/*
1043 * Calculate the current priority, i.e. the priority
1044 * taken into account by the scheduler. This value might
1045 * be boosted by RT tasks, or might be boosted by
1046 * interactivity modifiers. Will be RT if the task got
1047 * RT-boosted. If not then it returns p->normal_prio.
1048 */
1049static int effective_prio(struct task_struct *p)
1050{
1051 p->normal_prio = normal_prio(p);
1052 /*
1053 * If we are RT tasks or we were boosted to RT priority,
1054 * keep the priority unchanged. Otherwise, update priority
1055 * to the normal priority:
1056 */
1057 if (!rt_prio(p->prio))
1058 return p->normal_prio;
1059 return p->prio;
1060}
1061
1062/*
1063 * activate_task - move a task to the runqueue.
1064 */
1065static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1066{
1067 if (p->state == TASK_UNINTERRUPTIBLE)
1068 rq->nr_uninterruptible--;
1069
1070 enqueue_task(rq, p, wakeup);
1071 inc_nr_running(p, rq);
1072}
1073
1074/*
1075 * deactivate_task - remove a task from the runqueue.
1076 */
1077static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1078{
1079 if (p->state == TASK_UNINTERRUPTIBLE)
1080 rq->nr_uninterruptible++;
1081
1082 dequeue_task(rq, p, sleep);
1083 dec_nr_running(p, rq);
1084}
1085
1086/**
1087 * task_curr - is this task currently executing on a CPU?
1088 * @p: the task in question.
1089 */
1090inline int task_curr(const struct task_struct *p)
1091{
1092 return cpu_curr(task_cpu(p)) == p;
1093}
1094
1095/* Used instead of source_load when we know the type == 0 */
1096unsigned long weighted_cpuload(const int cpu)
1097{
1098 return cpu_rq(cpu)->load.weight;
1099}
1100
1101static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1102{
1103 set_task_cfs_rq(p, cpu);
1104#ifdef CONFIG_SMP
1105 /*
1106 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1107 * successfuly executed on another CPU. We must ensure that updates of
1108 * per-task data have been completed by this moment.
1109 */
1110 smp_wmb();
1111 task_thread_info(p)->cpu = cpu;
1112#endif
1113}
1114
1115#ifdef CONFIG_SMP
1116
1117/*
1118 * Is this task likely cache-hot:
1119 */
1120static inline int
1121task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1122{
1123 s64 delta;
1124
1125 if (p->sched_class != &fair_sched_class)
1126 return 0;
1127
1128 if (sysctl_sched_migration_cost == -1)
1129 return 1;
1130 if (sysctl_sched_migration_cost == 0)
1131 return 0;
1132
1133 delta = now - p->se.exec_start;
1134
1135 return delta < (s64)sysctl_sched_migration_cost;
1136}
1137
1138
1139void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1140{
1141 int old_cpu = task_cpu(p);
1142 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1143 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1144 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1145 u64 clock_offset;
1146
1147 clock_offset = old_rq->clock - new_rq->clock;
1148
1149#ifdef CONFIG_SCHEDSTATS
1150 if (p->se.wait_start)
1151 p->se.wait_start -= clock_offset;
1152 if (p->se.sleep_start)
1153 p->se.sleep_start -= clock_offset;
1154 if (p->se.block_start)
1155 p->se.block_start -= clock_offset;
1156 if (old_cpu != new_cpu) {
1157 schedstat_inc(p, se.nr_migrations);
1158 if (task_hot(p, old_rq->clock, NULL))
1159 schedstat_inc(p, se.nr_forced2_migrations);
1160 }
1161#endif
1162 p->se.vruntime -= old_cfsrq->min_vruntime -
1163 new_cfsrq->min_vruntime;
1164
1165 __set_task_cpu(p, new_cpu);
1166}
1167
1168struct migration_req {
1169 struct list_head list;
1170
1171 struct task_struct *task;
1172 int dest_cpu;
1173
1174 struct completion done;
1175};
1176
1177/*
1178 * The task's runqueue lock must be held.
1179 * Returns true if you have to wait for migration thread.
1180 */
1181static int
1182migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1183{
1184 struct rq *rq = task_rq(p);
1185
1186 /*
1187 * If the task is not on a runqueue (and not running), then
1188 * it is sufficient to simply update the task's cpu field.
1189 */
1190 if (!p->se.on_rq && !task_running(rq, p)) {
1191 set_task_cpu(p, dest_cpu);
1192 return 0;
1193 }
1194
1195 init_completion(&req->done);
1196 req->task = p;
1197 req->dest_cpu = dest_cpu;
1198 list_add(&req->list, &rq->migration_queue);
1199
1200 return 1;
1201}
1202
1203/*
1204 * wait_task_inactive - wait for a thread to unschedule.
1205 *
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
1212void wait_task_inactive(struct task_struct *p)
1213{
1214 unsigned long flags;
1215 int running, on_rq;
1216 struct rq *rq;
1217
1218 for (;;) {
1219 /*
1220 * We do the initial early heuristics without holding
1221 * any task-queue locks at all. We'll only try to get
1222 * the runqueue lock when things look like they will
1223 * work out!
1224 */
1225 rq = task_rq(p);
1226
1227 /*
1228 * If the task is actively running on another CPU
1229 * still, just relax and busy-wait without holding
1230 * any locks.
1231 *
1232 * NOTE! Since we don't hold any locks, it's not
1233 * even sure that "rq" stays as the right runqueue!
1234 * But we don't care, since "task_running()" will
1235 * return false if the runqueue has changed and p
1236 * is actually now running somewhere else!
1237 */
1238 while (task_running(rq, p))
1239 cpu_relax();
1240
1241 /*
1242 * Ok, time to look more closely! We need the rq
1243 * lock now, to be *sure*. If we're wrong, we'll
1244 * just go back and repeat.
1245 */
1246 rq = task_rq_lock(p, &flags);
1247 running = task_running(rq, p);
1248 on_rq = p->se.on_rq;
1249 task_rq_unlock(rq, &flags);
1250
1251 /*
1252 * Was it really running after all now that we
1253 * checked with the proper locks actually held?
1254 *
1255 * Oops. Go back and try again..
1256 */
1257 if (unlikely(running)) {
1258 cpu_relax();
1259 continue;
1260 }
1261
1262 /*
1263 * It's not enough that it's not actively running,
1264 * it must be off the runqueue _entirely_, and not
1265 * preempted!
1266 *
1267 * So if it wa still runnable (but just not actively
1268 * running right now), it's preempted, and we should
1269 * yield - it could be a while.
1270 */
1271 if (unlikely(on_rq)) {
1272 schedule_timeout_uninterruptible(1);
1273 continue;
1274 }
1275
1276 /*
1277 * Ahh, all good. It wasn't running, and it wasn't
1278 * runnable, which means that it will never become
1279 * running in the future either. We're all done!
1280 */
1281 break;
1282 }
1283}
1284
1285/***
1286 * kick_process - kick a running thread to enter/exit the kernel
1287 * @p: the to-be-kicked thread
1288 *
1289 * Cause a process which is running on another CPU to enter
1290 * kernel-mode, without any delay. (to get signals handled.)
1291 *
1292 * NOTE: this function doesnt have to take the runqueue lock,
1293 * because all it wants to ensure is that the remote task enters
1294 * the kernel. If the IPI races and the task has been migrated
1295 * to another CPU then no harm is done and the purpose has been
1296 * achieved as well.
1297 */
1298void kick_process(struct task_struct *p)
1299{
1300 int cpu;
1301
1302 preempt_disable();
1303 cpu = task_cpu(p);
1304 if ((cpu != smp_processor_id()) && task_curr(p))
1305 smp_send_reschedule(cpu);
1306 preempt_enable();
1307}
1308
1309/*
1310 * Return a low guess at the load of a migration-source cpu weighted
1311 * according to the scheduling class and "nice" value.
1312 *
1313 * We want to under-estimate the load of migration sources, to
1314 * balance conservatively.
1315 */
1316static unsigned long source_load(int cpu, int type)
1317{
1318 struct rq *rq = cpu_rq(cpu);
1319 unsigned long total = weighted_cpuload(cpu);
1320
1321 if (type == 0)
1322 return total;
1323
1324 return min(rq->cpu_load[type-1], total);
1325}
1326
1327/*
1328 * Return a high guess at the load of a migration-target cpu weighted
1329 * according to the scheduling class and "nice" value.
1330 */
1331static unsigned long target_load(int cpu, int type)
1332{
1333 struct rq *rq = cpu_rq(cpu);
1334 unsigned long total = weighted_cpuload(cpu);
1335
1336 if (type == 0)
1337 return total;
1338
1339 return max(rq->cpu_load[type-1], total);
1340}
1341
1342/*
1343 * Return the average load per task on the cpu's run queue
1344 */
1345static inline unsigned long cpu_avg_load_per_task(int cpu)
1346{
1347 struct rq *rq = cpu_rq(cpu);
1348 unsigned long total = weighted_cpuload(cpu);
1349 unsigned long n = rq->nr_running;
1350
1351 return n ? total / n : SCHED_LOAD_SCALE;
1352}
1353
1354/*
1355 * find_idlest_group finds and returns the least busy CPU group within the
1356 * domain.
1357 */
1358static struct sched_group *
1359find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1360{
1361 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1362 unsigned long min_load = ULONG_MAX, this_load = 0;
1363 int load_idx = sd->forkexec_idx;
1364 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1365
1366 do {
1367 unsigned long load, avg_load;
1368 int local_group;
1369 int i;
1370
1371 /* Skip over this group if it has no CPUs allowed */
1372 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1373 continue;
1374
1375 local_group = cpu_isset(this_cpu, group->cpumask);
1376
1377 /* Tally up the load of all CPUs in the group */
1378 avg_load = 0;
1379
1380 for_each_cpu_mask(i, group->cpumask) {
1381 /* Bias balancing toward cpus of our domain */
1382 if (local_group)
1383 load = source_load(i, load_idx);
1384 else
1385 load = target_load(i, load_idx);
1386
1387 avg_load += load;
1388 }
1389
1390 /* Adjust by relative CPU power of the group */
1391 avg_load = sg_div_cpu_power(group,
1392 avg_load * SCHED_LOAD_SCALE);
1393
1394 if (local_group) {
1395 this_load = avg_load;
1396 this = group;
1397 } else if (avg_load < min_load) {
1398 min_load = avg_load;
1399 idlest = group;
1400 }
1401 } while (group = group->next, group != sd->groups);
1402
1403 if (!idlest || 100*this_load < imbalance*min_load)
1404 return NULL;
1405 return idlest;
1406}
1407
1408/*
1409 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1410 */
1411static int
1412find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1413{
1414 cpumask_t tmp;
1415 unsigned long load, min_load = ULONG_MAX;
1416 int idlest = -1;
1417 int i;
1418
1419 /* Traverse only the allowed CPUs */
1420 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1421
1422 for_each_cpu_mask(i, tmp) {
1423 load = weighted_cpuload(i);
1424
1425 if (load < min_load || (load == min_load && i == this_cpu)) {
1426 min_load = load;
1427 idlest = i;
1428 }
1429 }
1430
1431 return idlest;
1432}
1433
1434/*
1435 * sched_balance_self: balance the current task (running on cpu) in domains
1436 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1437 * SD_BALANCE_EXEC.
1438 *
1439 * Balance, ie. select the least loaded group.
1440 *
1441 * Returns the target CPU number, or the same CPU if no balancing is needed.
1442 *
1443 * preempt must be disabled.
1444 */
1445static int sched_balance_self(int cpu, int flag)
1446{
1447 struct task_struct *t = current;
1448 struct sched_domain *tmp, *sd = NULL;
1449
1450 for_each_domain(cpu, tmp) {
1451 /*
1452 * If power savings logic is enabled for a domain, stop there.
1453 */
1454 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1455 break;
1456 if (tmp->flags & flag)
1457 sd = tmp;
1458 }
1459
1460 while (sd) {
1461 cpumask_t span;
1462 struct sched_group *group;
1463 int new_cpu, weight;
1464
1465 if (!(sd->flags & flag)) {
1466 sd = sd->child;
1467 continue;
1468 }
1469
1470 span = sd->span;
1471 group = find_idlest_group(sd, t, cpu);
1472 if (!group) {
1473 sd = sd->child;
1474 continue;
1475 }
1476
1477 new_cpu = find_idlest_cpu(group, t, cpu);
1478 if (new_cpu == -1 || new_cpu == cpu) {
1479 /* Now try balancing at a lower domain level of cpu */
1480 sd = sd->child;
1481 continue;
1482 }
1483
1484 /* Now try balancing at a lower domain level of new_cpu */
1485 cpu = new_cpu;
1486 sd = NULL;
1487 weight = cpus_weight(span);
1488 for_each_domain(cpu, tmp) {
1489 if (weight <= cpus_weight(tmp->span))
1490 break;
1491 if (tmp->flags & flag)
1492 sd = tmp;
1493 }
1494 /* while loop will break here if sd == NULL */
1495 }
1496
1497 return cpu;
1498}
1499
1500#endif /* CONFIG_SMP */
1501
1502/*
1503 * wake_idle() will wake a task on an idle cpu if task->cpu is
1504 * not idle and an idle cpu is available. The span of cpus to
1505 * search starts with cpus closest then further out as needed,
1506 * so we always favor a closer, idle cpu.
1507 *
1508 * Returns the CPU we should wake onto.
1509 */
1510#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1511static int wake_idle(int cpu, struct task_struct *p)
1512{
1513 cpumask_t tmp;
1514 struct sched_domain *sd;
1515 int i;
1516
1517 /*
1518 * If it is idle, then it is the best cpu to run this task.
1519 *
1520 * This cpu is also the best, if it has more than one task already.
1521 * Siblings must be also busy(in most cases) as they didn't already
1522 * pickup the extra load from this cpu and hence we need not check
1523 * sibling runqueue info. This will avoid the checks and cache miss
1524 * penalities associated with that.
1525 */
1526 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1527 return cpu;
1528
1529 for_each_domain(cpu, sd) {
1530 if (sd->flags & SD_WAKE_IDLE) {
1531 cpus_and(tmp, sd->span, p->cpus_allowed);
1532 for_each_cpu_mask(i, tmp) {
1533 if (idle_cpu(i)) {
1534 if (i != task_cpu(p)) {
1535 schedstat_inc(p,
1536 se.nr_wakeups_idle);
1537 }
1538 return i;
1539 }
1540 }
1541 } else {
1542 break;
1543 }
1544 }
1545 return cpu;
1546}
1547#else
1548static inline int wake_idle(int cpu, struct task_struct *p)
1549{
1550 return cpu;
1551}
1552#endif
1553
1554/***
1555 * try_to_wake_up - wake up a thread
1556 * @p: the to-be-woken-up thread
1557 * @state: the mask of task states that can be woken
1558 * @sync: do a synchronous wakeup?
1559 *
1560 * Put it on the run-queue if it's not already there. The "current"
1561 * thread is always on the run-queue (except when the actual
1562 * re-schedule is in progress), and as such you're allowed to do
1563 * the simpler "current->state = TASK_RUNNING" to mark yourself
1564 * runnable without the overhead of this.
1565 *
1566 * returns failure only if the task is already active.
1567 */
1568static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1569{
1570 int cpu, orig_cpu, this_cpu, success = 0;
1571 unsigned long flags;
1572 long old_state;
1573 struct rq *rq;
1574#ifdef CONFIG_SMP
1575 struct sched_domain *sd, *this_sd = NULL;
1576 unsigned long load, this_load;
1577 int new_cpu;
1578#endif
1579
1580 rq = task_rq_lock(p, &flags);
1581 old_state = p->state;
1582 if (!(old_state & state))
1583 goto out;
1584
1585 if (p->se.on_rq)
1586 goto out_running;
1587
1588 cpu = task_cpu(p);
1589 orig_cpu = cpu;
1590 this_cpu = smp_processor_id();
1591
1592#ifdef CONFIG_SMP
1593 if (unlikely(task_running(rq, p)))
1594 goto out_activate;
1595
1596 new_cpu = cpu;
1597
1598 schedstat_inc(rq, ttwu_count);
1599 if (cpu == this_cpu) {
1600 schedstat_inc(rq, ttwu_local);
1601 goto out_set_cpu;
1602 }
1603
1604 for_each_domain(this_cpu, sd) {
1605 if (cpu_isset(cpu, sd->span)) {
1606 schedstat_inc(sd, ttwu_wake_remote);
1607 this_sd = sd;
1608 break;
1609 }
1610 }
1611
1612 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1613 goto out_set_cpu;
1614
1615 /*
1616 * Check for affine wakeup and passive balancing possibilities.
1617 */
1618 if (this_sd) {
1619 int idx = this_sd->wake_idx;
1620 unsigned int imbalance;
1621
1622 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1623
1624 load = source_load(cpu, idx);
1625 this_load = target_load(this_cpu, idx);
1626
1627 new_cpu = this_cpu; /* Wake to this CPU if we can */
1628
1629 if (this_sd->flags & SD_WAKE_AFFINE) {
1630 unsigned long tl = this_load;
1631 unsigned long tl_per_task;
1632
1633 /*
1634 * Attract cache-cold tasks on sync wakeups:
1635 */
1636 if (sync && !task_hot(p, rq->clock, this_sd))
1637 goto out_set_cpu;
1638
1639 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1640 tl_per_task = cpu_avg_load_per_task(this_cpu);
1641
1642 /*
1643 * If sync wakeup then subtract the (maximum possible)
1644 * effect of the currently running task from the load
1645 * of the current CPU:
1646 */
1647 if (sync)
1648 tl -= current->se.load.weight;
1649
1650 if ((tl <= load &&
1651 tl + target_load(cpu, idx) <= tl_per_task) ||
1652 100*(tl + p->se.load.weight) <= imbalance*load) {
1653 /*
1654 * This domain has SD_WAKE_AFFINE and
1655 * p is cache cold in this domain, and
1656 * there is no bad imbalance.
1657 */
1658 schedstat_inc(this_sd, ttwu_move_affine);
1659 schedstat_inc(p, se.nr_wakeups_affine);
1660 goto out_set_cpu;
1661 }
1662 }
1663
1664 /*
1665 * Start passive balancing when half the imbalance_pct
1666 * limit is reached.
1667 */
1668 if (this_sd->flags & SD_WAKE_BALANCE) {
1669 if (imbalance*this_load <= 100*load) {
1670 schedstat_inc(this_sd, ttwu_move_balance);
1671 schedstat_inc(p, se.nr_wakeups_passive);
1672 goto out_set_cpu;
1673 }
1674 }
1675 }
1676
1677 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1678out_set_cpu:
1679 new_cpu = wake_idle(new_cpu, p);
1680 if (new_cpu != cpu) {
1681 set_task_cpu(p, new_cpu);
1682 task_rq_unlock(rq, &flags);
1683 /* might preempt at this point */
1684 rq = task_rq_lock(p, &flags);
1685 old_state = p->state;
1686 if (!(old_state & state))
1687 goto out;
1688 if (p->se.on_rq)
1689 goto out_running;
1690
1691 this_cpu = smp_processor_id();
1692 cpu = task_cpu(p);
1693 }
1694
1695out_activate:
1696#endif /* CONFIG_SMP */
1697 schedstat_inc(p, se.nr_wakeups);
1698 if (sync)
1699 schedstat_inc(p, se.nr_wakeups_sync);
1700 if (orig_cpu != cpu)
1701 schedstat_inc(p, se.nr_wakeups_migrate);
1702 if (cpu == this_cpu)
1703 schedstat_inc(p, se.nr_wakeups_local);
1704 else
1705 schedstat_inc(p, se.nr_wakeups_remote);
1706 update_rq_clock(rq);
1707 activate_task(rq, p, 1);
1708 check_preempt_curr(rq, p);
1709 success = 1;
1710
1711out_running:
1712 p->state = TASK_RUNNING;
1713out:
1714 task_rq_unlock(rq, &flags);
1715
1716 return success;
1717}
1718
1719int fastcall wake_up_process(struct task_struct *p)
1720{
1721 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1722 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1723}
1724EXPORT_SYMBOL(wake_up_process);
1725
1726int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1727{
1728 return try_to_wake_up(p, state, 0);
1729}
1730
1731/*
1732 * Perform scheduler related setup for a newly forked process p.
1733 * p is forked by current.
1734 *
1735 * __sched_fork() is basic setup used by init_idle() too:
1736 */
1737static void __sched_fork(struct task_struct *p)
1738{
1739 p->se.exec_start = 0;
1740 p->se.sum_exec_runtime = 0;
1741 p->se.prev_sum_exec_runtime = 0;
1742
1743#ifdef CONFIG_SCHEDSTATS
1744 p->se.wait_start = 0;
1745 p->se.sum_sleep_runtime = 0;
1746 p->se.sleep_start = 0;
1747 p->se.block_start = 0;
1748 p->se.sleep_max = 0;
1749 p->se.block_max = 0;
1750 p->se.exec_max = 0;
1751 p->se.slice_max = 0;
1752 p->se.wait_max = 0;
1753#endif
1754
1755 INIT_LIST_HEAD(&p->run_list);
1756 p->se.on_rq = 0;
1757
1758#ifdef CONFIG_PREEMPT_NOTIFIERS
1759 INIT_HLIST_HEAD(&p->preempt_notifiers);
1760#endif
1761
1762 /*
1763 * We mark the process as running here, but have not actually
1764 * inserted it onto the runqueue yet. This guarantees that
1765 * nobody will actually run it, and a signal or other external
1766 * event cannot wake it up and insert it on the runqueue either.
1767 */
1768 p->state = TASK_RUNNING;
1769}
1770
1771/*
1772 * fork()/clone()-time setup:
1773 */
1774void sched_fork(struct task_struct *p, int clone_flags)
1775{
1776 int cpu = get_cpu();
1777
1778 __sched_fork(p);
1779
1780#ifdef CONFIG_SMP
1781 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1782#endif
1783 set_task_cpu(p, cpu);
1784
1785 /*
1786 * Make sure we do not leak PI boosting priority to the child:
1787 */
1788 p->prio = current->normal_prio;
1789 if (!rt_prio(p->prio))
1790 p->sched_class = &fair_sched_class;
1791
1792#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1793 if (likely(sched_info_on()))
1794 memset(&p->sched_info, 0, sizeof(p->sched_info));
1795#endif
1796#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1797 p->oncpu = 0;
1798#endif
1799#ifdef CONFIG_PREEMPT
1800 /* Want to start with kernel preemption disabled. */
1801 task_thread_info(p)->preempt_count = 1;
1802#endif
1803 put_cpu();
1804}
1805
1806/*
1807 * wake_up_new_task - wake up a newly created task for the first time.
1808 *
1809 * This function will do some initial scheduler statistics housekeeping
1810 * that must be done for every newly created context, then puts the task
1811 * on the runqueue and wakes it.
1812 */
1813void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1814{
1815 unsigned long flags;
1816 struct rq *rq;
1817
1818 rq = task_rq_lock(p, &flags);
1819 BUG_ON(p->state != TASK_RUNNING);
1820 update_rq_clock(rq);
1821
1822 p->prio = effective_prio(p);
1823
1824 if (!p->sched_class->task_new || !current->se.on_rq) {
1825 activate_task(rq, p, 0);
1826 } else {
1827 /*
1828 * Let the scheduling class do new task startup
1829 * management (if any):
1830 */
1831 p->sched_class->task_new(rq, p);
1832 inc_nr_running(p, rq);
1833 }
1834 check_preempt_curr(rq, p);
1835 task_rq_unlock(rq, &flags);
1836}
1837
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
1841 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1842 * @notifier: notifier struct to register
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858 hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874{
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880}
1881
1882#else
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891{
1892}
1893
1894#endif
1895
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
1912{
1913 fire_sched_out_preempt_notifiers(prev, next);
1914 prepare_lock_switch(rq, next);
1915 prepare_arch_switch(next);
1916}
1917
1918/**
1919 * finish_task_switch - clean up after a task-switch
1920 * @rq: runqueue associated with task-switch
1921 * @prev: the thread we just switched away from.
1922 *
1923 * finish_task_switch must be called after the context switch, paired
1924 * with a prepare_task_switch call before the context switch.
1925 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1926 * and do any other architecture-specific cleanup actions.
1927 *
1928 * Note that we may have delayed dropping an mm in context_switch(). If
1929 * so, we finish that here outside of the runqueue lock. (Doing it
1930 * with the lock held can cause deadlocks; see schedule() for
1931 * details.)
1932 */
1933static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1934 __releases(rq->lock)
1935{
1936 struct mm_struct *mm = rq->prev_mm;
1937 long prev_state;
1938
1939 rq->prev_mm = NULL;
1940
1941 /*
1942 * A task struct has one reference for the use as "current".
1943 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1944 * schedule one last time. The schedule call will never return, and
1945 * the scheduled task must drop that reference.
1946 * The test for TASK_DEAD must occur while the runqueue locks are
1947 * still held, otherwise prev could be scheduled on another cpu, die
1948 * there before we look at prev->state, and then the reference would
1949 * be dropped twice.
1950 * Manfred Spraul <manfred@colorfullife.com>
1951 */
1952 prev_state = prev->state;
1953 finish_arch_switch(prev);
1954 finish_lock_switch(rq, prev);
1955 fire_sched_in_preempt_notifiers(current);
1956 if (mm)
1957 mmdrop(mm);
1958 if (unlikely(prev_state == TASK_DEAD)) {
1959 /*
1960 * Remove function-return probe instances associated with this
1961 * task and put them back on the free list.
1962 */
1963 kprobe_flush_task(prev);
1964 put_task_struct(prev);
1965 }
1966}
1967
1968/**
1969 * schedule_tail - first thing a freshly forked thread must call.
1970 * @prev: the thread we just switched away from.
1971 */
1972asmlinkage void schedule_tail(struct task_struct *prev)
1973 __releases(rq->lock)
1974{
1975 struct rq *rq = this_rq();
1976
1977 finish_task_switch(rq, prev);
1978#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1979 /* In this case, finish_task_switch does not reenable preemption */
1980 preempt_enable();
1981#endif
1982 if (current->set_child_tid)
1983 put_user(task_pid_vnr(current), current->set_child_tid);
1984}
1985
1986/*
1987 * context_switch - switch to the new MM and the new
1988 * thread's register state.
1989 */
1990static inline void
1991context_switch(struct rq *rq, struct task_struct *prev,
1992 struct task_struct *next)
1993{
1994 struct mm_struct *mm, *oldmm;
1995
1996 prepare_task_switch(rq, prev, next);
1997 mm = next->mm;
1998 oldmm = prev->active_mm;
1999 /*
2000 * For paravirt, this is coupled with an exit in switch_to to
2001 * combine the page table reload and the switch backend into
2002 * one hypercall.
2003 */
2004 arch_enter_lazy_cpu_mode();
2005
2006 if (unlikely(!mm)) {
2007 next->active_mm = oldmm;
2008 atomic_inc(&oldmm->mm_count);
2009 enter_lazy_tlb(oldmm, next);
2010 } else
2011 switch_mm(oldmm, mm, next);
2012
2013 if (unlikely(!prev->mm)) {
2014 prev->active_mm = NULL;
2015 rq->prev_mm = oldmm;
2016 }
2017 /*
2018 * Since the runqueue lock will be released by the next
2019 * task (which is an invalid locking op but in the case
2020 * of the scheduler it's an obvious special-case), so we
2021 * do an early lockdep release here:
2022 */
2023#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2024 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2025#endif
2026
2027 /* Here we just switch the register state and the stack. */
2028 switch_to(prev, next, prev);
2029
2030 barrier();
2031 /*
2032 * this_rq must be evaluated again because prev may have moved
2033 * CPUs since it called schedule(), thus the 'rq' on its stack
2034 * frame will be invalid.
2035 */
2036 finish_task_switch(this_rq(), prev);
2037}
2038
2039/*
2040 * nr_running, nr_uninterruptible and nr_context_switches:
2041 *
2042 * externally visible scheduler statistics: current number of runnable
2043 * threads, current number of uninterruptible-sleeping threads, total
2044 * number of context switches performed since bootup.
2045 */
2046unsigned long nr_running(void)
2047{
2048 unsigned long i, sum = 0;
2049
2050 for_each_online_cpu(i)
2051 sum += cpu_rq(i)->nr_running;
2052
2053 return sum;
2054}
2055
2056unsigned long nr_uninterruptible(void)
2057{
2058 unsigned long i, sum = 0;
2059
2060 for_each_possible_cpu(i)
2061 sum += cpu_rq(i)->nr_uninterruptible;
2062
2063 /*
2064 * Since we read the counters lockless, it might be slightly
2065 * inaccurate. Do not allow it to go below zero though:
2066 */
2067 if (unlikely((long)sum < 0))
2068 sum = 0;
2069
2070 return sum;
2071}
2072
2073unsigned long long nr_context_switches(void)
2074{
2075 int i;
2076 unsigned long long sum = 0;
2077
2078 for_each_possible_cpu(i)
2079 sum += cpu_rq(i)->nr_switches;
2080
2081 return sum;
2082}
2083
2084unsigned long nr_iowait(void)
2085{
2086 unsigned long i, sum = 0;
2087
2088 for_each_possible_cpu(i)
2089 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2090
2091 return sum;
2092}
2093
2094unsigned long nr_active(void)
2095{
2096 unsigned long i, running = 0, uninterruptible = 0;
2097
2098 for_each_online_cpu(i) {
2099 running += cpu_rq(i)->nr_running;
2100 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2101 }
2102
2103 if (unlikely((long)uninterruptible < 0))
2104 uninterruptible = 0;
2105
2106 return running + uninterruptible;
2107}
2108
2109/*
2110 * Update rq->cpu_load[] statistics. This function is usually called every
2111 * scheduler tick (TICK_NSEC).
2112 */
2113static void update_cpu_load(struct rq *this_rq)
2114{
2115 unsigned long this_load = this_rq->load.weight;
2116 int i, scale;
2117
2118 this_rq->nr_load_updates++;
2119
2120 /* Update our load: */
2121 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2122 unsigned long old_load, new_load;
2123
2124 /* scale is effectively 1 << i now, and >> i divides by scale */
2125
2126 old_load = this_rq->cpu_load[i];
2127 new_load = this_load;
2128 /*
2129 * Round up the averaging division if load is increasing. This
2130 * prevents us from getting stuck on 9 if the load is 10, for
2131 * example.
2132 */
2133 if (new_load > old_load)
2134 new_load += scale-1;
2135 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2136 }
2137}
2138
2139#ifdef CONFIG_SMP
2140
2141/*
2142 * double_rq_lock - safely lock two runqueues
2143 *
2144 * Note this does not disable interrupts like task_rq_lock,
2145 * you need to do so manually before calling.
2146 */
2147static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2148 __acquires(rq1->lock)
2149 __acquires(rq2->lock)
2150{
2151 BUG_ON(!irqs_disabled());
2152 if (rq1 == rq2) {
2153 spin_lock(&rq1->lock);
2154 __acquire(rq2->lock); /* Fake it out ;) */
2155 } else {
2156 if (rq1 < rq2) {
2157 spin_lock(&rq1->lock);
2158 spin_lock(&rq2->lock);
2159 } else {
2160 spin_lock(&rq2->lock);
2161 spin_lock(&rq1->lock);
2162 }
2163 }
2164 update_rq_clock(rq1);
2165 update_rq_clock(rq2);
2166}
2167
2168/*
2169 * double_rq_unlock - safely unlock two runqueues
2170 *
2171 * Note this does not restore interrupts like task_rq_unlock,
2172 * you need to do so manually after calling.
2173 */
2174static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2175 __releases(rq1->lock)
2176 __releases(rq2->lock)
2177{
2178 spin_unlock(&rq1->lock);
2179 if (rq1 != rq2)
2180 spin_unlock(&rq2->lock);
2181 else
2182 __release(rq2->lock);
2183}
2184
2185/*
2186 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2187 */
2188static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2189 __releases(this_rq->lock)
2190 __acquires(busiest->lock)
2191 __acquires(this_rq->lock)
2192{
2193 if (unlikely(!irqs_disabled())) {
2194 /* printk() doesn't work good under rq->lock */
2195 spin_unlock(&this_rq->lock);
2196 BUG_ON(1);
2197 }
2198 if (unlikely(!spin_trylock(&busiest->lock))) {
2199 if (busiest < this_rq) {
2200 spin_unlock(&this_rq->lock);
2201 spin_lock(&busiest->lock);
2202 spin_lock(&this_rq->lock);
2203 } else
2204 spin_lock(&busiest->lock);
2205 }
2206}
2207
2208/*
2209 * If dest_cpu is allowed for this process, migrate the task to it.
2210 * This is accomplished by forcing the cpu_allowed mask to only
2211 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2212 * the cpu_allowed mask is restored.
2213 */
2214static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2215{
2216 struct migration_req req;
2217 unsigned long flags;
2218 struct rq *rq;
2219
2220 rq = task_rq_lock(p, &flags);
2221 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2222 || unlikely(cpu_is_offline(dest_cpu)))
2223 goto out;
2224
2225 /* force the process onto the specified CPU */
2226 if (migrate_task(p, dest_cpu, &req)) {
2227 /* Need to wait for migration thread (might exit: take ref). */
2228 struct task_struct *mt = rq->migration_thread;
2229
2230 get_task_struct(mt);
2231 task_rq_unlock(rq, &flags);
2232 wake_up_process(mt);
2233 put_task_struct(mt);
2234 wait_for_completion(&req.done);
2235
2236 return;
2237 }
2238out:
2239 task_rq_unlock(rq, &flags);
2240}
2241
2242/*
2243 * sched_exec - execve() is a valuable balancing opportunity, because at
2244 * this point the task has the smallest effective memory and cache footprint.
2245 */
2246void sched_exec(void)
2247{
2248 int new_cpu, this_cpu = get_cpu();
2249 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2250 put_cpu();
2251 if (new_cpu != this_cpu)
2252 sched_migrate_task(current, new_cpu);
2253}
2254
2255/*
2256 * pull_task - move a task from a remote runqueue to the local runqueue.
2257 * Both runqueues must be locked.
2258 */
2259static void pull_task(struct rq *src_rq, struct task_struct *p,
2260 struct rq *this_rq, int this_cpu)
2261{
2262 deactivate_task(src_rq, p, 0);
2263 set_task_cpu(p, this_cpu);
2264 activate_task(this_rq, p, 0);
2265 /*
2266 * Note that idle threads have a prio of MAX_PRIO, for this test
2267 * to be always true for them.
2268 */
2269 check_preempt_curr(this_rq, p);
2270}
2271
2272/*
2273 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2274 */
2275static
2276int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2277 struct sched_domain *sd, enum cpu_idle_type idle,
2278 int *all_pinned)
2279{
2280 /*
2281 * We do not migrate tasks that are:
2282 * 1) running (obviously), or
2283 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2284 * 3) are cache-hot on their current CPU.
2285 */
2286 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2287 schedstat_inc(p, se.nr_failed_migrations_affine);
2288 return 0;
2289 }
2290 *all_pinned = 0;
2291
2292 if (task_running(rq, p)) {
2293 schedstat_inc(p, se.nr_failed_migrations_running);
2294 return 0;
2295 }
2296
2297 /*
2298 * Aggressive migration if:
2299 * 1) task is cache cold, or
2300 * 2) too many balance attempts have failed.
2301 */
2302
2303 if (!task_hot(p, rq->clock, sd) ||
2304 sd->nr_balance_failed > sd->cache_nice_tries) {
2305#ifdef CONFIG_SCHEDSTATS
2306 if (task_hot(p, rq->clock, sd)) {
2307 schedstat_inc(sd, lb_hot_gained[idle]);
2308 schedstat_inc(p, se.nr_forced_migrations);
2309 }
2310#endif
2311 return 1;
2312 }
2313
2314 if (task_hot(p, rq->clock, sd)) {
2315 schedstat_inc(p, se.nr_failed_migrations_hot);
2316 return 0;
2317 }
2318 return 1;
2319}
2320
2321static unsigned long
2322balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2323 unsigned long max_load_move, struct sched_domain *sd,
2324 enum cpu_idle_type idle, int *all_pinned,
2325 int *this_best_prio, struct rq_iterator *iterator)
2326{
2327 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2328 struct task_struct *p;
2329 long rem_load_move = max_load_move;
2330
2331 if (max_load_move == 0)
2332 goto out;
2333
2334 pinned = 1;
2335
2336 /*
2337 * Start the load-balancing iterator:
2338 */
2339 p = iterator->start(iterator->arg);
2340next:
2341 if (!p || loops++ > sysctl_sched_nr_migrate)
2342 goto out;
2343 /*
2344 * To help distribute high priority tasks across CPUs we don't
2345 * skip a task if it will be the highest priority task (i.e. smallest
2346 * prio value) on its new queue regardless of its load weight
2347 */
2348 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2349 SCHED_LOAD_SCALE_FUZZ;
2350 if ((skip_for_load && p->prio >= *this_best_prio) ||
2351 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2352 p = iterator->next(iterator->arg);
2353 goto next;
2354 }
2355
2356 pull_task(busiest, p, this_rq, this_cpu);
2357 pulled++;
2358 rem_load_move -= p->se.load.weight;
2359
2360 /*
2361 * We only want to steal up to the prescribed amount of weighted load.
2362 */
2363 if (rem_load_move > 0) {
2364 if (p->prio < *this_best_prio)
2365 *this_best_prio = p->prio;
2366 p = iterator->next(iterator->arg);
2367 goto next;
2368 }
2369out:
2370 /*
2371 * Right now, this is one of only two places pull_task() is called,
2372 * so we can safely collect pull_task() stats here rather than
2373 * inside pull_task().
2374 */
2375 schedstat_add(sd, lb_gained[idle], pulled);
2376
2377 if (all_pinned)
2378 *all_pinned = pinned;
2379
2380 return max_load_move - rem_load_move;
2381}
2382
2383/*
2384 * move_tasks tries to move up to max_load_move weighted load from busiest to
2385 * this_rq, as part of a balancing operation within domain "sd".
2386 * Returns 1 if successful and 0 otherwise.
2387 *
2388 * Called with both runqueues locked.
2389 */
2390static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2391 unsigned long max_load_move,
2392 struct sched_domain *sd, enum cpu_idle_type idle,
2393 int *all_pinned)
2394{
2395 const struct sched_class *class = sched_class_highest;
2396 unsigned long total_load_moved = 0;
2397 int this_best_prio = this_rq->curr->prio;
2398
2399 do {
2400 total_load_moved +=
2401 class->load_balance(this_rq, this_cpu, busiest,
2402 max_load_move - total_load_moved,
2403 sd, idle, all_pinned, &this_best_prio);
2404 class = class->next;
2405 } while (class && max_load_move > total_load_moved);
2406
2407 return total_load_moved > 0;
2408}
2409
2410static int
2411iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2412 struct sched_domain *sd, enum cpu_idle_type idle,
2413 struct rq_iterator *iterator)
2414{
2415 struct task_struct *p = iterator->start(iterator->arg);
2416 int pinned = 0;
2417
2418 while (p) {
2419 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2420 pull_task(busiest, p, this_rq, this_cpu);
2421 /*
2422 * Right now, this is only the second place pull_task()
2423 * is called, so we can safely collect pull_task()
2424 * stats here rather than inside pull_task().
2425 */
2426 schedstat_inc(sd, lb_gained[idle]);
2427
2428 return 1;
2429 }
2430 p = iterator->next(iterator->arg);
2431 }
2432
2433 return 0;
2434}
2435
2436/*
2437 * move_one_task tries to move exactly one task from busiest to this_rq, as
2438 * part of active balancing operations within "domain".
2439 * Returns 1 if successful and 0 otherwise.
2440 *
2441 * Called with both runqueues locked.
2442 */
2443static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2444 struct sched_domain *sd, enum cpu_idle_type idle)
2445{
2446 const struct sched_class *class;
2447
2448 for (class = sched_class_highest; class; class = class->next)
2449 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2450 return 1;
2451
2452 return 0;
2453}
2454
2455/*
2456 * find_busiest_group finds and returns the busiest CPU group within the
2457 * domain. It calculates and returns the amount of weighted load which
2458 * should be moved to restore balance via the imbalance parameter.
2459 */
2460static struct sched_group *
2461find_busiest_group(struct sched_domain *sd, int this_cpu,
2462 unsigned long *imbalance, enum cpu_idle_type idle,
2463 int *sd_idle, cpumask_t *cpus, int *balance)
2464{
2465 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2466 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2467 unsigned long max_pull;
2468 unsigned long busiest_load_per_task, busiest_nr_running;
2469 unsigned long this_load_per_task, this_nr_running;
2470 int load_idx, group_imb = 0;
2471#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2472 int power_savings_balance = 1;
2473 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2474 unsigned long min_nr_running = ULONG_MAX;
2475 struct sched_group *group_min = NULL, *group_leader = NULL;
2476#endif
2477
2478 max_load = this_load = total_load = total_pwr = 0;
2479 busiest_load_per_task = busiest_nr_running = 0;
2480 this_load_per_task = this_nr_running = 0;
2481 if (idle == CPU_NOT_IDLE)
2482 load_idx = sd->busy_idx;
2483 else if (idle == CPU_NEWLY_IDLE)
2484 load_idx = sd->newidle_idx;
2485 else
2486 load_idx = sd->idle_idx;
2487
2488 do {
2489 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2490 int local_group;
2491 int i;
2492 int __group_imb = 0;
2493 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2494 unsigned long sum_nr_running, sum_weighted_load;
2495
2496 local_group = cpu_isset(this_cpu, group->cpumask);
2497
2498 if (local_group)
2499 balance_cpu = first_cpu(group->cpumask);
2500
2501 /* Tally up the load of all CPUs in the group */
2502 sum_weighted_load = sum_nr_running = avg_load = 0;
2503 max_cpu_load = 0;
2504 min_cpu_load = ~0UL;
2505
2506 for_each_cpu_mask(i, group->cpumask) {
2507 struct rq *rq;
2508
2509 if (!cpu_isset(i, *cpus))
2510 continue;
2511
2512 rq = cpu_rq(i);
2513
2514 if (*sd_idle && rq->nr_running)
2515 *sd_idle = 0;
2516
2517 /* Bias balancing toward cpus of our domain */
2518 if (local_group) {
2519 if (idle_cpu(i) && !first_idle_cpu) {
2520 first_idle_cpu = 1;
2521 balance_cpu = i;
2522 }
2523
2524 load = target_load(i, load_idx);
2525 } else {
2526 load = source_load(i, load_idx);
2527 if (load > max_cpu_load)
2528 max_cpu_load = load;
2529 if (min_cpu_load > load)
2530 min_cpu_load = load;
2531 }
2532
2533 avg_load += load;
2534 sum_nr_running += rq->nr_running;
2535 sum_weighted_load += weighted_cpuload(i);
2536 }
2537
2538 /*
2539 * First idle cpu or the first cpu(busiest) in this sched group
2540 * is eligible for doing load balancing at this and above
2541 * domains. In the newly idle case, we will allow all the cpu's
2542 * to do the newly idle load balance.
2543 */
2544 if (idle != CPU_NEWLY_IDLE && local_group &&
2545 balance_cpu != this_cpu && balance) {
2546 *balance = 0;
2547 goto ret;
2548 }
2549
2550 total_load += avg_load;
2551 total_pwr += group->__cpu_power;
2552
2553 /* Adjust by relative CPU power of the group */
2554 avg_load = sg_div_cpu_power(group,
2555 avg_load * SCHED_LOAD_SCALE);
2556
2557 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2558 __group_imb = 1;
2559
2560 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2561
2562 if (local_group) {
2563 this_load = avg_load;
2564 this = group;
2565 this_nr_running = sum_nr_running;
2566 this_load_per_task = sum_weighted_load;
2567 } else if (avg_load > max_load &&
2568 (sum_nr_running > group_capacity || __group_imb)) {
2569 max_load = avg_load;
2570 busiest = group;
2571 busiest_nr_running = sum_nr_running;
2572 busiest_load_per_task = sum_weighted_load;
2573 group_imb = __group_imb;
2574 }
2575
2576#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2577 /*
2578 * Busy processors will not participate in power savings
2579 * balance.
2580 */
2581 if (idle == CPU_NOT_IDLE ||
2582 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2583 goto group_next;
2584
2585 /*
2586 * If the local group is idle or completely loaded
2587 * no need to do power savings balance at this domain
2588 */
2589 if (local_group && (this_nr_running >= group_capacity ||
2590 !this_nr_running))
2591 power_savings_balance = 0;
2592
2593 /*
2594 * If a group is already running at full capacity or idle,
2595 * don't include that group in power savings calculations
2596 */
2597 if (!power_savings_balance || sum_nr_running >= group_capacity
2598 || !sum_nr_running)
2599 goto group_next;
2600
2601 /*
2602 * Calculate the group which has the least non-idle load.
2603 * This is the group from where we need to pick up the load
2604 * for saving power
2605 */
2606 if ((sum_nr_running < min_nr_running) ||
2607 (sum_nr_running == min_nr_running &&
2608 first_cpu(group->cpumask) <
2609 first_cpu(group_min->cpumask))) {
2610 group_min = group;
2611 min_nr_running = sum_nr_running;
2612 min_load_per_task = sum_weighted_load /
2613 sum_nr_running;
2614 }
2615
2616 /*
2617 * Calculate the group which is almost near its
2618 * capacity but still has some space to pick up some load
2619 * from other group and save more power
2620 */
2621 if (sum_nr_running <= group_capacity - 1) {
2622 if (sum_nr_running > leader_nr_running ||
2623 (sum_nr_running == leader_nr_running &&
2624 first_cpu(group->cpumask) >
2625 first_cpu(group_leader->cpumask))) {
2626 group_leader = group;
2627 leader_nr_running = sum_nr_running;
2628 }
2629 }
2630group_next:
2631#endif
2632 group = group->next;
2633 } while (group != sd->groups);
2634
2635 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2636 goto out_balanced;
2637
2638 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2639
2640 if (this_load >= avg_load ||
2641 100*max_load <= sd->imbalance_pct*this_load)
2642 goto out_balanced;
2643
2644 busiest_load_per_task /= busiest_nr_running;
2645 if (group_imb)
2646 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2647
2648 /*
2649 * We're trying to get all the cpus to the average_load, so we don't
2650 * want to push ourselves above the average load, nor do we wish to
2651 * reduce the max loaded cpu below the average load, as either of these
2652 * actions would just result in more rebalancing later, and ping-pong
2653 * tasks around. Thus we look for the minimum possible imbalance.
2654 * Negative imbalances (*we* are more loaded than anyone else) will
2655 * be counted as no imbalance for these purposes -- we can't fix that
2656 * by pulling tasks to us. Be careful of negative numbers as they'll
2657 * appear as very large values with unsigned longs.
2658 */
2659 if (max_load <= busiest_load_per_task)
2660 goto out_balanced;
2661
2662 /*
2663 * In the presence of smp nice balancing, certain scenarios can have
2664 * max load less than avg load(as we skip the groups at or below
2665 * its cpu_power, while calculating max_load..)
2666 */
2667 if (max_load < avg_load) {
2668 *imbalance = 0;
2669 goto small_imbalance;
2670 }
2671
2672 /* Don't want to pull so many tasks that a group would go idle */
2673 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2674
2675 /* How much load to actually move to equalise the imbalance */
2676 *imbalance = min(max_pull * busiest->__cpu_power,
2677 (avg_load - this_load) * this->__cpu_power)
2678 / SCHED_LOAD_SCALE;
2679
2680 /*
2681 * if *imbalance is less than the average load per runnable task
2682 * there is no gaurantee that any tasks will be moved so we'll have
2683 * a think about bumping its value to force at least one task to be
2684 * moved
2685 */
2686 if (*imbalance < busiest_load_per_task) {
2687 unsigned long tmp, pwr_now, pwr_move;
2688 unsigned int imbn;
2689
2690small_imbalance:
2691 pwr_move = pwr_now = 0;
2692 imbn = 2;
2693 if (this_nr_running) {
2694 this_load_per_task /= this_nr_running;
2695 if (busiest_load_per_task > this_load_per_task)
2696 imbn = 1;
2697 } else
2698 this_load_per_task = SCHED_LOAD_SCALE;
2699
2700 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2701 busiest_load_per_task * imbn) {
2702 *imbalance = busiest_load_per_task;
2703 return busiest;
2704 }
2705
2706 /*
2707 * OK, we don't have enough imbalance to justify moving tasks,
2708 * however we may be able to increase total CPU power used by
2709 * moving them.
2710 */
2711
2712 pwr_now += busiest->__cpu_power *
2713 min(busiest_load_per_task, max_load);
2714 pwr_now += this->__cpu_power *
2715 min(this_load_per_task, this_load);
2716 pwr_now /= SCHED_LOAD_SCALE;
2717
2718 /* Amount of load we'd subtract */
2719 tmp = sg_div_cpu_power(busiest,
2720 busiest_load_per_task * SCHED_LOAD_SCALE);
2721 if (max_load > tmp)
2722 pwr_move += busiest->__cpu_power *
2723 min(busiest_load_per_task, max_load - tmp);
2724
2725 /* Amount of load we'd add */
2726 if (max_load * busiest->__cpu_power <
2727 busiest_load_per_task * SCHED_LOAD_SCALE)
2728 tmp = sg_div_cpu_power(this,
2729 max_load * busiest->__cpu_power);
2730 else
2731 tmp = sg_div_cpu_power(this,
2732 busiest_load_per_task * SCHED_LOAD_SCALE);
2733 pwr_move += this->__cpu_power *
2734 min(this_load_per_task, this_load + tmp);
2735 pwr_move /= SCHED_LOAD_SCALE;
2736
2737 /* Move if we gain throughput */
2738 if (pwr_move > pwr_now)
2739 *imbalance = busiest_load_per_task;
2740 }
2741
2742 return busiest;
2743
2744out_balanced:
2745#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2746 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2747 goto ret;
2748
2749 if (this == group_leader && group_leader != group_min) {
2750 *imbalance = min_load_per_task;
2751 return group_min;
2752 }
2753#endif
2754ret:
2755 *imbalance = 0;
2756 return NULL;
2757}
2758
2759/*
2760 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2761 */
2762static struct rq *
2763find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2764 unsigned long imbalance, cpumask_t *cpus)
2765{
2766 struct rq *busiest = NULL, *rq;
2767 unsigned long max_load = 0;
2768 int i;
2769
2770 for_each_cpu_mask(i, group->cpumask) {
2771 unsigned long wl;
2772
2773 if (!cpu_isset(i, *cpus))
2774 continue;
2775
2776 rq = cpu_rq(i);
2777 wl = weighted_cpuload(i);
2778
2779 if (rq->nr_running == 1 && wl > imbalance)
2780 continue;
2781
2782 if (wl > max_load) {
2783 max_load = wl;
2784 busiest = rq;
2785 }
2786 }
2787
2788 return busiest;
2789}
2790
2791/*
2792 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2793 * so long as it is large enough.
2794 */
2795#define MAX_PINNED_INTERVAL 512
2796
2797/*
2798 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2799 * tasks if there is an imbalance.
2800 */
2801static int load_balance(int this_cpu, struct rq *this_rq,
2802 struct sched_domain *sd, enum cpu_idle_type idle,
2803 int *balance)
2804{
2805 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2806 struct sched_group *group;
2807 unsigned long imbalance;
2808 struct rq *busiest;
2809 cpumask_t cpus = CPU_MASK_ALL;
2810 unsigned long flags;
2811
2812 /*
2813 * When power savings policy is enabled for the parent domain, idle
2814 * sibling can pick up load irrespective of busy siblings. In this case,
2815 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2816 * portraying it as CPU_NOT_IDLE.
2817 */
2818 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2819 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2820 sd_idle = 1;
2821
2822 schedstat_inc(sd, lb_count[idle]);
2823
2824redo:
2825 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2826 &cpus, balance);
2827
2828 if (*balance == 0)
2829 goto out_balanced;
2830
2831 if (!group) {
2832 schedstat_inc(sd, lb_nobusyg[idle]);
2833 goto out_balanced;
2834 }
2835
2836 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2837 if (!busiest) {
2838 schedstat_inc(sd, lb_nobusyq[idle]);
2839 goto out_balanced;
2840 }
2841
2842 BUG_ON(busiest == this_rq);
2843
2844 schedstat_add(sd, lb_imbalance[idle], imbalance);
2845
2846 ld_moved = 0;
2847 if (busiest->nr_running > 1) {
2848 /*
2849 * Attempt to move tasks. If find_busiest_group has found
2850 * an imbalance but busiest->nr_running <= 1, the group is
2851 * still unbalanced. ld_moved simply stays zero, so it is
2852 * correctly treated as an imbalance.
2853 */
2854 local_irq_save(flags);
2855 double_rq_lock(this_rq, busiest);
2856 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2857 imbalance, sd, idle, &all_pinned);
2858 double_rq_unlock(this_rq, busiest);
2859 local_irq_restore(flags);
2860
2861 /*
2862 * some other cpu did the load balance for us.
2863 */
2864 if (ld_moved && this_cpu != smp_processor_id())
2865 resched_cpu(this_cpu);
2866
2867 /* All tasks on this runqueue were pinned by CPU affinity */
2868 if (unlikely(all_pinned)) {
2869 cpu_clear(cpu_of(busiest), cpus);
2870 if (!cpus_empty(cpus))
2871 goto redo;
2872 goto out_balanced;
2873 }
2874 }
2875
2876 if (!ld_moved) {
2877 schedstat_inc(sd, lb_failed[idle]);
2878 sd->nr_balance_failed++;
2879
2880 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2881
2882 spin_lock_irqsave(&busiest->lock, flags);
2883
2884 /* don't kick the migration_thread, if the curr
2885 * task on busiest cpu can't be moved to this_cpu
2886 */
2887 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2888 spin_unlock_irqrestore(&busiest->lock, flags);
2889 all_pinned = 1;
2890 goto out_one_pinned;
2891 }
2892
2893 if (!busiest->active_balance) {
2894 busiest->active_balance = 1;
2895 busiest->push_cpu = this_cpu;
2896 active_balance = 1;
2897 }
2898 spin_unlock_irqrestore(&busiest->lock, flags);
2899 if (active_balance)
2900 wake_up_process(busiest->migration_thread);
2901
2902 /*
2903 * We've kicked active balancing, reset the failure
2904 * counter.
2905 */
2906 sd->nr_balance_failed = sd->cache_nice_tries+1;
2907 }
2908 } else
2909 sd->nr_balance_failed = 0;
2910
2911 if (likely(!active_balance)) {
2912 /* We were unbalanced, so reset the balancing interval */
2913 sd->balance_interval = sd->min_interval;
2914 } else {
2915 /*
2916 * If we've begun active balancing, start to back off. This
2917 * case may not be covered by the all_pinned logic if there
2918 * is only 1 task on the busy runqueue (because we don't call
2919 * move_tasks).
2920 */
2921 if (sd->balance_interval < sd->max_interval)
2922 sd->balance_interval *= 2;
2923 }
2924
2925 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2926 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2927 return -1;
2928 return ld_moved;
2929
2930out_balanced:
2931 schedstat_inc(sd, lb_balanced[idle]);
2932
2933 sd->nr_balance_failed = 0;
2934
2935out_one_pinned:
2936 /* tune up the balancing interval */
2937 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2938 (sd->balance_interval < sd->max_interval))
2939 sd->balance_interval *= 2;
2940
2941 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2942 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2943 return -1;
2944 return 0;
2945}
2946
2947/*
2948 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2949 * tasks if there is an imbalance.
2950 *
2951 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2952 * this_rq is locked.
2953 */
2954static int
2955load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2956{
2957 struct sched_group *group;
2958 struct rq *busiest = NULL;
2959 unsigned long imbalance;
2960 int ld_moved = 0;
2961 int sd_idle = 0;
2962 int all_pinned = 0;
2963 cpumask_t cpus = CPU_MASK_ALL;
2964
2965 /*
2966 * When power savings policy is enabled for the parent domain, idle
2967 * sibling can pick up load irrespective of busy siblings. In this case,
2968 * let the state of idle sibling percolate up as IDLE, instead of
2969 * portraying it as CPU_NOT_IDLE.
2970 */
2971 if (sd->flags & SD_SHARE_CPUPOWER &&
2972 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2973 sd_idle = 1;
2974
2975 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2976redo:
2977 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2978 &sd_idle, &cpus, NULL);
2979 if (!group) {
2980 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2981 goto out_balanced;
2982 }
2983
2984 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2985 &cpus);
2986 if (!busiest) {
2987 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2988 goto out_balanced;
2989 }
2990
2991 BUG_ON(busiest == this_rq);
2992
2993 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2994
2995 ld_moved = 0;
2996 if (busiest->nr_running > 1) {
2997 /* Attempt to move tasks */
2998 double_lock_balance(this_rq, busiest);
2999 /* this_rq->clock is already updated */
3000 update_rq_clock(busiest);
3001 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3002 imbalance, sd, CPU_NEWLY_IDLE,
3003 &all_pinned);
3004 spin_unlock(&busiest->lock);
3005
3006 if (unlikely(all_pinned)) {
3007 cpu_clear(cpu_of(busiest), cpus);
3008 if (!cpus_empty(cpus))
3009 goto redo;
3010 }
3011 }
3012
3013 if (!ld_moved) {
3014 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3015 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3016 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3017 return -1;
3018 } else
3019 sd->nr_balance_failed = 0;
3020
3021 return ld_moved;
3022
3023out_balanced:
3024 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3025 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3026 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3027 return -1;
3028 sd->nr_balance_failed = 0;
3029
3030 return 0;
3031}
3032
3033/*
3034 * idle_balance is called by schedule() if this_cpu is about to become
3035 * idle. Attempts to pull tasks from other CPUs.
3036 */
3037static void idle_balance(int this_cpu, struct rq *this_rq)
3038{
3039 struct sched_domain *sd;
3040 int pulled_task = -1;
3041 unsigned long next_balance = jiffies + HZ;
3042
3043 for_each_domain(this_cpu, sd) {
3044 unsigned long interval;
3045
3046 if (!(sd->flags & SD_LOAD_BALANCE))
3047 continue;
3048
3049 if (sd->flags & SD_BALANCE_NEWIDLE)
3050 /* If we've pulled tasks over stop searching: */
3051 pulled_task = load_balance_newidle(this_cpu,
3052 this_rq, sd);
3053
3054 interval = msecs_to_jiffies(sd->balance_interval);
3055 if (time_after(next_balance, sd->last_balance + interval))
3056 next_balance = sd->last_balance + interval;
3057 if (pulled_task)
3058 break;
3059 }
3060 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3061 /*
3062 * We are going idle. next_balance may be set based on
3063 * a busy processor. So reset next_balance.
3064 */
3065 this_rq->next_balance = next_balance;
3066 }
3067}
3068
3069/*
3070 * active_load_balance is run by migration threads. It pushes running tasks
3071 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3072 * running on each physical CPU where possible, and avoids physical /
3073 * logical imbalances.
3074 *
3075 * Called with busiest_rq locked.
3076 */
3077static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3078{
3079 int target_cpu = busiest_rq->push_cpu;
3080 struct sched_domain *sd;
3081 struct rq *target_rq;
3082
3083 /* Is there any task to move? */
3084 if (busiest_rq->nr_running <= 1)
3085 return;
3086
3087 target_rq = cpu_rq(target_cpu);
3088
3089 /*
3090 * This condition is "impossible", if it occurs
3091 * we need to fix it. Originally reported by
3092 * Bjorn Helgaas on a 128-cpu setup.
3093 */
3094 BUG_ON(busiest_rq == target_rq);
3095
3096 /* move a task from busiest_rq to target_rq */
3097 double_lock_balance(busiest_rq, target_rq);
3098 update_rq_clock(busiest_rq);
3099 update_rq_clock(target_rq);
3100
3101 /* Search for an sd spanning us and the target CPU. */
3102 for_each_domain(target_cpu, sd) {
3103 if ((sd->flags & SD_LOAD_BALANCE) &&
3104 cpu_isset(busiest_cpu, sd->span))
3105 break;
3106 }
3107
3108 if (likely(sd)) {
3109 schedstat_inc(sd, alb_count);
3110
3111 if (move_one_task(target_rq, target_cpu, busiest_rq,
3112 sd, CPU_IDLE))
3113 schedstat_inc(sd, alb_pushed);
3114 else
3115 schedstat_inc(sd, alb_failed);
3116 }
3117 spin_unlock(&target_rq->lock);
3118}
3119
3120#ifdef CONFIG_NO_HZ
3121static struct {
3122 atomic_t load_balancer;
3123 cpumask_t cpu_mask;
3124} nohz ____cacheline_aligned = {
3125 .load_balancer = ATOMIC_INIT(-1),
3126 .cpu_mask = CPU_MASK_NONE,
3127};
3128
3129/*
3130 * This routine will try to nominate the ilb (idle load balancing)
3131 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3132 * load balancing on behalf of all those cpus. If all the cpus in the system
3133 * go into this tickless mode, then there will be no ilb owner (as there is
3134 * no need for one) and all the cpus will sleep till the next wakeup event
3135 * arrives...
3136 *
3137 * For the ilb owner, tick is not stopped. And this tick will be used
3138 * for idle load balancing. ilb owner will still be part of
3139 * nohz.cpu_mask..
3140 *
3141 * While stopping the tick, this cpu will become the ilb owner if there
3142 * is no other owner. And will be the owner till that cpu becomes busy
3143 * or if all cpus in the system stop their ticks at which point
3144 * there is no need for ilb owner.
3145 *
3146 * When the ilb owner becomes busy, it nominates another owner, during the
3147 * next busy scheduler_tick()
3148 */
3149int select_nohz_load_balancer(int stop_tick)
3150{
3151 int cpu = smp_processor_id();
3152
3153 if (stop_tick) {
3154 cpu_set(cpu, nohz.cpu_mask);
3155 cpu_rq(cpu)->in_nohz_recently = 1;
3156
3157 /*
3158 * If we are going offline and still the leader, give up!
3159 */
3160 if (cpu_is_offline(cpu) &&
3161 atomic_read(&nohz.load_balancer) == cpu) {
3162 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3163 BUG();
3164 return 0;
3165 }
3166
3167 /* time for ilb owner also to sleep */
3168 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3169 if (atomic_read(&nohz.load_balancer) == cpu)
3170 atomic_set(&nohz.load_balancer, -1);
3171 return 0;
3172 }
3173
3174 if (atomic_read(&nohz.load_balancer) == -1) {
3175 /* make me the ilb owner */
3176 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3177 return 1;
3178 } else if (atomic_read(&nohz.load_balancer) == cpu)
3179 return 1;
3180 } else {
3181 if (!cpu_isset(cpu, nohz.cpu_mask))
3182 return 0;
3183
3184 cpu_clear(cpu, nohz.cpu_mask);
3185
3186 if (atomic_read(&nohz.load_balancer) == cpu)
3187 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3188 BUG();
3189 }
3190 return 0;
3191}
3192#endif
3193
3194static DEFINE_SPINLOCK(balancing);
3195
3196/*
3197 * It checks each scheduling domain to see if it is due to be balanced,
3198 * and initiates a balancing operation if so.
3199 *
3200 * Balancing parameters are set up in arch_init_sched_domains.
3201 */
3202static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3203{
3204 int balance = 1;
3205 struct rq *rq = cpu_rq(cpu);
3206 unsigned long interval;
3207 struct sched_domain *sd;
3208 /* Earliest time when we have to do rebalance again */
3209 unsigned long next_balance = jiffies + 60*HZ;
3210 int update_next_balance = 0;
3211
3212 for_each_domain(cpu, sd) {
3213 if (!(sd->flags & SD_LOAD_BALANCE))
3214 continue;
3215
3216 interval = sd->balance_interval;
3217 if (idle != CPU_IDLE)
3218 interval *= sd->busy_factor;
3219
3220 /* scale ms to jiffies */
3221 interval = msecs_to_jiffies(interval);
3222 if (unlikely(!interval))
3223 interval = 1;
3224 if (interval > HZ*NR_CPUS/10)
3225 interval = HZ*NR_CPUS/10;
3226
3227
3228 if (sd->flags & SD_SERIALIZE) {
3229 if (!spin_trylock(&balancing))
3230 goto out;
3231 }
3232
3233 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3234 if (load_balance(cpu, rq, sd, idle, &balance)) {
3235 /*
3236 * We've pulled tasks over so either we're no
3237 * longer idle, or one of our SMT siblings is
3238 * not idle.
3239 */
3240 idle = CPU_NOT_IDLE;
3241 }
3242 sd->last_balance = jiffies;
3243 }
3244 if (sd->flags & SD_SERIALIZE)
3245 spin_unlock(&balancing);
3246out:
3247 if (time_after(next_balance, sd->last_balance + interval)) {
3248 next_balance = sd->last_balance + interval;
3249 update_next_balance = 1;
3250 }
3251
3252 /*
3253 * Stop the load balance at this level. There is another
3254 * CPU in our sched group which is doing load balancing more
3255 * actively.
3256 */
3257 if (!balance)
3258 break;
3259 }
3260
3261 /*
3262 * next_balance will be updated only when there is a need.
3263 * When the cpu is attached to null domain for ex, it will not be
3264 * updated.
3265 */
3266 if (likely(update_next_balance))
3267 rq->next_balance = next_balance;
3268}
3269
3270/*
3271 * run_rebalance_domains is triggered when needed from the scheduler tick.
3272 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3273 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3274 */
3275static void run_rebalance_domains(struct softirq_action *h)
3276{
3277 int this_cpu = smp_processor_id();
3278 struct rq *this_rq = cpu_rq(this_cpu);
3279 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3280 CPU_IDLE : CPU_NOT_IDLE;
3281
3282 rebalance_domains(this_cpu, idle);
3283
3284#ifdef CONFIG_NO_HZ
3285 /*
3286 * If this cpu is the owner for idle load balancing, then do the
3287 * balancing on behalf of the other idle cpus whose ticks are
3288 * stopped.
3289 */
3290 if (this_rq->idle_at_tick &&
3291 atomic_read(&nohz.load_balancer) == this_cpu) {
3292 cpumask_t cpus = nohz.cpu_mask;
3293 struct rq *rq;
3294 int balance_cpu;
3295
3296 cpu_clear(this_cpu, cpus);
3297 for_each_cpu_mask(balance_cpu, cpus) {
3298 /*
3299 * If this cpu gets work to do, stop the load balancing
3300 * work being done for other cpus. Next load
3301 * balancing owner will pick it up.
3302 */
3303 if (need_resched())
3304 break;
3305
3306 rebalance_domains(balance_cpu, CPU_IDLE);
3307
3308 rq = cpu_rq(balance_cpu);
3309 if (time_after(this_rq->next_balance, rq->next_balance))
3310 this_rq->next_balance = rq->next_balance;
3311 }
3312 }
3313#endif
3314}
3315
3316/*
3317 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3318 *
3319 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3320 * idle load balancing owner or decide to stop the periodic load balancing,
3321 * if the whole system is idle.
3322 */
3323static inline void trigger_load_balance(struct rq *rq, int cpu)
3324{
3325#ifdef CONFIG_NO_HZ
3326 /*
3327 * If we were in the nohz mode recently and busy at the current
3328 * scheduler tick, then check if we need to nominate new idle
3329 * load balancer.
3330 */
3331 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3332 rq->in_nohz_recently = 0;
3333
3334 if (atomic_read(&nohz.load_balancer) == cpu) {
3335 cpu_clear(cpu, nohz.cpu_mask);
3336 atomic_set(&nohz.load_balancer, -1);
3337 }
3338
3339 if (atomic_read(&nohz.load_balancer) == -1) {
3340 /*
3341 * simple selection for now: Nominate the
3342 * first cpu in the nohz list to be the next
3343 * ilb owner.
3344 *
3345 * TBD: Traverse the sched domains and nominate
3346 * the nearest cpu in the nohz.cpu_mask.
3347 */
3348 int ilb = first_cpu(nohz.cpu_mask);
3349
3350 if (ilb != NR_CPUS)
3351 resched_cpu(ilb);
3352 }
3353 }
3354
3355 /*
3356 * If this cpu is idle and doing idle load balancing for all the
3357 * cpus with ticks stopped, is it time for that to stop?
3358 */
3359 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3360 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3361 resched_cpu(cpu);
3362 return;
3363 }
3364
3365 /*
3366 * If this cpu is idle and the idle load balancing is done by
3367 * someone else, then no need raise the SCHED_SOFTIRQ
3368 */
3369 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3370 cpu_isset(cpu, nohz.cpu_mask))
3371 return;
3372#endif
3373 if (time_after_eq(jiffies, rq->next_balance))
3374 raise_softirq(SCHED_SOFTIRQ);
3375}
3376
3377#else /* CONFIG_SMP */
3378
3379/*
3380 * on UP we do not need to balance between CPUs:
3381 */
3382static inline void idle_balance(int cpu, struct rq *rq)
3383{
3384}
3385
3386#endif
3387
3388DEFINE_PER_CPU(struct kernel_stat, kstat);
3389
3390EXPORT_PER_CPU_SYMBOL(kstat);
3391
3392/*
3393 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3394 * that have not yet been banked in case the task is currently running.
3395 */
3396unsigned long long task_sched_runtime(struct task_struct *p)
3397{
3398 unsigned long flags;
3399 u64 ns, delta_exec;
3400 struct rq *rq;
3401
3402 rq = task_rq_lock(p, &flags);
3403 ns = p->se.sum_exec_runtime;
3404 if (task_current(rq, p)) {
3405 update_rq_clock(rq);
3406 delta_exec = rq->clock - p->se.exec_start;
3407 if ((s64)delta_exec > 0)
3408 ns += delta_exec;
3409 }
3410 task_rq_unlock(rq, &flags);
3411
3412 return ns;
3413}
3414
3415/*
3416 * Account user cpu time to a process.
3417 * @p: the process that the cpu time gets accounted to
3418 * @cputime: the cpu time spent in user space since the last update
3419 */
3420void account_user_time(struct task_struct *p, cputime_t cputime)
3421{
3422 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3423 cputime64_t tmp;
3424
3425 p->utime = cputime_add(p->utime, cputime);
3426
3427 /* Add user time to cpustat. */
3428 tmp = cputime_to_cputime64(cputime);
3429 if (TASK_NICE(p) > 0)
3430 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3431 else
3432 cpustat->user = cputime64_add(cpustat->user, tmp);
3433}
3434
3435/*
3436 * Account guest cpu time to a process.
3437 * @p: the process that the cpu time gets accounted to
3438 * @cputime: the cpu time spent in virtual machine since the last update
3439 */
3440static void account_guest_time(struct task_struct *p, cputime_t cputime)
3441{
3442 cputime64_t tmp;
3443 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3444
3445 tmp = cputime_to_cputime64(cputime);
3446
3447 p->utime = cputime_add(p->utime, cputime);
3448 p->gtime = cputime_add(p->gtime, cputime);
3449
3450 cpustat->user = cputime64_add(cpustat->user, tmp);
3451 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3452}
3453
3454/*
3455 * Account scaled user cpu time to a process.
3456 * @p: the process that the cpu time gets accounted to
3457 * @cputime: the cpu time spent in user space since the last update
3458 */
3459void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3460{
3461 p->utimescaled = cputime_add(p->utimescaled, cputime);
3462}
3463
3464/*
3465 * Account system cpu time to a process.
3466 * @p: the process that the cpu time gets accounted to
3467 * @hardirq_offset: the offset to subtract from hardirq_count()
3468 * @cputime: the cpu time spent in kernel space since the last update
3469 */
3470void account_system_time(struct task_struct *p, int hardirq_offset,
3471 cputime_t cputime)
3472{
3473 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3474 struct rq *rq = this_rq();
3475 cputime64_t tmp;
3476
3477 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3478 return account_guest_time(p, cputime);
3479
3480 p->stime = cputime_add(p->stime, cputime);
3481
3482 /* Add system time to cpustat. */
3483 tmp = cputime_to_cputime64(cputime);
3484 if (hardirq_count() - hardirq_offset)
3485 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3486 else if (softirq_count())
3487 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3488 else if (p != rq->idle)
3489 cpustat->system = cputime64_add(cpustat->system, tmp);
3490 else if (atomic_read(&rq->nr_iowait) > 0)
3491 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3492 else
3493 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3494 /* Account for system time used */
3495 acct_update_integrals(p);
3496}
3497
3498/*
3499 * Account scaled system cpu time to a process.
3500 * @p: the process that the cpu time gets accounted to
3501 * @hardirq_offset: the offset to subtract from hardirq_count()
3502 * @cputime: the cpu time spent in kernel space since the last update
3503 */
3504void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3505{
3506 p->stimescaled = cputime_add(p->stimescaled, cputime);
3507}
3508
3509/*
3510 * Account for involuntary wait time.
3511 * @p: the process from which the cpu time has been stolen
3512 * @steal: the cpu time spent in involuntary wait
3513 */
3514void account_steal_time(struct task_struct *p, cputime_t steal)
3515{
3516 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3517 cputime64_t tmp = cputime_to_cputime64(steal);
3518 struct rq *rq = this_rq();
3519
3520 if (p == rq->idle) {
3521 p->stime = cputime_add(p->stime, steal);
3522 if (atomic_read(&rq->nr_iowait) > 0)
3523 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3524 else
3525 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3526 } else
3527 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3528}
3529
3530/*
3531 * This function gets called by the timer code, with HZ frequency.
3532 * We call it with interrupts disabled.
3533 *
3534 * It also gets called by the fork code, when changing the parent's
3535 * timeslices.
3536 */
3537void scheduler_tick(void)
3538{
3539 int cpu = smp_processor_id();
3540 struct rq *rq = cpu_rq(cpu);
3541 struct task_struct *curr = rq->curr;
3542 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3543
3544 spin_lock(&rq->lock);
3545 __update_rq_clock(rq);
3546 /*
3547 * Let rq->clock advance by at least TICK_NSEC:
3548 */
3549 if (unlikely(rq->clock < next_tick))
3550 rq->clock = next_tick;
3551 rq->tick_timestamp = rq->clock;
3552 update_cpu_load(rq);
3553 if (curr != rq->idle) /* FIXME: needed? */
3554 curr->sched_class->task_tick(rq, curr);
3555 spin_unlock(&rq->lock);
3556
3557#ifdef CONFIG_SMP
3558 rq->idle_at_tick = idle_cpu(cpu);
3559 trigger_load_balance(rq, cpu);
3560#endif
3561}
3562
3563#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3564
3565void fastcall add_preempt_count(int val)
3566{
3567 /*
3568 * Underflow?
3569 */
3570 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3571 return;
3572 preempt_count() += val;
3573 /*
3574 * Spinlock count overflowing soon?
3575 */
3576 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3577 PREEMPT_MASK - 10);
3578}
3579EXPORT_SYMBOL(add_preempt_count);
3580
3581void fastcall sub_preempt_count(int val)
3582{
3583 /*
3584 * Underflow?
3585 */
3586 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3587 return;
3588 /*
3589 * Is the spinlock portion underflowing?
3590 */
3591 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3592 !(preempt_count() & PREEMPT_MASK)))
3593 return;
3594
3595 preempt_count() -= val;
3596}
3597EXPORT_SYMBOL(sub_preempt_count);
3598
3599#endif
3600
3601/*
3602 * Print scheduling while atomic bug:
3603 */
3604static noinline void __schedule_bug(struct task_struct *prev)
3605{
3606 struct pt_regs *regs = get_irq_regs();
3607
3608 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3609 prev->comm, prev->pid, preempt_count());
3610
3611 debug_show_held_locks(prev);
3612 if (irqs_disabled())
3613 print_irqtrace_events(prev);
3614
3615 if (regs)
3616 show_regs(regs);
3617 else
3618 dump_stack();
3619}
3620
3621/*
3622 * Various schedule()-time debugging checks and statistics:
3623 */
3624static inline void schedule_debug(struct task_struct *prev)
3625{
3626 /*
3627 * Test if we are atomic. Since do_exit() needs to call into
3628 * schedule() atomically, we ignore that path for now.
3629 * Otherwise, whine if we are scheduling when we should not be.
3630 */
3631 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3632 __schedule_bug(prev);
3633
3634 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3635
3636 schedstat_inc(this_rq(), sched_count);
3637#ifdef CONFIG_SCHEDSTATS
3638 if (unlikely(prev->lock_depth >= 0)) {
3639 schedstat_inc(this_rq(), bkl_count);
3640 schedstat_inc(prev, sched_info.bkl_count);
3641 }
3642#endif
3643}
3644
3645/*
3646 * Pick up the highest-prio task:
3647 */
3648static inline struct task_struct *
3649pick_next_task(struct rq *rq, struct task_struct *prev)
3650{
3651 const struct sched_class *class;
3652 struct task_struct *p;
3653
3654 /*
3655 * Optimization: we know that if all tasks are in
3656 * the fair class we can call that function directly:
3657 */
3658 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3659 p = fair_sched_class.pick_next_task(rq);
3660 if (likely(p))
3661 return p;
3662 }
3663
3664 class = sched_class_highest;
3665 for ( ; ; ) {
3666 p = class->pick_next_task(rq);
3667 if (p)
3668 return p;
3669 /*
3670 * Will never be NULL as the idle class always
3671 * returns a non-NULL p:
3672 */
3673 class = class->next;
3674 }
3675}
3676
3677/*
3678 * schedule() is the main scheduler function.
3679 */
3680asmlinkage void __sched schedule(void)
3681{
3682 struct task_struct *prev, *next;
3683 long *switch_count;
3684 struct rq *rq;
3685 int cpu;
3686
3687need_resched:
3688 preempt_disable();
3689 cpu = smp_processor_id();
3690 rq = cpu_rq(cpu);
3691 rcu_qsctr_inc(cpu);
3692 prev = rq->curr;
3693 switch_count = &prev->nivcsw;
3694
3695 release_kernel_lock(prev);
3696need_resched_nonpreemptible:
3697
3698 schedule_debug(prev);
3699
3700 /*
3701 * Do the rq-clock update outside the rq lock:
3702 */
3703 local_irq_disable();
3704 __update_rq_clock(rq);
3705 spin_lock(&rq->lock);
3706 clear_tsk_need_resched(prev);
3707
3708 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3709 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3710 unlikely(signal_pending(prev)))) {
3711 prev->state = TASK_RUNNING;
3712 } else {
3713 deactivate_task(rq, prev, 1);
3714 }
3715 switch_count = &prev->nvcsw;
3716 }
3717
3718 if (unlikely(!rq->nr_running))
3719 idle_balance(cpu, rq);
3720
3721 prev->sched_class->put_prev_task(rq, prev);
3722 next = pick_next_task(rq, prev);
3723
3724 sched_info_switch(prev, next);
3725
3726 if (likely(prev != next)) {
3727 rq->nr_switches++;
3728 rq->curr = next;
3729 ++*switch_count;
3730
3731 context_switch(rq, prev, next); /* unlocks the rq */
3732 } else
3733 spin_unlock_irq(&rq->lock);
3734
3735 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3736 cpu = smp_processor_id();
3737 rq = cpu_rq(cpu);
3738 goto need_resched_nonpreemptible;
3739 }
3740 preempt_enable_no_resched();
3741 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3742 goto need_resched;
3743}
3744EXPORT_SYMBOL(schedule);
3745
3746#ifdef CONFIG_PREEMPT
3747/*
3748 * this is the entry point to schedule() from in-kernel preemption
3749 * off of preempt_enable. Kernel preemptions off return from interrupt
3750 * occur there and call schedule directly.
3751 */
3752asmlinkage void __sched preempt_schedule(void)
3753{
3754 struct thread_info *ti = current_thread_info();
3755#ifdef CONFIG_PREEMPT_BKL
3756 struct task_struct *task = current;
3757 int saved_lock_depth;
3758#endif
3759 /*
3760 * If there is a non-zero preempt_count or interrupts are disabled,
3761 * we do not want to preempt the current task. Just return..
3762 */
3763 if (likely(ti->preempt_count || irqs_disabled()))
3764 return;
3765
3766 do {
3767 add_preempt_count(PREEMPT_ACTIVE);
3768
3769 /*
3770 * We keep the big kernel semaphore locked, but we
3771 * clear ->lock_depth so that schedule() doesnt
3772 * auto-release the semaphore:
3773 */
3774#ifdef CONFIG_PREEMPT_BKL
3775 saved_lock_depth = task->lock_depth;
3776 task->lock_depth = -1;
3777#endif
3778 schedule();
3779#ifdef CONFIG_PREEMPT_BKL
3780 task->lock_depth = saved_lock_depth;
3781#endif
3782 sub_preempt_count(PREEMPT_ACTIVE);
3783
3784 /*
3785 * Check again in case we missed a preemption opportunity
3786 * between schedule and now.
3787 */
3788 barrier();
3789 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3790}
3791EXPORT_SYMBOL(preempt_schedule);
3792
3793/*
3794 * this is the entry point to schedule() from kernel preemption
3795 * off of irq context.
3796 * Note, that this is called and return with irqs disabled. This will
3797 * protect us against recursive calling from irq.
3798 */
3799asmlinkage void __sched preempt_schedule_irq(void)
3800{
3801 struct thread_info *ti = current_thread_info();
3802#ifdef CONFIG_PREEMPT_BKL
3803 struct task_struct *task = current;
3804 int saved_lock_depth;
3805#endif
3806 /* Catch callers which need to be fixed */
3807 BUG_ON(ti->preempt_count || !irqs_disabled());
3808
3809 do {
3810 add_preempt_count(PREEMPT_ACTIVE);
3811
3812 /*
3813 * We keep the big kernel semaphore locked, but we
3814 * clear ->lock_depth so that schedule() doesnt
3815 * auto-release the semaphore:
3816 */
3817#ifdef CONFIG_PREEMPT_BKL
3818 saved_lock_depth = task->lock_depth;
3819 task->lock_depth = -1;
3820#endif
3821 local_irq_enable();
3822 schedule();
3823 local_irq_disable();
3824#ifdef CONFIG_PREEMPT_BKL
3825 task->lock_depth = saved_lock_depth;
3826#endif
3827 sub_preempt_count(PREEMPT_ACTIVE);
3828
3829 /*
3830 * Check again in case we missed a preemption opportunity
3831 * between schedule and now.
3832 */
3833 barrier();
3834 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3835}
3836
3837#endif /* CONFIG_PREEMPT */
3838
3839int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3840 void *key)
3841{
3842 return try_to_wake_up(curr->private, mode, sync);
3843}
3844EXPORT_SYMBOL(default_wake_function);
3845
3846/*
3847 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3848 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3849 * number) then we wake all the non-exclusive tasks and one exclusive task.
3850 *
3851 * There are circumstances in which we can try to wake a task which has already
3852 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3853 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3854 */
3855static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3856 int nr_exclusive, int sync, void *key)
3857{
3858 wait_queue_t *curr, *next;
3859
3860 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3861 unsigned flags = curr->flags;
3862
3863 if (curr->func(curr, mode, sync, key) &&
3864 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3865 break;
3866 }
3867}
3868
3869/**
3870 * __wake_up - wake up threads blocked on a waitqueue.
3871 * @q: the waitqueue
3872 * @mode: which threads
3873 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3874 * @key: is directly passed to the wakeup function
3875 */
3876void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3877 int nr_exclusive, void *key)
3878{
3879 unsigned long flags;
3880
3881 spin_lock_irqsave(&q->lock, flags);
3882 __wake_up_common(q, mode, nr_exclusive, 0, key);
3883 spin_unlock_irqrestore(&q->lock, flags);
3884}
3885EXPORT_SYMBOL(__wake_up);
3886
3887/*
3888 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3889 */
3890void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3891{
3892 __wake_up_common(q, mode, 1, 0, NULL);
3893}
3894
3895/**
3896 * __wake_up_sync - wake up threads blocked on a waitqueue.
3897 * @q: the waitqueue
3898 * @mode: which threads
3899 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3900 *
3901 * The sync wakeup differs that the waker knows that it will schedule
3902 * away soon, so while the target thread will be woken up, it will not
3903 * be migrated to another CPU - ie. the two threads are 'synchronized'
3904 * with each other. This can prevent needless bouncing between CPUs.
3905 *
3906 * On UP it can prevent extra preemption.
3907 */
3908void fastcall
3909__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3910{
3911 unsigned long flags;
3912 int sync = 1;
3913
3914 if (unlikely(!q))
3915 return;
3916
3917 if (unlikely(!nr_exclusive))
3918 sync = 0;
3919
3920 spin_lock_irqsave(&q->lock, flags);
3921 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3922 spin_unlock_irqrestore(&q->lock, flags);
3923}
3924EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3925
3926void complete(struct completion *x)
3927{
3928 unsigned long flags;
3929
3930 spin_lock_irqsave(&x->wait.lock, flags);
3931 x->done++;
3932 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3933 1, 0, NULL);
3934 spin_unlock_irqrestore(&x->wait.lock, flags);
3935}
3936EXPORT_SYMBOL(complete);
3937
3938void complete_all(struct completion *x)
3939{
3940 unsigned long flags;
3941
3942 spin_lock_irqsave(&x->wait.lock, flags);
3943 x->done += UINT_MAX/2;
3944 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3945 0, 0, NULL);
3946 spin_unlock_irqrestore(&x->wait.lock, flags);
3947}
3948EXPORT_SYMBOL(complete_all);
3949
3950static inline long __sched
3951do_wait_for_common(struct completion *x, long timeout, int state)
3952{
3953 if (!x->done) {
3954 DECLARE_WAITQUEUE(wait, current);
3955
3956 wait.flags |= WQ_FLAG_EXCLUSIVE;
3957 __add_wait_queue_tail(&x->wait, &wait);
3958 do {
3959 if (state == TASK_INTERRUPTIBLE &&
3960 signal_pending(current)) {
3961 __remove_wait_queue(&x->wait, &wait);
3962 return -ERESTARTSYS;
3963 }
3964 __set_current_state(state);
3965 spin_unlock_irq(&x->wait.lock);
3966 timeout = schedule_timeout(timeout);
3967 spin_lock_irq(&x->wait.lock);
3968 if (!timeout) {
3969 __remove_wait_queue(&x->wait, &wait);
3970 return timeout;
3971 }
3972 } while (!x->done);
3973 __remove_wait_queue(&x->wait, &wait);
3974 }
3975 x->done--;
3976 return timeout;
3977}
3978
3979static long __sched
3980wait_for_common(struct completion *x, long timeout, int state)
3981{
3982 might_sleep();
3983
3984 spin_lock_irq(&x->wait.lock);
3985 timeout = do_wait_for_common(x, timeout, state);
3986 spin_unlock_irq(&x->wait.lock);
3987 return timeout;
3988}
3989
3990void __sched wait_for_completion(struct completion *x)
3991{
3992 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3993}
3994EXPORT_SYMBOL(wait_for_completion);
3995
3996unsigned long __sched
3997wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3998{
3999 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4000}
4001EXPORT_SYMBOL(wait_for_completion_timeout);
4002
4003int __sched wait_for_completion_interruptible(struct completion *x)
4004{
4005 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4006 if (t == -ERESTARTSYS)
4007 return t;
4008 return 0;
4009}
4010EXPORT_SYMBOL(wait_for_completion_interruptible);
4011
4012unsigned long __sched
4013wait_for_completion_interruptible_timeout(struct completion *x,
4014 unsigned long timeout)
4015{
4016 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4017}
4018EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4019
4020static long __sched
4021sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4022{
4023 unsigned long flags;
4024 wait_queue_t wait;
4025
4026 init_waitqueue_entry(&wait, current);
4027
4028 __set_current_state(state);
4029
4030 spin_lock_irqsave(&q->lock, flags);
4031 __add_wait_queue(q, &wait);
4032 spin_unlock(&q->lock);
4033 timeout = schedule_timeout(timeout);
4034 spin_lock_irq(&q->lock);
4035 __remove_wait_queue(q, &wait);
4036 spin_unlock_irqrestore(&q->lock, flags);
4037
4038 return timeout;
4039}
4040
4041void __sched interruptible_sleep_on(wait_queue_head_t *q)
4042{
4043 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4044}
4045EXPORT_SYMBOL(interruptible_sleep_on);
4046
4047long __sched
4048interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4049{
4050 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4051}
4052EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4053
4054void __sched sleep_on(wait_queue_head_t *q)
4055{
4056 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4057}
4058EXPORT_SYMBOL(sleep_on);
4059
4060long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4061{
4062 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4063}
4064EXPORT_SYMBOL(sleep_on_timeout);
4065
4066#ifdef CONFIG_RT_MUTEXES
4067
4068/*
4069 * rt_mutex_setprio - set the current priority of a task
4070 * @p: task
4071 * @prio: prio value (kernel-internal form)
4072 *
4073 * This function changes the 'effective' priority of a task. It does
4074 * not touch ->normal_prio like __setscheduler().
4075 *
4076 * Used by the rt_mutex code to implement priority inheritance logic.
4077 */
4078void rt_mutex_setprio(struct task_struct *p, int prio)
4079{
4080 unsigned long flags;
4081 int oldprio, on_rq, running;
4082 struct rq *rq;
4083
4084 BUG_ON(prio < 0 || prio > MAX_PRIO);
4085
4086 rq = task_rq_lock(p, &flags);
4087 update_rq_clock(rq);
4088
4089 oldprio = p->prio;
4090 on_rq = p->se.on_rq;
4091 running = task_current(rq, p);
4092 if (on_rq) {
4093 dequeue_task(rq, p, 0);
4094 if (running)
4095 p->sched_class->put_prev_task(rq, p);
4096 }
4097
4098 if (rt_prio(prio))
4099 p->sched_class = &rt_sched_class;
4100 else
4101 p->sched_class = &fair_sched_class;
4102
4103 p->prio = prio;
4104
4105 if (on_rq) {
4106 if (running)
4107 p->sched_class->set_curr_task(rq);
4108 enqueue_task(rq, p, 0);
4109 /*
4110 * Reschedule if we are currently running on this runqueue and
4111 * our priority decreased, or if we are not currently running on
4112 * this runqueue and our priority is higher than the current's
4113 */
4114 if (running) {
4115 if (p->prio > oldprio)
4116 resched_task(rq->curr);
4117 } else {
4118 check_preempt_curr(rq, p);
4119 }
4120 }
4121 task_rq_unlock(rq, &flags);
4122}
4123
4124#endif
4125
4126void set_user_nice(struct task_struct *p, long nice)
4127{
4128 int old_prio, delta, on_rq;
4129 unsigned long flags;
4130 struct rq *rq;
4131
4132 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4133 return;
4134 /*
4135 * We have to be careful, if called from sys_setpriority(),
4136 * the task might be in the middle of scheduling on another CPU.
4137 */
4138 rq = task_rq_lock(p, &flags);
4139 update_rq_clock(rq);
4140 /*
4141 * The RT priorities are set via sched_setscheduler(), but we still
4142 * allow the 'normal' nice value to be set - but as expected
4143 * it wont have any effect on scheduling until the task is
4144 * SCHED_FIFO/SCHED_RR:
4145 */
4146 if (task_has_rt_policy(p)) {
4147 p->static_prio = NICE_TO_PRIO(nice);
4148 goto out_unlock;
4149 }
4150 on_rq = p->se.on_rq;
4151 if (on_rq)
4152 dequeue_task(rq, p, 0);
4153
4154 p->static_prio = NICE_TO_PRIO(nice);
4155 set_load_weight(p);
4156 old_prio = p->prio;
4157 p->prio = effective_prio(p);
4158 delta = p->prio - old_prio;
4159
4160 if (on_rq) {
4161 enqueue_task(rq, p, 0);
4162 /*
4163 * If the task increased its priority or is running and
4164 * lowered its priority, then reschedule its CPU:
4165 */
4166 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4167 resched_task(rq->curr);
4168 }
4169out_unlock:
4170 task_rq_unlock(rq, &flags);
4171}
4172EXPORT_SYMBOL(set_user_nice);
4173
4174/*
4175 * can_nice - check if a task can reduce its nice value
4176 * @p: task
4177 * @nice: nice value
4178 */
4179int can_nice(const struct task_struct *p, const int nice)
4180{
4181 /* convert nice value [19,-20] to rlimit style value [1,40] */
4182 int nice_rlim = 20 - nice;
4183
4184 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4185 capable(CAP_SYS_NICE));
4186}
4187
4188#ifdef __ARCH_WANT_SYS_NICE
4189
4190/*
4191 * sys_nice - change the priority of the current process.
4192 * @increment: priority increment
4193 *
4194 * sys_setpriority is a more generic, but much slower function that
4195 * does similar things.
4196 */
4197asmlinkage long sys_nice(int increment)
4198{
4199 long nice, retval;
4200
4201 /*
4202 * Setpriority might change our priority at the same moment.
4203 * We don't have to worry. Conceptually one call occurs first
4204 * and we have a single winner.
4205 */
4206 if (increment < -40)
4207 increment = -40;
4208 if (increment > 40)
4209 increment = 40;
4210
4211 nice = PRIO_TO_NICE(current->static_prio) + increment;
4212 if (nice < -20)
4213 nice = -20;
4214 if (nice > 19)
4215 nice = 19;
4216
4217 if (increment < 0 && !can_nice(current, nice))
4218 return -EPERM;
4219
4220 retval = security_task_setnice(current, nice);
4221 if (retval)
4222 return retval;
4223
4224 set_user_nice(current, nice);
4225 return 0;
4226}
4227
4228#endif
4229
4230/**
4231 * task_prio - return the priority value of a given task.
4232 * @p: the task in question.
4233 *
4234 * This is the priority value as seen by users in /proc.
4235 * RT tasks are offset by -200. Normal tasks are centered
4236 * around 0, value goes from -16 to +15.
4237 */
4238int task_prio(const struct task_struct *p)
4239{
4240 return p->prio - MAX_RT_PRIO;
4241}
4242
4243/**
4244 * task_nice - return the nice value of a given task.
4245 * @p: the task in question.
4246 */
4247int task_nice(const struct task_struct *p)
4248{
4249 return TASK_NICE(p);
4250}
4251EXPORT_SYMBOL_GPL(task_nice);
4252
4253/**
4254 * idle_cpu - is a given cpu idle currently?
4255 * @cpu: the processor in question.
4256 */
4257int idle_cpu(int cpu)
4258{
4259 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4260}
4261
4262/**
4263 * idle_task - return the idle task for a given cpu.
4264 * @cpu: the processor in question.
4265 */
4266struct task_struct *idle_task(int cpu)
4267{
4268 return cpu_rq(cpu)->idle;
4269}
4270
4271/**
4272 * find_process_by_pid - find a process with a matching PID value.
4273 * @pid: the pid in question.
4274 */
4275static struct task_struct *find_process_by_pid(pid_t pid)
4276{
4277 return pid ? find_task_by_vpid(pid) : current;
4278}
4279
4280/* Actually do priority change: must hold rq lock. */
4281static void
4282__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4283{
4284 BUG_ON(p->se.on_rq);
4285
4286 p->policy = policy;
4287 switch (p->policy) {
4288 case SCHED_NORMAL:
4289 case SCHED_BATCH:
4290 case SCHED_IDLE:
4291 p->sched_class = &fair_sched_class;
4292 break;
4293 case SCHED_FIFO:
4294 case SCHED_RR:
4295 p->sched_class = &rt_sched_class;
4296 break;
4297 }
4298
4299 p->rt_priority = prio;
4300 p->normal_prio = normal_prio(p);
4301 /* we are holding p->pi_lock already */
4302 p->prio = rt_mutex_getprio(p);
4303 set_load_weight(p);
4304}
4305
4306/**
4307 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4308 * @p: the task in question.
4309 * @policy: new policy.
4310 * @param: structure containing the new RT priority.
4311 *
4312 * NOTE that the task may be already dead.
4313 */
4314int sched_setscheduler(struct task_struct *p, int policy,
4315 struct sched_param *param)
4316{
4317 int retval, oldprio, oldpolicy = -1, on_rq, running;
4318 unsigned long flags;
4319 struct rq *rq;
4320
4321 /* may grab non-irq protected spin_locks */
4322 BUG_ON(in_interrupt());
4323recheck:
4324 /* double check policy once rq lock held */
4325 if (policy < 0)
4326 policy = oldpolicy = p->policy;
4327 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4328 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4329 policy != SCHED_IDLE)
4330 return -EINVAL;
4331 /*
4332 * Valid priorities for SCHED_FIFO and SCHED_RR are
4333 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4334 * SCHED_BATCH and SCHED_IDLE is 0.
4335 */
4336 if (param->sched_priority < 0 ||
4337 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4338 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4339 return -EINVAL;
4340 if (rt_policy(policy) != (param->sched_priority != 0))
4341 return -EINVAL;
4342
4343 /*
4344 * Allow unprivileged RT tasks to decrease priority:
4345 */
4346 if (!capable(CAP_SYS_NICE)) {
4347 if (rt_policy(policy)) {
4348 unsigned long rlim_rtprio;
4349
4350 if (!lock_task_sighand(p, &flags))
4351 return -ESRCH;
4352 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4353 unlock_task_sighand(p, &flags);
4354
4355 /* can't set/change the rt policy */
4356 if (policy != p->policy && !rlim_rtprio)
4357 return -EPERM;
4358
4359 /* can't increase priority */
4360 if (param->sched_priority > p->rt_priority &&
4361 param->sched_priority > rlim_rtprio)
4362 return -EPERM;
4363 }
4364 /*
4365 * Like positive nice levels, dont allow tasks to
4366 * move out of SCHED_IDLE either:
4367 */
4368 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4369 return -EPERM;
4370
4371 /* can't change other user's priorities */
4372 if ((current->euid != p->euid) &&
4373 (current->euid != p->uid))
4374 return -EPERM;
4375 }
4376
4377 retval = security_task_setscheduler(p, policy, param);
4378 if (retval)
4379 return retval;
4380 /*
4381 * make sure no PI-waiters arrive (or leave) while we are
4382 * changing the priority of the task:
4383 */
4384 spin_lock_irqsave(&p->pi_lock, flags);
4385 /*
4386 * To be able to change p->policy safely, the apropriate
4387 * runqueue lock must be held.
4388 */
4389 rq = __task_rq_lock(p);
4390 /* recheck policy now with rq lock held */
4391 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4392 policy = oldpolicy = -1;
4393 __task_rq_unlock(rq);
4394 spin_unlock_irqrestore(&p->pi_lock, flags);
4395 goto recheck;
4396 }
4397 update_rq_clock(rq);
4398 on_rq = p->se.on_rq;
4399 running = task_current(rq, p);
4400 if (on_rq) {
4401 deactivate_task(rq, p, 0);
4402 if (running)
4403 p->sched_class->put_prev_task(rq, p);
4404 }
4405
4406 oldprio = p->prio;
4407 __setscheduler(rq, p, policy, param->sched_priority);
4408
4409 if (on_rq) {
4410 if (running)
4411 p->sched_class->set_curr_task(rq);
4412 activate_task(rq, p, 0);
4413 /*
4414 * Reschedule if we are currently running on this runqueue and
4415 * our priority decreased, or if we are not currently running on
4416 * this runqueue and our priority is higher than the current's
4417 */
4418 if (running) {
4419 if (p->prio > oldprio)
4420 resched_task(rq->curr);
4421 } else {
4422 check_preempt_curr(rq, p);
4423 }
4424 }
4425 __task_rq_unlock(rq);
4426 spin_unlock_irqrestore(&p->pi_lock, flags);
4427
4428 rt_mutex_adjust_pi(p);
4429
4430 return 0;
4431}
4432EXPORT_SYMBOL_GPL(sched_setscheduler);
4433
4434static int
4435do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4436{
4437 struct sched_param lparam;
4438 struct task_struct *p;
4439 int retval;
4440
4441 if (!param || pid < 0)
4442 return -EINVAL;
4443 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4444 return -EFAULT;
4445
4446 rcu_read_lock();
4447 retval = -ESRCH;
4448 p = find_process_by_pid(pid);
4449 if (p != NULL)
4450 retval = sched_setscheduler(p, policy, &lparam);
4451 rcu_read_unlock();
4452
4453 return retval;
4454}
4455
4456/**
4457 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4458 * @pid: the pid in question.
4459 * @policy: new policy.
4460 * @param: structure containing the new RT priority.
4461 */
4462asmlinkage long
4463sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4464{
4465 /* negative values for policy are not valid */
4466 if (policy < 0)
4467 return -EINVAL;
4468
4469 return do_sched_setscheduler(pid, policy, param);
4470}
4471
4472/**
4473 * sys_sched_setparam - set/change the RT priority of a thread
4474 * @pid: the pid in question.
4475 * @param: structure containing the new RT priority.
4476 */
4477asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4478{
4479 return do_sched_setscheduler(pid, -1, param);
4480}
4481
4482/**
4483 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4484 * @pid: the pid in question.
4485 */
4486asmlinkage long sys_sched_getscheduler(pid_t pid)
4487{
4488 struct task_struct *p;
4489 int retval;
4490
4491 if (pid < 0)
4492 return -EINVAL;
4493
4494 retval = -ESRCH;
4495 read_lock(&tasklist_lock);
4496 p = find_process_by_pid(pid);
4497 if (p) {
4498 retval = security_task_getscheduler(p);
4499 if (!retval)
4500 retval = p->policy;
4501 }
4502 read_unlock(&tasklist_lock);
4503 return retval;
4504}
4505
4506/**
4507 * sys_sched_getscheduler - get the RT priority of a thread
4508 * @pid: the pid in question.
4509 * @param: structure containing the RT priority.
4510 */
4511asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4512{
4513 struct sched_param lp;
4514 struct task_struct *p;
4515 int retval;
4516
4517 if (!param || pid < 0)
4518 return -EINVAL;
4519
4520 read_lock(&tasklist_lock);
4521 p = find_process_by_pid(pid);
4522 retval = -ESRCH;
4523 if (!p)
4524 goto out_unlock;
4525
4526 retval = security_task_getscheduler(p);
4527 if (retval)
4528 goto out_unlock;
4529
4530 lp.sched_priority = p->rt_priority;
4531 read_unlock(&tasklist_lock);
4532
4533 /*
4534 * This one might sleep, we cannot do it with a spinlock held ...
4535 */
4536 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4537
4538 return retval;
4539
4540out_unlock:
4541 read_unlock(&tasklist_lock);
4542 return retval;
4543}
4544
4545long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4546{
4547 cpumask_t cpus_allowed;
4548 struct task_struct *p;
4549 int retval;
4550
4551 get_online_cpus();
4552 read_lock(&tasklist_lock);
4553
4554 p = find_process_by_pid(pid);
4555 if (!p) {
4556 read_unlock(&tasklist_lock);
4557 put_online_cpus();
4558 return -ESRCH;
4559 }
4560
4561 /*
4562 * It is not safe to call set_cpus_allowed with the
4563 * tasklist_lock held. We will bump the task_struct's
4564 * usage count and then drop tasklist_lock.
4565 */
4566 get_task_struct(p);
4567 read_unlock(&tasklist_lock);
4568
4569 retval = -EPERM;
4570 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4571 !capable(CAP_SYS_NICE))
4572 goto out_unlock;
4573
4574 retval = security_task_setscheduler(p, 0, NULL);
4575 if (retval)
4576 goto out_unlock;
4577
4578 cpus_allowed = cpuset_cpus_allowed(p);
4579 cpus_and(new_mask, new_mask, cpus_allowed);
4580 again:
4581 retval = set_cpus_allowed(p, new_mask);
4582
4583 if (!retval) {
4584 cpus_allowed = cpuset_cpus_allowed(p);
4585 if (!cpus_subset(new_mask, cpus_allowed)) {
4586 /*
4587 * We must have raced with a concurrent cpuset
4588 * update. Just reset the cpus_allowed to the
4589 * cpuset's cpus_allowed
4590 */
4591 new_mask = cpus_allowed;
4592 goto again;
4593 }
4594 }
4595out_unlock:
4596 put_task_struct(p);
4597 put_online_cpus();
4598 return retval;
4599}
4600
4601static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4602 cpumask_t *new_mask)
4603{
4604 if (len < sizeof(cpumask_t)) {
4605 memset(new_mask, 0, sizeof(cpumask_t));
4606 } else if (len > sizeof(cpumask_t)) {
4607 len = sizeof(cpumask_t);
4608 }
4609 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4610}
4611
4612/**
4613 * sys_sched_setaffinity - set the cpu affinity of a process
4614 * @pid: pid of the process
4615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4616 * @user_mask_ptr: user-space pointer to the new cpu mask
4617 */
4618asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4619 unsigned long __user *user_mask_ptr)
4620{
4621 cpumask_t new_mask;
4622 int retval;
4623
4624 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4625 if (retval)
4626 return retval;
4627
4628 return sched_setaffinity(pid, new_mask);
4629}
4630
4631/*
4632 * Represents all cpu's present in the system
4633 * In systems capable of hotplug, this map could dynamically grow
4634 * as new cpu's are detected in the system via any platform specific
4635 * method, such as ACPI for e.g.
4636 */
4637
4638cpumask_t cpu_present_map __read_mostly;
4639EXPORT_SYMBOL(cpu_present_map);
4640
4641#ifndef CONFIG_SMP
4642cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4643EXPORT_SYMBOL(cpu_online_map);
4644
4645cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4646EXPORT_SYMBOL(cpu_possible_map);
4647#endif
4648
4649long sched_getaffinity(pid_t pid, cpumask_t *mask)
4650{
4651 struct task_struct *p;
4652 int retval;
4653
4654 get_online_cpus();
4655 read_lock(&tasklist_lock);
4656
4657 retval = -ESRCH;
4658 p = find_process_by_pid(pid);
4659 if (!p)
4660 goto out_unlock;
4661
4662 retval = security_task_getscheduler(p);
4663 if (retval)
4664 goto out_unlock;
4665
4666 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4667
4668out_unlock:
4669 read_unlock(&tasklist_lock);
4670 put_online_cpus();
4671
4672 return retval;
4673}
4674
4675/**
4676 * sys_sched_getaffinity - get the cpu affinity of a process
4677 * @pid: pid of the process
4678 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4679 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4680 */
4681asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4682 unsigned long __user *user_mask_ptr)
4683{
4684 int ret;
4685 cpumask_t mask;
4686
4687 if (len < sizeof(cpumask_t))
4688 return -EINVAL;
4689
4690 ret = sched_getaffinity(pid, &mask);
4691 if (ret < 0)
4692 return ret;
4693
4694 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4695 return -EFAULT;
4696
4697 return sizeof(cpumask_t);
4698}
4699
4700/**
4701 * sys_sched_yield - yield the current processor to other threads.
4702 *
4703 * This function yields the current CPU to other tasks. If there are no
4704 * other threads running on this CPU then this function will return.
4705 */
4706asmlinkage long sys_sched_yield(void)
4707{
4708 struct rq *rq = this_rq_lock();
4709
4710 schedstat_inc(rq, yld_count);
4711 current->sched_class->yield_task(rq);
4712
4713 /*
4714 * Since we are going to call schedule() anyway, there's
4715 * no need to preempt or enable interrupts:
4716 */
4717 __release(rq->lock);
4718 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4719 _raw_spin_unlock(&rq->lock);
4720 preempt_enable_no_resched();
4721
4722 schedule();
4723
4724 return 0;
4725}
4726
4727static void __cond_resched(void)
4728{
4729#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4730 __might_sleep(__FILE__, __LINE__);
4731#endif
4732 /*
4733 * The BKS might be reacquired before we have dropped
4734 * PREEMPT_ACTIVE, which could trigger a second
4735 * cond_resched() call.
4736 */
4737 do {
4738 add_preempt_count(PREEMPT_ACTIVE);
4739 schedule();
4740 sub_preempt_count(PREEMPT_ACTIVE);
4741 } while (need_resched());
4742}
4743
4744int __sched cond_resched(void)
4745{
4746 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4747 system_state == SYSTEM_RUNNING) {
4748 __cond_resched();
4749 return 1;
4750 }
4751 return 0;
4752}
4753EXPORT_SYMBOL(cond_resched);
4754
4755/*
4756 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4757 * call schedule, and on return reacquire the lock.
4758 *
4759 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4760 * operations here to prevent schedule() from being called twice (once via
4761 * spin_unlock(), once by hand).
4762 */
4763int cond_resched_lock(spinlock_t *lock)
4764{
4765 int ret = 0;
4766
4767 if (need_lockbreak(lock)) {
4768 spin_unlock(lock);
4769 cpu_relax();
4770 ret = 1;
4771 spin_lock(lock);
4772 }
4773 if (need_resched() && system_state == SYSTEM_RUNNING) {
4774 spin_release(&lock->dep_map, 1, _THIS_IP_);
4775 _raw_spin_unlock(lock);
4776 preempt_enable_no_resched();
4777 __cond_resched();
4778 ret = 1;
4779 spin_lock(lock);
4780 }
4781 return ret;
4782}
4783EXPORT_SYMBOL(cond_resched_lock);
4784
4785int __sched cond_resched_softirq(void)
4786{
4787 BUG_ON(!in_softirq());
4788
4789 if (need_resched() && system_state == SYSTEM_RUNNING) {
4790 local_bh_enable();
4791 __cond_resched();
4792 local_bh_disable();
4793 return 1;
4794 }
4795 return 0;
4796}
4797EXPORT_SYMBOL(cond_resched_softirq);
4798
4799/**
4800 * yield - yield the current processor to other threads.
4801 *
4802 * This is a shortcut for kernel-space yielding - it marks the
4803 * thread runnable and calls sys_sched_yield().
4804 */
4805void __sched yield(void)
4806{
4807 set_current_state(TASK_RUNNING);
4808 sys_sched_yield();
4809}
4810EXPORT_SYMBOL(yield);
4811
4812/*
4813 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4814 * that process accounting knows that this is a task in IO wait state.
4815 *
4816 * But don't do that if it is a deliberate, throttling IO wait (this task
4817 * has set its backing_dev_info: the queue against which it should throttle)
4818 */
4819void __sched io_schedule(void)
4820{
4821 struct rq *rq = &__raw_get_cpu_var(runqueues);
4822
4823 delayacct_blkio_start();
4824 atomic_inc(&rq->nr_iowait);
4825 schedule();
4826 atomic_dec(&rq->nr_iowait);
4827 delayacct_blkio_end();
4828}
4829EXPORT_SYMBOL(io_schedule);
4830
4831long __sched io_schedule_timeout(long timeout)
4832{
4833 struct rq *rq = &__raw_get_cpu_var(runqueues);
4834 long ret;
4835
4836 delayacct_blkio_start();
4837 atomic_inc(&rq->nr_iowait);
4838 ret = schedule_timeout(timeout);
4839 atomic_dec(&rq->nr_iowait);
4840 delayacct_blkio_end();
4841 return ret;
4842}
4843
4844/**
4845 * sys_sched_get_priority_max - return maximum RT priority.
4846 * @policy: scheduling class.
4847 *
4848 * this syscall returns the maximum rt_priority that can be used
4849 * by a given scheduling class.
4850 */
4851asmlinkage long sys_sched_get_priority_max(int policy)
4852{
4853 int ret = -EINVAL;
4854
4855 switch (policy) {
4856 case SCHED_FIFO:
4857 case SCHED_RR:
4858 ret = MAX_USER_RT_PRIO-1;
4859 break;
4860 case SCHED_NORMAL:
4861 case SCHED_BATCH:
4862 case SCHED_IDLE:
4863 ret = 0;
4864 break;
4865 }
4866 return ret;
4867}
4868
4869/**
4870 * sys_sched_get_priority_min - return minimum RT priority.
4871 * @policy: scheduling class.
4872 *
4873 * this syscall returns the minimum rt_priority that can be used
4874 * by a given scheduling class.
4875 */
4876asmlinkage long sys_sched_get_priority_min(int policy)
4877{
4878 int ret = -EINVAL;
4879
4880 switch (policy) {
4881 case SCHED_FIFO:
4882 case SCHED_RR:
4883 ret = 1;
4884 break;
4885 case SCHED_NORMAL:
4886 case SCHED_BATCH:
4887 case SCHED_IDLE:
4888 ret = 0;
4889 }
4890 return ret;
4891}
4892
4893/**
4894 * sys_sched_rr_get_interval - return the default timeslice of a process.
4895 * @pid: pid of the process.
4896 * @interval: userspace pointer to the timeslice value.
4897 *
4898 * this syscall writes the default timeslice value of a given process
4899 * into the user-space timespec buffer. A value of '0' means infinity.
4900 */
4901asmlinkage
4902long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4903{
4904 struct task_struct *p;
4905 unsigned int time_slice;
4906 int retval;
4907 struct timespec t;
4908
4909 if (pid < 0)
4910 return -EINVAL;
4911
4912 retval = -ESRCH;
4913 read_lock(&tasklist_lock);
4914 p = find_process_by_pid(pid);
4915 if (!p)
4916 goto out_unlock;
4917
4918 retval = security_task_getscheduler(p);
4919 if (retval)
4920 goto out_unlock;
4921
4922 /*
4923 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4924 * tasks that are on an otherwise idle runqueue:
4925 */
4926 time_slice = 0;
4927 if (p->policy == SCHED_RR) {
4928 time_slice = DEF_TIMESLICE;
4929 } else {
4930 struct sched_entity *se = &p->se;
4931 unsigned long flags;
4932 struct rq *rq;
4933
4934 rq = task_rq_lock(p, &flags);
4935 if (rq->cfs.load.weight)
4936 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4937 task_rq_unlock(rq, &flags);
4938 }
4939 read_unlock(&tasklist_lock);
4940 jiffies_to_timespec(time_slice, &t);
4941 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4942 return retval;
4943
4944out_unlock:
4945 read_unlock(&tasklist_lock);
4946 return retval;
4947}
4948
4949static const char stat_nam[] = "RSDTtZX";
4950
4951void sched_show_task(struct task_struct *p)
4952{
4953 unsigned long free = 0;
4954 unsigned state;
4955
4956 state = p->state ? __ffs(p->state) + 1 : 0;
4957 printk(KERN_INFO "%-13.13s %c", p->comm,
4958 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4959#if BITS_PER_LONG == 32
4960 if (state == TASK_RUNNING)
4961 printk(KERN_CONT " running ");
4962 else
4963 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4964#else
4965 if (state == TASK_RUNNING)
4966 printk(KERN_CONT " running task ");
4967 else
4968 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4969#endif
4970#ifdef CONFIG_DEBUG_STACK_USAGE
4971 {
4972 unsigned long *n = end_of_stack(p);
4973 while (!*n)
4974 n++;
4975 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4976 }
4977#endif
4978 printk(KERN_CONT "%5lu %5d %6d\n", free,
4979 task_pid_nr(p), task_pid_nr(p->real_parent));
4980
4981 if (state != TASK_RUNNING)
4982 show_stack(p, NULL);
4983}
4984
4985void show_state_filter(unsigned long state_filter)
4986{
4987 struct task_struct *g, *p;
4988
4989#if BITS_PER_LONG == 32
4990 printk(KERN_INFO
4991 " task PC stack pid father\n");
4992#else
4993 printk(KERN_INFO
4994 " task PC stack pid father\n");
4995#endif
4996 read_lock(&tasklist_lock);
4997 do_each_thread(g, p) {
4998 /*
4999 * reset the NMI-timeout, listing all files on a slow
5000 * console might take alot of time:
5001 */
5002 touch_nmi_watchdog();
5003 if (!state_filter || (p->state & state_filter))
5004 sched_show_task(p);
5005 } while_each_thread(g, p);
5006
5007 touch_all_softlockup_watchdogs();
5008
5009#ifdef CONFIG_SCHED_DEBUG
5010 sysrq_sched_debug_show();
5011#endif
5012 read_unlock(&tasklist_lock);
5013 /*
5014 * Only show locks if all tasks are dumped:
5015 */
5016 if (state_filter == -1)
5017 debug_show_all_locks();
5018}
5019
5020void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5021{
5022 idle->sched_class = &idle_sched_class;
5023}
5024
5025/**
5026 * init_idle - set up an idle thread for a given CPU
5027 * @idle: task in question
5028 * @cpu: cpu the idle task belongs to
5029 *
5030 * NOTE: this function does not set the idle thread's NEED_RESCHED
5031 * flag, to make booting more robust.
5032 */
5033void __cpuinit init_idle(struct task_struct *idle, int cpu)
5034{
5035 struct rq *rq = cpu_rq(cpu);
5036 unsigned long flags;
5037
5038 __sched_fork(idle);
5039 idle->se.exec_start = sched_clock();
5040
5041 idle->prio = idle->normal_prio = MAX_PRIO;
5042 idle->cpus_allowed = cpumask_of_cpu(cpu);
5043 __set_task_cpu(idle, cpu);
5044
5045 spin_lock_irqsave(&rq->lock, flags);
5046 rq->curr = rq->idle = idle;
5047#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5048 idle->oncpu = 1;
5049#endif
5050 spin_unlock_irqrestore(&rq->lock, flags);
5051
5052 /* Set the preempt count _outside_ the spinlocks! */
5053#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5054 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5055#else
5056 task_thread_info(idle)->preempt_count = 0;
5057#endif
5058 /*
5059 * The idle tasks have their own, simple scheduling class:
5060 */
5061 idle->sched_class = &idle_sched_class;
5062}
5063
5064/*
5065 * In a system that switches off the HZ timer nohz_cpu_mask
5066 * indicates which cpus entered this state. This is used
5067 * in the rcu update to wait only for active cpus. For system
5068 * which do not switch off the HZ timer nohz_cpu_mask should
5069 * always be CPU_MASK_NONE.
5070 */
5071cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5072
5073/*
5074 * Increase the granularity value when there are more CPUs,
5075 * because with more CPUs the 'effective latency' as visible
5076 * to users decreases. But the relationship is not linear,
5077 * so pick a second-best guess by going with the log2 of the
5078 * number of CPUs.
5079 *
5080 * This idea comes from the SD scheduler of Con Kolivas:
5081 */
5082static inline void sched_init_granularity(void)
5083{
5084 unsigned int factor = 1 + ilog2(num_online_cpus());
5085 const unsigned long limit = 200000000;
5086
5087 sysctl_sched_min_granularity *= factor;
5088 if (sysctl_sched_min_granularity > limit)
5089 sysctl_sched_min_granularity = limit;
5090
5091 sysctl_sched_latency *= factor;
5092 if (sysctl_sched_latency > limit)
5093 sysctl_sched_latency = limit;
5094
5095 sysctl_sched_wakeup_granularity *= factor;
5096 sysctl_sched_batch_wakeup_granularity *= factor;
5097}
5098
5099#ifdef CONFIG_SMP
5100/*
5101 * This is how migration works:
5102 *
5103 * 1) we queue a struct migration_req structure in the source CPU's
5104 * runqueue and wake up that CPU's migration thread.
5105 * 2) we down() the locked semaphore => thread blocks.
5106 * 3) migration thread wakes up (implicitly it forces the migrated
5107 * thread off the CPU)
5108 * 4) it gets the migration request and checks whether the migrated
5109 * task is still in the wrong runqueue.
5110 * 5) if it's in the wrong runqueue then the migration thread removes
5111 * it and puts it into the right queue.
5112 * 6) migration thread up()s the semaphore.
5113 * 7) we wake up and the migration is done.
5114 */
5115
5116/*
5117 * Change a given task's CPU affinity. Migrate the thread to a
5118 * proper CPU and schedule it away if the CPU it's executing on
5119 * is removed from the allowed bitmask.
5120 *
5121 * NOTE: the caller must have a valid reference to the task, the
5122 * task must not exit() & deallocate itself prematurely. The
5123 * call is not atomic; no spinlocks may be held.
5124 */
5125int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5126{
5127 struct migration_req req;
5128 unsigned long flags;
5129 struct rq *rq;
5130 int ret = 0;
5131
5132 rq = task_rq_lock(p, &flags);
5133 if (!cpus_intersects(new_mask, cpu_online_map)) {
5134 ret = -EINVAL;
5135 goto out;
5136 }
5137
5138 p->cpus_allowed = new_mask;
5139 /* Can the task run on the task's current CPU? If so, we're done */
5140 if (cpu_isset(task_cpu(p), new_mask))
5141 goto out;
5142
5143 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5144 /* Need help from migration thread: drop lock and wait. */
5145 task_rq_unlock(rq, &flags);
5146 wake_up_process(rq->migration_thread);
5147 wait_for_completion(&req.done);
5148 tlb_migrate_finish(p->mm);
5149 return 0;
5150 }
5151out:
5152 task_rq_unlock(rq, &flags);
5153
5154 return ret;
5155}
5156EXPORT_SYMBOL_GPL(set_cpus_allowed);
5157
5158/*
5159 * Move (not current) task off this cpu, onto dest cpu. We're doing
5160 * this because either it can't run here any more (set_cpus_allowed()
5161 * away from this CPU, or CPU going down), or because we're
5162 * attempting to rebalance this task on exec (sched_exec).
5163 *
5164 * So we race with normal scheduler movements, but that's OK, as long
5165 * as the task is no longer on this CPU.
5166 *
5167 * Returns non-zero if task was successfully migrated.
5168 */
5169static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5170{
5171 struct rq *rq_dest, *rq_src;
5172 int ret = 0, on_rq;
5173
5174 if (unlikely(cpu_is_offline(dest_cpu)))
5175 return ret;
5176
5177 rq_src = cpu_rq(src_cpu);
5178 rq_dest = cpu_rq(dest_cpu);
5179
5180 double_rq_lock(rq_src, rq_dest);
5181 /* Already moved. */
5182 if (task_cpu(p) != src_cpu)
5183 goto out;
5184 /* Affinity changed (again). */
5185 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5186 goto out;
5187
5188 on_rq = p->se.on_rq;
5189 if (on_rq)
5190 deactivate_task(rq_src, p, 0);
5191
5192 set_task_cpu(p, dest_cpu);
5193 if (on_rq) {
5194 activate_task(rq_dest, p, 0);
5195 check_preempt_curr(rq_dest, p);
5196 }
5197 ret = 1;
5198out:
5199 double_rq_unlock(rq_src, rq_dest);
5200 return ret;
5201}
5202
5203/*
5204 * migration_thread - this is a highprio system thread that performs
5205 * thread migration by bumping thread off CPU then 'pushing' onto
5206 * another runqueue.
5207 */
5208static int migration_thread(void *data)
5209{
5210 int cpu = (long)data;
5211 struct rq *rq;
5212
5213 rq = cpu_rq(cpu);
5214 BUG_ON(rq->migration_thread != current);
5215
5216 set_current_state(TASK_INTERRUPTIBLE);
5217 while (!kthread_should_stop()) {
5218 struct migration_req *req;
5219 struct list_head *head;
5220
5221 spin_lock_irq(&rq->lock);
5222
5223 if (cpu_is_offline(cpu)) {
5224 spin_unlock_irq(&rq->lock);
5225 goto wait_to_die;
5226 }
5227
5228 if (rq->active_balance) {
5229 active_load_balance(rq, cpu);
5230 rq->active_balance = 0;
5231 }
5232
5233 head = &rq->migration_queue;
5234
5235 if (list_empty(head)) {
5236 spin_unlock_irq(&rq->lock);
5237 schedule();
5238 set_current_state(TASK_INTERRUPTIBLE);
5239 continue;
5240 }
5241 req = list_entry(head->next, struct migration_req, list);
5242 list_del_init(head->next);
5243
5244 spin_unlock(&rq->lock);
5245 __migrate_task(req->task, cpu, req->dest_cpu);
5246 local_irq_enable();
5247
5248 complete(&req->done);
5249 }
5250 __set_current_state(TASK_RUNNING);
5251 return 0;
5252
5253wait_to_die:
5254 /* Wait for kthread_stop */
5255 set_current_state(TASK_INTERRUPTIBLE);
5256 while (!kthread_should_stop()) {
5257 schedule();
5258 set_current_state(TASK_INTERRUPTIBLE);
5259 }
5260 __set_current_state(TASK_RUNNING);
5261 return 0;
5262}
5263
5264#ifdef CONFIG_HOTPLUG_CPU
5265
5266static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5267{
5268 int ret;
5269
5270 local_irq_disable();
5271 ret = __migrate_task(p, src_cpu, dest_cpu);
5272 local_irq_enable();
5273 return ret;
5274}
5275
5276/*
5277 * Figure out where task on dead CPU should go, use force if necessary.
5278 * NOTE: interrupts should be disabled by the caller
5279 */
5280static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5281{
5282 unsigned long flags;
5283 cpumask_t mask;
5284 struct rq *rq;
5285 int dest_cpu;
5286
5287 do {
5288 /* On same node? */
5289 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5290 cpus_and(mask, mask, p->cpus_allowed);
5291 dest_cpu = any_online_cpu(mask);
5292
5293 /* On any allowed CPU? */
5294 if (dest_cpu == NR_CPUS)
5295 dest_cpu = any_online_cpu(p->cpus_allowed);
5296
5297 /* No more Mr. Nice Guy. */
5298 if (dest_cpu == NR_CPUS) {
5299 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5300 /*
5301 * Try to stay on the same cpuset, where the
5302 * current cpuset may be a subset of all cpus.
5303 * The cpuset_cpus_allowed_locked() variant of
5304 * cpuset_cpus_allowed() will not block. It must be
5305 * called within calls to cpuset_lock/cpuset_unlock.
5306 */
5307 rq = task_rq_lock(p, &flags);
5308 p->cpus_allowed = cpus_allowed;
5309 dest_cpu = any_online_cpu(p->cpus_allowed);
5310 task_rq_unlock(rq, &flags);
5311
5312 /*
5313 * Don't tell them about moving exiting tasks or
5314 * kernel threads (both mm NULL), since they never
5315 * leave kernel.
5316 */
5317 if (p->mm && printk_ratelimit()) {
5318 printk(KERN_INFO "process %d (%s) no "
5319 "longer affine to cpu%d\n",
5320 task_pid_nr(p), p->comm, dead_cpu);
5321 }
5322 }
5323 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5324}
5325
5326/*
5327 * While a dead CPU has no uninterruptible tasks queued at this point,
5328 * it might still have a nonzero ->nr_uninterruptible counter, because
5329 * for performance reasons the counter is not stricly tracking tasks to
5330 * their home CPUs. So we just add the counter to another CPU's counter,
5331 * to keep the global sum constant after CPU-down:
5332 */
5333static void migrate_nr_uninterruptible(struct rq *rq_src)
5334{
5335 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5336 unsigned long flags;
5337
5338 local_irq_save(flags);
5339 double_rq_lock(rq_src, rq_dest);
5340 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5341 rq_src->nr_uninterruptible = 0;
5342 double_rq_unlock(rq_src, rq_dest);
5343 local_irq_restore(flags);
5344}
5345
5346/* Run through task list and migrate tasks from the dead cpu. */
5347static void migrate_live_tasks(int src_cpu)
5348{
5349 struct task_struct *p, *t;
5350
5351 read_lock(&tasklist_lock);
5352
5353 do_each_thread(t, p) {
5354 if (p == current)
5355 continue;
5356
5357 if (task_cpu(p) == src_cpu)
5358 move_task_off_dead_cpu(src_cpu, p);
5359 } while_each_thread(t, p);
5360
5361 read_unlock(&tasklist_lock);
5362}
5363
5364/*
5365 * Schedules idle task to be the next runnable task on current CPU.
5366 * It does so by boosting its priority to highest possible.
5367 * Used by CPU offline code.
5368 */
5369void sched_idle_next(void)
5370{
5371 int this_cpu = smp_processor_id();
5372 struct rq *rq = cpu_rq(this_cpu);
5373 struct task_struct *p = rq->idle;
5374 unsigned long flags;
5375
5376 /* cpu has to be offline */
5377 BUG_ON(cpu_online(this_cpu));
5378
5379 /*
5380 * Strictly not necessary since rest of the CPUs are stopped by now
5381 * and interrupts disabled on the current cpu.
5382 */
5383 spin_lock_irqsave(&rq->lock, flags);
5384
5385 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5386
5387 update_rq_clock(rq);
5388 activate_task(rq, p, 0);
5389
5390 spin_unlock_irqrestore(&rq->lock, flags);
5391}
5392
5393/*
5394 * Ensures that the idle task is using init_mm right before its cpu goes
5395 * offline.
5396 */
5397void idle_task_exit(void)
5398{
5399 struct mm_struct *mm = current->active_mm;
5400
5401 BUG_ON(cpu_online(smp_processor_id()));
5402
5403 if (mm != &init_mm)
5404 switch_mm(mm, &init_mm, current);
5405 mmdrop(mm);
5406}
5407
5408/* called under rq->lock with disabled interrupts */
5409static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5410{
5411 struct rq *rq = cpu_rq(dead_cpu);
5412
5413 /* Must be exiting, otherwise would be on tasklist. */
5414 BUG_ON(!p->exit_state);
5415
5416 /* Cannot have done final schedule yet: would have vanished. */
5417 BUG_ON(p->state == TASK_DEAD);
5418
5419 get_task_struct(p);
5420
5421 /*
5422 * Drop lock around migration; if someone else moves it,
5423 * that's OK. No task can be added to this CPU, so iteration is
5424 * fine.
5425 */
5426 spin_unlock_irq(&rq->lock);
5427 move_task_off_dead_cpu(dead_cpu, p);
5428 spin_lock_irq(&rq->lock);
5429
5430 put_task_struct(p);
5431}
5432
5433/* release_task() removes task from tasklist, so we won't find dead tasks. */
5434static void migrate_dead_tasks(unsigned int dead_cpu)
5435{
5436 struct rq *rq = cpu_rq(dead_cpu);
5437 struct task_struct *next;
5438
5439 for ( ; ; ) {
5440 if (!rq->nr_running)
5441 break;
5442 update_rq_clock(rq);
5443 next = pick_next_task(rq, rq->curr);
5444 if (!next)
5445 break;
5446 migrate_dead(dead_cpu, next);
5447
5448 }
5449}
5450#endif /* CONFIG_HOTPLUG_CPU */
5451
5452#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5453
5454static struct ctl_table sd_ctl_dir[] = {
5455 {
5456 .procname = "sched_domain",
5457 .mode = 0555,
5458 },
5459 {0, },
5460};
5461
5462static struct ctl_table sd_ctl_root[] = {
5463 {
5464 .ctl_name = CTL_KERN,
5465 .procname = "kernel",
5466 .mode = 0555,
5467 .child = sd_ctl_dir,
5468 },
5469 {0, },
5470};
5471
5472static struct ctl_table *sd_alloc_ctl_entry(int n)
5473{
5474 struct ctl_table *entry =
5475 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5476
5477 return entry;
5478}
5479
5480static void sd_free_ctl_entry(struct ctl_table **tablep)
5481{
5482 struct ctl_table *entry;
5483
5484 /*
5485 * In the intermediate directories, both the child directory and
5486 * procname are dynamically allocated and could fail but the mode
5487 * will always be set. In the lowest directory the names are
5488 * static strings and all have proc handlers.
5489 */
5490 for (entry = *tablep; entry->mode; entry++) {
5491 if (entry->child)
5492 sd_free_ctl_entry(&entry->child);
5493 if (entry->proc_handler == NULL)
5494 kfree(entry->procname);
5495 }
5496
5497 kfree(*tablep);
5498 *tablep = NULL;
5499}
5500
5501static void
5502set_table_entry(struct ctl_table *entry,
5503 const char *procname, void *data, int maxlen,
5504 mode_t mode, proc_handler *proc_handler)
5505{
5506 entry->procname = procname;
5507 entry->data = data;
5508 entry->maxlen = maxlen;
5509 entry->mode = mode;
5510 entry->proc_handler = proc_handler;
5511}
5512
5513static struct ctl_table *
5514sd_alloc_ctl_domain_table(struct sched_domain *sd)
5515{
5516 struct ctl_table *table = sd_alloc_ctl_entry(12);
5517
5518 if (table == NULL)
5519 return NULL;
5520
5521 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5522 sizeof(long), 0644, proc_doulongvec_minmax);
5523 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5524 sizeof(long), 0644, proc_doulongvec_minmax);
5525 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5526 sizeof(int), 0644, proc_dointvec_minmax);
5527 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5528 sizeof(int), 0644, proc_dointvec_minmax);
5529 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5530 sizeof(int), 0644, proc_dointvec_minmax);
5531 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5532 sizeof(int), 0644, proc_dointvec_minmax);
5533 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5534 sizeof(int), 0644, proc_dointvec_minmax);
5535 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5536 sizeof(int), 0644, proc_dointvec_minmax);
5537 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5538 sizeof(int), 0644, proc_dointvec_minmax);
5539 set_table_entry(&table[9], "cache_nice_tries",
5540 &sd->cache_nice_tries,
5541 sizeof(int), 0644, proc_dointvec_minmax);
5542 set_table_entry(&table[10], "flags", &sd->flags,
5543 sizeof(int), 0644, proc_dointvec_minmax);
5544 /* &table[11] is terminator */
5545
5546 return table;
5547}
5548
5549static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5550{
5551 struct ctl_table *entry, *table;
5552 struct sched_domain *sd;
5553 int domain_num = 0, i;
5554 char buf[32];
5555
5556 for_each_domain(cpu, sd)
5557 domain_num++;
5558 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5559 if (table == NULL)
5560 return NULL;
5561
5562 i = 0;
5563 for_each_domain(cpu, sd) {
5564 snprintf(buf, 32, "domain%d", i);
5565 entry->procname = kstrdup(buf, GFP_KERNEL);
5566 entry->mode = 0555;
5567 entry->child = sd_alloc_ctl_domain_table(sd);
5568 entry++;
5569 i++;
5570 }
5571 return table;
5572}
5573
5574static struct ctl_table_header *sd_sysctl_header;
5575static void register_sched_domain_sysctl(void)
5576{
5577 int i, cpu_num = num_online_cpus();
5578 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5579 char buf[32];
5580
5581 WARN_ON(sd_ctl_dir[0].child);
5582 sd_ctl_dir[0].child = entry;
5583
5584 if (entry == NULL)
5585 return;
5586
5587 for_each_online_cpu(i) {
5588 snprintf(buf, 32, "cpu%d", i);
5589 entry->procname = kstrdup(buf, GFP_KERNEL);
5590 entry->mode = 0555;
5591 entry->child = sd_alloc_ctl_cpu_table(i);
5592 entry++;
5593 }
5594
5595 WARN_ON(sd_sysctl_header);
5596 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5597}
5598
5599/* may be called multiple times per register */
5600static void unregister_sched_domain_sysctl(void)
5601{
5602 if (sd_sysctl_header)
5603 unregister_sysctl_table(sd_sysctl_header);
5604 sd_sysctl_header = NULL;
5605 if (sd_ctl_dir[0].child)
5606 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5607}
5608#else
5609static void register_sched_domain_sysctl(void)
5610{
5611}
5612static void unregister_sched_domain_sysctl(void)
5613{
5614}
5615#endif
5616
5617/*
5618 * migration_call - callback that gets triggered when a CPU is added.
5619 * Here we can start up the necessary migration thread for the new CPU.
5620 */
5621static int __cpuinit
5622migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5623{
5624 struct task_struct *p;
5625 int cpu = (long)hcpu;
5626 unsigned long flags;
5627 struct rq *rq;
5628
5629 switch (action) {
5630
5631 case CPU_UP_PREPARE:
5632 case CPU_UP_PREPARE_FROZEN:
5633 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5634 if (IS_ERR(p))
5635 return NOTIFY_BAD;
5636 kthread_bind(p, cpu);
5637 /* Must be high prio: stop_machine expects to yield to it. */
5638 rq = task_rq_lock(p, &flags);
5639 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5640 task_rq_unlock(rq, &flags);
5641 cpu_rq(cpu)->migration_thread = p;
5642 break;
5643
5644 case CPU_ONLINE:
5645 case CPU_ONLINE_FROZEN:
5646 /* Strictly unnecessary, as first user will wake it. */
5647 wake_up_process(cpu_rq(cpu)->migration_thread);
5648 break;
5649
5650#ifdef CONFIG_HOTPLUG_CPU
5651 case CPU_UP_CANCELED:
5652 case CPU_UP_CANCELED_FROZEN:
5653 if (!cpu_rq(cpu)->migration_thread)
5654 break;
5655 /* Unbind it from offline cpu so it can run. Fall thru. */
5656 kthread_bind(cpu_rq(cpu)->migration_thread,
5657 any_online_cpu(cpu_online_map));
5658 kthread_stop(cpu_rq(cpu)->migration_thread);
5659 cpu_rq(cpu)->migration_thread = NULL;
5660 break;
5661
5662 case CPU_DEAD:
5663 case CPU_DEAD_FROZEN:
5664 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5665 migrate_live_tasks(cpu);
5666 rq = cpu_rq(cpu);
5667 kthread_stop(rq->migration_thread);
5668 rq->migration_thread = NULL;
5669 /* Idle task back to normal (off runqueue, low prio) */
5670 spin_lock_irq(&rq->lock);
5671 update_rq_clock(rq);
5672 deactivate_task(rq, rq->idle, 0);
5673 rq->idle->static_prio = MAX_PRIO;
5674 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5675 rq->idle->sched_class = &idle_sched_class;
5676 migrate_dead_tasks(cpu);
5677 spin_unlock_irq(&rq->lock);
5678 cpuset_unlock();
5679 migrate_nr_uninterruptible(rq);
5680 BUG_ON(rq->nr_running != 0);
5681
5682 /*
5683 * No need to migrate the tasks: it was best-effort if
5684 * they didn't take sched_hotcpu_mutex. Just wake up
5685 * the requestors.
5686 */
5687 spin_lock_irq(&rq->lock);
5688 while (!list_empty(&rq->migration_queue)) {
5689 struct migration_req *req;
5690
5691 req = list_entry(rq->migration_queue.next,
5692 struct migration_req, list);
5693 list_del_init(&req->list);
5694 complete(&req->done);
5695 }
5696 spin_unlock_irq(&rq->lock);
5697 break;
5698#endif
5699 }
5700 return NOTIFY_OK;
5701}
5702
5703/* Register at highest priority so that task migration (migrate_all_tasks)
5704 * happens before everything else.
5705 */
5706static struct notifier_block __cpuinitdata migration_notifier = {
5707 .notifier_call = migration_call,
5708 .priority = 10
5709};
5710
5711void __init migration_init(void)
5712{
5713 void *cpu = (void *)(long)smp_processor_id();
5714 int err;
5715
5716 /* Start one for the boot CPU: */
5717 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5718 BUG_ON(err == NOTIFY_BAD);
5719 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5720 register_cpu_notifier(&migration_notifier);
5721}
5722#endif
5723
5724#ifdef CONFIG_SMP
5725
5726/* Number of possible processor ids */
5727int nr_cpu_ids __read_mostly = NR_CPUS;
5728EXPORT_SYMBOL(nr_cpu_ids);
5729
5730#ifdef CONFIG_SCHED_DEBUG
5731
5732static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5733{
5734 struct sched_group *group = sd->groups;
5735 cpumask_t groupmask;
5736 char str[NR_CPUS];
5737
5738 cpumask_scnprintf(str, NR_CPUS, sd->span);
5739 cpus_clear(groupmask);
5740
5741 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5742
5743 if (!(sd->flags & SD_LOAD_BALANCE)) {
5744 printk("does not load-balance\n");
5745 if (sd->parent)
5746 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5747 " has parent");
5748 return -1;
5749 }
5750
5751 printk(KERN_CONT "span %s\n", str);
5752
5753 if (!cpu_isset(cpu, sd->span)) {
5754 printk(KERN_ERR "ERROR: domain->span does not contain "
5755 "CPU%d\n", cpu);
5756 }
5757 if (!cpu_isset(cpu, group->cpumask)) {
5758 printk(KERN_ERR "ERROR: domain->groups does not contain"
5759 " CPU%d\n", cpu);
5760 }
5761
5762 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5763 do {
5764 if (!group) {
5765 printk("\n");
5766 printk(KERN_ERR "ERROR: group is NULL\n");
5767 break;
5768 }
5769
5770 if (!group->__cpu_power) {
5771 printk(KERN_CONT "\n");
5772 printk(KERN_ERR "ERROR: domain->cpu_power not "
5773 "set\n");
5774 break;
5775 }
5776
5777 if (!cpus_weight(group->cpumask)) {
5778 printk(KERN_CONT "\n");
5779 printk(KERN_ERR "ERROR: empty group\n");
5780 break;
5781 }
5782
5783 if (cpus_intersects(groupmask, group->cpumask)) {
5784 printk(KERN_CONT "\n");
5785 printk(KERN_ERR "ERROR: repeated CPUs\n");
5786 break;
5787 }
5788
5789 cpus_or(groupmask, groupmask, group->cpumask);
5790
5791 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5792 printk(KERN_CONT " %s", str);
5793
5794 group = group->next;
5795 } while (group != sd->groups);
5796 printk(KERN_CONT "\n");
5797
5798 if (!cpus_equal(sd->span, groupmask))
5799 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5800
5801 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5802 printk(KERN_ERR "ERROR: parent span is not a superset "
5803 "of domain->span\n");
5804 return 0;
5805}
5806
5807static void sched_domain_debug(struct sched_domain *sd, int cpu)
5808{
5809 int level = 0;
5810
5811 if (!sd) {
5812 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5813 return;
5814 }
5815
5816 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5817
5818 for (;;) {
5819 if (sched_domain_debug_one(sd, cpu, level))
5820 break;
5821 level++;
5822 sd = sd->parent;
5823 if (!sd)
5824 break;
5825 }
5826}
5827#else
5828# define sched_domain_debug(sd, cpu) do { } while (0)
5829#endif
5830
5831static int sd_degenerate(struct sched_domain *sd)
5832{
5833 if (cpus_weight(sd->span) == 1)
5834 return 1;
5835
5836 /* Following flags need at least 2 groups */
5837 if (sd->flags & (SD_LOAD_BALANCE |
5838 SD_BALANCE_NEWIDLE |
5839 SD_BALANCE_FORK |
5840 SD_BALANCE_EXEC |
5841 SD_SHARE_CPUPOWER |
5842 SD_SHARE_PKG_RESOURCES)) {
5843 if (sd->groups != sd->groups->next)
5844 return 0;
5845 }
5846
5847 /* Following flags don't use groups */
5848 if (sd->flags & (SD_WAKE_IDLE |
5849 SD_WAKE_AFFINE |
5850 SD_WAKE_BALANCE))
5851 return 0;
5852
5853 return 1;
5854}
5855
5856static int
5857sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5858{
5859 unsigned long cflags = sd->flags, pflags = parent->flags;
5860
5861 if (sd_degenerate(parent))
5862 return 1;
5863
5864 if (!cpus_equal(sd->span, parent->span))
5865 return 0;
5866
5867 /* Does parent contain flags not in child? */
5868 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5869 if (cflags & SD_WAKE_AFFINE)
5870 pflags &= ~SD_WAKE_BALANCE;
5871 /* Flags needing groups don't count if only 1 group in parent */
5872 if (parent->groups == parent->groups->next) {
5873 pflags &= ~(SD_LOAD_BALANCE |
5874 SD_BALANCE_NEWIDLE |
5875 SD_BALANCE_FORK |
5876 SD_BALANCE_EXEC |
5877 SD_SHARE_CPUPOWER |
5878 SD_SHARE_PKG_RESOURCES);
5879 }
5880 if (~cflags & pflags)
5881 return 0;
5882
5883 return 1;
5884}
5885
5886/*
5887 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5888 * hold the hotplug lock.
5889 */
5890static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5891{
5892 struct rq *rq = cpu_rq(cpu);
5893 struct sched_domain *tmp;
5894
5895 /* Remove the sched domains which do not contribute to scheduling. */
5896 for (tmp = sd; tmp; tmp = tmp->parent) {
5897 struct sched_domain *parent = tmp->parent;
5898 if (!parent)
5899 break;
5900 if (sd_parent_degenerate(tmp, parent)) {
5901 tmp->parent = parent->parent;
5902 if (parent->parent)
5903 parent->parent->child = tmp;
5904 }
5905 }
5906
5907 if (sd && sd_degenerate(sd)) {
5908 sd = sd->parent;
5909 if (sd)
5910 sd->child = NULL;
5911 }
5912
5913 sched_domain_debug(sd, cpu);
5914
5915 rcu_assign_pointer(rq->sd, sd);
5916}
5917
5918/* cpus with isolated domains */
5919static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5920
5921/* Setup the mask of cpus configured for isolated domains */
5922static int __init isolated_cpu_setup(char *str)
5923{
5924 int ints[NR_CPUS], i;
5925
5926 str = get_options(str, ARRAY_SIZE(ints), ints);
5927 cpus_clear(cpu_isolated_map);
5928 for (i = 1; i <= ints[0]; i++)
5929 if (ints[i] < NR_CPUS)
5930 cpu_set(ints[i], cpu_isolated_map);
5931 return 1;
5932}
5933
5934__setup("isolcpus=", isolated_cpu_setup);
5935
5936/*
5937 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5938 * to a function which identifies what group(along with sched group) a CPU
5939 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5940 * (due to the fact that we keep track of groups covered with a cpumask_t).
5941 *
5942 * init_sched_build_groups will build a circular linked list of the groups
5943 * covered by the given span, and will set each group's ->cpumask correctly,
5944 * and ->cpu_power to 0.
5945 */
5946static void
5947init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5948 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5949 struct sched_group **sg))
5950{
5951 struct sched_group *first = NULL, *last = NULL;
5952 cpumask_t covered = CPU_MASK_NONE;
5953 int i;
5954
5955 for_each_cpu_mask(i, span) {
5956 struct sched_group *sg;
5957 int group = group_fn(i, cpu_map, &sg);
5958 int j;
5959
5960 if (cpu_isset(i, covered))
5961 continue;
5962
5963 sg->cpumask = CPU_MASK_NONE;
5964 sg->__cpu_power = 0;
5965
5966 for_each_cpu_mask(j, span) {
5967 if (group_fn(j, cpu_map, NULL) != group)
5968 continue;
5969
5970 cpu_set(j, covered);
5971 cpu_set(j, sg->cpumask);
5972 }
5973 if (!first)
5974 first = sg;
5975 if (last)
5976 last->next = sg;
5977 last = sg;
5978 }
5979 last->next = first;
5980}
5981
5982#define SD_NODES_PER_DOMAIN 16
5983
5984#ifdef CONFIG_NUMA
5985
5986/**
5987 * find_next_best_node - find the next node to include in a sched_domain
5988 * @node: node whose sched_domain we're building
5989 * @used_nodes: nodes already in the sched_domain
5990 *
5991 * Find the next node to include in a given scheduling domain. Simply
5992 * finds the closest node not already in the @used_nodes map.
5993 *
5994 * Should use nodemask_t.
5995 */
5996static int find_next_best_node(int node, unsigned long *used_nodes)
5997{
5998 int i, n, val, min_val, best_node = 0;
5999
6000 min_val = INT_MAX;
6001
6002 for (i = 0; i < MAX_NUMNODES; i++) {
6003 /* Start at @node */
6004 n = (node + i) % MAX_NUMNODES;
6005
6006 if (!nr_cpus_node(n))
6007 continue;
6008
6009 /* Skip already used nodes */
6010 if (test_bit(n, used_nodes))
6011 continue;
6012
6013 /* Simple min distance search */
6014 val = node_distance(node, n);
6015
6016 if (val < min_val) {
6017 min_val = val;
6018 best_node = n;
6019 }
6020 }
6021
6022 set_bit(best_node, used_nodes);
6023 return best_node;
6024}
6025
6026/**
6027 * sched_domain_node_span - get a cpumask for a node's sched_domain
6028 * @node: node whose cpumask we're constructing
6029 * @size: number of nodes to include in this span
6030 *
6031 * Given a node, construct a good cpumask for its sched_domain to span. It
6032 * should be one that prevents unnecessary balancing, but also spreads tasks
6033 * out optimally.
6034 */
6035static cpumask_t sched_domain_node_span(int node)
6036{
6037 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6038 cpumask_t span, nodemask;
6039 int i;
6040
6041 cpus_clear(span);
6042 bitmap_zero(used_nodes, MAX_NUMNODES);
6043
6044 nodemask = node_to_cpumask(node);
6045 cpus_or(span, span, nodemask);
6046 set_bit(node, used_nodes);
6047
6048 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6049 int next_node = find_next_best_node(node, used_nodes);
6050
6051 nodemask = node_to_cpumask(next_node);
6052 cpus_or(span, span, nodemask);
6053 }
6054
6055 return span;
6056}
6057#endif
6058
6059int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6060
6061/*
6062 * SMT sched-domains:
6063 */
6064#ifdef CONFIG_SCHED_SMT
6065static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6066static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6067
6068static int
6069cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6070{
6071 if (sg)
6072 *sg = &per_cpu(sched_group_cpus, cpu);
6073 return cpu;
6074}
6075#endif
6076
6077/*
6078 * multi-core sched-domains:
6079 */
6080#ifdef CONFIG_SCHED_MC
6081static DEFINE_PER_CPU(struct sched_domain, core_domains);
6082static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6083#endif
6084
6085#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6086static int
6087cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6088{
6089 int group;
6090 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6091 cpus_and(mask, mask, *cpu_map);
6092 group = first_cpu(mask);
6093 if (sg)
6094 *sg = &per_cpu(sched_group_core, group);
6095 return group;
6096}
6097#elif defined(CONFIG_SCHED_MC)
6098static int
6099cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6100{
6101 if (sg)
6102 *sg = &per_cpu(sched_group_core, cpu);
6103 return cpu;
6104}
6105#endif
6106
6107static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6108static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6109
6110static int
6111cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6112{
6113 int group;
6114#ifdef CONFIG_SCHED_MC
6115 cpumask_t mask = cpu_coregroup_map(cpu);
6116 cpus_and(mask, mask, *cpu_map);
6117 group = first_cpu(mask);
6118#elif defined(CONFIG_SCHED_SMT)
6119 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6120 cpus_and(mask, mask, *cpu_map);
6121 group = first_cpu(mask);
6122#else
6123 group = cpu;
6124#endif
6125 if (sg)
6126 *sg = &per_cpu(sched_group_phys, group);
6127 return group;
6128}
6129
6130#ifdef CONFIG_NUMA
6131/*
6132 * The init_sched_build_groups can't handle what we want to do with node
6133 * groups, so roll our own. Now each node has its own list of groups which
6134 * gets dynamically allocated.
6135 */
6136static DEFINE_PER_CPU(struct sched_domain, node_domains);
6137static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6138
6139static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6140static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6141
6142static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6143 struct sched_group **sg)
6144{
6145 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6146 int group;
6147
6148 cpus_and(nodemask, nodemask, *cpu_map);
6149 group = first_cpu(nodemask);
6150
6151 if (sg)
6152 *sg = &per_cpu(sched_group_allnodes, group);
6153 return group;
6154}
6155
6156static void init_numa_sched_groups_power(struct sched_group *group_head)
6157{
6158 struct sched_group *sg = group_head;
6159 int j;
6160
6161 if (!sg)
6162 return;
6163 do {
6164 for_each_cpu_mask(j, sg->cpumask) {
6165 struct sched_domain *sd;
6166
6167 sd = &per_cpu(phys_domains, j);
6168 if (j != first_cpu(sd->groups->cpumask)) {
6169 /*
6170 * Only add "power" once for each
6171 * physical package.
6172 */
6173 continue;
6174 }
6175
6176 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6177 }
6178 sg = sg->next;
6179 } while (sg != group_head);
6180}
6181#endif
6182
6183#ifdef CONFIG_NUMA
6184/* Free memory allocated for various sched_group structures */
6185static void free_sched_groups(const cpumask_t *cpu_map)
6186{
6187 int cpu, i;
6188
6189 for_each_cpu_mask(cpu, *cpu_map) {
6190 struct sched_group **sched_group_nodes
6191 = sched_group_nodes_bycpu[cpu];
6192
6193 if (!sched_group_nodes)
6194 continue;
6195
6196 for (i = 0; i < MAX_NUMNODES; i++) {
6197 cpumask_t nodemask = node_to_cpumask(i);
6198 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6199
6200 cpus_and(nodemask, nodemask, *cpu_map);
6201 if (cpus_empty(nodemask))
6202 continue;
6203
6204 if (sg == NULL)
6205 continue;
6206 sg = sg->next;
6207next_sg:
6208 oldsg = sg;
6209 sg = sg->next;
6210 kfree(oldsg);
6211 if (oldsg != sched_group_nodes[i])
6212 goto next_sg;
6213 }
6214 kfree(sched_group_nodes);
6215 sched_group_nodes_bycpu[cpu] = NULL;
6216 }
6217}
6218#else
6219static void free_sched_groups(const cpumask_t *cpu_map)
6220{
6221}
6222#endif
6223
6224/*
6225 * Initialize sched groups cpu_power.
6226 *
6227 * cpu_power indicates the capacity of sched group, which is used while
6228 * distributing the load between different sched groups in a sched domain.
6229 * Typically cpu_power for all the groups in a sched domain will be same unless
6230 * there are asymmetries in the topology. If there are asymmetries, group
6231 * having more cpu_power will pickup more load compared to the group having
6232 * less cpu_power.
6233 *
6234 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6235 * the maximum number of tasks a group can handle in the presence of other idle
6236 * or lightly loaded groups in the same sched domain.
6237 */
6238static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6239{
6240 struct sched_domain *child;
6241 struct sched_group *group;
6242
6243 WARN_ON(!sd || !sd->groups);
6244
6245 if (cpu != first_cpu(sd->groups->cpumask))
6246 return;
6247
6248 child = sd->child;
6249
6250 sd->groups->__cpu_power = 0;
6251
6252 /*
6253 * For perf policy, if the groups in child domain share resources
6254 * (for example cores sharing some portions of the cache hierarchy
6255 * or SMT), then set this domain groups cpu_power such that each group
6256 * can handle only one task, when there are other idle groups in the
6257 * same sched domain.
6258 */
6259 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6260 (child->flags &
6261 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6262 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6263 return;
6264 }
6265
6266 /*
6267 * add cpu_power of each child group to this groups cpu_power
6268 */
6269 group = child->groups;
6270 do {
6271 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6272 group = group->next;
6273 } while (group != child->groups);
6274}
6275
6276/*
6277 * Build sched domains for a given set of cpus and attach the sched domains
6278 * to the individual cpus
6279 */
6280static int build_sched_domains(const cpumask_t *cpu_map)
6281{
6282 int i;
6283#ifdef CONFIG_NUMA
6284 struct sched_group **sched_group_nodes = NULL;
6285 int sd_allnodes = 0;
6286
6287 /*
6288 * Allocate the per-node list of sched groups
6289 */
6290 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6291 GFP_KERNEL);
6292 if (!sched_group_nodes) {
6293 printk(KERN_WARNING "Can not alloc sched group node list\n");
6294 return -ENOMEM;
6295 }
6296 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6297#endif
6298
6299 /*
6300 * Set up domains for cpus specified by the cpu_map.
6301 */
6302 for_each_cpu_mask(i, *cpu_map) {
6303 struct sched_domain *sd = NULL, *p;
6304 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6305
6306 cpus_and(nodemask, nodemask, *cpu_map);
6307
6308#ifdef CONFIG_NUMA
6309 if (cpus_weight(*cpu_map) >
6310 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6311 sd = &per_cpu(allnodes_domains, i);
6312 *sd = SD_ALLNODES_INIT;
6313 sd->span = *cpu_map;
6314 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6315 p = sd;
6316 sd_allnodes = 1;
6317 } else
6318 p = NULL;
6319
6320 sd = &per_cpu(node_domains, i);
6321 *sd = SD_NODE_INIT;
6322 sd->span = sched_domain_node_span(cpu_to_node(i));
6323 sd->parent = p;
6324 if (p)
6325 p->child = sd;
6326 cpus_and(sd->span, sd->span, *cpu_map);
6327#endif
6328
6329 p = sd;
6330 sd = &per_cpu(phys_domains, i);
6331 *sd = SD_CPU_INIT;
6332 sd->span = nodemask;
6333 sd->parent = p;
6334 if (p)
6335 p->child = sd;
6336 cpu_to_phys_group(i, cpu_map, &sd->groups);
6337
6338#ifdef CONFIG_SCHED_MC
6339 p = sd;
6340 sd = &per_cpu(core_domains, i);
6341 *sd = SD_MC_INIT;
6342 sd->span = cpu_coregroup_map(i);
6343 cpus_and(sd->span, sd->span, *cpu_map);
6344 sd->parent = p;
6345 p->child = sd;
6346 cpu_to_core_group(i, cpu_map, &sd->groups);
6347#endif
6348
6349#ifdef CONFIG_SCHED_SMT
6350 p = sd;
6351 sd = &per_cpu(cpu_domains, i);
6352 *sd = SD_SIBLING_INIT;
6353 sd->span = per_cpu(cpu_sibling_map, i);
6354 cpus_and(sd->span, sd->span, *cpu_map);
6355 sd->parent = p;
6356 p->child = sd;
6357 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6358#endif
6359 }
6360
6361#ifdef CONFIG_SCHED_SMT
6362 /* Set up CPU (sibling) groups */
6363 for_each_cpu_mask(i, *cpu_map) {
6364 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6365 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6366 if (i != first_cpu(this_sibling_map))
6367 continue;
6368
6369 init_sched_build_groups(this_sibling_map, cpu_map,
6370 &cpu_to_cpu_group);
6371 }
6372#endif
6373
6374#ifdef CONFIG_SCHED_MC
6375 /* Set up multi-core groups */
6376 for_each_cpu_mask(i, *cpu_map) {
6377 cpumask_t this_core_map = cpu_coregroup_map(i);
6378 cpus_and(this_core_map, this_core_map, *cpu_map);
6379 if (i != first_cpu(this_core_map))
6380 continue;
6381 init_sched_build_groups(this_core_map, cpu_map,
6382 &cpu_to_core_group);
6383 }
6384#endif
6385
6386 /* Set up physical groups */
6387 for (i = 0; i < MAX_NUMNODES; i++) {
6388 cpumask_t nodemask = node_to_cpumask(i);
6389
6390 cpus_and(nodemask, nodemask, *cpu_map);
6391 if (cpus_empty(nodemask))
6392 continue;
6393
6394 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6395 }
6396
6397#ifdef CONFIG_NUMA
6398 /* Set up node groups */
6399 if (sd_allnodes)
6400 init_sched_build_groups(*cpu_map, cpu_map,
6401 &cpu_to_allnodes_group);
6402
6403 for (i = 0; i < MAX_NUMNODES; i++) {
6404 /* Set up node groups */
6405 struct sched_group *sg, *prev;
6406 cpumask_t nodemask = node_to_cpumask(i);
6407 cpumask_t domainspan;
6408 cpumask_t covered = CPU_MASK_NONE;
6409 int j;
6410
6411 cpus_and(nodemask, nodemask, *cpu_map);
6412 if (cpus_empty(nodemask)) {
6413 sched_group_nodes[i] = NULL;
6414 continue;
6415 }
6416
6417 domainspan = sched_domain_node_span(i);
6418 cpus_and(domainspan, domainspan, *cpu_map);
6419
6420 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6421 if (!sg) {
6422 printk(KERN_WARNING "Can not alloc domain group for "
6423 "node %d\n", i);
6424 goto error;
6425 }
6426 sched_group_nodes[i] = sg;
6427 for_each_cpu_mask(j, nodemask) {
6428 struct sched_domain *sd;
6429
6430 sd = &per_cpu(node_domains, j);
6431 sd->groups = sg;
6432 }
6433 sg->__cpu_power = 0;
6434 sg->cpumask = nodemask;
6435 sg->next = sg;
6436 cpus_or(covered, covered, nodemask);
6437 prev = sg;
6438
6439 for (j = 0; j < MAX_NUMNODES; j++) {
6440 cpumask_t tmp, notcovered;
6441 int n = (i + j) % MAX_NUMNODES;
6442
6443 cpus_complement(notcovered, covered);
6444 cpus_and(tmp, notcovered, *cpu_map);
6445 cpus_and(tmp, tmp, domainspan);
6446 if (cpus_empty(tmp))
6447 break;
6448
6449 nodemask = node_to_cpumask(n);
6450 cpus_and(tmp, tmp, nodemask);
6451 if (cpus_empty(tmp))
6452 continue;
6453
6454 sg = kmalloc_node(sizeof(struct sched_group),
6455 GFP_KERNEL, i);
6456 if (!sg) {
6457 printk(KERN_WARNING
6458 "Can not alloc domain group for node %d\n", j);
6459 goto error;
6460 }
6461 sg->__cpu_power = 0;
6462 sg->cpumask = tmp;
6463 sg->next = prev->next;
6464 cpus_or(covered, covered, tmp);
6465 prev->next = sg;
6466 prev = sg;
6467 }
6468 }
6469#endif
6470
6471 /* Calculate CPU power for physical packages and nodes */
6472#ifdef CONFIG_SCHED_SMT
6473 for_each_cpu_mask(i, *cpu_map) {
6474 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6475
6476 init_sched_groups_power(i, sd);
6477 }
6478#endif
6479#ifdef CONFIG_SCHED_MC
6480 for_each_cpu_mask(i, *cpu_map) {
6481 struct sched_domain *sd = &per_cpu(core_domains, i);
6482
6483 init_sched_groups_power(i, sd);
6484 }
6485#endif
6486
6487 for_each_cpu_mask(i, *cpu_map) {
6488 struct sched_domain *sd = &per_cpu(phys_domains, i);
6489
6490 init_sched_groups_power(i, sd);
6491 }
6492
6493#ifdef CONFIG_NUMA
6494 for (i = 0; i < MAX_NUMNODES; i++)
6495 init_numa_sched_groups_power(sched_group_nodes[i]);
6496
6497 if (sd_allnodes) {
6498 struct sched_group *sg;
6499
6500 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6501 init_numa_sched_groups_power(sg);
6502 }
6503#endif
6504
6505 /* Attach the domains */
6506 for_each_cpu_mask(i, *cpu_map) {
6507 struct sched_domain *sd;
6508#ifdef CONFIG_SCHED_SMT
6509 sd = &per_cpu(cpu_domains, i);
6510#elif defined(CONFIG_SCHED_MC)
6511 sd = &per_cpu(core_domains, i);
6512#else
6513 sd = &per_cpu(phys_domains, i);
6514#endif
6515 cpu_attach_domain(sd, i);
6516 }
6517
6518 return 0;
6519
6520#ifdef CONFIG_NUMA
6521error:
6522 free_sched_groups(cpu_map);
6523 return -ENOMEM;
6524#endif
6525}
6526
6527static cpumask_t *doms_cur; /* current sched domains */
6528static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6529
6530/*
6531 * Special case: If a kmalloc of a doms_cur partition (array of
6532 * cpumask_t) fails, then fallback to a single sched domain,
6533 * as determined by the single cpumask_t fallback_doms.
6534 */
6535static cpumask_t fallback_doms;
6536
6537/*
6538 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6539 * For now this just excludes isolated cpus, but could be used to
6540 * exclude other special cases in the future.
6541 */
6542static int arch_init_sched_domains(const cpumask_t *cpu_map)
6543{
6544 int err;
6545
6546 ndoms_cur = 1;
6547 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6548 if (!doms_cur)
6549 doms_cur = &fallback_doms;
6550 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6551 err = build_sched_domains(doms_cur);
6552 register_sched_domain_sysctl();
6553
6554 return err;
6555}
6556
6557static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6558{
6559 free_sched_groups(cpu_map);
6560}
6561
6562/*
6563 * Detach sched domains from a group of cpus specified in cpu_map
6564 * These cpus will now be attached to the NULL domain
6565 */
6566static void detach_destroy_domains(const cpumask_t *cpu_map)
6567{
6568 int i;
6569
6570 unregister_sched_domain_sysctl();
6571
6572 for_each_cpu_mask(i, *cpu_map)
6573 cpu_attach_domain(NULL, i);
6574 synchronize_sched();
6575 arch_destroy_sched_domains(cpu_map);
6576}
6577
6578/*
6579 * Partition sched domains as specified by the 'ndoms_new'
6580 * cpumasks in the array doms_new[] of cpumasks. This compares
6581 * doms_new[] to the current sched domain partitioning, doms_cur[].
6582 * It destroys each deleted domain and builds each new domain.
6583 *
6584 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6585 * The masks don't intersect (don't overlap.) We should setup one
6586 * sched domain for each mask. CPUs not in any of the cpumasks will
6587 * not be load balanced. If the same cpumask appears both in the
6588 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6589 * it as it is.
6590 *
6591 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6592 * ownership of it and will kfree it when done with it. If the caller
6593 * failed the kmalloc call, then it can pass in doms_new == NULL,
6594 * and partition_sched_domains() will fallback to the single partition
6595 * 'fallback_doms'.
6596 *
6597 * Call with hotplug lock held
6598 */
6599void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6600{
6601 int i, j;
6602
6603 lock_doms_cur();
6604
6605 /* always unregister in case we don't destroy any domains */
6606 unregister_sched_domain_sysctl();
6607
6608 if (doms_new == NULL) {
6609 ndoms_new = 1;
6610 doms_new = &fallback_doms;
6611 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6612 }
6613
6614 /* Destroy deleted domains */
6615 for (i = 0; i < ndoms_cur; i++) {
6616 for (j = 0; j < ndoms_new; j++) {
6617 if (cpus_equal(doms_cur[i], doms_new[j]))
6618 goto match1;
6619 }
6620 /* no match - a current sched domain not in new doms_new[] */
6621 detach_destroy_domains(doms_cur + i);
6622match1:
6623 ;
6624 }
6625
6626 /* Build new domains */
6627 for (i = 0; i < ndoms_new; i++) {
6628 for (j = 0; j < ndoms_cur; j++) {
6629 if (cpus_equal(doms_new[i], doms_cur[j]))
6630 goto match2;
6631 }
6632 /* no match - add a new doms_new */
6633 build_sched_domains(doms_new + i);
6634match2:
6635 ;
6636 }
6637
6638 /* Remember the new sched domains */
6639 if (doms_cur != &fallback_doms)
6640 kfree(doms_cur);
6641 doms_cur = doms_new;
6642 ndoms_cur = ndoms_new;
6643
6644 register_sched_domain_sysctl();
6645
6646 unlock_doms_cur();
6647}
6648
6649#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6650static int arch_reinit_sched_domains(void)
6651{
6652 int err;
6653
6654 get_online_cpus();
6655 detach_destroy_domains(&cpu_online_map);
6656 err = arch_init_sched_domains(&cpu_online_map);
6657 put_online_cpus();
6658
6659 return err;
6660}
6661
6662static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6663{
6664 int ret;
6665
6666 if (buf[0] != '0' && buf[0] != '1')
6667 return -EINVAL;
6668
6669 if (smt)
6670 sched_smt_power_savings = (buf[0] == '1');
6671 else
6672 sched_mc_power_savings = (buf[0] == '1');
6673
6674 ret = arch_reinit_sched_domains();
6675
6676 return ret ? ret : count;
6677}
6678
6679#ifdef CONFIG_SCHED_MC
6680static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6681{
6682 return sprintf(page, "%u\n", sched_mc_power_savings);
6683}
6684static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6685 const char *buf, size_t count)
6686{
6687 return sched_power_savings_store(buf, count, 0);
6688}
6689static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6690 sched_mc_power_savings_store);
6691#endif
6692
6693#ifdef CONFIG_SCHED_SMT
6694static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6695{
6696 return sprintf(page, "%u\n", sched_smt_power_savings);
6697}
6698static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6699 const char *buf, size_t count)
6700{
6701 return sched_power_savings_store(buf, count, 1);
6702}
6703static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6704 sched_smt_power_savings_store);
6705#endif
6706
6707int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6708{
6709 int err = 0;
6710
6711#ifdef CONFIG_SCHED_SMT
6712 if (smt_capable())
6713 err = sysfs_create_file(&cls->kset.kobj,
6714 &attr_sched_smt_power_savings.attr);
6715#endif
6716#ifdef CONFIG_SCHED_MC
6717 if (!err && mc_capable())
6718 err = sysfs_create_file(&cls->kset.kobj,
6719 &attr_sched_mc_power_savings.attr);
6720#endif
6721 return err;
6722}
6723#endif
6724
6725/*
6726 * Force a reinitialization of the sched domains hierarchy. The domains
6727 * and groups cannot be updated in place without racing with the balancing
6728 * code, so we temporarily attach all running cpus to the NULL domain
6729 * which will prevent rebalancing while the sched domains are recalculated.
6730 */
6731static int update_sched_domains(struct notifier_block *nfb,
6732 unsigned long action, void *hcpu)
6733{
6734 switch (action) {
6735 case CPU_UP_PREPARE:
6736 case CPU_UP_PREPARE_FROZEN:
6737 case CPU_DOWN_PREPARE:
6738 case CPU_DOWN_PREPARE_FROZEN:
6739 detach_destroy_domains(&cpu_online_map);
6740 return NOTIFY_OK;
6741
6742 case CPU_UP_CANCELED:
6743 case CPU_UP_CANCELED_FROZEN:
6744 case CPU_DOWN_FAILED:
6745 case CPU_DOWN_FAILED_FROZEN:
6746 case CPU_ONLINE:
6747 case CPU_ONLINE_FROZEN:
6748 case CPU_DEAD:
6749 case CPU_DEAD_FROZEN:
6750 /*
6751 * Fall through and re-initialise the domains.
6752 */
6753 break;
6754 default:
6755 return NOTIFY_DONE;
6756 }
6757
6758 /* The hotplug lock is already held by cpu_up/cpu_down */
6759 arch_init_sched_domains(&cpu_online_map);
6760
6761 return NOTIFY_OK;
6762}
6763
6764void __init sched_init_smp(void)
6765{
6766 cpumask_t non_isolated_cpus;
6767
6768 get_online_cpus();
6769 arch_init_sched_domains(&cpu_online_map);
6770 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6771 if (cpus_empty(non_isolated_cpus))
6772 cpu_set(smp_processor_id(), non_isolated_cpus);
6773 put_online_cpus();
6774 /* XXX: Theoretical race here - CPU may be hotplugged now */
6775 hotcpu_notifier(update_sched_domains, 0);
6776
6777 /* Move init over to a non-isolated CPU */
6778 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6779 BUG();
6780 sched_init_granularity();
6781
6782#ifdef CONFIG_FAIR_GROUP_SCHED
6783 if (nr_cpu_ids == 1)
6784 return;
6785
6786 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6787 "group_balance");
6788 if (!IS_ERR(lb_monitor_task)) {
6789 lb_monitor_task->flags |= PF_NOFREEZE;
6790 wake_up_process(lb_monitor_task);
6791 } else {
6792 printk(KERN_ERR "Could not create load balance monitor thread"
6793 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6794 }
6795#endif
6796}
6797#else
6798void __init sched_init_smp(void)
6799{
6800 sched_init_granularity();
6801}
6802#endif /* CONFIG_SMP */
6803
6804int in_sched_functions(unsigned long addr)
6805{
6806 return in_lock_functions(addr) ||
6807 (addr >= (unsigned long)__sched_text_start
6808 && addr < (unsigned long)__sched_text_end);
6809}
6810
6811static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6812{
6813 cfs_rq->tasks_timeline = RB_ROOT;
6814#ifdef CONFIG_FAIR_GROUP_SCHED
6815 cfs_rq->rq = rq;
6816#endif
6817 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6818}
6819
6820void __init sched_init(void)
6821{
6822 int highest_cpu = 0;
6823 int i, j;
6824
6825 for_each_possible_cpu(i) {
6826 struct rt_prio_array *array;
6827 struct rq *rq;
6828
6829 rq = cpu_rq(i);
6830 spin_lock_init(&rq->lock);
6831 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6832 rq->nr_running = 0;
6833 rq->clock = 1;
6834 init_cfs_rq(&rq->cfs, rq);
6835#ifdef CONFIG_FAIR_GROUP_SCHED
6836 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6837 {
6838 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6839 struct sched_entity *se =
6840 &per_cpu(init_sched_entity, i);
6841
6842 init_cfs_rq_p[i] = cfs_rq;
6843 init_cfs_rq(cfs_rq, rq);
6844 cfs_rq->tg = &init_task_group;
6845 list_add(&cfs_rq->leaf_cfs_rq_list,
6846 &rq->leaf_cfs_rq_list);
6847
6848 init_sched_entity_p[i] = se;
6849 se->cfs_rq = &rq->cfs;
6850 se->my_q = cfs_rq;
6851 se->load.weight = init_task_group_load;
6852 se->load.inv_weight =
6853 div64_64(1ULL<<32, init_task_group_load);
6854 se->parent = NULL;
6855 }
6856 init_task_group.shares = init_task_group_load;
6857#endif
6858
6859 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6860 rq->cpu_load[j] = 0;
6861#ifdef CONFIG_SMP
6862 rq->sd = NULL;
6863 rq->active_balance = 0;
6864 rq->next_balance = jiffies;
6865 rq->push_cpu = 0;
6866 rq->cpu = i;
6867 rq->migration_thread = NULL;
6868 INIT_LIST_HEAD(&rq->migration_queue);
6869 rq->rt.highest_prio = MAX_RT_PRIO;
6870#endif
6871 atomic_set(&rq->nr_iowait, 0);
6872
6873 array = &rq->rt.active;
6874 for (j = 0; j < MAX_RT_PRIO; j++) {
6875 INIT_LIST_HEAD(array->queue + j);
6876 __clear_bit(j, array->bitmap);
6877 }
6878 highest_cpu = i;
6879 /* delimiter for bitsearch: */
6880 __set_bit(MAX_RT_PRIO, array->bitmap);
6881 }
6882
6883 set_load_weight(&init_task);
6884
6885#ifdef CONFIG_PREEMPT_NOTIFIERS
6886 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6887#endif
6888
6889#ifdef CONFIG_SMP
6890 nr_cpu_ids = highest_cpu + 1;
6891 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6892#endif
6893
6894#ifdef CONFIG_RT_MUTEXES
6895 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6896#endif
6897
6898 /*
6899 * The boot idle thread does lazy MMU switching as well:
6900 */
6901 atomic_inc(&init_mm.mm_count);
6902 enter_lazy_tlb(&init_mm, current);
6903
6904 /*
6905 * Make us the idle thread. Technically, schedule() should not be
6906 * called from this thread, however somewhere below it might be,
6907 * but because we are the idle thread, we just pick up running again
6908 * when this runqueue becomes "idle".
6909 */
6910 init_idle(current, smp_processor_id());
6911 /*
6912 * During early bootup we pretend to be a normal task:
6913 */
6914 current->sched_class = &fair_sched_class;
6915}
6916
6917#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6918void __might_sleep(char *file, int line)
6919{
6920#ifdef in_atomic
6921 static unsigned long prev_jiffy; /* ratelimiting */
6922
6923 if ((in_atomic() || irqs_disabled()) &&
6924 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6925 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6926 return;
6927 prev_jiffy = jiffies;
6928 printk(KERN_ERR "BUG: sleeping function called from invalid"
6929 " context at %s:%d\n", file, line);
6930 printk("in_atomic():%d, irqs_disabled():%d\n",
6931 in_atomic(), irqs_disabled());
6932 debug_show_held_locks(current);
6933 if (irqs_disabled())
6934 print_irqtrace_events(current);
6935 dump_stack();
6936 }
6937#endif
6938}
6939EXPORT_SYMBOL(__might_sleep);
6940#endif
6941
6942#ifdef CONFIG_MAGIC_SYSRQ
6943static void normalize_task(struct rq *rq, struct task_struct *p)
6944{
6945 int on_rq;
6946 update_rq_clock(rq);
6947 on_rq = p->se.on_rq;
6948 if (on_rq)
6949 deactivate_task(rq, p, 0);
6950 __setscheduler(rq, p, SCHED_NORMAL, 0);
6951 if (on_rq) {
6952 activate_task(rq, p, 0);
6953 resched_task(rq->curr);
6954 }
6955}
6956
6957void normalize_rt_tasks(void)
6958{
6959 struct task_struct *g, *p;
6960 unsigned long flags;
6961 struct rq *rq;
6962
6963 read_lock_irq(&tasklist_lock);
6964 do_each_thread(g, p) {
6965 /*
6966 * Only normalize user tasks:
6967 */
6968 if (!p->mm)
6969 continue;
6970
6971 p->se.exec_start = 0;
6972#ifdef CONFIG_SCHEDSTATS
6973 p->se.wait_start = 0;
6974 p->se.sleep_start = 0;
6975 p->se.block_start = 0;
6976#endif
6977 task_rq(p)->clock = 0;
6978
6979 if (!rt_task(p)) {
6980 /*
6981 * Renice negative nice level userspace
6982 * tasks back to 0:
6983 */
6984 if (TASK_NICE(p) < 0 && p->mm)
6985 set_user_nice(p, 0);
6986 continue;
6987 }
6988
6989 spin_lock_irqsave(&p->pi_lock, flags);
6990 rq = __task_rq_lock(p);
6991
6992 normalize_task(rq, p);
6993
6994 __task_rq_unlock(rq);
6995 spin_unlock_irqrestore(&p->pi_lock, flags);
6996 } while_each_thread(g, p);
6997
6998 read_unlock_irq(&tasklist_lock);
6999}
7000
7001#endif /* CONFIG_MAGIC_SYSRQ */
7002
7003#ifdef CONFIG_IA64
7004/*
7005 * These functions are only useful for the IA64 MCA handling.
7006 *
7007 * They can only be called when the whole system has been
7008 * stopped - every CPU needs to be quiescent, and no scheduling
7009 * activity can take place. Using them for anything else would
7010 * be a serious bug, and as a result, they aren't even visible
7011 * under any other configuration.
7012 */
7013
7014/**
7015 * curr_task - return the current task for a given cpu.
7016 * @cpu: the processor in question.
7017 *
7018 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7019 */
7020struct task_struct *curr_task(int cpu)
7021{
7022 return cpu_curr(cpu);
7023}
7024
7025/**
7026 * set_curr_task - set the current task for a given cpu.
7027 * @cpu: the processor in question.
7028 * @p: the task pointer to set.
7029 *
7030 * Description: This function must only be used when non-maskable interrupts
7031 * are serviced on a separate stack. It allows the architecture to switch the
7032 * notion of the current task on a cpu in a non-blocking manner. This function
7033 * must be called with all CPU's synchronized, and interrupts disabled, the
7034 * and caller must save the original value of the current task (see
7035 * curr_task() above) and restore that value before reenabling interrupts and
7036 * re-starting the system.
7037 *
7038 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7039 */
7040void set_curr_task(int cpu, struct task_struct *p)
7041{
7042 cpu_curr(cpu) = p;
7043}
7044
7045#endif
7046
7047#ifdef CONFIG_FAIR_GROUP_SCHED
7048
7049#ifdef CONFIG_SMP
7050/*
7051 * distribute shares of all task groups among their schedulable entities,
7052 * to reflect load distrbution across cpus.
7053 */
7054static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7055{
7056 struct cfs_rq *cfs_rq;
7057 struct rq *rq = cpu_rq(this_cpu);
7058 cpumask_t sdspan = sd->span;
7059 int balanced = 1;
7060
7061 /* Walk thr' all the task groups that we have */
7062 for_each_leaf_cfs_rq(rq, cfs_rq) {
7063 int i;
7064 unsigned long total_load = 0, total_shares;
7065 struct task_group *tg = cfs_rq->tg;
7066
7067 /* Gather total task load of this group across cpus */
7068 for_each_cpu_mask(i, sdspan)
7069 total_load += tg->cfs_rq[i]->load.weight;
7070
7071 /* Nothing to do if this group has no load */
7072 if (!total_load)
7073 continue;
7074
7075 /*
7076 * tg->shares represents the number of cpu shares the task group
7077 * is eligible to hold on a single cpu. On N cpus, it is
7078 * eligible to hold (N * tg->shares) number of cpu shares.
7079 */
7080 total_shares = tg->shares * cpus_weight(sdspan);
7081
7082 /*
7083 * redistribute total_shares across cpus as per the task load
7084 * distribution.
7085 */
7086 for_each_cpu_mask(i, sdspan) {
7087 unsigned long local_load, local_shares;
7088
7089 local_load = tg->cfs_rq[i]->load.weight;
7090 local_shares = (local_load * total_shares) / total_load;
7091 if (!local_shares)
7092 local_shares = MIN_GROUP_SHARES;
7093 if (local_shares == tg->se[i]->load.weight)
7094 continue;
7095
7096 spin_lock_irq(&cpu_rq(i)->lock);
7097 set_se_shares(tg->se[i], local_shares);
7098 spin_unlock_irq(&cpu_rq(i)->lock);
7099 balanced = 0;
7100 }
7101 }
7102
7103 return balanced;
7104}
7105
7106/*
7107 * How frequently should we rebalance_shares() across cpus?
7108 *
7109 * The more frequently we rebalance shares, the more accurate is the fairness
7110 * of cpu bandwidth distribution between task groups. However higher frequency
7111 * also implies increased scheduling overhead.
7112 *
7113 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7114 * consecutive calls to rebalance_shares() in the same sched domain.
7115 *
7116 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7117 * consecutive calls to rebalance_shares() in the same sched domain.
7118 *
7119 * These settings allows for the appropriate tradeoff between accuracy of
7120 * fairness and the associated overhead.
7121 *
7122 */
7123
7124/* default: 8ms, units: milliseconds */
7125const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7126
7127/* default: 128ms, units: milliseconds */
7128const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7129
7130/* kernel thread that runs rebalance_shares() periodically */
7131static int load_balance_monitor(void *unused)
7132{
7133 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7134 struct sched_param schedparm;
7135 int ret;
7136
7137 /*
7138 * We don't want this thread's execution to be limited by the shares
7139 * assigned to default group (init_task_group). Hence make it run
7140 * as a SCHED_RR RT task at the lowest priority.
7141 */
7142 schedparm.sched_priority = 1;
7143 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7144 if (ret)
7145 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7146 " monitor thread (error = %d) \n", ret);
7147
7148 while (!kthread_should_stop()) {
7149 int i, cpu, balanced = 1;
7150
7151 /* Prevent cpus going down or coming up */
7152 get_online_cpus();
7153 /* lockout changes to doms_cur[] array */
7154 lock_doms_cur();
7155 /*
7156 * Enter a rcu read-side critical section to safely walk rq->sd
7157 * chain on various cpus and to walk task group list
7158 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7159 */
7160 rcu_read_lock();
7161
7162 for (i = 0; i < ndoms_cur; i++) {
7163 cpumask_t cpumap = doms_cur[i];
7164 struct sched_domain *sd = NULL, *sd_prev = NULL;
7165
7166 cpu = first_cpu(cpumap);
7167
7168 /* Find the highest domain at which to balance shares */
7169 for_each_domain(cpu, sd) {
7170 if (!(sd->flags & SD_LOAD_BALANCE))
7171 continue;
7172 sd_prev = sd;
7173 }
7174
7175 sd = sd_prev;
7176 /* sd == NULL? No load balance reqd in this domain */
7177 if (!sd)
7178 continue;
7179
7180 balanced &= rebalance_shares(sd, cpu);
7181 }
7182
7183 rcu_read_unlock();
7184
7185 unlock_doms_cur();
7186 put_online_cpus();
7187
7188 if (!balanced)
7189 timeout = sysctl_sched_min_bal_int_shares;
7190 else if (timeout < sysctl_sched_max_bal_int_shares)
7191 timeout *= 2;
7192
7193 msleep_interruptible(timeout);
7194 }
7195
7196 return 0;
7197}
7198#endif /* CONFIG_SMP */
7199
7200/* allocate runqueue etc for a new task group */
7201struct task_group *sched_create_group(void)
7202{
7203 struct task_group *tg;
7204 struct cfs_rq *cfs_rq;
7205 struct sched_entity *se;
7206 struct rq *rq;
7207 int i;
7208
7209 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7210 if (!tg)
7211 return ERR_PTR(-ENOMEM);
7212
7213 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7214 if (!tg->cfs_rq)
7215 goto err;
7216 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7217 if (!tg->se)
7218 goto err;
7219
7220 for_each_possible_cpu(i) {
7221 rq = cpu_rq(i);
7222
7223 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7224 cpu_to_node(i));
7225 if (!cfs_rq)
7226 goto err;
7227
7228 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7229 cpu_to_node(i));
7230 if (!se)
7231 goto err;
7232
7233 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7234 memset(se, 0, sizeof(struct sched_entity));
7235
7236 tg->cfs_rq[i] = cfs_rq;
7237 init_cfs_rq(cfs_rq, rq);
7238 cfs_rq->tg = tg;
7239
7240 tg->se[i] = se;
7241 se->cfs_rq = &rq->cfs;
7242 se->my_q = cfs_rq;
7243 se->load.weight = NICE_0_LOAD;
7244 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7245 se->parent = NULL;
7246 }
7247
7248 tg->shares = NICE_0_LOAD;
7249
7250 lock_task_group_list();
7251 for_each_possible_cpu(i) {
7252 rq = cpu_rq(i);
7253 cfs_rq = tg->cfs_rq[i];
7254 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7255 }
7256 unlock_task_group_list();
7257
7258 return tg;
7259
7260err:
7261 for_each_possible_cpu(i) {
7262 if (tg->cfs_rq)
7263 kfree(tg->cfs_rq[i]);
7264 if (tg->se)
7265 kfree(tg->se[i]);
7266 }
7267 kfree(tg->cfs_rq);
7268 kfree(tg->se);
7269 kfree(tg);
7270
7271 return ERR_PTR(-ENOMEM);
7272}
7273
7274/* rcu callback to free various structures associated with a task group */
7275static void free_sched_group(struct rcu_head *rhp)
7276{
7277 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7278 struct cfs_rq *cfs_rq;
7279 struct sched_entity *se;
7280 int i;
7281
7282 /* now it should be safe to free those cfs_rqs */
7283 for_each_possible_cpu(i) {
7284 cfs_rq = tg->cfs_rq[i];
7285 kfree(cfs_rq);
7286
7287 se = tg->se[i];
7288 kfree(se);
7289 }
7290
7291 kfree(tg->cfs_rq);
7292 kfree(tg->se);
7293 kfree(tg);
7294}
7295
7296/* Destroy runqueue etc associated with a task group */
7297void sched_destroy_group(struct task_group *tg)
7298{
7299 struct cfs_rq *cfs_rq = NULL;
7300 int i;
7301
7302 lock_task_group_list();
7303 for_each_possible_cpu(i) {
7304 cfs_rq = tg->cfs_rq[i];
7305 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7306 }
7307 unlock_task_group_list();
7308
7309 BUG_ON(!cfs_rq);
7310
7311 /* wait for possible concurrent references to cfs_rqs complete */
7312 call_rcu(&tg->rcu, free_sched_group);
7313}
7314
7315/* change task's runqueue when it moves between groups.
7316 * The caller of this function should have put the task in its new group
7317 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7318 * reflect its new group.
7319 */
7320void sched_move_task(struct task_struct *tsk)
7321{
7322 int on_rq, running;
7323 unsigned long flags;
7324 struct rq *rq;
7325
7326 rq = task_rq_lock(tsk, &flags);
7327
7328 if (tsk->sched_class != &fair_sched_class) {
7329 set_task_cfs_rq(tsk, task_cpu(tsk));
7330 goto done;
7331 }
7332
7333 update_rq_clock(rq);
7334
7335 running = task_current(rq, tsk);
7336 on_rq = tsk->se.on_rq;
7337
7338 if (on_rq) {
7339 dequeue_task(rq, tsk, 0);
7340 if (unlikely(running))
7341 tsk->sched_class->put_prev_task(rq, tsk);
7342 }
7343
7344 set_task_cfs_rq(tsk, task_cpu(tsk));
7345
7346 if (on_rq) {
7347 if (unlikely(running))
7348 tsk->sched_class->set_curr_task(rq);
7349 enqueue_task(rq, tsk, 0);
7350 }
7351
7352done:
7353 task_rq_unlock(rq, &flags);
7354}
7355
7356/* rq->lock to be locked by caller */
7357static void set_se_shares(struct sched_entity *se, unsigned long shares)
7358{
7359 struct cfs_rq *cfs_rq = se->cfs_rq;
7360 struct rq *rq = cfs_rq->rq;
7361 int on_rq;
7362
7363 if (!shares)
7364 shares = MIN_GROUP_SHARES;
7365
7366 on_rq = se->on_rq;
7367 if (on_rq) {
7368 dequeue_entity(cfs_rq, se, 0);
7369 dec_cpu_load(rq, se->load.weight);
7370 }
7371
7372 se->load.weight = shares;
7373 se->load.inv_weight = div64_64((1ULL<<32), shares);
7374
7375 if (on_rq) {
7376 enqueue_entity(cfs_rq, se, 0);
7377 inc_cpu_load(rq, se->load.weight);
7378 }
7379}
7380
7381int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7382{
7383 int i;
7384 struct cfs_rq *cfs_rq;
7385 struct rq *rq;
7386
7387 lock_task_group_list();
7388 if (tg->shares == shares)
7389 goto done;
7390
7391 if (shares < MIN_GROUP_SHARES)
7392 shares = MIN_GROUP_SHARES;
7393
7394 /*
7395 * Prevent any load balance activity (rebalance_shares,
7396 * load_balance_fair) from referring to this group first,
7397 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7398 */
7399 for_each_possible_cpu(i) {
7400 cfs_rq = tg->cfs_rq[i];
7401 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7402 }
7403
7404 /* wait for any ongoing reference to this group to finish */
7405 synchronize_sched();
7406
7407 /*
7408 * Now we are free to modify the group's share on each cpu
7409 * w/o tripping rebalance_share or load_balance_fair.
7410 */
7411 tg->shares = shares;
7412 for_each_possible_cpu(i) {
7413 spin_lock_irq(&cpu_rq(i)->lock);
7414 set_se_shares(tg->se[i], shares);
7415 spin_unlock_irq(&cpu_rq(i)->lock);
7416 }
7417
7418 /*
7419 * Enable load balance activity on this group, by inserting it back on
7420 * each cpu's rq->leaf_cfs_rq_list.
7421 */
7422 for_each_possible_cpu(i) {
7423 rq = cpu_rq(i);
7424 cfs_rq = tg->cfs_rq[i];
7425 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7426 }
7427done:
7428 unlock_task_group_list();
7429 return 0;
7430}
7431
7432unsigned long sched_group_shares(struct task_group *tg)
7433{
7434 return tg->shares;
7435}
7436
7437#endif /* CONFIG_FAIR_GROUP_SCHED */
7438
7439#ifdef CONFIG_FAIR_CGROUP_SCHED
7440
7441/* return corresponding task_group object of a cgroup */
7442static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7443{
7444 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7445 struct task_group, css);
7446}
7447
7448static struct cgroup_subsys_state *
7449cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7450{
7451 struct task_group *tg;
7452
7453 if (!cgrp->parent) {
7454 /* This is early initialization for the top cgroup */
7455 init_task_group.css.cgroup = cgrp;
7456 return &init_task_group.css;
7457 }
7458
7459 /* we support only 1-level deep hierarchical scheduler atm */
7460 if (cgrp->parent->parent)
7461 return ERR_PTR(-EINVAL);
7462
7463 tg = sched_create_group();
7464 if (IS_ERR(tg))
7465 return ERR_PTR(-ENOMEM);
7466
7467 /* Bind the cgroup to task_group object we just created */
7468 tg->css.cgroup = cgrp;
7469
7470 return &tg->css;
7471}
7472
7473static void
7474cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7475{
7476 struct task_group *tg = cgroup_tg(cgrp);
7477
7478 sched_destroy_group(tg);
7479}
7480
7481static int
7482cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7483 struct task_struct *tsk)
7484{
7485 /* We don't support RT-tasks being in separate groups */
7486 if (tsk->sched_class != &fair_sched_class)
7487 return -EINVAL;
7488
7489 return 0;
7490}
7491
7492static void
7493cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7494 struct cgroup *old_cont, struct task_struct *tsk)
7495{
7496 sched_move_task(tsk);
7497}
7498
7499static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7500 u64 shareval)
7501{
7502 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7503}
7504
7505static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7506{
7507 struct task_group *tg = cgroup_tg(cgrp);
7508
7509 return (u64) tg->shares;
7510}
7511
7512static struct cftype cpu_files[] = {
7513 {
7514 .name = "shares",
7515 .read_uint = cpu_shares_read_uint,
7516 .write_uint = cpu_shares_write_uint,
7517 },
7518};
7519
7520static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7521{
7522 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7523}
7524
7525struct cgroup_subsys cpu_cgroup_subsys = {
7526 .name = "cpu",
7527 .create = cpu_cgroup_create,
7528 .destroy = cpu_cgroup_destroy,
7529 .can_attach = cpu_cgroup_can_attach,
7530 .attach = cpu_cgroup_attach,
7531 .populate = cpu_cgroup_populate,
7532 .subsys_id = cpu_cgroup_subsys_id,
7533 .early_init = 1,
7534};
7535
7536#endif /* CONFIG_FAIR_CGROUP_SCHED */
7537
7538#ifdef CONFIG_CGROUP_CPUACCT
7539
7540/*
7541 * CPU accounting code for task groups.
7542 *
7543 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7544 * (balbir@in.ibm.com).
7545 */
7546
7547/* track cpu usage of a group of tasks */
7548struct cpuacct {
7549 struct cgroup_subsys_state css;
7550 /* cpuusage holds pointer to a u64-type object on every cpu */
7551 u64 *cpuusage;
7552};
7553
7554struct cgroup_subsys cpuacct_subsys;
7555
7556/* return cpu accounting group corresponding to this container */
7557static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7558{
7559 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7560 struct cpuacct, css);
7561}
7562
7563/* return cpu accounting group to which this task belongs */
7564static inline struct cpuacct *task_ca(struct task_struct *tsk)
7565{
7566 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7567 struct cpuacct, css);
7568}
7569
7570/* create a new cpu accounting group */
7571static struct cgroup_subsys_state *cpuacct_create(
7572 struct cgroup_subsys *ss, struct cgroup *cont)
7573{
7574 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7575
7576 if (!ca)
7577 return ERR_PTR(-ENOMEM);
7578
7579 ca->cpuusage = alloc_percpu(u64);
7580 if (!ca->cpuusage) {
7581 kfree(ca);
7582 return ERR_PTR(-ENOMEM);
7583 }
7584
7585 return &ca->css;
7586}
7587
7588/* destroy an existing cpu accounting group */
7589static void
7590cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7591{
7592 struct cpuacct *ca = cgroup_ca(cont);
7593
7594 free_percpu(ca->cpuusage);
7595 kfree(ca);
7596}
7597
7598/* return total cpu usage (in nanoseconds) of a group */
7599static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7600{
7601 struct cpuacct *ca = cgroup_ca(cont);
7602 u64 totalcpuusage = 0;
7603 int i;
7604
7605 for_each_possible_cpu(i) {
7606 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7607
7608 /*
7609 * Take rq->lock to make 64-bit addition safe on 32-bit
7610 * platforms.
7611 */
7612 spin_lock_irq(&cpu_rq(i)->lock);
7613 totalcpuusage += *cpuusage;
7614 spin_unlock_irq(&cpu_rq(i)->lock);
7615 }
7616
7617 return totalcpuusage;
7618}
7619
7620static struct cftype files[] = {
7621 {
7622 .name = "usage",
7623 .read_uint = cpuusage_read,
7624 },
7625};
7626
7627static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7628{
7629 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7630}
7631
7632/*
7633 * charge this task's execution time to its accounting group.
7634 *
7635 * called with rq->lock held.
7636 */
7637static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7638{
7639 struct cpuacct *ca;
7640
7641 if (!cpuacct_subsys.active)
7642 return;
7643
7644 ca = task_ca(tsk);
7645 if (ca) {
7646 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7647
7648 *cpuusage += cputime;
7649 }
7650}
7651
7652struct cgroup_subsys cpuacct_subsys = {
7653 .name = "cpuacct",
7654 .create = cpuacct_create,
7655 .destroy = cpuacct_destroy,
7656 .populate = cpuacct_populate,
7657 .subsys_id = cpuacct_subsys_id,
7658};
7659#endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.054494 seconds and 5 git commands to generate.