Merge commit 'v2.6.28-rc8' into sched/core
[deliverable/linux.git] / kernel / sched.c
... / ...
CommitLineData
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
38#include <linux/capability.h>
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
41#include <linux/debug_locks.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/sysctl.h>
61#include <linux/syscalls.h>
62#include <linux/times.h>
63#include <linux/tsacct_kern.h>
64#include <linux/kprobes.h>
65#include <linux/delayacct.h>
66#include <linux/reciprocal_div.h>
67#include <linux/unistd.h>
68#include <linux/pagemap.h>
69#include <linux/hrtimer.h>
70#include <linux/tick.h>
71#include <linux/bootmem.h>
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
74#include <linux/ftrace.h>
75#include <trace/sched.h>
76
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79
80#include "sched_cpupri.h"
81
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114#define DEF_TIMESLICE (100 * HZ / 1000)
115
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
121#ifdef CONFIG_SMP
122/*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127{
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129}
130
131/*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136{
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139}
140#endif
141
142static inline int rt_policy(int policy)
143{
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
147}
148
149static inline int task_has_rt_policy(struct task_struct *p)
150{
151 return rt_policy(p->policy);
152}
153
154/*
155 * This is the priority-queue data structure of the RT scheduling class:
156 */
157struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160};
161
162struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
168};
169
170static struct rt_bandwidth def_rt_bandwidth;
171
172static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175{
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193}
194
195static
196void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197{
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207}
208
209static inline int rt_bandwidth_enabled(void)
210{
211 return sysctl_sched_rt_runtime >= 0;
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235}
236
237#ifdef CONFIG_RT_GROUP_SCHED
238static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239{
240 hrtimer_cancel(&rt_b->rt_period_timer);
241}
242#endif
243
244/*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248static DEFINE_MUTEX(sched_domains_mutex);
249
250#ifdef CONFIG_GROUP_SCHED
251
252#include <linux/cgroup.h>
253
254struct cfs_rq;
255
256static LIST_HEAD(task_groups);
257
258/* task group related information */
259struct task_group {
260#ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262#endif
263
264#ifdef CONFIG_USER_SCHED
265 uid_t uid;
266#endif
267
268#ifdef CONFIG_FAIR_GROUP_SCHED
269 /* schedulable entities of this group on each cpu */
270 struct sched_entity **se;
271 /* runqueue "owned" by this group on each cpu */
272 struct cfs_rq **cfs_rq;
273 unsigned long shares;
274#endif
275
276#ifdef CONFIG_RT_GROUP_SCHED
277 struct sched_rt_entity **rt_se;
278 struct rt_rq **rt_rq;
279
280 struct rt_bandwidth rt_bandwidth;
281#endif
282
283 struct rcu_head rcu;
284 struct list_head list;
285
286 struct task_group *parent;
287 struct list_head siblings;
288 struct list_head children;
289};
290
291#ifdef CONFIG_USER_SCHED
292
293/* Helper function to pass uid information to create_sched_user() */
294void set_tg_uid(struct user_struct *user)
295{
296 user->tg->uid = user->uid;
297}
298
299/*
300 * Root task group.
301 * Every UID task group (including init_task_group aka UID-0) will
302 * be a child to this group.
303 */
304struct task_group root_task_group;
305
306#ifdef CONFIG_FAIR_GROUP_SCHED
307/* Default task group's sched entity on each cpu */
308static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
309/* Default task group's cfs_rq on each cpu */
310static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
311#endif /* CONFIG_FAIR_GROUP_SCHED */
312
313#ifdef CONFIG_RT_GROUP_SCHED
314static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
315static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
316#endif /* CONFIG_RT_GROUP_SCHED */
317#else /* !CONFIG_USER_SCHED */
318#define root_task_group init_task_group
319#endif /* CONFIG_USER_SCHED */
320
321/* task_group_lock serializes add/remove of task groups and also changes to
322 * a task group's cpu shares.
323 */
324static DEFINE_SPINLOCK(task_group_lock);
325
326#ifdef CONFIG_FAIR_GROUP_SCHED
327#ifdef CONFIG_USER_SCHED
328# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
329#else /* !CONFIG_USER_SCHED */
330# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
331#endif /* CONFIG_USER_SCHED */
332
333/*
334 * A weight of 0 or 1 can cause arithmetics problems.
335 * A weight of a cfs_rq is the sum of weights of which entities
336 * are queued on this cfs_rq, so a weight of a entity should not be
337 * too large, so as the shares value of a task group.
338 * (The default weight is 1024 - so there's no practical
339 * limitation from this.)
340 */
341#define MIN_SHARES 2
342#define MAX_SHARES (1UL << 18)
343
344static int init_task_group_load = INIT_TASK_GROUP_LOAD;
345#endif
346
347/* Default task group.
348 * Every task in system belong to this group at bootup.
349 */
350struct task_group init_task_group;
351
352/* return group to which a task belongs */
353static inline struct task_group *task_group(struct task_struct *p)
354{
355 struct task_group *tg;
356
357#ifdef CONFIG_USER_SCHED
358 tg = p->user->tg;
359#elif defined(CONFIG_CGROUP_SCHED)
360 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
361 struct task_group, css);
362#else
363 tg = &init_task_group;
364#endif
365 return tg;
366}
367
368/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
369static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
370{
371#ifdef CONFIG_FAIR_GROUP_SCHED
372 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
373 p->se.parent = task_group(p)->se[cpu];
374#endif
375
376#ifdef CONFIG_RT_GROUP_SCHED
377 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
378 p->rt.parent = task_group(p)->rt_se[cpu];
379#endif
380}
381
382#else
383
384static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
385static inline struct task_group *task_group(struct task_struct *p)
386{
387 return NULL;
388}
389
390#endif /* CONFIG_GROUP_SCHED */
391
392/* CFS-related fields in a runqueue */
393struct cfs_rq {
394 struct load_weight load;
395 unsigned long nr_running;
396
397 u64 exec_clock;
398 u64 min_vruntime;
399
400 struct rb_root tasks_timeline;
401 struct rb_node *rb_leftmost;
402
403 struct list_head tasks;
404 struct list_head *balance_iterator;
405
406 /*
407 * 'curr' points to currently running entity on this cfs_rq.
408 * It is set to NULL otherwise (i.e when none are currently running).
409 */
410 struct sched_entity *curr, *next, *last;
411
412 unsigned int nr_spread_over;
413
414#ifdef CONFIG_FAIR_GROUP_SCHED
415 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
416
417 /*
418 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
419 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
420 * (like users, containers etc.)
421 *
422 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
423 * list is used during load balance.
424 */
425 struct list_head leaf_cfs_rq_list;
426 struct task_group *tg; /* group that "owns" this runqueue */
427
428#ifdef CONFIG_SMP
429 /*
430 * the part of load.weight contributed by tasks
431 */
432 unsigned long task_weight;
433
434 /*
435 * h_load = weight * f(tg)
436 *
437 * Where f(tg) is the recursive weight fraction assigned to
438 * this group.
439 */
440 unsigned long h_load;
441
442 /*
443 * this cpu's part of tg->shares
444 */
445 unsigned long shares;
446
447 /*
448 * load.weight at the time we set shares
449 */
450 unsigned long rq_weight;
451#endif
452#endif
453};
454
455/* Real-Time classes' related field in a runqueue: */
456struct rt_rq {
457 struct rt_prio_array active;
458 unsigned long rt_nr_running;
459#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
460 int highest_prio; /* highest queued rt task prio */
461#endif
462#ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 int overloaded;
465#endif
466 int rt_throttled;
467 u64 rt_time;
468 u64 rt_runtime;
469 /* Nests inside the rq lock: */
470 spinlock_t rt_runtime_lock;
471
472#ifdef CONFIG_RT_GROUP_SCHED
473 unsigned long rt_nr_boosted;
474
475 struct rq *rq;
476 struct list_head leaf_rt_rq_list;
477 struct task_group *tg;
478 struct sched_rt_entity *rt_se;
479#endif
480};
481
482#ifdef CONFIG_SMP
483
484/*
485 * We add the notion of a root-domain which will be used to define per-domain
486 * variables. Each exclusive cpuset essentially defines an island domain by
487 * fully partitioning the member cpus from any other cpuset. Whenever a new
488 * exclusive cpuset is created, we also create and attach a new root-domain
489 * object.
490 *
491 */
492struct root_domain {
493 atomic_t refcount;
494 cpumask_t span;
495 cpumask_t online;
496
497 /*
498 * The "RT overload" flag: it gets set if a CPU has more than
499 * one runnable RT task.
500 */
501 cpumask_t rto_mask;
502 atomic_t rto_count;
503#ifdef CONFIG_SMP
504 struct cpupri cpupri;
505#endif
506};
507
508/*
509 * By default the system creates a single root-domain with all cpus as
510 * members (mimicking the global state we have today).
511 */
512static struct root_domain def_root_domain;
513
514#endif
515
516/*
517 * This is the main, per-CPU runqueue data structure.
518 *
519 * Locking rule: those places that want to lock multiple runqueues
520 * (such as the load balancing or the thread migration code), lock
521 * acquire operations must be ordered by ascending &runqueue.
522 */
523struct rq {
524 /* runqueue lock: */
525 spinlock_t lock;
526
527 /*
528 * nr_running and cpu_load should be in the same cacheline because
529 * remote CPUs use both these fields when doing load calculation.
530 */
531 unsigned long nr_running;
532 #define CPU_LOAD_IDX_MAX 5
533 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
534 unsigned char idle_at_tick;
535#ifdef CONFIG_NO_HZ
536 unsigned long last_tick_seen;
537 unsigned char in_nohz_recently;
538#endif
539 /* capture load from *all* tasks on this cpu: */
540 struct load_weight load;
541 unsigned long nr_load_updates;
542 u64 nr_switches;
543
544 struct cfs_rq cfs;
545 struct rt_rq rt;
546
547#ifdef CONFIG_FAIR_GROUP_SCHED
548 /* list of leaf cfs_rq on this cpu: */
549 struct list_head leaf_cfs_rq_list;
550#endif
551#ifdef CONFIG_RT_GROUP_SCHED
552 struct list_head leaf_rt_rq_list;
553#endif
554
555 /*
556 * This is part of a global counter where only the total sum
557 * over all CPUs matters. A task can increase this counter on
558 * one CPU and if it got migrated afterwards it may decrease
559 * it on another CPU. Always updated under the runqueue lock:
560 */
561 unsigned long nr_uninterruptible;
562
563 struct task_struct *curr, *idle;
564 unsigned long next_balance;
565 struct mm_struct *prev_mm;
566
567 u64 clock;
568
569 atomic_t nr_iowait;
570
571#ifdef CONFIG_SMP
572 struct root_domain *rd;
573 struct sched_domain *sd;
574
575 /* For active balancing */
576 int active_balance;
577 int push_cpu;
578 /* cpu of this runqueue: */
579 int cpu;
580 int online;
581
582 unsigned long avg_load_per_task;
583
584 struct task_struct *migration_thread;
585 struct list_head migration_queue;
586#endif
587
588#ifdef CONFIG_SCHED_HRTICK
589#ifdef CONFIG_SMP
590 int hrtick_csd_pending;
591 struct call_single_data hrtick_csd;
592#endif
593 struct hrtimer hrtick_timer;
594#endif
595
596#ifdef CONFIG_SCHEDSTATS
597 /* latency stats */
598 struct sched_info rq_sched_info;
599
600 /* sys_sched_yield() stats */
601 unsigned int yld_exp_empty;
602 unsigned int yld_act_empty;
603 unsigned int yld_both_empty;
604 unsigned int yld_count;
605
606 /* schedule() stats */
607 unsigned int sched_switch;
608 unsigned int sched_count;
609 unsigned int sched_goidle;
610
611 /* try_to_wake_up() stats */
612 unsigned int ttwu_count;
613 unsigned int ttwu_local;
614
615 /* BKL stats */
616 unsigned int bkl_count;
617#endif
618};
619
620static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
621
622static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
623{
624 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
625}
626
627static inline int cpu_of(struct rq *rq)
628{
629#ifdef CONFIG_SMP
630 return rq->cpu;
631#else
632 return 0;
633#endif
634}
635
636/*
637 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
638 * See detach_destroy_domains: synchronize_sched for details.
639 *
640 * The domain tree of any CPU may only be accessed from within
641 * preempt-disabled sections.
642 */
643#define for_each_domain(cpu, __sd) \
644 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
645
646#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
647#define this_rq() (&__get_cpu_var(runqueues))
648#define task_rq(p) cpu_rq(task_cpu(p))
649#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
650
651static inline void update_rq_clock(struct rq *rq)
652{
653 rq->clock = sched_clock_cpu(cpu_of(rq));
654}
655
656/*
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
658 */
659#ifdef CONFIG_SCHED_DEBUG
660# define const_debug __read_mostly
661#else
662# define const_debug static const
663#endif
664
665/**
666 * runqueue_is_locked
667 *
668 * Returns true if the current cpu runqueue is locked.
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
671 */
672int runqueue_is_locked(void)
673{
674 int cpu = get_cpu();
675 struct rq *rq = cpu_rq(cpu);
676 int ret;
677
678 ret = spin_is_locked(&rq->lock);
679 put_cpu();
680 return ret;
681}
682
683/*
684 * Debugging: various feature bits
685 */
686
687#define SCHED_FEAT(name, enabled) \
688 __SCHED_FEAT_##name ,
689
690enum {
691#include "sched_features.h"
692};
693
694#undef SCHED_FEAT
695
696#define SCHED_FEAT(name, enabled) \
697 (1UL << __SCHED_FEAT_##name) * enabled |
698
699const_debug unsigned int sysctl_sched_features =
700#include "sched_features.h"
701 0;
702
703#undef SCHED_FEAT
704
705#ifdef CONFIG_SCHED_DEBUG
706#define SCHED_FEAT(name, enabled) \
707 #name ,
708
709static __read_mostly char *sched_feat_names[] = {
710#include "sched_features.h"
711 NULL
712};
713
714#undef SCHED_FEAT
715
716static int sched_feat_show(struct seq_file *m, void *v)
717{
718 int i;
719
720 for (i = 0; sched_feat_names[i]; i++) {
721 if (!(sysctl_sched_features & (1UL << i)))
722 seq_puts(m, "NO_");
723 seq_printf(m, "%s ", sched_feat_names[i]);
724 }
725 seq_puts(m, "\n");
726
727 return 0;
728}
729
730static ssize_t
731sched_feat_write(struct file *filp, const char __user *ubuf,
732 size_t cnt, loff_t *ppos)
733{
734 char buf[64];
735 char *cmp = buf;
736 int neg = 0;
737 int i;
738
739 if (cnt > 63)
740 cnt = 63;
741
742 if (copy_from_user(&buf, ubuf, cnt))
743 return -EFAULT;
744
745 buf[cnt] = 0;
746
747 if (strncmp(buf, "NO_", 3) == 0) {
748 neg = 1;
749 cmp += 3;
750 }
751
752 for (i = 0; sched_feat_names[i]; i++) {
753 int len = strlen(sched_feat_names[i]);
754
755 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
756 if (neg)
757 sysctl_sched_features &= ~(1UL << i);
758 else
759 sysctl_sched_features |= (1UL << i);
760 break;
761 }
762 }
763
764 if (!sched_feat_names[i])
765 return -EINVAL;
766
767 filp->f_pos += cnt;
768
769 return cnt;
770}
771
772static int sched_feat_open(struct inode *inode, struct file *filp)
773{
774 return single_open(filp, sched_feat_show, NULL);
775}
776
777static struct file_operations sched_feat_fops = {
778 .open = sched_feat_open,
779 .write = sched_feat_write,
780 .read = seq_read,
781 .llseek = seq_lseek,
782 .release = single_release,
783};
784
785static __init int sched_init_debug(void)
786{
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
789
790 return 0;
791}
792late_initcall(sched_init_debug);
793
794#endif
795
796#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
797
798/*
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
801 */
802const_debug unsigned int sysctl_sched_nr_migrate = 32;
803
804/*
805 * ratelimit for updating the group shares.
806 * default: 0.25ms
807 */
808unsigned int sysctl_sched_shares_ratelimit = 250000;
809
810/*
811 * Inject some fuzzyness into changing the per-cpu group shares
812 * this avoids remote rq-locks at the expense of fairness.
813 * default: 4
814 */
815unsigned int sysctl_sched_shares_thresh = 4;
816
817/*
818 * period over which we measure -rt task cpu usage in us.
819 * default: 1s
820 */
821unsigned int sysctl_sched_rt_period = 1000000;
822
823static __read_mostly int scheduler_running;
824
825/*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829int sysctl_sched_rt_runtime = 950000;
830
831static inline u64 global_rt_period(void)
832{
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834}
835
836static inline u64 global_rt_runtime(void)
837{
838 if (sysctl_sched_rt_runtime < 0)
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842}
843
844#ifndef prepare_arch_switch
845# define prepare_arch_switch(next) do { } while (0)
846#endif
847#ifndef finish_arch_switch
848# define finish_arch_switch(prev) do { } while (0)
849#endif
850
851static inline int task_current(struct rq *rq, struct task_struct *p)
852{
853 return rq->curr == p;
854}
855
856#ifndef __ARCH_WANT_UNLOCKED_CTXSW
857static inline int task_running(struct rq *rq, struct task_struct *p)
858{
859 return task_current(rq, p);
860}
861
862static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863{
864}
865
866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867{
868#ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871#endif
872 /*
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
876 */
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878
879 spin_unlock_irq(&rq->lock);
880}
881
882#else /* __ARCH_WANT_UNLOCKED_CTXSW */
883static inline int task_running(struct rq *rq, struct task_struct *p)
884{
885#ifdef CONFIG_SMP
886 return p->oncpu;
887#else
888 return task_current(rq, p);
889#endif
890}
891
892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
900 next->oncpu = 1;
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 spin_unlock_irq(&rq->lock);
904#else
905 spin_unlock(&rq->lock);
906#endif
907}
908
909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910{
911#ifdef CONFIG_SMP
912 /*
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->oncpu = 0;
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
922#endif
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
925
926/*
927 * __task_rq_lock - lock the runqueue a given task resides on.
928 * Must be called interrupts disabled.
929 */
930static inline struct rq *__task_rq_lock(struct task_struct *p)
931 __acquires(rq->lock)
932{
933 for (;;) {
934 struct rq *rq = task_rq(p);
935 spin_lock(&rq->lock);
936 if (likely(rq == task_rq(p)))
937 return rq;
938 spin_unlock(&rq->lock);
939 }
940}
941
942/*
943 * task_rq_lock - lock the runqueue a given task resides on and disable
944 * interrupts. Note the ordering: we can safely lookup the task_rq without
945 * explicitly disabling preemption.
946 */
947static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
948 __acquires(rq->lock)
949{
950 struct rq *rq;
951
952 for (;;) {
953 local_irq_save(*flags);
954 rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock_irqrestore(&rq->lock, *flags);
959 }
960}
961
962void task_rq_unlock_wait(struct task_struct *p)
963{
964 struct rq *rq = task_rq(p);
965
966 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
967 spin_unlock_wait(&rq->lock);
968}
969
970static void __task_rq_unlock(struct rq *rq)
971 __releases(rq->lock)
972{
973 spin_unlock(&rq->lock);
974}
975
976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
977 __releases(rq->lock)
978{
979 spin_unlock_irqrestore(&rq->lock, *flags);
980}
981
982/*
983 * this_rq_lock - lock this runqueue and disable interrupts.
984 */
985static struct rq *this_rq_lock(void)
986 __acquires(rq->lock)
987{
988 struct rq *rq;
989
990 local_irq_disable();
991 rq = this_rq();
992 spin_lock(&rq->lock);
993
994 return rq;
995}
996
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
1018 if (!cpu_active(cpu_of(rq)))
1019 return 0;
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
1039 spin_lock(&rq->lock);
1040 update_rq_clock(rq);
1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042 spin_unlock(&rq->lock);
1043
1044 return HRTIMER_NORESTART;
1045}
1046
1047#ifdef CONFIG_SMP
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
1052{
1053 struct rq *rq = arg;
1054
1055 spin_lock(&rq->lock);
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
1058 spin_unlock(&rq->lock);
1059}
1060
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
1067{
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1070
1071 hrtimer_set_expires(timer, time);
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1077 rq->hrtick_csd_pending = 1;
1078 }
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
1093 hrtick_clear(cpu_rq(cpu));
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
1100static __init void init_hrtick(void)
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
1112 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1113}
1114
1115static inline void init_hrtick(void)
1116{
1117}
1118#endif /* CONFIG_SMP */
1119
1120static void init_rq_hrtick(struct rq *rq)
1121{
1122#ifdef CONFIG_SMP
1123 rq->hrtick_csd_pending = 0;
1124
1125 rq->hrtick_csd.flags = 0;
1126 rq->hrtick_csd.func = __hrtick_start;
1127 rq->hrtick_csd.info = rq;
1128#endif
1129
1130 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1131 rq->hrtick_timer.function = hrtick;
1132 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1133}
1134#else /* CONFIG_SCHED_HRTICK */
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
1143static inline void init_hrtick(void)
1144{
1145}
1146#endif /* CONFIG_SCHED_HRTICK */
1147
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
1161static void resched_task(struct task_struct *p)
1162{
1163 int cpu;
1164
1165 assert_spin_locked(&task_rq(p)->lock);
1166
1167 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1168 return;
1169
1170 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
1187 if (!spin_trylock_irqsave(&rq->lock, flags))
1188 return;
1189 resched_task(cpu_curr(cpu));
1190 spin_unlock_irqrestore(&rq->lock, flags);
1191}
1192
1193#ifdef CONFIG_NO_HZ
1194/*
1195 * When add_timer_on() enqueues a timer into the timer wheel of an
1196 * idle CPU then this timer might expire before the next timer event
1197 * which is scheduled to wake up that CPU. In case of a completely
1198 * idle system the next event might even be infinite time into the
1199 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1200 * leaves the inner idle loop so the newly added timer is taken into
1201 * account when the CPU goes back to idle and evaluates the timer
1202 * wheel for the next timer event.
1203 */
1204void wake_up_idle_cpu(int cpu)
1205{
1206 struct rq *rq = cpu_rq(cpu);
1207
1208 if (cpu == smp_processor_id())
1209 return;
1210
1211 /*
1212 * This is safe, as this function is called with the timer
1213 * wheel base lock of (cpu) held. When the CPU is on the way
1214 * to idle and has not yet set rq->curr to idle then it will
1215 * be serialized on the timer wheel base lock and take the new
1216 * timer into account automatically.
1217 */
1218 if (rq->curr != rq->idle)
1219 return;
1220
1221 /*
1222 * We can set TIF_RESCHED on the idle task of the other CPU
1223 * lockless. The worst case is that the other CPU runs the
1224 * idle task through an additional NOOP schedule()
1225 */
1226 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1227
1228 /* NEED_RESCHED must be visible before we test polling */
1229 smp_mb();
1230 if (!tsk_is_polling(rq->idle))
1231 smp_send_reschedule(cpu);
1232}
1233#endif /* CONFIG_NO_HZ */
1234
1235#else /* !CONFIG_SMP */
1236static void resched_task(struct task_struct *p)
1237{
1238 assert_spin_locked(&task_rq(p)->lock);
1239 set_tsk_need_resched(p);
1240}
1241#endif /* CONFIG_SMP */
1242
1243#if BITS_PER_LONG == 32
1244# define WMULT_CONST (~0UL)
1245#else
1246# define WMULT_CONST (1UL << 32)
1247#endif
1248
1249#define WMULT_SHIFT 32
1250
1251/*
1252 * Shift right and round:
1253 */
1254#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1255
1256/*
1257 * delta *= weight / lw
1258 */
1259static unsigned long
1260calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1261 struct load_weight *lw)
1262{
1263 u64 tmp;
1264
1265 if (!lw->inv_weight) {
1266 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1267 lw->inv_weight = 1;
1268 else
1269 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1270 / (lw->weight+1);
1271 }
1272
1273 tmp = (u64)delta_exec * weight;
1274 /*
1275 * Check whether we'd overflow the 64-bit multiplication:
1276 */
1277 if (unlikely(tmp > WMULT_CONST))
1278 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1279 WMULT_SHIFT/2);
1280 else
1281 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1282
1283 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1284}
1285
1286static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1287{
1288 lw->weight += inc;
1289 lw->inv_weight = 0;
1290}
1291
1292static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1293{
1294 lw->weight -= dec;
1295 lw->inv_weight = 0;
1296}
1297
1298/*
1299 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1300 * of tasks with abnormal "nice" values across CPUs the contribution that
1301 * each task makes to its run queue's load is weighted according to its
1302 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1303 * scaled version of the new time slice allocation that they receive on time
1304 * slice expiry etc.
1305 */
1306
1307#define WEIGHT_IDLEPRIO 2
1308#define WMULT_IDLEPRIO (1 << 31)
1309
1310/*
1311 * Nice levels are multiplicative, with a gentle 10% change for every
1312 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1313 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1314 * that remained on nice 0.
1315 *
1316 * The "10% effect" is relative and cumulative: from _any_ nice level,
1317 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1318 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1319 * If a task goes up by ~10% and another task goes down by ~10% then
1320 * the relative distance between them is ~25%.)
1321 */
1322static const int prio_to_weight[40] = {
1323 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1324 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1325 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1326 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1327 /* 0 */ 1024, 820, 655, 526, 423,
1328 /* 5 */ 335, 272, 215, 172, 137,
1329 /* 10 */ 110, 87, 70, 56, 45,
1330 /* 15 */ 36, 29, 23, 18, 15,
1331};
1332
1333/*
1334 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1335 *
1336 * In cases where the weight does not change often, we can use the
1337 * precalculated inverse to speed up arithmetics by turning divisions
1338 * into multiplications:
1339 */
1340static const u32 prio_to_wmult[40] = {
1341 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1342 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1343 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1344 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1345 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1346 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1347 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1348 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1349};
1350
1351static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1352
1353/*
1354 * runqueue iterator, to support SMP load-balancing between different
1355 * scheduling classes, without having to expose their internal data
1356 * structures to the load-balancing proper:
1357 */
1358struct rq_iterator {
1359 void *arg;
1360 struct task_struct *(*start)(void *);
1361 struct task_struct *(*next)(void *);
1362};
1363
1364#ifdef CONFIG_SMP
1365static unsigned long
1366balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1367 unsigned long max_load_move, struct sched_domain *sd,
1368 enum cpu_idle_type idle, int *all_pinned,
1369 int *this_best_prio, struct rq_iterator *iterator);
1370
1371static int
1372iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1373 struct sched_domain *sd, enum cpu_idle_type idle,
1374 struct rq_iterator *iterator);
1375#endif
1376
1377#ifdef CONFIG_CGROUP_CPUACCT
1378static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1379#else
1380static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1381#endif
1382
1383static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1384{
1385 update_load_add(&rq->load, load);
1386}
1387
1388static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1389{
1390 update_load_sub(&rq->load, load);
1391}
1392
1393#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1394typedef int (*tg_visitor)(struct task_group *, void *);
1395
1396/*
1397 * Iterate the full tree, calling @down when first entering a node and @up when
1398 * leaving it for the final time.
1399 */
1400static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1401{
1402 struct task_group *parent, *child;
1403 int ret;
1404
1405 rcu_read_lock();
1406 parent = &root_task_group;
1407down:
1408 ret = (*down)(parent, data);
1409 if (ret)
1410 goto out_unlock;
1411 list_for_each_entry_rcu(child, &parent->children, siblings) {
1412 parent = child;
1413 goto down;
1414
1415up:
1416 continue;
1417 }
1418 ret = (*up)(parent, data);
1419 if (ret)
1420 goto out_unlock;
1421
1422 child = parent;
1423 parent = parent->parent;
1424 if (parent)
1425 goto up;
1426out_unlock:
1427 rcu_read_unlock();
1428
1429 return ret;
1430}
1431
1432static int tg_nop(struct task_group *tg, void *data)
1433{
1434 return 0;
1435}
1436#endif
1437
1438#ifdef CONFIG_SMP
1439static unsigned long source_load(int cpu, int type);
1440static unsigned long target_load(int cpu, int type);
1441static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1442
1443static unsigned long cpu_avg_load_per_task(int cpu)
1444{
1445 struct rq *rq = cpu_rq(cpu);
1446 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1447
1448 if (nr_running)
1449 rq->avg_load_per_task = rq->load.weight / nr_running;
1450 else
1451 rq->avg_load_per_task = 0;
1452
1453 return rq->avg_load_per_task;
1454}
1455
1456#ifdef CONFIG_FAIR_GROUP_SCHED
1457
1458static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1459
1460/*
1461 * Calculate and set the cpu's group shares.
1462 */
1463static void
1464update_group_shares_cpu(struct task_group *tg, int cpu,
1465 unsigned long sd_shares, unsigned long sd_rq_weight)
1466{
1467 unsigned long shares;
1468 unsigned long rq_weight;
1469
1470 if (!tg->se[cpu])
1471 return;
1472
1473 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1474
1475 /*
1476 * \Sum shares * rq_weight
1477 * shares = -----------------------
1478 * \Sum rq_weight
1479 *
1480 */
1481 shares = (sd_shares * rq_weight) / sd_rq_weight;
1482 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1483
1484 if (abs(shares - tg->se[cpu]->load.weight) >
1485 sysctl_sched_shares_thresh) {
1486 struct rq *rq = cpu_rq(cpu);
1487 unsigned long flags;
1488
1489 spin_lock_irqsave(&rq->lock, flags);
1490 tg->cfs_rq[cpu]->shares = shares;
1491
1492 __set_se_shares(tg->se[cpu], shares);
1493 spin_unlock_irqrestore(&rq->lock, flags);
1494 }
1495}
1496
1497/*
1498 * Re-compute the task group their per cpu shares over the given domain.
1499 * This needs to be done in a bottom-up fashion because the rq weight of a
1500 * parent group depends on the shares of its child groups.
1501 */
1502static int tg_shares_up(struct task_group *tg, void *data)
1503{
1504 unsigned long weight, rq_weight = 0;
1505 unsigned long shares = 0;
1506 struct sched_domain *sd = data;
1507 int i;
1508
1509 for_each_cpu_mask(i, sd->span) {
1510 /*
1511 * If there are currently no tasks on the cpu pretend there
1512 * is one of average load so that when a new task gets to
1513 * run here it will not get delayed by group starvation.
1514 */
1515 weight = tg->cfs_rq[i]->load.weight;
1516 if (!weight)
1517 weight = NICE_0_LOAD;
1518
1519 tg->cfs_rq[i]->rq_weight = weight;
1520 rq_weight += weight;
1521 shares += tg->cfs_rq[i]->shares;
1522 }
1523
1524 if ((!shares && rq_weight) || shares > tg->shares)
1525 shares = tg->shares;
1526
1527 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1528 shares = tg->shares;
1529
1530 for_each_cpu_mask(i, sd->span)
1531 update_group_shares_cpu(tg, i, shares, rq_weight);
1532
1533 return 0;
1534}
1535
1536/*
1537 * Compute the cpu's hierarchical load factor for each task group.
1538 * This needs to be done in a top-down fashion because the load of a child
1539 * group is a fraction of its parents load.
1540 */
1541static int tg_load_down(struct task_group *tg, void *data)
1542{
1543 unsigned long load;
1544 long cpu = (long)data;
1545
1546 if (!tg->parent) {
1547 load = cpu_rq(cpu)->load.weight;
1548 } else {
1549 load = tg->parent->cfs_rq[cpu]->h_load;
1550 load *= tg->cfs_rq[cpu]->shares;
1551 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1552 }
1553
1554 tg->cfs_rq[cpu]->h_load = load;
1555
1556 return 0;
1557}
1558
1559static void update_shares(struct sched_domain *sd)
1560{
1561 u64 now = cpu_clock(raw_smp_processor_id());
1562 s64 elapsed = now - sd->last_update;
1563
1564 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1565 sd->last_update = now;
1566 walk_tg_tree(tg_nop, tg_shares_up, sd);
1567 }
1568}
1569
1570static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1571{
1572 spin_unlock(&rq->lock);
1573 update_shares(sd);
1574 spin_lock(&rq->lock);
1575}
1576
1577static void update_h_load(long cpu)
1578{
1579 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1580}
1581
1582#else
1583
1584static inline void update_shares(struct sched_domain *sd)
1585{
1586}
1587
1588static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1589{
1590}
1591
1592#endif
1593
1594/*
1595 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1596 */
1597static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1598 __releases(this_rq->lock)
1599 __acquires(busiest->lock)
1600 __acquires(this_rq->lock)
1601{
1602 int ret = 0;
1603
1604 if (unlikely(!irqs_disabled())) {
1605 /* printk() doesn't work good under rq->lock */
1606 spin_unlock(&this_rq->lock);
1607 BUG_ON(1);
1608 }
1609 if (unlikely(!spin_trylock(&busiest->lock))) {
1610 if (busiest < this_rq) {
1611 spin_unlock(&this_rq->lock);
1612 spin_lock(&busiest->lock);
1613 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1614 ret = 1;
1615 } else
1616 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1617 }
1618 return ret;
1619}
1620
1621static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1622 __releases(busiest->lock)
1623{
1624 spin_unlock(&busiest->lock);
1625 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1626}
1627#endif
1628
1629#ifdef CONFIG_FAIR_GROUP_SCHED
1630static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1631{
1632#ifdef CONFIG_SMP
1633 cfs_rq->shares = shares;
1634#endif
1635}
1636#endif
1637
1638#include "sched_stats.h"
1639#include "sched_idletask.c"
1640#include "sched_fair.c"
1641#include "sched_rt.c"
1642#ifdef CONFIG_SCHED_DEBUG
1643# include "sched_debug.c"
1644#endif
1645
1646#define sched_class_highest (&rt_sched_class)
1647#define for_each_class(class) \
1648 for (class = sched_class_highest; class; class = class->next)
1649
1650static void inc_nr_running(struct rq *rq)
1651{
1652 rq->nr_running++;
1653}
1654
1655static void dec_nr_running(struct rq *rq)
1656{
1657 rq->nr_running--;
1658}
1659
1660static void set_load_weight(struct task_struct *p)
1661{
1662 if (task_has_rt_policy(p)) {
1663 p->se.load.weight = prio_to_weight[0] * 2;
1664 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1665 return;
1666 }
1667
1668 /*
1669 * SCHED_IDLE tasks get minimal weight:
1670 */
1671 if (p->policy == SCHED_IDLE) {
1672 p->se.load.weight = WEIGHT_IDLEPRIO;
1673 p->se.load.inv_weight = WMULT_IDLEPRIO;
1674 return;
1675 }
1676
1677 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1678 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1679}
1680
1681static void update_avg(u64 *avg, u64 sample)
1682{
1683 s64 diff = sample - *avg;
1684 *avg += diff >> 3;
1685}
1686
1687static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1688{
1689 sched_info_queued(p);
1690 p->sched_class->enqueue_task(rq, p, wakeup);
1691 p->se.on_rq = 1;
1692}
1693
1694static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1695{
1696 if (sleep && p->se.last_wakeup) {
1697 update_avg(&p->se.avg_overlap,
1698 p->se.sum_exec_runtime - p->se.last_wakeup);
1699 p->se.last_wakeup = 0;
1700 }
1701
1702 sched_info_dequeued(p);
1703 p->sched_class->dequeue_task(rq, p, sleep);
1704 p->se.on_rq = 0;
1705}
1706
1707/*
1708 * __normal_prio - return the priority that is based on the static prio
1709 */
1710static inline int __normal_prio(struct task_struct *p)
1711{
1712 return p->static_prio;
1713}
1714
1715/*
1716 * Calculate the expected normal priority: i.e. priority
1717 * without taking RT-inheritance into account. Might be
1718 * boosted by interactivity modifiers. Changes upon fork,
1719 * setprio syscalls, and whenever the interactivity
1720 * estimator recalculates.
1721 */
1722static inline int normal_prio(struct task_struct *p)
1723{
1724 int prio;
1725
1726 if (task_has_rt_policy(p))
1727 prio = MAX_RT_PRIO-1 - p->rt_priority;
1728 else
1729 prio = __normal_prio(p);
1730 return prio;
1731}
1732
1733/*
1734 * Calculate the current priority, i.e. the priority
1735 * taken into account by the scheduler. This value might
1736 * be boosted by RT tasks, or might be boosted by
1737 * interactivity modifiers. Will be RT if the task got
1738 * RT-boosted. If not then it returns p->normal_prio.
1739 */
1740static int effective_prio(struct task_struct *p)
1741{
1742 p->normal_prio = normal_prio(p);
1743 /*
1744 * If we are RT tasks or we were boosted to RT priority,
1745 * keep the priority unchanged. Otherwise, update priority
1746 * to the normal priority:
1747 */
1748 if (!rt_prio(p->prio))
1749 return p->normal_prio;
1750 return p->prio;
1751}
1752
1753/*
1754 * activate_task - move a task to the runqueue.
1755 */
1756static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1757{
1758 if (task_contributes_to_load(p))
1759 rq->nr_uninterruptible--;
1760
1761 enqueue_task(rq, p, wakeup);
1762 inc_nr_running(rq);
1763}
1764
1765/*
1766 * deactivate_task - remove a task from the runqueue.
1767 */
1768static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1769{
1770 if (task_contributes_to_load(p))
1771 rq->nr_uninterruptible++;
1772
1773 dequeue_task(rq, p, sleep);
1774 dec_nr_running(rq);
1775}
1776
1777/**
1778 * task_curr - is this task currently executing on a CPU?
1779 * @p: the task in question.
1780 */
1781inline int task_curr(const struct task_struct *p)
1782{
1783 return cpu_curr(task_cpu(p)) == p;
1784}
1785
1786static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1787{
1788 set_task_rq(p, cpu);
1789#ifdef CONFIG_SMP
1790 /*
1791 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1792 * successfuly executed on another CPU. We must ensure that updates of
1793 * per-task data have been completed by this moment.
1794 */
1795 smp_wmb();
1796 task_thread_info(p)->cpu = cpu;
1797#endif
1798}
1799
1800static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1801 const struct sched_class *prev_class,
1802 int oldprio, int running)
1803{
1804 if (prev_class != p->sched_class) {
1805 if (prev_class->switched_from)
1806 prev_class->switched_from(rq, p, running);
1807 p->sched_class->switched_to(rq, p, running);
1808 } else
1809 p->sched_class->prio_changed(rq, p, oldprio, running);
1810}
1811
1812#ifdef CONFIG_SMP
1813
1814/* Used instead of source_load when we know the type == 0 */
1815static unsigned long weighted_cpuload(const int cpu)
1816{
1817 return cpu_rq(cpu)->load.weight;
1818}
1819
1820/*
1821 * Is this task likely cache-hot:
1822 */
1823static int
1824task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1825{
1826 s64 delta;
1827
1828 /*
1829 * Buddy candidates are cache hot:
1830 */
1831 if (sched_feat(CACHE_HOT_BUDDY) &&
1832 (&p->se == cfs_rq_of(&p->se)->next ||
1833 &p->se == cfs_rq_of(&p->se)->last))
1834 return 1;
1835
1836 if (p->sched_class != &fair_sched_class)
1837 return 0;
1838
1839 if (sysctl_sched_migration_cost == -1)
1840 return 1;
1841 if (sysctl_sched_migration_cost == 0)
1842 return 0;
1843
1844 delta = now - p->se.exec_start;
1845
1846 return delta < (s64)sysctl_sched_migration_cost;
1847}
1848
1849
1850void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1851{
1852 int old_cpu = task_cpu(p);
1853 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1854 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1855 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1856 u64 clock_offset;
1857
1858 clock_offset = old_rq->clock - new_rq->clock;
1859
1860#ifdef CONFIG_SCHEDSTATS
1861 if (p->se.wait_start)
1862 p->se.wait_start -= clock_offset;
1863 if (p->se.sleep_start)
1864 p->se.sleep_start -= clock_offset;
1865 if (p->se.block_start)
1866 p->se.block_start -= clock_offset;
1867 if (old_cpu != new_cpu) {
1868 schedstat_inc(p, se.nr_migrations);
1869 if (task_hot(p, old_rq->clock, NULL))
1870 schedstat_inc(p, se.nr_forced2_migrations);
1871 }
1872#endif
1873 p->se.vruntime -= old_cfsrq->min_vruntime -
1874 new_cfsrq->min_vruntime;
1875
1876 __set_task_cpu(p, new_cpu);
1877}
1878
1879struct migration_req {
1880 struct list_head list;
1881
1882 struct task_struct *task;
1883 int dest_cpu;
1884
1885 struct completion done;
1886};
1887
1888/*
1889 * The task's runqueue lock must be held.
1890 * Returns true if you have to wait for migration thread.
1891 */
1892static int
1893migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1894{
1895 struct rq *rq = task_rq(p);
1896
1897 /*
1898 * If the task is not on a runqueue (and not running), then
1899 * it is sufficient to simply update the task's cpu field.
1900 */
1901 if (!p->se.on_rq && !task_running(rq, p)) {
1902 set_task_cpu(p, dest_cpu);
1903 return 0;
1904 }
1905
1906 init_completion(&req->done);
1907 req->task = p;
1908 req->dest_cpu = dest_cpu;
1909 list_add(&req->list, &rq->migration_queue);
1910
1911 return 1;
1912}
1913
1914/*
1915 * wait_task_inactive - wait for a thread to unschedule.
1916 *
1917 * If @match_state is nonzero, it's the @p->state value just checked and
1918 * not expected to change. If it changes, i.e. @p might have woken up,
1919 * then return zero. When we succeed in waiting for @p to be off its CPU,
1920 * we return a positive number (its total switch count). If a second call
1921 * a short while later returns the same number, the caller can be sure that
1922 * @p has remained unscheduled the whole time.
1923 *
1924 * The caller must ensure that the task *will* unschedule sometime soon,
1925 * else this function might spin for a *long* time. This function can't
1926 * be called with interrupts off, or it may introduce deadlock with
1927 * smp_call_function() if an IPI is sent by the same process we are
1928 * waiting to become inactive.
1929 */
1930unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1931{
1932 unsigned long flags;
1933 int running, on_rq;
1934 unsigned long ncsw;
1935 struct rq *rq;
1936
1937 for (;;) {
1938 /*
1939 * We do the initial early heuristics without holding
1940 * any task-queue locks at all. We'll only try to get
1941 * the runqueue lock when things look like they will
1942 * work out!
1943 */
1944 rq = task_rq(p);
1945
1946 /*
1947 * If the task is actively running on another CPU
1948 * still, just relax and busy-wait without holding
1949 * any locks.
1950 *
1951 * NOTE! Since we don't hold any locks, it's not
1952 * even sure that "rq" stays as the right runqueue!
1953 * But we don't care, since "task_running()" will
1954 * return false if the runqueue has changed and p
1955 * is actually now running somewhere else!
1956 */
1957 while (task_running(rq, p)) {
1958 if (match_state && unlikely(p->state != match_state))
1959 return 0;
1960 cpu_relax();
1961 }
1962
1963 /*
1964 * Ok, time to look more closely! We need the rq
1965 * lock now, to be *sure*. If we're wrong, we'll
1966 * just go back and repeat.
1967 */
1968 rq = task_rq_lock(p, &flags);
1969 trace_sched_wait_task(rq, p);
1970 running = task_running(rq, p);
1971 on_rq = p->se.on_rq;
1972 ncsw = 0;
1973 if (!match_state || p->state == match_state)
1974 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1975 task_rq_unlock(rq, &flags);
1976
1977 /*
1978 * If it changed from the expected state, bail out now.
1979 */
1980 if (unlikely(!ncsw))
1981 break;
1982
1983 /*
1984 * Was it really running after all now that we
1985 * checked with the proper locks actually held?
1986 *
1987 * Oops. Go back and try again..
1988 */
1989 if (unlikely(running)) {
1990 cpu_relax();
1991 continue;
1992 }
1993
1994 /*
1995 * It's not enough that it's not actively running,
1996 * it must be off the runqueue _entirely_, and not
1997 * preempted!
1998 *
1999 * So if it wa still runnable (but just not actively
2000 * running right now), it's preempted, and we should
2001 * yield - it could be a while.
2002 */
2003 if (unlikely(on_rq)) {
2004 schedule_timeout_uninterruptible(1);
2005 continue;
2006 }
2007
2008 /*
2009 * Ahh, all good. It wasn't running, and it wasn't
2010 * runnable, which means that it will never become
2011 * running in the future either. We're all done!
2012 */
2013 break;
2014 }
2015
2016 return ncsw;
2017}
2018
2019/***
2020 * kick_process - kick a running thread to enter/exit the kernel
2021 * @p: the to-be-kicked thread
2022 *
2023 * Cause a process which is running on another CPU to enter
2024 * kernel-mode, without any delay. (to get signals handled.)
2025 *
2026 * NOTE: this function doesnt have to take the runqueue lock,
2027 * because all it wants to ensure is that the remote task enters
2028 * the kernel. If the IPI races and the task has been migrated
2029 * to another CPU then no harm is done and the purpose has been
2030 * achieved as well.
2031 */
2032void kick_process(struct task_struct *p)
2033{
2034 int cpu;
2035
2036 preempt_disable();
2037 cpu = task_cpu(p);
2038 if ((cpu != smp_processor_id()) && task_curr(p))
2039 smp_send_reschedule(cpu);
2040 preempt_enable();
2041}
2042
2043/*
2044 * Return a low guess at the load of a migration-source cpu weighted
2045 * according to the scheduling class and "nice" value.
2046 *
2047 * We want to under-estimate the load of migration sources, to
2048 * balance conservatively.
2049 */
2050static unsigned long source_load(int cpu, int type)
2051{
2052 struct rq *rq = cpu_rq(cpu);
2053 unsigned long total = weighted_cpuload(cpu);
2054
2055 if (type == 0 || !sched_feat(LB_BIAS))
2056 return total;
2057
2058 return min(rq->cpu_load[type-1], total);
2059}
2060
2061/*
2062 * Return a high guess at the load of a migration-target cpu weighted
2063 * according to the scheduling class and "nice" value.
2064 */
2065static unsigned long target_load(int cpu, int type)
2066{
2067 struct rq *rq = cpu_rq(cpu);
2068 unsigned long total = weighted_cpuload(cpu);
2069
2070 if (type == 0 || !sched_feat(LB_BIAS))
2071 return total;
2072
2073 return max(rq->cpu_load[type-1], total);
2074}
2075
2076/*
2077 * find_idlest_group finds and returns the least busy CPU group within the
2078 * domain.
2079 */
2080static struct sched_group *
2081find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2082{
2083 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2084 unsigned long min_load = ULONG_MAX, this_load = 0;
2085 int load_idx = sd->forkexec_idx;
2086 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2087
2088 do {
2089 unsigned long load, avg_load;
2090 int local_group;
2091 int i;
2092
2093 /* Skip over this group if it has no CPUs allowed */
2094 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2095 continue;
2096
2097 local_group = cpu_isset(this_cpu, group->cpumask);
2098
2099 /* Tally up the load of all CPUs in the group */
2100 avg_load = 0;
2101
2102 for_each_cpu_mask_nr(i, group->cpumask) {
2103 /* Bias balancing toward cpus of our domain */
2104 if (local_group)
2105 load = source_load(i, load_idx);
2106 else
2107 load = target_load(i, load_idx);
2108
2109 avg_load += load;
2110 }
2111
2112 /* Adjust by relative CPU power of the group */
2113 avg_load = sg_div_cpu_power(group,
2114 avg_load * SCHED_LOAD_SCALE);
2115
2116 if (local_group) {
2117 this_load = avg_load;
2118 this = group;
2119 } else if (avg_load < min_load) {
2120 min_load = avg_load;
2121 idlest = group;
2122 }
2123 } while (group = group->next, group != sd->groups);
2124
2125 if (!idlest || 100*this_load < imbalance*min_load)
2126 return NULL;
2127 return idlest;
2128}
2129
2130/*
2131 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2132 */
2133static int
2134find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2135 cpumask_t *tmp)
2136{
2137 unsigned long load, min_load = ULONG_MAX;
2138 int idlest = -1;
2139 int i;
2140
2141 /* Traverse only the allowed CPUs */
2142 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2143
2144 for_each_cpu_mask_nr(i, *tmp) {
2145 load = weighted_cpuload(i);
2146
2147 if (load < min_load || (load == min_load && i == this_cpu)) {
2148 min_load = load;
2149 idlest = i;
2150 }
2151 }
2152
2153 return idlest;
2154}
2155
2156/*
2157 * sched_balance_self: balance the current task (running on cpu) in domains
2158 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2159 * SD_BALANCE_EXEC.
2160 *
2161 * Balance, ie. select the least loaded group.
2162 *
2163 * Returns the target CPU number, or the same CPU if no balancing is needed.
2164 *
2165 * preempt must be disabled.
2166 */
2167static int sched_balance_self(int cpu, int flag)
2168{
2169 struct task_struct *t = current;
2170 struct sched_domain *tmp, *sd = NULL;
2171
2172 for_each_domain(cpu, tmp) {
2173 /*
2174 * If power savings logic is enabled for a domain, stop there.
2175 */
2176 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2177 break;
2178 if (tmp->flags & flag)
2179 sd = tmp;
2180 }
2181
2182 if (sd)
2183 update_shares(sd);
2184
2185 while (sd) {
2186 cpumask_t span, tmpmask;
2187 struct sched_group *group;
2188 int new_cpu, weight;
2189
2190 if (!(sd->flags & flag)) {
2191 sd = sd->child;
2192 continue;
2193 }
2194
2195 span = sd->span;
2196 group = find_idlest_group(sd, t, cpu);
2197 if (!group) {
2198 sd = sd->child;
2199 continue;
2200 }
2201
2202 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2203 if (new_cpu == -1 || new_cpu == cpu) {
2204 /* Now try balancing at a lower domain level of cpu */
2205 sd = sd->child;
2206 continue;
2207 }
2208
2209 /* Now try balancing at a lower domain level of new_cpu */
2210 cpu = new_cpu;
2211 sd = NULL;
2212 weight = cpus_weight(span);
2213 for_each_domain(cpu, tmp) {
2214 if (weight <= cpus_weight(tmp->span))
2215 break;
2216 if (tmp->flags & flag)
2217 sd = tmp;
2218 }
2219 /* while loop will break here if sd == NULL */
2220 }
2221
2222 return cpu;
2223}
2224
2225#endif /* CONFIG_SMP */
2226
2227/***
2228 * try_to_wake_up - wake up a thread
2229 * @p: the to-be-woken-up thread
2230 * @state: the mask of task states that can be woken
2231 * @sync: do a synchronous wakeup?
2232 *
2233 * Put it on the run-queue if it's not already there. The "current"
2234 * thread is always on the run-queue (except when the actual
2235 * re-schedule is in progress), and as such you're allowed to do
2236 * the simpler "current->state = TASK_RUNNING" to mark yourself
2237 * runnable without the overhead of this.
2238 *
2239 * returns failure only if the task is already active.
2240 */
2241static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2242{
2243 int cpu, orig_cpu, this_cpu, success = 0;
2244 unsigned long flags;
2245 long old_state;
2246 struct rq *rq;
2247
2248 if (!sched_feat(SYNC_WAKEUPS))
2249 sync = 0;
2250
2251#ifdef CONFIG_SMP
2252 if (sched_feat(LB_WAKEUP_UPDATE)) {
2253 struct sched_domain *sd;
2254
2255 this_cpu = raw_smp_processor_id();
2256 cpu = task_cpu(p);
2257
2258 for_each_domain(this_cpu, sd) {
2259 if (cpu_isset(cpu, sd->span)) {
2260 update_shares(sd);
2261 break;
2262 }
2263 }
2264 }
2265#endif
2266
2267 smp_wmb();
2268 rq = task_rq_lock(p, &flags);
2269 old_state = p->state;
2270 if (!(old_state & state))
2271 goto out;
2272
2273 if (p->se.on_rq)
2274 goto out_running;
2275
2276 cpu = task_cpu(p);
2277 orig_cpu = cpu;
2278 this_cpu = smp_processor_id();
2279
2280#ifdef CONFIG_SMP
2281 if (unlikely(task_running(rq, p)))
2282 goto out_activate;
2283
2284 cpu = p->sched_class->select_task_rq(p, sync);
2285 if (cpu != orig_cpu) {
2286 set_task_cpu(p, cpu);
2287 task_rq_unlock(rq, &flags);
2288 /* might preempt at this point */
2289 rq = task_rq_lock(p, &flags);
2290 old_state = p->state;
2291 if (!(old_state & state))
2292 goto out;
2293 if (p->se.on_rq)
2294 goto out_running;
2295
2296 this_cpu = smp_processor_id();
2297 cpu = task_cpu(p);
2298 }
2299
2300#ifdef CONFIG_SCHEDSTATS
2301 schedstat_inc(rq, ttwu_count);
2302 if (cpu == this_cpu)
2303 schedstat_inc(rq, ttwu_local);
2304 else {
2305 struct sched_domain *sd;
2306 for_each_domain(this_cpu, sd) {
2307 if (cpu_isset(cpu, sd->span)) {
2308 schedstat_inc(sd, ttwu_wake_remote);
2309 break;
2310 }
2311 }
2312 }
2313#endif /* CONFIG_SCHEDSTATS */
2314
2315out_activate:
2316#endif /* CONFIG_SMP */
2317 schedstat_inc(p, se.nr_wakeups);
2318 if (sync)
2319 schedstat_inc(p, se.nr_wakeups_sync);
2320 if (orig_cpu != cpu)
2321 schedstat_inc(p, se.nr_wakeups_migrate);
2322 if (cpu == this_cpu)
2323 schedstat_inc(p, se.nr_wakeups_local);
2324 else
2325 schedstat_inc(p, se.nr_wakeups_remote);
2326 update_rq_clock(rq);
2327 activate_task(rq, p, 1);
2328 success = 1;
2329
2330out_running:
2331 trace_sched_wakeup(rq, p);
2332 check_preempt_curr(rq, p, sync);
2333
2334 p->state = TASK_RUNNING;
2335#ifdef CONFIG_SMP
2336 if (p->sched_class->task_wake_up)
2337 p->sched_class->task_wake_up(rq, p);
2338#endif
2339out:
2340 current->se.last_wakeup = current->se.sum_exec_runtime;
2341
2342 task_rq_unlock(rq, &flags);
2343
2344 return success;
2345}
2346
2347int wake_up_process(struct task_struct *p)
2348{
2349 return try_to_wake_up(p, TASK_ALL, 0);
2350}
2351EXPORT_SYMBOL(wake_up_process);
2352
2353int wake_up_state(struct task_struct *p, unsigned int state)
2354{
2355 return try_to_wake_up(p, state, 0);
2356}
2357
2358/*
2359 * Perform scheduler related setup for a newly forked process p.
2360 * p is forked by current.
2361 *
2362 * __sched_fork() is basic setup used by init_idle() too:
2363 */
2364static void __sched_fork(struct task_struct *p)
2365{
2366 p->se.exec_start = 0;
2367 p->se.sum_exec_runtime = 0;
2368 p->se.prev_sum_exec_runtime = 0;
2369 p->se.last_wakeup = 0;
2370 p->se.avg_overlap = 0;
2371
2372#ifdef CONFIG_SCHEDSTATS
2373 p->se.wait_start = 0;
2374 p->se.sum_sleep_runtime = 0;
2375 p->se.sleep_start = 0;
2376 p->se.block_start = 0;
2377 p->se.sleep_max = 0;
2378 p->se.block_max = 0;
2379 p->se.exec_max = 0;
2380 p->se.slice_max = 0;
2381 p->se.wait_max = 0;
2382#endif
2383
2384 INIT_LIST_HEAD(&p->rt.run_list);
2385 p->se.on_rq = 0;
2386 INIT_LIST_HEAD(&p->se.group_node);
2387
2388#ifdef CONFIG_PREEMPT_NOTIFIERS
2389 INIT_HLIST_HEAD(&p->preempt_notifiers);
2390#endif
2391
2392 /*
2393 * We mark the process as running here, but have not actually
2394 * inserted it onto the runqueue yet. This guarantees that
2395 * nobody will actually run it, and a signal or other external
2396 * event cannot wake it up and insert it on the runqueue either.
2397 */
2398 p->state = TASK_RUNNING;
2399}
2400
2401/*
2402 * fork()/clone()-time setup:
2403 */
2404void sched_fork(struct task_struct *p, int clone_flags)
2405{
2406 int cpu = get_cpu();
2407
2408 __sched_fork(p);
2409
2410#ifdef CONFIG_SMP
2411 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2412#endif
2413 set_task_cpu(p, cpu);
2414
2415 /*
2416 * Make sure we do not leak PI boosting priority to the child:
2417 */
2418 p->prio = current->normal_prio;
2419 if (!rt_prio(p->prio))
2420 p->sched_class = &fair_sched_class;
2421
2422#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2423 if (likely(sched_info_on()))
2424 memset(&p->sched_info, 0, sizeof(p->sched_info));
2425#endif
2426#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2427 p->oncpu = 0;
2428#endif
2429#ifdef CONFIG_PREEMPT
2430 /* Want to start with kernel preemption disabled. */
2431 task_thread_info(p)->preempt_count = 1;
2432#endif
2433 put_cpu();
2434}
2435
2436/*
2437 * wake_up_new_task - wake up a newly created task for the first time.
2438 *
2439 * This function will do some initial scheduler statistics housekeeping
2440 * that must be done for every newly created context, then puts the task
2441 * on the runqueue and wakes it.
2442 */
2443void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2444{
2445 unsigned long flags;
2446 struct rq *rq;
2447
2448 rq = task_rq_lock(p, &flags);
2449 BUG_ON(p->state != TASK_RUNNING);
2450 update_rq_clock(rq);
2451
2452 p->prio = effective_prio(p);
2453
2454 if (!p->sched_class->task_new || !current->se.on_rq) {
2455 activate_task(rq, p, 0);
2456 } else {
2457 /*
2458 * Let the scheduling class do new task startup
2459 * management (if any):
2460 */
2461 p->sched_class->task_new(rq, p);
2462 inc_nr_running(rq);
2463 }
2464 trace_sched_wakeup_new(rq, p);
2465 check_preempt_curr(rq, p, 0);
2466#ifdef CONFIG_SMP
2467 if (p->sched_class->task_wake_up)
2468 p->sched_class->task_wake_up(rq, p);
2469#endif
2470 task_rq_unlock(rq, &flags);
2471}
2472
2473#ifdef CONFIG_PREEMPT_NOTIFIERS
2474
2475/**
2476 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2477 * @notifier: notifier struct to register
2478 */
2479void preempt_notifier_register(struct preempt_notifier *notifier)
2480{
2481 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2482}
2483EXPORT_SYMBOL_GPL(preempt_notifier_register);
2484
2485/**
2486 * preempt_notifier_unregister - no longer interested in preemption notifications
2487 * @notifier: notifier struct to unregister
2488 *
2489 * This is safe to call from within a preemption notifier.
2490 */
2491void preempt_notifier_unregister(struct preempt_notifier *notifier)
2492{
2493 hlist_del(&notifier->link);
2494}
2495EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2496
2497static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2498{
2499 struct preempt_notifier *notifier;
2500 struct hlist_node *node;
2501
2502 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2503 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504}
2505
2506static void
2507fire_sched_out_preempt_notifiers(struct task_struct *curr,
2508 struct task_struct *next)
2509{
2510 struct preempt_notifier *notifier;
2511 struct hlist_node *node;
2512
2513 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2514 notifier->ops->sched_out(notifier, next);
2515}
2516
2517#else /* !CONFIG_PREEMPT_NOTIFIERS */
2518
2519static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2520{
2521}
2522
2523static void
2524fire_sched_out_preempt_notifiers(struct task_struct *curr,
2525 struct task_struct *next)
2526{
2527}
2528
2529#endif /* CONFIG_PREEMPT_NOTIFIERS */
2530
2531/**
2532 * prepare_task_switch - prepare to switch tasks
2533 * @rq: the runqueue preparing to switch
2534 * @prev: the current task that is being switched out
2535 * @next: the task we are going to switch to.
2536 *
2537 * This is called with the rq lock held and interrupts off. It must
2538 * be paired with a subsequent finish_task_switch after the context
2539 * switch.
2540 *
2541 * prepare_task_switch sets up locking and calls architecture specific
2542 * hooks.
2543 */
2544static inline void
2545prepare_task_switch(struct rq *rq, struct task_struct *prev,
2546 struct task_struct *next)
2547{
2548 fire_sched_out_preempt_notifiers(prev, next);
2549 prepare_lock_switch(rq, next);
2550 prepare_arch_switch(next);
2551}
2552
2553/**
2554 * finish_task_switch - clean up after a task-switch
2555 * @rq: runqueue associated with task-switch
2556 * @prev: the thread we just switched away from.
2557 *
2558 * finish_task_switch must be called after the context switch, paired
2559 * with a prepare_task_switch call before the context switch.
2560 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2561 * and do any other architecture-specific cleanup actions.
2562 *
2563 * Note that we may have delayed dropping an mm in context_switch(). If
2564 * so, we finish that here outside of the runqueue lock. (Doing it
2565 * with the lock held can cause deadlocks; see schedule() for
2566 * details.)
2567 */
2568static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2569 __releases(rq->lock)
2570{
2571 struct mm_struct *mm = rq->prev_mm;
2572 long prev_state;
2573
2574 rq->prev_mm = NULL;
2575
2576 /*
2577 * A task struct has one reference for the use as "current".
2578 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2579 * schedule one last time. The schedule call will never return, and
2580 * the scheduled task must drop that reference.
2581 * The test for TASK_DEAD must occur while the runqueue locks are
2582 * still held, otherwise prev could be scheduled on another cpu, die
2583 * there before we look at prev->state, and then the reference would
2584 * be dropped twice.
2585 * Manfred Spraul <manfred@colorfullife.com>
2586 */
2587 prev_state = prev->state;
2588 finish_arch_switch(prev);
2589 finish_lock_switch(rq, prev);
2590#ifdef CONFIG_SMP
2591 if (current->sched_class->post_schedule)
2592 current->sched_class->post_schedule(rq);
2593#endif
2594
2595 fire_sched_in_preempt_notifiers(current);
2596 if (mm)
2597 mmdrop(mm);
2598 if (unlikely(prev_state == TASK_DEAD)) {
2599 /*
2600 * Remove function-return probe instances associated with this
2601 * task and put them back on the free list.
2602 */
2603 kprobe_flush_task(prev);
2604 put_task_struct(prev);
2605 }
2606}
2607
2608/**
2609 * schedule_tail - first thing a freshly forked thread must call.
2610 * @prev: the thread we just switched away from.
2611 */
2612asmlinkage void schedule_tail(struct task_struct *prev)
2613 __releases(rq->lock)
2614{
2615 struct rq *rq = this_rq();
2616
2617 finish_task_switch(rq, prev);
2618#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2619 /* In this case, finish_task_switch does not reenable preemption */
2620 preempt_enable();
2621#endif
2622 if (current->set_child_tid)
2623 put_user(task_pid_vnr(current), current->set_child_tid);
2624}
2625
2626/*
2627 * context_switch - switch to the new MM and the new
2628 * thread's register state.
2629 */
2630static inline void
2631context_switch(struct rq *rq, struct task_struct *prev,
2632 struct task_struct *next)
2633{
2634 struct mm_struct *mm, *oldmm;
2635
2636 prepare_task_switch(rq, prev, next);
2637 trace_sched_switch(rq, prev, next);
2638 mm = next->mm;
2639 oldmm = prev->active_mm;
2640 /*
2641 * For paravirt, this is coupled with an exit in switch_to to
2642 * combine the page table reload and the switch backend into
2643 * one hypercall.
2644 */
2645 arch_enter_lazy_cpu_mode();
2646
2647 if (unlikely(!mm)) {
2648 next->active_mm = oldmm;
2649 atomic_inc(&oldmm->mm_count);
2650 enter_lazy_tlb(oldmm, next);
2651 } else
2652 switch_mm(oldmm, mm, next);
2653
2654 if (unlikely(!prev->mm)) {
2655 prev->active_mm = NULL;
2656 rq->prev_mm = oldmm;
2657 }
2658 /*
2659 * Since the runqueue lock will be released by the next
2660 * task (which is an invalid locking op but in the case
2661 * of the scheduler it's an obvious special-case), so we
2662 * do an early lockdep release here:
2663 */
2664#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2665 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2666#endif
2667
2668 /* Here we just switch the register state and the stack. */
2669 switch_to(prev, next, prev);
2670
2671 barrier();
2672 /*
2673 * this_rq must be evaluated again because prev may have moved
2674 * CPUs since it called schedule(), thus the 'rq' on its stack
2675 * frame will be invalid.
2676 */
2677 finish_task_switch(this_rq(), prev);
2678}
2679
2680/*
2681 * nr_running, nr_uninterruptible and nr_context_switches:
2682 *
2683 * externally visible scheduler statistics: current number of runnable
2684 * threads, current number of uninterruptible-sleeping threads, total
2685 * number of context switches performed since bootup.
2686 */
2687unsigned long nr_running(void)
2688{
2689 unsigned long i, sum = 0;
2690
2691 for_each_online_cpu(i)
2692 sum += cpu_rq(i)->nr_running;
2693
2694 return sum;
2695}
2696
2697unsigned long nr_uninterruptible(void)
2698{
2699 unsigned long i, sum = 0;
2700
2701 for_each_possible_cpu(i)
2702 sum += cpu_rq(i)->nr_uninterruptible;
2703
2704 /*
2705 * Since we read the counters lockless, it might be slightly
2706 * inaccurate. Do not allow it to go below zero though:
2707 */
2708 if (unlikely((long)sum < 0))
2709 sum = 0;
2710
2711 return sum;
2712}
2713
2714unsigned long long nr_context_switches(void)
2715{
2716 int i;
2717 unsigned long long sum = 0;
2718
2719 for_each_possible_cpu(i)
2720 sum += cpu_rq(i)->nr_switches;
2721
2722 return sum;
2723}
2724
2725unsigned long nr_iowait(void)
2726{
2727 unsigned long i, sum = 0;
2728
2729 for_each_possible_cpu(i)
2730 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2731
2732 return sum;
2733}
2734
2735unsigned long nr_active(void)
2736{
2737 unsigned long i, running = 0, uninterruptible = 0;
2738
2739 for_each_online_cpu(i) {
2740 running += cpu_rq(i)->nr_running;
2741 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2742 }
2743
2744 if (unlikely((long)uninterruptible < 0))
2745 uninterruptible = 0;
2746
2747 return running + uninterruptible;
2748}
2749
2750/*
2751 * Update rq->cpu_load[] statistics. This function is usually called every
2752 * scheduler tick (TICK_NSEC).
2753 */
2754static void update_cpu_load(struct rq *this_rq)
2755{
2756 unsigned long this_load = this_rq->load.weight;
2757 int i, scale;
2758
2759 this_rq->nr_load_updates++;
2760
2761 /* Update our load: */
2762 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2763 unsigned long old_load, new_load;
2764
2765 /* scale is effectively 1 << i now, and >> i divides by scale */
2766
2767 old_load = this_rq->cpu_load[i];
2768 new_load = this_load;
2769 /*
2770 * Round up the averaging division if load is increasing. This
2771 * prevents us from getting stuck on 9 if the load is 10, for
2772 * example.
2773 */
2774 if (new_load > old_load)
2775 new_load += scale-1;
2776 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2777 }
2778}
2779
2780#ifdef CONFIG_SMP
2781
2782/*
2783 * double_rq_lock - safely lock two runqueues
2784 *
2785 * Note this does not disable interrupts like task_rq_lock,
2786 * you need to do so manually before calling.
2787 */
2788static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2789 __acquires(rq1->lock)
2790 __acquires(rq2->lock)
2791{
2792 BUG_ON(!irqs_disabled());
2793 if (rq1 == rq2) {
2794 spin_lock(&rq1->lock);
2795 __acquire(rq2->lock); /* Fake it out ;) */
2796 } else {
2797 if (rq1 < rq2) {
2798 spin_lock(&rq1->lock);
2799 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2800 } else {
2801 spin_lock(&rq2->lock);
2802 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2803 }
2804 }
2805 update_rq_clock(rq1);
2806 update_rq_clock(rq2);
2807}
2808
2809/*
2810 * double_rq_unlock - safely unlock two runqueues
2811 *
2812 * Note this does not restore interrupts like task_rq_unlock,
2813 * you need to do so manually after calling.
2814 */
2815static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2816 __releases(rq1->lock)
2817 __releases(rq2->lock)
2818{
2819 spin_unlock(&rq1->lock);
2820 if (rq1 != rq2)
2821 spin_unlock(&rq2->lock);
2822 else
2823 __release(rq2->lock);
2824}
2825
2826/*
2827 * If dest_cpu is allowed for this process, migrate the task to it.
2828 * This is accomplished by forcing the cpu_allowed mask to only
2829 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2830 * the cpu_allowed mask is restored.
2831 */
2832static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2833{
2834 struct migration_req req;
2835 unsigned long flags;
2836 struct rq *rq;
2837
2838 rq = task_rq_lock(p, &flags);
2839 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2840 || unlikely(!cpu_active(dest_cpu)))
2841 goto out;
2842
2843 trace_sched_migrate_task(rq, p, dest_cpu);
2844 /* force the process onto the specified CPU */
2845 if (migrate_task(p, dest_cpu, &req)) {
2846 /* Need to wait for migration thread (might exit: take ref). */
2847 struct task_struct *mt = rq->migration_thread;
2848
2849 get_task_struct(mt);
2850 task_rq_unlock(rq, &flags);
2851 wake_up_process(mt);
2852 put_task_struct(mt);
2853 wait_for_completion(&req.done);
2854
2855 return;
2856 }
2857out:
2858 task_rq_unlock(rq, &flags);
2859}
2860
2861/*
2862 * sched_exec - execve() is a valuable balancing opportunity, because at
2863 * this point the task has the smallest effective memory and cache footprint.
2864 */
2865void sched_exec(void)
2866{
2867 int new_cpu, this_cpu = get_cpu();
2868 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2869 put_cpu();
2870 if (new_cpu != this_cpu)
2871 sched_migrate_task(current, new_cpu);
2872}
2873
2874/*
2875 * pull_task - move a task from a remote runqueue to the local runqueue.
2876 * Both runqueues must be locked.
2877 */
2878static void pull_task(struct rq *src_rq, struct task_struct *p,
2879 struct rq *this_rq, int this_cpu)
2880{
2881 deactivate_task(src_rq, p, 0);
2882 set_task_cpu(p, this_cpu);
2883 activate_task(this_rq, p, 0);
2884 /*
2885 * Note that idle threads have a prio of MAX_PRIO, for this test
2886 * to be always true for them.
2887 */
2888 check_preempt_curr(this_rq, p, 0);
2889}
2890
2891/*
2892 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2893 */
2894static
2895int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2896 struct sched_domain *sd, enum cpu_idle_type idle,
2897 int *all_pinned)
2898{
2899 /*
2900 * We do not migrate tasks that are:
2901 * 1) running (obviously), or
2902 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2903 * 3) are cache-hot on their current CPU.
2904 */
2905 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2906 schedstat_inc(p, se.nr_failed_migrations_affine);
2907 return 0;
2908 }
2909 *all_pinned = 0;
2910
2911 if (task_running(rq, p)) {
2912 schedstat_inc(p, se.nr_failed_migrations_running);
2913 return 0;
2914 }
2915
2916 /*
2917 * Aggressive migration if:
2918 * 1) task is cache cold, or
2919 * 2) too many balance attempts have failed.
2920 */
2921
2922 if (!task_hot(p, rq->clock, sd) ||
2923 sd->nr_balance_failed > sd->cache_nice_tries) {
2924#ifdef CONFIG_SCHEDSTATS
2925 if (task_hot(p, rq->clock, sd)) {
2926 schedstat_inc(sd, lb_hot_gained[idle]);
2927 schedstat_inc(p, se.nr_forced_migrations);
2928 }
2929#endif
2930 return 1;
2931 }
2932
2933 if (task_hot(p, rq->clock, sd)) {
2934 schedstat_inc(p, se.nr_failed_migrations_hot);
2935 return 0;
2936 }
2937 return 1;
2938}
2939
2940static unsigned long
2941balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2942 unsigned long max_load_move, struct sched_domain *sd,
2943 enum cpu_idle_type idle, int *all_pinned,
2944 int *this_best_prio, struct rq_iterator *iterator)
2945{
2946 int loops = 0, pulled = 0, pinned = 0;
2947 struct task_struct *p;
2948 long rem_load_move = max_load_move;
2949
2950 if (max_load_move == 0)
2951 goto out;
2952
2953 pinned = 1;
2954
2955 /*
2956 * Start the load-balancing iterator:
2957 */
2958 p = iterator->start(iterator->arg);
2959next:
2960 if (!p || loops++ > sysctl_sched_nr_migrate)
2961 goto out;
2962
2963 if ((p->se.load.weight >> 1) > rem_load_move ||
2964 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2965 p = iterator->next(iterator->arg);
2966 goto next;
2967 }
2968
2969 pull_task(busiest, p, this_rq, this_cpu);
2970 pulled++;
2971 rem_load_move -= p->se.load.weight;
2972
2973 /*
2974 * We only want to steal up to the prescribed amount of weighted load.
2975 */
2976 if (rem_load_move > 0) {
2977 if (p->prio < *this_best_prio)
2978 *this_best_prio = p->prio;
2979 p = iterator->next(iterator->arg);
2980 goto next;
2981 }
2982out:
2983 /*
2984 * Right now, this is one of only two places pull_task() is called,
2985 * so we can safely collect pull_task() stats here rather than
2986 * inside pull_task().
2987 */
2988 schedstat_add(sd, lb_gained[idle], pulled);
2989
2990 if (all_pinned)
2991 *all_pinned = pinned;
2992
2993 return max_load_move - rem_load_move;
2994}
2995
2996/*
2997 * move_tasks tries to move up to max_load_move weighted load from busiest to
2998 * this_rq, as part of a balancing operation within domain "sd".
2999 * Returns 1 if successful and 0 otherwise.
3000 *
3001 * Called with both runqueues locked.
3002 */
3003static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3004 unsigned long max_load_move,
3005 struct sched_domain *sd, enum cpu_idle_type idle,
3006 int *all_pinned)
3007{
3008 const struct sched_class *class = sched_class_highest;
3009 unsigned long total_load_moved = 0;
3010 int this_best_prio = this_rq->curr->prio;
3011
3012 do {
3013 total_load_moved +=
3014 class->load_balance(this_rq, this_cpu, busiest,
3015 max_load_move - total_load_moved,
3016 sd, idle, all_pinned, &this_best_prio);
3017 class = class->next;
3018
3019 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3020 break;
3021
3022 } while (class && max_load_move > total_load_moved);
3023
3024 return total_load_moved > 0;
3025}
3026
3027static int
3028iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3029 struct sched_domain *sd, enum cpu_idle_type idle,
3030 struct rq_iterator *iterator)
3031{
3032 struct task_struct *p = iterator->start(iterator->arg);
3033 int pinned = 0;
3034
3035 while (p) {
3036 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3037 pull_task(busiest, p, this_rq, this_cpu);
3038 /*
3039 * Right now, this is only the second place pull_task()
3040 * is called, so we can safely collect pull_task()
3041 * stats here rather than inside pull_task().
3042 */
3043 schedstat_inc(sd, lb_gained[idle]);
3044
3045 return 1;
3046 }
3047 p = iterator->next(iterator->arg);
3048 }
3049
3050 return 0;
3051}
3052
3053/*
3054 * move_one_task tries to move exactly one task from busiest to this_rq, as
3055 * part of active balancing operations within "domain".
3056 * Returns 1 if successful and 0 otherwise.
3057 *
3058 * Called with both runqueues locked.
3059 */
3060static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3061 struct sched_domain *sd, enum cpu_idle_type idle)
3062{
3063 const struct sched_class *class;
3064
3065 for (class = sched_class_highest; class; class = class->next)
3066 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3067 return 1;
3068
3069 return 0;
3070}
3071
3072/*
3073 * find_busiest_group finds and returns the busiest CPU group within the
3074 * domain. It calculates and returns the amount of weighted load which
3075 * should be moved to restore balance via the imbalance parameter.
3076 */
3077static struct sched_group *
3078find_busiest_group(struct sched_domain *sd, int this_cpu,
3079 unsigned long *imbalance, enum cpu_idle_type idle,
3080 int *sd_idle, const cpumask_t *cpus, int *balance)
3081{
3082 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3083 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3084 unsigned long max_pull;
3085 unsigned long busiest_load_per_task, busiest_nr_running;
3086 unsigned long this_load_per_task, this_nr_running;
3087 int load_idx, group_imb = 0;
3088#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3089 int power_savings_balance = 1;
3090 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3091 unsigned long min_nr_running = ULONG_MAX;
3092 struct sched_group *group_min = NULL, *group_leader = NULL;
3093#endif
3094
3095 max_load = this_load = total_load = total_pwr = 0;
3096 busiest_load_per_task = busiest_nr_running = 0;
3097 this_load_per_task = this_nr_running = 0;
3098
3099 if (idle == CPU_NOT_IDLE)
3100 load_idx = sd->busy_idx;
3101 else if (idle == CPU_NEWLY_IDLE)
3102 load_idx = sd->newidle_idx;
3103 else
3104 load_idx = sd->idle_idx;
3105
3106 do {
3107 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3108 int local_group;
3109 int i;
3110 int __group_imb = 0;
3111 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3112 unsigned long sum_nr_running, sum_weighted_load;
3113 unsigned long sum_avg_load_per_task;
3114 unsigned long avg_load_per_task;
3115
3116 local_group = cpu_isset(this_cpu, group->cpumask);
3117
3118 if (local_group)
3119 balance_cpu = first_cpu(group->cpumask);
3120
3121 /* Tally up the load of all CPUs in the group */
3122 sum_weighted_load = sum_nr_running = avg_load = 0;
3123 sum_avg_load_per_task = avg_load_per_task = 0;
3124
3125 max_cpu_load = 0;
3126 min_cpu_load = ~0UL;
3127
3128 for_each_cpu_mask_nr(i, group->cpumask) {
3129 struct rq *rq;
3130
3131 if (!cpu_isset(i, *cpus))
3132 continue;
3133
3134 rq = cpu_rq(i);
3135
3136 if (*sd_idle && rq->nr_running)
3137 *sd_idle = 0;
3138
3139 /* Bias balancing toward cpus of our domain */
3140 if (local_group) {
3141 if (idle_cpu(i) && !first_idle_cpu) {
3142 first_idle_cpu = 1;
3143 balance_cpu = i;
3144 }
3145
3146 load = target_load(i, load_idx);
3147 } else {
3148 load = source_load(i, load_idx);
3149 if (load > max_cpu_load)
3150 max_cpu_load = load;
3151 if (min_cpu_load > load)
3152 min_cpu_load = load;
3153 }
3154
3155 avg_load += load;
3156 sum_nr_running += rq->nr_running;
3157 sum_weighted_load += weighted_cpuload(i);
3158
3159 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3160 }
3161
3162 /*
3163 * First idle cpu or the first cpu(busiest) in this sched group
3164 * is eligible for doing load balancing at this and above
3165 * domains. In the newly idle case, we will allow all the cpu's
3166 * to do the newly idle load balance.
3167 */
3168 if (idle != CPU_NEWLY_IDLE && local_group &&
3169 balance_cpu != this_cpu && balance) {
3170 *balance = 0;
3171 goto ret;
3172 }
3173
3174 total_load += avg_load;
3175 total_pwr += group->__cpu_power;
3176
3177 /* Adjust by relative CPU power of the group */
3178 avg_load = sg_div_cpu_power(group,
3179 avg_load * SCHED_LOAD_SCALE);
3180
3181
3182 /*
3183 * Consider the group unbalanced when the imbalance is larger
3184 * than the average weight of two tasks.
3185 *
3186 * APZ: with cgroup the avg task weight can vary wildly and
3187 * might not be a suitable number - should we keep a
3188 * normalized nr_running number somewhere that negates
3189 * the hierarchy?
3190 */
3191 avg_load_per_task = sg_div_cpu_power(group,
3192 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3193
3194 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3195 __group_imb = 1;
3196
3197 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3198
3199 if (local_group) {
3200 this_load = avg_load;
3201 this = group;
3202 this_nr_running = sum_nr_running;
3203 this_load_per_task = sum_weighted_load;
3204 } else if (avg_load > max_load &&
3205 (sum_nr_running > group_capacity || __group_imb)) {
3206 max_load = avg_load;
3207 busiest = group;
3208 busiest_nr_running = sum_nr_running;
3209 busiest_load_per_task = sum_weighted_load;
3210 group_imb = __group_imb;
3211 }
3212
3213#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3214 /*
3215 * Busy processors will not participate in power savings
3216 * balance.
3217 */
3218 if (idle == CPU_NOT_IDLE ||
3219 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3220 goto group_next;
3221
3222 /*
3223 * If the local group is idle or completely loaded
3224 * no need to do power savings balance at this domain
3225 */
3226 if (local_group && (this_nr_running >= group_capacity ||
3227 !this_nr_running))
3228 power_savings_balance = 0;
3229
3230 /*
3231 * If a group is already running at full capacity or idle,
3232 * don't include that group in power savings calculations
3233 */
3234 if (!power_savings_balance || sum_nr_running >= group_capacity
3235 || !sum_nr_running)
3236 goto group_next;
3237
3238 /*
3239 * Calculate the group which has the least non-idle load.
3240 * This is the group from where we need to pick up the load
3241 * for saving power
3242 */
3243 if ((sum_nr_running < min_nr_running) ||
3244 (sum_nr_running == min_nr_running &&
3245 first_cpu(group->cpumask) <
3246 first_cpu(group_min->cpumask))) {
3247 group_min = group;
3248 min_nr_running = sum_nr_running;
3249 min_load_per_task = sum_weighted_load /
3250 sum_nr_running;
3251 }
3252
3253 /*
3254 * Calculate the group which is almost near its
3255 * capacity but still has some space to pick up some load
3256 * from other group and save more power
3257 */
3258 if (sum_nr_running <= group_capacity - 1) {
3259 if (sum_nr_running > leader_nr_running ||
3260 (sum_nr_running == leader_nr_running &&
3261 first_cpu(group->cpumask) >
3262 first_cpu(group_leader->cpumask))) {
3263 group_leader = group;
3264 leader_nr_running = sum_nr_running;
3265 }
3266 }
3267group_next:
3268#endif
3269 group = group->next;
3270 } while (group != sd->groups);
3271
3272 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3273 goto out_balanced;
3274
3275 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3276
3277 if (this_load >= avg_load ||
3278 100*max_load <= sd->imbalance_pct*this_load)
3279 goto out_balanced;
3280
3281 busiest_load_per_task /= busiest_nr_running;
3282 if (group_imb)
3283 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3284
3285 /*
3286 * We're trying to get all the cpus to the average_load, so we don't
3287 * want to push ourselves above the average load, nor do we wish to
3288 * reduce the max loaded cpu below the average load, as either of these
3289 * actions would just result in more rebalancing later, and ping-pong
3290 * tasks around. Thus we look for the minimum possible imbalance.
3291 * Negative imbalances (*we* are more loaded than anyone else) will
3292 * be counted as no imbalance for these purposes -- we can't fix that
3293 * by pulling tasks to us. Be careful of negative numbers as they'll
3294 * appear as very large values with unsigned longs.
3295 */
3296 if (max_load <= busiest_load_per_task)
3297 goto out_balanced;
3298
3299 /*
3300 * In the presence of smp nice balancing, certain scenarios can have
3301 * max load less than avg load(as we skip the groups at or below
3302 * its cpu_power, while calculating max_load..)
3303 */
3304 if (max_load < avg_load) {
3305 *imbalance = 0;
3306 goto small_imbalance;
3307 }
3308
3309 /* Don't want to pull so many tasks that a group would go idle */
3310 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3311
3312 /* How much load to actually move to equalise the imbalance */
3313 *imbalance = min(max_pull * busiest->__cpu_power,
3314 (avg_load - this_load) * this->__cpu_power)
3315 / SCHED_LOAD_SCALE;
3316
3317 /*
3318 * if *imbalance is less than the average load per runnable task
3319 * there is no gaurantee that any tasks will be moved so we'll have
3320 * a think about bumping its value to force at least one task to be
3321 * moved
3322 */
3323 if (*imbalance < busiest_load_per_task) {
3324 unsigned long tmp, pwr_now, pwr_move;
3325 unsigned int imbn;
3326
3327small_imbalance:
3328 pwr_move = pwr_now = 0;
3329 imbn = 2;
3330 if (this_nr_running) {
3331 this_load_per_task /= this_nr_running;
3332 if (busiest_load_per_task > this_load_per_task)
3333 imbn = 1;
3334 } else
3335 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3336
3337 if (max_load - this_load + busiest_load_per_task >=
3338 busiest_load_per_task * imbn) {
3339 *imbalance = busiest_load_per_task;
3340 return busiest;
3341 }
3342
3343 /*
3344 * OK, we don't have enough imbalance to justify moving tasks,
3345 * however we may be able to increase total CPU power used by
3346 * moving them.
3347 */
3348
3349 pwr_now += busiest->__cpu_power *
3350 min(busiest_load_per_task, max_load);
3351 pwr_now += this->__cpu_power *
3352 min(this_load_per_task, this_load);
3353 pwr_now /= SCHED_LOAD_SCALE;
3354
3355 /* Amount of load we'd subtract */
3356 tmp = sg_div_cpu_power(busiest,
3357 busiest_load_per_task * SCHED_LOAD_SCALE);
3358 if (max_load > tmp)
3359 pwr_move += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load - tmp);
3361
3362 /* Amount of load we'd add */
3363 if (max_load * busiest->__cpu_power <
3364 busiest_load_per_task * SCHED_LOAD_SCALE)
3365 tmp = sg_div_cpu_power(this,
3366 max_load * busiest->__cpu_power);
3367 else
3368 tmp = sg_div_cpu_power(this,
3369 busiest_load_per_task * SCHED_LOAD_SCALE);
3370 pwr_move += this->__cpu_power *
3371 min(this_load_per_task, this_load + tmp);
3372 pwr_move /= SCHED_LOAD_SCALE;
3373
3374 /* Move if we gain throughput */
3375 if (pwr_move > pwr_now)
3376 *imbalance = busiest_load_per_task;
3377 }
3378
3379 return busiest;
3380
3381out_balanced:
3382#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3383 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3384 goto ret;
3385
3386 if (this == group_leader && group_leader != group_min) {
3387 *imbalance = min_load_per_task;
3388 return group_min;
3389 }
3390#endif
3391ret:
3392 *imbalance = 0;
3393 return NULL;
3394}
3395
3396/*
3397 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3398 */
3399static struct rq *
3400find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3401 unsigned long imbalance, const cpumask_t *cpus)
3402{
3403 struct rq *busiest = NULL, *rq;
3404 unsigned long max_load = 0;
3405 int i;
3406
3407 for_each_cpu_mask_nr(i, group->cpumask) {
3408 unsigned long wl;
3409
3410 if (!cpu_isset(i, *cpus))
3411 continue;
3412
3413 rq = cpu_rq(i);
3414 wl = weighted_cpuload(i);
3415
3416 if (rq->nr_running == 1 && wl > imbalance)
3417 continue;
3418
3419 if (wl > max_load) {
3420 max_load = wl;
3421 busiest = rq;
3422 }
3423 }
3424
3425 return busiest;
3426}
3427
3428/*
3429 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3430 * so long as it is large enough.
3431 */
3432#define MAX_PINNED_INTERVAL 512
3433
3434/*
3435 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3436 * tasks if there is an imbalance.
3437 */
3438static int load_balance(int this_cpu, struct rq *this_rq,
3439 struct sched_domain *sd, enum cpu_idle_type idle,
3440 int *balance, cpumask_t *cpus)
3441{
3442 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3443 struct sched_group *group;
3444 unsigned long imbalance;
3445 struct rq *busiest;
3446 unsigned long flags;
3447
3448 cpus_setall(*cpus);
3449
3450 /*
3451 * When power savings policy is enabled for the parent domain, idle
3452 * sibling can pick up load irrespective of busy siblings. In this case,
3453 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3454 * portraying it as CPU_NOT_IDLE.
3455 */
3456 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3457 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3458 sd_idle = 1;
3459
3460 schedstat_inc(sd, lb_count[idle]);
3461
3462redo:
3463 update_shares(sd);
3464 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3465 cpus, balance);
3466
3467 if (*balance == 0)
3468 goto out_balanced;
3469
3470 if (!group) {
3471 schedstat_inc(sd, lb_nobusyg[idle]);
3472 goto out_balanced;
3473 }
3474
3475 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3476 if (!busiest) {
3477 schedstat_inc(sd, lb_nobusyq[idle]);
3478 goto out_balanced;
3479 }
3480
3481 BUG_ON(busiest == this_rq);
3482
3483 schedstat_add(sd, lb_imbalance[idle], imbalance);
3484
3485 ld_moved = 0;
3486 if (busiest->nr_running > 1) {
3487 /*
3488 * Attempt to move tasks. If find_busiest_group has found
3489 * an imbalance but busiest->nr_running <= 1, the group is
3490 * still unbalanced. ld_moved simply stays zero, so it is
3491 * correctly treated as an imbalance.
3492 */
3493 local_irq_save(flags);
3494 double_rq_lock(this_rq, busiest);
3495 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3496 imbalance, sd, idle, &all_pinned);
3497 double_rq_unlock(this_rq, busiest);
3498 local_irq_restore(flags);
3499
3500 /*
3501 * some other cpu did the load balance for us.
3502 */
3503 if (ld_moved && this_cpu != smp_processor_id())
3504 resched_cpu(this_cpu);
3505
3506 /* All tasks on this runqueue were pinned by CPU affinity */
3507 if (unlikely(all_pinned)) {
3508 cpu_clear(cpu_of(busiest), *cpus);
3509 if (!cpus_empty(*cpus))
3510 goto redo;
3511 goto out_balanced;
3512 }
3513 }
3514
3515 if (!ld_moved) {
3516 schedstat_inc(sd, lb_failed[idle]);
3517 sd->nr_balance_failed++;
3518
3519 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3520
3521 spin_lock_irqsave(&busiest->lock, flags);
3522
3523 /* don't kick the migration_thread, if the curr
3524 * task on busiest cpu can't be moved to this_cpu
3525 */
3526 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3527 spin_unlock_irqrestore(&busiest->lock, flags);
3528 all_pinned = 1;
3529 goto out_one_pinned;
3530 }
3531
3532 if (!busiest->active_balance) {
3533 busiest->active_balance = 1;
3534 busiest->push_cpu = this_cpu;
3535 active_balance = 1;
3536 }
3537 spin_unlock_irqrestore(&busiest->lock, flags);
3538 if (active_balance)
3539 wake_up_process(busiest->migration_thread);
3540
3541 /*
3542 * We've kicked active balancing, reset the failure
3543 * counter.
3544 */
3545 sd->nr_balance_failed = sd->cache_nice_tries+1;
3546 }
3547 } else
3548 sd->nr_balance_failed = 0;
3549
3550 if (likely(!active_balance)) {
3551 /* We were unbalanced, so reset the balancing interval */
3552 sd->balance_interval = sd->min_interval;
3553 } else {
3554 /*
3555 * If we've begun active balancing, start to back off. This
3556 * case may not be covered by the all_pinned logic if there
3557 * is only 1 task on the busy runqueue (because we don't call
3558 * move_tasks).
3559 */
3560 if (sd->balance_interval < sd->max_interval)
3561 sd->balance_interval *= 2;
3562 }
3563
3564 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3565 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3566 ld_moved = -1;
3567
3568 goto out;
3569
3570out_balanced:
3571 schedstat_inc(sd, lb_balanced[idle]);
3572
3573 sd->nr_balance_failed = 0;
3574
3575out_one_pinned:
3576 /* tune up the balancing interval */
3577 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3578 (sd->balance_interval < sd->max_interval))
3579 sd->balance_interval *= 2;
3580
3581 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3582 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3583 ld_moved = -1;
3584 else
3585 ld_moved = 0;
3586out:
3587 if (ld_moved)
3588 update_shares(sd);
3589 return ld_moved;
3590}
3591
3592/*
3593 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3594 * tasks if there is an imbalance.
3595 *
3596 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3597 * this_rq is locked.
3598 */
3599static int
3600load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3601 cpumask_t *cpus)
3602{
3603 struct sched_group *group;
3604 struct rq *busiest = NULL;
3605 unsigned long imbalance;
3606 int ld_moved = 0;
3607 int sd_idle = 0;
3608 int all_pinned = 0;
3609
3610 cpus_setall(*cpus);
3611
3612 /*
3613 * When power savings policy is enabled for the parent domain, idle
3614 * sibling can pick up load irrespective of busy siblings. In this case,
3615 * let the state of idle sibling percolate up as IDLE, instead of
3616 * portraying it as CPU_NOT_IDLE.
3617 */
3618 if (sd->flags & SD_SHARE_CPUPOWER &&
3619 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3620 sd_idle = 1;
3621
3622 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3623redo:
3624 update_shares_locked(this_rq, sd);
3625 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3626 &sd_idle, cpus, NULL);
3627 if (!group) {
3628 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3629 goto out_balanced;
3630 }
3631
3632 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3633 if (!busiest) {
3634 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3635 goto out_balanced;
3636 }
3637
3638 BUG_ON(busiest == this_rq);
3639
3640 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3641
3642 ld_moved = 0;
3643 if (busiest->nr_running > 1) {
3644 /* Attempt to move tasks */
3645 double_lock_balance(this_rq, busiest);
3646 /* this_rq->clock is already updated */
3647 update_rq_clock(busiest);
3648 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3649 imbalance, sd, CPU_NEWLY_IDLE,
3650 &all_pinned);
3651 double_unlock_balance(this_rq, busiest);
3652
3653 if (unlikely(all_pinned)) {
3654 cpu_clear(cpu_of(busiest), *cpus);
3655 if (!cpus_empty(*cpus))
3656 goto redo;
3657 }
3658 }
3659
3660 if (!ld_moved) {
3661 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3662 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3663 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3664 return -1;
3665 } else
3666 sd->nr_balance_failed = 0;
3667
3668 update_shares_locked(this_rq, sd);
3669 return ld_moved;
3670
3671out_balanced:
3672 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3673 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3675 return -1;
3676 sd->nr_balance_failed = 0;
3677
3678 return 0;
3679}
3680
3681/*
3682 * idle_balance is called by schedule() if this_cpu is about to become
3683 * idle. Attempts to pull tasks from other CPUs.
3684 */
3685static void idle_balance(int this_cpu, struct rq *this_rq)
3686{
3687 struct sched_domain *sd;
3688 int pulled_task = 0;
3689 unsigned long next_balance = jiffies + HZ;
3690 cpumask_t tmpmask;
3691
3692 for_each_domain(this_cpu, sd) {
3693 unsigned long interval;
3694
3695 if (!(sd->flags & SD_LOAD_BALANCE))
3696 continue;
3697
3698 if (sd->flags & SD_BALANCE_NEWIDLE)
3699 /* If we've pulled tasks over stop searching: */
3700 pulled_task = load_balance_newidle(this_cpu, this_rq,
3701 sd, &tmpmask);
3702
3703 interval = msecs_to_jiffies(sd->balance_interval);
3704 if (time_after(next_balance, sd->last_balance + interval))
3705 next_balance = sd->last_balance + interval;
3706 if (pulled_task)
3707 break;
3708 }
3709 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3710 /*
3711 * We are going idle. next_balance may be set based on
3712 * a busy processor. So reset next_balance.
3713 */
3714 this_rq->next_balance = next_balance;
3715 }
3716}
3717
3718/*
3719 * active_load_balance is run by migration threads. It pushes running tasks
3720 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3721 * running on each physical CPU where possible, and avoids physical /
3722 * logical imbalances.
3723 *
3724 * Called with busiest_rq locked.
3725 */
3726static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3727{
3728 int target_cpu = busiest_rq->push_cpu;
3729 struct sched_domain *sd;
3730 struct rq *target_rq;
3731
3732 /* Is there any task to move? */
3733 if (busiest_rq->nr_running <= 1)
3734 return;
3735
3736 target_rq = cpu_rq(target_cpu);
3737
3738 /*
3739 * This condition is "impossible", if it occurs
3740 * we need to fix it. Originally reported by
3741 * Bjorn Helgaas on a 128-cpu setup.
3742 */
3743 BUG_ON(busiest_rq == target_rq);
3744
3745 /* move a task from busiest_rq to target_rq */
3746 double_lock_balance(busiest_rq, target_rq);
3747 update_rq_clock(busiest_rq);
3748 update_rq_clock(target_rq);
3749
3750 /* Search for an sd spanning us and the target CPU. */
3751 for_each_domain(target_cpu, sd) {
3752 if ((sd->flags & SD_LOAD_BALANCE) &&
3753 cpu_isset(busiest_cpu, sd->span))
3754 break;
3755 }
3756
3757 if (likely(sd)) {
3758 schedstat_inc(sd, alb_count);
3759
3760 if (move_one_task(target_rq, target_cpu, busiest_rq,
3761 sd, CPU_IDLE))
3762 schedstat_inc(sd, alb_pushed);
3763 else
3764 schedstat_inc(sd, alb_failed);
3765 }
3766 double_unlock_balance(busiest_rq, target_rq);
3767}
3768
3769#ifdef CONFIG_NO_HZ
3770static struct {
3771 atomic_t load_balancer;
3772 cpumask_t cpu_mask;
3773} nohz ____cacheline_aligned = {
3774 .load_balancer = ATOMIC_INIT(-1),
3775 .cpu_mask = CPU_MASK_NONE,
3776};
3777
3778/*
3779 * This routine will try to nominate the ilb (idle load balancing)
3780 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3781 * load balancing on behalf of all those cpus. If all the cpus in the system
3782 * go into this tickless mode, then there will be no ilb owner (as there is
3783 * no need for one) and all the cpus will sleep till the next wakeup event
3784 * arrives...
3785 *
3786 * For the ilb owner, tick is not stopped. And this tick will be used
3787 * for idle load balancing. ilb owner will still be part of
3788 * nohz.cpu_mask..
3789 *
3790 * While stopping the tick, this cpu will become the ilb owner if there
3791 * is no other owner. And will be the owner till that cpu becomes busy
3792 * or if all cpus in the system stop their ticks at which point
3793 * there is no need for ilb owner.
3794 *
3795 * When the ilb owner becomes busy, it nominates another owner, during the
3796 * next busy scheduler_tick()
3797 */
3798int select_nohz_load_balancer(int stop_tick)
3799{
3800 int cpu = smp_processor_id();
3801
3802 if (stop_tick) {
3803 cpu_set(cpu, nohz.cpu_mask);
3804 cpu_rq(cpu)->in_nohz_recently = 1;
3805
3806 /*
3807 * If we are going offline and still the leader, give up!
3808 */
3809 if (!cpu_active(cpu) &&
3810 atomic_read(&nohz.load_balancer) == cpu) {
3811 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3812 BUG();
3813 return 0;
3814 }
3815
3816 /* time for ilb owner also to sleep */
3817 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3818 if (atomic_read(&nohz.load_balancer) == cpu)
3819 atomic_set(&nohz.load_balancer, -1);
3820 return 0;
3821 }
3822
3823 if (atomic_read(&nohz.load_balancer) == -1) {
3824 /* make me the ilb owner */
3825 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3826 return 1;
3827 } else if (atomic_read(&nohz.load_balancer) == cpu)
3828 return 1;
3829 } else {
3830 if (!cpu_isset(cpu, nohz.cpu_mask))
3831 return 0;
3832
3833 cpu_clear(cpu, nohz.cpu_mask);
3834
3835 if (atomic_read(&nohz.load_balancer) == cpu)
3836 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3837 BUG();
3838 }
3839 return 0;
3840}
3841#endif
3842
3843static DEFINE_SPINLOCK(balancing);
3844
3845/*
3846 * It checks each scheduling domain to see if it is due to be balanced,
3847 * and initiates a balancing operation if so.
3848 *
3849 * Balancing parameters are set up in arch_init_sched_domains.
3850 */
3851static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3852{
3853 int balance = 1;
3854 struct rq *rq = cpu_rq(cpu);
3855 unsigned long interval;
3856 struct sched_domain *sd;
3857 /* Earliest time when we have to do rebalance again */
3858 unsigned long next_balance = jiffies + 60*HZ;
3859 int update_next_balance = 0;
3860 int need_serialize;
3861 cpumask_t tmp;
3862
3863 for_each_domain(cpu, sd) {
3864 if (!(sd->flags & SD_LOAD_BALANCE))
3865 continue;
3866
3867 interval = sd->balance_interval;
3868 if (idle != CPU_IDLE)
3869 interval *= sd->busy_factor;
3870
3871 /* scale ms to jiffies */
3872 interval = msecs_to_jiffies(interval);
3873 if (unlikely(!interval))
3874 interval = 1;
3875 if (interval > HZ*NR_CPUS/10)
3876 interval = HZ*NR_CPUS/10;
3877
3878 need_serialize = sd->flags & SD_SERIALIZE;
3879
3880 if (need_serialize) {
3881 if (!spin_trylock(&balancing))
3882 goto out;
3883 }
3884
3885 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3886 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3887 /*
3888 * We've pulled tasks over so either we're no
3889 * longer idle, or one of our SMT siblings is
3890 * not idle.
3891 */
3892 idle = CPU_NOT_IDLE;
3893 }
3894 sd->last_balance = jiffies;
3895 }
3896 if (need_serialize)
3897 spin_unlock(&balancing);
3898out:
3899 if (time_after(next_balance, sd->last_balance + interval)) {
3900 next_balance = sd->last_balance + interval;
3901 update_next_balance = 1;
3902 }
3903
3904 /*
3905 * Stop the load balance at this level. There is another
3906 * CPU in our sched group which is doing load balancing more
3907 * actively.
3908 */
3909 if (!balance)
3910 break;
3911 }
3912
3913 /*
3914 * next_balance will be updated only when there is a need.
3915 * When the cpu is attached to null domain for ex, it will not be
3916 * updated.
3917 */
3918 if (likely(update_next_balance))
3919 rq->next_balance = next_balance;
3920}
3921
3922/*
3923 * run_rebalance_domains is triggered when needed from the scheduler tick.
3924 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3925 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3926 */
3927static void run_rebalance_domains(struct softirq_action *h)
3928{
3929 int this_cpu = smp_processor_id();
3930 struct rq *this_rq = cpu_rq(this_cpu);
3931 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3932 CPU_IDLE : CPU_NOT_IDLE;
3933
3934 rebalance_domains(this_cpu, idle);
3935
3936#ifdef CONFIG_NO_HZ
3937 /*
3938 * If this cpu is the owner for idle load balancing, then do the
3939 * balancing on behalf of the other idle cpus whose ticks are
3940 * stopped.
3941 */
3942 if (this_rq->idle_at_tick &&
3943 atomic_read(&nohz.load_balancer) == this_cpu) {
3944 cpumask_t cpus = nohz.cpu_mask;
3945 struct rq *rq;
3946 int balance_cpu;
3947
3948 cpu_clear(this_cpu, cpus);
3949 for_each_cpu_mask_nr(balance_cpu, cpus) {
3950 /*
3951 * If this cpu gets work to do, stop the load balancing
3952 * work being done for other cpus. Next load
3953 * balancing owner will pick it up.
3954 */
3955 if (need_resched())
3956 break;
3957
3958 rebalance_domains(balance_cpu, CPU_IDLE);
3959
3960 rq = cpu_rq(balance_cpu);
3961 if (time_after(this_rq->next_balance, rq->next_balance))
3962 this_rq->next_balance = rq->next_balance;
3963 }
3964 }
3965#endif
3966}
3967
3968/*
3969 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3970 *
3971 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3972 * idle load balancing owner or decide to stop the periodic load balancing,
3973 * if the whole system is idle.
3974 */
3975static inline void trigger_load_balance(struct rq *rq, int cpu)
3976{
3977#ifdef CONFIG_NO_HZ
3978 /*
3979 * If we were in the nohz mode recently and busy at the current
3980 * scheduler tick, then check if we need to nominate new idle
3981 * load balancer.
3982 */
3983 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3984 rq->in_nohz_recently = 0;
3985
3986 if (atomic_read(&nohz.load_balancer) == cpu) {
3987 cpu_clear(cpu, nohz.cpu_mask);
3988 atomic_set(&nohz.load_balancer, -1);
3989 }
3990
3991 if (atomic_read(&nohz.load_balancer) == -1) {
3992 /*
3993 * simple selection for now: Nominate the
3994 * first cpu in the nohz list to be the next
3995 * ilb owner.
3996 *
3997 * TBD: Traverse the sched domains and nominate
3998 * the nearest cpu in the nohz.cpu_mask.
3999 */
4000 int ilb = first_cpu(nohz.cpu_mask);
4001
4002 if (ilb < nr_cpu_ids)
4003 resched_cpu(ilb);
4004 }
4005 }
4006
4007 /*
4008 * If this cpu is idle and doing idle load balancing for all the
4009 * cpus with ticks stopped, is it time for that to stop?
4010 */
4011 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4012 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4013 resched_cpu(cpu);
4014 return;
4015 }
4016
4017 /*
4018 * If this cpu is idle and the idle load balancing is done by
4019 * someone else, then no need raise the SCHED_SOFTIRQ
4020 */
4021 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4022 cpu_isset(cpu, nohz.cpu_mask))
4023 return;
4024#endif
4025 if (time_after_eq(jiffies, rq->next_balance))
4026 raise_softirq(SCHED_SOFTIRQ);
4027}
4028
4029#else /* CONFIG_SMP */
4030
4031/*
4032 * on UP we do not need to balance between CPUs:
4033 */
4034static inline void idle_balance(int cpu, struct rq *rq)
4035{
4036}
4037
4038#endif
4039
4040DEFINE_PER_CPU(struct kernel_stat, kstat);
4041
4042EXPORT_PER_CPU_SYMBOL(kstat);
4043
4044/*
4045 * Return any ns on the sched_clock that have not yet been banked in
4046 * @p in case that task is currently running.
4047 */
4048unsigned long long task_delta_exec(struct task_struct *p)
4049{
4050 unsigned long flags;
4051 struct rq *rq;
4052 u64 ns = 0;
4053
4054 rq = task_rq_lock(p, &flags);
4055
4056 if (task_current(rq, p)) {
4057 u64 delta_exec;
4058
4059 update_rq_clock(rq);
4060 delta_exec = rq->clock - p->se.exec_start;
4061 if ((s64)delta_exec > 0)
4062 ns = delta_exec;
4063 }
4064
4065 task_rq_unlock(rq, &flags);
4066
4067 return ns;
4068}
4069
4070/*
4071 * Account user cpu time to a process.
4072 * @p: the process that the cpu time gets accounted to
4073 * @cputime: the cpu time spent in user space since the last update
4074 */
4075void account_user_time(struct task_struct *p, cputime_t cputime)
4076{
4077 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4078 cputime64_t tmp;
4079
4080 p->utime = cputime_add(p->utime, cputime);
4081 account_group_user_time(p, cputime);
4082
4083 /* Add user time to cpustat. */
4084 tmp = cputime_to_cputime64(cputime);
4085 if (TASK_NICE(p) > 0)
4086 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4087 else
4088 cpustat->user = cputime64_add(cpustat->user, tmp);
4089 /* Account for user time used */
4090 acct_update_integrals(p);
4091}
4092
4093/*
4094 * Account guest cpu time to a process.
4095 * @p: the process that the cpu time gets accounted to
4096 * @cputime: the cpu time spent in virtual machine since the last update
4097 */
4098static void account_guest_time(struct task_struct *p, cputime_t cputime)
4099{
4100 cputime64_t tmp;
4101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4102
4103 tmp = cputime_to_cputime64(cputime);
4104
4105 p->utime = cputime_add(p->utime, cputime);
4106 account_group_user_time(p, cputime);
4107 p->gtime = cputime_add(p->gtime, cputime);
4108
4109 cpustat->user = cputime64_add(cpustat->user, tmp);
4110 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4111}
4112
4113/*
4114 * Account scaled user cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @cputime: the cpu time spent in user space since the last update
4117 */
4118void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4119{
4120 p->utimescaled = cputime_add(p->utimescaled, cputime);
4121}
4122
4123/*
4124 * Account system cpu time to a process.
4125 * @p: the process that the cpu time gets accounted to
4126 * @hardirq_offset: the offset to subtract from hardirq_count()
4127 * @cputime: the cpu time spent in kernel space since the last update
4128 */
4129void account_system_time(struct task_struct *p, int hardirq_offset,
4130 cputime_t cputime)
4131{
4132 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4133 struct rq *rq = this_rq();
4134 cputime64_t tmp;
4135
4136 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4137 account_guest_time(p, cputime);
4138 return;
4139 }
4140
4141 p->stime = cputime_add(p->stime, cputime);
4142 account_group_system_time(p, cputime);
4143
4144 /* Add system time to cpustat. */
4145 tmp = cputime_to_cputime64(cputime);
4146 if (hardirq_count() - hardirq_offset)
4147 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4148 else if (softirq_count())
4149 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4150 else if (p != rq->idle)
4151 cpustat->system = cputime64_add(cpustat->system, tmp);
4152 else if (atomic_read(&rq->nr_iowait) > 0)
4153 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4154 else
4155 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4156 /* Account for system time used */
4157 acct_update_integrals(p);
4158}
4159
4160/*
4161 * Account scaled system cpu time to a process.
4162 * @p: the process that the cpu time gets accounted to
4163 * @hardirq_offset: the offset to subtract from hardirq_count()
4164 * @cputime: the cpu time spent in kernel space since the last update
4165 */
4166void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4167{
4168 p->stimescaled = cputime_add(p->stimescaled, cputime);
4169}
4170
4171/*
4172 * Account for involuntary wait time.
4173 * @p: the process from which the cpu time has been stolen
4174 * @steal: the cpu time spent in involuntary wait
4175 */
4176void account_steal_time(struct task_struct *p, cputime_t steal)
4177{
4178 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4179 cputime64_t tmp = cputime_to_cputime64(steal);
4180 struct rq *rq = this_rq();
4181
4182 if (p == rq->idle) {
4183 p->stime = cputime_add(p->stime, steal);
4184 account_group_system_time(p, steal);
4185 if (atomic_read(&rq->nr_iowait) > 0)
4186 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4187 else
4188 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4189 } else
4190 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4191}
4192
4193/*
4194 * Use precise platform statistics if available:
4195 */
4196#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4197cputime_t task_utime(struct task_struct *p)
4198{
4199 return p->utime;
4200}
4201
4202cputime_t task_stime(struct task_struct *p)
4203{
4204 return p->stime;
4205}
4206#else
4207cputime_t task_utime(struct task_struct *p)
4208{
4209 clock_t utime = cputime_to_clock_t(p->utime),
4210 total = utime + cputime_to_clock_t(p->stime);
4211 u64 temp;
4212
4213 /*
4214 * Use CFS's precise accounting:
4215 */
4216 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4217
4218 if (total) {
4219 temp *= utime;
4220 do_div(temp, total);
4221 }
4222 utime = (clock_t)temp;
4223
4224 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4225 return p->prev_utime;
4226}
4227
4228cputime_t task_stime(struct task_struct *p)
4229{
4230 clock_t stime;
4231
4232 /*
4233 * Use CFS's precise accounting. (we subtract utime from
4234 * the total, to make sure the total observed by userspace
4235 * grows monotonically - apps rely on that):
4236 */
4237 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4238 cputime_to_clock_t(task_utime(p));
4239
4240 if (stime >= 0)
4241 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4242
4243 return p->prev_stime;
4244}
4245#endif
4246
4247inline cputime_t task_gtime(struct task_struct *p)
4248{
4249 return p->gtime;
4250}
4251
4252/*
4253 * This function gets called by the timer code, with HZ frequency.
4254 * We call it with interrupts disabled.
4255 *
4256 * It also gets called by the fork code, when changing the parent's
4257 * timeslices.
4258 */
4259void scheduler_tick(void)
4260{
4261 int cpu = smp_processor_id();
4262 struct rq *rq = cpu_rq(cpu);
4263 struct task_struct *curr = rq->curr;
4264
4265 sched_clock_tick();
4266
4267 spin_lock(&rq->lock);
4268 update_rq_clock(rq);
4269 update_cpu_load(rq);
4270 curr->sched_class->task_tick(rq, curr, 0);
4271 spin_unlock(&rq->lock);
4272
4273#ifdef CONFIG_SMP
4274 rq->idle_at_tick = idle_cpu(cpu);
4275 trigger_load_balance(rq, cpu);
4276#endif
4277}
4278
4279#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4280 defined(CONFIG_PREEMPT_TRACER))
4281
4282static inline unsigned long get_parent_ip(unsigned long addr)
4283{
4284 if (in_lock_functions(addr)) {
4285 addr = CALLER_ADDR2;
4286 if (in_lock_functions(addr))
4287 addr = CALLER_ADDR3;
4288 }
4289 return addr;
4290}
4291
4292void __kprobes add_preempt_count(int val)
4293{
4294#ifdef CONFIG_DEBUG_PREEMPT
4295 /*
4296 * Underflow?
4297 */
4298 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4299 return;
4300#endif
4301 preempt_count() += val;
4302#ifdef CONFIG_DEBUG_PREEMPT
4303 /*
4304 * Spinlock count overflowing soon?
4305 */
4306 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4307 PREEMPT_MASK - 10);
4308#endif
4309 if (preempt_count() == val)
4310 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4311}
4312EXPORT_SYMBOL(add_preempt_count);
4313
4314void __kprobes sub_preempt_count(int val)
4315{
4316#ifdef CONFIG_DEBUG_PREEMPT
4317 /*
4318 * Underflow?
4319 */
4320 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4321 return;
4322 /*
4323 * Is the spinlock portion underflowing?
4324 */
4325 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4326 !(preempt_count() & PREEMPT_MASK)))
4327 return;
4328#endif
4329
4330 if (preempt_count() == val)
4331 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4332 preempt_count() -= val;
4333}
4334EXPORT_SYMBOL(sub_preempt_count);
4335
4336#endif
4337
4338/*
4339 * Print scheduling while atomic bug:
4340 */
4341static noinline void __schedule_bug(struct task_struct *prev)
4342{
4343 struct pt_regs *regs = get_irq_regs();
4344
4345 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4346 prev->comm, prev->pid, preempt_count());
4347
4348 debug_show_held_locks(prev);
4349 print_modules();
4350 if (irqs_disabled())
4351 print_irqtrace_events(prev);
4352
4353 if (regs)
4354 show_regs(regs);
4355 else
4356 dump_stack();
4357}
4358
4359/*
4360 * Various schedule()-time debugging checks and statistics:
4361 */
4362static inline void schedule_debug(struct task_struct *prev)
4363{
4364 /*
4365 * Test if we are atomic. Since do_exit() needs to call into
4366 * schedule() atomically, we ignore that path for now.
4367 * Otherwise, whine if we are scheduling when we should not be.
4368 */
4369 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4370 __schedule_bug(prev);
4371
4372 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4373
4374 schedstat_inc(this_rq(), sched_count);
4375#ifdef CONFIG_SCHEDSTATS
4376 if (unlikely(prev->lock_depth >= 0)) {
4377 schedstat_inc(this_rq(), bkl_count);
4378 schedstat_inc(prev, sched_info.bkl_count);
4379 }
4380#endif
4381}
4382
4383/*
4384 * Pick up the highest-prio task:
4385 */
4386static inline struct task_struct *
4387pick_next_task(struct rq *rq, struct task_struct *prev)
4388{
4389 const struct sched_class *class;
4390 struct task_struct *p;
4391
4392 /*
4393 * Optimization: we know that if all tasks are in
4394 * the fair class we can call that function directly:
4395 */
4396 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4397 p = fair_sched_class.pick_next_task(rq);
4398 if (likely(p))
4399 return p;
4400 }
4401
4402 class = sched_class_highest;
4403 for ( ; ; ) {
4404 p = class->pick_next_task(rq);
4405 if (p)
4406 return p;
4407 /*
4408 * Will never be NULL as the idle class always
4409 * returns a non-NULL p:
4410 */
4411 class = class->next;
4412 }
4413}
4414
4415/*
4416 * schedule() is the main scheduler function.
4417 */
4418asmlinkage void __sched schedule(void)
4419{
4420 struct task_struct *prev, *next;
4421 unsigned long *switch_count;
4422 struct rq *rq;
4423 int cpu;
4424
4425need_resched:
4426 preempt_disable();
4427 cpu = smp_processor_id();
4428 rq = cpu_rq(cpu);
4429 rcu_qsctr_inc(cpu);
4430 prev = rq->curr;
4431 switch_count = &prev->nivcsw;
4432
4433 release_kernel_lock(prev);
4434need_resched_nonpreemptible:
4435
4436 schedule_debug(prev);
4437
4438 if (sched_feat(HRTICK))
4439 hrtick_clear(rq);
4440
4441 spin_lock_irq(&rq->lock);
4442 update_rq_clock(rq);
4443 clear_tsk_need_resched(prev);
4444
4445 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4446 if (unlikely(signal_pending_state(prev->state, prev)))
4447 prev->state = TASK_RUNNING;
4448 else
4449 deactivate_task(rq, prev, 1);
4450 switch_count = &prev->nvcsw;
4451 }
4452
4453#ifdef CONFIG_SMP
4454 if (prev->sched_class->pre_schedule)
4455 prev->sched_class->pre_schedule(rq, prev);
4456#endif
4457
4458 if (unlikely(!rq->nr_running))
4459 idle_balance(cpu, rq);
4460
4461 prev->sched_class->put_prev_task(rq, prev);
4462 next = pick_next_task(rq, prev);
4463
4464 if (likely(prev != next)) {
4465 sched_info_switch(prev, next);
4466
4467 rq->nr_switches++;
4468 rq->curr = next;
4469 ++*switch_count;
4470
4471 context_switch(rq, prev, next); /* unlocks the rq */
4472 /*
4473 * the context switch might have flipped the stack from under
4474 * us, hence refresh the local variables.
4475 */
4476 cpu = smp_processor_id();
4477 rq = cpu_rq(cpu);
4478 } else
4479 spin_unlock_irq(&rq->lock);
4480
4481 if (unlikely(reacquire_kernel_lock(current) < 0))
4482 goto need_resched_nonpreemptible;
4483
4484 preempt_enable_no_resched();
4485 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4486 goto need_resched;
4487}
4488EXPORT_SYMBOL(schedule);
4489
4490#ifdef CONFIG_PREEMPT
4491/*
4492 * this is the entry point to schedule() from in-kernel preemption
4493 * off of preempt_enable. Kernel preemptions off return from interrupt
4494 * occur there and call schedule directly.
4495 */
4496asmlinkage void __sched preempt_schedule(void)
4497{
4498 struct thread_info *ti = current_thread_info();
4499
4500 /*
4501 * If there is a non-zero preempt_count or interrupts are disabled,
4502 * we do not want to preempt the current task. Just return..
4503 */
4504 if (likely(ti->preempt_count || irqs_disabled()))
4505 return;
4506
4507 do {
4508 add_preempt_count(PREEMPT_ACTIVE);
4509 schedule();
4510 sub_preempt_count(PREEMPT_ACTIVE);
4511
4512 /*
4513 * Check again in case we missed a preemption opportunity
4514 * between schedule and now.
4515 */
4516 barrier();
4517 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4518}
4519EXPORT_SYMBOL(preempt_schedule);
4520
4521/*
4522 * this is the entry point to schedule() from kernel preemption
4523 * off of irq context.
4524 * Note, that this is called and return with irqs disabled. This will
4525 * protect us against recursive calling from irq.
4526 */
4527asmlinkage void __sched preempt_schedule_irq(void)
4528{
4529 struct thread_info *ti = current_thread_info();
4530
4531 /* Catch callers which need to be fixed */
4532 BUG_ON(ti->preempt_count || !irqs_disabled());
4533
4534 do {
4535 add_preempt_count(PREEMPT_ACTIVE);
4536 local_irq_enable();
4537 schedule();
4538 local_irq_disable();
4539 sub_preempt_count(PREEMPT_ACTIVE);
4540
4541 /*
4542 * Check again in case we missed a preemption opportunity
4543 * between schedule and now.
4544 */
4545 barrier();
4546 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4547}
4548
4549#endif /* CONFIG_PREEMPT */
4550
4551int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4552 void *key)
4553{
4554 return try_to_wake_up(curr->private, mode, sync);
4555}
4556EXPORT_SYMBOL(default_wake_function);
4557
4558/*
4559 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4560 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4561 * number) then we wake all the non-exclusive tasks and one exclusive task.
4562 *
4563 * There are circumstances in which we can try to wake a task which has already
4564 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4565 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4566 */
4567static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4568 int nr_exclusive, int sync, void *key)
4569{
4570 wait_queue_t *curr, *next;
4571
4572 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4573 unsigned flags = curr->flags;
4574
4575 if (curr->func(curr, mode, sync, key) &&
4576 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4577 break;
4578 }
4579}
4580
4581/**
4582 * __wake_up - wake up threads blocked on a waitqueue.
4583 * @q: the waitqueue
4584 * @mode: which threads
4585 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4586 * @key: is directly passed to the wakeup function
4587 */
4588void __wake_up(wait_queue_head_t *q, unsigned int mode,
4589 int nr_exclusive, void *key)
4590{
4591 unsigned long flags;
4592
4593 spin_lock_irqsave(&q->lock, flags);
4594 __wake_up_common(q, mode, nr_exclusive, 0, key);
4595 spin_unlock_irqrestore(&q->lock, flags);
4596}
4597EXPORT_SYMBOL(__wake_up);
4598
4599/*
4600 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4601 */
4602void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4603{
4604 __wake_up_common(q, mode, 1, 0, NULL);
4605}
4606
4607/**
4608 * __wake_up_sync - wake up threads blocked on a waitqueue.
4609 * @q: the waitqueue
4610 * @mode: which threads
4611 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4612 *
4613 * The sync wakeup differs that the waker knows that it will schedule
4614 * away soon, so while the target thread will be woken up, it will not
4615 * be migrated to another CPU - ie. the two threads are 'synchronized'
4616 * with each other. This can prevent needless bouncing between CPUs.
4617 *
4618 * On UP it can prevent extra preemption.
4619 */
4620void
4621__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4622{
4623 unsigned long flags;
4624 int sync = 1;
4625
4626 if (unlikely(!q))
4627 return;
4628
4629 if (unlikely(!nr_exclusive))
4630 sync = 0;
4631
4632 spin_lock_irqsave(&q->lock, flags);
4633 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4634 spin_unlock_irqrestore(&q->lock, flags);
4635}
4636EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4637
4638/**
4639 * complete: - signals a single thread waiting on this completion
4640 * @x: holds the state of this particular completion
4641 *
4642 * This will wake up a single thread waiting on this completion. Threads will be
4643 * awakened in the same order in which they were queued.
4644 *
4645 * See also complete_all(), wait_for_completion() and related routines.
4646 */
4647void complete(struct completion *x)
4648{
4649 unsigned long flags;
4650
4651 spin_lock_irqsave(&x->wait.lock, flags);
4652 x->done++;
4653 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4654 spin_unlock_irqrestore(&x->wait.lock, flags);
4655}
4656EXPORT_SYMBOL(complete);
4657
4658/**
4659 * complete_all: - signals all threads waiting on this completion
4660 * @x: holds the state of this particular completion
4661 *
4662 * This will wake up all threads waiting on this particular completion event.
4663 */
4664void complete_all(struct completion *x)
4665{
4666 unsigned long flags;
4667
4668 spin_lock_irqsave(&x->wait.lock, flags);
4669 x->done += UINT_MAX/2;
4670 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4671 spin_unlock_irqrestore(&x->wait.lock, flags);
4672}
4673EXPORT_SYMBOL(complete_all);
4674
4675static inline long __sched
4676do_wait_for_common(struct completion *x, long timeout, int state)
4677{
4678 if (!x->done) {
4679 DECLARE_WAITQUEUE(wait, current);
4680
4681 wait.flags |= WQ_FLAG_EXCLUSIVE;
4682 __add_wait_queue_tail(&x->wait, &wait);
4683 do {
4684 if (signal_pending_state(state, current)) {
4685 timeout = -ERESTARTSYS;
4686 break;
4687 }
4688 __set_current_state(state);
4689 spin_unlock_irq(&x->wait.lock);
4690 timeout = schedule_timeout(timeout);
4691 spin_lock_irq(&x->wait.lock);
4692 } while (!x->done && timeout);
4693 __remove_wait_queue(&x->wait, &wait);
4694 if (!x->done)
4695 return timeout;
4696 }
4697 x->done--;
4698 return timeout ?: 1;
4699}
4700
4701static long __sched
4702wait_for_common(struct completion *x, long timeout, int state)
4703{
4704 might_sleep();
4705
4706 spin_lock_irq(&x->wait.lock);
4707 timeout = do_wait_for_common(x, timeout, state);
4708 spin_unlock_irq(&x->wait.lock);
4709 return timeout;
4710}
4711
4712/**
4713 * wait_for_completion: - waits for completion of a task
4714 * @x: holds the state of this particular completion
4715 *
4716 * This waits to be signaled for completion of a specific task. It is NOT
4717 * interruptible and there is no timeout.
4718 *
4719 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4720 * and interrupt capability. Also see complete().
4721 */
4722void __sched wait_for_completion(struct completion *x)
4723{
4724 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4725}
4726EXPORT_SYMBOL(wait_for_completion);
4727
4728/**
4729 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4730 * @x: holds the state of this particular completion
4731 * @timeout: timeout value in jiffies
4732 *
4733 * This waits for either a completion of a specific task to be signaled or for a
4734 * specified timeout to expire. The timeout is in jiffies. It is not
4735 * interruptible.
4736 */
4737unsigned long __sched
4738wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4739{
4740 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4741}
4742EXPORT_SYMBOL(wait_for_completion_timeout);
4743
4744/**
4745 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4746 * @x: holds the state of this particular completion
4747 *
4748 * This waits for completion of a specific task to be signaled. It is
4749 * interruptible.
4750 */
4751int __sched wait_for_completion_interruptible(struct completion *x)
4752{
4753 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4754 if (t == -ERESTARTSYS)
4755 return t;
4756 return 0;
4757}
4758EXPORT_SYMBOL(wait_for_completion_interruptible);
4759
4760/**
4761 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4762 * @x: holds the state of this particular completion
4763 * @timeout: timeout value in jiffies
4764 *
4765 * This waits for either a completion of a specific task to be signaled or for a
4766 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4767 */
4768unsigned long __sched
4769wait_for_completion_interruptible_timeout(struct completion *x,
4770 unsigned long timeout)
4771{
4772 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4773}
4774EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4775
4776/**
4777 * wait_for_completion_killable: - waits for completion of a task (killable)
4778 * @x: holds the state of this particular completion
4779 *
4780 * This waits to be signaled for completion of a specific task. It can be
4781 * interrupted by a kill signal.
4782 */
4783int __sched wait_for_completion_killable(struct completion *x)
4784{
4785 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4786 if (t == -ERESTARTSYS)
4787 return t;
4788 return 0;
4789}
4790EXPORT_SYMBOL(wait_for_completion_killable);
4791
4792/**
4793 * try_wait_for_completion - try to decrement a completion without blocking
4794 * @x: completion structure
4795 *
4796 * Returns: 0 if a decrement cannot be done without blocking
4797 * 1 if a decrement succeeded.
4798 *
4799 * If a completion is being used as a counting completion,
4800 * attempt to decrement the counter without blocking. This
4801 * enables us to avoid waiting if the resource the completion
4802 * is protecting is not available.
4803 */
4804bool try_wait_for_completion(struct completion *x)
4805{
4806 int ret = 1;
4807
4808 spin_lock_irq(&x->wait.lock);
4809 if (!x->done)
4810 ret = 0;
4811 else
4812 x->done--;
4813 spin_unlock_irq(&x->wait.lock);
4814 return ret;
4815}
4816EXPORT_SYMBOL(try_wait_for_completion);
4817
4818/**
4819 * completion_done - Test to see if a completion has any waiters
4820 * @x: completion structure
4821 *
4822 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4823 * 1 if there are no waiters.
4824 *
4825 */
4826bool completion_done(struct completion *x)
4827{
4828 int ret = 1;
4829
4830 spin_lock_irq(&x->wait.lock);
4831 if (!x->done)
4832 ret = 0;
4833 spin_unlock_irq(&x->wait.lock);
4834 return ret;
4835}
4836EXPORT_SYMBOL(completion_done);
4837
4838static long __sched
4839sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4840{
4841 unsigned long flags;
4842 wait_queue_t wait;
4843
4844 init_waitqueue_entry(&wait, current);
4845
4846 __set_current_state(state);
4847
4848 spin_lock_irqsave(&q->lock, flags);
4849 __add_wait_queue(q, &wait);
4850 spin_unlock(&q->lock);
4851 timeout = schedule_timeout(timeout);
4852 spin_lock_irq(&q->lock);
4853 __remove_wait_queue(q, &wait);
4854 spin_unlock_irqrestore(&q->lock, flags);
4855
4856 return timeout;
4857}
4858
4859void __sched interruptible_sleep_on(wait_queue_head_t *q)
4860{
4861 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4862}
4863EXPORT_SYMBOL(interruptible_sleep_on);
4864
4865long __sched
4866interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4867{
4868 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4869}
4870EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4871
4872void __sched sleep_on(wait_queue_head_t *q)
4873{
4874 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4875}
4876EXPORT_SYMBOL(sleep_on);
4877
4878long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4879{
4880 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4881}
4882EXPORT_SYMBOL(sleep_on_timeout);
4883
4884#ifdef CONFIG_RT_MUTEXES
4885
4886/*
4887 * rt_mutex_setprio - set the current priority of a task
4888 * @p: task
4889 * @prio: prio value (kernel-internal form)
4890 *
4891 * This function changes the 'effective' priority of a task. It does
4892 * not touch ->normal_prio like __setscheduler().
4893 *
4894 * Used by the rt_mutex code to implement priority inheritance logic.
4895 */
4896void rt_mutex_setprio(struct task_struct *p, int prio)
4897{
4898 unsigned long flags;
4899 int oldprio, on_rq, running;
4900 struct rq *rq;
4901 const struct sched_class *prev_class = p->sched_class;
4902
4903 BUG_ON(prio < 0 || prio > MAX_PRIO);
4904
4905 rq = task_rq_lock(p, &flags);
4906 update_rq_clock(rq);
4907
4908 oldprio = p->prio;
4909 on_rq = p->se.on_rq;
4910 running = task_current(rq, p);
4911 if (on_rq)
4912 dequeue_task(rq, p, 0);
4913 if (running)
4914 p->sched_class->put_prev_task(rq, p);
4915
4916 if (rt_prio(prio))
4917 p->sched_class = &rt_sched_class;
4918 else
4919 p->sched_class = &fair_sched_class;
4920
4921 p->prio = prio;
4922
4923 if (running)
4924 p->sched_class->set_curr_task(rq);
4925 if (on_rq) {
4926 enqueue_task(rq, p, 0);
4927
4928 check_class_changed(rq, p, prev_class, oldprio, running);
4929 }
4930 task_rq_unlock(rq, &flags);
4931}
4932
4933#endif
4934
4935void set_user_nice(struct task_struct *p, long nice)
4936{
4937 int old_prio, delta, on_rq;
4938 unsigned long flags;
4939 struct rq *rq;
4940
4941 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4942 return;
4943 /*
4944 * We have to be careful, if called from sys_setpriority(),
4945 * the task might be in the middle of scheduling on another CPU.
4946 */
4947 rq = task_rq_lock(p, &flags);
4948 update_rq_clock(rq);
4949 /*
4950 * The RT priorities are set via sched_setscheduler(), but we still
4951 * allow the 'normal' nice value to be set - but as expected
4952 * it wont have any effect on scheduling until the task is
4953 * SCHED_FIFO/SCHED_RR:
4954 */
4955 if (task_has_rt_policy(p)) {
4956 p->static_prio = NICE_TO_PRIO(nice);
4957 goto out_unlock;
4958 }
4959 on_rq = p->se.on_rq;
4960 if (on_rq)
4961 dequeue_task(rq, p, 0);
4962
4963 p->static_prio = NICE_TO_PRIO(nice);
4964 set_load_weight(p);
4965 old_prio = p->prio;
4966 p->prio = effective_prio(p);
4967 delta = p->prio - old_prio;
4968
4969 if (on_rq) {
4970 enqueue_task(rq, p, 0);
4971 /*
4972 * If the task increased its priority or is running and
4973 * lowered its priority, then reschedule its CPU:
4974 */
4975 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4976 resched_task(rq->curr);
4977 }
4978out_unlock:
4979 task_rq_unlock(rq, &flags);
4980}
4981EXPORT_SYMBOL(set_user_nice);
4982
4983/*
4984 * can_nice - check if a task can reduce its nice value
4985 * @p: task
4986 * @nice: nice value
4987 */
4988int can_nice(const struct task_struct *p, const int nice)
4989{
4990 /* convert nice value [19,-20] to rlimit style value [1,40] */
4991 int nice_rlim = 20 - nice;
4992
4993 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4994 capable(CAP_SYS_NICE));
4995}
4996
4997#ifdef __ARCH_WANT_SYS_NICE
4998
4999/*
5000 * sys_nice - change the priority of the current process.
5001 * @increment: priority increment
5002 *
5003 * sys_setpriority is a more generic, but much slower function that
5004 * does similar things.
5005 */
5006asmlinkage long sys_nice(int increment)
5007{
5008 long nice, retval;
5009
5010 /*
5011 * Setpriority might change our priority at the same moment.
5012 * We don't have to worry. Conceptually one call occurs first
5013 * and we have a single winner.
5014 */
5015 if (increment < -40)
5016 increment = -40;
5017 if (increment > 40)
5018 increment = 40;
5019
5020 nice = PRIO_TO_NICE(current->static_prio) + increment;
5021 if (nice < -20)
5022 nice = -20;
5023 if (nice > 19)
5024 nice = 19;
5025
5026 if (increment < 0 && !can_nice(current, nice))
5027 return -EPERM;
5028
5029 retval = security_task_setnice(current, nice);
5030 if (retval)
5031 return retval;
5032
5033 set_user_nice(current, nice);
5034 return 0;
5035}
5036
5037#endif
5038
5039/**
5040 * task_prio - return the priority value of a given task.
5041 * @p: the task in question.
5042 *
5043 * This is the priority value as seen by users in /proc.
5044 * RT tasks are offset by -200. Normal tasks are centered
5045 * around 0, value goes from -16 to +15.
5046 */
5047int task_prio(const struct task_struct *p)
5048{
5049 return p->prio - MAX_RT_PRIO;
5050}
5051
5052/**
5053 * task_nice - return the nice value of a given task.
5054 * @p: the task in question.
5055 */
5056int task_nice(const struct task_struct *p)
5057{
5058 return TASK_NICE(p);
5059}
5060EXPORT_SYMBOL(task_nice);
5061
5062/**
5063 * idle_cpu - is a given cpu idle currently?
5064 * @cpu: the processor in question.
5065 */
5066int idle_cpu(int cpu)
5067{
5068 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5069}
5070
5071/**
5072 * idle_task - return the idle task for a given cpu.
5073 * @cpu: the processor in question.
5074 */
5075struct task_struct *idle_task(int cpu)
5076{
5077 return cpu_rq(cpu)->idle;
5078}
5079
5080/**
5081 * find_process_by_pid - find a process with a matching PID value.
5082 * @pid: the pid in question.
5083 */
5084static struct task_struct *find_process_by_pid(pid_t pid)
5085{
5086 return pid ? find_task_by_vpid(pid) : current;
5087}
5088
5089/* Actually do priority change: must hold rq lock. */
5090static void
5091__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5092{
5093 BUG_ON(p->se.on_rq);
5094
5095 p->policy = policy;
5096 switch (p->policy) {
5097 case SCHED_NORMAL:
5098 case SCHED_BATCH:
5099 case SCHED_IDLE:
5100 p->sched_class = &fair_sched_class;
5101 break;
5102 case SCHED_FIFO:
5103 case SCHED_RR:
5104 p->sched_class = &rt_sched_class;
5105 break;
5106 }
5107
5108 p->rt_priority = prio;
5109 p->normal_prio = normal_prio(p);
5110 /* we are holding p->pi_lock already */
5111 p->prio = rt_mutex_getprio(p);
5112 set_load_weight(p);
5113}
5114
5115static int __sched_setscheduler(struct task_struct *p, int policy,
5116 struct sched_param *param, bool user)
5117{
5118 int retval, oldprio, oldpolicy = -1, on_rq, running;
5119 unsigned long flags;
5120 const struct sched_class *prev_class = p->sched_class;
5121 struct rq *rq;
5122
5123 /* may grab non-irq protected spin_locks */
5124 BUG_ON(in_interrupt());
5125recheck:
5126 /* double check policy once rq lock held */
5127 if (policy < 0)
5128 policy = oldpolicy = p->policy;
5129 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5130 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5131 policy != SCHED_IDLE)
5132 return -EINVAL;
5133 /*
5134 * Valid priorities for SCHED_FIFO and SCHED_RR are
5135 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5136 * SCHED_BATCH and SCHED_IDLE is 0.
5137 */
5138 if (param->sched_priority < 0 ||
5139 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5140 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5141 return -EINVAL;
5142 if (rt_policy(policy) != (param->sched_priority != 0))
5143 return -EINVAL;
5144
5145 /*
5146 * Allow unprivileged RT tasks to decrease priority:
5147 */
5148 if (user && !capable(CAP_SYS_NICE)) {
5149 if (rt_policy(policy)) {
5150 unsigned long rlim_rtprio;
5151
5152 if (!lock_task_sighand(p, &flags))
5153 return -ESRCH;
5154 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5155 unlock_task_sighand(p, &flags);
5156
5157 /* can't set/change the rt policy */
5158 if (policy != p->policy && !rlim_rtprio)
5159 return -EPERM;
5160
5161 /* can't increase priority */
5162 if (param->sched_priority > p->rt_priority &&
5163 param->sched_priority > rlim_rtprio)
5164 return -EPERM;
5165 }
5166 /*
5167 * Like positive nice levels, dont allow tasks to
5168 * move out of SCHED_IDLE either:
5169 */
5170 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5171 return -EPERM;
5172
5173 /* can't change other user's priorities */
5174 if ((current->euid != p->euid) &&
5175 (current->euid != p->uid))
5176 return -EPERM;
5177 }
5178
5179 if (user) {
5180#ifdef CONFIG_RT_GROUP_SCHED
5181 /*
5182 * Do not allow realtime tasks into groups that have no runtime
5183 * assigned.
5184 */
5185 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5186 task_group(p)->rt_bandwidth.rt_runtime == 0)
5187 return -EPERM;
5188#endif
5189
5190 retval = security_task_setscheduler(p, policy, param);
5191 if (retval)
5192 return retval;
5193 }
5194
5195 /*
5196 * make sure no PI-waiters arrive (or leave) while we are
5197 * changing the priority of the task:
5198 */
5199 spin_lock_irqsave(&p->pi_lock, flags);
5200 /*
5201 * To be able to change p->policy safely, the apropriate
5202 * runqueue lock must be held.
5203 */
5204 rq = __task_rq_lock(p);
5205 /* recheck policy now with rq lock held */
5206 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5207 policy = oldpolicy = -1;
5208 __task_rq_unlock(rq);
5209 spin_unlock_irqrestore(&p->pi_lock, flags);
5210 goto recheck;
5211 }
5212 update_rq_clock(rq);
5213 on_rq = p->se.on_rq;
5214 running = task_current(rq, p);
5215 if (on_rq)
5216 deactivate_task(rq, p, 0);
5217 if (running)
5218 p->sched_class->put_prev_task(rq, p);
5219
5220 oldprio = p->prio;
5221 __setscheduler(rq, p, policy, param->sched_priority);
5222
5223 if (running)
5224 p->sched_class->set_curr_task(rq);
5225 if (on_rq) {
5226 activate_task(rq, p, 0);
5227
5228 check_class_changed(rq, p, prev_class, oldprio, running);
5229 }
5230 __task_rq_unlock(rq);
5231 spin_unlock_irqrestore(&p->pi_lock, flags);
5232
5233 rt_mutex_adjust_pi(p);
5234
5235 return 0;
5236}
5237
5238/**
5239 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5240 * @p: the task in question.
5241 * @policy: new policy.
5242 * @param: structure containing the new RT priority.
5243 *
5244 * NOTE that the task may be already dead.
5245 */
5246int sched_setscheduler(struct task_struct *p, int policy,
5247 struct sched_param *param)
5248{
5249 return __sched_setscheduler(p, policy, param, true);
5250}
5251EXPORT_SYMBOL_GPL(sched_setscheduler);
5252
5253/**
5254 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5255 * @p: the task in question.
5256 * @policy: new policy.
5257 * @param: structure containing the new RT priority.
5258 *
5259 * Just like sched_setscheduler, only don't bother checking if the
5260 * current context has permission. For example, this is needed in
5261 * stop_machine(): we create temporary high priority worker threads,
5262 * but our caller might not have that capability.
5263 */
5264int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5265 struct sched_param *param)
5266{
5267 return __sched_setscheduler(p, policy, param, false);
5268}
5269
5270static int
5271do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5272{
5273 struct sched_param lparam;
5274 struct task_struct *p;
5275 int retval;
5276
5277 if (!param || pid < 0)
5278 return -EINVAL;
5279 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5280 return -EFAULT;
5281
5282 rcu_read_lock();
5283 retval = -ESRCH;
5284 p = find_process_by_pid(pid);
5285 if (p != NULL)
5286 retval = sched_setscheduler(p, policy, &lparam);
5287 rcu_read_unlock();
5288
5289 return retval;
5290}
5291
5292/**
5293 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5294 * @pid: the pid in question.
5295 * @policy: new policy.
5296 * @param: structure containing the new RT priority.
5297 */
5298asmlinkage long
5299sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5300{
5301 /* negative values for policy are not valid */
5302 if (policy < 0)
5303 return -EINVAL;
5304
5305 return do_sched_setscheduler(pid, policy, param);
5306}
5307
5308/**
5309 * sys_sched_setparam - set/change the RT priority of a thread
5310 * @pid: the pid in question.
5311 * @param: structure containing the new RT priority.
5312 */
5313asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5314{
5315 return do_sched_setscheduler(pid, -1, param);
5316}
5317
5318/**
5319 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5320 * @pid: the pid in question.
5321 */
5322asmlinkage long sys_sched_getscheduler(pid_t pid)
5323{
5324 struct task_struct *p;
5325 int retval;
5326
5327 if (pid < 0)
5328 return -EINVAL;
5329
5330 retval = -ESRCH;
5331 read_lock(&tasklist_lock);
5332 p = find_process_by_pid(pid);
5333 if (p) {
5334 retval = security_task_getscheduler(p);
5335 if (!retval)
5336 retval = p->policy;
5337 }
5338 read_unlock(&tasklist_lock);
5339 return retval;
5340}
5341
5342/**
5343 * sys_sched_getscheduler - get the RT priority of a thread
5344 * @pid: the pid in question.
5345 * @param: structure containing the RT priority.
5346 */
5347asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5348{
5349 struct sched_param lp;
5350 struct task_struct *p;
5351 int retval;
5352
5353 if (!param || pid < 0)
5354 return -EINVAL;
5355
5356 read_lock(&tasklist_lock);
5357 p = find_process_by_pid(pid);
5358 retval = -ESRCH;
5359 if (!p)
5360 goto out_unlock;
5361
5362 retval = security_task_getscheduler(p);
5363 if (retval)
5364 goto out_unlock;
5365
5366 lp.sched_priority = p->rt_priority;
5367 read_unlock(&tasklist_lock);
5368
5369 /*
5370 * This one might sleep, we cannot do it with a spinlock held ...
5371 */
5372 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5373
5374 return retval;
5375
5376out_unlock:
5377 read_unlock(&tasklist_lock);
5378 return retval;
5379}
5380
5381long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5382{
5383 cpumask_t cpus_allowed;
5384 cpumask_t new_mask = *in_mask;
5385 struct task_struct *p;
5386 int retval;
5387
5388 get_online_cpus();
5389 read_lock(&tasklist_lock);
5390
5391 p = find_process_by_pid(pid);
5392 if (!p) {
5393 read_unlock(&tasklist_lock);
5394 put_online_cpus();
5395 return -ESRCH;
5396 }
5397
5398 /*
5399 * It is not safe to call set_cpus_allowed with the
5400 * tasklist_lock held. We will bump the task_struct's
5401 * usage count and then drop tasklist_lock.
5402 */
5403 get_task_struct(p);
5404 read_unlock(&tasklist_lock);
5405
5406 retval = -EPERM;
5407 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5408 !capable(CAP_SYS_NICE))
5409 goto out_unlock;
5410
5411 retval = security_task_setscheduler(p, 0, NULL);
5412 if (retval)
5413 goto out_unlock;
5414
5415 cpuset_cpus_allowed(p, &cpus_allowed);
5416 cpus_and(new_mask, new_mask, cpus_allowed);
5417 again:
5418 retval = set_cpus_allowed_ptr(p, &new_mask);
5419
5420 if (!retval) {
5421 cpuset_cpus_allowed(p, &cpus_allowed);
5422 if (!cpus_subset(new_mask, cpus_allowed)) {
5423 /*
5424 * We must have raced with a concurrent cpuset
5425 * update. Just reset the cpus_allowed to the
5426 * cpuset's cpus_allowed
5427 */
5428 new_mask = cpus_allowed;
5429 goto again;
5430 }
5431 }
5432out_unlock:
5433 put_task_struct(p);
5434 put_online_cpus();
5435 return retval;
5436}
5437
5438static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5439 cpumask_t *new_mask)
5440{
5441 if (len < sizeof(cpumask_t)) {
5442 memset(new_mask, 0, sizeof(cpumask_t));
5443 } else if (len > sizeof(cpumask_t)) {
5444 len = sizeof(cpumask_t);
5445 }
5446 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5447}
5448
5449/**
5450 * sys_sched_setaffinity - set the cpu affinity of a process
5451 * @pid: pid of the process
5452 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5453 * @user_mask_ptr: user-space pointer to the new cpu mask
5454 */
5455asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5456 unsigned long __user *user_mask_ptr)
5457{
5458 cpumask_t new_mask;
5459 int retval;
5460
5461 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5462 if (retval)
5463 return retval;
5464
5465 return sched_setaffinity(pid, &new_mask);
5466}
5467
5468long sched_getaffinity(pid_t pid, cpumask_t *mask)
5469{
5470 struct task_struct *p;
5471 int retval;
5472
5473 get_online_cpus();
5474 read_lock(&tasklist_lock);
5475
5476 retval = -ESRCH;
5477 p = find_process_by_pid(pid);
5478 if (!p)
5479 goto out_unlock;
5480
5481 retval = security_task_getscheduler(p);
5482 if (retval)
5483 goto out_unlock;
5484
5485 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5486
5487out_unlock:
5488 read_unlock(&tasklist_lock);
5489 put_online_cpus();
5490
5491 return retval;
5492}
5493
5494/**
5495 * sys_sched_getaffinity - get the cpu affinity of a process
5496 * @pid: pid of the process
5497 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5498 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5499 */
5500asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5501 unsigned long __user *user_mask_ptr)
5502{
5503 int ret;
5504 cpumask_t mask;
5505
5506 if (len < sizeof(cpumask_t))
5507 return -EINVAL;
5508
5509 ret = sched_getaffinity(pid, &mask);
5510 if (ret < 0)
5511 return ret;
5512
5513 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5514 return -EFAULT;
5515
5516 return sizeof(cpumask_t);
5517}
5518
5519/**
5520 * sys_sched_yield - yield the current processor to other threads.
5521 *
5522 * This function yields the current CPU to other tasks. If there are no
5523 * other threads running on this CPU then this function will return.
5524 */
5525asmlinkage long sys_sched_yield(void)
5526{
5527 struct rq *rq = this_rq_lock();
5528
5529 schedstat_inc(rq, yld_count);
5530 current->sched_class->yield_task(rq);
5531
5532 /*
5533 * Since we are going to call schedule() anyway, there's
5534 * no need to preempt or enable interrupts:
5535 */
5536 __release(rq->lock);
5537 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5538 _raw_spin_unlock(&rq->lock);
5539 preempt_enable_no_resched();
5540
5541 schedule();
5542
5543 return 0;
5544}
5545
5546static void __cond_resched(void)
5547{
5548#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5549 __might_sleep(__FILE__, __LINE__);
5550#endif
5551 /*
5552 * The BKS might be reacquired before we have dropped
5553 * PREEMPT_ACTIVE, which could trigger a second
5554 * cond_resched() call.
5555 */
5556 do {
5557 add_preempt_count(PREEMPT_ACTIVE);
5558 schedule();
5559 sub_preempt_count(PREEMPT_ACTIVE);
5560 } while (need_resched());
5561}
5562
5563int __sched _cond_resched(void)
5564{
5565 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5566 system_state == SYSTEM_RUNNING) {
5567 __cond_resched();
5568 return 1;
5569 }
5570 return 0;
5571}
5572EXPORT_SYMBOL(_cond_resched);
5573
5574/*
5575 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5576 * call schedule, and on return reacquire the lock.
5577 *
5578 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5579 * operations here to prevent schedule() from being called twice (once via
5580 * spin_unlock(), once by hand).
5581 */
5582int cond_resched_lock(spinlock_t *lock)
5583{
5584 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5585 int ret = 0;
5586
5587 if (spin_needbreak(lock) || resched) {
5588 spin_unlock(lock);
5589 if (resched && need_resched())
5590 __cond_resched();
5591 else
5592 cpu_relax();
5593 ret = 1;
5594 spin_lock(lock);
5595 }
5596 return ret;
5597}
5598EXPORT_SYMBOL(cond_resched_lock);
5599
5600int __sched cond_resched_softirq(void)
5601{
5602 BUG_ON(!in_softirq());
5603
5604 if (need_resched() && system_state == SYSTEM_RUNNING) {
5605 local_bh_enable();
5606 __cond_resched();
5607 local_bh_disable();
5608 return 1;
5609 }
5610 return 0;
5611}
5612EXPORT_SYMBOL(cond_resched_softirq);
5613
5614/**
5615 * yield - yield the current processor to other threads.
5616 *
5617 * This is a shortcut for kernel-space yielding - it marks the
5618 * thread runnable and calls sys_sched_yield().
5619 */
5620void __sched yield(void)
5621{
5622 set_current_state(TASK_RUNNING);
5623 sys_sched_yield();
5624}
5625EXPORT_SYMBOL(yield);
5626
5627/*
5628 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5629 * that process accounting knows that this is a task in IO wait state.
5630 *
5631 * But don't do that if it is a deliberate, throttling IO wait (this task
5632 * has set its backing_dev_info: the queue against which it should throttle)
5633 */
5634void __sched io_schedule(void)
5635{
5636 struct rq *rq = &__raw_get_cpu_var(runqueues);
5637
5638 delayacct_blkio_start();
5639 atomic_inc(&rq->nr_iowait);
5640 schedule();
5641 atomic_dec(&rq->nr_iowait);
5642 delayacct_blkio_end();
5643}
5644EXPORT_SYMBOL(io_schedule);
5645
5646long __sched io_schedule_timeout(long timeout)
5647{
5648 struct rq *rq = &__raw_get_cpu_var(runqueues);
5649 long ret;
5650
5651 delayacct_blkio_start();
5652 atomic_inc(&rq->nr_iowait);
5653 ret = schedule_timeout(timeout);
5654 atomic_dec(&rq->nr_iowait);
5655 delayacct_blkio_end();
5656 return ret;
5657}
5658
5659/**
5660 * sys_sched_get_priority_max - return maximum RT priority.
5661 * @policy: scheduling class.
5662 *
5663 * this syscall returns the maximum rt_priority that can be used
5664 * by a given scheduling class.
5665 */
5666asmlinkage long sys_sched_get_priority_max(int policy)
5667{
5668 int ret = -EINVAL;
5669
5670 switch (policy) {
5671 case SCHED_FIFO:
5672 case SCHED_RR:
5673 ret = MAX_USER_RT_PRIO-1;
5674 break;
5675 case SCHED_NORMAL:
5676 case SCHED_BATCH:
5677 case SCHED_IDLE:
5678 ret = 0;
5679 break;
5680 }
5681 return ret;
5682}
5683
5684/**
5685 * sys_sched_get_priority_min - return minimum RT priority.
5686 * @policy: scheduling class.
5687 *
5688 * this syscall returns the minimum rt_priority that can be used
5689 * by a given scheduling class.
5690 */
5691asmlinkage long sys_sched_get_priority_min(int policy)
5692{
5693 int ret = -EINVAL;
5694
5695 switch (policy) {
5696 case SCHED_FIFO:
5697 case SCHED_RR:
5698 ret = 1;
5699 break;
5700 case SCHED_NORMAL:
5701 case SCHED_BATCH:
5702 case SCHED_IDLE:
5703 ret = 0;
5704 }
5705 return ret;
5706}
5707
5708/**
5709 * sys_sched_rr_get_interval - return the default timeslice of a process.
5710 * @pid: pid of the process.
5711 * @interval: userspace pointer to the timeslice value.
5712 *
5713 * this syscall writes the default timeslice value of a given process
5714 * into the user-space timespec buffer. A value of '0' means infinity.
5715 */
5716asmlinkage
5717long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5718{
5719 struct task_struct *p;
5720 unsigned int time_slice;
5721 int retval;
5722 struct timespec t;
5723
5724 if (pid < 0)
5725 return -EINVAL;
5726
5727 retval = -ESRCH;
5728 read_lock(&tasklist_lock);
5729 p = find_process_by_pid(pid);
5730 if (!p)
5731 goto out_unlock;
5732
5733 retval = security_task_getscheduler(p);
5734 if (retval)
5735 goto out_unlock;
5736
5737 /*
5738 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5739 * tasks that are on an otherwise idle runqueue:
5740 */
5741 time_slice = 0;
5742 if (p->policy == SCHED_RR) {
5743 time_slice = DEF_TIMESLICE;
5744 } else if (p->policy != SCHED_FIFO) {
5745 struct sched_entity *se = &p->se;
5746 unsigned long flags;
5747 struct rq *rq;
5748
5749 rq = task_rq_lock(p, &flags);
5750 if (rq->cfs.load.weight)
5751 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5752 task_rq_unlock(rq, &flags);
5753 }
5754 read_unlock(&tasklist_lock);
5755 jiffies_to_timespec(time_slice, &t);
5756 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5757 return retval;
5758
5759out_unlock:
5760 read_unlock(&tasklist_lock);
5761 return retval;
5762}
5763
5764static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5765
5766void sched_show_task(struct task_struct *p)
5767{
5768 unsigned long free = 0;
5769 unsigned state;
5770
5771 state = p->state ? __ffs(p->state) + 1 : 0;
5772 printk(KERN_INFO "%-13.13s %c", p->comm,
5773 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5774#if BITS_PER_LONG == 32
5775 if (state == TASK_RUNNING)
5776 printk(KERN_CONT " running ");
5777 else
5778 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5779#else
5780 if (state == TASK_RUNNING)
5781 printk(KERN_CONT " running task ");
5782 else
5783 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5784#endif
5785#ifdef CONFIG_DEBUG_STACK_USAGE
5786 {
5787 unsigned long *n = end_of_stack(p);
5788 while (!*n)
5789 n++;
5790 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5791 }
5792#endif
5793 printk(KERN_CONT "%5lu %5d %6d\n", free,
5794 task_pid_nr(p), task_pid_nr(p->real_parent));
5795
5796 show_stack(p, NULL);
5797}
5798
5799void show_state_filter(unsigned long state_filter)
5800{
5801 struct task_struct *g, *p;
5802
5803#if BITS_PER_LONG == 32
5804 printk(KERN_INFO
5805 " task PC stack pid father\n");
5806#else
5807 printk(KERN_INFO
5808 " task PC stack pid father\n");
5809#endif
5810 read_lock(&tasklist_lock);
5811 do_each_thread(g, p) {
5812 /*
5813 * reset the NMI-timeout, listing all files on a slow
5814 * console might take alot of time:
5815 */
5816 touch_nmi_watchdog();
5817 if (!state_filter || (p->state & state_filter))
5818 sched_show_task(p);
5819 } while_each_thread(g, p);
5820
5821 touch_all_softlockup_watchdogs();
5822
5823#ifdef CONFIG_SCHED_DEBUG
5824 sysrq_sched_debug_show();
5825#endif
5826 read_unlock(&tasklist_lock);
5827 /*
5828 * Only show locks if all tasks are dumped:
5829 */
5830 if (state_filter == -1)
5831 debug_show_all_locks();
5832}
5833
5834void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5835{
5836 idle->sched_class = &idle_sched_class;
5837}
5838
5839/**
5840 * init_idle - set up an idle thread for a given CPU
5841 * @idle: task in question
5842 * @cpu: cpu the idle task belongs to
5843 *
5844 * NOTE: this function does not set the idle thread's NEED_RESCHED
5845 * flag, to make booting more robust.
5846 */
5847void __cpuinit init_idle(struct task_struct *idle, int cpu)
5848{
5849 struct rq *rq = cpu_rq(cpu);
5850 unsigned long flags;
5851
5852 spin_lock_irqsave(&rq->lock, flags);
5853
5854 __sched_fork(idle);
5855 idle->se.exec_start = sched_clock();
5856
5857 idle->prio = idle->normal_prio = MAX_PRIO;
5858 idle->cpus_allowed = cpumask_of_cpu(cpu);
5859 __set_task_cpu(idle, cpu);
5860
5861 rq->curr = rq->idle = idle;
5862#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5863 idle->oncpu = 1;
5864#endif
5865 spin_unlock_irqrestore(&rq->lock, flags);
5866
5867 /* Set the preempt count _outside_ the spinlocks! */
5868#if defined(CONFIG_PREEMPT)
5869 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5870#else
5871 task_thread_info(idle)->preempt_count = 0;
5872#endif
5873 /*
5874 * The idle tasks have their own, simple scheduling class:
5875 */
5876 idle->sched_class = &idle_sched_class;
5877}
5878
5879/*
5880 * In a system that switches off the HZ timer nohz_cpu_mask
5881 * indicates which cpus entered this state. This is used
5882 * in the rcu update to wait only for active cpus. For system
5883 * which do not switch off the HZ timer nohz_cpu_mask should
5884 * always be CPU_MASK_NONE.
5885 */
5886cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5887
5888/*
5889 * Increase the granularity value when there are more CPUs,
5890 * because with more CPUs the 'effective latency' as visible
5891 * to users decreases. But the relationship is not linear,
5892 * so pick a second-best guess by going with the log2 of the
5893 * number of CPUs.
5894 *
5895 * This idea comes from the SD scheduler of Con Kolivas:
5896 */
5897static inline void sched_init_granularity(void)
5898{
5899 unsigned int factor = 1 + ilog2(num_online_cpus());
5900 const unsigned long limit = 200000000;
5901
5902 sysctl_sched_min_granularity *= factor;
5903 if (sysctl_sched_min_granularity > limit)
5904 sysctl_sched_min_granularity = limit;
5905
5906 sysctl_sched_latency *= factor;
5907 if (sysctl_sched_latency > limit)
5908 sysctl_sched_latency = limit;
5909
5910 sysctl_sched_wakeup_granularity *= factor;
5911
5912 sysctl_sched_shares_ratelimit *= factor;
5913}
5914
5915#ifdef CONFIG_SMP
5916/*
5917 * This is how migration works:
5918 *
5919 * 1) we queue a struct migration_req structure in the source CPU's
5920 * runqueue and wake up that CPU's migration thread.
5921 * 2) we down() the locked semaphore => thread blocks.
5922 * 3) migration thread wakes up (implicitly it forces the migrated
5923 * thread off the CPU)
5924 * 4) it gets the migration request and checks whether the migrated
5925 * task is still in the wrong runqueue.
5926 * 5) if it's in the wrong runqueue then the migration thread removes
5927 * it and puts it into the right queue.
5928 * 6) migration thread up()s the semaphore.
5929 * 7) we wake up and the migration is done.
5930 */
5931
5932/*
5933 * Change a given task's CPU affinity. Migrate the thread to a
5934 * proper CPU and schedule it away if the CPU it's executing on
5935 * is removed from the allowed bitmask.
5936 *
5937 * NOTE: the caller must have a valid reference to the task, the
5938 * task must not exit() & deallocate itself prematurely. The
5939 * call is not atomic; no spinlocks may be held.
5940 */
5941int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5942{
5943 struct migration_req req;
5944 unsigned long flags;
5945 struct rq *rq;
5946 int ret = 0;
5947
5948 rq = task_rq_lock(p, &flags);
5949 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5950 ret = -EINVAL;
5951 goto out;
5952 }
5953
5954 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5955 !cpus_equal(p->cpus_allowed, *new_mask))) {
5956 ret = -EINVAL;
5957 goto out;
5958 }
5959
5960 if (p->sched_class->set_cpus_allowed)
5961 p->sched_class->set_cpus_allowed(p, new_mask);
5962 else {
5963 p->cpus_allowed = *new_mask;
5964 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5965 }
5966
5967 /* Can the task run on the task's current CPU? If so, we're done */
5968 if (cpu_isset(task_cpu(p), *new_mask))
5969 goto out;
5970
5971 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5972 /* Need help from migration thread: drop lock and wait. */
5973 task_rq_unlock(rq, &flags);
5974 wake_up_process(rq->migration_thread);
5975 wait_for_completion(&req.done);
5976 tlb_migrate_finish(p->mm);
5977 return 0;
5978 }
5979out:
5980 task_rq_unlock(rq, &flags);
5981
5982 return ret;
5983}
5984EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5985
5986/*
5987 * Move (not current) task off this cpu, onto dest cpu. We're doing
5988 * this because either it can't run here any more (set_cpus_allowed()
5989 * away from this CPU, or CPU going down), or because we're
5990 * attempting to rebalance this task on exec (sched_exec).
5991 *
5992 * So we race with normal scheduler movements, but that's OK, as long
5993 * as the task is no longer on this CPU.
5994 *
5995 * Returns non-zero if task was successfully migrated.
5996 */
5997static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5998{
5999 struct rq *rq_dest, *rq_src;
6000 int ret = 0, on_rq;
6001
6002 if (unlikely(!cpu_active(dest_cpu)))
6003 return ret;
6004
6005 rq_src = cpu_rq(src_cpu);
6006 rq_dest = cpu_rq(dest_cpu);
6007
6008 double_rq_lock(rq_src, rq_dest);
6009 /* Already moved. */
6010 if (task_cpu(p) != src_cpu)
6011 goto done;
6012 /* Affinity changed (again). */
6013 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6014 goto fail;
6015
6016 on_rq = p->se.on_rq;
6017 if (on_rq)
6018 deactivate_task(rq_src, p, 0);
6019
6020 set_task_cpu(p, dest_cpu);
6021 if (on_rq) {
6022 activate_task(rq_dest, p, 0);
6023 check_preempt_curr(rq_dest, p, 0);
6024 }
6025done:
6026 ret = 1;
6027fail:
6028 double_rq_unlock(rq_src, rq_dest);
6029 return ret;
6030}
6031
6032/*
6033 * migration_thread - this is a highprio system thread that performs
6034 * thread migration by bumping thread off CPU then 'pushing' onto
6035 * another runqueue.
6036 */
6037static int migration_thread(void *data)
6038{
6039 int cpu = (long)data;
6040 struct rq *rq;
6041
6042 rq = cpu_rq(cpu);
6043 BUG_ON(rq->migration_thread != current);
6044
6045 set_current_state(TASK_INTERRUPTIBLE);
6046 while (!kthread_should_stop()) {
6047 struct migration_req *req;
6048 struct list_head *head;
6049
6050 spin_lock_irq(&rq->lock);
6051
6052 if (cpu_is_offline(cpu)) {
6053 spin_unlock_irq(&rq->lock);
6054 goto wait_to_die;
6055 }
6056
6057 if (rq->active_balance) {
6058 active_load_balance(rq, cpu);
6059 rq->active_balance = 0;
6060 }
6061
6062 head = &rq->migration_queue;
6063
6064 if (list_empty(head)) {
6065 spin_unlock_irq(&rq->lock);
6066 schedule();
6067 set_current_state(TASK_INTERRUPTIBLE);
6068 continue;
6069 }
6070 req = list_entry(head->next, struct migration_req, list);
6071 list_del_init(head->next);
6072
6073 spin_unlock(&rq->lock);
6074 __migrate_task(req->task, cpu, req->dest_cpu);
6075 local_irq_enable();
6076
6077 complete(&req->done);
6078 }
6079 __set_current_state(TASK_RUNNING);
6080 return 0;
6081
6082wait_to_die:
6083 /* Wait for kthread_stop */
6084 set_current_state(TASK_INTERRUPTIBLE);
6085 while (!kthread_should_stop()) {
6086 schedule();
6087 set_current_state(TASK_INTERRUPTIBLE);
6088 }
6089 __set_current_state(TASK_RUNNING);
6090 return 0;
6091}
6092
6093#ifdef CONFIG_HOTPLUG_CPU
6094
6095static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6096{
6097 int ret;
6098
6099 local_irq_disable();
6100 ret = __migrate_task(p, src_cpu, dest_cpu);
6101 local_irq_enable();
6102 return ret;
6103}
6104
6105/*
6106 * Figure out where task on dead CPU should go, use force if necessary.
6107 */
6108static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6109{
6110 unsigned long flags;
6111 cpumask_t mask;
6112 struct rq *rq;
6113 int dest_cpu;
6114
6115 do {
6116 /* On same node? */
6117 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6118 cpus_and(mask, mask, p->cpus_allowed);
6119 dest_cpu = any_online_cpu(mask);
6120
6121 /* On any allowed CPU? */
6122 if (dest_cpu >= nr_cpu_ids)
6123 dest_cpu = any_online_cpu(p->cpus_allowed);
6124
6125 /* No more Mr. Nice Guy. */
6126 if (dest_cpu >= nr_cpu_ids) {
6127 cpumask_t cpus_allowed;
6128
6129 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6130 /*
6131 * Try to stay on the same cpuset, where the
6132 * current cpuset may be a subset of all cpus.
6133 * The cpuset_cpus_allowed_locked() variant of
6134 * cpuset_cpus_allowed() will not block. It must be
6135 * called within calls to cpuset_lock/cpuset_unlock.
6136 */
6137 rq = task_rq_lock(p, &flags);
6138 p->cpus_allowed = cpus_allowed;
6139 dest_cpu = any_online_cpu(p->cpus_allowed);
6140 task_rq_unlock(rq, &flags);
6141
6142 /*
6143 * Don't tell them about moving exiting tasks or
6144 * kernel threads (both mm NULL), since they never
6145 * leave kernel.
6146 */
6147 if (p->mm && printk_ratelimit()) {
6148 printk(KERN_INFO "process %d (%s) no "
6149 "longer affine to cpu%d\n",
6150 task_pid_nr(p), p->comm, dead_cpu);
6151 }
6152 }
6153 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6154}
6155
6156/*
6157 * While a dead CPU has no uninterruptible tasks queued at this point,
6158 * it might still have a nonzero ->nr_uninterruptible counter, because
6159 * for performance reasons the counter is not stricly tracking tasks to
6160 * their home CPUs. So we just add the counter to another CPU's counter,
6161 * to keep the global sum constant after CPU-down:
6162 */
6163static void migrate_nr_uninterruptible(struct rq *rq_src)
6164{
6165 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6166 unsigned long flags;
6167
6168 local_irq_save(flags);
6169 double_rq_lock(rq_src, rq_dest);
6170 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6171 rq_src->nr_uninterruptible = 0;
6172 double_rq_unlock(rq_src, rq_dest);
6173 local_irq_restore(flags);
6174}
6175
6176/* Run through task list and migrate tasks from the dead cpu. */
6177static void migrate_live_tasks(int src_cpu)
6178{
6179 struct task_struct *p, *t;
6180
6181 read_lock(&tasklist_lock);
6182
6183 do_each_thread(t, p) {
6184 if (p == current)
6185 continue;
6186
6187 if (task_cpu(p) == src_cpu)
6188 move_task_off_dead_cpu(src_cpu, p);
6189 } while_each_thread(t, p);
6190
6191 read_unlock(&tasklist_lock);
6192}
6193
6194/*
6195 * Schedules idle task to be the next runnable task on current CPU.
6196 * It does so by boosting its priority to highest possible.
6197 * Used by CPU offline code.
6198 */
6199void sched_idle_next(void)
6200{
6201 int this_cpu = smp_processor_id();
6202 struct rq *rq = cpu_rq(this_cpu);
6203 struct task_struct *p = rq->idle;
6204 unsigned long flags;
6205
6206 /* cpu has to be offline */
6207 BUG_ON(cpu_online(this_cpu));
6208
6209 /*
6210 * Strictly not necessary since rest of the CPUs are stopped by now
6211 * and interrupts disabled on the current cpu.
6212 */
6213 spin_lock_irqsave(&rq->lock, flags);
6214
6215 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6216
6217 update_rq_clock(rq);
6218 activate_task(rq, p, 0);
6219
6220 spin_unlock_irqrestore(&rq->lock, flags);
6221}
6222
6223/*
6224 * Ensures that the idle task is using init_mm right before its cpu goes
6225 * offline.
6226 */
6227void idle_task_exit(void)
6228{
6229 struct mm_struct *mm = current->active_mm;
6230
6231 BUG_ON(cpu_online(smp_processor_id()));
6232
6233 if (mm != &init_mm)
6234 switch_mm(mm, &init_mm, current);
6235 mmdrop(mm);
6236}
6237
6238/* called under rq->lock with disabled interrupts */
6239static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6240{
6241 struct rq *rq = cpu_rq(dead_cpu);
6242
6243 /* Must be exiting, otherwise would be on tasklist. */
6244 BUG_ON(!p->exit_state);
6245
6246 /* Cannot have done final schedule yet: would have vanished. */
6247 BUG_ON(p->state == TASK_DEAD);
6248
6249 get_task_struct(p);
6250
6251 /*
6252 * Drop lock around migration; if someone else moves it,
6253 * that's OK. No task can be added to this CPU, so iteration is
6254 * fine.
6255 */
6256 spin_unlock_irq(&rq->lock);
6257 move_task_off_dead_cpu(dead_cpu, p);
6258 spin_lock_irq(&rq->lock);
6259
6260 put_task_struct(p);
6261}
6262
6263/* release_task() removes task from tasklist, so we won't find dead tasks. */
6264static void migrate_dead_tasks(unsigned int dead_cpu)
6265{
6266 struct rq *rq = cpu_rq(dead_cpu);
6267 struct task_struct *next;
6268
6269 for ( ; ; ) {
6270 if (!rq->nr_running)
6271 break;
6272 update_rq_clock(rq);
6273 next = pick_next_task(rq, rq->curr);
6274 if (!next)
6275 break;
6276 next->sched_class->put_prev_task(rq, next);
6277 migrate_dead(dead_cpu, next);
6278
6279 }
6280}
6281#endif /* CONFIG_HOTPLUG_CPU */
6282
6283#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6284
6285static struct ctl_table sd_ctl_dir[] = {
6286 {
6287 .procname = "sched_domain",
6288 .mode = 0555,
6289 },
6290 {0, },
6291};
6292
6293static struct ctl_table sd_ctl_root[] = {
6294 {
6295 .ctl_name = CTL_KERN,
6296 .procname = "kernel",
6297 .mode = 0555,
6298 .child = sd_ctl_dir,
6299 },
6300 {0, },
6301};
6302
6303static struct ctl_table *sd_alloc_ctl_entry(int n)
6304{
6305 struct ctl_table *entry =
6306 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6307
6308 return entry;
6309}
6310
6311static void sd_free_ctl_entry(struct ctl_table **tablep)
6312{
6313 struct ctl_table *entry;
6314
6315 /*
6316 * In the intermediate directories, both the child directory and
6317 * procname are dynamically allocated and could fail but the mode
6318 * will always be set. In the lowest directory the names are
6319 * static strings and all have proc handlers.
6320 */
6321 for (entry = *tablep; entry->mode; entry++) {
6322 if (entry->child)
6323 sd_free_ctl_entry(&entry->child);
6324 if (entry->proc_handler == NULL)
6325 kfree(entry->procname);
6326 }
6327
6328 kfree(*tablep);
6329 *tablep = NULL;
6330}
6331
6332static void
6333set_table_entry(struct ctl_table *entry,
6334 const char *procname, void *data, int maxlen,
6335 mode_t mode, proc_handler *proc_handler)
6336{
6337 entry->procname = procname;
6338 entry->data = data;
6339 entry->maxlen = maxlen;
6340 entry->mode = mode;
6341 entry->proc_handler = proc_handler;
6342}
6343
6344static struct ctl_table *
6345sd_alloc_ctl_domain_table(struct sched_domain *sd)
6346{
6347 struct ctl_table *table = sd_alloc_ctl_entry(13);
6348
6349 if (table == NULL)
6350 return NULL;
6351
6352 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6353 sizeof(long), 0644, proc_doulongvec_minmax);
6354 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6355 sizeof(long), 0644, proc_doulongvec_minmax);
6356 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6357 sizeof(int), 0644, proc_dointvec_minmax);
6358 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6359 sizeof(int), 0644, proc_dointvec_minmax);
6360 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6361 sizeof(int), 0644, proc_dointvec_minmax);
6362 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6363 sizeof(int), 0644, proc_dointvec_minmax);
6364 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6365 sizeof(int), 0644, proc_dointvec_minmax);
6366 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6367 sizeof(int), 0644, proc_dointvec_minmax);
6368 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6369 sizeof(int), 0644, proc_dointvec_minmax);
6370 set_table_entry(&table[9], "cache_nice_tries",
6371 &sd->cache_nice_tries,
6372 sizeof(int), 0644, proc_dointvec_minmax);
6373 set_table_entry(&table[10], "flags", &sd->flags,
6374 sizeof(int), 0644, proc_dointvec_minmax);
6375 set_table_entry(&table[11], "name", sd->name,
6376 CORENAME_MAX_SIZE, 0444, proc_dostring);
6377 /* &table[12] is terminator */
6378
6379 return table;
6380}
6381
6382static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6383{
6384 struct ctl_table *entry, *table;
6385 struct sched_domain *sd;
6386 int domain_num = 0, i;
6387 char buf[32];
6388
6389 for_each_domain(cpu, sd)
6390 domain_num++;
6391 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6392 if (table == NULL)
6393 return NULL;
6394
6395 i = 0;
6396 for_each_domain(cpu, sd) {
6397 snprintf(buf, 32, "domain%d", i);
6398 entry->procname = kstrdup(buf, GFP_KERNEL);
6399 entry->mode = 0555;
6400 entry->child = sd_alloc_ctl_domain_table(sd);
6401 entry++;
6402 i++;
6403 }
6404 return table;
6405}
6406
6407static struct ctl_table_header *sd_sysctl_header;
6408static void register_sched_domain_sysctl(void)
6409{
6410 int i, cpu_num = num_online_cpus();
6411 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6412 char buf[32];
6413
6414 WARN_ON(sd_ctl_dir[0].child);
6415 sd_ctl_dir[0].child = entry;
6416
6417 if (entry == NULL)
6418 return;
6419
6420 for_each_online_cpu(i) {
6421 snprintf(buf, 32, "cpu%d", i);
6422 entry->procname = kstrdup(buf, GFP_KERNEL);
6423 entry->mode = 0555;
6424 entry->child = sd_alloc_ctl_cpu_table(i);
6425 entry++;
6426 }
6427
6428 WARN_ON(sd_sysctl_header);
6429 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6430}
6431
6432/* may be called multiple times per register */
6433static void unregister_sched_domain_sysctl(void)
6434{
6435 if (sd_sysctl_header)
6436 unregister_sysctl_table(sd_sysctl_header);
6437 sd_sysctl_header = NULL;
6438 if (sd_ctl_dir[0].child)
6439 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6440}
6441#else
6442static void register_sched_domain_sysctl(void)
6443{
6444}
6445static void unregister_sched_domain_sysctl(void)
6446{
6447}
6448#endif
6449
6450static void set_rq_online(struct rq *rq)
6451{
6452 if (!rq->online) {
6453 const struct sched_class *class;
6454
6455 cpu_set(rq->cpu, rq->rd->online);
6456 rq->online = 1;
6457
6458 for_each_class(class) {
6459 if (class->rq_online)
6460 class->rq_online(rq);
6461 }
6462 }
6463}
6464
6465static void set_rq_offline(struct rq *rq)
6466{
6467 if (rq->online) {
6468 const struct sched_class *class;
6469
6470 for_each_class(class) {
6471 if (class->rq_offline)
6472 class->rq_offline(rq);
6473 }
6474
6475 cpu_clear(rq->cpu, rq->rd->online);
6476 rq->online = 0;
6477 }
6478}
6479
6480/*
6481 * migration_call - callback that gets triggered when a CPU is added.
6482 * Here we can start up the necessary migration thread for the new CPU.
6483 */
6484static int __cpuinit
6485migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6486{
6487 struct task_struct *p;
6488 int cpu = (long)hcpu;
6489 unsigned long flags;
6490 struct rq *rq;
6491
6492 switch (action) {
6493
6494 case CPU_UP_PREPARE:
6495 case CPU_UP_PREPARE_FROZEN:
6496 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6497 if (IS_ERR(p))
6498 return NOTIFY_BAD;
6499 kthread_bind(p, cpu);
6500 /* Must be high prio: stop_machine expects to yield to it. */
6501 rq = task_rq_lock(p, &flags);
6502 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6503 task_rq_unlock(rq, &flags);
6504 cpu_rq(cpu)->migration_thread = p;
6505 break;
6506
6507 case CPU_ONLINE:
6508 case CPU_ONLINE_FROZEN:
6509 /* Strictly unnecessary, as first user will wake it. */
6510 wake_up_process(cpu_rq(cpu)->migration_thread);
6511
6512 /* Update our root-domain */
6513 rq = cpu_rq(cpu);
6514 spin_lock_irqsave(&rq->lock, flags);
6515 if (rq->rd) {
6516 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6517
6518 set_rq_online(rq);
6519 }
6520 spin_unlock_irqrestore(&rq->lock, flags);
6521 break;
6522
6523#ifdef CONFIG_HOTPLUG_CPU
6524 case CPU_UP_CANCELED:
6525 case CPU_UP_CANCELED_FROZEN:
6526 if (!cpu_rq(cpu)->migration_thread)
6527 break;
6528 /* Unbind it from offline cpu so it can run. Fall thru. */
6529 kthread_bind(cpu_rq(cpu)->migration_thread,
6530 any_online_cpu(cpu_online_map));
6531 kthread_stop(cpu_rq(cpu)->migration_thread);
6532 cpu_rq(cpu)->migration_thread = NULL;
6533 break;
6534
6535 case CPU_DEAD:
6536 case CPU_DEAD_FROZEN:
6537 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6538 migrate_live_tasks(cpu);
6539 rq = cpu_rq(cpu);
6540 kthread_stop(rq->migration_thread);
6541 rq->migration_thread = NULL;
6542 /* Idle task back to normal (off runqueue, low prio) */
6543 spin_lock_irq(&rq->lock);
6544 update_rq_clock(rq);
6545 deactivate_task(rq, rq->idle, 0);
6546 rq->idle->static_prio = MAX_PRIO;
6547 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6548 rq->idle->sched_class = &idle_sched_class;
6549 migrate_dead_tasks(cpu);
6550 spin_unlock_irq(&rq->lock);
6551 cpuset_unlock();
6552 migrate_nr_uninterruptible(rq);
6553 BUG_ON(rq->nr_running != 0);
6554
6555 /*
6556 * No need to migrate the tasks: it was best-effort if
6557 * they didn't take sched_hotcpu_mutex. Just wake up
6558 * the requestors.
6559 */
6560 spin_lock_irq(&rq->lock);
6561 while (!list_empty(&rq->migration_queue)) {
6562 struct migration_req *req;
6563
6564 req = list_entry(rq->migration_queue.next,
6565 struct migration_req, list);
6566 list_del_init(&req->list);
6567 spin_unlock_irq(&rq->lock);
6568 complete(&req->done);
6569 spin_lock_irq(&rq->lock);
6570 }
6571 spin_unlock_irq(&rq->lock);
6572 break;
6573
6574 case CPU_DYING:
6575 case CPU_DYING_FROZEN:
6576 /* Update our root-domain */
6577 rq = cpu_rq(cpu);
6578 spin_lock_irqsave(&rq->lock, flags);
6579 if (rq->rd) {
6580 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6581 set_rq_offline(rq);
6582 }
6583 spin_unlock_irqrestore(&rq->lock, flags);
6584 break;
6585#endif
6586 }
6587 return NOTIFY_OK;
6588}
6589
6590/* Register at highest priority so that task migration (migrate_all_tasks)
6591 * happens before everything else.
6592 */
6593static struct notifier_block __cpuinitdata migration_notifier = {
6594 .notifier_call = migration_call,
6595 .priority = 10
6596};
6597
6598static int __init migration_init(void)
6599{
6600 void *cpu = (void *)(long)smp_processor_id();
6601 int err;
6602
6603 /* Start one for the boot CPU: */
6604 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6605 BUG_ON(err == NOTIFY_BAD);
6606 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6607 register_cpu_notifier(&migration_notifier);
6608
6609 return err;
6610}
6611early_initcall(migration_init);
6612#endif
6613
6614#ifdef CONFIG_SMP
6615
6616#ifdef CONFIG_SCHED_DEBUG
6617
6618static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6619 cpumask_t *groupmask)
6620{
6621 struct sched_group *group = sd->groups;
6622 char str[256];
6623
6624 cpulist_scnprintf(str, sizeof(str), sd->span);
6625 cpus_clear(*groupmask);
6626
6627 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6628
6629 if (!(sd->flags & SD_LOAD_BALANCE)) {
6630 printk("does not load-balance\n");
6631 if (sd->parent)
6632 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6633 " has parent");
6634 return -1;
6635 }
6636
6637 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6638
6639 if (!cpu_isset(cpu, sd->span)) {
6640 printk(KERN_ERR "ERROR: domain->span does not contain "
6641 "CPU%d\n", cpu);
6642 }
6643 if (!cpu_isset(cpu, group->cpumask)) {
6644 printk(KERN_ERR "ERROR: domain->groups does not contain"
6645 " CPU%d\n", cpu);
6646 }
6647
6648 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6649 do {
6650 if (!group) {
6651 printk("\n");
6652 printk(KERN_ERR "ERROR: group is NULL\n");
6653 break;
6654 }
6655
6656 if (!group->__cpu_power) {
6657 printk(KERN_CONT "\n");
6658 printk(KERN_ERR "ERROR: domain->cpu_power not "
6659 "set\n");
6660 break;
6661 }
6662
6663 if (!cpus_weight(group->cpumask)) {
6664 printk(KERN_CONT "\n");
6665 printk(KERN_ERR "ERROR: empty group\n");
6666 break;
6667 }
6668
6669 if (cpus_intersects(*groupmask, group->cpumask)) {
6670 printk(KERN_CONT "\n");
6671 printk(KERN_ERR "ERROR: repeated CPUs\n");
6672 break;
6673 }
6674
6675 cpus_or(*groupmask, *groupmask, group->cpumask);
6676
6677 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6678 printk(KERN_CONT " %s", str);
6679
6680 group = group->next;
6681 } while (group != sd->groups);
6682 printk(KERN_CONT "\n");
6683
6684 if (!cpus_equal(sd->span, *groupmask))
6685 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6686
6687 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6688 printk(KERN_ERR "ERROR: parent span is not a superset "
6689 "of domain->span\n");
6690 return 0;
6691}
6692
6693static void sched_domain_debug(struct sched_domain *sd, int cpu)
6694{
6695 cpumask_t *groupmask;
6696 int level = 0;
6697
6698 if (!sd) {
6699 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6700 return;
6701 }
6702
6703 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6704
6705 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6706 if (!groupmask) {
6707 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6708 return;
6709 }
6710
6711 for (;;) {
6712 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6713 break;
6714 level++;
6715 sd = sd->parent;
6716 if (!sd)
6717 break;
6718 }
6719 kfree(groupmask);
6720}
6721#else /* !CONFIG_SCHED_DEBUG */
6722# define sched_domain_debug(sd, cpu) do { } while (0)
6723#endif /* CONFIG_SCHED_DEBUG */
6724
6725static int sd_degenerate(struct sched_domain *sd)
6726{
6727 if (cpus_weight(sd->span) == 1)
6728 return 1;
6729
6730 /* Following flags need at least 2 groups */
6731 if (sd->flags & (SD_LOAD_BALANCE |
6732 SD_BALANCE_NEWIDLE |
6733 SD_BALANCE_FORK |
6734 SD_BALANCE_EXEC |
6735 SD_SHARE_CPUPOWER |
6736 SD_SHARE_PKG_RESOURCES)) {
6737 if (sd->groups != sd->groups->next)
6738 return 0;
6739 }
6740
6741 /* Following flags don't use groups */
6742 if (sd->flags & (SD_WAKE_IDLE |
6743 SD_WAKE_AFFINE |
6744 SD_WAKE_BALANCE))
6745 return 0;
6746
6747 return 1;
6748}
6749
6750static int
6751sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6752{
6753 unsigned long cflags = sd->flags, pflags = parent->flags;
6754
6755 if (sd_degenerate(parent))
6756 return 1;
6757
6758 if (!cpus_equal(sd->span, parent->span))
6759 return 0;
6760
6761 /* Does parent contain flags not in child? */
6762 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6763 if (cflags & SD_WAKE_AFFINE)
6764 pflags &= ~SD_WAKE_BALANCE;
6765 /* Flags needing groups don't count if only 1 group in parent */
6766 if (parent->groups == parent->groups->next) {
6767 pflags &= ~(SD_LOAD_BALANCE |
6768 SD_BALANCE_NEWIDLE |
6769 SD_BALANCE_FORK |
6770 SD_BALANCE_EXEC |
6771 SD_SHARE_CPUPOWER |
6772 SD_SHARE_PKG_RESOURCES);
6773 if (nr_node_ids == 1)
6774 pflags &= ~SD_SERIALIZE;
6775 }
6776 if (~cflags & pflags)
6777 return 0;
6778
6779 return 1;
6780}
6781
6782static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6783{
6784 unsigned long flags;
6785
6786 spin_lock_irqsave(&rq->lock, flags);
6787
6788 if (rq->rd) {
6789 struct root_domain *old_rd = rq->rd;
6790
6791 if (cpu_isset(rq->cpu, old_rd->online))
6792 set_rq_offline(rq);
6793
6794 cpu_clear(rq->cpu, old_rd->span);
6795
6796 if (atomic_dec_and_test(&old_rd->refcount))
6797 kfree(old_rd);
6798 }
6799
6800 atomic_inc(&rd->refcount);
6801 rq->rd = rd;
6802
6803 cpu_set(rq->cpu, rd->span);
6804 if (cpu_isset(rq->cpu, cpu_online_map))
6805 set_rq_online(rq);
6806
6807 spin_unlock_irqrestore(&rq->lock, flags);
6808}
6809
6810static void init_rootdomain(struct root_domain *rd)
6811{
6812 memset(rd, 0, sizeof(*rd));
6813
6814 cpus_clear(rd->span);
6815 cpus_clear(rd->online);
6816
6817 cpupri_init(&rd->cpupri);
6818}
6819
6820static void init_defrootdomain(void)
6821{
6822 init_rootdomain(&def_root_domain);
6823 atomic_set(&def_root_domain.refcount, 1);
6824}
6825
6826static struct root_domain *alloc_rootdomain(void)
6827{
6828 struct root_domain *rd;
6829
6830 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6831 if (!rd)
6832 return NULL;
6833
6834 init_rootdomain(rd);
6835
6836 return rd;
6837}
6838
6839/*
6840 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6841 * hold the hotplug lock.
6842 */
6843static void
6844cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6845{
6846 struct rq *rq = cpu_rq(cpu);
6847 struct sched_domain *tmp;
6848
6849 /* Remove the sched domains which do not contribute to scheduling. */
6850 for (tmp = sd; tmp; ) {
6851 struct sched_domain *parent = tmp->parent;
6852 if (!parent)
6853 break;
6854
6855 if (sd_parent_degenerate(tmp, parent)) {
6856 tmp->parent = parent->parent;
6857 if (parent->parent)
6858 parent->parent->child = tmp;
6859 } else
6860 tmp = tmp->parent;
6861 }
6862
6863 if (sd && sd_degenerate(sd)) {
6864 sd = sd->parent;
6865 if (sd)
6866 sd->child = NULL;
6867 }
6868
6869 sched_domain_debug(sd, cpu);
6870
6871 rq_attach_root(rq, rd);
6872 rcu_assign_pointer(rq->sd, sd);
6873}
6874
6875/* cpus with isolated domains */
6876static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6877
6878/* Setup the mask of cpus configured for isolated domains */
6879static int __init isolated_cpu_setup(char *str)
6880{
6881 static int __initdata ints[NR_CPUS];
6882 int i;
6883
6884 str = get_options(str, ARRAY_SIZE(ints), ints);
6885 cpus_clear(cpu_isolated_map);
6886 for (i = 1; i <= ints[0]; i++)
6887 if (ints[i] < NR_CPUS)
6888 cpu_set(ints[i], cpu_isolated_map);
6889 return 1;
6890}
6891
6892__setup("isolcpus=", isolated_cpu_setup);
6893
6894/*
6895 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6896 * to a function which identifies what group(along with sched group) a CPU
6897 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6898 * (due to the fact that we keep track of groups covered with a cpumask_t).
6899 *
6900 * init_sched_build_groups will build a circular linked list of the groups
6901 * covered by the given span, and will set each group's ->cpumask correctly,
6902 * and ->cpu_power to 0.
6903 */
6904static void
6905init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6906 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6907 struct sched_group **sg,
6908 cpumask_t *tmpmask),
6909 cpumask_t *covered, cpumask_t *tmpmask)
6910{
6911 struct sched_group *first = NULL, *last = NULL;
6912 int i;
6913
6914 cpus_clear(*covered);
6915
6916 for_each_cpu_mask_nr(i, *span) {
6917 struct sched_group *sg;
6918 int group = group_fn(i, cpu_map, &sg, tmpmask);
6919 int j;
6920
6921 if (cpu_isset(i, *covered))
6922 continue;
6923
6924 cpus_clear(sg->cpumask);
6925 sg->__cpu_power = 0;
6926
6927 for_each_cpu_mask_nr(j, *span) {
6928 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6929 continue;
6930
6931 cpu_set(j, *covered);
6932 cpu_set(j, sg->cpumask);
6933 }
6934 if (!first)
6935 first = sg;
6936 if (last)
6937 last->next = sg;
6938 last = sg;
6939 }
6940 last->next = first;
6941}
6942
6943#define SD_NODES_PER_DOMAIN 16
6944
6945#ifdef CONFIG_NUMA
6946
6947/**
6948 * find_next_best_node - find the next node to include in a sched_domain
6949 * @node: node whose sched_domain we're building
6950 * @used_nodes: nodes already in the sched_domain
6951 *
6952 * Find the next node to include in a given scheduling domain. Simply
6953 * finds the closest node not already in the @used_nodes map.
6954 *
6955 * Should use nodemask_t.
6956 */
6957static int find_next_best_node(int node, nodemask_t *used_nodes)
6958{
6959 int i, n, val, min_val, best_node = 0;
6960
6961 min_val = INT_MAX;
6962
6963 for (i = 0; i < nr_node_ids; i++) {
6964 /* Start at @node */
6965 n = (node + i) % nr_node_ids;
6966
6967 if (!nr_cpus_node(n))
6968 continue;
6969
6970 /* Skip already used nodes */
6971 if (node_isset(n, *used_nodes))
6972 continue;
6973
6974 /* Simple min distance search */
6975 val = node_distance(node, n);
6976
6977 if (val < min_val) {
6978 min_val = val;
6979 best_node = n;
6980 }
6981 }
6982
6983 node_set(best_node, *used_nodes);
6984 return best_node;
6985}
6986
6987/**
6988 * sched_domain_node_span - get a cpumask for a node's sched_domain
6989 * @node: node whose cpumask we're constructing
6990 * @span: resulting cpumask
6991 *
6992 * Given a node, construct a good cpumask for its sched_domain to span. It
6993 * should be one that prevents unnecessary balancing, but also spreads tasks
6994 * out optimally.
6995 */
6996static void sched_domain_node_span(int node, cpumask_t *span)
6997{
6998 nodemask_t used_nodes;
6999 node_to_cpumask_ptr(nodemask, node);
7000 int i;
7001
7002 cpus_clear(*span);
7003 nodes_clear(used_nodes);
7004
7005 cpus_or(*span, *span, *nodemask);
7006 node_set(node, used_nodes);
7007
7008 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7009 int next_node = find_next_best_node(node, &used_nodes);
7010
7011 node_to_cpumask_ptr_next(nodemask, next_node);
7012 cpus_or(*span, *span, *nodemask);
7013 }
7014}
7015#endif /* CONFIG_NUMA */
7016
7017int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7018
7019/*
7020 * SMT sched-domains:
7021 */
7022#ifdef CONFIG_SCHED_SMT
7023static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7024static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7025
7026static int
7027cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7028 cpumask_t *unused)
7029{
7030 if (sg)
7031 *sg = &per_cpu(sched_group_cpus, cpu);
7032 return cpu;
7033}
7034#endif /* CONFIG_SCHED_SMT */
7035
7036/*
7037 * multi-core sched-domains:
7038 */
7039#ifdef CONFIG_SCHED_MC
7040static DEFINE_PER_CPU(struct sched_domain, core_domains);
7041static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7042#endif /* CONFIG_SCHED_MC */
7043
7044#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7045static int
7046cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7047 cpumask_t *mask)
7048{
7049 int group;
7050
7051 *mask = per_cpu(cpu_sibling_map, cpu);
7052 cpus_and(*mask, *mask, *cpu_map);
7053 group = first_cpu(*mask);
7054 if (sg)
7055 *sg = &per_cpu(sched_group_core, group);
7056 return group;
7057}
7058#elif defined(CONFIG_SCHED_MC)
7059static int
7060cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7061 cpumask_t *unused)
7062{
7063 if (sg)
7064 *sg = &per_cpu(sched_group_core, cpu);
7065 return cpu;
7066}
7067#endif
7068
7069static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7070static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7071
7072static int
7073cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7074 cpumask_t *mask)
7075{
7076 int group;
7077#ifdef CONFIG_SCHED_MC
7078 *mask = cpu_coregroup_map(cpu);
7079 cpus_and(*mask, *mask, *cpu_map);
7080 group = first_cpu(*mask);
7081#elif defined(CONFIG_SCHED_SMT)
7082 *mask = per_cpu(cpu_sibling_map, cpu);
7083 cpus_and(*mask, *mask, *cpu_map);
7084 group = first_cpu(*mask);
7085#else
7086 group = cpu;
7087#endif
7088 if (sg)
7089 *sg = &per_cpu(sched_group_phys, group);
7090 return group;
7091}
7092
7093#ifdef CONFIG_NUMA
7094/*
7095 * The init_sched_build_groups can't handle what we want to do with node
7096 * groups, so roll our own. Now each node has its own list of groups which
7097 * gets dynamically allocated.
7098 */
7099static DEFINE_PER_CPU(struct sched_domain, node_domains);
7100static struct sched_group ***sched_group_nodes_bycpu;
7101
7102static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7103static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7104
7105static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7106 struct sched_group **sg, cpumask_t *nodemask)
7107{
7108 int group;
7109
7110 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7111 cpus_and(*nodemask, *nodemask, *cpu_map);
7112 group = first_cpu(*nodemask);
7113
7114 if (sg)
7115 *sg = &per_cpu(sched_group_allnodes, group);
7116 return group;
7117}
7118
7119static void init_numa_sched_groups_power(struct sched_group *group_head)
7120{
7121 struct sched_group *sg = group_head;
7122 int j;
7123
7124 if (!sg)
7125 return;
7126 do {
7127 for_each_cpu_mask_nr(j, sg->cpumask) {
7128 struct sched_domain *sd;
7129
7130 sd = &per_cpu(phys_domains, j);
7131 if (j != first_cpu(sd->groups->cpumask)) {
7132 /*
7133 * Only add "power" once for each
7134 * physical package.
7135 */
7136 continue;
7137 }
7138
7139 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7140 }
7141 sg = sg->next;
7142 } while (sg != group_head);
7143}
7144#endif /* CONFIG_NUMA */
7145
7146#ifdef CONFIG_NUMA
7147/* Free memory allocated for various sched_group structures */
7148static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7149{
7150 int cpu, i;
7151
7152 for_each_cpu_mask_nr(cpu, *cpu_map) {
7153 struct sched_group **sched_group_nodes
7154 = sched_group_nodes_bycpu[cpu];
7155
7156 if (!sched_group_nodes)
7157 continue;
7158
7159 for (i = 0; i < nr_node_ids; i++) {
7160 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7161
7162 *nodemask = node_to_cpumask(i);
7163 cpus_and(*nodemask, *nodemask, *cpu_map);
7164 if (cpus_empty(*nodemask))
7165 continue;
7166
7167 if (sg == NULL)
7168 continue;
7169 sg = sg->next;
7170next_sg:
7171 oldsg = sg;
7172 sg = sg->next;
7173 kfree(oldsg);
7174 if (oldsg != sched_group_nodes[i])
7175 goto next_sg;
7176 }
7177 kfree(sched_group_nodes);
7178 sched_group_nodes_bycpu[cpu] = NULL;
7179 }
7180}
7181#else /* !CONFIG_NUMA */
7182static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7183{
7184}
7185#endif /* CONFIG_NUMA */
7186
7187/*
7188 * Initialize sched groups cpu_power.
7189 *
7190 * cpu_power indicates the capacity of sched group, which is used while
7191 * distributing the load between different sched groups in a sched domain.
7192 * Typically cpu_power for all the groups in a sched domain will be same unless
7193 * there are asymmetries in the topology. If there are asymmetries, group
7194 * having more cpu_power will pickup more load compared to the group having
7195 * less cpu_power.
7196 *
7197 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7198 * the maximum number of tasks a group can handle in the presence of other idle
7199 * or lightly loaded groups in the same sched domain.
7200 */
7201static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7202{
7203 struct sched_domain *child;
7204 struct sched_group *group;
7205
7206 WARN_ON(!sd || !sd->groups);
7207
7208 if (cpu != first_cpu(sd->groups->cpumask))
7209 return;
7210
7211 child = sd->child;
7212
7213 sd->groups->__cpu_power = 0;
7214
7215 /*
7216 * For perf policy, if the groups in child domain share resources
7217 * (for example cores sharing some portions of the cache hierarchy
7218 * or SMT), then set this domain groups cpu_power such that each group
7219 * can handle only one task, when there are other idle groups in the
7220 * same sched domain.
7221 */
7222 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7223 (child->flags &
7224 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7225 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7226 return;
7227 }
7228
7229 /*
7230 * add cpu_power of each child group to this groups cpu_power
7231 */
7232 group = child->groups;
7233 do {
7234 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7235 group = group->next;
7236 } while (group != child->groups);
7237}
7238
7239/*
7240 * Initializers for schedule domains
7241 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7242 */
7243
7244#ifdef CONFIG_SCHED_DEBUG
7245# define SD_INIT_NAME(sd, type) sd->name = #type
7246#else
7247# define SD_INIT_NAME(sd, type) do { } while (0)
7248#endif
7249
7250#define SD_INIT(sd, type) sd_init_##type(sd)
7251
7252#define SD_INIT_FUNC(type) \
7253static noinline void sd_init_##type(struct sched_domain *sd) \
7254{ \
7255 memset(sd, 0, sizeof(*sd)); \
7256 *sd = SD_##type##_INIT; \
7257 sd->level = SD_LV_##type; \
7258 SD_INIT_NAME(sd, type); \
7259}
7260
7261SD_INIT_FUNC(CPU)
7262#ifdef CONFIG_NUMA
7263 SD_INIT_FUNC(ALLNODES)
7264 SD_INIT_FUNC(NODE)
7265#endif
7266#ifdef CONFIG_SCHED_SMT
7267 SD_INIT_FUNC(SIBLING)
7268#endif
7269#ifdef CONFIG_SCHED_MC
7270 SD_INIT_FUNC(MC)
7271#endif
7272
7273/*
7274 * To minimize stack usage kmalloc room for cpumasks and share the
7275 * space as the usage in build_sched_domains() dictates. Used only
7276 * if the amount of space is significant.
7277 */
7278struct allmasks {
7279 cpumask_t tmpmask; /* make this one first */
7280 union {
7281 cpumask_t nodemask;
7282 cpumask_t this_sibling_map;
7283 cpumask_t this_core_map;
7284 };
7285 cpumask_t send_covered;
7286
7287#ifdef CONFIG_NUMA
7288 cpumask_t domainspan;
7289 cpumask_t covered;
7290 cpumask_t notcovered;
7291#endif
7292};
7293
7294#if NR_CPUS > 128
7295#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7296static inline void sched_cpumask_alloc(struct allmasks **masks)
7297{
7298 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7299}
7300static inline void sched_cpumask_free(struct allmasks *masks)
7301{
7302 kfree(masks);
7303}
7304#else
7305#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7306static inline void sched_cpumask_alloc(struct allmasks **masks)
7307{ }
7308static inline void sched_cpumask_free(struct allmasks *masks)
7309{ }
7310#endif
7311
7312#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7313 ((unsigned long)(a) + offsetof(struct allmasks, v))
7314
7315static int default_relax_domain_level = -1;
7316
7317static int __init setup_relax_domain_level(char *str)
7318{
7319 unsigned long val;
7320
7321 val = simple_strtoul(str, NULL, 0);
7322 if (val < SD_LV_MAX)
7323 default_relax_domain_level = val;
7324
7325 return 1;
7326}
7327__setup("relax_domain_level=", setup_relax_domain_level);
7328
7329static void set_domain_attribute(struct sched_domain *sd,
7330 struct sched_domain_attr *attr)
7331{
7332 int request;
7333
7334 if (!attr || attr->relax_domain_level < 0) {
7335 if (default_relax_domain_level < 0)
7336 return;
7337 else
7338 request = default_relax_domain_level;
7339 } else
7340 request = attr->relax_domain_level;
7341 if (request < sd->level) {
7342 /* turn off idle balance on this domain */
7343 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7344 } else {
7345 /* turn on idle balance on this domain */
7346 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7347 }
7348}
7349
7350/*
7351 * Build sched domains for a given set of cpus and attach the sched domains
7352 * to the individual cpus
7353 */
7354static int __build_sched_domains(const cpumask_t *cpu_map,
7355 struct sched_domain_attr *attr)
7356{
7357 int i;
7358 struct root_domain *rd;
7359 SCHED_CPUMASK_DECLARE(allmasks);
7360 cpumask_t *tmpmask;
7361#ifdef CONFIG_NUMA
7362 struct sched_group **sched_group_nodes = NULL;
7363 int sd_allnodes = 0;
7364
7365 /*
7366 * Allocate the per-node list of sched groups
7367 */
7368 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7369 GFP_KERNEL);
7370 if (!sched_group_nodes) {
7371 printk(KERN_WARNING "Can not alloc sched group node list\n");
7372 return -ENOMEM;
7373 }
7374#endif
7375
7376 rd = alloc_rootdomain();
7377 if (!rd) {
7378 printk(KERN_WARNING "Cannot alloc root domain\n");
7379#ifdef CONFIG_NUMA
7380 kfree(sched_group_nodes);
7381#endif
7382 return -ENOMEM;
7383 }
7384
7385 /* get space for all scratch cpumask variables */
7386 sched_cpumask_alloc(&allmasks);
7387 if (!allmasks) {
7388 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7389 kfree(rd);
7390#ifdef CONFIG_NUMA
7391 kfree(sched_group_nodes);
7392#endif
7393 return -ENOMEM;
7394 }
7395
7396 tmpmask = (cpumask_t *)allmasks;
7397
7398
7399#ifdef CONFIG_NUMA
7400 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7401#endif
7402
7403 /*
7404 * Set up domains for cpus specified by the cpu_map.
7405 */
7406 for_each_cpu_mask_nr(i, *cpu_map) {
7407 struct sched_domain *sd = NULL, *p;
7408 SCHED_CPUMASK_VAR(nodemask, allmasks);
7409
7410 *nodemask = node_to_cpumask(cpu_to_node(i));
7411 cpus_and(*nodemask, *nodemask, *cpu_map);
7412
7413#ifdef CONFIG_NUMA
7414 if (cpus_weight(*cpu_map) >
7415 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7416 sd = &per_cpu(allnodes_domains, i);
7417 SD_INIT(sd, ALLNODES);
7418 set_domain_attribute(sd, attr);
7419 sd->span = *cpu_map;
7420 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7421 p = sd;
7422 sd_allnodes = 1;
7423 } else
7424 p = NULL;
7425
7426 sd = &per_cpu(node_domains, i);
7427 SD_INIT(sd, NODE);
7428 set_domain_attribute(sd, attr);
7429 sched_domain_node_span(cpu_to_node(i), &sd->span);
7430 sd->parent = p;
7431 if (p)
7432 p->child = sd;
7433 cpus_and(sd->span, sd->span, *cpu_map);
7434#endif
7435
7436 p = sd;
7437 sd = &per_cpu(phys_domains, i);
7438 SD_INIT(sd, CPU);
7439 set_domain_attribute(sd, attr);
7440 sd->span = *nodemask;
7441 sd->parent = p;
7442 if (p)
7443 p->child = sd;
7444 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7445
7446#ifdef CONFIG_SCHED_MC
7447 p = sd;
7448 sd = &per_cpu(core_domains, i);
7449 SD_INIT(sd, MC);
7450 set_domain_attribute(sd, attr);
7451 sd->span = cpu_coregroup_map(i);
7452 cpus_and(sd->span, sd->span, *cpu_map);
7453 sd->parent = p;
7454 p->child = sd;
7455 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7456#endif
7457
7458#ifdef CONFIG_SCHED_SMT
7459 p = sd;
7460 sd = &per_cpu(cpu_domains, i);
7461 SD_INIT(sd, SIBLING);
7462 set_domain_attribute(sd, attr);
7463 sd->span = per_cpu(cpu_sibling_map, i);
7464 cpus_and(sd->span, sd->span, *cpu_map);
7465 sd->parent = p;
7466 p->child = sd;
7467 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7468#endif
7469 }
7470
7471#ifdef CONFIG_SCHED_SMT
7472 /* Set up CPU (sibling) groups */
7473 for_each_cpu_mask_nr(i, *cpu_map) {
7474 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7475 SCHED_CPUMASK_VAR(send_covered, allmasks);
7476
7477 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7478 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7479 if (i != first_cpu(*this_sibling_map))
7480 continue;
7481
7482 init_sched_build_groups(this_sibling_map, cpu_map,
7483 &cpu_to_cpu_group,
7484 send_covered, tmpmask);
7485 }
7486#endif
7487
7488#ifdef CONFIG_SCHED_MC
7489 /* Set up multi-core groups */
7490 for_each_cpu_mask_nr(i, *cpu_map) {
7491 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7492 SCHED_CPUMASK_VAR(send_covered, allmasks);
7493
7494 *this_core_map = cpu_coregroup_map(i);
7495 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7496 if (i != first_cpu(*this_core_map))
7497 continue;
7498
7499 init_sched_build_groups(this_core_map, cpu_map,
7500 &cpu_to_core_group,
7501 send_covered, tmpmask);
7502 }
7503#endif
7504
7505 /* Set up physical groups */
7506 for (i = 0; i < nr_node_ids; i++) {
7507 SCHED_CPUMASK_VAR(nodemask, allmasks);
7508 SCHED_CPUMASK_VAR(send_covered, allmasks);
7509
7510 *nodemask = node_to_cpumask(i);
7511 cpus_and(*nodemask, *nodemask, *cpu_map);
7512 if (cpus_empty(*nodemask))
7513 continue;
7514
7515 init_sched_build_groups(nodemask, cpu_map,
7516 &cpu_to_phys_group,
7517 send_covered, tmpmask);
7518 }
7519
7520#ifdef CONFIG_NUMA
7521 /* Set up node groups */
7522 if (sd_allnodes) {
7523 SCHED_CPUMASK_VAR(send_covered, allmasks);
7524
7525 init_sched_build_groups(cpu_map, cpu_map,
7526 &cpu_to_allnodes_group,
7527 send_covered, tmpmask);
7528 }
7529
7530 for (i = 0; i < nr_node_ids; i++) {
7531 /* Set up node groups */
7532 struct sched_group *sg, *prev;
7533 SCHED_CPUMASK_VAR(nodemask, allmasks);
7534 SCHED_CPUMASK_VAR(domainspan, allmasks);
7535 SCHED_CPUMASK_VAR(covered, allmasks);
7536 int j;
7537
7538 *nodemask = node_to_cpumask(i);
7539 cpus_clear(*covered);
7540
7541 cpus_and(*nodemask, *nodemask, *cpu_map);
7542 if (cpus_empty(*nodemask)) {
7543 sched_group_nodes[i] = NULL;
7544 continue;
7545 }
7546
7547 sched_domain_node_span(i, domainspan);
7548 cpus_and(*domainspan, *domainspan, *cpu_map);
7549
7550 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7551 if (!sg) {
7552 printk(KERN_WARNING "Can not alloc domain group for "
7553 "node %d\n", i);
7554 goto error;
7555 }
7556 sched_group_nodes[i] = sg;
7557 for_each_cpu_mask_nr(j, *nodemask) {
7558 struct sched_domain *sd;
7559
7560 sd = &per_cpu(node_domains, j);
7561 sd->groups = sg;
7562 }
7563 sg->__cpu_power = 0;
7564 sg->cpumask = *nodemask;
7565 sg->next = sg;
7566 cpus_or(*covered, *covered, *nodemask);
7567 prev = sg;
7568
7569 for (j = 0; j < nr_node_ids; j++) {
7570 SCHED_CPUMASK_VAR(notcovered, allmasks);
7571 int n = (i + j) % nr_node_ids;
7572 node_to_cpumask_ptr(pnodemask, n);
7573
7574 cpus_complement(*notcovered, *covered);
7575 cpus_and(*tmpmask, *notcovered, *cpu_map);
7576 cpus_and(*tmpmask, *tmpmask, *domainspan);
7577 if (cpus_empty(*tmpmask))
7578 break;
7579
7580 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7581 if (cpus_empty(*tmpmask))
7582 continue;
7583
7584 sg = kmalloc_node(sizeof(struct sched_group),
7585 GFP_KERNEL, i);
7586 if (!sg) {
7587 printk(KERN_WARNING
7588 "Can not alloc domain group for node %d\n", j);
7589 goto error;
7590 }
7591 sg->__cpu_power = 0;
7592 sg->cpumask = *tmpmask;
7593 sg->next = prev->next;
7594 cpus_or(*covered, *covered, *tmpmask);
7595 prev->next = sg;
7596 prev = sg;
7597 }
7598 }
7599#endif
7600
7601 /* Calculate CPU power for physical packages and nodes */
7602#ifdef CONFIG_SCHED_SMT
7603 for_each_cpu_mask_nr(i, *cpu_map) {
7604 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7605
7606 init_sched_groups_power(i, sd);
7607 }
7608#endif
7609#ifdef CONFIG_SCHED_MC
7610 for_each_cpu_mask_nr(i, *cpu_map) {
7611 struct sched_domain *sd = &per_cpu(core_domains, i);
7612
7613 init_sched_groups_power(i, sd);
7614 }
7615#endif
7616
7617 for_each_cpu_mask_nr(i, *cpu_map) {
7618 struct sched_domain *sd = &per_cpu(phys_domains, i);
7619
7620 init_sched_groups_power(i, sd);
7621 }
7622
7623#ifdef CONFIG_NUMA
7624 for (i = 0; i < nr_node_ids; i++)
7625 init_numa_sched_groups_power(sched_group_nodes[i]);
7626
7627 if (sd_allnodes) {
7628 struct sched_group *sg;
7629
7630 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7631 tmpmask);
7632 init_numa_sched_groups_power(sg);
7633 }
7634#endif
7635
7636 /* Attach the domains */
7637 for_each_cpu_mask_nr(i, *cpu_map) {
7638 struct sched_domain *sd;
7639#ifdef CONFIG_SCHED_SMT
7640 sd = &per_cpu(cpu_domains, i);
7641#elif defined(CONFIG_SCHED_MC)
7642 sd = &per_cpu(core_domains, i);
7643#else
7644 sd = &per_cpu(phys_domains, i);
7645#endif
7646 cpu_attach_domain(sd, rd, i);
7647 }
7648
7649 sched_cpumask_free(allmasks);
7650 return 0;
7651
7652#ifdef CONFIG_NUMA
7653error:
7654 free_sched_groups(cpu_map, tmpmask);
7655 sched_cpumask_free(allmasks);
7656 kfree(rd);
7657 return -ENOMEM;
7658#endif
7659}
7660
7661static int build_sched_domains(const cpumask_t *cpu_map)
7662{
7663 return __build_sched_domains(cpu_map, NULL);
7664}
7665
7666static cpumask_t *doms_cur; /* current sched domains */
7667static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7668static struct sched_domain_attr *dattr_cur;
7669 /* attribues of custom domains in 'doms_cur' */
7670
7671/*
7672 * Special case: If a kmalloc of a doms_cur partition (array of
7673 * cpumask_t) fails, then fallback to a single sched domain,
7674 * as determined by the single cpumask_t fallback_doms.
7675 */
7676static cpumask_t fallback_doms;
7677
7678void __attribute__((weak)) arch_update_cpu_topology(void)
7679{
7680}
7681
7682/*
7683 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7684 * For now this just excludes isolated cpus, but could be used to
7685 * exclude other special cases in the future.
7686 */
7687static int arch_init_sched_domains(const cpumask_t *cpu_map)
7688{
7689 int err;
7690
7691 arch_update_cpu_topology();
7692 ndoms_cur = 1;
7693 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7694 if (!doms_cur)
7695 doms_cur = &fallback_doms;
7696 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7697 dattr_cur = NULL;
7698 err = build_sched_domains(doms_cur);
7699 register_sched_domain_sysctl();
7700
7701 return err;
7702}
7703
7704static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7705 cpumask_t *tmpmask)
7706{
7707 free_sched_groups(cpu_map, tmpmask);
7708}
7709
7710/*
7711 * Detach sched domains from a group of cpus specified in cpu_map
7712 * These cpus will now be attached to the NULL domain
7713 */
7714static void detach_destroy_domains(const cpumask_t *cpu_map)
7715{
7716 cpumask_t tmpmask;
7717 int i;
7718
7719 for_each_cpu_mask_nr(i, *cpu_map)
7720 cpu_attach_domain(NULL, &def_root_domain, i);
7721 synchronize_sched();
7722 arch_destroy_sched_domains(cpu_map, &tmpmask);
7723}
7724
7725/* handle null as "default" */
7726static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7727 struct sched_domain_attr *new, int idx_new)
7728{
7729 struct sched_domain_attr tmp;
7730
7731 /* fast path */
7732 if (!new && !cur)
7733 return 1;
7734
7735 tmp = SD_ATTR_INIT;
7736 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7737 new ? (new + idx_new) : &tmp,
7738 sizeof(struct sched_domain_attr));
7739}
7740
7741/*
7742 * Partition sched domains as specified by the 'ndoms_new'
7743 * cpumasks in the array doms_new[] of cpumasks. This compares
7744 * doms_new[] to the current sched domain partitioning, doms_cur[].
7745 * It destroys each deleted domain and builds each new domain.
7746 *
7747 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7748 * The masks don't intersect (don't overlap.) We should setup one
7749 * sched domain for each mask. CPUs not in any of the cpumasks will
7750 * not be load balanced. If the same cpumask appears both in the
7751 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7752 * it as it is.
7753 *
7754 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7755 * ownership of it and will kfree it when done with it. If the caller
7756 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7757 * ndoms_new == 1, and partition_sched_domains() will fallback to
7758 * the single partition 'fallback_doms', it also forces the domains
7759 * to be rebuilt.
7760 *
7761 * If doms_new == NULL it will be replaced with cpu_online_map.
7762 * ndoms_new == 0 is a special case for destroying existing domains,
7763 * and it will not create the default domain.
7764 *
7765 * Call with hotplug lock held
7766 */
7767void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7768 struct sched_domain_attr *dattr_new)
7769{
7770 int i, j, n;
7771
7772 mutex_lock(&sched_domains_mutex);
7773
7774 /* always unregister in case we don't destroy any domains */
7775 unregister_sched_domain_sysctl();
7776
7777 n = doms_new ? ndoms_new : 0;
7778
7779 /* Destroy deleted domains */
7780 for (i = 0; i < ndoms_cur; i++) {
7781 for (j = 0; j < n; j++) {
7782 if (cpus_equal(doms_cur[i], doms_new[j])
7783 && dattrs_equal(dattr_cur, i, dattr_new, j))
7784 goto match1;
7785 }
7786 /* no match - a current sched domain not in new doms_new[] */
7787 detach_destroy_domains(doms_cur + i);
7788match1:
7789 ;
7790 }
7791
7792 if (doms_new == NULL) {
7793 ndoms_cur = 0;
7794 doms_new = &fallback_doms;
7795 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7796 WARN_ON_ONCE(dattr_new);
7797 }
7798
7799 /* Build new domains */
7800 for (i = 0; i < ndoms_new; i++) {
7801 for (j = 0; j < ndoms_cur; j++) {
7802 if (cpus_equal(doms_new[i], doms_cur[j])
7803 && dattrs_equal(dattr_new, i, dattr_cur, j))
7804 goto match2;
7805 }
7806 /* no match - add a new doms_new */
7807 __build_sched_domains(doms_new + i,
7808 dattr_new ? dattr_new + i : NULL);
7809match2:
7810 ;
7811 }
7812
7813 /* Remember the new sched domains */
7814 if (doms_cur != &fallback_doms)
7815 kfree(doms_cur);
7816 kfree(dattr_cur); /* kfree(NULL) is safe */
7817 doms_cur = doms_new;
7818 dattr_cur = dattr_new;
7819 ndoms_cur = ndoms_new;
7820
7821 register_sched_domain_sysctl();
7822
7823 mutex_unlock(&sched_domains_mutex);
7824}
7825
7826#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7827int arch_reinit_sched_domains(void)
7828{
7829 get_online_cpus();
7830
7831 /* Destroy domains first to force the rebuild */
7832 partition_sched_domains(0, NULL, NULL);
7833
7834 rebuild_sched_domains();
7835 put_online_cpus();
7836
7837 return 0;
7838}
7839
7840static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7841{
7842 int ret;
7843
7844 if (buf[0] != '0' && buf[0] != '1')
7845 return -EINVAL;
7846
7847 if (smt)
7848 sched_smt_power_savings = (buf[0] == '1');
7849 else
7850 sched_mc_power_savings = (buf[0] == '1');
7851
7852 ret = arch_reinit_sched_domains();
7853
7854 return ret ? ret : count;
7855}
7856
7857#ifdef CONFIG_SCHED_MC
7858static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7859 char *page)
7860{
7861 return sprintf(page, "%u\n", sched_mc_power_savings);
7862}
7863static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7864 const char *buf, size_t count)
7865{
7866 return sched_power_savings_store(buf, count, 0);
7867}
7868static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7869 sched_mc_power_savings_show,
7870 sched_mc_power_savings_store);
7871#endif
7872
7873#ifdef CONFIG_SCHED_SMT
7874static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7875 char *page)
7876{
7877 return sprintf(page, "%u\n", sched_smt_power_savings);
7878}
7879static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7880 const char *buf, size_t count)
7881{
7882 return sched_power_savings_store(buf, count, 1);
7883}
7884static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7885 sched_smt_power_savings_show,
7886 sched_smt_power_savings_store);
7887#endif
7888
7889int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7890{
7891 int err = 0;
7892
7893#ifdef CONFIG_SCHED_SMT
7894 if (smt_capable())
7895 err = sysfs_create_file(&cls->kset.kobj,
7896 &attr_sched_smt_power_savings.attr);
7897#endif
7898#ifdef CONFIG_SCHED_MC
7899 if (!err && mc_capable())
7900 err = sysfs_create_file(&cls->kset.kobj,
7901 &attr_sched_mc_power_savings.attr);
7902#endif
7903 return err;
7904}
7905#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7906
7907#ifndef CONFIG_CPUSETS
7908/*
7909 * Add online and remove offline CPUs from the scheduler domains.
7910 * When cpusets are enabled they take over this function.
7911 */
7912static int update_sched_domains(struct notifier_block *nfb,
7913 unsigned long action, void *hcpu)
7914{
7915 switch (action) {
7916 case CPU_ONLINE:
7917 case CPU_ONLINE_FROZEN:
7918 case CPU_DEAD:
7919 case CPU_DEAD_FROZEN:
7920 partition_sched_domains(1, NULL, NULL);
7921 return NOTIFY_OK;
7922
7923 default:
7924 return NOTIFY_DONE;
7925 }
7926}
7927#endif
7928
7929static int update_runtime(struct notifier_block *nfb,
7930 unsigned long action, void *hcpu)
7931{
7932 int cpu = (int)(long)hcpu;
7933
7934 switch (action) {
7935 case CPU_DOWN_PREPARE:
7936 case CPU_DOWN_PREPARE_FROZEN:
7937 disable_runtime(cpu_rq(cpu));
7938 return NOTIFY_OK;
7939
7940 case CPU_DOWN_FAILED:
7941 case CPU_DOWN_FAILED_FROZEN:
7942 case CPU_ONLINE:
7943 case CPU_ONLINE_FROZEN:
7944 enable_runtime(cpu_rq(cpu));
7945 return NOTIFY_OK;
7946
7947 default:
7948 return NOTIFY_DONE;
7949 }
7950}
7951
7952void __init sched_init_smp(void)
7953{
7954 cpumask_t non_isolated_cpus;
7955
7956#if defined(CONFIG_NUMA)
7957 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7958 GFP_KERNEL);
7959 BUG_ON(sched_group_nodes_bycpu == NULL);
7960#endif
7961 get_online_cpus();
7962 mutex_lock(&sched_domains_mutex);
7963 arch_init_sched_domains(&cpu_online_map);
7964 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7965 if (cpus_empty(non_isolated_cpus))
7966 cpu_set(smp_processor_id(), non_isolated_cpus);
7967 mutex_unlock(&sched_domains_mutex);
7968 put_online_cpus();
7969
7970#ifndef CONFIG_CPUSETS
7971 /* XXX: Theoretical race here - CPU may be hotplugged now */
7972 hotcpu_notifier(update_sched_domains, 0);
7973#endif
7974
7975 /* RT runtime code needs to handle some hotplug events */
7976 hotcpu_notifier(update_runtime, 0);
7977
7978 init_hrtick();
7979
7980 /* Move init over to a non-isolated CPU */
7981 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7982 BUG();
7983 sched_init_granularity();
7984}
7985#else
7986void __init sched_init_smp(void)
7987{
7988 sched_init_granularity();
7989}
7990#endif /* CONFIG_SMP */
7991
7992int in_sched_functions(unsigned long addr)
7993{
7994 return in_lock_functions(addr) ||
7995 (addr >= (unsigned long)__sched_text_start
7996 && addr < (unsigned long)__sched_text_end);
7997}
7998
7999static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8000{
8001 cfs_rq->tasks_timeline = RB_ROOT;
8002 INIT_LIST_HEAD(&cfs_rq->tasks);
8003#ifdef CONFIG_FAIR_GROUP_SCHED
8004 cfs_rq->rq = rq;
8005#endif
8006 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8007}
8008
8009static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8010{
8011 struct rt_prio_array *array;
8012 int i;
8013
8014 array = &rt_rq->active;
8015 for (i = 0; i < MAX_RT_PRIO; i++) {
8016 INIT_LIST_HEAD(array->queue + i);
8017 __clear_bit(i, array->bitmap);
8018 }
8019 /* delimiter for bitsearch: */
8020 __set_bit(MAX_RT_PRIO, array->bitmap);
8021
8022#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8023 rt_rq->highest_prio = MAX_RT_PRIO;
8024#endif
8025#ifdef CONFIG_SMP
8026 rt_rq->rt_nr_migratory = 0;
8027 rt_rq->overloaded = 0;
8028#endif
8029
8030 rt_rq->rt_time = 0;
8031 rt_rq->rt_throttled = 0;
8032 rt_rq->rt_runtime = 0;
8033 spin_lock_init(&rt_rq->rt_runtime_lock);
8034
8035#ifdef CONFIG_RT_GROUP_SCHED
8036 rt_rq->rt_nr_boosted = 0;
8037 rt_rq->rq = rq;
8038#endif
8039}
8040
8041#ifdef CONFIG_FAIR_GROUP_SCHED
8042static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8043 struct sched_entity *se, int cpu, int add,
8044 struct sched_entity *parent)
8045{
8046 struct rq *rq = cpu_rq(cpu);
8047 tg->cfs_rq[cpu] = cfs_rq;
8048 init_cfs_rq(cfs_rq, rq);
8049 cfs_rq->tg = tg;
8050 if (add)
8051 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8052
8053 tg->se[cpu] = se;
8054 /* se could be NULL for init_task_group */
8055 if (!se)
8056 return;
8057
8058 if (!parent)
8059 se->cfs_rq = &rq->cfs;
8060 else
8061 se->cfs_rq = parent->my_q;
8062
8063 se->my_q = cfs_rq;
8064 se->load.weight = tg->shares;
8065 se->load.inv_weight = 0;
8066 se->parent = parent;
8067}
8068#endif
8069
8070#ifdef CONFIG_RT_GROUP_SCHED
8071static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8072 struct sched_rt_entity *rt_se, int cpu, int add,
8073 struct sched_rt_entity *parent)
8074{
8075 struct rq *rq = cpu_rq(cpu);
8076
8077 tg->rt_rq[cpu] = rt_rq;
8078 init_rt_rq(rt_rq, rq);
8079 rt_rq->tg = tg;
8080 rt_rq->rt_se = rt_se;
8081 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8082 if (add)
8083 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8084
8085 tg->rt_se[cpu] = rt_se;
8086 if (!rt_se)
8087 return;
8088
8089 if (!parent)
8090 rt_se->rt_rq = &rq->rt;
8091 else
8092 rt_se->rt_rq = parent->my_q;
8093
8094 rt_se->my_q = rt_rq;
8095 rt_se->parent = parent;
8096 INIT_LIST_HEAD(&rt_se->run_list);
8097}
8098#endif
8099
8100void __init sched_init(void)
8101{
8102 int i, j;
8103 unsigned long alloc_size = 0, ptr;
8104
8105#ifdef CONFIG_FAIR_GROUP_SCHED
8106 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8107#endif
8108#ifdef CONFIG_RT_GROUP_SCHED
8109 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8110#endif
8111#ifdef CONFIG_USER_SCHED
8112 alloc_size *= 2;
8113#endif
8114 /*
8115 * As sched_init() is called before page_alloc is setup,
8116 * we use alloc_bootmem().
8117 */
8118 if (alloc_size) {
8119 ptr = (unsigned long)alloc_bootmem(alloc_size);
8120
8121#ifdef CONFIG_FAIR_GROUP_SCHED
8122 init_task_group.se = (struct sched_entity **)ptr;
8123 ptr += nr_cpu_ids * sizeof(void **);
8124
8125 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8126 ptr += nr_cpu_ids * sizeof(void **);
8127
8128#ifdef CONFIG_USER_SCHED
8129 root_task_group.se = (struct sched_entity **)ptr;
8130 ptr += nr_cpu_ids * sizeof(void **);
8131
8132 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8133 ptr += nr_cpu_ids * sizeof(void **);
8134#endif /* CONFIG_USER_SCHED */
8135#endif /* CONFIG_FAIR_GROUP_SCHED */
8136#ifdef CONFIG_RT_GROUP_SCHED
8137 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8138 ptr += nr_cpu_ids * sizeof(void **);
8139
8140 init_task_group.rt_rq = (struct rt_rq **)ptr;
8141 ptr += nr_cpu_ids * sizeof(void **);
8142
8143#ifdef CONFIG_USER_SCHED
8144 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8145 ptr += nr_cpu_ids * sizeof(void **);
8146
8147 root_task_group.rt_rq = (struct rt_rq **)ptr;
8148 ptr += nr_cpu_ids * sizeof(void **);
8149#endif /* CONFIG_USER_SCHED */
8150#endif /* CONFIG_RT_GROUP_SCHED */
8151 }
8152
8153#ifdef CONFIG_SMP
8154 init_defrootdomain();
8155#endif
8156
8157 init_rt_bandwidth(&def_rt_bandwidth,
8158 global_rt_period(), global_rt_runtime());
8159
8160#ifdef CONFIG_RT_GROUP_SCHED
8161 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8162 global_rt_period(), global_rt_runtime());
8163#ifdef CONFIG_USER_SCHED
8164 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8165 global_rt_period(), RUNTIME_INF);
8166#endif /* CONFIG_USER_SCHED */
8167#endif /* CONFIG_RT_GROUP_SCHED */
8168
8169#ifdef CONFIG_GROUP_SCHED
8170 list_add(&init_task_group.list, &task_groups);
8171 INIT_LIST_HEAD(&init_task_group.children);
8172
8173#ifdef CONFIG_USER_SCHED
8174 INIT_LIST_HEAD(&root_task_group.children);
8175 init_task_group.parent = &root_task_group;
8176 list_add(&init_task_group.siblings, &root_task_group.children);
8177#endif /* CONFIG_USER_SCHED */
8178#endif /* CONFIG_GROUP_SCHED */
8179
8180 for_each_possible_cpu(i) {
8181 struct rq *rq;
8182
8183 rq = cpu_rq(i);
8184 spin_lock_init(&rq->lock);
8185 rq->nr_running = 0;
8186 init_cfs_rq(&rq->cfs, rq);
8187 init_rt_rq(&rq->rt, rq);
8188#ifdef CONFIG_FAIR_GROUP_SCHED
8189 init_task_group.shares = init_task_group_load;
8190 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8191#ifdef CONFIG_CGROUP_SCHED
8192 /*
8193 * How much cpu bandwidth does init_task_group get?
8194 *
8195 * In case of task-groups formed thr' the cgroup filesystem, it
8196 * gets 100% of the cpu resources in the system. This overall
8197 * system cpu resource is divided among the tasks of
8198 * init_task_group and its child task-groups in a fair manner,
8199 * based on each entity's (task or task-group's) weight
8200 * (se->load.weight).
8201 *
8202 * In other words, if init_task_group has 10 tasks of weight
8203 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8204 * then A0's share of the cpu resource is:
8205 *
8206 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8207 *
8208 * We achieve this by letting init_task_group's tasks sit
8209 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8210 */
8211 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8212#elif defined CONFIG_USER_SCHED
8213 root_task_group.shares = NICE_0_LOAD;
8214 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8215 /*
8216 * In case of task-groups formed thr' the user id of tasks,
8217 * init_task_group represents tasks belonging to root user.
8218 * Hence it forms a sibling of all subsequent groups formed.
8219 * In this case, init_task_group gets only a fraction of overall
8220 * system cpu resource, based on the weight assigned to root
8221 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8222 * by letting tasks of init_task_group sit in a separate cfs_rq
8223 * (init_cfs_rq) and having one entity represent this group of
8224 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8225 */
8226 init_tg_cfs_entry(&init_task_group,
8227 &per_cpu(init_cfs_rq, i),
8228 &per_cpu(init_sched_entity, i), i, 1,
8229 root_task_group.se[i]);
8230
8231#endif
8232#endif /* CONFIG_FAIR_GROUP_SCHED */
8233
8234 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8235#ifdef CONFIG_RT_GROUP_SCHED
8236 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8237#ifdef CONFIG_CGROUP_SCHED
8238 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8239#elif defined CONFIG_USER_SCHED
8240 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8241 init_tg_rt_entry(&init_task_group,
8242 &per_cpu(init_rt_rq, i),
8243 &per_cpu(init_sched_rt_entity, i), i, 1,
8244 root_task_group.rt_se[i]);
8245#endif
8246#endif
8247
8248 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8249 rq->cpu_load[j] = 0;
8250#ifdef CONFIG_SMP
8251 rq->sd = NULL;
8252 rq->rd = NULL;
8253 rq->active_balance = 0;
8254 rq->next_balance = jiffies;
8255 rq->push_cpu = 0;
8256 rq->cpu = i;
8257 rq->online = 0;
8258 rq->migration_thread = NULL;
8259 INIT_LIST_HEAD(&rq->migration_queue);
8260 rq_attach_root(rq, &def_root_domain);
8261#endif
8262 init_rq_hrtick(rq);
8263 atomic_set(&rq->nr_iowait, 0);
8264 }
8265
8266 set_load_weight(&init_task);
8267
8268#ifdef CONFIG_PREEMPT_NOTIFIERS
8269 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8270#endif
8271
8272#ifdef CONFIG_SMP
8273 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8274#endif
8275
8276#ifdef CONFIG_RT_MUTEXES
8277 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8278#endif
8279
8280 /*
8281 * The boot idle thread does lazy MMU switching as well:
8282 */
8283 atomic_inc(&init_mm.mm_count);
8284 enter_lazy_tlb(&init_mm, current);
8285
8286 /*
8287 * Make us the idle thread. Technically, schedule() should not be
8288 * called from this thread, however somewhere below it might be,
8289 * but because we are the idle thread, we just pick up running again
8290 * when this runqueue becomes "idle".
8291 */
8292 init_idle(current, smp_processor_id());
8293 /*
8294 * During early bootup we pretend to be a normal task:
8295 */
8296 current->sched_class = &fair_sched_class;
8297
8298 scheduler_running = 1;
8299}
8300
8301#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8302void __might_sleep(char *file, int line)
8303{
8304#ifdef in_atomic
8305 static unsigned long prev_jiffy; /* ratelimiting */
8306
8307 if ((!in_atomic() && !irqs_disabled()) ||
8308 system_state != SYSTEM_RUNNING || oops_in_progress)
8309 return;
8310 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8311 return;
8312 prev_jiffy = jiffies;
8313
8314 printk(KERN_ERR
8315 "BUG: sleeping function called from invalid context at %s:%d\n",
8316 file, line);
8317 printk(KERN_ERR
8318 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8319 in_atomic(), irqs_disabled(),
8320 current->pid, current->comm);
8321
8322 debug_show_held_locks(current);
8323 if (irqs_disabled())
8324 print_irqtrace_events(current);
8325 dump_stack();
8326#endif
8327}
8328EXPORT_SYMBOL(__might_sleep);
8329#endif
8330
8331#ifdef CONFIG_MAGIC_SYSRQ
8332static void normalize_task(struct rq *rq, struct task_struct *p)
8333{
8334 int on_rq;
8335
8336 update_rq_clock(rq);
8337 on_rq = p->se.on_rq;
8338 if (on_rq)
8339 deactivate_task(rq, p, 0);
8340 __setscheduler(rq, p, SCHED_NORMAL, 0);
8341 if (on_rq) {
8342 activate_task(rq, p, 0);
8343 resched_task(rq->curr);
8344 }
8345}
8346
8347void normalize_rt_tasks(void)
8348{
8349 struct task_struct *g, *p;
8350 unsigned long flags;
8351 struct rq *rq;
8352
8353 read_lock_irqsave(&tasklist_lock, flags);
8354 do_each_thread(g, p) {
8355 /*
8356 * Only normalize user tasks:
8357 */
8358 if (!p->mm)
8359 continue;
8360
8361 p->se.exec_start = 0;
8362#ifdef CONFIG_SCHEDSTATS
8363 p->se.wait_start = 0;
8364 p->se.sleep_start = 0;
8365 p->se.block_start = 0;
8366#endif
8367
8368 if (!rt_task(p)) {
8369 /*
8370 * Renice negative nice level userspace
8371 * tasks back to 0:
8372 */
8373 if (TASK_NICE(p) < 0 && p->mm)
8374 set_user_nice(p, 0);
8375 continue;
8376 }
8377
8378 spin_lock(&p->pi_lock);
8379 rq = __task_rq_lock(p);
8380
8381 normalize_task(rq, p);
8382
8383 __task_rq_unlock(rq);
8384 spin_unlock(&p->pi_lock);
8385 } while_each_thread(g, p);
8386
8387 read_unlock_irqrestore(&tasklist_lock, flags);
8388}
8389
8390#endif /* CONFIG_MAGIC_SYSRQ */
8391
8392#ifdef CONFIG_IA64
8393/*
8394 * These functions are only useful for the IA64 MCA handling.
8395 *
8396 * They can only be called when the whole system has been
8397 * stopped - every CPU needs to be quiescent, and no scheduling
8398 * activity can take place. Using them for anything else would
8399 * be a serious bug, and as a result, they aren't even visible
8400 * under any other configuration.
8401 */
8402
8403/**
8404 * curr_task - return the current task for a given cpu.
8405 * @cpu: the processor in question.
8406 *
8407 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8408 */
8409struct task_struct *curr_task(int cpu)
8410{
8411 return cpu_curr(cpu);
8412}
8413
8414/**
8415 * set_curr_task - set the current task for a given cpu.
8416 * @cpu: the processor in question.
8417 * @p: the task pointer to set.
8418 *
8419 * Description: This function must only be used when non-maskable interrupts
8420 * are serviced on a separate stack. It allows the architecture to switch the
8421 * notion of the current task on a cpu in a non-blocking manner. This function
8422 * must be called with all CPU's synchronized, and interrupts disabled, the
8423 * and caller must save the original value of the current task (see
8424 * curr_task() above) and restore that value before reenabling interrupts and
8425 * re-starting the system.
8426 *
8427 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8428 */
8429void set_curr_task(int cpu, struct task_struct *p)
8430{
8431 cpu_curr(cpu) = p;
8432}
8433
8434#endif
8435
8436#ifdef CONFIG_FAIR_GROUP_SCHED
8437static void free_fair_sched_group(struct task_group *tg)
8438{
8439 int i;
8440
8441 for_each_possible_cpu(i) {
8442 if (tg->cfs_rq)
8443 kfree(tg->cfs_rq[i]);
8444 if (tg->se)
8445 kfree(tg->se[i]);
8446 }
8447
8448 kfree(tg->cfs_rq);
8449 kfree(tg->se);
8450}
8451
8452static
8453int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8454{
8455 struct cfs_rq *cfs_rq;
8456 struct sched_entity *se;
8457 struct rq *rq;
8458 int i;
8459
8460 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8461 if (!tg->cfs_rq)
8462 goto err;
8463 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8464 if (!tg->se)
8465 goto err;
8466
8467 tg->shares = NICE_0_LOAD;
8468
8469 for_each_possible_cpu(i) {
8470 rq = cpu_rq(i);
8471
8472 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8473 GFP_KERNEL, cpu_to_node(i));
8474 if (!cfs_rq)
8475 goto err;
8476
8477 se = kzalloc_node(sizeof(struct sched_entity),
8478 GFP_KERNEL, cpu_to_node(i));
8479 if (!se)
8480 goto err;
8481
8482 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8483 }
8484
8485 return 1;
8486
8487 err:
8488 return 0;
8489}
8490
8491static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8492{
8493 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8494 &cpu_rq(cpu)->leaf_cfs_rq_list);
8495}
8496
8497static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8498{
8499 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8500}
8501#else /* !CONFG_FAIR_GROUP_SCHED */
8502static inline void free_fair_sched_group(struct task_group *tg)
8503{
8504}
8505
8506static inline
8507int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8508{
8509 return 1;
8510}
8511
8512static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8513{
8514}
8515
8516static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8517{
8518}
8519#endif /* CONFIG_FAIR_GROUP_SCHED */
8520
8521#ifdef CONFIG_RT_GROUP_SCHED
8522static void free_rt_sched_group(struct task_group *tg)
8523{
8524 int i;
8525
8526 destroy_rt_bandwidth(&tg->rt_bandwidth);
8527
8528 for_each_possible_cpu(i) {
8529 if (tg->rt_rq)
8530 kfree(tg->rt_rq[i]);
8531 if (tg->rt_se)
8532 kfree(tg->rt_se[i]);
8533 }
8534
8535 kfree(tg->rt_rq);
8536 kfree(tg->rt_se);
8537}
8538
8539static
8540int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8541{
8542 struct rt_rq *rt_rq;
8543 struct sched_rt_entity *rt_se;
8544 struct rq *rq;
8545 int i;
8546
8547 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8548 if (!tg->rt_rq)
8549 goto err;
8550 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8551 if (!tg->rt_se)
8552 goto err;
8553
8554 init_rt_bandwidth(&tg->rt_bandwidth,
8555 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8556
8557 for_each_possible_cpu(i) {
8558 rq = cpu_rq(i);
8559
8560 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8561 GFP_KERNEL, cpu_to_node(i));
8562 if (!rt_rq)
8563 goto err;
8564
8565 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8566 GFP_KERNEL, cpu_to_node(i));
8567 if (!rt_se)
8568 goto err;
8569
8570 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8571 }
8572
8573 return 1;
8574
8575 err:
8576 return 0;
8577}
8578
8579static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8580{
8581 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8582 &cpu_rq(cpu)->leaf_rt_rq_list);
8583}
8584
8585static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8586{
8587 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8588}
8589#else /* !CONFIG_RT_GROUP_SCHED */
8590static inline void free_rt_sched_group(struct task_group *tg)
8591{
8592}
8593
8594static inline
8595int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8596{
8597 return 1;
8598}
8599
8600static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8601{
8602}
8603
8604static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8605{
8606}
8607#endif /* CONFIG_RT_GROUP_SCHED */
8608
8609#ifdef CONFIG_GROUP_SCHED
8610static void free_sched_group(struct task_group *tg)
8611{
8612 free_fair_sched_group(tg);
8613 free_rt_sched_group(tg);
8614 kfree(tg);
8615}
8616
8617/* allocate runqueue etc for a new task group */
8618struct task_group *sched_create_group(struct task_group *parent)
8619{
8620 struct task_group *tg;
8621 unsigned long flags;
8622 int i;
8623
8624 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8625 if (!tg)
8626 return ERR_PTR(-ENOMEM);
8627
8628 if (!alloc_fair_sched_group(tg, parent))
8629 goto err;
8630
8631 if (!alloc_rt_sched_group(tg, parent))
8632 goto err;
8633
8634 spin_lock_irqsave(&task_group_lock, flags);
8635 for_each_possible_cpu(i) {
8636 register_fair_sched_group(tg, i);
8637 register_rt_sched_group(tg, i);
8638 }
8639 list_add_rcu(&tg->list, &task_groups);
8640
8641 WARN_ON(!parent); /* root should already exist */
8642
8643 tg->parent = parent;
8644 INIT_LIST_HEAD(&tg->children);
8645 list_add_rcu(&tg->siblings, &parent->children);
8646 spin_unlock_irqrestore(&task_group_lock, flags);
8647
8648 return tg;
8649
8650err:
8651 free_sched_group(tg);
8652 return ERR_PTR(-ENOMEM);
8653}
8654
8655/* rcu callback to free various structures associated with a task group */
8656static void free_sched_group_rcu(struct rcu_head *rhp)
8657{
8658 /* now it should be safe to free those cfs_rqs */
8659 free_sched_group(container_of(rhp, struct task_group, rcu));
8660}
8661
8662/* Destroy runqueue etc associated with a task group */
8663void sched_destroy_group(struct task_group *tg)
8664{
8665 unsigned long flags;
8666 int i;
8667
8668 spin_lock_irqsave(&task_group_lock, flags);
8669 for_each_possible_cpu(i) {
8670 unregister_fair_sched_group(tg, i);
8671 unregister_rt_sched_group(tg, i);
8672 }
8673 list_del_rcu(&tg->list);
8674 list_del_rcu(&tg->siblings);
8675 spin_unlock_irqrestore(&task_group_lock, flags);
8676
8677 /* wait for possible concurrent references to cfs_rqs complete */
8678 call_rcu(&tg->rcu, free_sched_group_rcu);
8679}
8680
8681/* change task's runqueue when it moves between groups.
8682 * The caller of this function should have put the task in its new group
8683 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8684 * reflect its new group.
8685 */
8686void sched_move_task(struct task_struct *tsk)
8687{
8688 int on_rq, running;
8689 unsigned long flags;
8690 struct rq *rq;
8691
8692 rq = task_rq_lock(tsk, &flags);
8693
8694 update_rq_clock(rq);
8695
8696 running = task_current(rq, tsk);
8697 on_rq = tsk->se.on_rq;
8698
8699 if (on_rq)
8700 dequeue_task(rq, tsk, 0);
8701 if (unlikely(running))
8702 tsk->sched_class->put_prev_task(rq, tsk);
8703
8704 set_task_rq(tsk, task_cpu(tsk));
8705
8706#ifdef CONFIG_FAIR_GROUP_SCHED
8707 if (tsk->sched_class->moved_group)
8708 tsk->sched_class->moved_group(tsk);
8709#endif
8710
8711 if (unlikely(running))
8712 tsk->sched_class->set_curr_task(rq);
8713 if (on_rq)
8714 enqueue_task(rq, tsk, 0);
8715
8716 task_rq_unlock(rq, &flags);
8717}
8718#endif /* CONFIG_GROUP_SCHED */
8719
8720#ifdef CONFIG_FAIR_GROUP_SCHED
8721static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8722{
8723 struct cfs_rq *cfs_rq = se->cfs_rq;
8724 int on_rq;
8725
8726 on_rq = se->on_rq;
8727 if (on_rq)
8728 dequeue_entity(cfs_rq, se, 0);
8729
8730 se->load.weight = shares;
8731 se->load.inv_weight = 0;
8732
8733 if (on_rq)
8734 enqueue_entity(cfs_rq, se, 0);
8735}
8736
8737static void set_se_shares(struct sched_entity *se, unsigned long shares)
8738{
8739 struct cfs_rq *cfs_rq = se->cfs_rq;
8740 struct rq *rq = cfs_rq->rq;
8741 unsigned long flags;
8742
8743 spin_lock_irqsave(&rq->lock, flags);
8744 __set_se_shares(se, shares);
8745 spin_unlock_irqrestore(&rq->lock, flags);
8746}
8747
8748static DEFINE_MUTEX(shares_mutex);
8749
8750int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8751{
8752 int i;
8753 unsigned long flags;
8754
8755 /*
8756 * We can't change the weight of the root cgroup.
8757 */
8758 if (!tg->se[0])
8759 return -EINVAL;
8760
8761 if (shares < MIN_SHARES)
8762 shares = MIN_SHARES;
8763 else if (shares > MAX_SHARES)
8764 shares = MAX_SHARES;
8765
8766 mutex_lock(&shares_mutex);
8767 if (tg->shares == shares)
8768 goto done;
8769
8770 spin_lock_irqsave(&task_group_lock, flags);
8771 for_each_possible_cpu(i)
8772 unregister_fair_sched_group(tg, i);
8773 list_del_rcu(&tg->siblings);
8774 spin_unlock_irqrestore(&task_group_lock, flags);
8775
8776 /* wait for any ongoing reference to this group to finish */
8777 synchronize_sched();
8778
8779 /*
8780 * Now we are free to modify the group's share on each cpu
8781 * w/o tripping rebalance_share or load_balance_fair.
8782 */
8783 tg->shares = shares;
8784 for_each_possible_cpu(i) {
8785 /*
8786 * force a rebalance
8787 */
8788 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8789 set_se_shares(tg->se[i], shares);
8790 }
8791
8792 /*
8793 * Enable load balance activity on this group, by inserting it back on
8794 * each cpu's rq->leaf_cfs_rq_list.
8795 */
8796 spin_lock_irqsave(&task_group_lock, flags);
8797 for_each_possible_cpu(i)
8798 register_fair_sched_group(tg, i);
8799 list_add_rcu(&tg->siblings, &tg->parent->children);
8800 spin_unlock_irqrestore(&task_group_lock, flags);
8801done:
8802 mutex_unlock(&shares_mutex);
8803 return 0;
8804}
8805
8806unsigned long sched_group_shares(struct task_group *tg)
8807{
8808 return tg->shares;
8809}
8810#endif
8811
8812#ifdef CONFIG_RT_GROUP_SCHED
8813/*
8814 * Ensure that the real time constraints are schedulable.
8815 */
8816static DEFINE_MUTEX(rt_constraints_mutex);
8817
8818static unsigned long to_ratio(u64 period, u64 runtime)
8819{
8820 if (runtime == RUNTIME_INF)
8821 return 1ULL << 20;
8822
8823 return div64_u64(runtime << 20, period);
8824}
8825
8826/* Must be called with tasklist_lock held */
8827static inline int tg_has_rt_tasks(struct task_group *tg)
8828{
8829 struct task_struct *g, *p;
8830
8831 do_each_thread(g, p) {
8832 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8833 return 1;
8834 } while_each_thread(g, p);
8835
8836 return 0;
8837}
8838
8839struct rt_schedulable_data {
8840 struct task_group *tg;
8841 u64 rt_period;
8842 u64 rt_runtime;
8843};
8844
8845static int tg_schedulable(struct task_group *tg, void *data)
8846{
8847 struct rt_schedulable_data *d = data;
8848 struct task_group *child;
8849 unsigned long total, sum = 0;
8850 u64 period, runtime;
8851
8852 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8853 runtime = tg->rt_bandwidth.rt_runtime;
8854
8855 if (tg == d->tg) {
8856 period = d->rt_period;
8857 runtime = d->rt_runtime;
8858 }
8859
8860 /*
8861 * Cannot have more runtime than the period.
8862 */
8863 if (runtime > period && runtime != RUNTIME_INF)
8864 return -EINVAL;
8865
8866 /*
8867 * Ensure we don't starve existing RT tasks.
8868 */
8869 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8870 return -EBUSY;
8871
8872 total = to_ratio(period, runtime);
8873
8874 /*
8875 * Nobody can have more than the global setting allows.
8876 */
8877 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8878 return -EINVAL;
8879
8880 /*
8881 * The sum of our children's runtime should not exceed our own.
8882 */
8883 list_for_each_entry_rcu(child, &tg->children, siblings) {
8884 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8885 runtime = child->rt_bandwidth.rt_runtime;
8886
8887 if (child == d->tg) {
8888 period = d->rt_period;
8889 runtime = d->rt_runtime;
8890 }
8891
8892 sum += to_ratio(period, runtime);
8893 }
8894
8895 if (sum > total)
8896 return -EINVAL;
8897
8898 return 0;
8899}
8900
8901static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8902{
8903 struct rt_schedulable_data data = {
8904 .tg = tg,
8905 .rt_period = period,
8906 .rt_runtime = runtime,
8907 };
8908
8909 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8910}
8911
8912static int tg_set_bandwidth(struct task_group *tg,
8913 u64 rt_period, u64 rt_runtime)
8914{
8915 int i, err = 0;
8916
8917 mutex_lock(&rt_constraints_mutex);
8918 read_lock(&tasklist_lock);
8919 err = __rt_schedulable(tg, rt_period, rt_runtime);
8920 if (err)
8921 goto unlock;
8922
8923 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8924 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8925 tg->rt_bandwidth.rt_runtime = rt_runtime;
8926
8927 for_each_possible_cpu(i) {
8928 struct rt_rq *rt_rq = tg->rt_rq[i];
8929
8930 spin_lock(&rt_rq->rt_runtime_lock);
8931 rt_rq->rt_runtime = rt_runtime;
8932 spin_unlock(&rt_rq->rt_runtime_lock);
8933 }
8934 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8935 unlock:
8936 read_unlock(&tasklist_lock);
8937 mutex_unlock(&rt_constraints_mutex);
8938
8939 return err;
8940}
8941
8942int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8943{
8944 u64 rt_runtime, rt_period;
8945
8946 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8947 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8948 if (rt_runtime_us < 0)
8949 rt_runtime = RUNTIME_INF;
8950
8951 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8952}
8953
8954long sched_group_rt_runtime(struct task_group *tg)
8955{
8956 u64 rt_runtime_us;
8957
8958 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8959 return -1;
8960
8961 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8962 do_div(rt_runtime_us, NSEC_PER_USEC);
8963 return rt_runtime_us;
8964}
8965
8966int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8967{
8968 u64 rt_runtime, rt_period;
8969
8970 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8971 rt_runtime = tg->rt_bandwidth.rt_runtime;
8972
8973 if (rt_period == 0)
8974 return -EINVAL;
8975
8976 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8977}
8978
8979long sched_group_rt_period(struct task_group *tg)
8980{
8981 u64 rt_period_us;
8982
8983 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8984 do_div(rt_period_us, NSEC_PER_USEC);
8985 return rt_period_us;
8986}
8987
8988static int sched_rt_global_constraints(void)
8989{
8990 u64 runtime, period;
8991 int ret = 0;
8992
8993 if (sysctl_sched_rt_period <= 0)
8994 return -EINVAL;
8995
8996 runtime = global_rt_runtime();
8997 period = global_rt_period();
8998
8999 /*
9000 * Sanity check on the sysctl variables.
9001 */
9002 if (runtime > period && runtime != RUNTIME_INF)
9003 return -EINVAL;
9004
9005 mutex_lock(&rt_constraints_mutex);
9006 read_lock(&tasklist_lock);
9007 ret = __rt_schedulable(NULL, 0, 0);
9008 read_unlock(&tasklist_lock);
9009 mutex_unlock(&rt_constraints_mutex);
9010
9011 return ret;
9012}
9013#else /* !CONFIG_RT_GROUP_SCHED */
9014static int sched_rt_global_constraints(void)
9015{
9016 unsigned long flags;
9017 int i;
9018
9019 if (sysctl_sched_rt_period <= 0)
9020 return -EINVAL;
9021
9022 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9023 for_each_possible_cpu(i) {
9024 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9025
9026 spin_lock(&rt_rq->rt_runtime_lock);
9027 rt_rq->rt_runtime = global_rt_runtime();
9028 spin_unlock(&rt_rq->rt_runtime_lock);
9029 }
9030 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9031
9032 return 0;
9033}
9034#endif /* CONFIG_RT_GROUP_SCHED */
9035
9036int sched_rt_handler(struct ctl_table *table, int write,
9037 struct file *filp, void __user *buffer, size_t *lenp,
9038 loff_t *ppos)
9039{
9040 int ret;
9041 int old_period, old_runtime;
9042 static DEFINE_MUTEX(mutex);
9043
9044 mutex_lock(&mutex);
9045 old_period = sysctl_sched_rt_period;
9046 old_runtime = sysctl_sched_rt_runtime;
9047
9048 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9049
9050 if (!ret && write) {
9051 ret = sched_rt_global_constraints();
9052 if (ret) {
9053 sysctl_sched_rt_period = old_period;
9054 sysctl_sched_rt_runtime = old_runtime;
9055 } else {
9056 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9057 def_rt_bandwidth.rt_period =
9058 ns_to_ktime(global_rt_period());
9059 }
9060 }
9061 mutex_unlock(&mutex);
9062
9063 return ret;
9064}
9065
9066#ifdef CONFIG_CGROUP_SCHED
9067
9068/* return corresponding task_group object of a cgroup */
9069static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9070{
9071 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9072 struct task_group, css);
9073}
9074
9075static struct cgroup_subsys_state *
9076cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9077{
9078 struct task_group *tg, *parent;
9079
9080 if (!cgrp->parent) {
9081 /* This is early initialization for the top cgroup */
9082 return &init_task_group.css;
9083 }
9084
9085 parent = cgroup_tg(cgrp->parent);
9086 tg = sched_create_group(parent);
9087 if (IS_ERR(tg))
9088 return ERR_PTR(-ENOMEM);
9089
9090 return &tg->css;
9091}
9092
9093static void
9094cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9095{
9096 struct task_group *tg = cgroup_tg(cgrp);
9097
9098 sched_destroy_group(tg);
9099}
9100
9101static int
9102cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9103 struct task_struct *tsk)
9104{
9105#ifdef CONFIG_RT_GROUP_SCHED
9106 /* Don't accept realtime tasks when there is no way for them to run */
9107 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9108 return -EINVAL;
9109#else
9110 /* We don't support RT-tasks being in separate groups */
9111 if (tsk->sched_class != &fair_sched_class)
9112 return -EINVAL;
9113#endif
9114
9115 return 0;
9116}
9117
9118static void
9119cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9120 struct cgroup *old_cont, struct task_struct *tsk)
9121{
9122 sched_move_task(tsk);
9123}
9124
9125#ifdef CONFIG_FAIR_GROUP_SCHED
9126static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9127 u64 shareval)
9128{
9129 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9130}
9131
9132static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9133{
9134 struct task_group *tg = cgroup_tg(cgrp);
9135
9136 return (u64) tg->shares;
9137}
9138#endif /* CONFIG_FAIR_GROUP_SCHED */
9139
9140#ifdef CONFIG_RT_GROUP_SCHED
9141static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9142 s64 val)
9143{
9144 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9145}
9146
9147static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9148{
9149 return sched_group_rt_runtime(cgroup_tg(cgrp));
9150}
9151
9152static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9153 u64 rt_period_us)
9154{
9155 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9156}
9157
9158static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9159{
9160 return sched_group_rt_period(cgroup_tg(cgrp));
9161}
9162#endif /* CONFIG_RT_GROUP_SCHED */
9163
9164static struct cftype cpu_files[] = {
9165#ifdef CONFIG_FAIR_GROUP_SCHED
9166 {
9167 .name = "shares",
9168 .read_u64 = cpu_shares_read_u64,
9169 .write_u64 = cpu_shares_write_u64,
9170 },
9171#endif
9172#ifdef CONFIG_RT_GROUP_SCHED
9173 {
9174 .name = "rt_runtime_us",
9175 .read_s64 = cpu_rt_runtime_read,
9176 .write_s64 = cpu_rt_runtime_write,
9177 },
9178 {
9179 .name = "rt_period_us",
9180 .read_u64 = cpu_rt_period_read_uint,
9181 .write_u64 = cpu_rt_period_write_uint,
9182 },
9183#endif
9184};
9185
9186static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9187{
9188 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9189}
9190
9191struct cgroup_subsys cpu_cgroup_subsys = {
9192 .name = "cpu",
9193 .create = cpu_cgroup_create,
9194 .destroy = cpu_cgroup_destroy,
9195 .can_attach = cpu_cgroup_can_attach,
9196 .attach = cpu_cgroup_attach,
9197 .populate = cpu_cgroup_populate,
9198 .subsys_id = cpu_cgroup_subsys_id,
9199 .early_init = 1,
9200};
9201
9202#endif /* CONFIG_CGROUP_SCHED */
9203
9204#ifdef CONFIG_CGROUP_CPUACCT
9205
9206/*
9207 * CPU accounting code for task groups.
9208 *
9209 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9210 * (balbir@in.ibm.com).
9211 */
9212
9213/* track cpu usage of a group of tasks and its child groups */
9214struct cpuacct {
9215 struct cgroup_subsys_state css;
9216 /* cpuusage holds pointer to a u64-type object on every cpu */
9217 u64 *cpuusage;
9218 struct cpuacct *parent;
9219};
9220
9221struct cgroup_subsys cpuacct_subsys;
9222
9223/* return cpu accounting group corresponding to this container */
9224static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9225{
9226 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9227 struct cpuacct, css);
9228}
9229
9230/* return cpu accounting group to which this task belongs */
9231static inline struct cpuacct *task_ca(struct task_struct *tsk)
9232{
9233 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9234 struct cpuacct, css);
9235}
9236
9237/* create a new cpu accounting group */
9238static struct cgroup_subsys_state *cpuacct_create(
9239 struct cgroup_subsys *ss, struct cgroup *cgrp)
9240{
9241 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9242
9243 if (!ca)
9244 return ERR_PTR(-ENOMEM);
9245
9246 ca->cpuusage = alloc_percpu(u64);
9247 if (!ca->cpuusage) {
9248 kfree(ca);
9249 return ERR_PTR(-ENOMEM);
9250 }
9251
9252 if (cgrp->parent)
9253 ca->parent = cgroup_ca(cgrp->parent);
9254
9255 return &ca->css;
9256}
9257
9258/* destroy an existing cpu accounting group */
9259static void
9260cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9261{
9262 struct cpuacct *ca = cgroup_ca(cgrp);
9263
9264 free_percpu(ca->cpuusage);
9265 kfree(ca);
9266}
9267
9268/* return total cpu usage (in nanoseconds) of a group */
9269static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9270{
9271 struct cpuacct *ca = cgroup_ca(cgrp);
9272 u64 totalcpuusage = 0;
9273 int i;
9274
9275 for_each_possible_cpu(i) {
9276 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9277
9278 /*
9279 * Take rq->lock to make 64-bit addition safe on 32-bit
9280 * platforms.
9281 */
9282 spin_lock_irq(&cpu_rq(i)->lock);
9283 totalcpuusage += *cpuusage;
9284 spin_unlock_irq(&cpu_rq(i)->lock);
9285 }
9286
9287 return totalcpuusage;
9288}
9289
9290static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9291 u64 reset)
9292{
9293 struct cpuacct *ca = cgroup_ca(cgrp);
9294 int err = 0;
9295 int i;
9296
9297 if (reset) {
9298 err = -EINVAL;
9299 goto out;
9300 }
9301
9302 for_each_possible_cpu(i) {
9303 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9304
9305 spin_lock_irq(&cpu_rq(i)->lock);
9306 *cpuusage = 0;
9307 spin_unlock_irq(&cpu_rq(i)->lock);
9308 }
9309out:
9310 return err;
9311}
9312
9313static struct cftype files[] = {
9314 {
9315 .name = "usage",
9316 .read_u64 = cpuusage_read,
9317 .write_u64 = cpuusage_write,
9318 },
9319};
9320
9321static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9322{
9323 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9324}
9325
9326/*
9327 * charge this task's execution time to its accounting group.
9328 *
9329 * called with rq->lock held.
9330 */
9331static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9332{
9333 struct cpuacct *ca;
9334 int cpu;
9335
9336 if (!cpuacct_subsys.active)
9337 return;
9338
9339 cpu = task_cpu(tsk);
9340 ca = task_ca(tsk);
9341
9342 for (; ca; ca = ca->parent) {
9343 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9344 *cpuusage += cputime;
9345 }
9346}
9347
9348struct cgroup_subsys cpuacct_subsys = {
9349 .name = "cpuacct",
9350 .create = cpuacct_create,
9351 .destroy = cpuacct_destroy,
9352 .populate = cpuacct_populate,
9353 .subsys_id = cpuacct_subsys_id,
9354};
9355#endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.067957 seconds and 5 git commands to generate.