sched: clean up schedule_balance_rt()
[deliverable/linux.git] / kernel / sched.c
... / ...
CommitLineData
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
31#include <linux/uaccess.h>
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
36#include <linux/capability.h>
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
39#include <linux/debug_locks.h>
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
43#include <linux/freezer.h>
44#include <linux/vmalloc.h>
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/pid_namespace.h>
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
57#include <linux/sysctl.h>
58#include <linux/syscalls.h>
59#include <linux/times.h>
60#include <linux/tsacct_kern.h>
61#include <linux/kprobes.h>
62#include <linux/delayacct.h>
63#include <linux/reciprocal_div.h>
64#include <linux/unistd.h>
65#include <linux/pagemap.h>
66
67#include <asm/tlb.h>
68#include <asm/irq_regs.h>
69
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78}
79
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113#define DEF_TIMESLICE (100 * HZ / 1000)
114
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
148/*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
158#include <linux/cgroup.h>
159
160struct cfs_rq;
161
162/* task group related information */
163struct task_group {
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
206 unsigned long shares;
207
208 struct rcu_head rcu;
209};
210
211/* Default task group's sched entity on each cpu */
212static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213/* Default task group's cfs_rq on each cpu */
214static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
216static struct sched_entity *init_sched_entity_p[NR_CPUS];
217static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
218
219/* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222static DEFINE_MUTEX(task_group_mutex);
223
224/* doms_cur_mutex serializes access to doms_cur[] array */
225static DEFINE_MUTEX(doms_cur_mutex);
226
227#ifdef CONFIG_SMP
228/* kernel thread that runs rebalance_shares() periodically */
229static struct task_struct *lb_monitor_task;
230static int load_balance_monitor(void *unused);
231#endif
232
233static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
235/* Default task group.
236 * Every task in system belong to this group at bootup.
237 */
238struct task_group init_task_group = {
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241};
242
243#ifdef CONFIG_FAIR_USER_SCHED
244# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
245#else
246# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
247#endif
248
249#define MIN_GROUP_SHARES 2
250
251static int init_task_group_load = INIT_TASK_GROUP_LOAD;
252
253/* return group to which a task belongs */
254static inline struct task_group *task_group(struct task_struct *p)
255{
256 struct task_group *tg;
257
258#ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
260#elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
263#else
264 tg = &init_task_group;
265#endif
266 return tg;
267}
268
269/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
271{
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
274}
275
276static inline void lock_task_group_list(void)
277{
278 mutex_lock(&task_group_mutex);
279}
280
281static inline void unlock_task_group_list(void)
282{
283 mutex_unlock(&task_group_mutex);
284}
285
286static inline void lock_doms_cur(void)
287{
288 mutex_lock(&doms_cur_mutex);
289}
290
291static inline void unlock_doms_cur(void)
292{
293 mutex_unlock(&doms_cur_mutex);
294}
295
296#else
297
298static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299static inline void lock_task_group_list(void) { }
300static inline void unlock_task_group_list(void) { }
301static inline void lock_doms_cur(void) { }
302static inline void unlock_doms_cur(void) { }
303
304#endif /* CONFIG_FAIR_GROUP_SCHED */
305
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
311 u64 exec_clock;
312 u64 min_vruntime;
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
321
322 unsigned long nr_spread_over;
323
324#ifdef CONFIG_FAIR_GROUP_SCHED
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
337#endif
338};
339
340/* Real-Time classes' related field in a runqueue: */
341struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345 unsigned long rt_nr_running;
346 unsigned long rt_nr_migratory;
347 /* highest queued rt task prio */
348 int highest_prio;
349 int overloaded;
350};
351
352/*
353 * This is the main, per-CPU runqueue data structure.
354 *
355 * Locking rule: those places that want to lock multiple runqueues
356 * (such as the load balancing or the thread migration code), lock
357 * acquire operations must be ordered by ascending &runqueue.
358 */
359struct rq {
360 /* runqueue lock: */
361 spinlock_t lock;
362
363 /*
364 * nr_running and cpu_load should be in the same cacheline because
365 * remote CPUs use both these fields when doing load calculation.
366 */
367 unsigned long nr_running;
368 #define CPU_LOAD_IDX_MAX 5
369 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
370 unsigned char idle_at_tick;
371#ifdef CONFIG_NO_HZ
372 unsigned char in_nohz_recently;
373#endif
374 /* capture load from *all* tasks on this cpu: */
375 struct load_weight load;
376 unsigned long nr_load_updates;
377 u64 nr_switches;
378
379 struct cfs_rq cfs;
380#ifdef CONFIG_FAIR_GROUP_SCHED
381 /* list of leaf cfs_rq on this cpu: */
382 struct list_head leaf_cfs_rq_list;
383#endif
384 struct rt_rq rt;
385
386 /*
387 * This is part of a global counter where only the total sum
388 * over all CPUs matters. A task can increase this counter on
389 * one CPU and if it got migrated afterwards it may decrease
390 * it on another CPU. Always updated under the runqueue lock:
391 */
392 unsigned long nr_uninterruptible;
393
394 struct task_struct *curr, *idle;
395 unsigned long next_balance;
396 struct mm_struct *prev_mm;
397
398 u64 clock, prev_clock_raw;
399 s64 clock_max_delta;
400
401 unsigned int clock_warps, clock_overflows;
402 u64 idle_clock;
403 unsigned int clock_deep_idle_events;
404 u64 tick_timestamp;
405
406 atomic_t nr_iowait;
407
408#ifdef CONFIG_SMP
409 struct sched_domain *sd;
410
411 /* For active balancing */
412 int active_balance;
413 int push_cpu;
414 /* cpu of this runqueue: */
415 int cpu;
416
417 struct task_struct *migration_thread;
418 struct list_head migration_queue;
419#endif
420
421#ifdef CONFIG_SCHEDSTATS
422 /* latency stats */
423 struct sched_info rq_sched_info;
424
425 /* sys_sched_yield() stats */
426 unsigned int yld_exp_empty;
427 unsigned int yld_act_empty;
428 unsigned int yld_both_empty;
429 unsigned int yld_count;
430
431 /* schedule() stats */
432 unsigned int sched_switch;
433 unsigned int sched_count;
434 unsigned int sched_goidle;
435
436 /* try_to_wake_up() stats */
437 unsigned int ttwu_count;
438 unsigned int ttwu_local;
439
440 /* BKL stats */
441 unsigned int bkl_count;
442#endif
443 struct lock_class_key rq_lock_key;
444};
445
446static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
447
448static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
449{
450 rq->curr->sched_class->check_preempt_curr(rq, p);
451}
452
453static inline int cpu_of(struct rq *rq)
454{
455#ifdef CONFIG_SMP
456 return rq->cpu;
457#else
458 return 0;
459#endif
460}
461
462/*
463 * Update the per-runqueue clock, as finegrained as the platform can give
464 * us, but without assuming monotonicity, etc.:
465 */
466static void __update_rq_clock(struct rq *rq)
467{
468 u64 prev_raw = rq->prev_clock_raw;
469 u64 now = sched_clock();
470 s64 delta = now - prev_raw;
471 u64 clock = rq->clock;
472
473#ifdef CONFIG_SCHED_DEBUG
474 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
475#endif
476 /*
477 * Protect against sched_clock() occasionally going backwards:
478 */
479 if (unlikely(delta < 0)) {
480 clock++;
481 rq->clock_warps++;
482 } else {
483 /*
484 * Catch too large forward jumps too:
485 */
486 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
487 if (clock < rq->tick_timestamp + TICK_NSEC)
488 clock = rq->tick_timestamp + TICK_NSEC;
489 else
490 clock++;
491 rq->clock_overflows++;
492 } else {
493 if (unlikely(delta > rq->clock_max_delta))
494 rq->clock_max_delta = delta;
495 clock += delta;
496 }
497 }
498
499 rq->prev_clock_raw = now;
500 rq->clock = clock;
501}
502
503static void update_rq_clock(struct rq *rq)
504{
505 if (likely(smp_processor_id() == cpu_of(rq)))
506 __update_rq_clock(rq);
507}
508
509/*
510 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
511 * See detach_destroy_domains: synchronize_sched for details.
512 *
513 * The domain tree of any CPU may only be accessed from within
514 * preempt-disabled sections.
515 */
516#define for_each_domain(cpu, __sd) \
517 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
518
519#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
520#define this_rq() (&__get_cpu_var(runqueues))
521#define task_rq(p) cpu_rq(task_cpu(p))
522#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
523
524/*
525 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
526 */
527#ifdef CONFIG_SCHED_DEBUG
528# define const_debug __read_mostly
529#else
530# define const_debug static const
531#endif
532
533/*
534 * Debugging: various feature bits
535 */
536enum {
537 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
538 SCHED_FEAT_WAKEUP_PREEMPT = 2,
539 SCHED_FEAT_START_DEBIT = 4,
540 SCHED_FEAT_TREE_AVG = 8,
541 SCHED_FEAT_APPROX_AVG = 16,
542};
543
544const_debug unsigned int sysctl_sched_features =
545 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
546 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
547 SCHED_FEAT_START_DEBIT * 1 |
548 SCHED_FEAT_TREE_AVG * 0 |
549 SCHED_FEAT_APPROX_AVG * 0;
550
551#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
552
553/*
554 * Number of tasks to iterate in a single balance run.
555 * Limited because this is done with IRQs disabled.
556 */
557const_debug unsigned int sysctl_sched_nr_migrate = 32;
558
559/*
560 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
561 * clock constructed from sched_clock():
562 */
563unsigned long long cpu_clock(int cpu)
564{
565 unsigned long long now;
566 unsigned long flags;
567 struct rq *rq;
568
569 local_irq_save(flags);
570 rq = cpu_rq(cpu);
571 /*
572 * Only call sched_clock() if the scheduler has already been
573 * initialized (some code might call cpu_clock() very early):
574 */
575 if (rq->idle)
576 update_rq_clock(rq);
577 now = rq->clock;
578 local_irq_restore(flags);
579
580 return now;
581}
582EXPORT_SYMBOL_GPL(cpu_clock);
583
584#ifndef prepare_arch_switch
585# define prepare_arch_switch(next) do { } while (0)
586#endif
587#ifndef finish_arch_switch
588# define finish_arch_switch(prev) do { } while (0)
589#endif
590
591static inline int task_current(struct rq *rq, struct task_struct *p)
592{
593 return rq->curr == p;
594}
595
596#ifndef __ARCH_WANT_UNLOCKED_CTXSW
597static inline int task_running(struct rq *rq, struct task_struct *p)
598{
599 return task_current(rq, p);
600}
601
602static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
603{
604}
605
606static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
607{
608#ifdef CONFIG_DEBUG_SPINLOCK
609 /* this is a valid case when another task releases the spinlock */
610 rq->lock.owner = current;
611#endif
612 /*
613 * If we are tracking spinlock dependencies then we have to
614 * fix up the runqueue lock - which gets 'carried over' from
615 * prev into current:
616 */
617 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
618
619 spin_unlock_irq(&rq->lock);
620}
621
622#else /* __ARCH_WANT_UNLOCKED_CTXSW */
623static inline int task_running(struct rq *rq, struct task_struct *p)
624{
625#ifdef CONFIG_SMP
626 return p->oncpu;
627#else
628 return task_current(rq, p);
629#endif
630}
631
632static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
633{
634#ifdef CONFIG_SMP
635 /*
636 * We can optimise this out completely for !SMP, because the
637 * SMP rebalancing from interrupt is the only thing that cares
638 * here.
639 */
640 next->oncpu = 1;
641#endif
642#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
643 spin_unlock_irq(&rq->lock);
644#else
645 spin_unlock(&rq->lock);
646#endif
647}
648
649static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
650{
651#ifdef CONFIG_SMP
652 /*
653 * After ->oncpu is cleared, the task can be moved to a different CPU.
654 * We must ensure this doesn't happen until the switch is completely
655 * finished.
656 */
657 smp_wmb();
658 prev->oncpu = 0;
659#endif
660#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
661 local_irq_enable();
662#endif
663}
664#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
665
666/*
667 * __task_rq_lock - lock the runqueue a given task resides on.
668 * Must be called interrupts disabled.
669 */
670static inline struct rq *__task_rq_lock(struct task_struct *p)
671 __acquires(rq->lock)
672{
673 for (;;) {
674 struct rq *rq = task_rq(p);
675 spin_lock(&rq->lock);
676 if (likely(rq == task_rq(p)))
677 return rq;
678 spin_unlock(&rq->lock);
679 }
680}
681
682/*
683 * task_rq_lock - lock the runqueue a given task resides on and disable
684 * interrupts. Note the ordering: we can safely lookup the task_rq without
685 * explicitly disabling preemption.
686 */
687static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
688 __acquires(rq->lock)
689{
690 struct rq *rq;
691
692 for (;;) {
693 local_irq_save(*flags);
694 rq = task_rq(p);
695 spin_lock(&rq->lock);
696 if (likely(rq == task_rq(p)))
697 return rq;
698 spin_unlock_irqrestore(&rq->lock, *flags);
699 }
700}
701
702static void __task_rq_unlock(struct rq *rq)
703 __releases(rq->lock)
704{
705 spin_unlock(&rq->lock);
706}
707
708static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
709 __releases(rq->lock)
710{
711 spin_unlock_irqrestore(&rq->lock, *flags);
712}
713
714/*
715 * this_rq_lock - lock this runqueue and disable interrupts.
716 */
717static struct rq *this_rq_lock(void)
718 __acquires(rq->lock)
719{
720 struct rq *rq;
721
722 local_irq_disable();
723 rq = this_rq();
724 spin_lock(&rq->lock);
725
726 return rq;
727}
728
729/*
730 * We are going deep-idle (irqs are disabled):
731 */
732void sched_clock_idle_sleep_event(void)
733{
734 struct rq *rq = cpu_rq(smp_processor_id());
735
736 spin_lock(&rq->lock);
737 __update_rq_clock(rq);
738 spin_unlock(&rq->lock);
739 rq->clock_deep_idle_events++;
740}
741EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
742
743/*
744 * We just idled delta nanoseconds (called with irqs disabled):
745 */
746void sched_clock_idle_wakeup_event(u64 delta_ns)
747{
748 struct rq *rq = cpu_rq(smp_processor_id());
749 u64 now = sched_clock();
750
751 touch_softlockup_watchdog();
752 rq->idle_clock += delta_ns;
753 /*
754 * Override the previous timestamp and ignore all
755 * sched_clock() deltas that occured while we idled,
756 * and use the PM-provided delta_ns to advance the
757 * rq clock:
758 */
759 spin_lock(&rq->lock);
760 rq->prev_clock_raw = now;
761 rq->clock += delta_ns;
762 spin_unlock(&rq->lock);
763}
764EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
765
766/*
767 * resched_task - mark a task 'to be rescheduled now'.
768 *
769 * On UP this means the setting of the need_resched flag, on SMP it
770 * might also involve a cross-CPU call to trigger the scheduler on
771 * the target CPU.
772 */
773#ifdef CONFIG_SMP
774
775#ifndef tsk_is_polling
776#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
777#endif
778
779static void resched_task(struct task_struct *p)
780{
781 int cpu;
782
783 assert_spin_locked(&task_rq(p)->lock);
784
785 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
786 return;
787
788 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
789
790 cpu = task_cpu(p);
791 if (cpu == smp_processor_id())
792 return;
793
794 /* NEED_RESCHED must be visible before we test polling */
795 smp_mb();
796 if (!tsk_is_polling(p))
797 smp_send_reschedule(cpu);
798}
799
800static void resched_cpu(int cpu)
801{
802 struct rq *rq = cpu_rq(cpu);
803 unsigned long flags;
804
805 if (!spin_trylock_irqsave(&rq->lock, flags))
806 return;
807 resched_task(cpu_curr(cpu));
808 spin_unlock_irqrestore(&rq->lock, flags);
809}
810#else
811static inline void resched_task(struct task_struct *p)
812{
813 assert_spin_locked(&task_rq(p)->lock);
814 set_tsk_need_resched(p);
815}
816#endif
817
818#if BITS_PER_LONG == 32
819# define WMULT_CONST (~0UL)
820#else
821# define WMULT_CONST (1UL << 32)
822#endif
823
824#define WMULT_SHIFT 32
825
826/*
827 * Shift right and round:
828 */
829#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
830
831static unsigned long
832calc_delta_mine(unsigned long delta_exec, unsigned long weight,
833 struct load_weight *lw)
834{
835 u64 tmp;
836
837 if (unlikely(!lw->inv_weight))
838 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
839
840 tmp = (u64)delta_exec * weight;
841 /*
842 * Check whether we'd overflow the 64-bit multiplication:
843 */
844 if (unlikely(tmp > WMULT_CONST))
845 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
846 WMULT_SHIFT/2);
847 else
848 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
849
850 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
851}
852
853static inline unsigned long
854calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
855{
856 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
857}
858
859static inline void update_load_add(struct load_weight *lw, unsigned long inc)
860{
861 lw->weight += inc;
862}
863
864static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
865{
866 lw->weight -= dec;
867}
868
869/*
870 * To aid in avoiding the subversion of "niceness" due to uneven distribution
871 * of tasks with abnormal "nice" values across CPUs the contribution that
872 * each task makes to its run queue's load is weighted according to its
873 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
874 * scaled version of the new time slice allocation that they receive on time
875 * slice expiry etc.
876 */
877
878#define WEIGHT_IDLEPRIO 2
879#define WMULT_IDLEPRIO (1 << 31)
880
881/*
882 * Nice levels are multiplicative, with a gentle 10% change for every
883 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
884 * nice 1, it will get ~10% less CPU time than another CPU-bound task
885 * that remained on nice 0.
886 *
887 * The "10% effect" is relative and cumulative: from _any_ nice level,
888 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
889 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
890 * If a task goes up by ~10% and another task goes down by ~10% then
891 * the relative distance between them is ~25%.)
892 */
893static const int prio_to_weight[40] = {
894 /* -20 */ 88761, 71755, 56483, 46273, 36291,
895 /* -15 */ 29154, 23254, 18705, 14949, 11916,
896 /* -10 */ 9548, 7620, 6100, 4904, 3906,
897 /* -5 */ 3121, 2501, 1991, 1586, 1277,
898 /* 0 */ 1024, 820, 655, 526, 423,
899 /* 5 */ 335, 272, 215, 172, 137,
900 /* 10 */ 110, 87, 70, 56, 45,
901 /* 15 */ 36, 29, 23, 18, 15,
902};
903
904/*
905 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
906 *
907 * In cases where the weight does not change often, we can use the
908 * precalculated inverse to speed up arithmetics by turning divisions
909 * into multiplications:
910 */
911static const u32 prio_to_wmult[40] = {
912 /* -20 */ 48388, 59856, 76040, 92818, 118348,
913 /* -15 */ 147320, 184698, 229616, 287308, 360437,
914 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
915 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
916 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
917 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
918 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
919 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
920};
921
922static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
923
924/*
925 * runqueue iterator, to support SMP load-balancing between different
926 * scheduling classes, without having to expose their internal data
927 * structures to the load-balancing proper:
928 */
929struct rq_iterator {
930 void *arg;
931 struct task_struct *(*start)(void *);
932 struct task_struct *(*next)(void *);
933};
934
935#ifdef CONFIG_SMP
936static unsigned long
937balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
938 unsigned long max_load_move, struct sched_domain *sd,
939 enum cpu_idle_type idle, int *all_pinned,
940 int *this_best_prio, struct rq_iterator *iterator);
941
942static int
943iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
944 struct sched_domain *sd, enum cpu_idle_type idle,
945 struct rq_iterator *iterator);
946#endif
947
948#ifdef CONFIG_CGROUP_CPUACCT
949static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
950#else
951static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
952#endif
953
954static inline void inc_cpu_load(struct rq *rq, unsigned long load)
955{
956 update_load_add(&rq->load, load);
957}
958
959static inline void dec_cpu_load(struct rq *rq, unsigned long load)
960{
961 update_load_sub(&rq->load, load);
962}
963
964#ifdef CONFIG_SMP
965static unsigned long source_load(int cpu, int type);
966static unsigned long target_load(int cpu, int type);
967static unsigned long cpu_avg_load_per_task(int cpu);
968static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
969#endif /* CONFIG_SMP */
970
971#include "sched_stats.h"
972#include "sched_idletask.c"
973#include "sched_fair.c"
974#include "sched_rt.c"
975#ifdef CONFIG_SCHED_DEBUG
976# include "sched_debug.c"
977#endif
978
979#define sched_class_highest (&rt_sched_class)
980
981static void inc_nr_running(struct task_struct *p, struct rq *rq)
982{
983 rq->nr_running++;
984}
985
986static void dec_nr_running(struct task_struct *p, struct rq *rq)
987{
988 rq->nr_running--;
989}
990
991static void set_load_weight(struct task_struct *p)
992{
993 if (task_has_rt_policy(p)) {
994 p->se.load.weight = prio_to_weight[0] * 2;
995 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
996 return;
997 }
998
999 /*
1000 * SCHED_IDLE tasks get minimal weight:
1001 */
1002 if (p->policy == SCHED_IDLE) {
1003 p->se.load.weight = WEIGHT_IDLEPRIO;
1004 p->se.load.inv_weight = WMULT_IDLEPRIO;
1005 return;
1006 }
1007
1008 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1009 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1010}
1011
1012static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1013{
1014 sched_info_queued(p);
1015 p->sched_class->enqueue_task(rq, p, wakeup);
1016 p->se.on_rq = 1;
1017}
1018
1019static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1020{
1021 p->sched_class->dequeue_task(rq, p, sleep);
1022 p->se.on_rq = 0;
1023}
1024
1025/*
1026 * __normal_prio - return the priority that is based on the static prio
1027 */
1028static inline int __normal_prio(struct task_struct *p)
1029{
1030 return p->static_prio;
1031}
1032
1033/*
1034 * Calculate the expected normal priority: i.e. priority
1035 * without taking RT-inheritance into account. Might be
1036 * boosted by interactivity modifiers. Changes upon fork,
1037 * setprio syscalls, and whenever the interactivity
1038 * estimator recalculates.
1039 */
1040static inline int normal_prio(struct task_struct *p)
1041{
1042 int prio;
1043
1044 if (task_has_rt_policy(p))
1045 prio = MAX_RT_PRIO-1 - p->rt_priority;
1046 else
1047 prio = __normal_prio(p);
1048 return prio;
1049}
1050
1051/*
1052 * Calculate the current priority, i.e. the priority
1053 * taken into account by the scheduler. This value might
1054 * be boosted by RT tasks, or might be boosted by
1055 * interactivity modifiers. Will be RT if the task got
1056 * RT-boosted. If not then it returns p->normal_prio.
1057 */
1058static int effective_prio(struct task_struct *p)
1059{
1060 p->normal_prio = normal_prio(p);
1061 /*
1062 * If we are RT tasks or we were boosted to RT priority,
1063 * keep the priority unchanged. Otherwise, update priority
1064 * to the normal priority:
1065 */
1066 if (!rt_prio(p->prio))
1067 return p->normal_prio;
1068 return p->prio;
1069}
1070
1071/*
1072 * activate_task - move a task to the runqueue.
1073 */
1074static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1075{
1076 if (p->state == TASK_UNINTERRUPTIBLE)
1077 rq->nr_uninterruptible--;
1078
1079 enqueue_task(rq, p, wakeup);
1080 inc_nr_running(p, rq);
1081}
1082
1083/*
1084 * deactivate_task - remove a task from the runqueue.
1085 */
1086static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1087{
1088 if (p->state == TASK_UNINTERRUPTIBLE)
1089 rq->nr_uninterruptible++;
1090
1091 dequeue_task(rq, p, sleep);
1092 dec_nr_running(p, rq);
1093}
1094
1095/**
1096 * task_curr - is this task currently executing on a CPU?
1097 * @p: the task in question.
1098 */
1099inline int task_curr(const struct task_struct *p)
1100{
1101 return cpu_curr(task_cpu(p)) == p;
1102}
1103
1104/* Used instead of source_load when we know the type == 0 */
1105unsigned long weighted_cpuload(const int cpu)
1106{
1107 return cpu_rq(cpu)->load.weight;
1108}
1109
1110static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1111{
1112 set_task_cfs_rq(p, cpu);
1113#ifdef CONFIG_SMP
1114 /*
1115 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1116 * successfuly executed on another CPU. We must ensure that updates of
1117 * per-task data have been completed by this moment.
1118 */
1119 smp_wmb();
1120 task_thread_info(p)->cpu = cpu;
1121#endif
1122}
1123
1124#ifdef CONFIG_SMP
1125
1126/*
1127 * Is this task likely cache-hot:
1128 */
1129static int
1130task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1131{
1132 s64 delta;
1133
1134 if (p->sched_class != &fair_sched_class)
1135 return 0;
1136
1137 if (sysctl_sched_migration_cost == -1)
1138 return 1;
1139 if (sysctl_sched_migration_cost == 0)
1140 return 0;
1141
1142 delta = now - p->se.exec_start;
1143
1144 return delta < (s64)sysctl_sched_migration_cost;
1145}
1146
1147
1148void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1149{
1150 int old_cpu = task_cpu(p);
1151 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1152 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1153 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1154 u64 clock_offset;
1155
1156 clock_offset = old_rq->clock - new_rq->clock;
1157
1158#ifdef CONFIG_SCHEDSTATS
1159 if (p->se.wait_start)
1160 p->se.wait_start -= clock_offset;
1161 if (p->se.sleep_start)
1162 p->se.sleep_start -= clock_offset;
1163 if (p->se.block_start)
1164 p->se.block_start -= clock_offset;
1165 if (old_cpu != new_cpu) {
1166 schedstat_inc(p, se.nr_migrations);
1167 if (task_hot(p, old_rq->clock, NULL))
1168 schedstat_inc(p, se.nr_forced2_migrations);
1169 }
1170#endif
1171 p->se.vruntime -= old_cfsrq->min_vruntime -
1172 new_cfsrq->min_vruntime;
1173
1174 __set_task_cpu(p, new_cpu);
1175}
1176
1177struct migration_req {
1178 struct list_head list;
1179
1180 struct task_struct *task;
1181 int dest_cpu;
1182
1183 struct completion done;
1184};
1185
1186/*
1187 * The task's runqueue lock must be held.
1188 * Returns true if you have to wait for migration thread.
1189 */
1190static int
1191migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1192{
1193 struct rq *rq = task_rq(p);
1194
1195 /*
1196 * If the task is not on a runqueue (and not running), then
1197 * it is sufficient to simply update the task's cpu field.
1198 */
1199 if (!p->se.on_rq && !task_running(rq, p)) {
1200 set_task_cpu(p, dest_cpu);
1201 return 0;
1202 }
1203
1204 init_completion(&req->done);
1205 req->task = p;
1206 req->dest_cpu = dest_cpu;
1207 list_add(&req->list, &rq->migration_queue);
1208
1209 return 1;
1210}
1211
1212/*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
1215 * The caller must ensure that the task *will* unschedule sometime soon,
1216 * else this function might spin for a *long* time. This function can't
1217 * be called with interrupts off, or it may introduce deadlock with
1218 * smp_call_function() if an IPI is sent by the same process we are
1219 * waiting to become inactive.
1220 */
1221void wait_task_inactive(struct task_struct *p)
1222{
1223 unsigned long flags;
1224 int running, on_rq;
1225 struct rq *rq;
1226
1227 for (;;) {
1228 /*
1229 * We do the initial early heuristics without holding
1230 * any task-queue locks at all. We'll only try to get
1231 * the runqueue lock when things look like they will
1232 * work out!
1233 */
1234 rq = task_rq(p);
1235
1236 /*
1237 * If the task is actively running on another CPU
1238 * still, just relax and busy-wait without holding
1239 * any locks.
1240 *
1241 * NOTE! Since we don't hold any locks, it's not
1242 * even sure that "rq" stays as the right runqueue!
1243 * But we don't care, since "task_running()" will
1244 * return false if the runqueue has changed and p
1245 * is actually now running somewhere else!
1246 */
1247 while (task_running(rq, p))
1248 cpu_relax();
1249
1250 /*
1251 * Ok, time to look more closely! We need the rq
1252 * lock now, to be *sure*. If we're wrong, we'll
1253 * just go back and repeat.
1254 */
1255 rq = task_rq_lock(p, &flags);
1256 running = task_running(rq, p);
1257 on_rq = p->se.on_rq;
1258 task_rq_unlock(rq, &flags);
1259
1260 /*
1261 * Was it really running after all now that we
1262 * checked with the proper locks actually held?
1263 *
1264 * Oops. Go back and try again..
1265 */
1266 if (unlikely(running)) {
1267 cpu_relax();
1268 continue;
1269 }
1270
1271 /*
1272 * It's not enough that it's not actively running,
1273 * it must be off the runqueue _entirely_, and not
1274 * preempted!
1275 *
1276 * So if it wa still runnable (but just not actively
1277 * running right now), it's preempted, and we should
1278 * yield - it could be a while.
1279 */
1280 if (unlikely(on_rq)) {
1281 schedule_timeout_uninterruptible(1);
1282 continue;
1283 }
1284
1285 /*
1286 * Ahh, all good. It wasn't running, and it wasn't
1287 * runnable, which means that it will never become
1288 * running in the future either. We're all done!
1289 */
1290 break;
1291 }
1292}
1293
1294/***
1295 * kick_process - kick a running thread to enter/exit the kernel
1296 * @p: the to-be-kicked thread
1297 *
1298 * Cause a process which is running on another CPU to enter
1299 * kernel-mode, without any delay. (to get signals handled.)
1300 *
1301 * NOTE: this function doesnt have to take the runqueue lock,
1302 * because all it wants to ensure is that the remote task enters
1303 * the kernel. If the IPI races and the task has been migrated
1304 * to another CPU then no harm is done and the purpose has been
1305 * achieved as well.
1306 */
1307void kick_process(struct task_struct *p)
1308{
1309 int cpu;
1310
1311 preempt_disable();
1312 cpu = task_cpu(p);
1313 if ((cpu != smp_processor_id()) && task_curr(p))
1314 smp_send_reschedule(cpu);
1315 preempt_enable();
1316}
1317
1318/*
1319 * Return a low guess at the load of a migration-source cpu weighted
1320 * according to the scheduling class and "nice" value.
1321 *
1322 * We want to under-estimate the load of migration sources, to
1323 * balance conservatively.
1324 */
1325static unsigned long source_load(int cpu, int type)
1326{
1327 struct rq *rq = cpu_rq(cpu);
1328 unsigned long total = weighted_cpuload(cpu);
1329
1330 if (type == 0)
1331 return total;
1332
1333 return min(rq->cpu_load[type-1], total);
1334}
1335
1336/*
1337 * Return a high guess at the load of a migration-target cpu weighted
1338 * according to the scheduling class and "nice" value.
1339 */
1340static unsigned long target_load(int cpu, int type)
1341{
1342 struct rq *rq = cpu_rq(cpu);
1343 unsigned long total = weighted_cpuload(cpu);
1344
1345 if (type == 0)
1346 return total;
1347
1348 return max(rq->cpu_load[type-1], total);
1349}
1350
1351/*
1352 * Return the average load per task on the cpu's run queue
1353 */
1354static unsigned long cpu_avg_load_per_task(int cpu)
1355{
1356 struct rq *rq = cpu_rq(cpu);
1357 unsigned long total = weighted_cpuload(cpu);
1358 unsigned long n = rq->nr_running;
1359
1360 return n ? total / n : SCHED_LOAD_SCALE;
1361}
1362
1363/*
1364 * find_idlest_group finds and returns the least busy CPU group within the
1365 * domain.
1366 */
1367static struct sched_group *
1368find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1369{
1370 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1371 unsigned long min_load = ULONG_MAX, this_load = 0;
1372 int load_idx = sd->forkexec_idx;
1373 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1374
1375 do {
1376 unsigned long load, avg_load;
1377 int local_group;
1378 int i;
1379
1380 /* Skip over this group if it has no CPUs allowed */
1381 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1382 continue;
1383
1384 local_group = cpu_isset(this_cpu, group->cpumask);
1385
1386 /* Tally up the load of all CPUs in the group */
1387 avg_load = 0;
1388
1389 for_each_cpu_mask(i, group->cpumask) {
1390 /* Bias balancing toward cpus of our domain */
1391 if (local_group)
1392 load = source_load(i, load_idx);
1393 else
1394 load = target_load(i, load_idx);
1395
1396 avg_load += load;
1397 }
1398
1399 /* Adjust by relative CPU power of the group */
1400 avg_load = sg_div_cpu_power(group,
1401 avg_load * SCHED_LOAD_SCALE);
1402
1403 if (local_group) {
1404 this_load = avg_load;
1405 this = group;
1406 } else if (avg_load < min_load) {
1407 min_load = avg_load;
1408 idlest = group;
1409 }
1410 } while (group = group->next, group != sd->groups);
1411
1412 if (!idlest || 100*this_load < imbalance*min_load)
1413 return NULL;
1414 return idlest;
1415}
1416
1417/*
1418 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1419 */
1420static int
1421find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1422{
1423 cpumask_t tmp;
1424 unsigned long load, min_load = ULONG_MAX;
1425 int idlest = -1;
1426 int i;
1427
1428 /* Traverse only the allowed CPUs */
1429 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1430
1431 for_each_cpu_mask(i, tmp) {
1432 load = weighted_cpuload(i);
1433
1434 if (load < min_load || (load == min_load && i == this_cpu)) {
1435 min_load = load;
1436 idlest = i;
1437 }
1438 }
1439
1440 return idlest;
1441}
1442
1443/*
1444 * sched_balance_self: balance the current task (running on cpu) in domains
1445 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1446 * SD_BALANCE_EXEC.
1447 *
1448 * Balance, ie. select the least loaded group.
1449 *
1450 * Returns the target CPU number, or the same CPU if no balancing is needed.
1451 *
1452 * preempt must be disabled.
1453 */
1454static int sched_balance_self(int cpu, int flag)
1455{
1456 struct task_struct *t = current;
1457 struct sched_domain *tmp, *sd = NULL;
1458
1459 for_each_domain(cpu, tmp) {
1460 /*
1461 * If power savings logic is enabled for a domain, stop there.
1462 */
1463 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1464 break;
1465 if (tmp->flags & flag)
1466 sd = tmp;
1467 }
1468
1469 while (sd) {
1470 cpumask_t span;
1471 struct sched_group *group;
1472 int new_cpu, weight;
1473
1474 if (!(sd->flags & flag)) {
1475 sd = sd->child;
1476 continue;
1477 }
1478
1479 span = sd->span;
1480 group = find_idlest_group(sd, t, cpu);
1481 if (!group) {
1482 sd = sd->child;
1483 continue;
1484 }
1485
1486 new_cpu = find_idlest_cpu(group, t, cpu);
1487 if (new_cpu == -1 || new_cpu == cpu) {
1488 /* Now try balancing at a lower domain level of cpu */
1489 sd = sd->child;
1490 continue;
1491 }
1492
1493 /* Now try balancing at a lower domain level of new_cpu */
1494 cpu = new_cpu;
1495 sd = NULL;
1496 weight = cpus_weight(span);
1497 for_each_domain(cpu, tmp) {
1498 if (weight <= cpus_weight(tmp->span))
1499 break;
1500 if (tmp->flags & flag)
1501 sd = tmp;
1502 }
1503 /* while loop will break here if sd == NULL */
1504 }
1505
1506 return cpu;
1507}
1508
1509#endif /* CONFIG_SMP */
1510
1511/***
1512 * try_to_wake_up - wake up a thread
1513 * @p: the to-be-woken-up thread
1514 * @state: the mask of task states that can be woken
1515 * @sync: do a synchronous wakeup?
1516 *
1517 * Put it on the run-queue if it's not already there. The "current"
1518 * thread is always on the run-queue (except when the actual
1519 * re-schedule is in progress), and as such you're allowed to do
1520 * the simpler "current->state = TASK_RUNNING" to mark yourself
1521 * runnable without the overhead of this.
1522 *
1523 * returns failure only if the task is already active.
1524 */
1525static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1526{
1527 int cpu, orig_cpu, this_cpu, success = 0;
1528 unsigned long flags;
1529 long old_state;
1530 struct rq *rq;
1531#ifdef CONFIG_SMP
1532 int new_cpu;
1533#endif
1534
1535 rq = task_rq_lock(p, &flags);
1536 old_state = p->state;
1537 if (!(old_state & state))
1538 goto out;
1539
1540 if (p->se.on_rq)
1541 goto out_running;
1542
1543 cpu = task_cpu(p);
1544 orig_cpu = cpu;
1545 this_cpu = smp_processor_id();
1546
1547#ifdef CONFIG_SMP
1548 if (unlikely(task_running(rq, p)))
1549 goto out_activate;
1550
1551 new_cpu = p->sched_class->select_task_rq(p, sync);
1552 if (new_cpu != cpu) {
1553 set_task_cpu(p, new_cpu);
1554 task_rq_unlock(rq, &flags);
1555 /* might preempt at this point */
1556 rq = task_rq_lock(p, &flags);
1557 old_state = p->state;
1558 if (!(old_state & state))
1559 goto out;
1560 if (p->se.on_rq)
1561 goto out_running;
1562
1563 this_cpu = smp_processor_id();
1564 cpu = task_cpu(p);
1565 }
1566
1567#ifdef CONFIG_SCHEDSTATS
1568 schedstat_inc(rq, ttwu_count);
1569 if (cpu == this_cpu)
1570 schedstat_inc(rq, ttwu_local);
1571 else {
1572 struct sched_domain *sd;
1573 for_each_domain(this_cpu, sd) {
1574 if (cpu_isset(cpu, sd->span)) {
1575 schedstat_inc(sd, ttwu_wake_remote);
1576 break;
1577 }
1578 }
1579 }
1580
1581#endif
1582
1583
1584out_activate:
1585#endif /* CONFIG_SMP */
1586 schedstat_inc(p, se.nr_wakeups);
1587 if (sync)
1588 schedstat_inc(p, se.nr_wakeups_sync);
1589 if (orig_cpu != cpu)
1590 schedstat_inc(p, se.nr_wakeups_migrate);
1591 if (cpu == this_cpu)
1592 schedstat_inc(p, se.nr_wakeups_local);
1593 else
1594 schedstat_inc(p, se.nr_wakeups_remote);
1595 update_rq_clock(rq);
1596 activate_task(rq, p, 1);
1597 check_preempt_curr(rq, p);
1598 success = 1;
1599
1600out_running:
1601 p->state = TASK_RUNNING;
1602 wakeup_balance_rt(rq, p);
1603out:
1604 task_rq_unlock(rq, &flags);
1605
1606 return success;
1607}
1608
1609int fastcall wake_up_process(struct task_struct *p)
1610{
1611 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1612 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1613}
1614EXPORT_SYMBOL(wake_up_process);
1615
1616int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1617{
1618 return try_to_wake_up(p, state, 0);
1619}
1620
1621/*
1622 * Perform scheduler related setup for a newly forked process p.
1623 * p is forked by current.
1624 *
1625 * __sched_fork() is basic setup used by init_idle() too:
1626 */
1627static void __sched_fork(struct task_struct *p)
1628{
1629 p->se.exec_start = 0;
1630 p->se.sum_exec_runtime = 0;
1631 p->se.prev_sum_exec_runtime = 0;
1632
1633#ifdef CONFIG_SCHEDSTATS
1634 p->se.wait_start = 0;
1635 p->se.sum_sleep_runtime = 0;
1636 p->se.sleep_start = 0;
1637 p->se.block_start = 0;
1638 p->se.sleep_max = 0;
1639 p->se.block_max = 0;
1640 p->se.exec_max = 0;
1641 p->se.slice_max = 0;
1642 p->se.wait_max = 0;
1643#endif
1644
1645 INIT_LIST_HEAD(&p->run_list);
1646 p->se.on_rq = 0;
1647
1648#ifdef CONFIG_PREEMPT_NOTIFIERS
1649 INIT_HLIST_HEAD(&p->preempt_notifiers);
1650#endif
1651
1652 /*
1653 * We mark the process as running here, but have not actually
1654 * inserted it onto the runqueue yet. This guarantees that
1655 * nobody will actually run it, and a signal or other external
1656 * event cannot wake it up and insert it on the runqueue either.
1657 */
1658 p->state = TASK_RUNNING;
1659}
1660
1661/*
1662 * fork()/clone()-time setup:
1663 */
1664void sched_fork(struct task_struct *p, int clone_flags)
1665{
1666 int cpu = get_cpu();
1667
1668 __sched_fork(p);
1669
1670#ifdef CONFIG_SMP
1671 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1672#endif
1673 set_task_cpu(p, cpu);
1674
1675 /*
1676 * Make sure we do not leak PI boosting priority to the child:
1677 */
1678 p->prio = current->normal_prio;
1679 if (!rt_prio(p->prio))
1680 p->sched_class = &fair_sched_class;
1681
1682#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1683 if (likely(sched_info_on()))
1684 memset(&p->sched_info, 0, sizeof(p->sched_info));
1685#endif
1686#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1687 p->oncpu = 0;
1688#endif
1689#ifdef CONFIG_PREEMPT
1690 /* Want to start with kernel preemption disabled. */
1691 task_thread_info(p)->preempt_count = 1;
1692#endif
1693 put_cpu();
1694}
1695
1696/*
1697 * wake_up_new_task - wake up a newly created task for the first time.
1698 *
1699 * This function will do some initial scheduler statistics housekeeping
1700 * that must be done for every newly created context, then puts the task
1701 * on the runqueue and wakes it.
1702 */
1703void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1704{
1705 unsigned long flags;
1706 struct rq *rq;
1707
1708 rq = task_rq_lock(p, &flags);
1709 BUG_ON(p->state != TASK_RUNNING);
1710 update_rq_clock(rq);
1711
1712 p->prio = effective_prio(p);
1713
1714 if (!p->sched_class->task_new || !current->se.on_rq) {
1715 activate_task(rq, p, 0);
1716 } else {
1717 /*
1718 * Let the scheduling class do new task startup
1719 * management (if any):
1720 */
1721 p->sched_class->task_new(rq, p);
1722 inc_nr_running(p, rq);
1723 }
1724 check_preempt_curr(rq, p);
1725 wakeup_balance_rt(rq, p);
1726 task_rq_unlock(rq, &flags);
1727}
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730
1731/**
1732 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1733 * @notifier: notifier struct to register
1734 */
1735void preempt_notifier_register(struct preempt_notifier *notifier)
1736{
1737 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1738}
1739EXPORT_SYMBOL_GPL(preempt_notifier_register);
1740
1741/**
1742 * preempt_notifier_unregister - no longer interested in preemption notifications
1743 * @notifier: notifier struct to unregister
1744 *
1745 * This is safe to call from within a preemption notifier.
1746 */
1747void preempt_notifier_unregister(struct preempt_notifier *notifier)
1748{
1749 hlist_del(&notifier->link);
1750}
1751EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1752
1753static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1754{
1755 struct preempt_notifier *notifier;
1756 struct hlist_node *node;
1757
1758 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1760}
1761
1762static void
1763fire_sched_out_preempt_notifiers(struct task_struct *curr,
1764 struct task_struct *next)
1765{
1766 struct preempt_notifier *notifier;
1767 struct hlist_node *node;
1768
1769 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1770 notifier->ops->sched_out(notifier, next);
1771}
1772
1773#else
1774
1775static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1776{
1777}
1778
1779static void
1780fire_sched_out_preempt_notifiers(struct task_struct *curr,
1781 struct task_struct *next)
1782{
1783}
1784
1785#endif
1786
1787/**
1788 * prepare_task_switch - prepare to switch tasks
1789 * @rq: the runqueue preparing to switch
1790 * @prev: the current task that is being switched out
1791 * @next: the task we are going to switch to.
1792 *
1793 * This is called with the rq lock held and interrupts off. It must
1794 * be paired with a subsequent finish_task_switch after the context
1795 * switch.
1796 *
1797 * prepare_task_switch sets up locking and calls architecture specific
1798 * hooks.
1799 */
1800static inline void
1801prepare_task_switch(struct rq *rq, struct task_struct *prev,
1802 struct task_struct *next)
1803{
1804 fire_sched_out_preempt_notifiers(prev, next);
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1807}
1808
1809/**
1810 * finish_task_switch - clean up after a task-switch
1811 * @rq: runqueue associated with task-switch
1812 * @prev: the thread we just switched away from.
1813 *
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
1820 * so, we finish that here outside of the runqueue lock. (Doing it
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
1824static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1825 __releases(rq->lock)
1826{
1827 struct mm_struct *mm = rq->prev_mm;
1828 long prev_state;
1829
1830 rq->prev_mm = NULL;
1831
1832 /*
1833 * A task struct has one reference for the use as "current".
1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
1837 * The test for TASK_DEAD must occur while the runqueue locks are
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1840 * be dropped twice.
1841 * Manfred Spraul <manfred@colorfullife.com>
1842 */
1843 prev_state = prev->state;
1844 finish_arch_switch(prev);
1845 finish_lock_switch(rq, prev);
1846 schedule_tail_balance_rt(rq);
1847
1848 fire_sched_in_preempt_notifiers(current);
1849 if (mm)
1850 mmdrop(mm);
1851 if (unlikely(prev_state == TASK_DEAD)) {
1852 /*
1853 * Remove function-return probe instances associated with this
1854 * task and put them back on the free list.
1855 */
1856 kprobe_flush_task(prev);
1857 put_task_struct(prev);
1858 }
1859}
1860
1861/**
1862 * schedule_tail - first thing a freshly forked thread must call.
1863 * @prev: the thread we just switched away from.
1864 */
1865asmlinkage void schedule_tail(struct task_struct *prev)
1866 __releases(rq->lock)
1867{
1868 struct rq *rq = this_rq();
1869
1870 finish_task_switch(rq, prev);
1871#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1872 /* In this case, finish_task_switch does not reenable preemption */
1873 preempt_enable();
1874#endif
1875 if (current->set_child_tid)
1876 put_user(task_pid_vnr(current), current->set_child_tid);
1877}
1878
1879/*
1880 * context_switch - switch to the new MM and the new
1881 * thread's register state.
1882 */
1883static inline void
1884context_switch(struct rq *rq, struct task_struct *prev,
1885 struct task_struct *next)
1886{
1887 struct mm_struct *mm, *oldmm;
1888
1889 prepare_task_switch(rq, prev, next);
1890 mm = next->mm;
1891 oldmm = prev->active_mm;
1892 /*
1893 * For paravirt, this is coupled with an exit in switch_to to
1894 * combine the page table reload and the switch backend into
1895 * one hypercall.
1896 */
1897 arch_enter_lazy_cpu_mode();
1898
1899 if (unlikely(!mm)) {
1900 next->active_mm = oldmm;
1901 atomic_inc(&oldmm->mm_count);
1902 enter_lazy_tlb(oldmm, next);
1903 } else
1904 switch_mm(oldmm, mm, next);
1905
1906 if (unlikely(!prev->mm)) {
1907 prev->active_mm = NULL;
1908 rq->prev_mm = oldmm;
1909 }
1910 /*
1911 * Since the runqueue lock will be released by the next
1912 * task (which is an invalid locking op but in the case
1913 * of the scheduler it's an obvious special-case), so we
1914 * do an early lockdep release here:
1915 */
1916#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1917 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1918#endif
1919
1920 /* Here we just switch the register state and the stack. */
1921 switch_to(prev, next, prev);
1922
1923 barrier();
1924 /*
1925 * this_rq must be evaluated again because prev may have moved
1926 * CPUs since it called schedule(), thus the 'rq' on its stack
1927 * frame will be invalid.
1928 */
1929 finish_task_switch(this_rq(), prev);
1930}
1931
1932/*
1933 * nr_running, nr_uninterruptible and nr_context_switches:
1934 *
1935 * externally visible scheduler statistics: current number of runnable
1936 * threads, current number of uninterruptible-sleeping threads, total
1937 * number of context switches performed since bootup.
1938 */
1939unsigned long nr_running(void)
1940{
1941 unsigned long i, sum = 0;
1942
1943 for_each_online_cpu(i)
1944 sum += cpu_rq(i)->nr_running;
1945
1946 return sum;
1947}
1948
1949unsigned long nr_uninterruptible(void)
1950{
1951 unsigned long i, sum = 0;
1952
1953 for_each_possible_cpu(i)
1954 sum += cpu_rq(i)->nr_uninterruptible;
1955
1956 /*
1957 * Since we read the counters lockless, it might be slightly
1958 * inaccurate. Do not allow it to go below zero though:
1959 */
1960 if (unlikely((long)sum < 0))
1961 sum = 0;
1962
1963 return sum;
1964}
1965
1966unsigned long long nr_context_switches(void)
1967{
1968 int i;
1969 unsigned long long sum = 0;
1970
1971 for_each_possible_cpu(i)
1972 sum += cpu_rq(i)->nr_switches;
1973
1974 return sum;
1975}
1976
1977unsigned long nr_iowait(void)
1978{
1979 unsigned long i, sum = 0;
1980
1981 for_each_possible_cpu(i)
1982 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1983
1984 return sum;
1985}
1986
1987unsigned long nr_active(void)
1988{
1989 unsigned long i, running = 0, uninterruptible = 0;
1990
1991 for_each_online_cpu(i) {
1992 running += cpu_rq(i)->nr_running;
1993 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1994 }
1995
1996 if (unlikely((long)uninterruptible < 0))
1997 uninterruptible = 0;
1998
1999 return running + uninterruptible;
2000}
2001
2002/*
2003 * Update rq->cpu_load[] statistics. This function is usually called every
2004 * scheduler tick (TICK_NSEC).
2005 */
2006static void update_cpu_load(struct rq *this_rq)
2007{
2008 unsigned long this_load = this_rq->load.weight;
2009 int i, scale;
2010
2011 this_rq->nr_load_updates++;
2012
2013 /* Update our load: */
2014 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2015 unsigned long old_load, new_load;
2016
2017 /* scale is effectively 1 << i now, and >> i divides by scale */
2018
2019 old_load = this_rq->cpu_load[i];
2020 new_load = this_load;
2021 /*
2022 * Round up the averaging division if load is increasing. This
2023 * prevents us from getting stuck on 9 if the load is 10, for
2024 * example.
2025 */
2026 if (new_load > old_load)
2027 new_load += scale-1;
2028 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2029 }
2030}
2031
2032#ifdef CONFIG_SMP
2033
2034/*
2035 * double_rq_lock - safely lock two runqueues
2036 *
2037 * Note this does not disable interrupts like task_rq_lock,
2038 * you need to do so manually before calling.
2039 */
2040static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2041 __acquires(rq1->lock)
2042 __acquires(rq2->lock)
2043{
2044 BUG_ON(!irqs_disabled());
2045 if (rq1 == rq2) {
2046 spin_lock(&rq1->lock);
2047 __acquire(rq2->lock); /* Fake it out ;) */
2048 } else {
2049 if (rq1 < rq2) {
2050 spin_lock(&rq1->lock);
2051 spin_lock(&rq2->lock);
2052 } else {
2053 spin_lock(&rq2->lock);
2054 spin_lock(&rq1->lock);
2055 }
2056 }
2057 update_rq_clock(rq1);
2058 update_rq_clock(rq2);
2059}
2060
2061/*
2062 * double_rq_unlock - safely unlock two runqueues
2063 *
2064 * Note this does not restore interrupts like task_rq_unlock,
2065 * you need to do so manually after calling.
2066 */
2067static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2068 __releases(rq1->lock)
2069 __releases(rq2->lock)
2070{
2071 spin_unlock(&rq1->lock);
2072 if (rq1 != rq2)
2073 spin_unlock(&rq2->lock);
2074 else
2075 __release(rq2->lock);
2076}
2077
2078/*
2079 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2080 */
2081static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2082 __releases(this_rq->lock)
2083 __acquires(busiest->lock)
2084 __acquires(this_rq->lock)
2085{
2086 int ret = 0;
2087
2088 if (unlikely(!irqs_disabled())) {
2089 /* printk() doesn't work good under rq->lock */
2090 spin_unlock(&this_rq->lock);
2091 BUG_ON(1);
2092 }
2093 if (unlikely(!spin_trylock(&busiest->lock))) {
2094 if (busiest < this_rq) {
2095 spin_unlock(&this_rq->lock);
2096 spin_lock(&busiest->lock);
2097 spin_lock(&this_rq->lock);
2098 ret = 1;
2099 } else
2100 spin_lock(&busiest->lock);
2101 }
2102 return ret;
2103}
2104
2105/*
2106 * If dest_cpu is allowed for this process, migrate the task to it.
2107 * This is accomplished by forcing the cpu_allowed mask to only
2108 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2109 * the cpu_allowed mask is restored.
2110 */
2111static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2112{
2113 struct migration_req req;
2114 unsigned long flags;
2115 struct rq *rq;
2116
2117 rq = task_rq_lock(p, &flags);
2118 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2119 || unlikely(cpu_is_offline(dest_cpu)))
2120 goto out;
2121
2122 /* force the process onto the specified CPU */
2123 if (migrate_task(p, dest_cpu, &req)) {
2124 /* Need to wait for migration thread (might exit: take ref). */
2125 struct task_struct *mt = rq->migration_thread;
2126
2127 get_task_struct(mt);
2128 task_rq_unlock(rq, &flags);
2129 wake_up_process(mt);
2130 put_task_struct(mt);
2131 wait_for_completion(&req.done);
2132
2133 return;
2134 }
2135out:
2136 task_rq_unlock(rq, &flags);
2137}
2138
2139/*
2140 * sched_exec - execve() is a valuable balancing opportunity, because at
2141 * this point the task has the smallest effective memory and cache footprint.
2142 */
2143void sched_exec(void)
2144{
2145 int new_cpu, this_cpu = get_cpu();
2146 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2147 put_cpu();
2148 if (new_cpu != this_cpu)
2149 sched_migrate_task(current, new_cpu);
2150}
2151
2152/*
2153 * pull_task - move a task from a remote runqueue to the local runqueue.
2154 * Both runqueues must be locked.
2155 */
2156static void pull_task(struct rq *src_rq, struct task_struct *p,
2157 struct rq *this_rq, int this_cpu)
2158{
2159 deactivate_task(src_rq, p, 0);
2160 set_task_cpu(p, this_cpu);
2161 activate_task(this_rq, p, 0);
2162 /*
2163 * Note that idle threads have a prio of MAX_PRIO, for this test
2164 * to be always true for them.
2165 */
2166 check_preempt_curr(this_rq, p);
2167}
2168
2169/*
2170 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2171 */
2172static
2173int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2174 struct sched_domain *sd, enum cpu_idle_type idle,
2175 int *all_pinned)
2176{
2177 /*
2178 * We do not migrate tasks that are:
2179 * 1) running (obviously), or
2180 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2181 * 3) are cache-hot on their current CPU.
2182 */
2183 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2184 schedstat_inc(p, se.nr_failed_migrations_affine);
2185 return 0;
2186 }
2187 *all_pinned = 0;
2188
2189 if (task_running(rq, p)) {
2190 schedstat_inc(p, se.nr_failed_migrations_running);
2191 return 0;
2192 }
2193
2194 /*
2195 * Aggressive migration if:
2196 * 1) task is cache cold, or
2197 * 2) too many balance attempts have failed.
2198 */
2199
2200 if (!task_hot(p, rq->clock, sd) ||
2201 sd->nr_balance_failed > sd->cache_nice_tries) {
2202#ifdef CONFIG_SCHEDSTATS
2203 if (task_hot(p, rq->clock, sd)) {
2204 schedstat_inc(sd, lb_hot_gained[idle]);
2205 schedstat_inc(p, se.nr_forced_migrations);
2206 }
2207#endif
2208 return 1;
2209 }
2210
2211 if (task_hot(p, rq->clock, sd)) {
2212 schedstat_inc(p, se.nr_failed_migrations_hot);
2213 return 0;
2214 }
2215 return 1;
2216}
2217
2218static unsigned long
2219balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2220 unsigned long max_load_move, struct sched_domain *sd,
2221 enum cpu_idle_type idle, int *all_pinned,
2222 int *this_best_prio, struct rq_iterator *iterator)
2223{
2224 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2225 struct task_struct *p;
2226 long rem_load_move = max_load_move;
2227
2228 if (max_load_move == 0)
2229 goto out;
2230
2231 pinned = 1;
2232
2233 /*
2234 * Start the load-balancing iterator:
2235 */
2236 p = iterator->start(iterator->arg);
2237next:
2238 if (!p || loops++ > sysctl_sched_nr_migrate)
2239 goto out;
2240 /*
2241 * To help distribute high priority tasks across CPUs we don't
2242 * skip a task if it will be the highest priority task (i.e. smallest
2243 * prio value) on its new queue regardless of its load weight
2244 */
2245 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2246 SCHED_LOAD_SCALE_FUZZ;
2247 if ((skip_for_load && p->prio >= *this_best_prio) ||
2248 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2249 p = iterator->next(iterator->arg);
2250 goto next;
2251 }
2252
2253 pull_task(busiest, p, this_rq, this_cpu);
2254 pulled++;
2255 rem_load_move -= p->se.load.weight;
2256
2257 /*
2258 * We only want to steal up to the prescribed amount of weighted load.
2259 */
2260 if (rem_load_move > 0) {
2261 if (p->prio < *this_best_prio)
2262 *this_best_prio = p->prio;
2263 p = iterator->next(iterator->arg);
2264 goto next;
2265 }
2266out:
2267 /*
2268 * Right now, this is one of only two places pull_task() is called,
2269 * so we can safely collect pull_task() stats here rather than
2270 * inside pull_task().
2271 */
2272 schedstat_add(sd, lb_gained[idle], pulled);
2273
2274 if (all_pinned)
2275 *all_pinned = pinned;
2276
2277 return max_load_move - rem_load_move;
2278}
2279
2280/*
2281 * move_tasks tries to move up to max_load_move weighted load from busiest to
2282 * this_rq, as part of a balancing operation within domain "sd".
2283 * Returns 1 if successful and 0 otherwise.
2284 *
2285 * Called with both runqueues locked.
2286 */
2287static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2288 unsigned long max_load_move,
2289 struct sched_domain *sd, enum cpu_idle_type idle,
2290 int *all_pinned)
2291{
2292 const struct sched_class *class = sched_class_highest;
2293 unsigned long total_load_moved = 0;
2294 int this_best_prio = this_rq->curr->prio;
2295
2296 do {
2297 total_load_moved +=
2298 class->load_balance(this_rq, this_cpu, busiest,
2299 max_load_move - total_load_moved,
2300 sd, idle, all_pinned, &this_best_prio);
2301 class = class->next;
2302 } while (class && max_load_move > total_load_moved);
2303
2304 return total_load_moved > 0;
2305}
2306
2307static int
2308iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2309 struct sched_domain *sd, enum cpu_idle_type idle,
2310 struct rq_iterator *iterator)
2311{
2312 struct task_struct *p = iterator->start(iterator->arg);
2313 int pinned = 0;
2314
2315 while (p) {
2316 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2317 pull_task(busiest, p, this_rq, this_cpu);
2318 /*
2319 * Right now, this is only the second place pull_task()
2320 * is called, so we can safely collect pull_task()
2321 * stats here rather than inside pull_task().
2322 */
2323 schedstat_inc(sd, lb_gained[idle]);
2324
2325 return 1;
2326 }
2327 p = iterator->next(iterator->arg);
2328 }
2329
2330 return 0;
2331}
2332
2333/*
2334 * move_one_task tries to move exactly one task from busiest to this_rq, as
2335 * part of active balancing operations within "domain".
2336 * Returns 1 if successful and 0 otherwise.
2337 *
2338 * Called with both runqueues locked.
2339 */
2340static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2341 struct sched_domain *sd, enum cpu_idle_type idle)
2342{
2343 const struct sched_class *class;
2344
2345 for (class = sched_class_highest; class; class = class->next)
2346 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2347 return 1;
2348
2349 return 0;
2350}
2351
2352/*
2353 * find_busiest_group finds and returns the busiest CPU group within the
2354 * domain. It calculates and returns the amount of weighted load which
2355 * should be moved to restore balance via the imbalance parameter.
2356 */
2357static struct sched_group *
2358find_busiest_group(struct sched_domain *sd, int this_cpu,
2359 unsigned long *imbalance, enum cpu_idle_type idle,
2360 int *sd_idle, cpumask_t *cpus, int *balance)
2361{
2362 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2363 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2364 unsigned long max_pull;
2365 unsigned long busiest_load_per_task, busiest_nr_running;
2366 unsigned long this_load_per_task, this_nr_running;
2367 int load_idx, group_imb = 0;
2368#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2369 int power_savings_balance = 1;
2370 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2371 unsigned long min_nr_running = ULONG_MAX;
2372 struct sched_group *group_min = NULL, *group_leader = NULL;
2373#endif
2374
2375 max_load = this_load = total_load = total_pwr = 0;
2376 busiest_load_per_task = busiest_nr_running = 0;
2377 this_load_per_task = this_nr_running = 0;
2378 if (idle == CPU_NOT_IDLE)
2379 load_idx = sd->busy_idx;
2380 else if (idle == CPU_NEWLY_IDLE)
2381 load_idx = sd->newidle_idx;
2382 else
2383 load_idx = sd->idle_idx;
2384
2385 do {
2386 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2387 int local_group;
2388 int i;
2389 int __group_imb = 0;
2390 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2391 unsigned long sum_nr_running, sum_weighted_load;
2392
2393 local_group = cpu_isset(this_cpu, group->cpumask);
2394
2395 if (local_group)
2396 balance_cpu = first_cpu(group->cpumask);
2397
2398 /* Tally up the load of all CPUs in the group */
2399 sum_weighted_load = sum_nr_running = avg_load = 0;
2400 max_cpu_load = 0;
2401 min_cpu_load = ~0UL;
2402
2403 for_each_cpu_mask(i, group->cpumask) {
2404 struct rq *rq;
2405
2406 if (!cpu_isset(i, *cpus))
2407 continue;
2408
2409 rq = cpu_rq(i);
2410
2411 if (*sd_idle && rq->nr_running)
2412 *sd_idle = 0;
2413
2414 /* Bias balancing toward cpus of our domain */
2415 if (local_group) {
2416 if (idle_cpu(i) && !first_idle_cpu) {
2417 first_idle_cpu = 1;
2418 balance_cpu = i;
2419 }
2420
2421 load = target_load(i, load_idx);
2422 } else {
2423 load = source_load(i, load_idx);
2424 if (load > max_cpu_load)
2425 max_cpu_load = load;
2426 if (min_cpu_load > load)
2427 min_cpu_load = load;
2428 }
2429
2430 avg_load += load;
2431 sum_nr_running += rq->nr_running;
2432 sum_weighted_load += weighted_cpuload(i);
2433 }
2434
2435 /*
2436 * First idle cpu or the first cpu(busiest) in this sched group
2437 * is eligible for doing load balancing at this and above
2438 * domains. In the newly idle case, we will allow all the cpu's
2439 * to do the newly idle load balance.
2440 */
2441 if (idle != CPU_NEWLY_IDLE && local_group &&
2442 balance_cpu != this_cpu && balance) {
2443 *balance = 0;
2444 goto ret;
2445 }
2446
2447 total_load += avg_load;
2448 total_pwr += group->__cpu_power;
2449
2450 /* Adjust by relative CPU power of the group */
2451 avg_load = sg_div_cpu_power(group,
2452 avg_load * SCHED_LOAD_SCALE);
2453
2454 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2455 __group_imb = 1;
2456
2457 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2458
2459 if (local_group) {
2460 this_load = avg_load;
2461 this = group;
2462 this_nr_running = sum_nr_running;
2463 this_load_per_task = sum_weighted_load;
2464 } else if (avg_load > max_load &&
2465 (sum_nr_running > group_capacity || __group_imb)) {
2466 max_load = avg_load;
2467 busiest = group;
2468 busiest_nr_running = sum_nr_running;
2469 busiest_load_per_task = sum_weighted_load;
2470 group_imb = __group_imb;
2471 }
2472
2473#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2474 /*
2475 * Busy processors will not participate in power savings
2476 * balance.
2477 */
2478 if (idle == CPU_NOT_IDLE ||
2479 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2480 goto group_next;
2481
2482 /*
2483 * If the local group is idle or completely loaded
2484 * no need to do power savings balance at this domain
2485 */
2486 if (local_group && (this_nr_running >= group_capacity ||
2487 !this_nr_running))
2488 power_savings_balance = 0;
2489
2490 /*
2491 * If a group is already running at full capacity or idle,
2492 * don't include that group in power savings calculations
2493 */
2494 if (!power_savings_balance || sum_nr_running >= group_capacity
2495 || !sum_nr_running)
2496 goto group_next;
2497
2498 /*
2499 * Calculate the group which has the least non-idle load.
2500 * This is the group from where we need to pick up the load
2501 * for saving power
2502 */
2503 if ((sum_nr_running < min_nr_running) ||
2504 (sum_nr_running == min_nr_running &&
2505 first_cpu(group->cpumask) <
2506 first_cpu(group_min->cpumask))) {
2507 group_min = group;
2508 min_nr_running = sum_nr_running;
2509 min_load_per_task = sum_weighted_load /
2510 sum_nr_running;
2511 }
2512
2513 /*
2514 * Calculate the group which is almost near its
2515 * capacity but still has some space to pick up some load
2516 * from other group and save more power
2517 */
2518 if (sum_nr_running <= group_capacity - 1) {
2519 if (sum_nr_running > leader_nr_running ||
2520 (sum_nr_running == leader_nr_running &&
2521 first_cpu(group->cpumask) >
2522 first_cpu(group_leader->cpumask))) {
2523 group_leader = group;
2524 leader_nr_running = sum_nr_running;
2525 }
2526 }
2527group_next:
2528#endif
2529 group = group->next;
2530 } while (group != sd->groups);
2531
2532 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2533 goto out_balanced;
2534
2535 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2536
2537 if (this_load >= avg_load ||
2538 100*max_load <= sd->imbalance_pct*this_load)
2539 goto out_balanced;
2540
2541 busiest_load_per_task /= busiest_nr_running;
2542 if (group_imb)
2543 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2544
2545 /*
2546 * We're trying to get all the cpus to the average_load, so we don't
2547 * want to push ourselves above the average load, nor do we wish to
2548 * reduce the max loaded cpu below the average load, as either of these
2549 * actions would just result in more rebalancing later, and ping-pong
2550 * tasks around. Thus we look for the minimum possible imbalance.
2551 * Negative imbalances (*we* are more loaded than anyone else) will
2552 * be counted as no imbalance for these purposes -- we can't fix that
2553 * by pulling tasks to us. Be careful of negative numbers as they'll
2554 * appear as very large values with unsigned longs.
2555 */
2556 if (max_load <= busiest_load_per_task)
2557 goto out_balanced;
2558
2559 /*
2560 * In the presence of smp nice balancing, certain scenarios can have
2561 * max load less than avg load(as we skip the groups at or below
2562 * its cpu_power, while calculating max_load..)
2563 */
2564 if (max_load < avg_load) {
2565 *imbalance = 0;
2566 goto small_imbalance;
2567 }
2568
2569 /* Don't want to pull so many tasks that a group would go idle */
2570 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2571
2572 /* How much load to actually move to equalise the imbalance */
2573 *imbalance = min(max_pull * busiest->__cpu_power,
2574 (avg_load - this_load) * this->__cpu_power)
2575 / SCHED_LOAD_SCALE;
2576
2577 /*
2578 * if *imbalance is less than the average load per runnable task
2579 * there is no gaurantee that any tasks will be moved so we'll have
2580 * a think about bumping its value to force at least one task to be
2581 * moved
2582 */
2583 if (*imbalance < busiest_load_per_task) {
2584 unsigned long tmp, pwr_now, pwr_move;
2585 unsigned int imbn;
2586
2587small_imbalance:
2588 pwr_move = pwr_now = 0;
2589 imbn = 2;
2590 if (this_nr_running) {
2591 this_load_per_task /= this_nr_running;
2592 if (busiest_load_per_task > this_load_per_task)
2593 imbn = 1;
2594 } else
2595 this_load_per_task = SCHED_LOAD_SCALE;
2596
2597 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2598 busiest_load_per_task * imbn) {
2599 *imbalance = busiest_load_per_task;
2600 return busiest;
2601 }
2602
2603 /*
2604 * OK, we don't have enough imbalance to justify moving tasks,
2605 * however we may be able to increase total CPU power used by
2606 * moving them.
2607 */
2608
2609 pwr_now += busiest->__cpu_power *
2610 min(busiest_load_per_task, max_load);
2611 pwr_now += this->__cpu_power *
2612 min(this_load_per_task, this_load);
2613 pwr_now /= SCHED_LOAD_SCALE;
2614
2615 /* Amount of load we'd subtract */
2616 tmp = sg_div_cpu_power(busiest,
2617 busiest_load_per_task * SCHED_LOAD_SCALE);
2618 if (max_load > tmp)
2619 pwr_move += busiest->__cpu_power *
2620 min(busiest_load_per_task, max_load - tmp);
2621
2622 /* Amount of load we'd add */
2623 if (max_load * busiest->__cpu_power <
2624 busiest_load_per_task * SCHED_LOAD_SCALE)
2625 tmp = sg_div_cpu_power(this,
2626 max_load * busiest->__cpu_power);
2627 else
2628 tmp = sg_div_cpu_power(this,
2629 busiest_load_per_task * SCHED_LOAD_SCALE);
2630 pwr_move += this->__cpu_power *
2631 min(this_load_per_task, this_load + tmp);
2632 pwr_move /= SCHED_LOAD_SCALE;
2633
2634 /* Move if we gain throughput */
2635 if (pwr_move > pwr_now)
2636 *imbalance = busiest_load_per_task;
2637 }
2638
2639 return busiest;
2640
2641out_balanced:
2642#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2643 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2644 goto ret;
2645
2646 if (this == group_leader && group_leader != group_min) {
2647 *imbalance = min_load_per_task;
2648 return group_min;
2649 }
2650#endif
2651ret:
2652 *imbalance = 0;
2653 return NULL;
2654}
2655
2656/*
2657 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2658 */
2659static struct rq *
2660find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2661 unsigned long imbalance, cpumask_t *cpus)
2662{
2663 struct rq *busiest = NULL, *rq;
2664 unsigned long max_load = 0;
2665 int i;
2666
2667 for_each_cpu_mask(i, group->cpumask) {
2668 unsigned long wl;
2669
2670 if (!cpu_isset(i, *cpus))
2671 continue;
2672
2673 rq = cpu_rq(i);
2674 wl = weighted_cpuload(i);
2675
2676 if (rq->nr_running == 1 && wl > imbalance)
2677 continue;
2678
2679 if (wl > max_load) {
2680 max_load = wl;
2681 busiest = rq;
2682 }
2683 }
2684
2685 return busiest;
2686}
2687
2688/*
2689 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2690 * so long as it is large enough.
2691 */
2692#define MAX_PINNED_INTERVAL 512
2693
2694/*
2695 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2696 * tasks if there is an imbalance.
2697 */
2698static int load_balance(int this_cpu, struct rq *this_rq,
2699 struct sched_domain *sd, enum cpu_idle_type idle,
2700 int *balance)
2701{
2702 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2703 struct sched_group *group;
2704 unsigned long imbalance;
2705 struct rq *busiest;
2706 cpumask_t cpus = CPU_MASK_ALL;
2707 unsigned long flags;
2708
2709 /*
2710 * When power savings policy is enabled for the parent domain, idle
2711 * sibling can pick up load irrespective of busy siblings. In this case,
2712 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2713 * portraying it as CPU_NOT_IDLE.
2714 */
2715 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2716 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2717 sd_idle = 1;
2718
2719 schedstat_inc(sd, lb_count[idle]);
2720
2721redo:
2722 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2723 &cpus, balance);
2724
2725 if (*balance == 0)
2726 goto out_balanced;
2727
2728 if (!group) {
2729 schedstat_inc(sd, lb_nobusyg[idle]);
2730 goto out_balanced;
2731 }
2732
2733 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2734 if (!busiest) {
2735 schedstat_inc(sd, lb_nobusyq[idle]);
2736 goto out_balanced;
2737 }
2738
2739 BUG_ON(busiest == this_rq);
2740
2741 schedstat_add(sd, lb_imbalance[idle], imbalance);
2742
2743 ld_moved = 0;
2744 if (busiest->nr_running > 1) {
2745 /*
2746 * Attempt to move tasks. If find_busiest_group has found
2747 * an imbalance but busiest->nr_running <= 1, the group is
2748 * still unbalanced. ld_moved simply stays zero, so it is
2749 * correctly treated as an imbalance.
2750 */
2751 local_irq_save(flags);
2752 double_rq_lock(this_rq, busiest);
2753 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2754 imbalance, sd, idle, &all_pinned);
2755 double_rq_unlock(this_rq, busiest);
2756 local_irq_restore(flags);
2757
2758 /*
2759 * some other cpu did the load balance for us.
2760 */
2761 if (ld_moved && this_cpu != smp_processor_id())
2762 resched_cpu(this_cpu);
2763
2764 /* All tasks on this runqueue were pinned by CPU affinity */
2765 if (unlikely(all_pinned)) {
2766 cpu_clear(cpu_of(busiest), cpus);
2767 if (!cpus_empty(cpus))
2768 goto redo;
2769 goto out_balanced;
2770 }
2771 }
2772
2773 if (!ld_moved) {
2774 schedstat_inc(sd, lb_failed[idle]);
2775 sd->nr_balance_failed++;
2776
2777 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2778
2779 spin_lock_irqsave(&busiest->lock, flags);
2780
2781 /* don't kick the migration_thread, if the curr
2782 * task on busiest cpu can't be moved to this_cpu
2783 */
2784 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2785 spin_unlock_irqrestore(&busiest->lock, flags);
2786 all_pinned = 1;
2787 goto out_one_pinned;
2788 }
2789
2790 if (!busiest->active_balance) {
2791 busiest->active_balance = 1;
2792 busiest->push_cpu = this_cpu;
2793 active_balance = 1;
2794 }
2795 spin_unlock_irqrestore(&busiest->lock, flags);
2796 if (active_balance)
2797 wake_up_process(busiest->migration_thread);
2798
2799 /*
2800 * We've kicked active balancing, reset the failure
2801 * counter.
2802 */
2803 sd->nr_balance_failed = sd->cache_nice_tries+1;
2804 }
2805 } else
2806 sd->nr_balance_failed = 0;
2807
2808 if (likely(!active_balance)) {
2809 /* We were unbalanced, so reset the balancing interval */
2810 sd->balance_interval = sd->min_interval;
2811 } else {
2812 /*
2813 * If we've begun active balancing, start to back off. This
2814 * case may not be covered by the all_pinned logic if there
2815 * is only 1 task on the busy runqueue (because we don't call
2816 * move_tasks).
2817 */
2818 if (sd->balance_interval < sd->max_interval)
2819 sd->balance_interval *= 2;
2820 }
2821
2822 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2823 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2824 return -1;
2825 return ld_moved;
2826
2827out_balanced:
2828 schedstat_inc(sd, lb_balanced[idle]);
2829
2830 sd->nr_balance_failed = 0;
2831
2832out_one_pinned:
2833 /* tune up the balancing interval */
2834 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2835 (sd->balance_interval < sd->max_interval))
2836 sd->balance_interval *= 2;
2837
2838 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2839 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2840 return -1;
2841 return 0;
2842}
2843
2844/*
2845 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2846 * tasks if there is an imbalance.
2847 *
2848 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2849 * this_rq is locked.
2850 */
2851static int
2852load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2853{
2854 struct sched_group *group;
2855 struct rq *busiest = NULL;
2856 unsigned long imbalance;
2857 int ld_moved = 0;
2858 int sd_idle = 0;
2859 int all_pinned = 0;
2860 cpumask_t cpus = CPU_MASK_ALL;
2861
2862 /*
2863 * When power savings policy is enabled for the parent domain, idle
2864 * sibling can pick up load irrespective of busy siblings. In this case,
2865 * let the state of idle sibling percolate up as IDLE, instead of
2866 * portraying it as CPU_NOT_IDLE.
2867 */
2868 if (sd->flags & SD_SHARE_CPUPOWER &&
2869 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2870 sd_idle = 1;
2871
2872 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2873redo:
2874 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2875 &sd_idle, &cpus, NULL);
2876 if (!group) {
2877 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2878 goto out_balanced;
2879 }
2880
2881 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2882 &cpus);
2883 if (!busiest) {
2884 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2885 goto out_balanced;
2886 }
2887
2888 BUG_ON(busiest == this_rq);
2889
2890 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2891
2892 ld_moved = 0;
2893 if (busiest->nr_running > 1) {
2894 /* Attempt to move tasks */
2895 double_lock_balance(this_rq, busiest);
2896 /* this_rq->clock is already updated */
2897 update_rq_clock(busiest);
2898 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2899 imbalance, sd, CPU_NEWLY_IDLE,
2900 &all_pinned);
2901 spin_unlock(&busiest->lock);
2902
2903 if (unlikely(all_pinned)) {
2904 cpu_clear(cpu_of(busiest), cpus);
2905 if (!cpus_empty(cpus))
2906 goto redo;
2907 }
2908 }
2909
2910 if (!ld_moved) {
2911 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2912 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2913 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2914 return -1;
2915 } else
2916 sd->nr_balance_failed = 0;
2917
2918 return ld_moved;
2919
2920out_balanced:
2921 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2922 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2923 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2924 return -1;
2925 sd->nr_balance_failed = 0;
2926
2927 return 0;
2928}
2929
2930/*
2931 * idle_balance is called by schedule() if this_cpu is about to become
2932 * idle. Attempts to pull tasks from other CPUs.
2933 */
2934static void idle_balance(int this_cpu, struct rq *this_rq)
2935{
2936 struct sched_domain *sd;
2937 int pulled_task = -1;
2938 unsigned long next_balance = jiffies + HZ;
2939
2940 for_each_domain(this_cpu, sd) {
2941 unsigned long interval;
2942
2943 if (!(sd->flags & SD_LOAD_BALANCE))
2944 continue;
2945
2946 if (sd->flags & SD_BALANCE_NEWIDLE)
2947 /* If we've pulled tasks over stop searching: */
2948 pulled_task = load_balance_newidle(this_cpu,
2949 this_rq, sd);
2950
2951 interval = msecs_to_jiffies(sd->balance_interval);
2952 if (time_after(next_balance, sd->last_balance + interval))
2953 next_balance = sd->last_balance + interval;
2954 if (pulled_task)
2955 break;
2956 }
2957 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2958 /*
2959 * We are going idle. next_balance may be set based on
2960 * a busy processor. So reset next_balance.
2961 */
2962 this_rq->next_balance = next_balance;
2963 }
2964}
2965
2966/*
2967 * active_load_balance is run by migration threads. It pushes running tasks
2968 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2969 * running on each physical CPU where possible, and avoids physical /
2970 * logical imbalances.
2971 *
2972 * Called with busiest_rq locked.
2973 */
2974static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2975{
2976 int target_cpu = busiest_rq->push_cpu;
2977 struct sched_domain *sd;
2978 struct rq *target_rq;
2979
2980 /* Is there any task to move? */
2981 if (busiest_rq->nr_running <= 1)
2982 return;
2983
2984 target_rq = cpu_rq(target_cpu);
2985
2986 /*
2987 * This condition is "impossible", if it occurs
2988 * we need to fix it. Originally reported by
2989 * Bjorn Helgaas on a 128-cpu setup.
2990 */
2991 BUG_ON(busiest_rq == target_rq);
2992
2993 /* move a task from busiest_rq to target_rq */
2994 double_lock_balance(busiest_rq, target_rq);
2995 update_rq_clock(busiest_rq);
2996 update_rq_clock(target_rq);
2997
2998 /* Search for an sd spanning us and the target CPU. */
2999 for_each_domain(target_cpu, sd) {
3000 if ((sd->flags & SD_LOAD_BALANCE) &&
3001 cpu_isset(busiest_cpu, sd->span))
3002 break;
3003 }
3004
3005 if (likely(sd)) {
3006 schedstat_inc(sd, alb_count);
3007
3008 if (move_one_task(target_rq, target_cpu, busiest_rq,
3009 sd, CPU_IDLE))
3010 schedstat_inc(sd, alb_pushed);
3011 else
3012 schedstat_inc(sd, alb_failed);
3013 }
3014 spin_unlock(&target_rq->lock);
3015}
3016
3017#ifdef CONFIG_NO_HZ
3018static struct {
3019 atomic_t load_balancer;
3020 cpumask_t cpu_mask;
3021} nohz ____cacheline_aligned = {
3022 .load_balancer = ATOMIC_INIT(-1),
3023 .cpu_mask = CPU_MASK_NONE,
3024};
3025
3026/*
3027 * This routine will try to nominate the ilb (idle load balancing)
3028 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3029 * load balancing on behalf of all those cpus. If all the cpus in the system
3030 * go into this tickless mode, then there will be no ilb owner (as there is
3031 * no need for one) and all the cpus will sleep till the next wakeup event
3032 * arrives...
3033 *
3034 * For the ilb owner, tick is not stopped. And this tick will be used
3035 * for idle load balancing. ilb owner will still be part of
3036 * nohz.cpu_mask..
3037 *
3038 * While stopping the tick, this cpu will become the ilb owner if there
3039 * is no other owner. And will be the owner till that cpu becomes busy
3040 * or if all cpus in the system stop their ticks at which point
3041 * there is no need for ilb owner.
3042 *
3043 * When the ilb owner becomes busy, it nominates another owner, during the
3044 * next busy scheduler_tick()
3045 */
3046int select_nohz_load_balancer(int stop_tick)
3047{
3048 int cpu = smp_processor_id();
3049
3050 if (stop_tick) {
3051 cpu_set(cpu, nohz.cpu_mask);
3052 cpu_rq(cpu)->in_nohz_recently = 1;
3053
3054 /*
3055 * If we are going offline and still the leader, give up!
3056 */
3057 if (cpu_is_offline(cpu) &&
3058 atomic_read(&nohz.load_balancer) == cpu) {
3059 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3060 BUG();
3061 return 0;
3062 }
3063
3064 /* time for ilb owner also to sleep */
3065 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3066 if (atomic_read(&nohz.load_balancer) == cpu)
3067 atomic_set(&nohz.load_balancer, -1);
3068 return 0;
3069 }
3070
3071 if (atomic_read(&nohz.load_balancer) == -1) {
3072 /* make me the ilb owner */
3073 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3074 return 1;
3075 } else if (atomic_read(&nohz.load_balancer) == cpu)
3076 return 1;
3077 } else {
3078 if (!cpu_isset(cpu, nohz.cpu_mask))
3079 return 0;
3080
3081 cpu_clear(cpu, nohz.cpu_mask);
3082
3083 if (atomic_read(&nohz.load_balancer) == cpu)
3084 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3085 BUG();
3086 }
3087 return 0;
3088}
3089#endif
3090
3091static DEFINE_SPINLOCK(balancing);
3092
3093/*
3094 * It checks each scheduling domain to see if it is due to be balanced,
3095 * and initiates a balancing operation if so.
3096 *
3097 * Balancing parameters are set up in arch_init_sched_domains.
3098 */
3099static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3100{
3101 int balance = 1;
3102 struct rq *rq = cpu_rq(cpu);
3103 unsigned long interval;
3104 struct sched_domain *sd;
3105 /* Earliest time when we have to do rebalance again */
3106 unsigned long next_balance = jiffies + 60*HZ;
3107 int update_next_balance = 0;
3108
3109 for_each_domain(cpu, sd) {
3110 if (!(sd->flags & SD_LOAD_BALANCE))
3111 continue;
3112
3113 interval = sd->balance_interval;
3114 if (idle != CPU_IDLE)
3115 interval *= sd->busy_factor;
3116
3117 /* scale ms to jiffies */
3118 interval = msecs_to_jiffies(interval);
3119 if (unlikely(!interval))
3120 interval = 1;
3121 if (interval > HZ*NR_CPUS/10)
3122 interval = HZ*NR_CPUS/10;
3123
3124
3125 if (sd->flags & SD_SERIALIZE) {
3126 if (!spin_trylock(&balancing))
3127 goto out;
3128 }
3129
3130 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3131 if (load_balance(cpu, rq, sd, idle, &balance)) {
3132 /*
3133 * We've pulled tasks over so either we're no
3134 * longer idle, or one of our SMT siblings is
3135 * not idle.
3136 */
3137 idle = CPU_NOT_IDLE;
3138 }
3139 sd->last_balance = jiffies;
3140 }
3141 if (sd->flags & SD_SERIALIZE)
3142 spin_unlock(&balancing);
3143out:
3144 if (time_after(next_balance, sd->last_balance + interval)) {
3145 next_balance = sd->last_balance + interval;
3146 update_next_balance = 1;
3147 }
3148
3149 /*
3150 * Stop the load balance at this level. There is another
3151 * CPU in our sched group which is doing load balancing more
3152 * actively.
3153 */
3154 if (!balance)
3155 break;
3156 }
3157
3158 /*
3159 * next_balance will be updated only when there is a need.
3160 * When the cpu is attached to null domain for ex, it will not be
3161 * updated.
3162 */
3163 if (likely(update_next_balance))
3164 rq->next_balance = next_balance;
3165}
3166
3167/*
3168 * run_rebalance_domains is triggered when needed from the scheduler tick.
3169 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3170 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3171 */
3172static void run_rebalance_domains(struct softirq_action *h)
3173{
3174 int this_cpu = smp_processor_id();
3175 struct rq *this_rq = cpu_rq(this_cpu);
3176 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3177 CPU_IDLE : CPU_NOT_IDLE;
3178
3179 rebalance_domains(this_cpu, idle);
3180
3181#ifdef CONFIG_NO_HZ
3182 /*
3183 * If this cpu is the owner for idle load balancing, then do the
3184 * balancing on behalf of the other idle cpus whose ticks are
3185 * stopped.
3186 */
3187 if (this_rq->idle_at_tick &&
3188 atomic_read(&nohz.load_balancer) == this_cpu) {
3189 cpumask_t cpus = nohz.cpu_mask;
3190 struct rq *rq;
3191 int balance_cpu;
3192
3193 cpu_clear(this_cpu, cpus);
3194 for_each_cpu_mask(balance_cpu, cpus) {
3195 /*
3196 * If this cpu gets work to do, stop the load balancing
3197 * work being done for other cpus. Next load
3198 * balancing owner will pick it up.
3199 */
3200 if (need_resched())
3201 break;
3202
3203 rebalance_domains(balance_cpu, CPU_IDLE);
3204
3205 rq = cpu_rq(balance_cpu);
3206 if (time_after(this_rq->next_balance, rq->next_balance))
3207 this_rq->next_balance = rq->next_balance;
3208 }
3209 }
3210#endif
3211}
3212
3213/*
3214 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3215 *
3216 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3217 * idle load balancing owner or decide to stop the periodic load balancing,
3218 * if the whole system is idle.
3219 */
3220static inline void trigger_load_balance(struct rq *rq, int cpu)
3221{
3222#ifdef CONFIG_NO_HZ
3223 /*
3224 * If we were in the nohz mode recently and busy at the current
3225 * scheduler tick, then check if we need to nominate new idle
3226 * load balancer.
3227 */
3228 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3229 rq->in_nohz_recently = 0;
3230
3231 if (atomic_read(&nohz.load_balancer) == cpu) {
3232 cpu_clear(cpu, nohz.cpu_mask);
3233 atomic_set(&nohz.load_balancer, -1);
3234 }
3235
3236 if (atomic_read(&nohz.load_balancer) == -1) {
3237 /*
3238 * simple selection for now: Nominate the
3239 * first cpu in the nohz list to be the next
3240 * ilb owner.
3241 *
3242 * TBD: Traverse the sched domains and nominate
3243 * the nearest cpu in the nohz.cpu_mask.
3244 */
3245 int ilb = first_cpu(nohz.cpu_mask);
3246
3247 if (ilb != NR_CPUS)
3248 resched_cpu(ilb);
3249 }
3250 }
3251
3252 /*
3253 * If this cpu is idle and doing idle load balancing for all the
3254 * cpus with ticks stopped, is it time for that to stop?
3255 */
3256 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3257 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3258 resched_cpu(cpu);
3259 return;
3260 }
3261
3262 /*
3263 * If this cpu is idle and the idle load balancing is done by
3264 * someone else, then no need raise the SCHED_SOFTIRQ
3265 */
3266 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3267 cpu_isset(cpu, nohz.cpu_mask))
3268 return;
3269#endif
3270 if (time_after_eq(jiffies, rq->next_balance))
3271 raise_softirq(SCHED_SOFTIRQ);
3272}
3273
3274#else /* CONFIG_SMP */
3275
3276/*
3277 * on UP we do not need to balance between CPUs:
3278 */
3279static inline void idle_balance(int cpu, struct rq *rq)
3280{
3281}
3282
3283#endif
3284
3285DEFINE_PER_CPU(struct kernel_stat, kstat);
3286
3287EXPORT_PER_CPU_SYMBOL(kstat);
3288
3289/*
3290 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3291 * that have not yet been banked in case the task is currently running.
3292 */
3293unsigned long long task_sched_runtime(struct task_struct *p)
3294{
3295 unsigned long flags;
3296 u64 ns, delta_exec;
3297 struct rq *rq;
3298
3299 rq = task_rq_lock(p, &flags);
3300 ns = p->se.sum_exec_runtime;
3301 if (task_current(rq, p)) {
3302 update_rq_clock(rq);
3303 delta_exec = rq->clock - p->se.exec_start;
3304 if ((s64)delta_exec > 0)
3305 ns += delta_exec;
3306 }
3307 task_rq_unlock(rq, &flags);
3308
3309 return ns;
3310}
3311
3312/*
3313 * Account user cpu time to a process.
3314 * @p: the process that the cpu time gets accounted to
3315 * @cputime: the cpu time spent in user space since the last update
3316 */
3317void account_user_time(struct task_struct *p, cputime_t cputime)
3318{
3319 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3320 cputime64_t tmp;
3321
3322 p->utime = cputime_add(p->utime, cputime);
3323
3324 /* Add user time to cpustat. */
3325 tmp = cputime_to_cputime64(cputime);
3326 if (TASK_NICE(p) > 0)
3327 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3328 else
3329 cpustat->user = cputime64_add(cpustat->user, tmp);
3330}
3331
3332/*
3333 * Account guest cpu time to a process.
3334 * @p: the process that the cpu time gets accounted to
3335 * @cputime: the cpu time spent in virtual machine since the last update
3336 */
3337static void account_guest_time(struct task_struct *p, cputime_t cputime)
3338{
3339 cputime64_t tmp;
3340 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3341
3342 tmp = cputime_to_cputime64(cputime);
3343
3344 p->utime = cputime_add(p->utime, cputime);
3345 p->gtime = cputime_add(p->gtime, cputime);
3346
3347 cpustat->user = cputime64_add(cpustat->user, tmp);
3348 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3349}
3350
3351/*
3352 * Account scaled user cpu time to a process.
3353 * @p: the process that the cpu time gets accounted to
3354 * @cputime: the cpu time spent in user space since the last update
3355 */
3356void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3357{
3358 p->utimescaled = cputime_add(p->utimescaled, cputime);
3359}
3360
3361/*
3362 * Account system cpu time to a process.
3363 * @p: the process that the cpu time gets accounted to
3364 * @hardirq_offset: the offset to subtract from hardirq_count()
3365 * @cputime: the cpu time spent in kernel space since the last update
3366 */
3367void account_system_time(struct task_struct *p, int hardirq_offset,
3368 cputime_t cputime)
3369{
3370 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3371 struct rq *rq = this_rq();
3372 cputime64_t tmp;
3373
3374 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3375 return account_guest_time(p, cputime);
3376
3377 p->stime = cputime_add(p->stime, cputime);
3378
3379 /* Add system time to cpustat. */
3380 tmp = cputime_to_cputime64(cputime);
3381 if (hardirq_count() - hardirq_offset)
3382 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3383 else if (softirq_count())
3384 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3385 else if (p != rq->idle)
3386 cpustat->system = cputime64_add(cpustat->system, tmp);
3387 else if (atomic_read(&rq->nr_iowait) > 0)
3388 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3389 else
3390 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3391 /* Account for system time used */
3392 acct_update_integrals(p);
3393}
3394
3395/*
3396 * Account scaled system cpu time to a process.
3397 * @p: the process that the cpu time gets accounted to
3398 * @hardirq_offset: the offset to subtract from hardirq_count()
3399 * @cputime: the cpu time spent in kernel space since the last update
3400 */
3401void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3402{
3403 p->stimescaled = cputime_add(p->stimescaled, cputime);
3404}
3405
3406/*
3407 * Account for involuntary wait time.
3408 * @p: the process from which the cpu time has been stolen
3409 * @steal: the cpu time spent in involuntary wait
3410 */
3411void account_steal_time(struct task_struct *p, cputime_t steal)
3412{
3413 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3414 cputime64_t tmp = cputime_to_cputime64(steal);
3415 struct rq *rq = this_rq();
3416
3417 if (p == rq->idle) {
3418 p->stime = cputime_add(p->stime, steal);
3419 if (atomic_read(&rq->nr_iowait) > 0)
3420 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3421 else
3422 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3423 } else
3424 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3425}
3426
3427/*
3428 * This function gets called by the timer code, with HZ frequency.
3429 * We call it with interrupts disabled.
3430 *
3431 * It also gets called by the fork code, when changing the parent's
3432 * timeslices.
3433 */
3434void scheduler_tick(void)
3435{
3436 int cpu = smp_processor_id();
3437 struct rq *rq = cpu_rq(cpu);
3438 struct task_struct *curr = rq->curr;
3439 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3440
3441 spin_lock(&rq->lock);
3442 __update_rq_clock(rq);
3443 /*
3444 * Let rq->clock advance by at least TICK_NSEC:
3445 */
3446 if (unlikely(rq->clock < next_tick))
3447 rq->clock = next_tick;
3448 rq->tick_timestamp = rq->clock;
3449 update_cpu_load(rq);
3450 if (curr != rq->idle) /* FIXME: needed? */
3451 curr->sched_class->task_tick(rq, curr);
3452 spin_unlock(&rq->lock);
3453
3454#ifdef CONFIG_SMP
3455 rq->idle_at_tick = idle_cpu(cpu);
3456 trigger_load_balance(rq, cpu);
3457#endif
3458}
3459
3460#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3461
3462void fastcall add_preempt_count(int val)
3463{
3464 /*
3465 * Underflow?
3466 */
3467 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3468 return;
3469 preempt_count() += val;
3470 /*
3471 * Spinlock count overflowing soon?
3472 */
3473 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3474 PREEMPT_MASK - 10);
3475}
3476EXPORT_SYMBOL(add_preempt_count);
3477
3478void fastcall sub_preempt_count(int val)
3479{
3480 /*
3481 * Underflow?
3482 */
3483 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3484 return;
3485 /*
3486 * Is the spinlock portion underflowing?
3487 */
3488 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3489 !(preempt_count() & PREEMPT_MASK)))
3490 return;
3491
3492 preempt_count() -= val;
3493}
3494EXPORT_SYMBOL(sub_preempt_count);
3495
3496#endif
3497
3498/*
3499 * Print scheduling while atomic bug:
3500 */
3501static noinline void __schedule_bug(struct task_struct *prev)
3502{
3503 struct pt_regs *regs = get_irq_regs();
3504
3505 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3506 prev->comm, prev->pid, preempt_count());
3507
3508 debug_show_held_locks(prev);
3509 if (irqs_disabled())
3510 print_irqtrace_events(prev);
3511
3512 if (regs)
3513 show_regs(regs);
3514 else
3515 dump_stack();
3516}
3517
3518/*
3519 * Various schedule()-time debugging checks and statistics:
3520 */
3521static inline void schedule_debug(struct task_struct *prev)
3522{
3523 /*
3524 * Test if we are atomic. Since do_exit() needs to call into
3525 * schedule() atomically, we ignore that path for now.
3526 * Otherwise, whine if we are scheduling when we should not be.
3527 */
3528 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3529 __schedule_bug(prev);
3530
3531 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3532
3533 schedstat_inc(this_rq(), sched_count);
3534#ifdef CONFIG_SCHEDSTATS
3535 if (unlikely(prev->lock_depth >= 0)) {
3536 schedstat_inc(this_rq(), bkl_count);
3537 schedstat_inc(prev, sched_info.bkl_count);
3538 }
3539#endif
3540}
3541
3542/*
3543 * Pick up the highest-prio task:
3544 */
3545static inline struct task_struct *
3546pick_next_task(struct rq *rq, struct task_struct *prev)
3547{
3548 const struct sched_class *class;
3549 struct task_struct *p;
3550
3551 /*
3552 * Optimization: we know that if all tasks are in
3553 * the fair class we can call that function directly:
3554 */
3555 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3556 p = fair_sched_class.pick_next_task(rq);
3557 if (likely(p))
3558 return p;
3559 }
3560
3561 class = sched_class_highest;
3562 for ( ; ; ) {
3563 p = class->pick_next_task(rq);
3564 if (p)
3565 return p;
3566 /*
3567 * Will never be NULL as the idle class always
3568 * returns a non-NULL p:
3569 */
3570 class = class->next;
3571 }
3572}
3573
3574/*
3575 * schedule() is the main scheduler function.
3576 */
3577asmlinkage void __sched schedule(void)
3578{
3579 struct task_struct *prev, *next;
3580 long *switch_count;
3581 struct rq *rq;
3582 int cpu;
3583
3584need_resched:
3585 preempt_disable();
3586 cpu = smp_processor_id();
3587 rq = cpu_rq(cpu);
3588 rcu_qsctr_inc(cpu);
3589 prev = rq->curr;
3590 switch_count = &prev->nivcsw;
3591
3592 release_kernel_lock(prev);
3593need_resched_nonpreemptible:
3594
3595 schedule_debug(prev);
3596
3597 /*
3598 * Do the rq-clock update outside the rq lock:
3599 */
3600 local_irq_disable();
3601 __update_rq_clock(rq);
3602 spin_lock(&rq->lock);
3603 clear_tsk_need_resched(prev);
3604
3605 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3606 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3607 unlikely(signal_pending(prev)))) {
3608 prev->state = TASK_RUNNING;
3609 } else {
3610 deactivate_task(rq, prev, 1);
3611 }
3612 switch_count = &prev->nvcsw;
3613 }
3614
3615 schedule_balance_rt(rq, prev);
3616
3617 if (unlikely(!rq->nr_running))
3618 idle_balance(cpu, rq);
3619
3620 prev->sched_class->put_prev_task(rq, prev);
3621 next = pick_next_task(rq, prev);
3622
3623 sched_info_switch(prev, next);
3624
3625 if (likely(prev != next)) {
3626 rq->nr_switches++;
3627 rq->curr = next;
3628 ++*switch_count;
3629
3630 context_switch(rq, prev, next); /* unlocks the rq */
3631 } else
3632 spin_unlock_irq(&rq->lock);
3633
3634 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3635 cpu = smp_processor_id();
3636 rq = cpu_rq(cpu);
3637 goto need_resched_nonpreemptible;
3638 }
3639 preempt_enable_no_resched();
3640 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3641 goto need_resched;
3642}
3643EXPORT_SYMBOL(schedule);
3644
3645#ifdef CONFIG_PREEMPT
3646/*
3647 * this is the entry point to schedule() from in-kernel preemption
3648 * off of preempt_enable. Kernel preemptions off return from interrupt
3649 * occur there and call schedule directly.
3650 */
3651asmlinkage void __sched preempt_schedule(void)
3652{
3653 struct thread_info *ti = current_thread_info();
3654#ifdef CONFIG_PREEMPT_BKL
3655 struct task_struct *task = current;
3656 int saved_lock_depth;
3657#endif
3658 /*
3659 * If there is a non-zero preempt_count or interrupts are disabled,
3660 * we do not want to preempt the current task. Just return..
3661 */
3662 if (likely(ti->preempt_count || irqs_disabled()))
3663 return;
3664
3665 do {
3666 add_preempt_count(PREEMPT_ACTIVE);
3667
3668 /*
3669 * We keep the big kernel semaphore locked, but we
3670 * clear ->lock_depth so that schedule() doesnt
3671 * auto-release the semaphore:
3672 */
3673#ifdef CONFIG_PREEMPT_BKL
3674 saved_lock_depth = task->lock_depth;
3675 task->lock_depth = -1;
3676#endif
3677 schedule();
3678#ifdef CONFIG_PREEMPT_BKL
3679 task->lock_depth = saved_lock_depth;
3680#endif
3681 sub_preempt_count(PREEMPT_ACTIVE);
3682
3683 /*
3684 * Check again in case we missed a preemption opportunity
3685 * between schedule and now.
3686 */
3687 barrier();
3688 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3689}
3690EXPORT_SYMBOL(preempt_schedule);
3691
3692/*
3693 * this is the entry point to schedule() from kernel preemption
3694 * off of irq context.
3695 * Note, that this is called and return with irqs disabled. This will
3696 * protect us against recursive calling from irq.
3697 */
3698asmlinkage void __sched preempt_schedule_irq(void)
3699{
3700 struct thread_info *ti = current_thread_info();
3701#ifdef CONFIG_PREEMPT_BKL
3702 struct task_struct *task = current;
3703 int saved_lock_depth;
3704#endif
3705 /* Catch callers which need to be fixed */
3706 BUG_ON(ti->preempt_count || !irqs_disabled());
3707
3708 do {
3709 add_preempt_count(PREEMPT_ACTIVE);
3710
3711 /*
3712 * We keep the big kernel semaphore locked, but we
3713 * clear ->lock_depth so that schedule() doesnt
3714 * auto-release the semaphore:
3715 */
3716#ifdef CONFIG_PREEMPT_BKL
3717 saved_lock_depth = task->lock_depth;
3718 task->lock_depth = -1;
3719#endif
3720 local_irq_enable();
3721 schedule();
3722 local_irq_disable();
3723#ifdef CONFIG_PREEMPT_BKL
3724 task->lock_depth = saved_lock_depth;
3725#endif
3726 sub_preempt_count(PREEMPT_ACTIVE);
3727
3728 /*
3729 * Check again in case we missed a preemption opportunity
3730 * between schedule and now.
3731 */
3732 barrier();
3733 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3734}
3735
3736#endif /* CONFIG_PREEMPT */
3737
3738int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3739 void *key)
3740{
3741 return try_to_wake_up(curr->private, mode, sync);
3742}
3743EXPORT_SYMBOL(default_wake_function);
3744
3745/*
3746 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3747 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3748 * number) then we wake all the non-exclusive tasks and one exclusive task.
3749 *
3750 * There are circumstances in which we can try to wake a task which has already
3751 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3752 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3753 */
3754static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3755 int nr_exclusive, int sync, void *key)
3756{
3757 wait_queue_t *curr, *next;
3758
3759 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3760 unsigned flags = curr->flags;
3761
3762 if (curr->func(curr, mode, sync, key) &&
3763 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3764 break;
3765 }
3766}
3767
3768/**
3769 * __wake_up - wake up threads blocked on a waitqueue.
3770 * @q: the waitqueue
3771 * @mode: which threads
3772 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3773 * @key: is directly passed to the wakeup function
3774 */
3775void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3776 int nr_exclusive, void *key)
3777{
3778 unsigned long flags;
3779
3780 spin_lock_irqsave(&q->lock, flags);
3781 __wake_up_common(q, mode, nr_exclusive, 0, key);
3782 spin_unlock_irqrestore(&q->lock, flags);
3783}
3784EXPORT_SYMBOL(__wake_up);
3785
3786/*
3787 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3788 */
3789void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3790{
3791 __wake_up_common(q, mode, 1, 0, NULL);
3792}
3793
3794/**
3795 * __wake_up_sync - wake up threads blocked on a waitqueue.
3796 * @q: the waitqueue
3797 * @mode: which threads
3798 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3799 *
3800 * The sync wakeup differs that the waker knows that it will schedule
3801 * away soon, so while the target thread will be woken up, it will not
3802 * be migrated to another CPU - ie. the two threads are 'synchronized'
3803 * with each other. This can prevent needless bouncing between CPUs.
3804 *
3805 * On UP it can prevent extra preemption.
3806 */
3807void fastcall
3808__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3809{
3810 unsigned long flags;
3811 int sync = 1;
3812
3813 if (unlikely(!q))
3814 return;
3815
3816 if (unlikely(!nr_exclusive))
3817 sync = 0;
3818
3819 spin_lock_irqsave(&q->lock, flags);
3820 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3821 spin_unlock_irqrestore(&q->lock, flags);
3822}
3823EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3824
3825void complete(struct completion *x)
3826{
3827 unsigned long flags;
3828
3829 spin_lock_irqsave(&x->wait.lock, flags);
3830 x->done++;
3831 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3832 1, 0, NULL);
3833 spin_unlock_irqrestore(&x->wait.lock, flags);
3834}
3835EXPORT_SYMBOL(complete);
3836
3837void complete_all(struct completion *x)
3838{
3839 unsigned long flags;
3840
3841 spin_lock_irqsave(&x->wait.lock, flags);
3842 x->done += UINT_MAX/2;
3843 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3844 0, 0, NULL);
3845 spin_unlock_irqrestore(&x->wait.lock, flags);
3846}
3847EXPORT_SYMBOL(complete_all);
3848
3849static inline long __sched
3850do_wait_for_common(struct completion *x, long timeout, int state)
3851{
3852 if (!x->done) {
3853 DECLARE_WAITQUEUE(wait, current);
3854
3855 wait.flags |= WQ_FLAG_EXCLUSIVE;
3856 __add_wait_queue_tail(&x->wait, &wait);
3857 do {
3858 if (state == TASK_INTERRUPTIBLE &&
3859 signal_pending(current)) {
3860 __remove_wait_queue(&x->wait, &wait);
3861 return -ERESTARTSYS;
3862 }
3863 __set_current_state(state);
3864 spin_unlock_irq(&x->wait.lock);
3865 timeout = schedule_timeout(timeout);
3866 spin_lock_irq(&x->wait.lock);
3867 if (!timeout) {
3868 __remove_wait_queue(&x->wait, &wait);
3869 return timeout;
3870 }
3871 } while (!x->done);
3872 __remove_wait_queue(&x->wait, &wait);
3873 }
3874 x->done--;
3875 return timeout;
3876}
3877
3878static long __sched
3879wait_for_common(struct completion *x, long timeout, int state)
3880{
3881 might_sleep();
3882
3883 spin_lock_irq(&x->wait.lock);
3884 timeout = do_wait_for_common(x, timeout, state);
3885 spin_unlock_irq(&x->wait.lock);
3886 return timeout;
3887}
3888
3889void __sched wait_for_completion(struct completion *x)
3890{
3891 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3892}
3893EXPORT_SYMBOL(wait_for_completion);
3894
3895unsigned long __sched
3896wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3897{
3898 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3899}
3900EXPORT_SYMBOL(wait_for_completion_timeout);
3901
3902int __sched wait_for_completion_interruptible(struct completion *x)
3903{
3904 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3905 if (t == -ERESTARTSYS)
3906 return t;
3907 return 0;
3908}
3909EXPORT_SYMBOL(wait_for_completion_interruptible);
3910
3911unsigned long __sched
3912wait_for_completion_interruptible_timeout(struct completion *x,
3913 unsigned long timeout)
3914{
3915 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3916}
3917EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3918
3919static long __sched
3920sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3921{
3922 unsigned long flags;
3923 wait_queue_t wait;
3924
3925 init_waitqueue_entry(&wait, current);
3926
3927 __set_current_state(state);
3928
3929 spin_lock_irqsave(&q->lock, flags);
3930 __add_wait_queue(q, &wait);
3931 spin_unlock(&q->lock);
3932 timeout = schedule_timeout(timeout);
3933 spin_lock_irq(&q->lock);
3934 __remove_wait_queue(q, &wait);
3935 spin_unlock_irqrestore(&q->lock, flags);
3936
3937 return timeout;
3938}
3939
3940void __sched interruptible_sleep_on(wait_queue_head_t *q)
3941{
3942 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3943}
3944EXPORT_SYMBOL(interruptible_sleep_on);
3945
3946long __sched
3947interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3948{
3949 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3950}
3951EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3952
3953void __sched sleep_on(wait_queue_head_t *q)
3954{
3955 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3956}
3957EXPORT_SYMBOL(sleep_on);
3958
3959long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3960{
3961 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3962}
3963EXPORT_SYMBOL(sleep_on_timeout);
3964
3965#ifdef CONFIG_RT_MUTEXES
3966
3967/*
3968 * rt_mutex_setprio - set the current priority of a task
3969 * @p: task
3970 * @prio: prio value (kernel-internal form)
3971 *
3972 * This function changes the 'effective' priority of a task. It does
3973 * not touch ->normal_prio like __setscheduler().
3974 *
3975 * Used by the rt_mutex code to implement priority inheritance logic.
3976 */
3977void rt_mutex_setprio(struct task_struct *p, int prio)
3978{
3979 unsigned long flags;
3980 int oldprio, on_rq, running;
3981 struct rq *rq;
3982
3983 BUG_ON(prio < 0 || prio > MAX_PRIO);
3984
3985 rq = task_rq_lock(p, &flags);
3986 update_rq_clock(rq);
3987
3988 oldprio = p->prio;
3989 on_rq = p->se.on_rq;
3990 running = task_current(rq, p);
3991 if (on_rq) {
3992 dequeue_task(rq, p, 0);
3993 if (running)
3994 p->sched_class->put_prev_task(rq, p);
3995 }
3996
3997 if (rt_prio(prio))
3998 p->sched_class = &rt_sched_class;
3999 else
4000 p->sched_class = &fair_sched_class;
4001
4002 p->prio = prio;
4003
4004 if (on_rq) {
4005 if (running)
4006 p->sched_class->set_curr_task(rq);
4007 enqueue_task(rq, p, 0);
4008 /*
4009 * Reschedule if we are currently running on this runqueue and
4010 * our priority decreased, or if we are not currently running on
4011 * this runqueue and our priority is higher than the current's
4012 */
4013 if (running) {
4014 if (p->prio > oldprio)
4015 resched_task(rq->curr);
4016 } else {
4017 check_preempt_curr(rq, p);
4018 }
4019 }
4020 task_rq_unlock(rq, &flags);
4021}
4022
4023#endif
4024
4025void set_user_nice(struct task_struct *p, long nice)
4026{
4027 int old_prio, delta, on_rq;
4028 unsigned long flags;
4029 struct rq *rq;
4030
4031 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4032 return;
4033 /*
4034 * We have to be careful, if called from sys_setpriority(),
4035 * the task might be in the middle of scheduling on another CPU.
4036 */
4037 rq = task_rq_lock(p, &flags);
4038 update_rq_clock(rq);
4039 /*
4040 * The RT priorities are set via sched_setscheduler(), but we still
4041 * allow the 'normal' nice value to be set - but as expected
4042 * it wont have any effect on scheduling until the task is
4043 * SCHED_FIFO/SCHED_RR:
4044 */
4045 if (task_has_rt_policy(p)) {
4046 p->static_prio = NICE_TO_PRIO(nice);
4047 goto out_unlock;
4048 }
4049 on_rq = p->se.on_rq;
4050 if (on_rq)
4051 dequeue_task(rq, p, 0);
4052
4053 p->static_prio = NICE_TO_PRIO(nice);
4054 set_load_weight(p);
4055 old_prio = p->prio;
4056 p->prio = effective_prio(p);
4057 delta = p->prio - old_prio;
4058
4059 if (on_rq) {
4060 enqueue_task(rq, p, 0);
4061 /*
4062 * If the task increased its priority or is running and
4063 * lowered its priority, then reschedule its CPU:
4064 */
4065 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4066 resched_task(rq->curr);
4067 }
4068out_unlock:
4069 task_rq_unlock(rq, &flags);
4070}
4071EXPORT_SYMBOL(set_user_nice);
4072
4073/*
4074 * can_nice - check if a task can reduce its nice value
4075 * @p: task
4076 * @nice: nice value
4077 */
4078int can_nice(const struct task_struct *p, const int nice)
4079{
4080 /* convert nice value [19,-20] to rlimit style value [1,40] */
4081 int nice_rlim = 20 - nice;
4082
4083 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4084 capable(CAP_SYS_NICE));
4085}
4086
4087#ifdef __ARCH_WANT_SYS_NICE
4088
4089/*
4090 * sys_nice - change the priority of the current process.
4091 * @increment: priority increment
4092 *
4093 * sys_setpriority is a more generic, but much slower function that
4094 * does similar things.
4095 */
4096asmlinkage long sys_nice(int increment)
4097{
4098 long nice, retval;
4099
4100 /*
4101 * Setpriority might change our priority at the same moment.
4102 * We don't have to worry. Conceptually one call occurs first
4103 * and we have a single winner.
4104 */
4105 if (increment < -40)
4106 increment = -40;
4107 if (increment > 40)
4108 increment = 40;
4109
4110 nice = PRIO_TO_NICE(current->static_prio) + increment;
4111 if (nice < -20)
4112 nice = -20;
4113 if (nice > 19)
4114 nice = 19;
4115
4116 if (increment < 0 && !can_nice(current, nice))
4117 return -EPERM;
4118
4119 retval = security_task_setnice(current, nice);
4120 if (retval)
4121 return retval;
4122
4123 set_user_nice(current, nice);
4124 return 0;
4125}
4126
4127#endif
4128
4129/**
4130 * task_prio - return the priority value of a given task.
4131 * @p: the task in question.
4132 *
4133 * This is the priority value as seen by users in /proc.
4134 * RT tasks are offset by -200. Normal tasks are centered
4135 * around 0, value goes from -16 to +15.
4136 */
4137int task_prio(const struct task_struct *p)
4138{
4139 return p->prio - MAX_RT_PRIO;
4140}
4141
4142/**
4143 * task_nice - return the nice value of a given task.
4144 * @p: the task in question.
4145 */
4146int task_nice(const struct task_struct *p)
4147{
4148 return TASK_NICE(p);
4149}
4150EXPORT_SYMBOL_GPL(task_nice);
4151
4152/**
4153 * idle_cpu - is a given cpu idle currently?
4154 * @cpu: the processor in question.
4155 */
4156int idle_cpu(int cpu)
4157{
4158 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4159}
4160
4161/**
4162 * idle_task - return the idle task for a given cpu.
4163 * @cpu: the processor in question.
4164 */
4165struct task_struct *idle_task(int cpu)
4166{
4167 return cpu_rq(cpu)->idle;
4168}
4169
4170/**
4171 * find_process_by_pid - find a process with a matching PID value.
4172 * @pid: the pid in question.
4173 */
4174static struct task_struct *find_process_by_pid(pid_t pid)
4175{
4176 return pid ? find_task_by_vpid(pid) : current;
4177}
4178
4179/* Actually do priority change: must hold rq lock. */
4180static void
4181__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4182{
4183 BUG_ON(p->se.on_rq);
4184
4185 p->policy = policy;
4186 switch (p->policy) {
4187 case SCHED_NORMAL:
4188 case SCHED_BATCH:
4189 case SCHED_IDLE:
4190 p->sched_class = &fair_sched_class;
4191 break;
4192 case SCHED_FIFO:
4193 case SCHED_RR:
4194 p->sched_class = &rt_sched_class;
4195 break;
4196 }
4197
4198 p->rt_priority = prio;
4199 p->normal_prio = normal_prio(p);
4200 /* we are holding p->pi_lock already */
4201 p->prio = rt_mutex_getprio(p);
4202 set_load_weight(p);
4203}
4204
4205/**
4206 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4207 * @p: the task in question.
4208 * @policy: new policy.
4209 * @param: structure containing the new RT priority.
4210 *
4211 * NOTE that the task may be already dead.
4212 */
4213int sched_setscheduler(struct task_struct *p, int policy,
4214 struct sched_param *param)
4215{
4216 int retval, oldprio, oldpolicy = -1, on_rq, running;
4217 unsigned long flags;
4218 struct rq *rq;
4219
4220 /* may grab non-irq protected spin_locks */
4221 BUG_ON(in_interrupt());
4222recheck:
4223 /* double check policy once rq lock held */
4224 if (policy < 0)
4225 policy = oldpolicy = p->policy;
4226 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4227 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4228 policy != SCHED_IDLE)
4229 return -EINVAL;
4230 /*
4231 * Valid priorities for SCHED_FIFO and SCHED_RR are
4232 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4233 * SCHED_BATCH and SCHED_IDLE is 0.
4234 */
4235 if (param->sched_priority < 0 ||
4236 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4237 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4238 return -EINVAL;
4239 if (rt_policy(policy) != (param->sched_priority != 0))
4240 return -EINVAL;
4241
4242 /*
4243 * Allow unprivileged RT tasks to decrease priority:
4244 */
4245 if (!capable(CAP_SYS_NICE)) {
4246 if (rt_policy(policy)) {
4247 unsigned long rlim_rtprio;
4248
4249 if (!lock_task_sighand(p, &flags))
4250 return -ESRCH;
4251 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4252 unlock_task_sighand(p, &flags);
4253
4254 /* can't set/change the rt policy */
4255 if (policy != p->policy && !rlim_rtprio)
4256 return -EPERM;
4257
4258 /* can't increase priority */
4259 if (param->sched_priority > p->rt_priority &&
4260 param->sched_priority > rlim_rtprio)
4261 return -EPERM;
4262 }
4263 /*
4264 * Like positive nice levels, dont allow tasks to
4265 * move out of SCHED_IDLE either:
4266 */
4267 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4268 return -EPERM;
4269
4270 /* can't change other user's priorities */
4271 if ((current->euid != p->euid) &&
4272 (current->euid != p->uid))
4273 return -EPERM;
4274 }
4275
4276 retval = security_task_setscheduler(p, policy, param);
4277 if (retval)
4278 return retval;
4279 /*
4280 * make sure no PI-waiters arrive (or leave) while we are
4281 * changing the priority of the task:
4282 */
4283 spin_lock_irqsave(&p->pi_lock, flags);
4284 /*
4285 * To be able to change p->policy safely, the apropriate
4286 * runqueue lock must be held.
4287 */
4288 rq = __task_rq_lock(p);
4289 /* recheck policy now with rq lock held */
4290 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4291 policy = oldpolicy = -1;
4292 __task_rq_unlock(rq);
4293 spin_unlock_irqrestore(&p->pi_lock, flags);
4294 goto recheck;
4295 }
4296 update_rq_clock(rq);
4297 on_rq = p->se.on_rq;
4298 running = task_current(rq, p);
4299 if (on_rq) {
4300 deactivate_task(rq, p, 0);
4301 if (running)
4302 p->sched_class->put_prev_task(rq, p);
4303 }
4304
4305 oldprio = p->prio;
4306 __setscheduler(rq, p, policy, param->sched_priority);
4307
4308 if (on_rq) {
4309 if (running)
4310 p->sched_class->set_curr_task(rq);
4311 activate_task(rq, p, 0);
4312 /*
4313 * Reschedule if we are currently running on this runqueue and
4314 * our priority decreased, or if we are not currently running on
4315 * this runqueue and our priority is higher than the current's
4316 */
4317 if (running) {
4318 if (p->prio > oldprio)
4319 resched_task(rq->curr);
4320 } else {
4321 check_preempt_curr(rq, p);
4322 }
4323 }
4324 __task_rq_unlock(rq);
4325 spin_unlock_irqrestore(&p->pi_lock, flags);
4326
4327 rt_mutex_adjust_pi(p);
4328
4329 return 0;
4330}
4331EXPORT_SYMBOL_GPL(sched_setscheduler);
4332
4333static int
4334do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4335{
4336 struct sched_param lparam;
4337 struct task_struct *p;
4338 int retval;
4339
4340 if (!param || pid < 0)
4341 return -EINVAL;
4342 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4343 return -EFAULT;
4344
4345 rcu_read_lock();
4346 retval = -ESRCH;
4347 p = find_process_by_pid(pid);
4348 if (p != NULL)
4349 retval = sched_setscheduler(p, policy, &lparam);
4350 rcu_read_unlock();
4351
4352 return retval;
4353}
4354
4355/**
4356 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4357 * @pid: the pid in question.
4358 * @policy: new policy.
4359 * @param: structure containing the new RT priority.
4360 */
4361asmlinkage long
4362sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4363{
4364 /* negative values for policy are not valid */
4365 if (policy < 0)
4366 return -EINVAL;
4367
4368 return do_sched_setscheduler(pid, policy, param);
4369}
4370
4371/**
4372 * sys_sched_setparam - set/change the RT priority of a thread
4373 * @pid: the pid in question.
4374 * @param: structure containing the new RT priority.
4375 */
4376asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4377{
4378 return do_sched_setscheduler(pid, -1, param);
4379}
4380
4381/**
4382 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4383 * @pid: the pid in question.
4384 */
4385asmlinkage long sys_sched_getscheduler(pid_t pid)
4386{
4387 struct task_struct *p;
4388 int retval;
4389
4390 if (pid < 0)
4391 return -EINVAL;
4392
4393 retval = -ESRCH;
4394 read_lock(&tasklist_lock);
4395 p = find_process_by_pid(pid);
4396 if (p) {
4397 retval = security_task_getscheduler(p);
4398 if (!retval)
4399 retval = p->policy;
4400 }
4401 read_unlock(&tasklist_lock);
4402 return retval;
4403}
4404
4405/**
4406 * sys_sched_getscheduler - get the RT priority of a thread
4407 * @pid: the pid in question.
4408 * @param: structure containing the RT priority.
4409 */
4410asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4411{
4412 struct sched_param lp;
4413 struct task_struct *p;
4414 int retval;
4415
4416 if (!param || pid < 0)
4417 return -EINVAL;
4418
4419 read_lock(&tasklist_lock);
4420 p = find_process_by_pid(pid);
4421 retval = -ESRCH;
4422 if (!p)
4423 goto out_unlock;
4424
4425 retval = security_task_getscheduler(p);
4426 if (retval)
4427 goto out_unlock;
4428
4429 lp.sched_priority = p->rt_priority;
4430 read_unlock(&tasklist_lock);
4431
4432 /*
4433 * This one might sleep, we cannot do it with a spinlock held ...
4434 */
4435 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4436
4437 return retval;
4438
4439out_unlock:
4440 read_unlock(&tasklist_lock);
4441 return retval;
4442}
4443
4444long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4445{
4446 cpumask_t cpus_allowed;
4447 struct task_struct *p;
4448 int retval;
4449
4450 get_online_cpus();
4451 read_lock(&tasklist_lock);
4452
4453 p = find_process_by_pid(pid);
4454 if (!p) {
4455 read_unlock(&tasklist_lock);
4456 put_online_cpus();
4457 return -ESRCH;
4458 }
4459
4460 /*
4461 * It is not safe to call set_cpus_allowed with the
4462 * tasklist_lock held. We will bump the task_struct's
4463 * usage count and then drop tasklist_lock.
4464 */
4465 get_task_struct(p);
4466 read_unlock(&tasklist_lock);
4467
4468 retval = -EPERM;
4469 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4470 !capable(CAP_SYS_NICE))
4471 goto out_unlock;
4472
4473 retval = security_task_setscheduler(p, 0, NULL);
4474 if (retval)
4475 goto out_unlock;
4476
4477 cpus_allowed = cpuset_cpus_allowed(p);
4478 cpus_and(new_mask, new_mask, cpus_allowed);
4479 again:
4480 retval = set_cpus_allowed(p, new_mask);
4481
4482 if (!retval) {
4483 cpus_allowed = cpuset_cpus_allowed(p);
4484 if (!cpus_subset(new_mask, cpus_allowed)) {
4485 /*
4486 * We must have raced with a concurrent cpuset
4487 * update. Just reset the cpus_allowed to the
4488 * cpuset's cpus_allowed
4489 */
4490 new_mask = cpus_allowed;
4491 goto again;
4492 }
4493 }
4494out_unlock:
4495 put_task_struct(p);
4496 put_online_cpus();
4497 return retval;
4498}
4499
4500static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4501 cpumask_t *new_mask)
4502{
4503 if (len < sizeof(cpumask_t)) {
4504 memset(new_mask, 0, sizeof(cpumask_t));
4505 } else if (len > sizeof(cpumask_t)) {
4506 len = sizeof(cpumask_t);
4507 }
4508 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4509}
4510
4511/**
4512 * sys_sched_setaffinity - set the cpu affinity of a process
4513 * @pid: pid of the process
4514 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4515 * @user_mask_ptr: user-space pointer to the new cpu mask
4516 */
4517asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4518 unsigned long __user *user_mask_ptr)
4519{
4520 cpumask_t new_mask;
4521 int retval;
4522
4523 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4524 if (retval)
4525 return retval;
4526
4527 return sched_setaffinity(pid, new_mask);
4528}
4529
4530/*
4531 * Represents all cpu's present in the system
4532 * In systems capable of hotplug, this map could dynamically grow
4533 * as new cpu's are detected in the system via any platform specific
4534 * method, such as ACPI for e.g.
4535 */
4536
4537cpumask_t cpu_present_map __read_mostly;
4538EXPORT_SYMBOL(cpu_present_map);
4539
4540#ifndef CONFIG_SMP
4541cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4542EXPORT_SYMBOL(cpu_online_map);
4543
4544cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4545EXPORT_SYMBOL(cpu_possible_map);
4546#endif
4547
4548long sched_getaffinity(pid_t pid, cpumask_t *mask)
4549{
4550 struct task_struct *p;
4551 int retval;
4552
4553 get_online_cpus();
4554 read_lock(&tasklist_lock);
4555
4556 retval = -ESRCH;
4557 p = find_process_by_pid(pid);
4558 if (!p)
4559 goto out_unlock;
4560
4561 retval = security_task_getscheduler(p);
4562 if (retval)
4563 goto out_unlock;
4564
4565 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4566
4567out_unlock:
4568 read_unlock(&tasklist_lock);
4569 put_online_cpus();
4570
4571 return retval;
4572}
4573
4574/**
4575 * sys_sched_getaffinity - get the cpu affinity of a process
4576 * @pid: pid of the process
4577 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4578 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4579 */
4580asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4581 unsigned long __user *user_mask_ptr)
4582{
4583 int ret;
4584 cpumask_t mask;
4585
4586 if (len < sizeof(cpumask_t))
4587 return -EINVAL;
4588
4589 ret = sched_getaffinity(pid, &mask);
4590 if (ret < 0)
4591 return ret;
4592
4593 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4594 return -EFAULT;
4595
4596 return sizeof(cpumask_t);
4597}
4598
4599/**
4600 * sys_sched_yield - yield the current processor to other threads.
4601 *
4602 * This function yields the current CPU to other tasks. If there are no
4603 * other threads running on this CPU then this function will return.
4604 */
4605asmlinkage long sys_sched_yield(void)
4606{
4607 struct rq *rq = this_rq_lock();
4608
4609 schedstat_inc(rq, yld_count);
4610 current->sched_class->yield_task(rq);
4611
4612 /*
4613 * Since we are going to call schedule() anyway, there's
4614 * no need to preempt or enable interrupts:
4615 */
4616 __release(rq->lock);
4617 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4618 _raw_spin_unlock(&rq->lock);
4619 preempt_enable_no_resched();
4620
4621 schedule();
4622
4623 return 0;
4624}
4625
4626static void __cond_resched(void)
4627{
4628#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4629 __might_sleep(__FILE__, __LINE__);
4630#endif
4631 /*
4632 * The BKS might be reacquired before we have dropped
4633 * PREEMPT_ACTIVE, which could trigger a second
4634 * cond_resched() call.
4635 */
4636 do {
4637 add_preempt_count(PREEMPT_ACTIVE);
4638 schedule();
4639 sub_preempt_count(PREEMPT_ACTIVE);
4640 } while (need_resched());
4641}
4642
4643int __sched cond_resched(void)
4644{
4645 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4646 system_state == SYSTEM_RUNNING) {
4647 __cond_resched();
4648 return 1;
4649 }
4650 return 0;
4651}
4652EXPORT_SYMBOL(cond_resched);
4653
4654/*
4655 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4656 * call schedule, and on return reacquire the lock.
4657 *
4658 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4659 * operations here to prevent schedule() from being called twice (once via
4660 * spin_unlock(), once by hand).
4661 */
4662int cond_resched_lock(spinlock_t *lock)
4663{
4664 int ret = 0;
4665
4666 if (need_lockbreak(lock)) {
4667 spin_unlock(lock);
4668 cpu_relax();
4669 ret = 1;
4670 spin_lock(lock);
4671 }
4672 if (need_resched() && system_state == SYSTEM_RUNNING) {
4673 spin_release(&lock->dep_map, 1, _THIS_IP_);
4674 _raw_spin_unlock(lock);
4675 preempt_enable_no_resched();
4676 __cond_resched();
4677 ret = 1;
4678 spin_lock(lock);
4679 }
4680 return ret;
4681}
4682EXPORT_SYMBOL(cond_resched_lock);
4683
4684int __sched cond_resched_softirq(void)
4685{
4686 BUG_ON(!in_softirq());
4687
4688 if (need_resched() && system_state == SYSTEM_RUNNING) {
4689 local_bh_enable();
4690 __cond_resched();
4691 local_bh_disable();
4692 return 1;
4693 }
4694 return 0;
4695}
4696EXPORT_SYMBOL(cond_resched_softirq);
4697
4698/**
4699 * yield - yield the current processor to other threads.
4700 *
4701 * This is a shortcut for kernel-space yielding - it marks the
4702 * thread runnable and calls sys_sched_yield().
4703 */
4704void __sched yield(void)
4705{
4706 set_current_state(TASK_RUNNING);
4707 sys_sched_yield();
4708}
4709EXPORT_SYMBOL(yield);
4710
4711/*
4712 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4713 * that process accounting knows that this is a task in IO wait state.
4714 *
4715 * But don't do that if it is a deliberate, throttling IO wait (this task
4716 * has set its backing_dev_info: the queue against which it should throttle)
4717 */
4718void __sched io_schedule(void)
4719{
4720 struct rq *rq = &__raw_get_cpu_var(runqueues);
4721
4722 delayacct_blkio_start();
4723 atomic_inc(&rq->nr_iowait);
4724 schedule();
4725 atomic_dec(&rq->nr_iowait);
4726 delayacct_blkio_end();
4727}
4728EXPORT_SYMBOL(io_schedule);
4729
4730long __sched io_schedule_timeout(long timeout)
4731{
4732 struct rq *rq = &__raw_get_cpu_var(runqueues);
4733 long ret;
4734
4735 delayacct_blkio_start();
4736 atomic_inc(&rq->nr_iowait);
4737 ret = schedule_timeout(timeout);
4738 atomic_dec(&rq->nr_iowait);
4739 delayacct_blkio_end();
4740 return ret;
4741}
4742
4743/**
4744 * sys_sched_get_priority_max - return maximum RT priority.
4745 * @policy: scheduling class.
4746 *
4747 * this syscall returns the maximum rt_priority that can be used
4748 * by a given scheduling class.
4749 */
4750asmlinkage long sys_sched_get_priority_max(int policy)
4751{
4752 int ret = -EINVAL;
4753
4754 switch (policy) {
4755 case SCHED_FIFO:
4756 case SCHED_RR:
4757 ret = MAX_USER_RT_PRIO-1;
4758 break;
4759 case SCHED_NORMAL:
4760 case SCHED_BATCH:
4761 case SCHED_IDLE:
4762 ret = 0;
4763 break;
4764 }
4765 return ret;
4766}
4767
4768/**
4769 * sys_sched_get_priority_min - return minimum RT priority.
4770 * @policy: scheduling class.
4771 *
4772 * this syscall returns the minimum rt_priority that can be used
4773 * by a given scheduling class.
4774 */
4775asmlinkage long sys_sched_get_priority_min(int policy)
4776{
4777 int ret = -EINVAL;
4778
4779 switch (policy) {
4780 case SCHED_FIFO:
4781 case SCHED_RR:
4782 ret = 1;
4783 break;
4784 case SCHED_NORMAL:
4785 case SCHED_BATCH:
4786 case SCHED_IDLE:
4787 ret = 0;
4788 }
4789 return ret;
4790}
4791
4792/**
4793 * sys_sched_rr_get_interval - return the default timeslice of a process.
4794 * @pid: pid of the process.
4795 * @interval: userspace pointer to the timeslice value.
4796 *
4797 * this syscall writes the default timeslice value of a given process
4798 * into the user-space timespec buffer. A value of '0' means infinity.
4799 */
4800asmlinkage
4801long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4802{
4803 struct task_struct *p;
4804 unsigned int time_slice;
4805 int retval;
4806 struct timespec t;
4807
4808 if (pid < 0)
4809 return -EINVAL;
4810
4811 retval = -ESRCH;
4812 read_lock(&tasklist_lock);
4813 p = find_process_by_pid(pid);
4814 if (!p)
4815 goto out_unlock;
4816
4817 retval = security_task_getscheduler(p);
4818 if (retval)
4819 goto out_unlock;
4820
4821 /*
4822 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4823 * tasks that are on an otherwise idle runqueue:
4824 */
4825 time_slice = 0;
4826 if (p->policy == SCHED_RR) {
4827 time_slice = DEF_TIMESLICE;
4828 } else {
4829 struct sched_entity *se = &p->se;
4830 unsigned long flags;
4831 struct rq *rq;
4832
4833 rq = task_rq_lock(p, &flags);
4834 if (rq->cfs.load.weight)
4835 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4836 task_rq_unlock(rq, &flags);
4837 }
4838 read_unlock(&tasklist_lock);
4839 jiffies_to_timespec(time_slice, &t);
4840 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4841 return retval;
4842
4843out_unlock:
4844 read_unlock(&tasklist_lock);
4845 return retval;
4846}
4847
4848static const char stat_nam[] = "RSDTtZX";
4849
4850void sched_show_task(struct task_struct *p)
4851{
4852 unsigned long free = 0;
4853 unsigned state;
4854
4855 state = p->state ? __ffs(p->state) + 1 : 0;
4856 printk(KERN_INFO "%-13.13s %c", p->comm,
4857 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4858#if BITS_PER_LONG == 32
4859 if (state == TASK_RUNNING)
4860 printk(KERN_CONT " running ");
4861 else
4862 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4863#else
4864 if (state == TASK_RUNNING)
4865 printk(KERN_CONT " running task ");
4866 else
4867 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4868#endif
4869#ifdef CONFIG_DEBUG_STACK_USAGE
4870 {
4871 unsigned long *n = end_of_stack(p);
4872 while (!*n)
4873 n++;
4874 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4875 }
4876#endif
4877 printk(KERN_CONT "%5lu %5d %6d\n", free,
4878 task_pid_nr(p), task_pid_nr(p->real_parent));
4879
4880 if (state != TASK_RUNNING)
4881 show_stack(p, NULL);
4882}
4883
4884void show_state_filter(unsigned long state_filter)
4885{
4886 struct task_struct *g, *p;
4887
4888#if BITS_PER_LONG == 32
4889 printk(KERN_INFO
4890 " task PC stack pid father\n");
4891#else
4892 printk(KERN_INFO
4893 " task PC stack pid father\n");
4894#endif
4895 read_lock(&tasklist_lock);
4896 do_each_thread(g, p) {
4897 /*
4898 * reset the NMI-timeout, listing all files on a slow
4899 * console might take alot of time:
4900 */
4901 touch_nmi_watchdog();
4902 if (!state_filter || (p->state & state_filter))
4903 sched_show_task(p);
4904 } while_each_thread(g, p);
4905
4906 touch_all_softlockup_watchdogs();
4907
4908#ifdef CONFIG_SCHED_DEBUG
4909 sysrq_sched_debug_show();
4910#endif
4911 read_unlock(&tasklist_lock);
4912 /*
4913 * Only show locks if all tasks are dumped:
4914 */
4915 if (state_filter == -1)
4916 debug_show_all_locks();
4917}
4918
4919void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4920{
4921 idle->sched_class = &idle_sched_class;
4922}
4923
4924/**
4925 * init_idle - set up an idle thread for a given CPU
4926 * @idle: task in question
4927 * @cpu: cpu the idle task belongs to
4928 *
4929 * NOTE: this function does not set the idle thread's NEED_RESCHED
4930 * flag, to make booting more robust.
4931 */
4932void __cpuinit init_idle(struct task_struct *idle, int cpu)
4933{
4934 struct rq *rq = cpu_rq(cpu);
4935 unsigned long flags;
4936
4937 __sched_fork(idle);
4938 idle->se.exec_start = sched_clock();
4939
4940 idle->prio = idle->normal_prio = MAX_PRIO;
4941 idle->cpus_allowed = cpumask_of_cpu(cpu);
4942 __set_task_cpu(idle, cpu);
4943
4944 spin_lock_irqsave(&rq->lock, flags);
4945 rq->curr = rq->idle = idle;
4946#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4947 idle->oncpu = 1;
4948#endif
4949 spin_unlock_irqrestore(&rq->lock, flags);
4950
4951 /* Set the preempt count _outside_ the spinlocks! */
4952#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4953 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4954#else
4955 task_thread_info(idle)->preempt_count = 0;
4956#endif
4957 /*
4958 * The idle tasks have their own, simple scheduling class:
4959 */
4960 idle->sched_class = &idle_sched_class;
4961}
4962
4963/*
4964 * In a system that switches off the HZ timer nohz_cpu_mask
4965 * indicates which cpus entered this state. This is used
4966 * in the rcu update to wait only for active cpus. For system
4967 * which do not switch off the HZ timer nohz_cpu_mask should
4968 * always be CPU_MASK_NONE.
4969 */
4970cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4971
4972/*
4973 * Increase the granularity value when there are more CPUs,
4974 * because with more CPUs the 'effective latency' as visible
4975 * to users decreases. But the relationship is not linear,
4976 * so pick a second-best guess by going with the log2 of the
4977 * number of CPUs.
4978 *
4979 * This idea comes from the SD scheduler of Con Kolivas:
4980 */
4981static inline void sched_init_granularity(void)
4982{
4983 unsigned int factor = 1 + ilog2(num_online_cpus());
4984 const unsigned long limit = 200000000;
4985
4986 sysctl_sched_min_granularity *= factor;
4987 if (sysctl_sched_min_granularity > limit)
4988 sysctl_sched_min_granularity = limit;
4989
4990 sysctl_sched_latency *= factor;
4991 if (sysctl_sched_latency > limit)
4992 sysctl_sched_latency = limit;
4993
4994 sysctl_sched_wakeup_granularity *= factor;
4995 sysctl_sched_batch_wakeup_granularity *= factor;
4996}
4997
4998#ifdef CONFIG_SMP
4999/*
5000 * This is how migration works:
5001 *
5002 * 1) we queue a struct migration_req structure in the source CPU's
5003 * runqueue and wake up that CPU's migration thread.
5004 * 2) we down() the locked semaphore => thread blocks.
5005 * 3) migration thread wakes up (implicitly it forces the migrated
5006 * thread off the CPU)
5007 * 4) it gets the migration request and checks whether the migrated
5008 * task is still in the wrong runqueue.
5009 * 5) if it's in the wrong runqueue then the migration thread removes
5010 * it and puts it into the right queue.
5011 * 6) migration thread up()s the semaphore.
5012 * 7) we wake up and the migration is done.
5013 */
5014
5015/*
5016 * Change a given task's CPU affinity. Migrate the thread to a
5017 * proper CPU and schedule it away if the CPU it's executing on
5018 * is removed from the allowed bitmask.
5019 *
5020 * NOTE: the caller must have a valid reference to the task, the
5021 * task must not exit() & deallocate itself prematurely. The
5022 * call is not atomic; no spinlocks may be held.
5023 */
5024int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5025{
5026 struct migration_req req;
5027 unsigned long flags;
5028 struct rq *rq;
5029 int ret = 0;
5030
5031 rq = task_rq_lock(p, &flags);
5032 if (!cpus_intersects(new_mask, cpu_online_map)) {
5033 ret = -EINVAL;
5034 goto out;
5035 }
5036
5037 if (p->sched_class->set_cpus_allowed)
5038 p->sched_class->set_cpus_allowed(p, &new_mask);
5039 else {
5040 p->cpus_allowed = new_mask;
5041 p->nr_cpus_allowed = cpus_weight(new_mask);
5042 }
5043
5044 /* Can the task run on the task's current CPU? If so, we're done */
5045 if (cpu_isset(task_cpu(p), new_mask))
5046 goto out;
5047
5048 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5049 /* Need help from migration thread: drop lock and wait. */
5050 task_rq_unlock(rq, &flags);
5051 wake_up_process(rq->migration_thread);
5052 wait_for_completion(&req.done);
5053 tlb_migrate_finish(p->mm);
5054 return 0;
5055 }
5056out:
5057 task_rq_unlock(rq, &flags);
5058
5059 return ret;
5060}
5061EXPORT_SYMBOL_GPL(set_cpus_allowed);
5062
5063/*
5064 * Move (not current) task off this cpu, onto dest cpu. We're doing
5065 * this because either it can't run here any more (set_cpus_allowed()
5066 * away from this CPU, or CPU going down), or because we're
5067 * attempting to rebalance this task on exec (sched_exec).
5068 *
5069 * So we race with normal scheduler movements, but that's OK, as long
5070 * as the task is no longer on this CPU.
5071 *
5072 * Returns non-zero if task was successfully migrated.
5073 */
5074static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5075{
5076 struct rq *rq_dest, *rq_src;
5077 int ret = 0, on_rq;
5078
5079 if (unlikely(cpu_is_offline(dest_cpu)))
5080 return ret;
5081
5082 rq_src = cpu_rq(src_cpu);
5083 rq_dest = cpu_rq(dest_cpu);
5084
5085 double_rq_lock(rq_src, rq_dest);
5086 /* Already moved. */
5087 if (task_cpu(p) != src_cpu)
5088 goto out;
5089 /* Affinity changed (again). */
5090 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5091 goto out;
5092
5093 on_rq = p->se.on_rq;
5094 if (on_rq)
5095 deactivate_task(rq_src, p, 0);
5096
5097 set_task_cpu(p, dest_cpu);
5098 if (on_rq) {
5099 activate_task(rq_dest, p, 0);
5100 check_preempt_curr(rq_dest, p);
5101 }
5102 ret = 1;
5103out:
5104 double_rq_unlock(rq_src, rq_dest);
5105 return ret;
5106}
5107
5108/*
5109 * migration_thread - this is a highprio system thread that performs
5110 * thread migration by bumping thread off CPU then 'pushing' onto
5111 * another runqueue.
5112 */
5113static int migration_thread(void *data)
5114{
5115 int cpu = (long)data;
5116 struct rq *rq;
5117
5118 rq = cpu_rq(cpu);
5119 BUG_ON(rq->migration_thread != current);
5120
5121 set_current_state(TASK_INTERRUPTIBLE);
5122 while (!kthread_should_stop()) {
5123 struct migration_req *req;
5124 struct list_head *head;
5125
5126 spin_lock_irq(&rq->lock);
5127
5128 if (cpu_is_offline(cpu)) {
5129 spin_unlock_irq(&rq->lock);
5130 goto wait_to_die;
5131 }
5132
5133 if (rq->active_balance) {
5134 active_load_balance(rq, cpu);
5135 rq->active_balance = 0;
5136 }
5137
5138 head = &rq->migration_queue;
5139
5140 if (list_empty(head)) {
5141 spin_unlock_irq(&rq->lock);
5142 schedule();
5143 set_current_state(TASK_INTERRUPTIBLE);
5144 continue;
5145 }
5146 req = list_entry(head->next, struct migration_req, list);
5147 list_del_init(head->next);
5148
5149 spin_unlock(&rq->lock);
5150 __migrate_task(req->task, cpu, req->dest_cpu);
5151 local_irq_enable();
5152
5153 complete(&req->done);
5154 }
5155 __set_current_state(TASK_RUNNING);
5156 return 0;
5157
5158wait_to_die:
5159 /* Wait for kthread_stop */
5160 set_current_state(TASK_INTERRUPTIBLE);
5161 while (!kthread_should_stop()) {
5162 schedule();
5163 set_current_state(TASK_INTERRUPTIBLE);
5164 }
5165 __set_current_state(TASK_RUNNING);
5166 return 0;
5167}
5168
5169#ifdef CONFIG_HOTPLUG_CPU
5170
5171static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5172{
5173 int ret;
5174
5175 local_irq_disable();
5176 ret = __migrate_task(p, src_cpu, dest_cpu);
5177 local_irq_enable();
5178 return ret;
5179}
5180
5181/*
5182 * Figure out where task on dead CPU should go, use force if necessary.
5183 * NOTE: interrupts should be disabled by the caller
5184 */
5185static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5186{
5187 unsigned long flags;
5188 cpumask_t mask;
5189 struct rq *rq;
5190 int dest_cpu;
5191
5192 do {
5193 /* On same node? */
5194 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5195 cpus_and(mask, mask, p->cpus_allowed);
5196 dest_cpu = any_online_cpu(mask);
5197
5198 /* On any allowed CPU? */
5199 if (dest_cpu == NR_CPUS)
5200 dest_cpu = any_online_cpu(p->cpus_allowed);
5201
5202 /* No more Mr. Nice Guy. */
5203 if (dest_cpu == NR_CPUS) {
5204 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5205 /*
5206 * Try to stay on the same cpuset, where the
5207 * current cpuset may be a subset of all cpus.
5208 * The cpuset_cpus_allowed_locked() variant of
5209 * cpuset_cpus_allowed() will not block. It must be
5210 * called within calls to cpuset_lock/cpuset_unlock.
5211 */
5212 rq = task_rq_lock(p, &flags);
5213 p->cpus_allowed = cpus_allowed;
5214 dest_cpu = any_online_cpu(p->cpus_allowed);
5215 task_rq_unlock(rq, &flags);
5216
5217 /*
5218 * Don't tell them about moving exiting tasks or
5219 * kernel threads (both mm NULL), since they never
5220 * leave kernel.
5221 */
5222 if (p->mm && printk_ratelimit()) {
5223 printk(KERN_INFO "process %d (%s) no "
5224 "longer affine to cpu%d\n",
5225 task_pid_nr(p), p->comm, dead_cpu);
5226 }
5227 }
5228 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5229}
5230
5231/*
5232 * While a dead CPU has no uninterruptible tasks queued at this point,
5233 * it might still have a nonzero ->nr_uninterruptible counter, because
5234 * for performance reasons the counter is not stricly tracking tasks to
5235 * their home CPUs. So we just add the counter to another CPU's counter,
5236 * to keep the global sum constant after CPU-down:
5237 */
5238static void migrate_nr_uninterruptible(struct rq *rq_src)
5239{
5240 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5241 unsigned long flags;
5242
5243 local_irq_save(flags);
5244 double_rq_lock(rq_src, rq_dest);
5245 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5246 rq_src->nr_uninterruptible = 0;
5247 double_rq_unlock(rq_src, rq_dest);
5248 local_irq_restore(flags);
5249}
5250
5251/* Run through task list and migrate tasks from the dead cpu. */
5252static void migrate_live_tasks(int src_cpu)
5253{
5254 struct task_struct *p, *t;
5255
5256 read_lock(&tasklist_lock);
5257
5258 do_each_thread(t, p) {
5259 if (p == current)
5260 continue;
5261
5262 if (task_cpu(p) == src_cpu)
5263 move_task_off_dead_cpu(src_cpu, p);
5264 } while_each_thread(t, p);
5265
5266 read_unlock(&tasklist_lock);
5267}
5268
5269/*
5270 * Schedules idle task to be the next runnable task on current CPU.
5271 * It does so by boosting its priority to highest possible.
5272 * Used by CPU offline code.
5273 */
5274void sched_idle_next(void)
5275{
5276 int this_cpu = smp_processor_id();
5277 struct rq *rq = cpu_rq(this_cpu);
5278 struct task_struct *p = rq->idle;
5279 unsigned long flags;
5280
5281 /* cpu has to be offline */
5282 BUG_ON(cpu_online(this_cpu));
5283
5284 /*
5285 * Strictly not necessary since rest of the CPUs are stopped by now
5286 * and interrupts disabled on the current cpu.
5287 */
5288 spin_lock_irqsave(&rq->lock, flags);
5289
5290 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5291
5292 update_rq_clock(rq);
5293 activate_task(rq, p, 0);
5294
5295 spin_unlock_irqrestore(&rq->lock, flags);
5296}
5297
5298/*
5299 * Ensures that the idle task is using init_mm right before its cpu goes
5300 * offline.
5301 */
5302void idle_task_exit(void)
5303{
5304 struct mm_struct *mm = current->active_mm;
5305
5306 BUG_ON(cpu_online(smp_processor_id()));
5307
5308 if (mm != &init_mm)
5309 switch_mm(mm, &init_mm, current);
5310 mmdrop(mm);
5311}
5312
5313/* called under rq->lock with disabled interrupts */
5314static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5315{
5316 struct rq *rq = cpu_rq(dead_cpu);
5317
5318 /* Must be exiting, otherwise would be on tasklist. */
5319 BUG_ON(!p->exit_state);
5320
5321 /* Cannot have done final schedule yet: would have vanished. */
5322 BUG_ON(p->state == TASK_DEAD);
5323
5324 get_task_struct(p);
5325
5326 /*
5327 * Drop lock around migration; if someone else moves it,
5328 * that's OK. No task can be added to this CPU, so iteration is
5329 * fine.
5330 */
5331 spin_unlock_irq(&rq->lock);
5332 move_task_off_dead_cpu(dead_cpu, p);
5333 spin_lock_irq(&rq->lock);
5334
5335 put_task_struct(p);
5336}
5337
5338/* release_task() removes task from tasklist, so we won't find dead tasks. */
5339static void migrate_dead_tasks(unsigned int dead_cpu)
5340{
5341 struct rq *rq = cpu_rq(dead_cpu);
5342 struct task_struct *next;
5343
5344 for ( ; ; ) {
5345 if (!rq->nr_running)
5346 break;
5347 update_rq_clock(rq);
5348 next = pick_next_task(rq, rq->curr);
5349 if (!next)
5350 break;
5351 migrate_dead(dead_cpu, next);
5352
5353 }
5354}
5355#endif /* CONFIG_HOTPLUG_CPU */
5356
5357#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5358
5359static struct ctl_table sd_ctl_dir[] = {
5360 {
5361 .procname = "sched_domain",
5362 .mode = 0555,
5363 },
5364 {0, },
5365};
5366
5367static struct ctl_table sd_ctl_root[] = {
5368 {
5369 .ctl_name = CTL_KERN,
5370 .procname = "kernel",
5371 .mode = 0555,
5372 .child = sd_ctl_dir,
5373 },
5374 {0, },
5375};
5376
5377static struct ctl_table *sd_alloc_ctl_entry(int n)
5378{
5379 struct ctl_table *entry =
5380 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5381
5382 return entry;
5383}
5384
5385static void sd_free_ctl_entry(struct ctl_table **tablep)
5386{
5387 struct ctl_table *entry;
5388
5389 /*
5390 * In the intermediate directories, both the child directory and
5391 * procname are dynamically allocated and could fail but the mode
5392 * will always be set. In the lowest directory the names are
5393 * static strings and all have proc handlers.
5394 */
5395 for (entry = *tablep; entry->mode; entry++) {
5396 if (entry->child)
5397 sd_free_ctl_entry(&entry->child);
5398 if (entry->proc_handler == NULL)
5399 kfree(entry->procname);
5400 }
5401
5402 kfree(*tablep);
5403 *tablep = NULL;
5404}
5405
5406static void
5407set_table_entry(struct ctl_table *entry,
5408 const char *procname, void *data, int maxlen,
5409 mode_t mode, proc_handler *proc_handler)
5410{
5411 entry->procname = procname;
5412 entry->data = data;
5413 entry->maxlen = maxlen;
5414 entry->mode = mode;
5415 entry->proc_handler = proc_handler;
5416}
5417
5418static struct ctl_table *
5419sd_alloc_ctl_domain_table(struct sched_domain *sd)
5420{
5421 struct ctl_table *table = sd_alloc_ctl_entry(12);
5422
5423 if (table == NULL)
5424 return NULL;
5425
5426 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5427 sizeof(long), 0644, proc_doulongvec_minmax);
5428 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5429 sizeof(long), 0644, proc_doulongvec_minmax);
5430 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5431 sizeof(int), 0644, proc_dointvec_minmax);
5432 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5433 sizeof(int), 0644, proc_dointvec_minmax);
5434 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5435 sizeof(int), 0644, proc_dointvec_minmax);
5436 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5437 sizeof(int), 0644, proc_dointvec_minmax);
5438 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5439 sizeof(int), 0644, proc_dointvec_minmax);
5440 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5441 sizeof(int), 0644, proc_dointvec_minmax);
5442 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5443 sizeof(int), 0644, proc_dointvec_minmax);
5444 set_table_entry(&table[9], "cache_nice_tries",
5445 &sd->cache_nice_tries,
5446 sizeof(int), 0644, proc_dointvec_minmax);
5447 set_table_entry(&table[10], "flags", &sd->flags,
5448 sizeof(int), 0644, proc_dointvec_minmax);
5449 /* &table[11] is terminator */
5450
5451 return table;
5452}
5453
5454static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5455{
5456 struct ctl_table *entry, *table;
5457 struct sched_domain *sd;
5458 int domain_num = 0, i;
5459 char buf[32];
5460
5461 for_each_domain(cpu, sd)
5462 domain_num++;
5463 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5464 if (table == NULL)
5465 return NULL;
5466
5467 i = 0;
5468 for_each_domain(cpu, sd) {
5469 snprintf(buf, 32, "domain%d", i);
5470 entry->procname = kstrdup(buf, GFP_KERNEL);
5471 entry->mode = 0555;
5472 entry->child = sd_alloc_ctl_domain_table(sd);
5473 entry++;
5474 i++;
5475 }
5476 return table;
5477}
5478
5479static struct ctl_table_header *sd_sysctl_header;
5480static void register_sched_domain_sysctl(void)
5481{
5482 int i, cpu_num = num_online_cpus();
5483 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5484 char buf[32];
5485
5486 WARN_ON(sd_ctl_dir[0].child);
5487 sd_ctl_dir[0].child = entry;
5488
5489 if (entry == NULL)
5490 return;
5491
5492 for_each_online_cpu(i) {
5493 snprintf(buf, 32, "cpu%d", i);
5494 entry->procname = kstrdup(buf, GFP_KERNEL);
5495 entry->mode = 0555;
5496 entry->child = sd_alloc_ctl_cpu_table(i);
5497 entry++;
5498 }
5499
5500 WARN_ON(sd_sysctl_header);
5501 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5502}
5503
5504/* may be called multiple times per register */
5505static void unregister_sched_domain_sysctl(void)
5506{
5507 if (sd_sysctl_header)
5508 unregister_sysctl_table(sd_sysctl_header);
5509 sd_sysctl_header = NULL;
5510 if (sd_ctl_dir[0].child)
5511 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5512}
5513#else
5514static void register_sched_domain_sysctl(void)
5515{
5516}
5517static void unregister_sched_domain_sysctl(void)
5518{
5519}
5520#endif
5521
5522/*
5523 * migration_call - callback that gets triggered when a CPU is added.
5524 * Here we can start up the necessary migration thread for the new CPU.
5525 */
5526static int __cpuinit
5527migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5528{
5529 struct task_struct *p;
5530 int cpu = (long)hcpu;
5531 unsigned long flags;
5532 struct rq *rq;
5533
5534 switch (action) {
5535
5536 case CPU_UP_PREPARE:
5537 case CPU_UP_PREPARE_FROZEN:
5538 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5539 if (IS_ERR(p))
5540 return NOTIFY_BAD;
5541 kthread_bind(p, cpu);
5542 /* Must be high prio: stop_machine expects to yield to it. */
5543 rq = task_rq_lock(p, &flags);
5544 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5545 task_rq_unlock(rq, &flags);
5546 cpu_rq(cpu)->migration_thread = p;
5547 break;
5548
5549 case CPU_ONLINE:
5550 case CPU_ONLINE_FROZEN:
5551 /* Strictly unnecessary, as first user will wake it. */
5552 wake_up_process(cpu_rq(cpu)->migration_thread);
5553 break;
5554
5555#ifdef CONFIG_HOTPLUG_CPU
5556 case CPU_UP_CANCELED:
5557 case CPU_UP_CANCELED_FROZEN:
5558 if (!cpu_rq(cpu)->migration_thread)
5559 break;
5560 /* Unbind it from offline cpu so it can run. Fall thru. */
5561 kthread_bind(cpu_rq(cpu)->migration_thread,
5562 any_online_cpu(cpu_online_map));
5563 kthread_stop(cpu_rq(cpu)->migration_thread);
5564 cpu_rq(cpu)->migration_thread = NULL;
5565 break;
5566
5567 case CPU_DEAD:
5568 case CPU_DEAD_FROZEN:
5569 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5570 migrate_live_tasks(cpu);
5571 rq = cpu_rq(cpu);
5572 kthread_stop(rq->migration_thread);
5573 rq->migration_thread = NULL;
5574 /* Idle task back to normal (off runqueue, low prio) */
5575 spin_lock_irq(&rq->lock);
5576 update_rq_clock(rq);
5577 deactivate_task(rq, rq->idle, 0);
5578 rq->idle->static_prio = MAX_PRIO;
5579 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5580 rq->idle->sched_class = &idle_sched_class;
5581 migrate_dead_tasks(cpu);
5582 spin_unlock_irq(&rq->lock);
5583 cpuset_unlock();
5584 migrate_nr_uninterruptible(rq);
5585 BUG_ON(rq->nr_running != 0);
5586
5587 /*
5588 * No need to migrate the tasks: it was best-effort if
5589 * they didn't take sched_hotcpu_mutex. Just wake up
5590 * the requestors.
5591 */
5592 spin_lock_irq(&rq->lock);
5593 while (!list_empty(&rq->migration_queue)) {
5594 struct migration_req *req;
5595
5596 req = list_entry(rq->migration_queue.next,
5597 struct migration_req, list);
5598 list_del_init(&req->list);
5599 complete(&req->done);
5600 }
5601 spin_unlock_irq(&rq->lock);
5602 break;
5603#endif
5604 }
5605 return NOTIFY_OK;
5606}
5607
5608/* Register at highest priority so that task migration (migrate_all_tasks)
5609 * happens before everything else.
5610 */
5611static struct notifier_block __cpuinitdata migration_notifier = {
5612 .notifier_call = migration_call,
5613 .priority = 10
5614};
5615
5616void __init migration_init(void)
5617{
5618 void *cpu = (void *)(long)smp_processor_id();
5619 int err;
5620
5621 /* Start one for the boot CPU: */
5622 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5623 BUG_ON(err == NOTIFY_BAD);
5624 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5625 register_cpu_notifier(&migration_notifier);
5626}
5627#endif
5628
5629#ifdef CONFIG_SMP
5630
5631/* Number of possible processor ids */
5632int nr_cpu_ids __read_mostly = NR_CPUS;
5633EXPORT_SYMBOL(nr_cpu_ids);
5634
5635#ifdef CONFIG_SCHED_DEBUG
5636
5637static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5638{
5639 struct sched_group *group = sd->groups;
5640 cpumask_t groupmask;
5641 char str[NR_CPUS];
5642
5643 cpumask_scnprintf(str, NR_CPUS, sd->span);
5644 cpus_clear(groupmask);
5645
5646 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5647
5648 if (!(sd->flags & SD_LOAD_BALANCE)) {
5649 printk("does not load-balance\n");
5650 if (sd->parent)
5651 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5652 " has parent");
5653 return -1;
5654 }
5655
5656 printk(KERN_CONT "span %s\n", str);
5657
5658 if (!cpu_isset(cpu, sd->span)) {
5659 printk(KERN_ERR "ERROR: domain->span does not contain "
5660 "CPU%d\n", cpu);
5661 }
5662 if (!cpu_isset(cpu, group->cpumask)) {
5663 printk(KERN_ERR "ERROR: domain->groups does not contain"
5664 " CPU%d\n", cpu);
5665 }
5666
5667 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5668 do {
5669 if (!group) {
5670 printk("\n");
5671 printk(KERN_ERR "ERROR: group is NULL\n");
5672 break;
5673 }
5674
5675 if (!group->__cpu_power) {
5676 printk(KERN_CONT "\n");
5677 printk(KERN_ERR "ERROR: domain->cpu_power not "
5678 "set\n");
5679 break;
5680 }
5681
5682 if (!cpus_weight(group->cpumask)) {
5683 printk(KERN_CONT "\n");
5684 printk(KERN_ERR "ERROR: empty group\n");
5685 break;
5686 }
5687
5688 if (cpus_intersects(groupmask, group->cpumask)) {
5689 printk(KERN_CONT "\n");
5690 printk(KERN_ERR "ERROR: repeated CPUs\n");
5691 break;
5692 }
5693
5694 cpus_or(groupmask, groupmask, group->cpumask);
5695
5696 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5697 printk(KERN_CONT " %s", str);
5698
5699 group = group->next;
5700 } while (group != sd->groups);
5701 printk(KERN_CONT "\n");
5702
5703 if (!cpus_equal(sd->span, groupmask))
5704 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5705
5706 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5707 printk(KERN_ERR "ERROR: parent span is not a superset "
5708 "of domain->span\n");
5709 return 0;
5710}
5711
5712static void sched_domain_debug(struct sched_domain *sd, int cpu)
5713{
5714 int level = 0;
5715
5716 if (!sd) {
5717 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5718 return;
5719 }
5720
5721 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5722
5723 for (;;) {
5724 if (sched_domain_debug_one(sd, cpu, level))
5725 break;
5726 level++;
5727 sd = sd->parent;
5728 if (!sd)
5729 break;
5730 }
5731}
5732#else
5733# define sched_domain_debug(sd, cpu) do { } while (0)
5734#endif
5735
5736static int sd_degenerate(struct sched_domain *sd)
5737{
5738 if (cpus_weight(sd->span) == 1)
5739 return 1;
5740
5741 /* Following flags need at least 2 groups */
5742 if (sd->flags & (SD_LOAD_BALANCE |
5743 SD_BALANCE_NEWIDLE |
5744 SD_BALANCE_FORK |
5745 SD_BALANCE_EXEC |
5746 SD_SHARE_CPUPOWER |
5747 SD_SHARE_PKG_RESOURCES)) {
5748 if (sd->groups != sd->groups->next)
5749 return 0;
5750 }
5751
5752 /* Following flags don't use groups */
5753 if (sd->flags & (SD_WAKE_IDLE |
5754 SD_WAKE_AFFINE |
5755 SD_WAKE_BALANCE))
5756 return 0;
5757
5758 return 1;
5759}
5760
5761static int
5762sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5763{
5764 unsigned long cflags = sd->flags, pflags = parent->flags;
5765
5766 if (sd_degenerate(parent))
5767 return 1;
5768
5769 if (!cpus_equal(sd->span, parent->span))
5770 return 0;
5771
5772 /* Does parent contain flags not in child? */
5773 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5774 if (cflags & SD_WAKE_AFFINE)
5775 pflags &= ~SD_WAKE_BALANCE;
5776 /* Flags needing groups don't count if only 1 group in parent */
5777 if (parent->groups == parent->groups->next) {
5778 pflags &= ~(SD_LOAD_BALANCE |
5779 SD_BALANCE_NEWIDLE |
5780 SD_BALANCE_FORK |
5781 SD_BALANCE_EXEC |
5782 SD_SHARE_CPUPOWER |
5783 SD_SHARE_PKG_RESOURCES);
5784 }
5785 if (~cflags & pflags)
5786 return 0;
5787
5788 return 1;
5789}
5790
5791/*
5792 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5793 * hold the hotplug lock.
5794 */
5795static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5796{
5797 struct rq *rq = cpu_rq(cpu);
5798 struct sched_domain *tmp;
5799
5800 /* Remove the sched domains which do not contribute to scheduling. */
5801 for (tmp = sd; tmp; tmp = tmp->parent) {
5802 struct sched_domain *parent = tmp->parent;
5803 if (!parent)
5804 break;
5805 if (sd_parent_degenerate(tmp, parent)) {
5806 tmp->parent = parent->parent;
5807 if (parent->parent)
5808 parent->parent->child = tmp;
5809 }
5810 }
5811
5812 if (sd && sd_degenerate(sd)) {
5813 sd = sd->parent;
5814 if (sd)
5815 sd->child = NULL;
5816 }
5817
5818 sched_domain_debug(sd, cpu);
5819
5820 rcu_assign_pointer(rq->sd, sd);
5821}
5822
5823/* cpus with isolated domains */
5824static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5825
5826/* Setup the mask of cpus configured for isolated domains */
5827static int __init isolated_cpu_setup(char *str)
5828{
5829 int ints[NR_CPUS], i;
5830
5831 str = get_options(str, ARRAY_SIZE(ints), ints);
5832 cpus_clear(cpu_isolated_map);
5833 for (i = 1; i <= ints[0]; i++)
5834 if (ints[i] < NR_CPUS)
5835 cpu_set(ints[i], cpu_isolated_map);
5836 return 1;
5837}
5838
5839__setup("isolcpus=", isolated_cpu_setup);
5840
5841/*
5842 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5843 * to a function which identifies what group(along with sched group) a CPU
5844 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5845 * (due to the fact that we keep track of groups covered with a cpumask_t).
5846 *
5847 * init_sched_build_groups will build a circular linked list of the groups
5848 * covered by the given span, and will set each group's ->cpumask correctly,
5849 * and ->cpu_power to 0.
5850 */
5851static void
5852init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5853 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5854 struct sched_group **sg))
5855{
5856 struct sched_group *first = NULL, *last = NULL;
5857 cpumask_t covered = CPU_MASK_NONE;
5858 int i;
5859
5860 for_each_cpu_mask(i, span) {
5861 struct sched_group *sg;
5862 int group = group_fn(i, cpu_map, &sg);
5863 int j;
5864
5865 if (cpu_isset(i, covered))
5866 continue;
5867
5868 sg->cpumask = CPU_MASK_NONE;
5869 sg->__cpu_power = 0;
5870
5871 for_each_cpu_mask(j, span) {
5872 if (group_fn(j, cpu_map, NULL) != group)
5873 continue;
5874
5875 cpu_set(j, covered);
5876 cpu_set(j, sg->cpumask);
5877 }
5878 if (!first)
5879 first = sg;
5880 if (last)
5881 last->next = sg;
5882 last = sg;
5883 }
5884 last->next = first;
5885}
5886
5887#define SD_NODES_PER_DOMAIN 16
5888
5889#ifdef CONFIG_NUMA
5890
5891/**
5892 * find_next_best_node - find the next node to include in a sched_domain
5893 * @node: node whose sched_domain we're building
5894 * @used_nodes: nodes already in the sched_domain
5895 *
5896 * Find the next node to include in a given scheduling domain. Simply
5897 * finds the closest node not already in the @used_nodes map.
5898 *
5899 * Should use nodemask_t.
5900 */
5901static int find_next_best_node(int node, unsigned long *used_nodes)
5902{
5903 int i, n, val, min_val, best_node = 0;
5904
5905 min_val = INT_MAX;
5906
5907 for (i = 0; i < MAX_NUMNODES; i++) {
5908 /* Start at @node */
5909 n = (node + i) % MAX_NUMNODES;
5910
5911 if (!nr_cpus_node(n))
5912 continue;
5913
5914 /* Skip already used nodes */
5915 if (test_bit(n, used_nodes))
5916 continue;
5917
5918 /* Simple min distance search */
5919 val = node_distance(node, n);
5920
5921 if (val < min_val) {
5922 min_val = val;
5923 best_node = n;
5924 }
5925 }
5926
5927 set_bit(best_node, used_nodes);
5928 return best_node;
5929}
5930
5931/**
5932 * sched_domain_node_span - get a cpumask for a node's sched_domain
5933 * @node: node whose cpumask we're constructing
5934 * @size: number of nodes to include in this span
5935 *
5936 * Given a node, construct a good cpumask for its sched_domain to span. It
5937 * should be one that prevents unnecessary balancing, but also spreads tasks
5938 * out optimally.
5939 */
5940static cpumask_t sched_domain_node_span(int node)
5941{
5942 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5943 cpumask_t span, nodemask;
5944 int i;
5945
5946 cpus_clear(span);
5947 bitmap_zero(used_nodes, MAX_NUMNODES);
5948
5949 nodemask = node_to_cpumask(node);
5950 cpus_or(span, span, nodemask);
5951 set_bit(node, used_nodes);
5952
5953 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5954 int next_node = find_next_best_node(node, used_nodes);
5955
5956 nodemask = node_to_cpumask(next_node);
5957 cpus_or(span, span, nodemask);
5958 }
5959
5960 return span;
5961}
5962#endif
5963
5964int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5965
5966/*
5967 * SMT sched-domains:
5968 */
5969#ifdef CONFIG_SCHED_SMT
5970static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5971static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5972
5973static int
5974cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
5975{
5976 if (sg)
5977 *sg = &per_cpu(sched_group_cpus, cpu);
5978 return cpu;
5979}
5980#endif
5981
5982/*
5983 * multi-core sched-domains:
5984 */
5985#ifdef CONFIG_SCHED_MC
5986static DEFINE_PER_CPU(struct sched_domain, core_domains);
5987static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5988#endif
5989
5990#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5991static int
5992cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
5993{
5994 int group;
5995 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5996 cpus_and(mask, mask, *cpu_map);
5997 group = first_cpu(mask);
5998 if (sg)
5999 *sg = &per_cpu(sched_group_core, group);
6000 return group;
6001}
6002#elif defined(CONFIG_SCHED_MC)
6003static int
6004cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6005{
6006 if (sg)
6007 *sg = &per_cpu(sched_group_core, cpu);
6008 return cpu;
6009}
6010#endif
6011
6012static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6013static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6014
6015static int
6016cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6017{
6018 int group;
6019#ifdef CONFIG_SCHED_MC
6020 cpumask_t mask = cpu_coregroup_map(cpu);
6021 cpus_and(mask, mask, *cpu_map);
6022 group = first_cpu(mask);
6023#elif defined(CONFIG_SCHED_SMT)
6024 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6025 cpus_and(mask, mask, *cpu_map);
6026 group = first_cpu(mask);
6027#else
6028 group = cpu;
6029#endif
6030 if (sg)
6031 *sg = &per_cpu(sched_group_phys, group);
6032 return group;
6033}
6034
6035#ifdef CONFIG_NUMA
6036/*
6037 * The init_sched_build_groups can't handle what we want to do with node
6038 * groups, so roll our own. Now each node has its own list of groups which
6039 * gets dynamically allocated.
6040 */
6041static DEFINE_PER_CPU(struct sched_domain, node_domains);
6042static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6043
6044static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6045static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6046
6047static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6048 struct sched_group **sg)
6049{
6050 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6051 int group;
6052
6053 cpus_and(nodemask, nodemask, *cpu_map);
6054 group = first_cpu(nodemask);
6055
6056 if (sg)
6057 *sg = &per_cpu(sched_group_allnodes, group);
6058 return group;
6059}
6060
6061static void init_numa_sched_groups_power(struct sched_group *group_head)
6062{
6063 struct sched_group *sg = group_head;
6064 int j;
6065
6066 if (!sg)
6067 return;
6068 do {
6069 for_each_cpu_mask(j, sg->cpumask) {
6070 struct sched_domain *sd;
6071
6072 sd = &per_cpu(phys_domains, j);
6073 if (j != first_cpu(sd->groups->cpumask)) {
6074 /*
6075 * Only add "power" once for each
6076 * physical package.
6077 */
6078 continue;
6079 }
6080
6081 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6082 }
6083 sg = sg->next;
6084 } while (sg != group_head);
6085}
6086#endif
6087
6088#ifdef CONFIG_NUMA
6089/* Free memory allocated for various sched_group structures */
6090static void free_sched_groups(const cpumask_t *cpu_map)
6091{
6092 int cpu, i;
6093
6094 for_each_cpu_mask(cpu, *cpu_map) {
6095 struct sched_group **sched_group_nodes
6096 = sched_group_nodes_bycpu[cpu];
6097
6098 if (!sched_group_nodes)
6099 continue;
6100
6101 for (i = 0; i < MAX_NUMNODES; i++) {
6102 cpumask_t nodemask = node_to_cpumask(i);
6103 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6104
6105 cpus_and(nodemask, nodemask, *cpu_map);
6106 if (cpus_empty(nodemask))
6107 continue;
6108
6109 if (sg == NULL)
6110 continue;
6111 sg = sg->next;
6112next_sg:
6113 oldsg = sg;
6114 sg = sg->next;
6115 kfree(oldsg);
6116 if (oldsg != sched_group_nodes[i])
6117 goto next_sg;
6118 }
6119 kfree(sched_group_nodes);
6120 sched_group_nodes_bycpu[cpu] = NULL;
6121 }
6122}
6123#else
6124static void free_sched_groups(const cpumask_t *cpu_map)
6125{
6126}
6127#endif
6128
6129/*
6130 * Initialize sched groups cpu_power.
6131 *
6132 * cpu_power indicates the capacity of sched group, which is used while
6133 * distributing the load between different sched groups in a sched domain.
6134 * Typically cpu_power for all the groups in a sched domain will be same unless
6135 * there are asymmetries in the topology. If there are asymmetries, group
6136 * having more cpu_power will pickup more load compared to the group having
6137 * less cpu_power.
6138 *
6139 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6140 * the maximum number of tasks a group can handle in the presence of other idle
6141 * or lightly loaded groups in the same sched domain.
6142 */
6143static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6144{
6145 struct sched_domain *child;
6146 struct sched_group *group;
6147
6148 WARN_ON(!sd || !sd->groups);
6149
6150 if (cpu != first_cpu(sd->groups->cpumask))
6151 return;
6152
6153 child = sd->child;
6154
6155 sd->groups->__cpu_power = 0;
6156
6157 /*
6158 * For perf policy, if the groups in child domain share resources
6159 * (for example cores sharing some portions of the cache hierarchy
6160 * or SMT), then set this domain groups cpu_power such that each group
6161 * can handle only one task, when there are other idle groups in the
6162 * same sched domain.
6163 */
6164 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6165 (child->flags &
6166 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6167 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6168 return;
6169 }
6170
6171 /*
6172 * add cpu_power of each child group to this groups cpu_power
6173 */
6174 group = child->groups;
6175 do {
6176 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6177 group = group->next;
6178 } while (group != child->groups);
6179}
6180
6181/*
6182 * Build sched domains for a given set of cpus and attach the sched domains
6183 * to the individual cpus
6184 */
6185static int build_sched_domains(const cpumask_t *cpu_map)
6186{
6187 int i;
6188#ifdef CONFIG_NUMA
6189 struct sched_group **sched_group_nodes = NULL;
6190 int sd_allnodes = 0;
6191
6192 /*
6193 * Allocate the per-node list of sched groups
6194 */
6195 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6196 GFP_KERNEL);
6197 if (!sched_group_nodes) {
6198 printk(KERN_WARNING "Can not alloc sched group node list\n");
6199 return -ENOMEM;
6200 }
6201 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6202#endif
6203
6204 /*
6205 * Set up domains for cpus specified by the cpu_map.
6206 */
6207 for_each_cpu_mask(i, *cpu_map) {
6208 struct sched_domain *sd = NULL, *p;
6209 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6210
6211 cpus_and(nodemask, nodemask, *cpu_map);
6212
6213#ifdef CONFIG_NUMA
6214 if (cpus_weight(*cpu_map) >
6215 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6216 sd = &per_cpu(allnodes_domains, i);
6217 *sd = SD_ALLNODES_INIT;
6218 sd->span = *cpu_map;
6219 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6220 p = sd;
6221 sd_allnodes = 1;
6222 } else
6223 p = NULL;
6224
6225 sd = &per_cpu(node_domains, i);
6226 *sd = SD_NODE_INIT;
6227 sd->span = sched_domain_node_span(cpu_to_node(i));
6228 sd->parent = p;
6229 if (p)
6230 p->child = sd;
6231 cpus_and(sd->span, sd->span, *cpu_map);
6232#endif
6233
6234 p = sd;
6235 sd = &per_cpu(phys_domains, i);
6236 *sd = SD_CPU_INIT;
6237 sd->span = nodemask;
6238 sd->parent = p;
6239 if (p)
6240 p->child = sd;
6241 cpu_to_phys_group(i, cpu_map, &sd->groups);
6242
6243#ifdef CONFIG_SCHED_MC
6244 p = sd;
6245 sd = &per_cpu(core_domains, i);
6246 *sd = SD_MC_INIT;
6247 sd->span = cpu_coregroup_map(i);
6248 cpus_and(sd->span, sd->span, *cpu_map);
6249 sd->parent = p;
6250 p->child = sd;
6251 cpu_to_core_group(i, cpu_map, &sd->groups);
6252#endif
6253
6254#ifdef CONFIG_SCHED_SMT
6255 p = sd;
6256 sd = &per_cpu(cpu_domains, i);
6257 *sd = SD_SIBLING_INIT;
6258 sd->span = per_cpu(cpu_sibling_map, i);
6259 cpus_and(sd->span, sd->span, *cpu_map);
6260 sd->parent = p;
6261 p->child = sd;
6262 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6263#endif
6264 }
6265
6266#ifdef CONFIG_SCHED_SMT
6267 /* Set up CPU (sibling) groups */
6268 for_each_cpu_mask(i, *cpu_map) {
6269 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6270 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6271 if (i != first_cpu(this_sibling_map))
6272 continue;
6273
6274 init_sched_build_groups(this_sibling_map, cpu_map,
6275 &cpu_to_cpu_group);
6276 }
6277#endif
6278
6279#ifdef CONFIG_SCHED_MC
6280 /* Set up multi-core groups */
6281 for_each_cpu_mask(i, *cpu_map) {
6282 cpumask_t this_core_map = cpu_coregroup_map(i);
6283 cpus_and(this_core_map, this_core_map, *cpu_map);
6284 if (i != first_cpu(this_core_map))
6285 continue;
6286 init_sched_build_groups(this_core_map, cpu_map,
6287 &cpu_to_core_group);
6288 }
6289#endif
6290
6291 /* Set up physical groups */
6292 for (i = 0; i < MAX_NUMNODES; i++) {
6293 cpumask_t nodemask = node_to_cpumask(i);
6294
6295 cpus_and(nodemask, nodemask, *cpu_map);
6296 if (cpus_empty(nodemask))
6297 continue;
6298
6299 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6300 }
6301
6302#ifdef CONFIG_NUMA
6303 /* Set up node groups */
6304 if (sd_allnodes)
6305 init_sched_build_groups(*cpu_map, cpu_map,
6306 &cpu_to_allnodes_group);
6307
6308 for (i = 0; i < MAX_NUMNODES; i++) {
6309 /* Set up node groups */
6310 struct sched_group *sg, *prev;
6311 cpumask_t nodemask = node_to_cpumask(i);
6312 cpumask_t domainspan;
6313 cpumask_t covered = CPU_MASK_NONE;
6314 int j;
6315
6316 cpus_and(nodemask, nodemask, *cpu_map);
6317 if (cpus_empty(nodemask)) {
6318 sched_group_nodes[i] = NULL;
6319 continue;
6320 }
6321
6322 domainspan = sched_domain_node_span(i);
6323 cpus_and(domainspan, domainspan, *cpu_map);
6324
6325 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6326 if (!sg) {
6327 printk(KERN_WARNING "Can not alloc domain group for "
6328 "node %d\n", i);
6329 goto error;
6330 }
6331 sched_group_nodes[i] = sg;
6332 for_each_cpu_mask(j, nodemask) {
6333 struct sched_domain *sd;
6334
6335 sd = &per_cpu(node_domains, j);
6336 sd->groups = sg;
6337 }
6338 sg->__cpu_power = 0;
6339 sg->cpumask = nodemask;
6340 sg->next = sg;
6341 cpus_or(covered, covered, nodemask);
6342 prev = sg;
6343
6344 for (j = 0; j < MAX_NUMNODES; j++) {
6345 cpumask_t tmp, notcovered;
6346 int n = (i + j) % MAX_NUMNODES;
6347
6348 cpus_complement(notcovered, covered);
6349 cpus_and(tmp, notcovered, *cpu_map);
6350 cpus_and(tmp, tmp, domainspan);
6351 if (cpus_empty(tmp))
6352 break;
6353
6354 nodemask = node_to_cpumask(n);
6355 cpus_and(tmp, tmp, nodemask);
6356 if (cpus_empty(tmp))
6357 continue;
6358
6359 sg = kmalloc_node(sizeof(struct sched_group),
6360 GFP_KERNEL, i);
6361 if (!sg) {
6362 printk(KERN_WARNING
6363 "Can not alloc domain group for node %d\n", j);
6364 goto error;
6365 }
6366 sg->__cpu_power = 0;
6367 sg->cpumask = tmp;
6368 sg->next = prev->next;
6369 cpus_or(covered, covered, tmp);
6370 prev->next = sg;
6371 prev = sg;
6372 }
6373 }
6374#endif
6375
6376 /* Calculate CPU power for physical packages and nodes */
6377#ifdef CONFIG_SCHED_SMT
6378 for_each_cpu_mask(i, *cpu_map) {
6379 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6380
6381 init_sched_groups_power(i, sd);
6382 }
6383#endif
6384#ifdef CONFIG_SCHED_MC
6385 for_each_cpu_mask(i, *cpu_map) {
6386 struct sched_domain *sd = &per_cpu(core_domains, i);
6387
6388 init_sched_groups_power(i, sd);
6389 }
6390#endif
6391
6392 for_each_cpu_mask(i, *cpu_map) {
6393 struct sched_domain *sd = &per_cpu(phys_domains, i);
6394
6395 init_sched_groups_power(i, sd);
6396 }
6397
6398#ifdef CONFIG_NUMA
6399 for (i = 0; i < MAX_NUMNODES; i++)
6400 init_numa_sched_groups_power(sched_group_nodes[i]);
6401
6402 if (sd_allnodes) {
6403 struct sched_group *sg;
6404
6405 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6406 init_numa_sched_groups_power(sg);
6407 }
6408#endif
6409
6410 /* Attach the domains */
6411 for_each_cpu_mask(i, *cpu_map) {
6412 struct sched_domain *sd;
6413#ifdef CONFIG_SCHED_SMT
6414 sd = &per_cpu(cpu_domains, i);
6415#elif defined(CONFIG_SCHED_MC)
6416 sd = &per_cpu(core_domains, i);
6417#else
6418 sd = &per_cpu(phys_domains, i);
6419#endif
6420 cpu_attach_domain(sd, i);
6421 }
6422
6423 return 0;
6424
6425#ifdef CONFIG_NUMA
6426error:
6427 free_sched_groups(cpu_map);
6428 return -ENOMEM;
6429#endif
6430}
6431
6432static cpumask_t *doms_cur; /* current sched domains */
6433static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6434
6435/*
6436 * Special case: If a kmalloc of a doms_cur partition (array of
6437 * cpumask_t) fails, then fallback to a single sched domain,
6438 * as determined by the single cpumask_t fallback_doms.
6439 */
6440static cpumask_t fallback_doms;
6441
6442/*
6443 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6444 * For now this just excludes isolated cpus, but could be used to
6445 * exclude other special cases in the future.
6446 */
6447static int arch_init_sched_domains(const cpumask_t *cpu_map)
6448{
6449 int err;
6450
6451 ndoms_cur = 1;
6452 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6453 if (!doms_cur)
6454 doms_cur = &fallback_doms;
6455 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6456 err = build_sched_domains(doms_cur);
6457 register_sched_domain_sysctl();
6458
6459 return err;
6460}
6461
6462static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6463{
6464 free_sched_groups(cpu_map);
6465}
6466
6467/*
6468 * Detach sched domains from a group of cpus specified in cpu_map
6469 * These cpus will now be attached to the NULL domain
6470 */
6471static void detach_destroy_domains(const cpumask_t *cpu_map)
6472{
6473 int i;
6474
6475 unregister_sched_domain_sysctl();
6476
6477 for_each_cpu_mask(i, *cpu_map)
6478 cpu_attach_domain(NULL, i);
6479 synchronize_sched();
6480 arch_destroy_sched_domains(cpu_map);
6481}
6482
6483/*
6484 * Partition sched domains as specified by the 'ndoms_new'
6485 * cpumasks in the array doms_new[] of cpumasks. This compares
6486 * doms_new[] to the current sched domain partitioning, doms_cur[].
6487 * It destroys each deleted domain and builds each new domain.
6488 *
6489 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6490 * The masks don't intersect (don't overlap.) We should setup one
6491 * sched domain for each mask. CPUs not in any of the cpumasks will
6492 * not be load balanced. If the same cpumask appears both in the
6493 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6494 * it as it is.
6495 *
6496 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6497 * ownership of it and will kfree it when done with it. If the caller
6498 * failed the kmalloc call, then it can pass in doms_new == NULL,
6499 * and partition_sched_domains() will fallback to the single partition
6500 * 'fallback_doms'.
6501 *
6502 * Call with hotplug lock held
6503 */
6504void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6505{
6506 int i, j;
6507
6508 lock_doms_cur();
6509
6510 /* always unregister in case we don't destroy any domains */
6511 unregister_sched_domain_sysctl();
6512
6513 if (doms_new == NULL) {
6514 ndoms_new = 1;
6515 doms_new = &fallback_doms;
6516 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6517 }
6518
6519 /* Destroy deleted domains */
6520 for (i = 0; i < ndoms_cur; i++) {
6521 for (j = 0; j < ndoms_new; j++) {
6522 if (cpus_equal(doms_cur[i], doms_new[j]))
6523 goto match1;
6524 }
6525 /* no match - a current sched domain not in new doms_new[] */
6526 detach_destroy_domains(doms_cur + i);
6527match1:
6528 ;
6529 }
6530
6531 /* Build new domains */
6532 for (i = 0; i < ndoms_new; i++) {
6533 for (j = 0; j < ndoms_cur; j++) {
6534 if (cpus_equal(doms_new[i], doms_cur[j]))
6535 goto match2;
6536 }
6537 /* no match - add a new doms_new */
6538 build_sched_domains(doms_new + i);
6539match2:
6540 ;
6541 }
6542
6543 /* Remember the new sched domains */
6544 if (doms_cur != &fallback_doms)
6545 kfree(doms_cur);
6546 doms_cur = doms_new;
6547 ndoms_cur = ndoms_new;
6548
6549 register_sched_domain_sysctl();
6550
6551 unlock_doms_cur();
6552}
6553
6554#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6555static int arch_reinit_sched_domains(void)
6556{
6557 int err;
6558
6559 get_online_cpus();
6560 detach_destroy_domains(&cpu_online_map);
6561 err = arch_init_sched_domains(&cpu_online_map);
6562 put_online_cpus();
6563
6564 return err;
6565}
6566
6567static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6568{
6569 int ret;
6570
6571 if (buf[0] != '0' && buf[0] != '1')
6572 return -EINVAL;
6573
6574 if (smt)
6575 sched_smt_power_savings = (buf[0] == '1');
6576 else
6577 sched_mc_power_savings = (buf[0] == '1');
6578
6579 ret = arch_reinit_sched_domains();
6580
6581 return ret ? ret : count;
6582}
6583
6584#ifdef CONFIG_SCHED_MC
6585static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6586{
6587 return sprintf(page, "%u\n", sched_mc_power_savings);
6588}
6589static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6590 const char *buf, size_t count)
6591{
6592 return sched_power_savings_store(buf, count, 0);
6593}
6594static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6595 sched_mc_power_savings_store);
6596#endif
6597
6598#ifdef CONFIG_SCHED_SMT
6599static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6600{
6601 return sprintf(page, "%u\n", sched_smt_power_savings);
6602}
6603static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6604 const char *buf, size_t count)
6605{
6606 return sched_power_savings_store(buf, count, 1);
6607}
6608static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6609 sched_smt_power_savings_store);
6610#endif
6611
6612int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6613{
6614 int err = 0;
6615
6616#ifdef CONFIG_SCHED_SMT
6617 if (smt_capable())
6618 err = sysfs_create_file(&cls->kset.kobj,
6619 &attr_sched_smt_power_savings.attr);
6620#endif
6621#ifdef CONFIG_SCHED_MC
6622 if (!err && mc_capable())
6623 err = sysfs_create_file(&cls->kset.kobj,
6624 &attr_sched_mc_power_savings.attr);
6625#endif
6626 return err;
6627}
6628#endif
6629
6630/*
6631 * Force a reinitialization of the sched domains hierarchy. The domains
6632 * and groups cannot be updated in place without racing with the balancing
6633 * code, so we temporarily attach all running cpus to the NULL domain
6634 * which will prevent rebalancing while the sched domains are recalculated.
6635 */
6636static int update_sched_domains(struct notifier_block *nfb,
6637 unsigned long action, void *hcpu)
6638{
6639 switch (action) {
6640 case CPU_UP_PREPARE:
6641 case CPU_UP_PREPARE_FROZEN:
6642 case CPU_DOWN_PREPARE:
6643 case CPU_DOWN_PREPARE_FROZEN:
6644 detach_destroy_domains(&cpu_online_map);
6645 return NOTIFY_OK;
6646
6647 case CPU_UP_CANCELED:
6648 case CPU_UP_CANCELED_FROZEN:
6649 case CPU_DOWN_FAILED:
6650 case CPU_DOWN_FAILED_FROZEN:
6651 case CPU_ONLINE:
6652 case CPU_ONLINE_FROZEN:
6653 case CPU_DEAD:
6654 case CPU_DEAD_FROZEN:
6655 /*
6656 * Fall through and re-initialise the domains.
6657 */
6658 break;
6659 default:
6660 return NOTIFY_DONE;
6661 }
6662
6663 /* The hotplug lock is already held by cpu_up/cpu_down */
6664 arch_init_sched_domains(&cpu_online_map);
6665
6666 return NOTIFY_OK;
6667}
6668
6669void __init sched_init_smp(void)
6670{
6671 cpumask_t non_isolated_cpus;
6672
6673 get_online_cpus();
6674 arch_init_sched_domains(&cpu_online_map);
6675 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6676 if (cpus_empty(non_isolated_cpus))
6677 cpu_set(smp_processor_id(), non_isolated_cpus);
6678 put_online_cpus();
6679 /* XXX: Theoretical race here - CPU may be hotplugged now */
6680 hotcpu_notifier(update_sched_domains, 0);
6681
6682 /* Move init over to a non-isolated CPU */
6683 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6684 BUG();
6685 sched_init_granularity();
6686
6687#ifdef CONFIG_FAIR_GROUP_SCHED
6688 if (nr_cpu_ids == 1)
6689 return;
6690
6691 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6692 "group_balance");
6693 if (!IS_ERR(lb_monitor_task)) {
6694 lb_monitor_task->flags |= PF_NOFREEZE;
6695 wake_up_process(lb_monitor_task);
6696 } else {
6697 printk(KERN_ERR "Could not create load balance monitor thread"
6698 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6699 }
6700#endif
6701}
6702#else
6703void __init sched_init_smp(void)
6704{
6705 sched_init_granularity();
6706}
6707#endif /* CONFIG_SMP */
6708
6709int in_sched_functions(unsigned long addr)
6710{
6711 return in_lock_functions(addr) ||
6712 (addr >= (unsigned long)__sched_text_start
6713 && addr < (unsigned long)__sched_text_end);
6714}
6715
6716static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6717{
6718 cfs_rq->tasks_timeline = RB_ROOT;
6719#ifdef CONFIG_FAIR_GROUP_SCHED
6720 cfs_rq->rq = rq;
6721#endif
6722 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6723}
6724
6725void __init sched_init(void)
6726{
6727 int highest_cpu = 0;
6728 int i, j;
6729
6730 for_each_possible_cpu(i) {
6731 struct rt_prio_array *array;
6732 struct rq *rq;
6733
6734 rq = cpu_rq(i);
6735 spin_lock_init(&rq->lock);
6736 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6737 rq->nr_running = 0;
6738 rq->clock = 1;
6739 init_cfs_rq(&rq->cfs, rq);
6740#ifdef CONFIG_FAIR_GROUP_SCHED
6741 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6742 {
6743 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6744 struct sched_entity *se =
6745 &per_cpu(init_sched_entity, i);
6746
6747 init_cfs_rq_p[i] = cfs_rq;
6748 init_cfs_rq(cfs_rq, rq);
6749 cfs_rq->tg = &init_task_group;
6750 list_add(&cfs_rq->leaf_cfs_rq_list,
6751 &rq->leaf_cfs_rq_list);
6752
6753 init_sched_entity_p[i] = se;
6754 se->cfs_rq = &rq->cfs;
6755 se->my_q = cfs_rq;
6756 se->load.weight = init_task_group_load;
6757 se->load.inv_weight =
6758 div64_64(1ULL<<32, init_task_group_load);
6759 se->parent = NULL;
6760 }
6761 init_task_group.shares = init_task_group_load;
6762#endif
6763
6764 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6765 rq->cpu_load[j] = 0;
6766#ifdef CONFIG_SMP
6767 rq->sd = NULL;
6768 rq->active_balance = 0;
6769 rq->next_balance = jiffies;
6770 rq->push_cpu = 0;
6771 rq->cpu = i;
6772 rq->migration_thread = NULL;
6773 INIT_LIST_HEAD(&rq->migration_queue);
6774 rq->rt.highest_prio = MAX_RT_PRIO;
6775 rq->rt.overloaded = 0;
6776#endif
6777 atomic_set(&rq->nr_iowait, 0);
6778
6779 array = &rq->rt.active;
6780 for (j = 0; j < MAX_RT_PRIO; j++) {
6781 INIT_LIST_HEAD(array->queue + j);
6782 __clear_bit(j, array->bitmap);
6783 }
6784 highest_cpu = i;
6785 /* delimiter for bitsearch: */
6786 __set_bit(MAX_RT_PRIO, array->bitmap);
6787 }
6788
6789 set_load_weight(&init_task);
6790
6791#ifdef CONFIG_PREEMPT_NOTIFIERS
6792 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6793#endif
6794
6795#ifdef CONFIG_SMP
6796 nr_cpu_ids = highest_cpu + 1;
6797 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6798#endif
6799
6800#ifdef CONFIG_RT_MUTEXES
6801 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6802#endif
6803
6804 /*
6805 * The boot idle thread does lazy MMU switching as well:
6806 */
6807 atomic_inc(&init_mm.mm_count);
6808 enter_lazy_tlb(&init_mm, current);
6809
6810 /*
6811 * Make us the idle thread. Technically, schedule() should not be
6812 * called from this thread, however somewhere below it might be,
6813 * but because we are the idle thread, we just pick up running again
6814 * when this runqueue becomes "idle".
6815 */
6816 init_idle(current, smp_processor_id());
6817 /*
6818 * During early bootup we pretend to be a normal task:
6819 */
6820 current->sched_class = &fair_sched_class;
6821}
6822
6823#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6824void __might_sleep(char *file, int line)
6825{
6826#ifdef in_atomic
6827 static unsigned long prev_jiffy; /* ratelimiting */
6828
6829 if ((in_atomic() || irqs_disabled()) &&
6830 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6831 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6832 return;
6833 prev_jiffy = jiffies;
6834 printk(KERN_ERR "BUG: sleeping function called from invalid"
6835 " context at %s:%d\n", file, line);
6836 printk("in_atomic():%d, irqs_disabled():%d\n",
6837 in_atomic(), irqs_disabled());
6838 debug_show_held_locks(current);
6839 if (irqs_disabled())
6840 print_irqtrace_events(current);
6841 dump_stack();
6842 }
6843#endif
6844}
6845EXPORT_SYMBOL(__might_sleep);
6846#endif
6847
6848#ifdef CONFIG_MAGIC_SYSRQ
6849static void normalize_task(struct rq *rq, struct task_struct *p)
6850{
6851 int on_rq;
6852 update_rq_clock(rq);
6853 on_rq = p->se.on_rq;
6854 if (on_rq)
6855 deactivate_task(rq, p, 0);
6856 __setscheduler(rq, p, SCHED_NORMAL, 0);
6857 if (on_rq) {
6858 activate_task(rq, p, 0);
6859 resched_task(rq->curr);
6860 }
6861}
6862
6863void normalize_rt_tasks(void)
6864{
6865 struct task_struct *g, *p;
6866 unsigned long flags;
6867 struct rq *rq;
6868
6869 read_lock_irq(&tasklist_lock);
6870 do_each_thread(g, p) {
6871 /*
6872 * Only normalize user tasks:
6873 */
6874 if (!p->mm)
6875 continue;
6876
6877 p->se.exec_start = 0;
6878#ifdef CONFIG_SCHEDSTATS
6879 p->se.wait_start = 0;
6880 p->se.sleep_start = 0;
6881 p->se.block_start = 0;
6882#endif
6883 task_rq(p)->clock = 0;
6884
6885 if (!rt_task(p)) {
6886 /*
6887 * Renice negative nice level userspace
6888 * tasks back to 0:
6889 */
6890 if (TASK_NICE(p) < 0 && p->mm)
6891 set_user_nice(p, 0);
6892 continue;
6893 }
6894
6895 spin_lock_irqsave(&p->pi_lock, flags);
6896 rq = __task_rq_lock(p);
6897
6898 normalize_task(rq, p);
6899
6900 __task_rq_unlock(rq);
6901 spin_unlock_irqrestore(&p->pi_lock, flags);
6902 } while_each_thread(g, p);
6903
6904 read_unlock_irq(&tasklist_lock);
6905}
6906
6907#endif /* CONFIG_MAGIC_SYSRQ */
6908
6909#ifdef CONFIG_IA64
6910/*
6911 * These functions are only useful for the IA64 MCA handling.
6912 *
6913 * They can only be called when the whole system has been
6914 * stopped - every CPU needs to be quiescent, and no scheduling
6915 * activity can take place. Using them for anything else would
6916 * be a serious bug, and as a result, they aren't even visible
6917 * under any other configuration.
6918 */
6919
6920/**
6921 * curr_task - return the current task for a given cpu.
6922 * @cpu: the processor in question.
6923 *
6924 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6925 */
6926struct task_struct *curr_task(int cpu)
6927{
6928 return cpu_curr(cpu);
6929}
6930
6931/**
6932 * set_curr_task - set the current task for a given cpu.
6933 * @cpu: the processor in question.
6934 * @p: the task pointer to set.
6935 *
6936 * Description: This function must only be used when non-maskable interrupts
6937 * are serviced on a separate stack. It allows the architecture to switch the
6938 * notion of the current task on a cpu in a non-blocking manner. This function
6939 * must be called with all CPU's synchronized, and interrupts disabled, the
6940 * and caller must save the original value of the current task (see
6941 * curr_task() above) and restore that value before reenabling interrupts and
6942 * re-starting the system.
6943 *
6944 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6945 */
6946void set_curr_task(int cpu, struct task_struct *p)
6947{
6948 cpu_curr(cpu) = p;
6949}
6950
6951#endif
6952
6953#ifdef CONFIG_FAIR_GROUP_SCHED
6954
6955#ifdef CONFIG_SMP
6956/*
6957 * distribute shares of all task groups among their schedulable entities,
6958 * to reflect load distrbution across cpus.
6959 */
6960static int rebalance_shares(struct sched_domain *sd, int this_cpu)
6961{
6962 struct cfs_rq *cfs_rq;
6963 struct rq *rq = cpu_rq(this_cpu);
6964 cpumask_t sdspan = sd->span;
6965 int balanced = 1;
6966
6967 /* Walk thr' all the task groups that we have */
6968 for_each_leaf_cfs_rq(rq, cfs_rq) {
6969 int i;
6970 unsigned long total_load = 0, total_shares;
6971 struct task_group *tg = cfs_rq->tg;
6972
6973 /* Gather total task load of this group across cpus */
6974 for_each_cpu_mask(i, sdspan)
6975 total_load += tg->cfs_rq[i]->load.weight;
6976
6977 /* Nothing to do if this group has no load */
6978 if (!total_load)
6979 continue;
6980
6981 /*
6982 * tg->shares represents the number of cpu shares the task group
6983 * is eligible to hold on a single cpu. On N cpus, it is
6984 * eligible to hold (N * tg->shares) number of cpu shares.
6985 */
6986 total_shares = tg->shares * cpus_weight(sdspan);
6987
6988 /*
6989 * redistribute total_shares across cpus as per the task load
6990 * distribution.
6991 */
6992 for_each_cpu_mask(i, sdspan) {
6993 unsigned long local_load, local_shares;
6994
6995 local_load = tg->cfs_rq[i]->load.weight;
6996 local_shares = (local_load * total_shares) / total_load;
6997 if (!local_shares)
6998 local_shares = MIN_GROUP_SHARES;
6999 if (local_shares == tg->se[i]->load.weight)
7000 continue;
7001
7002 spin_lock_irq(&cpu_rq(i)->lock);
7003 set_se_shares(tg->se[i], local_shares);
7004 spin_unlock_irq(&cpu_rq(i)->lock);
7005 balanced = 0;
7006 }
7007 }
7008
7009 return balanced;
7010}
7011
7012/*
7013 * How frequently should we rebalance_shares() across cpus?
7014 *
7015 * The more frequently we rebalance shares, the more accurate is the fairness
7016 * of cpu bandwidth distribution between task groups. However higher frequency
7017 * also implies increased scheduling overhead.
7018 *
7019 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7020 * consecutive calls to rebalance_shares() in the same sched domain.
7021 *
7022 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7023 * consecutive calls to rebalance_shares() in the same sched domain.
7024 *
7025 * These settings allows for the appropriate tradeoff between accuracy of
7026 * fairness and the associated overhead.
7027 *
7028 */
7029
7030/* default: 8ms, units: milliseconds */
7031const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7032
7033/* default: 128ms, units: milliseconds */
7034const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7035
7036/* kernel thread that runs rebalance_shares() periodically */
7037static int load_balance_monitor(void *unused)
7038{
7039 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7040 struct sched_param schedparm;
7041 int ret;
7042
7043 /*
7044 * We don't want this thread's execution to be limited by the shares
7045 * assigned to default group (init_task_group). Hence make it run
7046 * as a SCHED_RR RT task at the lowest priority.
7047 */
7048 schedparm.sched_priority = 1;
7049 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7050 if (ret)
7051 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7052 " monitor thread (error = %d) \n", ret);
7053
7054 while (!kthread_should_stop()) {
7055 int i, cpu, balanced = 1;
7056
7057 /* Prevent cpus going down or coming up */
7058 get_online_cpus();
7059 /* lockout changes to doms_cur[] array */
7060 lock_doms_cur();
7061 /*
7062 * Enter a rcu read-side critical section to safely walk rq->sd
7063 * chain on various cpus and to walk task group list
7064 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7065 */
7066 rcu_read_lock();
7067
7068 for (i = 0; i < ndoms_cur; i++) {
7069 cpumask_t cpumap = doms_cur[i];
7070 struct sched_domain *sd = NULL, *sd_prev = NULL;
7071
7072 cpu = first_cpu(cpumap);
7073
7074 /* Find the highest domain at which to balance shares */
7075 for_each_domain(cpu, sd) {
7076 if (!(sd->flags & SD_LOAD_BALANCE))
7077 continue;
7078 sd_prev = sd;
7079 }
7080
7081 sd = sd_prev;
7082 /* sd == NULL? No load balance reqd in this domain */
7083 if (!sd)
7084 continue;
7085
7086 balanced &= rebalance_shares(sd, cpu);
7087 }
7088
7089 rcu_read_unlock();
7090
7091 unlock_doms_cur();
7092 put_online_cpus();
7093
7094 if (!balanced)
7095 timeout = sysctl_sched_min_bal_int_shares;
7096 else if (timeout < sysctl_sched_max_bal_int_shares)
7097 timeout *= 2;
7098
7099 msleep_interruptible(timeout);
7100 }
7101
7102 return 0;
7103}
7104#endif /* CONFIG_SMP */
7105
7106/* allocate runqueue etc for a new task group */
7107struct task_group *sched_create_group(void)
7108{
7109 struct task_group *tg;
7110 struct cfs_rq *cfs_rq;
7111 struct sched_entity *se;
7112 struct rq *rq;
7113 int i;
7114
7115 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7116 if (!tg)
7117 return ERR_PTR(-ENOMEM);
7118
7119 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7120 if (!tg->cfs_rq)
7121 goto err;
7122 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7123 if (!tg->se)
7124 goto err;
7125
7126 for_each_possible_cpu(i) {
7127 rq = cpu_rq(i);
7128
7129 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7130 cpu_to_node(i));
7131 if (!cfs_rq)
7132 goto err;
7133
7134 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7135 cpu_to_node(i));
7136 if (!se)
7137 goto err;
7138
7139 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7140 memset(se, 0, sizeof(struct sched_entity));
7141
7142 tg->cfs_rq[i] = cfs_rq;
7143 init_cfs_rq(cfs_rq, rq);
7144 cfs_rq->tg = tg;
7145
7146 tg->se[i] = se;
7147 se->cfs_rq = &rq->cfs;
7148 se->my_q = cfs_rq;
7149 se->load.weight = NICE_0_LOAD;
7150 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7151 se->parent = NULL;
7152 }
7153
7154 tg->shares = NICE_0_LOAD;
7155
7156 lock_task_group_list();
7157 for_each_possible_cpu(i) {
7158 rq = cpu_rq(i);
7159 cfs_rq = tg->cfs_rq[i];
7160 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7161 }
7162 unlock_task_group_list();
7163
7164 return tg;
7165
7166err:
7167 for_each_possible_cpu(i) {
7168 if (tg->cfs_rq)
7169 kfree(tg->cfs_rq[i]);
7170 if (tg->se)
7171 kfree(tg->se[i]);
7172 }
7173 kfree(tg->cfs_rq);
7174 kfree(tg->se);
7175 kfree(tg);
7176
7177 return ERR_PTR(-ENOMEM);
7178}
7179
7180/* rcu callback to free various structures associated with a task group */
7181static void free_sched_group(struct rcu_head *rhp)
7182{
7183 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7184 struct cfs_rq *cfs_rq;
7185 struct sched_entity *se;
7186 int i;
7187
7188 /* now it should be safe to free those cfs_rqs */
7189 for_each_possible_cpu(i) {
7190 cfs_rq = tg->cfs_rq[i];
7191 kfree(cfs_rq);
7192
7193 se = tg->se[i];
7194 kfree(se);
7195 }
7196
7197 kfree(tg->cfs_rq);
7198 kfree(tg->se);
7199 kfree(tg);
7200}
7201
7202/* Destroy runqueue etc associated with a task group */
7203void sched_destroy_group(struct task_group *tg)
7204{
7205 struct cfs_rq *cfs_rq = NULL;
7206 int i;
7207
7208 lock_task_group_list();
7209 for_each_possible_cpu(i) {
7210 cfs_rq = tg->cfs_rq[i];
7211 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7212 }
7213 unlock_task_group_list();
7214
7215 BUG_ON(!cfs_rq);
7216
7217 /* wait for possible concurrent references to cfs_rqs complete */
7218 call_rcu(&tg->rcu, free_sched_group);
7219}
7220
7221/* change task's runqueue when it moves between groups.
7222 * The caller of this function should have put the task in its new group
7223 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7224 * reflect its new group.
7225 */
7226void sched_move_task(struct task_struct *tsk)
7227{
7228 int on_rq, running;
7229 unsigned long flags;
7230 struct rq *rq;
7231
7232 rq = task_rq_lock(tsk, &flags);
7233
7234 if (tsk->sched_class != &fair_sched_class) {
7235 set_task_cfs_rq(tsk, task_cpu(tsk));
7236 goto done;
7237 }
7238
7239 update_rq_clock(rq);
7240
7241 running = task_current(rq, tsk);
7242 on_rq = tsk->se.on_rq;
7243
7244 if (on_rq) {
7245 dequeue_task(rq, tsk, 0);
7246 if (unlikely(running))
7247 tsk->sched_class->put_prev_task(rq, tsk);
7248 }
7249
7250 set_task_cfs_rq(tsk, task_cpu(tsk));
7251
7252 if (on_rq) {
7253 if (unlikely(running))
7254 tsk->sched_class->set_curr_task(rq);
7255 enqueue_task(rq, tsk, 0);
7256 }
7257
7258done:
7259 task_rq_unlock(rq, &flags);
7260}
7261
7262/* rq->lock to be locked by caller */
7263static void set_se_shares(struct sched_entity *se, unsigned long shares)
7264{
7265 struct cfs_rq *cfs_rq = se->cfs_rq;
7266 struct rq *rq = cfs_rq->rq;
7267 int on_rq;
7268
7269 if (!shares)
7270 shares = MIN_GROUP_SHARES;
7271
7272 on_rq = se->on_rq;
7273 if (on_rq) {
7274 dequeue_entity(cfs_rq, se, 0);
7275 dec_cpu_load(rq, se->load.weight);
7276 }
7277
7278 se->load.weight = shares;
7279 se->load.inv_weight = div64_64((1ULL<<32), shares);
7280
7281 if (on_rq) {
7282 enqueue_entity(cfs_rq, se, 0);
7283 inc_cpu_load(rq, se->load.weight);
7284 }
7285}
7286
7287int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7288{
7289 int i;
7290 struct cfs_rq *cfs_rq;
7291 struct rq *rq;
7292
7293 lock_task_group_list();
7294 if (tg->shares == shares)
7295 goto done;
7296
7297 if (shares < MIN_GROUP_SHARES)
7298 shares = MIN_GROUP_SHARES;
7299
7300 /*
7301 * Prevent any load balance activity (rebalance_shares,
7302 * load_balance_fair) from referring to this group first,
7303 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7304 */
7305 for_each_possible_cpu(i) {
7306 cfs_rq = tg->cfs_rq[i];
7307 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7308 }
7309
7310 /* wait for any ongoing reference to this group to finish */
7311 synchronize_sched();
7312
7313 /*
7314 * Now we are free to modify the group's share on each cpu
7315 * w/o tripping rebalance_share or load_balance_fair.
7316 */
7317 tg->shares = shares;
7318 for_each_possible_cpu(i) {
7319 spin_lock_irq(&cpu_rq(i)->lock);
7320 set_se_shares(tg->se[i], shares);
7321 spin_unlock_irq(&cpu_rq(i)->lock);
7322 }
7323
7324 /*
7325 * Enable load balance activity on this group, by inserting it back on
7326 * each cpu's rq->leaf_cfs_rq_list.
7327 */
7328 for_each_possible_cpu(i) {
7329 rq = cpu_rq(i);
7330 cfs_rq = tg->cfs_rq[i];
7331 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7332 }
7333done:
7334 unlock_task_group_list();
7335 return 0;
7336}
7337
7338unsigned long sched_group_shares(struct task_group *tg)
7339{
7340 return tg->shares;
7341}
7342
7343#endif /* CONFIG_FAIR_GROUP_SCHED */
7344
7345#ifdef CONFIG_FAIR_CGROUP_SCHED
7346
7347/* return corresponding task_group object of a cgroup */
7348static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7349{
7350 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7351 struct task_group, css);
7352}
7353
7354static struct cgroup_subsys_state *
7355cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7356{
7357 struct task_group *tg;
7358
7359 if (!cgrp->parent) {
7360 /* This is early initialization for the top cgroup */
7361 init_task_group.css.cgroup = cgrp;
7362 return &init_task_group.css;
7363 }
7364
7365 /* we support only 1-level deep hierarchical scheduler atm */
7366 if (cgrp->parent->parent)
7367 return ERR_PTR(-EINVAL);
7368
7369 tg = sched_create_group();
7370 if (IS_ERR(tg))
7371 return ERR_PTR(-ENOMEM);
7372
7373 /* Bind the cgroup to task_group object we just created */
7374 tg->css.cgroup = cgrp;
7375
7376 return &tg->css;
7377}
7378
7379static void
7380cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7381{
7382 struct task_group *tg = cgroup_tg(cgrp);
7383
7384 sched_destroy_group(tg);
7385}
7386
7387static int
7388cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7389 struct task_struct *tsk)
7390{
7391 /* We don't support RT-tasks being in separate groups */
7392 if (tsk->sched_class != &fair_sched_class)
7393 return -EINVAL;
7394
7395 return 0;
7396}
7397
7398static void
7399cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7400 struct cgroup *old_cont, struct task_struct *tsk)
7401{
7402 sched_move_task(tsk);
7403}
7404
7405static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7406 u64 shareval)
7407{
7408 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7409}
7410
7411static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7412{
7413 struct task_group *tg = cgroup_tg(cgrp);
7414
7415 return (u64) tg->shares;
7416}
7417
7418static struct cftype cpu_files[] = {
7419 {
7420 .name = "shares",
7421 .read_uint = cpu_shares_read_uint,
7422 .write_uint = cpu_shares_write_uint,
7423 },
7424};
7425
7426static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7427{
7428 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7429}
7430
7431struct cgroup_subsys cpu_cgroup_subsys = {
7432 .name = "cpu",
7433 .create = cpu_cgroup_create,
7434 .destroy = cpu_cgroup_destroy,
7435 .can_attach = cpu_cgroup_can_attach,
7436 .attach = cpu_cgroup_attach,
7437 .populate = cpu_cgroup_populate,
7438 .subsys_id = cpu_cgroup_subsys_id,
7439 .early_init = 1,
7440};
7441
7442#endif /* CONFIG_FAIR_CGROUP_SCHED */
7443
7444#ifdef CONFIG_CGROUP_CPUACCT
7445
7446/*
7447 * CPU accounting code for task groups.
7448 *
7449 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7450 * (balbir@in.ibm.com).
7451 */
7452
7453/* track cpu usage of a group of tasks */
7454struct cpuacct {
7455 struct cgroup_subsys_state css;
7456 /* cpuusage holds pointer to a u64-type object on every cpu */
7457 u64 *cpuusage;
7458};
7459
7460struct cgroup_subsys cpuacct_subsys;
7461
7462/* return cpu accounting group corresponding to this container */
7463static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7464{
7465 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7466 struct cpuacct, css);
7467}
7468
7469/* return cpu accounting group to which this task belongs */
7470static inline struct cpuacct *task_ca(struct task_struct *tsk)
7471{
7472 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7473 struct cpuacct, css);
7474}
7475
7476/* create a new cpu accounting group */
7477static struct cgroup_subsys_state *cpuacct_create(
7478 struct cgroup_subsys *ss, struct cgroup *cont)
7479{
7480 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7481
7482 if (!ca)
7483 return ERR_PTR(-ENOMEM);
7484
7485 ca->cpuusage = alloc_percpu(u64);
7486 if (!ca->cpuusage) {
7487 kfree(ca);
7488 return ERR_PTR(-ENOMEM);
7489 }
7490
7491 return &ca->css;
7492}
7493
7494/* destroy an existing cpu accounting group */
7495static void
7496cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7497{
7498 struct cpuacct *ca = cgroup_ca(cont);
7499
7500 free_percpu(ca->cpuusage);
7501 kfree(ca);
7502}
7503
7504/* return total cpu usage (in nanoseconds) of a group */
7505static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7506{
7507 struct cpuacct *ca = cgroup_ca(cont);
7508 u64 totalcpuusage = 0;
7509 int i;
7510
7511 for_each_possible_cpu(i) {
7512 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7513
7514 /*
7515 * Take rq->lock to make 64-bit addition safe on 32-bit
7516 * platforms.
7517 */
7518 spin_lock_irq(&cpu_rq(i)->lock);
7519 totalcpuusage += *cpuusage;
7520 spin_unlock_irq(&cpu_rq(i)->lock);
7521 }
7522
7523 return totalcpuusage;
7524}
7525
7526static struct cftype files[] = {
7527 {
7528 .name = "usage",
7529 .read_uint = cpuusage_read,
7530 },
7531};
7532
7533static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7534{
7535 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7536}
7537
7538/*
7539 * charge this task's execution time to its accounting group.
7540 *
7541 * called with rq->lock held.
7542 */
7543static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7544{
7545 struct cpuacct *ca;
7546
7547 if (!cpuacct_subsys.active)
7548 return;
7549
7550 ca = task_ca(tsk);
7551 if (ca) {
7552 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7553
7554 *cpuusage += cputime;
7555 }
7556}
7557
7558struct cgroup_subsys cpuacct_subsys = {
7559 .name = "cpuacct",
7560 .create = cpuacct_create,
7561 .destroy = cpuacct_destroy,
7562 .populate = cpuacct_populate,
7563 .subsys_id = cpuacct_subsys_id,
7564};
7565#endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.04967 seconds and 5 git commands to generate.