* incremental.cc
[deliverable/binutils-gdb.git] / ld / ldlang.c
... / ...
CommitLineData
1/* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23#include "sysdep.h"
24#include "bfd.h"
25#include "libiberty.h"
26#include "safe-ctype.h"
27#include "obstack.h"
28#include "bfdlink.h"
29
30#include "ld.h"
31#include "ldmain.h"
32#include "ldexp.h"
33#include "ldlang.h"
34#include <ldgram.h>
35#include "ldlex.h"
36#include "ldmisc.h"
37#include "ldctor.h"
38#include "ldfile.h"
39#include "ldemul.h"
40#include "fnmatch.h"
41#include "demangle.h"
42#include "hashtab.h"
43
44#ifndef offsetof
45#define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
46#endif
47
48/* Locals variables. */
49static struct obstack stat_obstack;
50static struct obstack map_obstack;
51
52#define obstack_chunk_alloc xmalloc
53#define obstack_chunk_free free
54static const char *startup_file;
55static const char *entry_symbol_default = "start";
56static bfd_boolean placed_commons = FALSE;
57static bfd_boolean stripped_excluded_sections = FALSE;
58static lang_output_section_statement_type *default_common_section;
59static bfd_boolean map_option_f;
60static bfd_vma print_dot;
61static lang_input_statement_type *first_file;
62static const char *current_target;
63static lang_statement_list_type statement_list;
64static struct bfd_hash_table lang_definedness_table;
65static lang_statement_list_type *stat_save[10];
66static lang_statement_list_type **stat_save_ptr = &stat_save[0];
67static struct unique_sections *unique_section_list;
68static bfd_boolean ldlang_sysrooted_script = FALSE;
69
70/* Forward declarations. */
71static void exp_init_os (etree_type *);
72static void init_map_userdata (bfd *, asection *, void *);
73static lang_input_statement_type *lookup_name (const char *);
74static struct bfd_hash_entry *lang_definedness_newfunc
75 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
76static void insert_undefined (const char *);
77static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
78static void print_statement (lang_statement_union_type *,
79 lang_output_section_statement_type *);
80static void print_statement_list (lang_statement_union_type *,
81 lang_output_section_statement_type *);
82static void print_statements (void);
83static void print_input_section (asection *, bfd_boolean);
84static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
85static void lang_record_phdrs (void);
86static void lang_do_version_exports_section (void);
87static void lang_finalize_version_expr_head
88 (struct bfd_elf_version_expr_head *);
89
90/* Exported variables. */
91const char *output_target;
92lang_output_section_statement_type *abs_output_section;
93lang_statement_list_type lang_output_section_statement;
94lang_statement_list_type *stat_ptr = &statement_list;
95lang_statement_list_type file_chain = { NULL, NULL };
96lang_statement_list_type input_file_chain;
97struct bfd_sym_chain entry_symbol = { NULL, NULL };
98const char *entry_section = ".text";
99bfd_boolean entry_from_cmdline;
100bfd_boolean lang_has_input_file = FALSE;
101bfd_boolean had_output_filename = FALSE;
102bfd_boolean lang_float_flag = FALSE;
103bfd_boolean delete_output_file_on_failure = FALSE;
104struct lang_phdr *lang_phdr_list;
105struct lang_nocrossrefs *nocrossref_list;
106bfd_boolean missing_file = FALSE;
107
108 /* Functions that traverse the linker script and might evaluate
109 DEFINED() need to increment this. */
110int lang_statement_iteration = 0;
111
112etree_type *base; /* Relocation base - or null */
113
114/* Return TRUE if the PATTERN argument is a wildcard pattern.
115 Although backslashes are treated specially if a pattern contains
116 wildcards, we do not consider the mere presence of a backslash to
117 be enough to cause the pattern to be treated as a wildcard.
118 That lets us handle DOS filenames more naturally. */
119#define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
120
121#define new_stat(x, y) \
122 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
123
124#define outside_section_address(q) \
125 ((q)->output_offset + (q)->output_section->vma)
126
127#define outside_symbol_address(q) \
128 ((q)->value + outside_section_address (q->section))
129
130#define SECTION_NAME_MAP_LENGTH (16)
131
132void *
133stat_alloc (size_t size)
134{
135 return obstack_alloc (&stat_obstack, size);
136}
137
138static int
139name_match (const char *pattern, const char *name)
140{
141 if (wildcardp (pattern))
142 return fnmatch (pattern, name, 0);
143 return strcmp (pattern, name);
144}
145
146/* If PATTERN is of the form archive:file, return a pointer to the
147 separator. If not, return NULL. */
148
149static char *
150archive_path (const char *pattern)
151{
152 char *p = NULL;
153
154 if (link_info.path_separator == 0)
155 return p;
156
157 p = strchr (pattern, link_info.path_separator);
158#ifdef HAVE_DOS_BASED_FILE_SYSTEM
159 if (p == NULL || link_info.path_separator != ':')
160 return p;
161
162 /* Assume a match on the second char is part of drive specifier,
163 as in "c:\silly.dos". */
164 if (p == pattern + 1 && ISALPHA (*pattern))
165 p = strchr (p + 1, link_info.path_separator);
166#endif
167 return p;
168}
169
170/* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
171 return whether F matches FILE_SPEC. */
172
173static bfd_boolean
174input_statement_is_archive_path (const char *file_spec, char *sep,
175 lang_input_statement_type *f)
176{
177 bfd_boolean match = FALSE;
178
179 if ((*(sep + 1) == 0
180 || name_match (sep + 1, f->filename) == 0)
181 && ((sep != file_spec)
182 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
183 {
184 match = TRUE;
185
186 if (sep != file_spec)
187 {
188 const char *aname = f->the_bfd->my_archive->filename;
189 *sep = 0;
190 match = name_match (file_spec, aname) == 0;
191 *sep = link_info.path_separator;
192 }
193 }
194 return match;
195}
196
197static bfd_boolean
198unique_section_p (const asection *sec,
199 const lang_output_section_statement_type *os)
200{
201 struct unique_sections *unam;
202 const char *secnam;
203
204 if (link_info.relocatable
205 && sec->owner != NULL
206 && bfd_is_group_section (sec->owner, sec))
207 return !(os != NULL
208 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
209
210 secnam = sec->name;
211 for (unam = unique_section_list; unam; unam = unam->next)
212 if (name_match (unam->name, secnam) == 0)
213 return TRUE;
214
215 return FALSE;
216}
217
218/* Generic traversal routines for finding matching sections. */
219
220/* Try processing a section against a wildcard. This just calls
221 the callback unless the filename exclusion list is present
222 and excludes the file. It's hardly ever present so this
223 function is very fast. */
224
225static void
226walk_wild_consider_section (lang_wild_statement_type *ptr,
227 lang_input_statement_type *file,
228 asection *s,
229 struct wildcard_list *sec,
230 callback_t callback,
231 void *data)
232{
233 struct name_list *list_tmp;
234
235 /* Don't process sections from files which were excluded. */
236 for (list_tmp = sec->spec.exclude_name_list;
237 list_tmp;
238 list_tmp = list_tmp->next)
239 {
240 char *p = archive_path (list_tmp->name);
241
242 if (p != NULL)
243 {
244 if (input_statement_is_archive_path (list_tmp->name, p, file))
245 return;
246 }
247
248 else if (name_match (list_tmp->name, file->filename) == 0)
249 return;
250
251 /* FIXME: Perhaps remove the following at some stage? Matching
252 unadorned archives like this was never documented and has
253 been superceded by the archive:path syntax. */
254 else if (file->the_bfd != NULL
255 && file->the_bfd->my_archive != NULL
256 && name_match (list_tmp->name,
257 file->the_bfd->my_archive->filename) == 0)
258 return;
259 }
260
261 (*callback) (ptr, sec, s, file, data);
262}
263
264/* Lowest common denominator routine that can handle everything correctly,
265 but slowly. */
266
267static void
268walk_wild_section_general (lang_wild_statement_type *ptr,
269 lang_input_statement_type *file,
270 callback_t callback,
271 void *data)
272{
273 asection *s;
274 struct wildcard_list *sec;
275
276 for (s = file->the_bfd->sections; s != NULL; s = s->next)
277 {
278 sec = ptr->section_list;
279 if (sec == NULL)
280 (*callback) (ptr, sec, s, file, data);
281
282 while (sec != NULL)
283 {
284 bfd_boolean skip = FALSE;
285
286 if (sec->spec.name != NULL)
287 {
288 const char *sname = bfd_get_section_name (file->the_bfd, s);
289
290 skip = name_match (sec->spec.name, sname) != 0;
291 }
292
293 if (!skip)
294 walk_wild_consider_section (ptr, file, s, sec, callback, data);
295
296 sec = sec->next;
297 }
298 }
299}
300
301/* Routines to find a single section given its name. If there's more
302 than one section with that name, we report that. */
303
304typedef struct
305{
306 asection *found_section;
307 bfd_boolean multiple_sections_found;
308} section_iterator_callback_data;
309
310static bfd_boolean
311section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
312{
313 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
314
315 if (d->found_section != NULL)
316 {
317 d->multiple_sections_found = TRUE;
318 return TRUE;
319 }
320
321 d->found_section = s;
322 return FALSE;
323}
324
325static asection *
326find_section (lang_input_statement_type *file,
327 struct wildcard_list *sec,
328 bfd_boolean *multiple_sections_found)
329{
330 section_iterator_callback_data cb_data = { NULL, FALSE };
331
332 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
333 section_iterator_callback, &cb_data);
334 *multiple_sections_found = cb_data.multiple_sections_found;
335 return cb_data.found_section;
336}
337
338/* Code for handling simple wildcards without going through fnmatch,
339 which can be expensive because of charset translations etc. */
340
341/* A simple wild is a literal string followed by a single '*',
342 where the literal part is at least 4 characters long. */
343
344static bfd_boolean
345is_simple_wild (const char *name)
346{
347 size_t len = strcspn (name, "*?[");
348 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
349}
350
351static bfd_boolean
352match_simple_wild (const char *pattern, const char *name)
353{
354 /* The first four characters of the pattern are guaranteed valid
355 non-wildcard characters. So we can go faster. */
356 if (pattern[0] != name[0] || pattern[1] != name[1]
357 || pattern[2] != name[2] || pattern[3] != name[3])
358 return FALSE;
359
360 pattern += 4;
361 name += 4;
362 while (*pattern != '*')
363 if (*name++ != *pattern++)
364 return FALSE;
365
366 return TRUE;
367}
368
369/* Compare sections ASEC and BSEC according to SORT. */
370
371static int
372compare_section (sort_type sort, asection *asec, asection *bsec)
373{
374 int ret;
375
376 switch (sort)
377 {
378 default:
379 abort ();
380
381 case by_alignment_name:
382 ret = (bfd_section_alignment (bsec->owner, bsec)
383 - bfd_section_alignment (asec->owner, asec));
384 if (ret)
385 break;
386 /* Fall through. */
387
388 case by_name:
389 ret = strcmp (bfd_get_section_name (asec->owner, asec),
390 bfd_get_section_name (bsec->owner, bsec));
391 break;
392
393 case by_name_alignment:
394 ret = strcmp (bfd_get_section_name (asec->owner, asec),
395 bfd_get_section_name (bsec->owner, bsec));
396 if (ret)
397 break;
398 /* Fall through. */
399
400 case by_alignment:
401 ret = (bfd_section_alignment (bsec->owner, bsec)
402 - bfd_section_alignment (asec->owner, asec));
403 break;
404 }
405
406 return ret;
407}
408
409/* Build a Binary Search Tree to sort sections, unlike insertion sort
410 used in wild_sort(). BST is considerably faster if the number of
411 of sections are large. */
412
413static lang_section_bst_type **
414wild_sort_fast (lang_wild_statement_type *wild,
415 struct wildcard_list *sec,
416 lang_input_statement_type *file ATTRIBUTE_UNUSED,
417 asection *section)
418{
419 lang_section_bst_type **tree;
420
421 tree = &wild->tree;
422 if (!wild->filenames_sorted
423 && (sec == NULL || sec->spec.sorted == none))
424 {
425 /* Append at the right end of tree. */
426 while (*tree)
427 tree = &((*tree)->right);
428 return tree;
429 }
430
431 while (*tree)
432 {
433 /* Find the correct node to append this section. */
434 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
435 tree = &((*tree)->left);
436 else
437 tree = &((*tree)->right);
438 }
439
440 return tree;
441}
442
443/* Use wild_sort_fast to build a BST to sort sections. */
444
445static void
446output_section_callback_fast (lang_wild_statement_type *ptr,
447 struct wildcard_list *sec,
448 asection *section,
449 lang_input_statement_type *file,
450 void *output)
451{
452 lang_section_bst_type *node;
453 lang_section_bst_type **tree;
454 lang_output_section_statement_type *os;
455
456 os = (lang_output_section_statement_type *) output;
457
458 if (unique_section_p (section, os))
459 return;
460
461 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
462 node->left = 0;
463 node->right = 0;
464 node->section = section;
465
466 tree = wild_sort_fast (ptr, sec, file, section);
467 if (tree != NULL)
468 *tree = node;
469}
470
471/* Convert a sorted sections' BST back to list form. */
472
473static void
474output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
475 lang_section_bst_type *tree,
476 void *output)
477{
478 if (tree->left)
479 output_section_callback_tree_to_list (ptr, tree->left, output);
480
481 lang_add_section (&ptr->children, tree->section,
482 (lang_output_section_statement_type *) output);
483
484 if (tree->right)
485 output_section_callback_tree_to_list (ptr, tree->right, output);
486
487 free (tree);
488}
489
490/* Specialized, optimized routines for handling different kinds of
491 wildcards */
492
493static void
494walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
495 lang_input_statement_type *file,
496 callback_t callback,
497 void *data)
498{
499 /* We can just do a hash lookup for the section with the right name.
500 But if that lookup discovers more than one section with the name
501 (should be rare), we fall back to the general algorithm because
502 we would otherwise have to sort the sections to make sure they
503 get processed in the bfd's order. */
504 bfd_boolean multiple_sections_found;
505 struct wildcard_list *sec0 = ptr->handler_data[0];
506 asection *s0 = find_section (file, sec0, &multiple_sections_found);
507
508 if (multiple_sections_found)
509 walk_wild_section_general (ptr, file, callback, data);
510 else if (s0)
511 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
512}
513
514static void
515walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
516 lang_input_statement_type *file,
517 callback_t callback,
518 void *data)
519{
520 asection *s;
521 struct wildcard_list *wildsec0 = ptr->handler_data[0];
522
523 for (s = file->the_bfd->sections; s != NULL; s = s->next)
524 {
525 const char *sname = bfd_get_section_name (file->the_bfd, s);
526 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
527
528 if (!skip)
529 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
530 }
531}
532
533static void
534walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
535 lang_input_statement_type *file,
536 callback_t callback,
537 void *data)
538{
539 asection *s;
540 struct wildcard_list *sec0 = ptr->handler_data[0];
541 struct wildcard_list *wildsec1 = ptr->handler_data[1];
542 bfd_boolean multiple_sections_found;
543 asection *s0 = find_section (file, sec0, &multiple_sections_found);
544
545 if (multiple_sections_found)
546 {
547 walk_wild_section_general (ptr, file, callback, data);
548 return;
549 }
550
551 /* Note that if the section was not found, s0 is NULL and
552 we'll simply never succeed the s == s0 test below. */
553 for (s = file->the_bfd->sections; s != NULL; s = s->next)
554 {
555 /* Recall that in this code path, a section cannot satisfy more
556 than one spec, so if s == s0 then it cannot match
557 wildspec1. */
558 if (s == s0)
559 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
560 else
561 {
562 const char *sname = bfd_get_section_name (file->the_bfd, s);
563 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
564
565 if (!skip)
566 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
567 data);
568 }
569 }
570}
571
572static void
573walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
574 lang_input_statement_type *file,
575 callback_t callback,
576 void *data)
577{
578 asection *s;
579 struct wildcard_list *sec0 = ptr->handler_data[0];
580 struct wildcard_list *wildsec1 = ptr->handler_data[1];
581 struct wildcard_list *wildsec2 = ptr->handler_data[2];
582 bfd_boolean multiple_sections_found;
583 asection *s0 = find_section (file, sec0, &multiple_sections_found);
584
585 if (multiple_sections_found)
586 {
587 walk_wild_section_general (ptr, file, callback, data);
588 return;
589 }
590
591 for (s = file->the_bfd->sections; s != NULL; s = s->next)
592 {
593 if (s == s0)
594 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
595 else
596 {
597 const char *sname = bfd_get_section_name (file->the_bfd, s);
598 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
599
600 if (!skip)
601 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
602 else
603 {
604 skip = !match_simple_wild (wildsec2->spec.name, sname);
605 if (!skip)
606 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
607 data);
608 }
609 }
610 }
611}
612
613static void
614walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
615 lang_input_statement_type *file,
616 callback_t callback,
617 void *data)
618{
619 asection *s;
620 struct wildcard_list *sec0 = ptr->handler_data[0];
621 struct wildcard_list *sec1 = ptr->handler_data[1];
622 struct wildcard_list *wildsec2 = ptr->handler_data[2];
623 struct wildcard_list *wildsec3 = ptr->handler_data[3];
624 bfd_boolean multiple_sections_found;
625 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
626
627 if (multiple_sections_found)
628 {
629 walk_wild_section_general (ptr, file, callback, data);
630 return;
631 }
632
633 s1 = find_section (file, sec1, &multiple_sections_found);
634 if (multiple_sections_found)
635 {
636 walk_wild_section_general (ptr, file, callback, data);
637 return;
638 }
639
640 for (s = file->the_bfd->sections; s != NULL; s = s->next)
641 {
642 if (s == s0)
643 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
644 else
645 if (s == s1)
646 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
647 else
648 {
649 const char *sname = bfd_get_section_name (file->the_bfd, s);
650 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
651 sname);
652
653 if (!skip)
654 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
655 data);
656 else
657 {
658 skip = !match_simple_wild (wildsec3->spec.name, sname);
659 if (!skip)
660 walk_wild_consider_section (ptr, file, s, wildsec3,
661 callback, data);
662 }
663 }
664 }
665}
666
667static void
668walk_wild_section (lang_wild_statement_type *ptr,
669 lang_input_statement_type *file,
670 callback_t callback,
671 void *data)
672{
673 if (file->just_syms_flag)
674 return;
675
676 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
677}
678
679/* Returns TRUE when name1 is a wildcard spec that might match
680 something name2 can match. We're conservative: we return FALSE
681 only if the prefixes of name1 and name2 are different up to the
682 first wildcard character. */
683
684static bfd_boolean
685wild_spec_can_overlap (const char *name1, const char *name2)
686{
687 size_t prefix1_len = strcspn (name1, "?*[");
688 size_t prefix2_len = strcspn (name2, "?*[");
689 size_t min_prefix_len;
690
691 /* Note that if there is no wildcard character, then we treat the
692 terminating 0 as part of the prefix. Thus ".text" won't match
693 ".text." or ".text.*", for example. */
694 if (name1[prefix1_len] == '\0')
695 prefix1_len++;
696 if (name2[prefix2_len] == '\0')
697 prefix2_len++;
698
699 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
700
701 return memcmp (name1, name2, min_prefix_len) == 0;
702}
703
704/* Select specialized code to handle various kinds of wildcard
705 statements. */
706
707static void
708analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
709{
710 int sec_count = 0;
711 int wild_name_count = 0;
712 struct wildcard_list *sec;
713 int signature;
714 int data_counter;
715
716 ptr->walk_wild_section_handler = walk_wild_section_general;
717 ptr->handler_data[0] = NULL;
718 ptr->handler_data[1] = NULL;
719 ptr->handler_data[2] = NULL;
720 ptr->handler_data[3] = NULL;
721 ptr->tree = NULL;
722
723 /* Count how many wildcard_specs there are, and how many of those
724 actually use wildcards in the name. Also, bail out if any of the
725 wildcard names are NULL. (Can this actually happen?
726 walk_wild_section used to test for it.) And bail out if any
727 of the wildcards are more complex than a simple string
728 ending in a single '*'. */
729 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
730 {
731 ++sec_count;
732 if (sec->spec.name == NULL)
733 return;
734 if (wildcardp (sec->spec.name))
735 {
736 ++wild_name_count;
737 if (!is_simple_wild (sec->spec.name))
738 return;
739 }
740 }
741
742 /* The zero-spec case would be easy to optimize but it doesn't
743 happen in practice. Likewise, more than 4 specs doesn't
744 happen in practice. */
745 if (sec_count == 0 || sec_count > 4)
746 return;
747
748 /* Check that no two specs can match the same section. */
749 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
750 {
751 struct wildcard_list *sec2;
752 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
753 {
754 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
755 return;
756 }
757 }
758
759 signature = (sec_count << 8) + wild_name_count;
760 switch (signature)
761 {
762 case 0x0100:
763 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
764 break;
765 case 0x0101:
766 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
767 break;
768 case 0x0201:
769 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
770 break;
771 case 0x0302:
772 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
773 break;
774 case 0x0402:
775 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
776 break;
777 default:
778 return;
779 }
780
781 /* Now fill the data array with pointers to the specs, first the
782 specs with non-wildcard names, then the specs with wildcard
783 names. It's OK to process the specs in different order from the
784 given order, because we've already determined that no section
785 will match more than one spec. */
786 data_counter = 0;
787 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
788 if (!wildcardp (sec->spec.name))
789 ptr->handler_data[data_counter++] = sec;
790 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
791 if (wildcardp (sec->spec.name))
792 ptr->handler_data[data_counter++] = sec;
793}
794
795/* Handle a wild statement for a single file F. */
796
797static void
798walk_wild_file (lang_wild_statement_type *s,
799 lang_input_statement_type *f,
800 callback_t callback,
801 void *data)
802{
803 if (f->the_bfd == NULL
804 || ! bfd_check_format (f->the_bfd, bfd_archive))
805 walk_wild_section (s, f, callback, data);
806 else
807 {
808 bfd *member;
809
810 /* This is an archive file. We must map each member of the
811 archive separately. */
812 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
813 while (member != NULL)
814 {
815 /* When lookup_name is called, it will call the add_symbols
816 entry point for the archive. For each element of the
817 archive which is included, BFD will call ldlang_add_file,
818 which will set the usrdata field of the member to the
819 lang_input_statement. */
820 if (member->usrdata != NULL)
821 {
822 walk_wild_section (s,
823 (lang_input_statement_type *) member->usrdata,
824 callback, data);
825 }
826
827 member = bfd_openr_next_archived_file (f->the_bfd, member);
828 }
829 }
830}
831
832static void
833walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
834{
835 const char *file_spec = s->filename;
836 char *p;
837
838 if (file_spec == NULL)
839 {
840 /* Perform the iteration over all files in the list. */
841 LANG_FOR_EACH_INPUT_STATEMENT (f)
842 {
843 walk_wild_file (s, f, callback, data);
844 }
845 }
846 else if ((p = archive_path (file_spec)) != NULL)
847 {
848 LANG_FOR_EACH_INPUT_STATEMENT (f)
849 {
850 if (input_statement_is_archive_path (file_spec, p, f))
851 walk_wild_file (s, f, callback, data);
852 }
853 }
854 else if (wildcardp (file_spec))
855 {
856 LANG_FOR_EACH_INPUT_STATEMENT (f)
857 {
858 if (fnmatch (file_spec, f->filename, 0) == 0)
859 walk_wild_file (s, f, callback, data);
860 }
861 }
862 else
863 {
864 lang_input_statement_type *f;
865
866 /* Perform the iteration over a single file. */
867 f = lookup_name (file_spec);
868 if (f)
869 walk_wild_file (s, f, callback, data);
870 }
871}
872
873/* lang_for_each_statement walks the parse tree and calls the provided
874 function for each node. */
875
876static void
877lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
878 lang_statement_union_type *s)
879{
880 for (; s != NULL; s = s->header.next)
881 {
882 func (s);
883
884 switch (s->header.type)
885 {
886 case lang_constructors_statement_enum:
887 lang_for_each_statement_worker (func, constructor_list.head);
888 break;
889 case lang_output_section_statement_enum:
890 lang_for_each_statement_worker
891 (func, s->output_section_statement.children.head);
892 break;
893 case lang_wild_statement_enum:
894 lang_for_each_statement_worker (func,
895 s->wild_statement.children.head);
896 break;
897 case lang_group_statement_enum:
898 lang_for_each_statement_worker (func,
899 s->group_statement.children.head);
900 break;
901 case lang_data_statement_enum:
902 case lang_reloc_statement_enum:
903 case lang_object_symbols_statement_enum:
904 case lang_output_statement_enum:
905 case lang_target_statement_enum:
906 case lang_input_section_enum:
907 case lang_input_statement_enum:
908 case lang_assignment_statement_enum:
909 case lang_padding_statement_enum:
910 case lang_address_statement_enum:
911 case lang_fill_statement_enum:
912 case lang_insert_statement_enum:
913 break;
914 default:
915 FAIL ();
916 break;
917 }
918 }
919}
920
921void
922lang_for_each_statement (void (*func) (lang_statement_union_type *))
923{
924 lang_for_each_statement_worker (func, statement_list.head);
925}
926
927/*----------------------------------------------------------------------*/
928
929void
930lang_list_init (lang_statement_list_type *list)
931{
932 list->head = NULL;
933 list->tail = &list->head;
934}
935
936void
937push_stat_ptr (lang_statement_list_type *new_ptr)
938{
939 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
940 abort ();
941 *stat_save_ptr++ = stat_ptr;
942 stat_ptr = new_ptr;
943}
944
945void
946pop_stat_ptr (void)
947{
948 if (stat_save_ptr <= stat_save)
949 abort ();
950 stat_ptr = *--stat_save_ptr;
951}
952
953/* Build a new statement node for the parse tree. */
954
955static lang_statement_union_type *
956new_statement (enum statement_enum type,
957 size_t size,
958 lang_statement_list_type *list)
959{
960 lang_statement_union_type *new_stmt;
961
962 new_stmt = (lang_statement_union_type *) stat_alloc (size);
963 new_stmt->header.type = type;
964 new_stmt->header.next = NULL;
965 lang_statement_append (list, new_stmt, &new_stmt->header.next);
966 return new_stmt;
967}
968
969/* Build a new input file node for the language. There are several
970 ways in which we treat an input file, eg, we only look at symbols,
971 or prefix it with a -l etc.
972
973 We can be supplied with requests for input files more than once;
974 they may, for example be split over several lines like foo.o(.text)
975 foo.o(.data) etc, so when asked for a file we check that we haven't
976 got it already so we don't duplicate the bfd. */
977
978static lang_input_statement_type *
979new_afile (const char *name,
980 lang_input_file_enum_type file_type,
981 const char *target,
982 bfd_boolean add_to_list)
983{
984 lang_input_statement_type *p;
985
986 if (add_to_list)
987 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
988 else
989 {
990 p = (lang_input_statement_type *)
991 stat_alloc (sizeof (lang_input_statement_type));
992 p->header.type = lang_input_statement_enum;
993 p->header.next = NULL;
994 }
995
996 lang_has_input_file = TRUE;
997 p->target = target;
998 p->sysrooted = FALSE;
999
1000 if (file_type == lang_input_file_is_l_enum
1001 && name[0] == ':' && name[1] != '\0')
1002 {
1003 file_type = lang_input_file_is_search_file_enum;
1004 name = name + 1;
1005 }
1006
1007 switch (file_type)
1008 {
1009 case lang_input_file_is_symbols_only_enum:
1010 p->filename = name;
1011 p->is_archive = FALSE;
1012 p->real = TRUE;
1013 p->local_sym_name = name;
1014 p->just_syms_flag = TRUE;
1015 p->search_dirs_flag = FALSE;
1016 break;
1017 case lang_input_file_is_fake_enum:
1018 p->filename = name;
1019 p->is_archive = FALSE;
1020 p->real = FALSE;
1021 p->local_sym_name = name;
1022 p->just_syms_flag = FALSE;
1023 p->search_dirs_flag = FALSE;
1024 break;
1025 case lang_input_file_is_l_enum:
1026 p->is_archive = TRUE;
1027 p->filename = name;
1028 p->real = TRUE;
1029 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1030 p->just_syms_flag = FALSE;
1031 p->search_dirs_flag = TRUE;
1032 break;
1033 case lang_input_file_is_marker_enum:
1034 p->filename = name;
1035 p->is_archive = FALSE;
1036 p->real = FALSE;
1037 p->local_sym_name = name;
1038 p->just_syms_flag = FALSE;
1039 p->search_dirs_flag = TRUE;
1040 break;
1041 case lang_input_file_is_search_file_enum:
1042 p->sysrooted = ldlang_sysrooted_script;
1043 p->filename = name;
1044 p->is_archive = FALSE;
1045 p->real = TRUE;
1046 p->local_sym_name = name;
1047 p->just_syms_flag = FALSE;
1048 p->search_dirs_flag = TRUE;
1049 break;
1050 case lang_input_file_is_file_enum:
1051 p->filename = name;
1052 p->is_archive = FALSE;
1053 p->real = TRUE;
1054 p->local_sym_name = name;
1055 p->just_syms_flag = FALSE;
1056 p->search_dirs_flag = FALSE;
1057 break;
1058 default:
1059 FAIL ();
1060 }
1061 p->the_bfd = NULL;
1062 p->next_real_file = NULL;
1063 p->next = NULL;
1064 p->dynamic = config.dynamic_link;
1065 p->add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
1066 p->add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
1067 p->whole_archive = whole_archive;
1068 p->loaded = FALSE;
1069 p->missing_file = FALSE;
1070
1071 lang_statement_append (&input_file_chain,
1072 (lang_statement_union_type *) p,
1073 &p->next_real_file);
1074 return p;
1075}
1076
1077lang_input_statement_type *
1078lang_add_input_file (const char *name,
1079 lang_input_file_enum_type file_type,
1080 const char *target)
1081{
1082 return new_afile (name, file_type, target, TRUE);
1083}
1084
1085struct out_section_hash_entry
1086{
1087 struct bfd_hash_entry root;
1088 lang_statement_union_type s;
1089};
1090
1091/* The hash table. */
1092
1093static struct bfd_hash_table output_section_statement_table;
1094
1095/* Support routines for the hash table used by lang_output_section_find,
1096 initialize the table, fill in an entry and remove the table. */
1097
1098static struct bfd_hash_entry *
1099output_section_statement_newfunc (struct bfd_hash_entry *entry,
1100 struct bfd_hash_table *table,
1101 const char *string)
1102{
1103 lang_output_section_statement_type **nextp;
1104 struct out_section_hash_entry *ret;
1105
1106 if (entry == NULL)
1107 {
1108 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1109 sizeof (*ret));
1110 if (entry == NULL)
1111 return entry;
1112 }
1113
1114 entry = bfd_hash_newfunc (entry, table, string);
1115 if (entry == NULL)
1116 return entry;
1117
1118 ret = (struct out_section_hash_entry *) entry;
1119 memset (&ret->s, 0, sizeof (ret->s));
1120 ret->s.header.type = lang_output_section_statement_enum;
1121 ret->s.output_section_statement.subsection_alignment = -1;
1122 ret->s.output_section_statement.section_alignment = -1;
1123 ret->s.output_section_statement.block_value = 1;
1124 lang_list_init (&ret->s.output_section_statement.children);
1125 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1126
1127 /* For every output section statement added to the list, except the
1128 first one, lang_output_section_statement.tail points to the "next"
1129 field of the last element of the list. */
1130 if (lang_output_section_statement.head != NULL)
1131 ret->s.output_section_statement.prev
1132 = ((lang_output_section_statement_type *)
1133 ((char *) lang_output_section_statement.tail
1134 - offsetof (lang_output_section_statement_type, next)));
1135
1136 /* GCC's strict aliasing rules prevent us from just casting the
1137 address, so we store the pointer in a variable and cast that
1138 instead. */
1139 nextp = &ret->s.output_section_statement.next;
1140 lang_statement_append (&lang_output_section_statement,
1141 &ret->s,
1142 (lang_statement_union_type **) nextp);
1143 return &ret->root;
1144}
1145
1146static void
1147output_section_statement_table_init (void)
1148{
1149 if (!bfd_hash_table_init_n (&output_section_statement_table,
1150 output_section_statement_newfunc,
1151 sizeof (struct out_section_hash_entry),
1152 61))
1153 einfo (_("%P%F: can not create hash table: %E\n"));
1154}
1155
1156static void
1157output_section_statement_table_free (void)
1158{
1159 bfd_hash_table_free (&output_section_statement_table);
1160}
1161
1162/* Build enough state so that the parser can build its tree. */
1163
1164void
1165lang_init (void)
1166{
1167 obstack_begin (&stat_obstack, 1000);
1168
1169 stat_ptr = &statement_list;
1170
1171 output_section_statement_table_init ();
1172
1173 lang_list_init (stat_ptr);
1174
1175 lang_list_init (&input_file_chain);
1176 lang_list_init (&lang_output_section_statement);
1177 lang_list_init (&file_chain);
1178 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1179 NULL);
1180 abs_output_section =
1181 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1182
1183 abs_output_section->bfd_section = bfd_abs_section_ptr;
1184
1185 /* The value "3" is ad-hoc, somewhat related to the expected number of
1186 DEFINED expressions in a linker script. For most default linker
1187 scripts, there are none. Why a hash table then? Well, it's somewhat
1188 simpler to re-use working machinery than using a linked list in terms
1189 of code-complexity here in ld, besides the initialization which just
1190 looks like other code here. */
1191 if (!bfd_hash_table_init_n (&lang_definedness_table,
1192 lang_definedness_newfunc,
1193 sizeof (struct lang_definedness_hash_entry),
1194 3))
1195 einfo (_("%P%F: can not create hash table: %E\n"));
1196}
1197
1198void
1199lang_finish (void)
1200{
1201 output_section_statement_table_free ();
1202}
1203
1204/*----------------------------------------------------------------------
1205 A region is an area of memory declared with the
1206 MEMORY { name:org=exp, len=exp ... }
1207 syntax.
1208
1209 We maintain a list of all the regions here.
1210
1211 If no regions are specified in the script, then the default is used
1212 which is created when looked up to be the entire data space.
1213
1214 If create is true we are creating a region inside a MEMORY block.
1215 In this case it is probably an error to create a region that has
1216 already been created. If we are not inside a MEMORY block it is
1217 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1218 and so we issue a warning.
1219
1220 Each region has at least one name. The first name is either
1221 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1222 alias names to an existing region within a script with
1223 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1224 region. */
1225
1226static lang_memory_region_type *lang_memory_region_list;
1227static lang_memory_region_type **lang_memory_region_list_tail
1228 = &lang_memory_region_list;
1229
1230lang_memory_region_type *
1231lang_memory_region_lookup (const char *const name, bfd_boolean create)
1232{
1233 lang_memory_region_name *n;
1234 lang_memory_region_type *r;
1235 lang_memory_region_type *new_region;
1236
1237 /* NAME is NULL for LMA memspecs if no region was specified. */
1238 if (name == NULL)
1239 return NULL;
1240
1241 for (r = lang_memory_region_list; r != NULL; r = r->next)
1242 for (n = &r->name_list; n != NULL; n = n->next)
1243 if (strcmp (n->name, name) == 0)
1244 {
1245 if (create)
1246 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1247 name);
1248 return r;
1249 }
1250
1251 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1252 einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name);
1253
1254 new_region = (lang_memory_region_type *)
1255 stat_alloc (sizeof (lang_memory_region_type));
1256
1257 new_region->name_list.name = xstrdup (name);
1258 new_region->name_list.next = NULL;
1259 new_region->next = NULL;
1260 new_region->origin = 0;
1261 new_region->length = ~(bfd_size_type) 0;
1262 new_region->current = 0;
1263 new_region->last_os = NULL;
1264 new_region->flags = 0;
1265 new_region->not_flags = 0;
1266 new_region->had_full_message = FALSE;
1267
1268 *lang_memory_region_list_tail = new_region;
1269 lang_memory_region_list_tail = &new_region->next;
1270
1271 return new_region;
1272}
1273
1274void
1275lang_memory_region_alias (const char * alias, const char * region_name)
1276{
1277 lang_memory_region_name * n;
1278 lang_memory_region_type * r;
1279 lang_memory_region_type * region;
1280
1281 /* The default region must be unique. This ensures that it is not necessary
1282 to iterate through the name list if someone wants the check if a region is
1283 the default memory region. */
1284 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1285 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1286 einfo (_("%F%P:%S: error: alias for default memory region\n"));
1287
1288 /* Look for the target region and check if the alias is not already
1289 in use. */
1290 region = NULL;
1291 for (r = lang_memory_region_list; r != NULL; r = r->next)
1292 for (n = &r->name_list; n != NULL; n = n->next)
1293 {
1294 if (region == NULL && strcmp (n->name, region_name) == 0)
1295 region = r;
1296 if (strcmp (n->name, alias) == 0)
1297 einfo (_("%F%P:%S: error: redefinition of memory region "
1298 "alias `%s'\n"),
1299 alias);
1300 }
1301
1302 /* Check if the target region exists. */
1303 if (region == NULL)
1304 einfo (_("%F%P:%S: error: memory region `%s' "
1305 "for alias `%s' does not exist\n"),
1306 region_name,
1307 alias);
1308
1309 /* Add alias to region name list. */
1310 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1311 n->name = xstrdup (alias);
1312 n->next = region->name_list.next;
1313 region->name_list.next = n;
1314}
1315
1316static lang_memory_region_type *
1317lang_memory_default (asection * section)
1318{
1319 lang_memory_region_type *p;
1320
1321 flagword sec_flags = section->flags;
1322
1323 /* Override SEC_DATA to mean a writable section. */
1324 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1325 sec_flags |= SEC_DATA;
1326
1327 for (p = lang_memory_region_list; p != NULL; p = p->next)
1328 {
1329 if ((p->flags & sec_flags) != 0
1330 && (p->not_flags & sec_flags) == 0)
1331 {
1332 return p;
1333 }
1334 }
1335 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1336}
1337
1338/* Find or create an output_section_statement with the given NAME.
1339 If CONSTRAINT is non-zero match one with that constraint, otherwise
1340 match any non-negative constraint. If CREATE, always make a
1341 new output_section_statement for SPECIAL CONSTRAINT. */
1342
1343lang_output_section_statement_type *
1344lang_output_section_statement_lookup (const char *name,
1345 int constraint,
1346 bfd_boolean create)
1347{
1348 struct out_section_hash_entry *entry;
1349
1350 entry = ((struct out_section_hash_entry *)
1351 bfd_hash_lookup (&output_section_statement_table, name,
1352 create, FALSE));
1353 if (entry == NULL)
1354 {
1355 if (create)
1356 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1357 return NULL;
1358 }
1359
1360 if (entry->s.output_section_statement.name != NULL)
1361 {
1362 /* We have a section of this name, but it might not have the correct
1363 constraint. */
1364 struct out_section_hash_entry *last_ent;
1365
1366 name = entry->s.output_section_statement.name;
1367 if (create && constraint == SPECIAL)
1368 /* Not traversing to the end reverses the order of the second
1369 and subsequent SPECIAL sections in the hash table chain,
1370 but that shouldn't matter. */
1371 last_ent = entry;
1372 else
1373 do
1374 {
1375 if (constraint == entry->s.output_section_statement.constraint
1376 || (constraint == 0
1377 && entry->s.output_section_statement.constraint >= 0))
1378 return &entry->s.output_section_statement;
1379 last_ent = entry;
1380 entry = (struct out_section_hash_entry *) entry->root.next;
1381 }
1382 while (entry != NULL
1383 && name == entry->s.output_section_statement.name);
1384
1385 if (!create)
1386 return NULL;
1387
1388 entry
1389 = ((struct out_section_hash_entry *)
1390 output_section_statement_newfunc (NULL,
1391 &output_section_statement_table,
1392 name));
1393 if (entry == NULL)
1394 {
1395 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1396 return NULL;
1397 }
1398 entry->root = last_ent->root;
1399 last_ent->root.next = &entry->root;
1400 }
1401
1402 entry->s.output_section_statement.name = name;
1403 entry->s.output_section_statement.constraint = constraint;
1404 return &entry->s.output_section_statement;
1405}
1406
1407/* Find the next output_section_statement with the same name as OS.
1408 If CONSTRAINT is non-zero, find one with that constraint otherwise
1409 match any non-negative constraint. */
1410
1411lang_output_section_statement_type *
1412next_matching_output_section_statement (lang_output_section_statement_type *os,
1413 int constraint)
1414{
1415 /* All output_section_statements are actually part of a
1416 struct out_section_hash_entry. */
1417 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1418 ((char *) os
1419 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1420 const char *name = os->name;
1421
1422 ASSERT (name == entry->root.string);
1423 do
1424 {
1425 entry = (struct out_section_hash_entry *) entry->root.next;
1426 if (entry == NULL
1427 || name != entry->s.output_section_statement.name)
1428 return NULL;
1429 }
1430 while (constraint != entry->s.output_section_statement.constraint
1431 && (constraint != 0
1432 || entry->s.output_section_statement.constraint < 0));
1433
1434 return &entry->s.output_section_statement;
1435}
1436
1437/* A variant of lang_output_section_find used by place_orphan.
1438 Returns the output statement that should precede a new output
1439 statement for SEC. If an exact match is found on certain flags,
1440 sets *EXACT too. */
1441
1442lang_output_section_statement_type *
1443lang_output_section_find_by_flags (const asection *sec,
1444 lang_output_section_statement_type **exact,
1445 lang_match_sec_type_func match_type)
1446{
1447 lang_output_section_statement_type *first, *look, *found;
1448 flagword flags;
1449
1450 /* We know the first statement on this list is *ABS*. May as well
1451 skip it. */
1452 first = &lang_output_section_statement.head->output_section_statement;
1453 first = first->next;
1454
1455 /* First try for an exact match. */
1456 found = NULL;
1457 for (look = first; look; look = look->next)
1458 {
1459 flags = look->flags;
1460 if (look->bfd_section != NULL)
1461 {
1462 flags = look->bfd_section->flags;
1463 if (match_type && !match_type (link_info.output_bfd,
1464 look->bfd_section,
1465 sec->owner, sec))
1466 continue;
1467 }
1468 flags ^= sec->flags;
1469 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1470 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1471 found = look;
1472 }
1473 if (found != NULL)
1474 {
1475 if (exact != NULL)
1476 *exact = found;
1477 return found;
1478 }
1479
1480 if ((sec->flags & SEC_CODE) != 0
1481 && (sec->flags & SEC_ALLOC) != 0)
1482 {
1483 /* Try for a rw code section. */
1484 for (look = first; look; look = look->next)
1485 {
1486 flags = look->flags;
1487 if (look->bfd_section != NULL)
1488 {
1489 flags = look->bfd_section->flags;
1490 if (match_type && !match_type (link_info.output_bfd,
1491 look->bfd_section,
1492 sec->owner, sec))
1493 continue;
1494 }
1495 flags ^= sec->flags;
1496 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1497 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1498 found = look;
1499 }
1500 }
1501 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1502 && (sec->flags & SEC_ALLOC) != 0)
1503 {
1504 /* .rodata can go after .text, .sdata2 after .rodata. */
1505 for (look = first; look; look = look->next)
1506 {
1507 flags = look->flags;
1508 if (look->bfd_section != NULL)
1509 {
1510 flags = look->bfd_section->flags;
1511 if (match_type && !match_type (link_info.output_bfd,
1512 look->bfd_section,
1513 sec->owner, sec))
1514 continue;
1515 }
1516 flags ^= sec->flags;
1517 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1518 | SEC_READONLY))
1519 && !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1520 found = look;
1521 }
1522 }
1523 else if ((sec->flags & SEC_SMALL_DATA) != 0
1524 && (sec->flags & SEC_ALLOC) != 0)
1525 {
1526 /* .sdata goes after .data, .sbss after .sdata. */
1527 for (look = first; look; look = look->next)
1528 {
1529 flags = look->flags;
1530 if (look->bfd_section != NULL)
1531 {
1532 flags = look->bfd_section->flags;
1533 if (match_type && !match_type (link_info.output_bfd,
1534 look->bfd_section,
1535 sec->owner, sec))
1536 continue;
1537 }
1538 flags ^= sec->flags;
1539 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1540 | SEC_THREAD_LOCAL))
1541 || ((look->flags & SEC_SMALL_DATA)
1542 && !(sec->flags & SEC_HAS_CONTENTS)))
1543 found = look;
1544 }
1545 }
1546 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1547 && (sec->flags & SEC_ALLOC) != 0)
1548 {
1549 /* .data goes after .rodata. */
1550 for (look = first; look; look = look->next)
1551 {
1552 flags = look->flags;
1553 if (look->bfd_section != NULL)
1554 {
1555 flags = look->bfd_section->flags;
1556 if (match_type && !match_type (link_info.output_bfd,
1557 look->bfd_section,
1558 sec->owner, sec))
1559 continue;
1560 }
1561 flags ^= sec->flags;
1562 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1563 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1564 found = look;
1565 }
1566 }
1567 else if ((sec->flags & SEC_ALLOC) != 0)
1568 {
1569 /* .bss goes after any other alloc section. */
1570 for (look = first; look; look = look->next)
1571 {
1572 flags = look->flags;
1573 if (look->bfd_section != NULL)
1574 {
1575 flags = look->bfd_section->flags;
1576 if (match_type && !match_type (link_info.output_bfd,
1577 look->bfd_section,
1578 sec->owner, sec))
1579 continue;
1580 }
1581 flags ^= sec->flags;
1582 if (!(flags & SEC_ALLOC))
1583 found = look;
1584 }
1585 }
1586 else
1587 {
1588 /* non-alloc go last. */
1589 for (look = first; look; look = look->next)
1590 {
1591 flags = look->flags;
1592 if (look->bfd_section != NULL)
1593 flags = look->bfd_section->flags;
1594 flags ^= sec->flags;
1595 if (!(flags & SEC_DEBUGGING))
1596 found = look;
1597 }
1598 return found;
1599 }
1600
1601 if (found || !match_type)
1602 return found;
1603
1604 return lang_output_section_find_by_flags (sec, NULL, NULL);
1605}
1606
1607/* Find the last output section before given output statement.
1608 Used by place_orphan. */
1609
1610static asection *
1611output_prev_sec_find (lang_output_section_statement_type *os)
1612{
1613 lang_output_section_statement_type *lookup;
1614
1615 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1616 {
1617 if (lookup->constraint < 0)
1618 continue;
1619
1620 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1621 return lookup->bfd_section;
1622 }
1623
1624 return NULL;
1625}
1626
1627/* Look for a suitable place for a new output section statement. The
1628 idea is to skip over anything that might be inside a SECTIONS {}
1629 statement in a script, before we find another output section
1630 statement. Assignments to "dot" before an output section statement
1631 are assumed to belong to it, except in two cases; The first
1632 assignment to dot, and assignments before non-alloc sections.
1633 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1634 similar assignments that set the initial address, or we might
1635 insert non-alloc note sections among assignments setting end of
1636 image symbols. */
1637
1638static lang_statement_union_type **
1639insert_os_after (lang_output_section_statement_type *after)
1640{
1641 lang_statement_union_type **where;
1642 lang_statement_union_type **assign = NULL;
1643 bfd_boolean ignore_first;
1644
1645 ignore_first
1646 = after == &lang_output_section_statement.head->output_section_statement;
1647
1648 for (where = &after->header.next;
1649 *where != NULL;
1650 where = &(*where)->header.next)
1651 {
1652 switch ((*where)->header.type)
1653 {
1654 case lang_assignment_statement_enum:
1655 if (assign == NULL)
1656 {
1657 lang_assignment_statement_type *ass;
1658
1659 ass = &(*where)->assignment_statement;
1660 if (ass->exp->type.node_class != etree_assert
1661 && ass->exp->assign.dst[0] == '.'
1662 && ass->exp->assign.dst[1] == 0
1663 && !ignore_first)
1664 assign = where;
1665 }
1666 ignore_first = FALSE;
1667 continue;
1668 case lang_wild_statement_enum:
1669 case lang_input_section_enum:
1670 case lang_object_symbols_statement_enum:
1671 case lang_fill_statement_enum:
1672 case lang_data_statement_enum:
1673 case lang_reloc_statement_enum:
1674 case lang_padding_statement_enum:
1675 case lang_constructors_statement_enum:
1676 assign = NULL;
1677 continue;
1678 case lang_output_section_statement_enum:
1679 if (assign != NULL)
1680 {
1681 asection *s = (*where)->output_section_statement.bfd_section;
1682
1683 if (s == NULL
1684 || s->map_head.s == NULL
1685 || (s->flags & SEC_ALLOC) != 0)
1686 where = assign;
1687 }
1688 break;
1689 case lang_input_statement_enum:
1690 case lang_address_statement_enum:
1691 case lang_target_statement_enum:
1692 case lang_output_statement_enum:
1693 case lang_group_statement_enum:
1694 case lang_insert_statement_enum:
1695 continue;
1696 }
1697 break;
1698 }
1699
1700 return where;
1701}
1702
1703lang_output_section_statement_type *
1704lang_insert_orphan (asection *s,
1705 const char *secname,
1706 int constraint,
1707 lang_output_section_statement_type *after,
1708 struct orphan_save *place,
1709 etree_type *address,
1710 lang_statement_list_type *add_child)
1711{
1712 lang_statement_list_type add;
1713 const char *ps;
1714 lang_output_section_statement_type *os;
1715 lang_output_section_statement_type **os_tail;
1716
1717 /* If we have found an appropriate place for the output section
1718 statements for this orphan, add them to our own private list,
1719 inserting them later into the global statement list. */
1720 if (after != NULL)
1721 {
1722 lang_list_init (&add);
1723 push_stat_ptr (&add);
1724 }
1725
1726 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1727 address = exp_intop (0);
1728
1729 os_tail = ((lang_output_section_statement_type **)
1730 lang_output_section_statement.tail);
1731 os = lang_enter_output_section_statement (secname, address, normal_section,
1732 NULL, NULL, NULL, constraint);
1733
1734 ps = NULL;
1735 if (config.build_constructors && *os_tail == os)
1736 {
1737 /* If the name of the section is representable in C, then create
1738 symbols to mark the start and the end of the section. */
1739 for (ps = secname; *ps != '\0'; ps++)
1740 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1741 break;
1742 if (*ps == '\0')
1743 {
1744 char *symname;
1745 etree_type *e_align;
1746
1747 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1748 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1749 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1750 e_align = exp_unop (ALIGN_K,
1751 exp_intop ((bfd_vma) 1 << s->alignment_power));
1752 lang_add_assignment (exp_assop ('=', ".", e_align));
1753 lang_add_assignment (exp_provide (symname,
1754 exp_unop (ABSOLUTE,
1755 exp_nameop (NAME, ".")),
1756 FALSE));
1757 }
1758 }
1759
1760 if (add_child == NULL)
1761 add_child = &os->children;
1762 lang_add_section (add_child, s, os);
1763
1764 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1765 {
1766 const char *region = (after->region
1767 ? after->region->name_list.name
1768 : DEFAULT_MEMORY_REGION);
1769 const char *lma_region = (after->lma_region
1770 ? after->lma_region->name_list.name
1771 : NULL);
1772 lang_leave_output_section_statement (NULL, region, after->phdrs,
1773 lma_region);
1774 }
1775 else
1776 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1777 NULL);
1778
1779 if (ps != NULL && *ps == '\0')
1780 {
1781 char *symname;
1782
1783 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1784 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1785 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1786 lang_add_assignment (exp_provide (symname,
1787 exp_nameop (NAME, "."),
1788 FALSE));
1789 }
1790
1791 /* Restore the global list pointer. */
1792 if (after != NULL)
1793 pop_stat_ptr ();
1794
1795 if (after != NULL && os->bfd_section != NULL)
1796 {
1797 asection *snew, *as;
1798
1799 snew = os->bfd_section;
1800
1801 /* Shuffle the bfd section list to make the output file look
1802 neater. This is really only cosmetic. */
1803 if (place->section == NULL
1804 && after != (&lang_output_section_statement.head
1805 ->output_section_statement))
1806 {
1807 asection *bfd_section = after->bfd_section;
1808
1809 /* If the output statement hasn't been used to place any input
1810 sections (and thus doesn't have an output bfd_section),
1811 look for the closest prior output statement having an
1812 output section. */
1813 if (bfd_section == NULL)
1814 bfd_section = output_prev_sec_find (after);
1815
1816 if (bfd_section != NULL && bfd_section != snew)
1817 place->section = &bfd_section->next;
1818 }
1819
1820 if (place->section == NULL)
1821 place->section = &link_info.output_bfd->sections;
1822
1823 as = *place->section;
1824
1825 if (!as)
1826 {
1827 /* Put the section at the end of the list. */
1828
1829 /* Unlink the section. */
1830 bfd_section_list_remove (link_info.output_bfd, snew);
1831
1832 /* Now tack it back on in the right place. */
1833 bfd_section_list_append (link_info.output_bfd, snew);
1834 }
1835 else if (as != snew && as->prev != snew)
1836 {
1837 /* Unlink the section. */
1838 bfd_section_list_remove (link_info.output_bfd, snew);
1839
1840 /* Now tack it back on in the right place. */
1841 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1842 }
1843
1844 /* Save the end of this list. Further ophans of this type will
1845 follow the one we've just added. */
1846 place->section = &snew->next;
1847
1848 /* The following is non-cosmetic. We try to put the output
1849 statements in some sort of reasonable order here, because they
1850 determine the final load addresses of the orphan sections.
1851 In addition, placing output statements in the wrong order may
1852 require extra segments. For instance, given a typical
1853 situation of all read-only sections placed in one segment and
1854 following that a segment containing all the read-write
1855 sections, we wouldn't want to place an orphan read/write
1856 section before or amongst the read-only ones. */
1857 if (add.head != NULL)
1858 {
1859 lang_output_section_statement_type *newly_added_os;
1860
1861 if (place->stmt == NULL)
1862 {
1863 lang_statement_union_type **where = insert_os_after (after);
1864
1865 *add.tail = *where;
1866 *where = add.head;
1867
1868 place->os_tail = &after->next;
1869 }
1870 else
1871 {
1872 /* Put it after the last orphan statement we added. */
1873 *add.tail = *place->stmt;
1874 *place->stmt = add.head;
1875 }
1876
1877 /* Fix the global list pointer if we happened to tack our
1878 new list at the tail. */
1879 if (*stat_ptr->tail == add.head)
1880 stat_ptr->tail = add.tail;
1881
1882 /* Save the end of this list. */
1883 place->stmt = add.tail;
1884
1885 /* Do the same for the list of output section statements. */
1886 newly_added_os = *os_tail;
1887 *os_tail = NULL;
1888 newly_added_os->prev = (lang_output_section_statement_type *)
1889 ((char *) place->os_tail
1890 - offsetof (lang_output_section_statement_type, next));
1891 newly_added_os->next = *place->os_tail;
1892 if (newly_added_os->next != NULL)
1893 newly_added_os->next->prev = newly_added_os;
1894 *place->os_tail = newly_added_os;
1895 place->os_tail = &newly_added_os->next;
1896
1897 /* Fixing the global list pointer here is a little different.
1898 We added to the list in lang_enter_output_section_statement,
1899 trimmed off the new output_section_statment above when
1900 assigning *os_tail = NULL, but possibly added it back in
1901 the same place when assigning *place->os_tail. */
1902 if (*os_tail == NULL)
1903 lang_output_section_statement.tail
1904 = (lang_statement_union_type **) os_tail;
1905 }
1906 }
1907 return os;
1908}
1909
1910static void
1911lang_map_flags (flagword flag)
1912{
1913 if (flag & SEC_ALLOC)
1914 minfo ("a");
1915
1916 if (flag & SEC_CODE)
1917 minfo ("x");
1918
1919 if (flag & SEC_READONLY)
1920 minfo ("r");
1921
1922 if (flag & SEC_DATA)
1923 minfo ("w");
1924
1925 if (flag & SEC_LOAD)
1926 minfo ("l");
1927}
1928
1929void
1930lang_map (void)
1931{
1932 lang_memory_region_type *m;
1933 bfd_boolean dis_header_printed = FALSE;
1934 bfd *p;
1935
1936 LANG_FOR_EACH_INPUT_STATEMENT (file)
1937 {
1938 asection *s;
1939
1940 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
1941 || file->just_syms_flag)
1942 continue;
1943
1944 for (s = file->the_bfd->sections; s != NULL; s = s->next)
1945 if ((s->output_section == NULL
1946 || s->output_section->owner != link_info.output_bfd)
1947 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
1948 {
1949 if (! dis_header_printed)
1950 {
1951 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
1952 dis_header_printed = TRUE;
1953 }
1954
1955 print_input_section (s, TRUE);
1956 }
1957 }
1958
1959 minfo (_("\nMemory Configuration\n\n"));
1960 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
1961 _("Name"), _("Origin"), _("Length"), _("Attributes"));
1962
1963 for (m = lang_memory_region_list; m != NULL; m = m->next)
1964 {
1965 char buf[100];
1966 int len;
1967
1968 fprintf (config.map_file, "%-16s ", m->name_list.name);
1969
1970 sprintf_vma (buf, m->origin);
1971 minfo ("0x%s ", buf);
1972 len = strlen (buf);
1973 while (len < 16)
1974 {
1975 print_space ();
1976 ++len;
1977 }
1978
1979 minfo ("0x%V", m->length);
1980 if (m->flags || m->not_flags)
1981 {
1982#ifndef BFD64
1983 minfo (" ");
1984#endif
1985 if (m->flags)
1986 {
1987 print_space ();
1988 lang_map_flags (m->flags);
1989 }
1990
1991 if (m->not_flags)
1992 {
1993 minfo (" !");
1994 lang_map_flags (m->not_flags);
1995 }
1996 }
1997
1998 print_nl ();
1999 }
2000
2001 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2002
2003 if (! link_info.reduce_memory_overheads)
2004 {
2005 obstack_begin (&map_obstack, 1000);
2006 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
2007 bfd_map_over_sections (p, init_map_userdata, 0);
2008 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2009 }
2010 lang_statement_iteration ++;
2011 print_statements ();
2012}
2013
2014static void
2015init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2016 asection *sec,
2017 void *data ATTRIBUTE_UNUSED)
2018{
2019 fat_section_userdata_type *new_data
2020 = ((fat_section_userdata_type *) (stat_alloc
2021 (sizeof (fat_section_userdata_type))));
2022
2023 ASSERT (get_userdata (sec) == NULL);
2024 get_userdata (sec) = new_data;
2025 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2026 new_data->map_symbol_def_count = 0;
2027}
2028
2029static bfd_boolean
2030sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2031 void *info ATTRIBUTE_UNUSED)
2032{
2033 if (hash_entry->type == bfd_link_hash_defined
2034 || hash_entry->type == bfd_link_hash_defweak)
2035 {
2036 struct fat_user_section_struct *ud;
2037 struct map_symbol_def *def;
2038
2039 ud = (struct fat_user_section_struct *)
2040 get_userdata (hash_entry->u.def.section);
2041 if (! ud)
2042 {
2043 /* ??? What do we have to do to initialize this beforehand? */
2044 /* The first time we get here is bfd_abs_section... */
2045 init_map_userdata (0, hash_entry->u.def.section, 0);
2046 ud = (struct fat_user_section_struct *)
2047 get_userdata (hash_entry->u.def.section);
2048 }
2049 else if (!ud->map_symbol_def_tail)
2050 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2051
2052 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2053 def->entry = hash_entry;
2054 *(ud->map_symbol_def_tail) = def;
2055 ud->map_symbol_def_tail = &def->next;
2056 ud->map_symbol_def_count++;
2057 }
2058 return TRUE;
2059}
2060
2061/* Initialize an output section. */
2062
2063static void
2064init_os (lang_output_section_statement_type *s, flagword flags)
2065{
2066 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2067 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2068
2069 if (s->constraint != SPECIAL)
2070 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2071 if (s->bfd_section == NULL)
2072 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2073 s->name, flags);
2074 if (s->bfd_section == NULL)
2075 {
2076 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2077 link_info.output_bfd->xvec->name, s->name);
2078 }
2079 s->bfd_section->output_section = s->bfd_section;
2080 s->bfd_section->output_offset = 0;
2081
2082 if (!link_info.reduce_memory_overheads)
2083 {
2084 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2085 stat_alloc (sizeof (fat_section_userdata_type));
2086 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2087 get_userdata (s->bfd_section) = new_userdata;
2088 }
2089
2090 /* If there is a base address, make sure that any sections it might
2091 mention are initialized. */
2092 if (s->addr_tree != NULL)
2093 exp_init_os (s->addr_tree);
2094
2095 if (s->load_base != NULL)
2096 exp_init_os (s->load_base);
2097
2098 /* If supplied an alignment, set it. */
2099 if (s->section_alignment != -1)
2100 s->bfd_section->alignment_power = s->section_alignment;
2101}
2102
2103/* Make sure that all output sections mentioned in an expression are
2104 initialized. */
2105
2106static void
2107exp_init_os (etree_type *exp)
2108{
2109 switch (exp->type.node_class)
2110 {
2111 case etree_assign:
2112 case etree_provide:
2113 exp_init_os (exp->assign.src);
2114 break;
2115
2116 case etree_binary:
2117 exp_init_os (exp->binary.lhs);
2118 exp_init_os (exp->binary.rhs);
2119 break;
2120
2121 case etree_trinary:
2122 exp_init_os (exp->trinary.cond);
2123 exp_init_os (exp->trinary.lhs);
2124 exp_init_os (exp->trinary.rhs);
2125 break;
2126
2127 case etree_assert:
2128 exp_init_os (exp->assert_s.child);
2129 break;
2130
2131 case etree_unary:
2132 exp_init_os (exp->unary.child);
2133 break;
2134
2135 case etree_name:
2136 switch (exp->type.node_code)
2137 {
2138 case ADDR:
2139 case LOADADDR:
2140 case SIZEOF:
2141 {
2142 lang_output_section_statement_type *os;
2143
2144 os = lang_output_section_find (exp->name.name);
2145 if (os != NULL && os->bfd_section == NULL)
2146 init_os (os, 0);
2147 }
2148 }
2149 break;
2150
2151 default:
2152 break;
2153 }
2154}
2155\f
2156static void
2157section_already_linked (bfd *abfd, asection *sec, void *data)
2158{
2159 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2160
2161 /* If we are only reading symbols from this object, then we want to
2162 discard all sections. */
2163 if (entry->just_syms_flag)
2164 {
2165 bfd_link_just_syms (abfd, sec, &link_info);
2166 return;
2167 }
2168
2169 if (!(abfd->flags & DYNAMIC))
2170 bfd_section_already_linked (abfd, sec, &link_info);
2171}
2172\f
2173/* The wild routines.
2174
2175 These expand statements like *(.text) and foo.o to a list of
2176 explicit actions, like foo.o(.text), bar.o(.text) and
2177 foo.o(.text, .data). */
2178
2179/* Add SECTION to the output section OUTPUT. Do this by creating a
2180 lang_input_section statement which is placed at PTR. FILE is the
2181 input file which holds SECTION. */
2182
2183void
2184lang_add_section (lang_statement_list_type *ptr,
2185 asection *section,
2186 lang_output_section_statement_type *output)
2187{
2188 flagword flags = section->flags;
2189 bfd_boolean discard;
2190 lang_input_section_type *new_section;
2191
2192 /* Discard sections marked with SEC_EXCLUDE. */
2193 discard = (flags & SEC_EXCLUDE) != 0;
2194
2195 /* Discard input sections which are assigned to a section named
2196 DISCARD_SECTION_NAME. */
2197 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2198 discard = TRUE;
2199
2200 /* Discard debugging sections if we are stripping debugging
2201 information. */
2202 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2203 && (flags & SEC_DEBUGGING) != 0)
2204 discard = TRUE;
2205
2206 if (discard)
2207 {
2208 if (section->output_section == NULL)
2209 {
2210 /* This prevents future calls from assigning this section. */
2211 section->output_section = bfd_abs_section_ptr;
2212 }
2213 return;
2214 }
2215
2216 if (section->output_section != NULL)
2217 return;
2218
2219 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2220 to an output section, because we want to be able to include a
2221 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2222 section (I don't know why we want to do this, but we do).
2223 build_link_order in ldwrite.c handles this case by turning
2224 the embedded SEC_NEVER_LOAD section into a fill. */
2225 flags &= ~ SEC_NEVER_LOAD;
2226
2227 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2228 already been processed. One reason to do this is that on pe
2229 format targets, .text$foo sections go into .text and it's odd
2230 to see .text with SEC_LINK_ONCE set. */
2231
2232 if (!link_info.relocatable)
2233 flags &= ~ (SEC_LINK_ONCE | SEC_LINK_DUPLICATES);
2234
2235 switch (output->sectype)
2236 {
2237 case normal_section:
2238 case overlay_section:
2239 break;
2240 case noalloc_section:
2241 flags &= ~SEC_ALLOC;
2242 break;
2243 case noload_section:
2244 flags &= ~SEC_LOAD;
2245 flags |= SEC_NEVER_LOAD;
2246 break;
2247 }
2248
2249 if (output->bfd_section == NULL)
2250 init_os (output, flags);
2251
2252 /* If SEC_READONLY is not set in the input section, then clear
2253 it from the output section. */
2254 output->bfd_section->flags &= flags | ~SEC_READONLY;
2255
2256 if (output->bfd_section->linker_has_input)
2257 {
2258 /* Only set SEC_READONLY flag on the first input section. */
2259 flags &= ~ SEC_READONLY;
2260
2261 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2262 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2263 != (flags & (SEC_MERGE | SEC_STRINGS))
2264 || ((flags & SEC_MERGE) != 0
2265 && output->bfd_section->entsize != section->entsize))
2266 {
2267 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2268 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2269 }
2270 }
2271 output->bfd_section->flags |= flags;
2272
2273 if (!output->bfd_section->linker_has_input)
2274 {
2275 output->bfd_section->linker_has_input = 1;
2276 /* This must happen after flags have been updated. The output
2277 section may have been created before we saw its first input
2278 section, eg. for a data statement. */
2279 bfd_init_private_section_data (section->owner, section,
2280 link_info.output_bfd,
2281 output->bfd_section,
2282 &link_info);
2283 if ((flags & SEC_MERGE) != 0)
2284 output->bfd_section->entsize = section->entsize;
2285 }
2286
2287 if ((flags & SEC_TIC54X_BLOCK) != 0
2288 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2289 {
2290 /* FIXME: This value should really be obtained from the bfd... */
2291 output->block_value = 128;
2292 }
2293
2294 if (section->alignment_power > output->bfd_section->alignment_power)
2295 output->bfd_section->alignment_power = section->alignment_power;
2296
2297 section->output_section = output->bfd_section;
2298
2299 if (!link_info.relocatable
2300 && !stripped_excluded_sections)
2301 {
2302 asection *s = output->bfd_section->map_tail.s;
2303 output->bfd_section->map_tail.s = section;
2304 section->map_head.s = NULL;
2305 section->map_tail.s = s;
2306 if (s != NULL)
2307 s->map_head.s = section;
2308 else
2309 output->bfd_section->map_head.s = section;
2310 }
2311
2312 /* Add a section reference to the list. */
2313 new_section = new_stat (lang_input_section, ptr);
2314 new_section->section = section;
2315}
2316
2317/* Handle wildcard sorting. This returns the lang_input_section which
2318 should follow the one we are going to create for SECTION and FILE,
2319 based on the sorting requirements of WILD. It returns NULL if the
2320 new section should just go at the end of the current list. */
2321
2322static lang_statement_union_type *
2323wild_sort (lang_wild_statement_type *wild,
2324 struct wildcard_list *sec,
2325 lang_input_statement_type *file,
2326 asection *section)
2327{
2328 lang_statement_union_type *l;
2329
2330 if (!wild->filenames_sorted
2331 && (sec == NULL || sec->spec.sorted == none))
2332 return NULL;
2333
2334 for (l = wild->children.head; l != NULL; l = l->header.next)
2335 {
2336 lang_input_section_type *ls;
2337
2338 if (l->header.type != lang_input_section_enum)
2339 continue;
2340 ls = &l->input_section;
2341
2342 /* Sorting by filename takes precedence over sorting by section
2343 name. */
2344
2345 if (wild->filenames_sorted)
2346 {
2347 const char *fn, *ln;
2348 bfd_boolean fa, la;
2349 int i;
2350
2351 /* The PE support for the .idata section as generated by
2352 dlltool assumes that files will be sorted by the name of
2353 the archive and then the name of the file within the
2354 archive. */
2355
2356 if (file->the_bfd != NULL
2357 && bfd_my_archive (file->the_bfd) != NULL)
2358 {
2359 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2360 fa = TRUE;
2361 }
2362 else
2363 {
2364 fn = file->filename;
2365 fa = FALSE;
2366 }
2367
2368 if (bfd_my_archive (ls->section->owner) != NULL)
2369 {
2370 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2371 la = TRUE;
2372 }
2373 else
2374 {
2375 ln = ls->section->owner->filename;
2376 la = FALSE;
2377 }
2378
2379 i = strcmp (fn, ln);
2380 if (i > 0)
2381 continue;
2382 else if (i < 0)
2383 break;
2384
2385 if (fa || la)
2386 {
2387 if (fa)
2388 fn = file->filename;
2389 if (la)
2390 ln = ls->section->owner->filename;
2391
2392 i = strcmp (fn, ln);
2393 if (i > 0)
2394 continue;
2395 else if (i < 0)
2396 break;
2397 }
2398 }
2399
2400 /* Here either the files are not sorted by name, or we are
2401 looking at the sections for this file. */
2402
2403 if (sec != NULL && sec->spec.sorted != none)
2404 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2405 break;
2406 }
2407
2408 return l;
2409}
2410
2411/* Expand a wild statement for a particular FILE. SECTION may be
2412 NULL, in which case it is a wild card. */
2413
2414static void
2415output_section_callback (lang_wild_statement_type *ptr,
2416 struct wildcard_list *sec,
2417 asection *section,
2418 lang_input_statement_type *file,
2419 void *output)
2420{
2421 lang_statement_union_type *before;
2422 lang_output_section_statement_type *os;
2423
2424 os = (lang_output_section_statement_type *) output;
2425
2426 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2427 if (unique_section_p (section, os))
2428 return;
2429
2430 before = wild_sort (ptr, sec, file, section);
2431
2432 /* Here BEFORE points to the lang_input_section which
2433 should follow the one we are about to add. If BEFORE
2434 is NULL, then the section should just go at the end
2435 of the current list. */
2436
2437 if (before == NULL)
2438 lang_add_section (&ptr->children, section, os);
2439 else
2440 {
2441 lang_statement_list_type list;
2442 lang_statement_union_type **pp;
2443
2444 lang_list_init (&list);
2445 lang_add_section (&list, section, os);
2446
2447 /* If we are discarding the section, LIST.HEAD will
2448 be NULL. */
2449 if (list.head != NULL)
2450 {
2451 ASSERT (list.head->header.next == NULL);
2452
2453 for (pp = &ptr->children.head;
2454 *pp != before;
2455 pp = &(*pp)->header.next)
2456 ASSERT (*pp != NULL);
2457
2458 list.head->header.next = *pp;
2459 *pp = list.head;
2460 }
2461 }
2462}
2463
2464/* Check if all sections in a wild statement for a particular FILE
2465 are readonly. */
2466
2467static void
2468check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2469 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2470 asection *section,
2471 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2472 void *output)
2473{
2474 lang_output_section_statement_type *os;
2475
2476 os = (lang_output_section_statement_type *) output;
2477
2478 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2479 if (unique_section_p (section, os))
2480 return;
2481
2482 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2483 os->all_input_readonly = FALSE;
2484}
2485
2486/* This is passed a file name which must have been seen already and
2487 added to the statement tree. We will see if it has been opened
2488 already and had its symbols read. If not then we'll read it. */
2489
2490static lang_input_statement_type *
2491lookup_name (const char *name)
2492{
2493 lang_input_statement_type *search;
2494
2495 for (search = (lang_input_statement_type *) input_file_chain.head;
2496 search != NULL;
2497 search = (lang_input_statement_type *) search->next_real_file)
2498 {
2499 /* Use the local_sym_name as the name of the file that has
2500 already been loaded as filename might have been transformed
2501 via the search directory lookup mechanism. */
2502 const char *filename = search->local_sym_name;
2503
2504 if (filename != NULL
2505 && strcmp (filename, name) == 0)
2506 break;
2507 }
2508
2509 if (search == NULL)
2510 search = new_afile (name, lang_input_file_is_search_file_enum,
2511 default_target, FALSE);
2512
2513 /* If we have already added this file, or this file is not real
2514 don't add this file. */
2515 if (search->loaded || !search->real)
2516 return search;
2517
2518 if (! load_symbols (search, NULL))
2519 return NULL;
2520
2521 return search;
2522}
2523
2524/* Save LIST as a list of libraries whose symbols should not be exported. */
2525
2526struct excluded_lib
2527{
2528 char *name;
2529 struct excluded_lib *next;
2530};
2531static struct excluded_lib *excluded_libs;
2532
2533void
2534add_excluded_libs (const char *list)
2535{
2536 const char *p = list, *end;
2537
2538 while (*p != '\0')
2539 {
2540 struct excluded_lib *entry;
2541 end = strpbrk (p, ",:");
2542 if (end == NULL)
2543 end = p + strlen (p);
2544 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2545 entry->next = excluded_libs;
2546 entry->name = (char *) xmalloc (end - p + 1);
2547 memcpy (entry->name, p, end - p);
2548 entry->name[end - p] = '\0';
2549 excluded_libs = entry;
2550 if (*end == '\0')
2551 break;
2552 p = end + 1;
2553 }
2554}
2555
2556static void
2557check_excluded_libs (bfd *abfd)
2558{
2559 struct excluded_lib *lib = excluded_libs;
2560
2561 while (lib)
2562 {
2563 int len = strlen (lib->name);
2564 const char *filename = lbasename (abfd->filename);
2565
2566 if (strcmp (lib->name, "ALL") == 0)
2567 {
2568 abfd->no_export = TRUE;
2569 return;
2570 }
2571
2572 if (strncmp (lib->name, filename, len) == 0
2573 && (filename[len] == '\0'
2574 || (filename[len] == '.' && filename[len + 1] == 'a'
2575 && filename[len + 2] == '\0')))
2576 {
2577 abfd->no_export = TRUE;
2578 return;
2579 }
2580
2581 lib = lib->next;
2582 }
2583}
2584
2585/* Get the symbols for an input file. */
2586
2587bfd_boolean
2588load_symbols (lang_input_statement_type *entry,
2589 lang_statement_list_type *place)
2590{
2591 char **matching;
2592
2593 if (entry->loaded)
2594 return TRUE;
2595
2596 ldfile_open_file (entry);
2597
2598 /* Do not process further if the file was missing. */
2599 if (entry->missing_file)
2600 return TRUE;
2601
2602 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2603 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2604 {
2605 bfd_error_type err;
2606 bfd_boolean save_ldlang_sysrooted_script;
2607 bfd_boolean save_add_DT_NEEDED_for_regular;
2608 bfd_boolean save_add_DT_NEEDED_for_dynamic;
2609 bfd_boolean save_whole_archive;
2610
2611 err = bfd_get_error ();
2612
2613 /* See if the emulation has some special knowledge. */
2614 if (ldemul_unrecognized_file (entry))
2615 return TRUE;
2616
2617 if (err == bfd_error_file_ambiguously_recognized)
2618 {
2619 char **p;
2620
2621 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2622 einfo (_("%B: matching formats:"), entry->the_bfd);
2623 for (p = matching; *p != NULL; p++)
2624 einfo (" %s", *p);
2625 einfo ("%F\n");
2626 }
2627 else if (err != bfd_error_file_not_recognized
2628 || place == NULL)
2629 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2630
2631 bfd_close (entry->the_bfd);
2632 entry->the_bfd = NULL;
2633
2634 /* Try to interpret the file as a linker script. */
2635 ldfile_open_command_file (entry->filename);
2636
2637 push_stat_ptr (place);
2638 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2639 ldlang_sysrooted_script = entry->sysrooted;
2640 save_add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
2641 add_DT_NEEDED_for_regular = entry->add_DT_NEEDED_for_regular;
2642 save_add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
2643 add_DT_NEEDED_for_dynamic = entry->add_DT_NEEDED_for_dynamic;
2644 save_whole_archive = whole_archive;
2645 whole_archive = entry->whole_archive;
2646
2647 ldfile_assumed_script = TRUE;
2648 parser_input = input_script;
2649 /* We want to use the same -Bdynamic/-Bstatic as the one for
2650 ENTRY. */
2651 config.dynamic_link = entry->dynamic;
2652 yyparse ();
2653 ldfile_assumed_script = FALSE;
2654
2655 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2656 add_DT_NEEDED_for_regular = save_add_DT_NEEDED_for_regular;
2657 add_DT_NEEDED_for_dynamic = save_add_DT_NEEDED_for_dynamic;
2658 whole_archive = save_whole_archive;
2659 pop_stat_ptr ();
2660
2661 return TRUE;
2662 }
2663
2664 if (ldemul_recognized_file (entry))
2665 return TRUE;
2666
2667 /* We don't call ldlang_add_file for an archive. Instead, the
2668 add_symbols entry point will call ldlang_add_file, via the
2669 add_archive_element callback, for each element of the archive
2670 which is used. */
2671 switch (bfd_get_format (entry->the_bfd))
2672 {
2673 default:
2674 break;
2675
2676 case bfd_object:
2677 ldlang_add_file (entry);
2678 if (trace_files || trace_file_tries)
2679 info_msg ("%I\n", entry);
2680 break;
2681
2682 case bfd_archive:
2683 check_excluded_libs (entry->the_bfd);
2684
2685 if (entry->whole_archive)
2686 {
2687 bfd *member = NULL;
2688 bfd_boolean loaded = TRUE;
2689
2690 for (;;)
2691 {
2692 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2693
2694 if (member == NULL)
2695 break;
2696
2697 if (! bfd_check_format (member, bfd_object))
2698 {
2699 einfo (_("%F%B: member %B in archive is not an object\n"),
2700 entry->the_bfd, member);
2701 loaded = FALSE;
2702 }
2703
2704 if (! ((*link_info.callbacks->add_archive_element)
2705 (&link_info, member, "--whole-archive")))
2706 abort ();
2707
2708 if (! bfd_link_add_symbols (member, &link_info))
2709 {
2710 einfo (_("%F%B: could not read symbols: %E\n"), member);
2711 loaded = FALSE;
2712 }
2713 }
2714
2715 entry->loaded = loaded;
2716 return loaded;
2717 }
2718 break;
2719 }
2720
2721 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2722 entry->loaded = TRUE;
2723 else
2724 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2725
2726 return entry->loaded;
2727}
2728
2729/* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2730 may be NULL, indicating that it is a wildcard. Separate
2731 lang_input_section statements are created for each part of the
2732 expansion; they are added after the wild statement S. OUTPUT is
2733 the output section. */
2734
2735static void
2736wild (lang_wild_statement_type *s,
2737 const char *target ATTRIBUTE_UNUSED,
2738 lang_output_section_statement_type *output)
2739{
2740 struct wildcard_list *sec;
2741
2742 if (s->handler_data[0]
2743 && s->handler_data[0]->spec.sorted == by_name
2744 && !s->filenames_sorted)
2745 {
2746 lang_section_bst_type *tree;
2747
2748 walk_wild (s, output_section_callback_fast, output);
2749
2750 tree = s->tree;
2751 if (tree)
2752 {
2753 output_section_callback_tree_to_list (s, tree, output);
2754 s->tree = NULL;
2755 }
2756 }
2757 else
2758 walk_wild (s, output_section_callback, output);
2759
2760 if (default_common_section == NULL)
2761 for (sec = s->section_list; sec != NULL; sec = sec->next)
2762 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2763 {
2764 /* Remember the section that common is going to in case we
2765 later get something which doesn't know where to put it. */
2766 default_common_section = output;
2767 break;
2768 }
2769}
2770
2771/* Return TRUE iff target is the sought target. */
2772
2773static int
2774get_target (const bfd_target *target, void *data)
2775{
2776 const char *sought = (const char *) data;
2777
2778 return strcmp (target->name, sought) == 0;
2779}
2780
2781/* Like strcpy() but convert to lower case as well. */
2782
2783static void
2784stricpy (char *dest, char *src)
2785{
2786 char c;
2787
2788 while ((c = *src++) != 0)
2789 *dest++ = TOLOWER (c);
2790
2791 *dest = 0;
2792}
2793
2794/* Remove the first occurrence of needle (if any) in haystack
2795 from haystack. */
2796
2797static void
2798strcut (char *haystack, char *needle)
2799{
2800 haystack = strstr (haystack, needle);
2801
2802 if (haystack)
2803 {
2804 char *src;
2805
2806 for (src = haystack + strlen (needle); *src;)
2807 *haystack++ = *src++;
2808
2809 *haystack = 0;
2810 }
2811}
2812
2813/* Compare two target format name strings.
2814 Return a value indicating how "similar" they are. */
2815
2816static int
2817name_compare (char *first, char *second)
2818{
2819 char *copy1;
2820 char *copy2;
2821 int result;
2822
2823 copy1 = (char *) xmalloc (strlen (first) + 1);
2824 copy2 = (char *) xmalloc (strlen (second) + 1);
2825
2826 /* Convert the names to lower case. */
2827 stricpy (copy1, first);
2828 stricpy (copy2, second);
2829
2830 /* Remove size and endian strings from the name. */
2831 strcut (copy1, "big");
2832 strcut (copy1, "little");
2833 strcut (copy2, "big");
2834 strcut (copy2, "little");
2835
2836 /* Return a value based on how many characters match,
2837 starting from the beginning. If both strings are
2838 the same then return 10 * their length. */
2839 for (result = 0; copy1[result] == copy2[result]; result++)
2840 if (copy1[result] == 0)
2841 {
2842 result *= 10;
2843 break;
2844 }
2845
2846 free (copy1);
2847 free (copy2);
2848
2849 return result;
2850}
2851
2852/* Set by closest_target_match() below. */
2853static const bfd_target *winner;
2854
2855/* Scan all the valid bfd targets looking for one that has the endianness
2856 requirement that was specified on the command line, and is the nearest
2857 match to the original output target. */
2858
2859static int
2860closest_target_match (const bfd_target *target, void *data)
2861{
2862 const bfd_target *original = (const bfd_target *) data;
2863
2864 if (command_line.endian == ENDIAN_BIG
2865 && target->byteorder != BFD_ENDIAN_BIG)
2866 return 0;
2867
2868 if (command_line.endian == ENDIAN_LITTLE
2869 && target->byteorder != BFD_ENDIAN_LITTLE)
2870 return 0;
2871
2872 /* Must be the same flavour. */
2873 if (target->flavour != original->flavour)
2874 return 0;
2875
2876 /* Ignore generic big and little endian elf vectors. */
2877 if (strcmp (target->name, "elf32-big") == 0
2878 || strcmp (target->name, "elf64-big") == 0
2879 || strcmp (target->name, "elf32-little") == 0
2880 || strcmp (target->name, "elf64-little") == 0)
2881 return 0;
2882
2883 /* If we have not found a potential winner yet, then record this one. */
2884 if (winner == NULL)
2885 {
2886 winner = target;
2887 return 0;
2888 }
2889
2890 /* Oh dear, we now have two potential candidates for a successful match.
2891 Compare their names and choose the better one. */
2892 if (name_compare (target->name, original->name)
2893 > name_compare (winner->name, original->name))
2894 winner = target;
2895
2896 /* Keep on searching until wqe have checked them all. */
2897 return 0;
2898}
2899
2900/* Return the BFD target format of the first input file. */
2901
2902static char *
2903get_first_input_target (void)
2904{
2905 char *target = NULL;
2906
2907 LANG_FOR_EACH_INPUT_STATEMENT (s)
2908 {
2909 if (s->header.type == lang_input_statement_enum
2910 && s->real)
2911 {
2912 ldfile_open_file (s);
2913
2914 if (s->the_bfd != NULL
2915 && bfd_check_format (s->the_bfd, bfd_object))
2916 {
2917 target = bfd_get_target (s->the_bfd);
2918
2919 if (target != NULL)
2920 break;
2921 }
2922 }
2923 }
2924
2925 return target;
2926}
2927
2928const char *
2929lang_get_output_target (void)
2930{
2931 const char *target;
2932
2933 /* Has the user told us which output format to use? */
2934 if (output_target != NULL)
2935 return output_target;
2936
2937 /* No - has the current target been set to something other than
2938 the default? */
2939 if (current_target != default_target)
2940 return current_target;
2941
2942 /* No - can we determine the format of the first input file? */
2943 target = get_first_input_target ();
2944 if (target != NULL)
2945 return target;
2946
2947 /* Failed - use the default output target. */
2948 return default_target;
2949}
2950
2951/* Open the output file. */
2952
2953static void
2954open_output (const char *name)
2955{
2956 output_target = lang_get_output_target ();
2957
2958 /* Has the user requested a particular endianness on the command
2959 line? */
2960 if (command_line.endian != ENDIAN_UNSET)
2961 {
2962 const bfd_target *target;
2963 enum bfd_endian desired_endian;
2964
2965 /* Get the chosen target. */
2966 target = bfd_search_for_target (get_target, (void *) output_target);
2967
2968 /* If the target is not supported, we cannot do anything. */
2969 if (target != NULL)
2970 {
2971 if (command_line.endian == ENDIAN_BIG)
2972 desired_endian = BFD_ENDIAN_BIG;
2973 else
2974 desired_endian = BFD_ENDIAN_LITTLE;
2975
2976 /* See if the target has the wrong endianness. This should
2977 not happen if the linker script has provided big and
2978 little endian alternatives, but some scrips don't do
2979 this. */
2980 if (target->byteorder != desired_endian)
2981 {
2982 /* If it does, then see if the target provides
2983 an alternative with the correct endianness. */
2984 if (target->alternative_target != NULL
2985 && (target->alternative_target->byteorder == desired_endian))
2986 output_target = target->alternative_target->name;
2987 else
2988 {
2989 /* Try to find a target as similar as possible to
2990 the default target, but which has the desired
2991 endian characteristic. */
2992 bfd_search_for_target (closest_target_match,
2993 (void *) target);
2994
2995 /* Oh dear - we could not find any targets that
2996 satisfy our requirements. */
2997 if (winner == NULL)
2998 einfo (_("%P: warning: could not find any targets"
2999 " that match endianness requirement\n"));
3000 else
3001 output_target = winner->name;
3002 }
3003 }
3004 }
3005 }
3006
3007 link_info.output_bfd = bfd_openw (name, output_target);
3008
3009 if (link_info.output_bfd == NULL)
3010 {
3011 if (bfd_get_error () == bfd_error_invalid_target)
3012 einfo (_("%P%F: target %s not found\n"), output_target);
3013
3014 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3015 }
3016
3017 delete_output_file_on_failure = TRUE;
3018
3019 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3020 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3021 if (! bfd_set_arch_mach (link_info.output_bfd,
3022 ldfile_output_architecture,
3023 ldfile_output_machine))
3024 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3025
3026 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3027 if (link_info.hash == NULL)
3028 einfo (_("%P%F: can not create hash table: %E\n"));
3029
3030 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3031}
3032
3033static void
3034ldlang_open_output (lang_statement_union_type *statement)
3035{
3036 switch (statement->header.type)
3037 {
3038 case lang_output_statement_enum:
3039 ASSERT (link_info.output_bfd == NULL);
3040 open_output (statement->output_statement.name);
3041 ldemul_set_output_arch ();
3042 if (config.magic_demand_paged && !link_info.relocatable)
3043 link_info.output_bfd->flags |= D_PAGED;
3044 else
3045 link_info.output_bfd->flags &= ~D_PAGED;
3046 if (config.text_read_only)
3047 link_info.output_bfd->flags |= WP_TEXT;
3048 else
3049 link_info.output_bfd->flags &= ~WP_TEXT;
3050 if (link_info.traditional_format)
3051 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3052 else
3053 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3054 break;
3055
3056 case lang_target_statement_enum:
3057 current_target = statement->target_statement.target;
3058 break;
3059 default:
3060 break;
3061 }
3062}
3063
3064/* Convert between addresses in bytes and sizes in octets.
3065 For currently supported targets, octets_per_byte is always a power
3066 of two, so we can use shifts. */
3067#define TO_ADDR(X) ((X) >> opb_shift)
3068#define TO_SIZE(X) ((X) << opb_shift)
3069
3070/* Support the above. */
3071static unsigned int opb_shift = 0;
3072
3073static void
3074init_opb (void)
3075{
3076 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3077 ldfile_output_machine);
3078 opb_shift = 0;
3079 if (x > 1)
3080 while ((x & 1) == 0)
3081 {
3082 x >>= 1;
3083 ++opb_shift;
3084 }
3085 ASSERT (x == 1);
3086}
3087
3088/* Open all the input files. */
3089
3090static void
3091open_input_bfds (lang_statement_union_type *s, bfd_boolean force)
3092{
3093 for (; s != NULL; s = s->header.next)
3094 {
3095 switch (s->header.type)
3096 {
3097 case lang_constructors_statement_enum:
3098 open_input_bfds (constructor_list.head, force);
3099 break;
3100 case lang_output_section_statement_enum:
3101 open_input_bfds (s->output_section_statement.children.head, force);
3102 break;
3103 case lang_wild_statement_enum:
3104 /* Maybe we should load the file's symbols. */
3105 if (s->wild_statement.filename
3106 && !wildcardp (s->wild_statement.filename)
3107 && !archive_path (s->wild_statement.filename))
3108 lookup_name (s->wild_statement.filename);
3109 open_input_bfds (s->wild_statement.children.head, force);
3110 break;
3111 case lang_group_statement_enum:
3112 {
3113 struct bfd_link_hash_entry *undefs;
3114
3115 /* We must continually search the entries in the group
3116 until no new symbols are added to the list of undefined
3117 symbols. */
3118
3119 do
3120 {
3121 undefs = link_info.hash->undefs_tail;
3122 open_input_bfds (s->group_statement.children.head, TRUE);
3123 }
3124 while (undefs != link_info.hash->undefs_tail);
3125 }
3126 break;
3127 case lang_target_statement_enum:
3128 current_target = s->target_statement.target;
3129 break;
3130 case lang_input_statement_enum:
3131 if (s->input_statement.real)
3132 {
3133 lang_statement_union_type **os_tail;
3134 lang_statement_list_type add;
3135
3136 s->input_statement.target = current_target;
3137
3138 /* If we are being called from within a group, and this
3139 is an archive which has already been searched, then
3140 force it to be researched unless the whole archive
3141 has been loaded already. */
3142 if (force
3143 && !s->input_statement.whole_archive
3144 && s->input_statement.loaded
3145 && bfd_check_format (s->input_statement.the_bfd,
3146 bfd_archive))
3147 s->input_statement.loaded = FALSE;
3148
3149 os_tail = lang_output_section_statement.tail;
3150 lang_list_init (&add);
3151
3152 if (! load_symbols (&s->input_statement, &add))
3153 config.make_executable = FALSE;
3154
3155 if (add.head != NULL)
3156 {
3157 /* If this was a script with output sections then
3158 tack any added statements on to the end of the
3159 list. This avoids having to reorder the output
3160 section statement list. Very likely the user
3161 forgot -T, and whatever we do here will not meet
3162 naive user expectations. */
3163 if (os_tail != lang_output_section_statement.tail)
3164 {
3165 einfo (_("%P: warning: %s contains output sections;"
3166 " did you forget -T?\n"),
3167 s->input_statement.filename);
3168 *stat_ptr->tail = add.head;
3169 stat_ptr->tail = add.tail;
3170 }
3171 else
3172 {
3173 *add.tail = s->header.next;
3174 s->header.next = add.head;
3175 }
3176 }
3177 }
3178 break;
3179 default:
3180 break;
3181 }
3182 }
3183
3184 /* Exit if any of the files were missing. */
3185 if (missing_file)
3186 einfo ("%F");
3187}
3188
3189/* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3190
3191void
3192lang_track_definedness (const char *name)
3193{
3194 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3195 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3196}
3197
3198/* New-function for the definedness hash table. */
3199
3200static struct bfd_hash_entry *
3201lang_definedness_newfunc (struct bfd_hash_entry *entry,
3202 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3203 const char *name ATTRIBUTE_UNUSED)
3204{
3205 struct lang_definedness_hash_entry *ret
3206 = (struct lang_definedness_hash_entry *) entry;
3207
3208 if (ret == NULL)
3209 ret = (struct lang_definedness_hash_entry *)
3210 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3211
3212 if (ret == NULL)
3213 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3214
3215 ret->iteration = -1;
3216 return &ret->root;
3217}
3218
3219/* Return the iteration when the definition of NAME was last updated. A
3220 value of -1 means that the symbol is not defined in the linker script
3221 or the command line, but may be defined in the linker symbol table. */
3222
3223int
3224lang_symbol_definition_iteration (const char *name)
3225{
3226 struct lang_definedness_hash_entry *defentry
3227 = (struct lang_definedness_hash_entry *)
3228 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3229
3230 /* We've already created this one on the presence of DEFINED in the
3231 script, so it can't be NULL unless something is borked elsewhere in
3232 the code. */
3233 if (defentry == NULL)
3234 FAIL ();
3235
3236 return defentry->iteration;
3237}
3238
3239/* Update the definedness state of NAME. */
3240
3241void
3242lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3243{
3244 struct lang_definedness_hash_entry *defentry
3245 = (struct lang_definedness_hash_entry *)
3246 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3247
3248 /* We don't keep track of symbols not tested with DEFINED. */
3249 if (defentry == NULL)
3250 return;
3251
3252 /* If the symbol was already defined, and not from an earlier statement
3253 iteration, don't update the definedness iteration, because that'd
3254 make the symbol seem defined in the linker script at this point, and
3255 it wasn't; it was defined in some object. If we do anyway, DEFINED
3256 would start to yield false before this point and the construct "sym =
3257 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3258 in an object. */
3259 if (h->type != bfd_link_hash_undefined
3260 && h->type != bfd_link_hash_common
3261 && h->type != bfd_link_hash_new
3262 && defentry->iteration == -1)
3263 return;
3264
3265 defentry->iteration = lang_statement_iteration;
3266}
3267
3268/* Add the supplied name to the symbol table as an undefined reference.
3269 This is a two step process as the symbol table doesn't even exist at
3270 the time the ld command line is processed. First we put the name
3271 on a list, then, once the output file has been opened, transfer the
3272 name to the symbol table. */
3273
3274typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3275
3276#define ldlang_undef_chain_list_head entry_symbol.next
3277
3278void
3279ldlang_add_undef (const char *const name)
3280{
3281 ldlang_undef_chain_list_type *new_undef = (ldlang_undef_chain_list_type *)
3282 stat_alloc (sizeof (ldlang_undef_chain_list_type));
3283
3284 new_undef->next = ldlang_undef_chain_list_head;
3285 ldlang_undef_chain_list_head = new_undef;
3286
3287 new_undef->name = xstrdup (name);
3288
3289 if (link_info.output_bfd != NULL)
3290 insert_undefined (new_undef->name);
3291}
3292
3293/* Insert NAME as undefined in the symbol table. */
3294
3295static void
3296insert_undefined (const char *name)
3297{
3298 struct bfd_link_hash_entry *h;
3299
3300 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3301 if (h == NULL)
3302 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3303 if (h->type == bfd_link_hash_new)
3304 {
3305 h->type = bfd_link_hash_undefined;
3306 h->u.undef.abfd = NULL;
3307 bfd_link_add_undef (link_info.hash, h);
3308 }
3309}
3310
3311/* Run through the list of undefineds created above and place them
3312 into the linker hash table as undefined symbols belonging to the
3313 script file. */
3314
3315static void
3316lang_place_undefineds (void)
3317{
3318 ldlang_undef_chain_list_type *ptr;
3319
3320 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3321 insert_undefined (ptr->name);
3322}
3323
3324/* Check for all readonly or some readwrite sections. */
3325
3326static void
3327check_input_sections
3328 (lang_statement_union_type *s,
3329 lang_output_section_statement_type *output_section_statement)
3330{
3331 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3332 {
3333 switch (s->header.type)
3334 {
3335 case lang_wild_statement_enum:
3336 walk_wild (&s->wild_statement, check_section_callback,
3337 output_section_statement);
3338 if (! output_section_statement->all_input_readonly)
3339 return;
3340 break;
3341 case lang_constructors_statement_enum:
3342 check_input_sections (constructor_list.head,
3343 output_section_statement);
3344 if (! output_section_statement->all_input_readonly)
3345 return;
3346 break;
3347 case lang_group_statement_enum:
3348 check_input_sections (s->group_statement.children.head,
3349 output_section_statement);
3350 if (! output_section_statement->all_input_readonly)
3351 return;
3352 break;
3353 default:
3354 break;
3355 }
3356 }
3357}
3358
3359/* Update wildcard statements if needed. */
3360
3361static void
3362update_wild_statements (lang_statement_union_type *s)
3363{
3364 struct wildcard_list *sec;
3365
3366 switch (sort_section)
3367 {
3368 default:
3369 FAIL ();
3370
3371 case none:
3372 break;
3373
3374 case by_name:
3375 case by_alignment:
3376 for (; s != NULL; s = s->header.next)
3377 {
3378 switch (s->header.type)
3379 {
3380 default:
3381 break;
3382
3383 case lang_wild_statement_enum:
3384 sec = s->wild_statement.section_list;
3385 for (sec = s->wild_statement.section_list; sec != NULL;
3386 sec = sec->next)
3387 {
3388 switch (sec->spec.sorted)
3389 {
3390 case none:
3391 sec->spec.sorted = sort_section;
3392 break;
3393 case by_name:
3394 if (sort_section == by_alignment)
3395 sec->spec.sorted = by_name_alignment;
3396 break;
3397 case by_alignment:
3398 if (sort_section == by_name)
3399 sec->spec.sorted = by_alignment_name;
3400 break;
3401 default:
3402 break;
3403 }
3404 }
3405 break;
3406
3407 case lang_constructors_statement_enum:
3408 update_wild_statements (constructor_list.head);
3409 break;
3410
3411 case lang_output_section_statement_enum:
3412 update_wild_statements
3413 (s->output_section_statement.children.head);
3414 break;
3415
3416 case lang_group_statement_enum:
3417 update_wild_statements (s->group_statement.children.head);
3418 break;
3419 }
3420 }
3421 break;
3422 }
3423}
3424
3425/* Open input files and attach to output sections. */
3426
3427static void
3428map_input_to_output_sections
3429 (lang_statement_union_type *s, const char *target,
3430 lang_output_section_statement_type *os)
3431{
3432 for (; s != NULL; s = s->header.next)
3433 {
3434 lang_output_section_statement_type *tos;
3435 flagword flags;
3436
3437 switch (s->header.type)
3438 {
3439 case lang_wild_statement_enum:
3440 wild (&s->wild_statement, target, os);
3441 break;
3442 case lang_constructors_statement_enum:
3443 map_input_to_output_sections (constructor_list.head,
3444 target,
3445 os);
3446 break;
3447 case lang_output_section_statement_enum:
3448 tos = &s->output_section_statement;
3449 if (tos->constraint != 0)
3450 {
3451 if (tos->constraint != ONLY_IF_RW
3452 && tos->constraint != ONLY_IF_RO)
3453 break;
3454 tos->all_input_readonly = TRUE;
3455 check_input_sections (tos->children.head, tos);
3456 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3457 {
3458 tos->constraint = -1;
3459 break;
3460 }
3461 }
3462 map_input_to_output_sections (tos->children.head,
3463 target,
3464 tos);
3465 break;
3466 case lang_output_statement_enum:
3467 break;
3468 case lang_target_statement_enum:
3469 target = s->target_statement.target;
3470 break;
3471 case lang_group_statement_enum:
3472 map_input_to_output_sections (s->group_statement.children.head,
3473 target,
3474 os);
3475 break;
3476 case lang_data_statement_enum:
3477 /* Make sure that any sections mentioned in the expression
3478 are initialized. */
3479 exp_init_os (s->data_statement.exp);
3480 /* The output section gets CONTENTS, and usually ALLOC and
3481 LOAD, but the latter two may be overridden by the script. */
3482 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3483 switch (os->sectype)
3484 {
3485 case normal_section:
3486 case overlay_section:
3487 break;
3488 case noalloc_section:
3489 flags = SEC_HAS_CONTENTS;
3490 break;
3491 case noload_section:
3492 flags = SEC_HAS_CONTENTS | SEC_NEVER_LOAD;
3493 break;
3494 }
3495 if (os->bfd_section == NULL)
3496 init_os (os, flags);
3497 else
3498 os->bfd_section->flags |= flags;
3499 break;
3500 case lang_input_section_enum:
3501 break;
3502 case lang_fill_statement_enum:
3503 case lang_object_symbols_statement_enum:
3504 case lang_reloc_statement_enum:
3505 case lang_padding_statement_enum:
3506 case lang_input_statement_enum:
3507 if (os != NULL && os->bfd_section == NULL)
3508 init_os (os, 0);
3509 break;
3510 case lang_assignment_statement_enum:
3511 if (os != NULL && os->bfd_section == NULL)
3512 init_os (os, 0);
3513
3514 /* Make sure that any sections mentioned in the assignment
3515 are initialized. */
3516 exp_init_os (s->assignment_statement.exp);
3517 break;
3518 case lang_address_statement_enum:
3519 /* Mark the specified section with the supplied address.
3520 If this section was actually a segment marker, then the
3521 directive is ignored if the linker script explicitly
3522 processed the segment marker. Originally, the linker
3523 treated segment directives (like -Ttext on the
3524 command-line) as section directives. We honor the
3525 section directive semantics for backwards compatibilty;
3526 linker scripts that do not specifically check for
3527 SEGMENT_START automatically get the old semantics. */
3528 if (!s->address_statement.segment
3529 || !s->address_statement.segment->used)
3530 {
3531 const char *name = s->address_statement.section_name;
3532
3533 /* Create the output section statement here so that
3534 orphans with a set address will be placed after other
3535 script sections. If we let the orphan placement code
3536 place them in amongst other sections then the address
3537 will affect following script sections, which is
3538 likely to surprise naive users. */
3539 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3540 tos->addr_tree = s->address_statement.address;
3541 if (tos->bfd_section == NULL)
3542 init_os (tos, 0);
3543 }
3544 break;
3545 case lang_insert_statement_enum:
3546 break;
3547 }
3548 }
3549}
3550
3551/* An insert statement snips out all the linker statements from the
3552 start of the list and places them after the output section
3553 statement specified by the insert. This operation is complicated
3554 by the fact that we keep a doubly linked list of output section
3555 statements as well as the singly linked list of all statements. */
3556
3557static void
3558process_insert_statements (void)
3559{
3560 lang_statement_union_type **s;
3561 lang_output_section_statement_type *first_os = NULL;
3562 lang_output_section_statement_type *last_os = NULL;
3563 lang_output_section_statement_type *os;
3564
3565 /* "start of list" is actually the statement immediately after
3566 the special abs_section output statement, so that it isn't
3567 reordered. */
3568 s = &lang_output_section_statement.head;
3569 while (*(s = &(*s)->header.next) != NULL)
3570 {
3571 if ((*s)->header.type == lang_output_section_statement_enum)
3572 {
3573 /* Keep pointers to the first and last output section
3574 statement in the sequence we may be about to move. */
3575 os = &(*s)->output_section_statement;
3576
3577 ASSERT (last_os == NULL || last_os->next == os);
3578 last_os = os;
3579
3580 /* Set constraint negative so that lang_output_section_find
3581 won't match this output section statement. At this
3582 stage in linking constraint has values in the range
3583 [-1, ONLY_IN_RW]. */
3584 last_os->constraint = -2 - last_os->constraint;
3585 if (first_os == NULL)
3586 first_os = last_os;
3587 }
3588 else if ((*s)->header.type == lang_insert_statement_enum)
3589 {
3590 lang_insert_statement_type *i = &(*s)->insert_statement;
3591 lang_output_section_statement_type *where;
3592 lang_statement_union_type **ptr;
3593 lang_statement_union_type *first;
3594
3595 where = lang_output_section_find (i->where);
3596 if (where != NULL && i->is_before)
3597 {
3598 do
3599 where = where->prev;
3600 while (where != NULL && where->constraint < 0);
3601 }
3602 if (where == NULL)
3603 {
3604 einfo (_("%F%P: %s not found for insert\n"), i->where);
3605 return;
3606 }
3607
3608 /* Deal with reordering the output section statement list. */
3609 if (last_os != NULL)
3610 {
3611 asection *first_sec, *last_sec;
3612 struct lang_output_section_statement_struct **next;
3613
3614 /* Snip out the output sections we are moving. */
3615 first_os->prev->next = last_os->next;
3616 if (last_os->next == NULL)
3617 {
3618 next = &first_os->prev->next;
3619 lang_output_section_statement.tail
3620 = (lang_statement_union_type **) next;
3621 }
3622 else
3623 last_os->next->prev = first_os->prev;
3624 /* Add them in at the new position. */
3625 last_os->next = where->next;
3626 if (where->next == NULL)
3627 {
3628 next = &last_os->next;
3629 lang_output_section_statement.tail
3630 = (lang_statement_union_type **) next;
3631 }
3632 else
3633 where->next->prev = last_os;
3634 first_os->prev = where;
3635 where->next = first_os;
3636
3637 /* Move the bfd sections in the same way. */
3638 first_sec = NULL;
3639 last_sec = NULL;
3640 for (os = first_os; os != NULL; os = os->next)
3641 {
3642 os->constraint = -2 - os->constraint;
3643 if (os->bfd_section != NULL
3644 && os->bfd_section->owner != NULL)
3645 {
3646 last_sec = os->bfd_section;
3647 if (first_sec == NULL)
3648 first_sec = last_sec;
3649 }
3650 if (os == last_os)
3651 break;
3652 }
3653 if (last_sec != NULL)
3654 {
3655 asection *sec = where->bfd_section;
3656 if (sec == NULL)
3657 sec = output_prev_sec_find (where);
3658
3659 /* The place we want to insert must come after the
3660 sections we are moving. So if we find no
3661 section or if the section is the same as our
3662 last section, then no move is needed. */
3663 if (sec != NULL && sec != last_sec)
3664 {
3665 /* Trim them off. */
3666 if (first_sec->prev != NULL)
3667 first_sec->prev->next = last_sec->next;
3668 else
3669 link_info.output_bfd->sections = last_sec->next;
3670 if (last_sec->next != NULL)
3671 last_sec->next->prev = first_sec->prev;
3672 else
3673 link_info.output_bfd->section_last = first_sec->prev;
3674 /* Add back. */
3675 last_sec->next = sec->next;
3676 if (sec->next != NULL)
3677 sec->next->prev = last_sec;
3678 else
3679 link_info.output_bfd->section_last = last_sec;
3680 first_sec->prev = sec;
3681 sec->next = first_sec;
3682 }
3683 }
3684
3685 first_os = NULL;
3686 last_os = NULL;
3687 }
3688
3689 ptr = insert_os_after (where);
3690 /* Snip everything after the abs_section output statement we
3691 know is at the start of the list, up to and including
3692 the insert statement we are currently processing. */
3693 first = lang_output_section_statement.head->header.next;
3694 lang_output_section_statement.head->header.next = (*s)->header.next;
3695 /* Add them back where they belong. */
3696 *s = *ptr;
3697 if (*s == NULL)
3698 statement_list.tail = s;
3699 *ptr = first;
3700 s = &lang_output_section_statement.head;
3701 }
3702 }
3703
3704 /* Undo constraint twiddling. */
3705 for (os = first_os; os != NULL; os = os->next)
3706 {
3707 os->constraint = -2 - os->constraint;
3708 if (os == last_os)
3709 break;
3710 }
3711}
3712
3713/* An output section might have been removed after its statement was
3714 added. For example, ldemul_before_allocation can remove dynamic
3715 sections if they turn out to be not needed. Clean them up here. */
3716
3717void
3718strip_excluded_output_sections (void)
3719{
3720 lang_output_section_statement_type *os;
3721
3722 /* Run lang_size_sections (if not already done). */
3723 if (expld.phase != lang_mark_phase_enum)
3724 {
3725 expld.phase = lang_mark_phase_enum;
3726 expld.dataseg.phase = exp_dataseg_none;
3727 one_lang_size_sections_pass (NULL, FALSE);
3728 lang_reset_memory_regions ();
3729 }
3730
3731 for (os = &lang_output_section_statement.head->output_section_statement;
3732 os != NULL;
3733 os = os->next)
3734 {
3735 asection *output_section;
3736 bfd_boolean exclude;
3737
3738 if (os->constraint < 0)
3739 continue;
3740
3741 output_section = os->bfd_section;
3742 if (output_section == NULL)
3743 continue;
3744
3745 exclude = (output_section->rawsize == 0
3746 && (output_section->flags & SEC_KEEP) == 0
3747 && !bfd_section_removed_from_list (link_info.output_bfd,
3748 output_section));
3749
3750 /* Some sections have not yet been sized, notably .gnu.version,
3751 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3752 input sections, so don't drop output sections that have such
3753 input sections unless they are also marked SEC_EXCLUDE. */
3754 if (exclude && output_section->map_head.s != NULL)
3755 {
3756 asection *s;
3757
3758 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3759 if ((s->flags & SEC_LINKER_CREATED) != 0
3760 && (s->flags & SEC_EXCLUDE) == 0)
3761 {
3762 exclude = FALSE;
3763 break;
3764 }
3765 }
3766
3767 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3768 output_section->map_head.link_order = NULL;
3769 output_section->map_tail.link_order = NULL;
3770
3771 if (exclude)
3772 {
3773 /* We don't set bfd_section to NULL since bfd_section of the
3774 removed output section statement may still be used. */
3775 if (!os->section_relative_symbol
3776 && !os->update_dot_tree)
3777 os->ignored = TRUE;
3778 output_section->flags |= SEC_EXCLUDE;
3779 bfd_section_list_remove (link_info.output_bfd, output_section);
3780 link_info.output_bfd->section_count--;
3781 }
3782 }
3783
3784 /* Stop future calls to lang_add_section from messing with map_head
3785 and map_tail link_order fields. */
3786 stripped_excluded_sections = TRUE;
3787}
3788
3789static void
3790print_output_section_statement
3791 (lang_output_section_statement_type *output_section_statement)
3792{
3793 asection *section = output_section_statement->bfd_section;
3794 int len;
3795
3796 if (output_section_statement != abs_output_section)
3797 {
3798 minfo ("\n%s", output_section_statement->name);
3799
3800 if (section != NULL)
3801 {
3802 print_dot = section->vma;
3803
3804 len = strlen (output_section_statement->name);
3805 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3806 {
3807 print_nl ();
3808 len = 0;
3809 }
3810 while (len < SECTION_NAME_MAP_LENGTH)
3811 {
3812 print_space ();
3813 ++len;
3814 }
3815
3816 minfo ("0x%V %W", section->vma, section->size);
3817
3818 if (section->vma != section->lma)
3819 minfo (_(" load address 0x%V"), section->lma);
3820
3821 if (output_section_statement->update_dot_tree != NULL)
3822 exp_fold_tree (output_section_statement->update_dot_tree,
3823 bfd_abs_section_ptr, &print_dot);
3824 }
3825
3826 print_nl ();
3827 }
3828
3829 print_statement_list (output_section_statement->children.head,
3830 output_section_statement);
3831}
3832
3833/* Scan for the use of the destination in the right hand side
3834 of an expression. In such cases we will not compute the
3835 correct expression, since the value of DST that is used on
3836 the right hand side will be its final value, not its value
3837 just before this expression is evaluated. */
3838
3839static bfd_boolean
3840scan_for_self_assignment (const char * dst, etree_type * rhs)
3841{
3842 if (rhs == NULL || dst == NULL)
3843 return FALSE;
3844
3845 switch (rhs->type.node_class)
3846 {
3847 case etree_binary:
3848 return scan_for_self_assignment (dst, rhs->binary.lhs)
3849 || scan_for_self_assignment (dst, rhs->binary.rhs);
3850
3851 case etree_trinary:
3852 return scan_for_self_assignment (dst, rhs->trinary.lhs)
3853 || scan_for_self_assignment (dst, rhs->trinary.rhs);
3854
3855 case etree_assign:
3856 case etree_provided:
3857 case etree_provide:
3858 if (strcmp (dst, rhs->assign.dst) == 0)
3859 return TRUE;
3860 return scan_for_self_assignment (dst, rhs->assign.src);
3861
3862 case etree_unary:
3863 return scan_for_self_assignment (dst, rhs->unary.child);
3864
3865 case etree_value:
3866 if (rhs->value.str)
3867 return strcmp (dst, rhs->value.str) == 0;
3868 return FALSE;
3869
3870 case etree_name:
3871 if (rhs->name.name)
3872 return strcmp (dst, rhs->name.name) == 0;
3873 return FALSE;
3874
3875 default:
3876 break;
3877 }
3878
3879 return FALSE;
3880}
3881
3882
3883static void
3884print_assignment (lang_assignment_statement_type *assignment,
3885 lang_output_section_statement_type *output_section)
3886{
3887 unsigned int i;
3888 bfd_boolean is_dot;
3889 bfd_boolean computation_is_valid = TRUE;
3890 etree_type *tree;
3891
3892 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3893 print_space ();
3894
3895 if (assignment->exp->type.node_class == etree_assert)
3896 {
3897 is_dot = FALSE;
3898 tree = assignment->exp->assert_s.child;
3899 computation_is_valid = TRUE;
3900 }
3901 else
3902 {
3903 const char *dst = assignment->exp->assign.dst;
3904
3905 is_dot = (dst[0] == '.' && dst[1] == 0);
3906 tree = assignment->exp->assign.src;
3907 computation_is_valid = is_dot || (scan_for_self_assignment (dst, tree) == FALSE);
3908 }
3909
3910 exp_fold_tree (tree, output_section->bfd_section, &print_dot);
3911 if (expld.result.valid_p)
3912 {
3913 bfd_vma value;
3914
3915 if (computation_is_valid)
3916 {
3917 value = expld.result.value;
3918
3919 if (expld.result.section)
3920 value += expld.result.section->vma;
3921
3922 minfo ("0x%V", value);
3923 if (is_dot)
3924 print_dot = value;
3925 }
3926 else
3927 {
3928 struct bfd_link_hash_entry *h;
3929
3930 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
3931 FALSE, FALSE, TRUE);
3932 if (h)
3933 {
3934 value = h->u.def.value;
3935
3936 if (expld.result.section)
3937 value += expld.result.section->vma;
3938
3939 minfo ("[0x%V]", value);
3940 }
3941 else
3942 minfo ("[unresolved]");
3943 }
3944 }
3945 else
3946 {
3947 minfo ("*undef* ");
3948#ifdef BFD64
3949 minfo (" ");
3950#endif
3951 }
3952
3953 minfo (" ");
3954 exp_print_tree (assignment->exp);
3955 print_nl ();
3956}
3957
3958static void
3959print_input_statement (lang_input_statement_type *statm)
3960{
3961 if (statm->filename != NULL
3962 && (statm->the_bfd == NULL
3963 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
3964 fprintf (config.map_file, "LOAD %s\n", statm->filename);
3965}
3966
3967/* Print all symbols defined in a particular section. This is called
3968 via bfd_link_hash_traverse, or by print_all_symbols. */
3969
3970static bfd_boolean
3971print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
3972{
3973 asection *sec = (asection *) ptr;
3974
3975 if ((hash_entry->type == bfd_link_hash_defined
3976 || hash_entry->type == bfd_link_hash_defweak)
3977 && sec == hash_entry->u.def.section)
3978 {
3979 int i;
3980
3981 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3982 print_space ();
3983 minfo ("0x%V ",
3984 (hash_entry->u.def.value
3985 + hash_entry->u.def.section->output_offset
3986 + hash_entry->u.def.section->output_section->vma));
3987
3988 minfo (" %T\n", hash_entry->root.string);
3989 }
3990
3991 return TRUE;
3992}
3993
3994static int
3995hash_entry_addr_cmp (const void *a, const void *b)
3996{
3997 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
3998 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
3999
4000 if (l->u.def.value < r->u.def.value)
4001 return -1;
4002 else if (l->u.def.value > r->u.def.value)
4003 return 1;
4004 else
4005 return 0;
4006}
4007
4008static void
4009print_all_symbols (asection *sec)
4010{
4011 struct fat_user_section_struct *ud =
4012 (struct fat_user_section_struct *) get_userdata (sec);
4013 struct map_symbol_def *def;
4014 struct bfd_link_hash_entry **entries;
4015 unsigned int i;
4016
4017 if (!ud)
4018 return;
4019
4020 *ud->map_symbol_def_tail = 0;
4021
4022 /* Sort the symbols by address. */
4023 entries = (struct bfd_link_hash_entry **)
4024 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4025
4026 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4027 entries[i] = def->entry;
4028
4029 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4030 hash_entry_addr_cmp);
4031
4032 /* Print the symbols. */
4033 for (i = 0; i < ud->map_symbol_def_count; i++)
4034 print_one_symbol (entries[i], sec);
4035
4036 obstack_free (&map_obstack, entries);
4037}
4038
4039/* Print information about an input section to the map file. */
4040
4041static void
4042print_input_section (asection *i, bfd_boolean is_discarded)
4043{
4044 bfd_size_type size = i->size;
4045 int len;
4046 bfd_vma addr;
4047
4048 init_opb ();
4049
4050 print_space ();
4051 minfo ("%s", i->name);
4052
4053 len = 1 + strlen (i->name);
4054 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4055 {
4056 print_nl ();
4057 len = 0;
4058 }
4059 while (len < SECTION_NAME_MAP_LENGTH)
4060 {
4061 print_space ();
4062 ++len;
4063 }
4064
4065 if (i->output_section != NULL
4066 && i->output_section->owner == link_info.output_bfd)
4067 addr = i->output_section->vma + i->output_offset;
4068 else
4069 {
4070 addr = print_dot;
4071 if (!is_discarded)
4072 size = 0;
4073 }
4074
4075 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4076
4077 if (size != i->rawsize && i->rawsize != 0)
4078 {
4079 len = SECTION_NAME_MAP_LENGTH + 3;
4080#ifdef BFD64
4081 len += 16;
4082#else
4083 len += 8;
4084#endif
4085 while (len > 0)
4086 {
4087 print_space ();
4088 --len;
4089 }
4090
4091 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4092 }
4093
4094 if (i->output_section != NULL
4095 && i->output_section->owner == link_info.output_bfd)
4096 {
4097 if (link_info.reduce_memory_overheads)
4098 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4099 else
4100 print_all_symbols (i);
4101
4102 /* Update print_dot, but make sure that we do not move it
4103 backwards - this could happen if we have overlays and a
4104 later overlay is shorter than an earier one. */
4105 if (addr + TO_ADDR (size) > print_dot)
4106 print_dot = addr + TO_ADDR (size);
4107 }
4108}
4109
4110static void
4111print_fill_statement (lang_fill_statement_type *fill)
4112{
4113 size_t size;
4114 unsigned char *p;
4115 fputs (" FILL mask 0x", config.map_file);
4116 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4117 fprintf (config.map_file, "%02x", *p);
4118 fputs ("\n", config.map_file);
4119}
4120
4121static void
4122print_data_statement (lang_data_statement_type *data)
4123{
4124 int i;
4125 bfd_vma addr;
4126 bfd_size_type size;
4127 const char *name;
4128
4129 init_opb ();
4130 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4131 print_space ();
4132
4133 addr = data->output_offset;
4134 if (data->output_section != NULL)
4135 addr += data->output_section->vma;
4136
4137 switch (data->type)
4138 {
4139 default:
4140 abort ();
4141 case BYTE:
4142 size = BYTE_SIZE;
4143 name = "BYTE";
4144 break;
4145 case SHORT:
4146 size = SHORT_SIZE;
4147 name = "SHORT";
4148 break;
4149 case LONG:
4150 size = LONG_SIZE;
4151 name = "LONG";
4152 break;
4153 case QUAD:
4154 size = QUAD_SIZE;
4155 name = "QUAD";
4156 break;
4157 case SQUAD:
4158 size = QUAD_SIZE;
4159 name = "SQUAD";
4160 break;
4161 }
4162
4163 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4164
4165 if (data->exp->type.node_class != etree_value)
4166 {
4167 print_space ();
4168 exp_print_tree (data->exp);
4169 }
4170
4171 print_nl ();
4172
4173 print_dot = addr + TO_ADDR (size);
4174}
4175
4176/* Print an address statement. These are generated by options like
4177 -Ttext. */
4178
4179static void
4180print_address_statement (lang_address_statement_type *address)
4181{
4182 minfo (_("Address of section %s set to "), address->section_name);
4183 exp_print_tree (address->address);
4184 print_nl ();
4185}
4186
4187/* Print a reloc statement. */
4188
4189static void
4190print_reloc_statement (lang_reloc_statement_type *reloc)
4191{
4192 int i;
4193 bfd_vma addr;
4194 bfd_size_type size;
4195
4196 init_opb ();
4197 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4198 print_space ();
4199
4200 addr = reloc->output_offset;
4201 if (reloc->output_section != NULL)
4202 addr += reloc->output_section->vma;
4203
4204 size = bfd_get_reloc_size (reloc->howto);
4205
4206 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4207
4208 if (reloc->name != NULL)
4209 minfo ("%s+", reloc->name);
4210 else
4211 minfo ("%s+", reloc->section->name);
4212
4213 exp_print_tree (reloc->addend_exp);
4214
4215 print_nl ();
4216
4217 print_dot = addr + TO_ADDR (size);
4218}
4219
4220static void
4221print_padding_statement (lang_padding_statement_type *s)
4222{
4223 int len;
4224 bfd_vma addr;
4225
4226 init_opb ();
4227 minfo (" *fill*");
4228
4229 len = sizeof " *fill*" - 1;
4230 while (len < SECTION_NAME_MAP_LENGTH)
4231 {
4232 print_space ();
4233 ++len;
4234 }
4235
4236 addr = s->output_offset;
4237 if (s->output_section != NULL)
4238 addr += s->output_section->vma;
4239 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4240
4241 if (s->fill->size != 0)
4242 {
4243 size_t size;
4244 unsigned char *p;
4245 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4246 fprintf (config.map_file, "%02x", *p);
4247 }
4248
4249 print_nl ();
4250
4251 print_dot = addr + TO_ADDR (s->size);
4252}
4253
4254static void
4255print_wild_statement (lang_wild_statement_type *w,
4256 lang_output_section_statement_type *os)
4257{
4258 struct wildcard_list *sec;
4259
4260 print_space ();
4261
4262 if (w->filenames_sorted)
4263 minfo ("SORT(");
4264 if (w->filename != NULL)
4265 minfo ("%s", w->filename);
4266 else
4267 minfo ("*");
4268 if (w->filenames_sorted)
4269 minfo (")");
4270
4271 minfo ("(");
4272 for (sec = w->section_list; sec; sec = sec->next)
4273 {
4274 if (sec->spec.sorted)
4275 minfo ("SORT(");
4276 if (sec->spec.exclude_name_list != NULL)
4277 {
4278 name_list *tmp;
4279 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4280 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4281 minfo (" %s", tmp->name);
4282 minfo (") ");
4283 }
4284 if (sec->spec.name != NULL)
4285 minfo ("%s", sec->spec.name);
4286 else
4287 minfo ("*");
4288 if (sec->spec.sorted)
4289 minfo (")");
4290 if (sec->next)
4291 minfo (" ");
4292 }
4293 minfo (")");
4294
4295 print_nl ();
4296
4297 print_statement_list (w->children.head, os);
4298}
4299
4300/* Print a group statement. */
4301
4302static void
4303print_group (lang_group_statement_type *s,
4304 lang_output_section_statement_type *os)
4305{
4306 fprintf (config.map_file, "START GROUP\n");
4307 print_statement_list (s->children.head, os);
4308 fprintf (config.map_file, "END GROUP\n");
4309}
4310
4311/* Print the list of statements in S.
4312 This can be called for any statement type. */
4313
4314static void
4315print_statement_list (lang_statement_union_type *s,
4316 lang_output_section_statement_type *os)
4317{
4318 while (s != NULL)
4319 {
4320 print_statement (s, os);
4321 s = s->header.next;
4322 }
4323}
4324
4325/* Print the first statement in statement list S.
4326 This can be called for any statement type. */
4327
4328static void
4329print_statement (lang_statement_union_type *s,
4330 lang_output_section_statement_type *os)
4331{
4332 switch (s->header.type)
4333 {
4334 default:
4335 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4336 FAIL ();
4337 break;
4338 case lang_constructors_statement_enum:
4339 if (constructor_list.head != NULL)
4340 {
4341 if (constructors_sorted)
4342 minfo (" SORT (CONSTRUCTORS)\n");
4343 else
4344 minfo (" CONSTRUCTORS\n");
4345 print_statement_list (constructor_list.head, os);
4346 }
4347 break;
4348 case lang_wild_statement_enum:
4349 print_wild_statement (&s->wild_statement, os);
4350 break;
4351 case lang_address_statement_enum:
4352 print_address_statement (&s->address_statement);
4353 break;
4354 case lang_object_symbols_statement_enum:
4355 minfo (" CREATE_OBJECT_SYMBOLS\n");
4356 break;
4357 case lang_fill_statement_enum:
4358 print_fill_statement (&s->fill_statement);
4359 break;
4360 case lang_data_statement_enum:
4361 print_data_statement (&s->data_statement);
4362 break;
4363 case lang_reloc_statement_enum:
4364 print_reloc_statement (&s->reloc_statement);
4365 break;
4366 case lang_input_section_enum:
4367 print_input_section (s->input_section.section, FALSE);
4368 break;
4369 case lang_padding_statement_enum:
4370 print_padding_statement (&s->padding_statement);
4371 break;
4372 case lang_output_section_statement_enum:
4373 print_output_section_statement (&s->output_section_statement);
4374 break;
4375 case lang_assignment_statement_enum:
4376 print_assignment (&s->assignment_statement, os);
4377 break;
4378 case lang_target_statement_enum:
4379 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4380 break;
4381 case lang_output_statement_enum:
4382 minfo ("OUTPUT(%s", s->output_statement.name);
4383 if (output_target != NULL)
4384 minfo (" %s", output_target);
4385 minfo (")\n");
4386 break;
4387 case lang_input_statement_enum:
4388 print_input_statement (&s->input_statement);
4389 break;
4390 case lang_group_statement_enum:
4391 print_group (&s->group_statement, os);
4392 break;
4393 case lang_insert_statement_enum:
4394 minfo ("INSERT %s %s\n",
4395 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4396 s->insert_statement.where);
4397 break;
4398 }
4399}
4400
4401static void
4402print_statements (void)
4403{
4404 print_statement_list (statement_list.head, abs_output_section);
4405}
4406
4407/* Print the first N statements in statement list S to STDERR.
4408 If N == 0, nothing is printed.
4409 If N < 0, the entire list is printed.
4410 Intended to be called from GDB. */
4411
4412void
4413dprint_statement (lang_statement_union_type *s, int n)
4414{
4415 FILE *map_save = config.map_file;
4416
4417 config.map_file = stderr;
4418
4419 if (n < 0)
4420 print_statement_list (s, abs_output_section);
4421 else
4422 {
4423 while (s && --n >= 0)
4424 {
4425 print_statement (s, abs_output_section);
4426 s = s->header.next;
4427 }
4428 }
4429
4430 config.map_file = map_save;
4431}
4432
4433static void
4434insert_pad (lang_statement_union_type **ptr,
4435 fill_type *fill,
4436 unsigned int alignment_needed,
4437 asection *output_section,
4438 bfd_vma dot)
4439{
4440 static fill_type zero_fill = { 1, { 0 } };
4441 lang_statement_union_type *pad = NULL;
4442
4443 if (ptr != &statement_list.head)
4444 pad = ((lang_statement_union_type *)
4445 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4446 if (pad != NULL
4447 && pad->header.type == lang_padding_statement_enum
4448 && pad->padding_statement.output_section == output_section)
4449 {
4450 /* Use the existing pad statement. */
4451 }
4452 else if ((pad = *ptr) != NULL
4453 && pad->header.type == lang_padding_statement_enum
4454 && pad->padding_statement.output_section == output_section)
4455 {
4456 /* Use the existing pad statement. */
4457 }
4458 else
4459 {
4460 /* Make a new padding statement, linked into existing chain. */
4461 pad = (lang_statement_union_type *)
4462 stat_alloc (sizeof (lang_padding_statement_type));
4463 pad->header.next = *ptr;
4464 *ptr = pad;
4465 pad->header.type = lang_padding_statement_enum;
4466 pad->padding_statement.output_section = output_section;
4467 if (fill == NULL)
4468 fill = &zero_fill;
4469 pad->padding_statement.fill = fill;
4470 }
4471 pad->padding_statement.output_offset = dot - output_section->vma;
4472 pad->padding_statement.size = alignment_needed;
4473 output_section->size += alignment_needed;
4474}
4475
4476/* Work out how much this section will move the dot point. */
4477
4478static bfd_vma
4479size_input_section
4480 (lang_statement_union_type **this_ptr,
4481 lang_output_section_statement_type *output_section_statement,
4482 fill_type *fill,
4483 bfd_vma dot)
4484{
4485 lang_input_section_type *is = &((*this_ptr)->input_section);
4486 asection *i = is->section;
4487
4488 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4489 && (i->flags & SEC_EXCLUDE) == 0)
4490 {
4491 unsigned int alignment_needed;
4492 asection *o;
4493
4494 /* Align this section first to the input sections requirement,
4495 then to the output section's requirement. If this alignment
4496 is greater than any seen before, then record it too. Perform
4497 the alignment by inserting a magic 'padding' statement. */
4498
4499 if (output_section_statement->subsection_alignment != -1)
4500 i->alignment_power = output_section_statement->subsection_alignment;
4501
4502 o = output_section_statement->bfd_section;
4503 if (o->alignment_power < i->alignment_power)
4504 o->alignment_power = i->alignment_power;
4505
4506 alignment_needed = align_power (dot, i->alignment_power) - dot;
4507
4508 if (alignment_needed != 0)
4509 {
4510 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4511 dot += alignment_needed;
4512 }
4513
4514 /* Remember where in the output section this input section goes. */
4515
4516 i->output_offset = dot - o->vma;
4517
4518 /* Mark how big the output section must be to contain this now. */
4519 dot += TO_ADDR (i->size);
4520 o->size = TO_SIZE (dot - o->vma);
4521 }
4522 else
4523 {
4524 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4525 }
4526
4527 return dot;
4528}
4529
4530static int
4531sort_sections_by_lma (const void *arg1, const void *arg2)
4532{
4533 const asection *sec1 = *(const asection **) arg1;
4534 const asection *sec2 = *(const asection **) arg2;
4535
4536 if (bfd_section_lma (sec1->owner, sec1)
4537 < bfd_section_lma (sec2->owner, sec2))
4538 return -1;
4539 else if (bfd_section_lma (sec1->owner, sec1)
4540 > bfd_section_lma (sec2->owner, sec2))
4541 return 1;
4542 else if (sec1->id < sec2->id)
4543 return -1;
4544 else if (sec1->id > sec2->id)
4545 return 1;
4546
4547 return 0;
4548}
4549
4550#define IGNORE_SECTION(s) \
4551 ((s->flags & SEC_NEVER_LOAD) != 0 \
4552 || (s->flags & SEC_ALLOC) == 0 \
4553 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4554 && (s->flags & SEC_LOAD) == 0))
4555
4556/* Check to see if any allocated sections overlap with other allocated
4557 sections. This can happen if a linker script specifies the output
4558 section addresses of the two sections. Also check whether any memory
4559 region has overflowed. */
4560
4561static void
4562lang_check_section_addresses (void)
4563{
4564 asection *s, *p;
4565 asection **sections, **spp;
4566 unsigned int count;
4567 bfd_vma s_start;
4568 bfd_vma s_end;
4569 bfd_vma p_start;
4570 bfd_vma p_end;
4571 bfd_size_type amt;
4572 lang_memory_region_type *m;
4573
4574 if (bfd_count_sections (link_info.output_bfd) <= 1)
4575 return;
4576
4577 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4578 sections = (asection **) xmalloc (amt);
4579
4580 /* Scan all sections in the output list. */
4581 count = 0;
4582 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4583 {
4584 /* Only consider loadable sections with real contents. */
4585 if ((s->flags & SEC_NEVER_LOAD)
4586 || !(s->flags & SEC_LOAD)
4587 || !(s->flags & SEC_ALLOC)
4588 || s->size == 0)
4589 continue;
4590
4591 sections[count] = s;
4592 count++;
4593 }
4594
4595 if (count <= 1)
4596 return;
4597
4598 qsort (sections, (size_t) count, sizeof (asection *),
4599 sort_sections_by_lma);
4600
4601 spp = sections;
4602 s = *spp++;
4603 s_start = s->lma;
4604 s_end = s_start + TO_ADDR (s->size) - 1;
4605 for (count--; count; count--)
4606 {
4607 /* We must check the sections' LMA addresses not their VMA
4608 addresses because overlay sections can have overlapping VMAs
4609 but they must have distinct LMAs. */
4610 p = s;
4611 p_start = s_start;
4612 p_end = s_end;
4613 s = *spp++;
4614 s_start = s->lma;
4615 s_end = s_start + TO_ADDR (s->size) - 1;
4616
4617 /* Look for an overlap. We have sorted sections by lma, so we
4618 know that s_start >= p_start. Besides the obvious case of
4619 overlap when the current section starts before the previous
4620 one ends, we also must have overlap if the previous section
4621 wraps around the address space. */
4622 if (s_start <= p_end
4623 || p_end < p_start)
4624 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4625 s->name, s_start, s_end, p->name, p_start, p_end);
4626 }
4627
4628 free (sections);
4629
4630 /* If any memory region has overflowed, report by how much.
4631 We do not issue this diagnostic for regions that had sections
4632 explicitly placed outside their bounds; os_region_check's
4633 diagnostics are adequate for that case.
4634
4635 FIXME: It is conceivable that m->current - (m->origin + m->length)
4636 might overflow a 32-bit integer. There is, alas, no way to print
4637 a bfd_vma quantity in decimal. */
4638 for (m = lang_memory_region_list; m; m = m->next)
4639 if (m->had_full_message)
4640 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4641 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4642
4643}
4644
4645/* Make sure the new address is within the region. We explicitly permit the
4646 current address to be at the exact end of the region when the address is
4647 non-zero, in case the region is at the end of addressable memory and the
4648 calculation wraps around. */
4649
4650static void
4651os_region_check (lang_output_section_statement_type *os,
4652 lang_memory_region_type *region,
4653 etree_type *tree,
4654 bfd_vma rbase)
4655{
4656 if ((region->current < region->origin
4657 || (region->current - region->origin > region->length))
4658 && ((region->current != region->origin + region->length)
4659 || rbase == 0))
4660 {
4661 if (tree != NULL)
4662 {
4663 einfo (_("%X%P: address 0x%v of %B section `%s'"
4664 " is not within region `%s'\n"),
4665 region->current,
4666 os->bfd_section->owner,
4667 os->bfd_section->name,
4668 region->name_list.name);
4669 }
4670 else if (!region->had_full_message)
4671 {
4672 region->had_full_message = TRUE;
4673
4674 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4675 os->bfd_section->owner,
4676 os->bfd_section->name,
4677 region->name_list.name);
4678 }
4679 }
4680}
4681
4682/* Set the sizes for all the output sections. */
4683
4684static bfd_vma
4685lang_size_sections_1
4686 (lang_statement_union_type **prev,
4687 lang_output_section_statement_type *output_section_statement,
4688 fill_type *fill,
4689 bfd_vma dot,
4690 bfd_boolean *relax,
4691 bfd_boolean check_regions)
4692{
4693 lang_statement_union_type *s;
4694
4695 /* Size up the sections from their constituent parts. */
4696 for (s = *prev; s != NULL; s = s->header.next)
4697 {
4698 switch (s->header.type)
4699 {
4700 case lang_output_section_statement_enum:
4701 {
4702 bfd_vma newdot, after;
4703 lang_output_section_statement_type *os;
4704 lang_memory_region_type *r;
4705
4706 os = &s->output_section_statement;
4707 /* FIXME: We shouldn't need to zero section vmas for ld -r
4708 here, in lang_insert_orphan, or in the default linker scripts.
4709 This is covering for coff backend linker bugs. See PR6945. */
4710 if (os->addr_tree == NULL
4711 && link_info.relocatable
4712 && (bfd_get_flavour (link_info.output_bfd)
4713 == bfd_target_coff_flavour))
4714 os->addr_tree = exp_intop (0);
4715 if (os->addr_tree != NULL)
4716 {
4717 os->processed_vma = FALSE;
4718 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4719
4720 if (expld.result.valid_p)
4721 dot = expld.result.value + expld.result.section->vma;
4722 else if (expld.phase != lang_mark_phase_enum)
4723 einfo (_("%F%S: non constant or forward reference"
4724 " address expression for section %s\n"),
4725 os->name);
4726 }
4727
4728 if (os->bfd_section == NULL)
4729 /* This section was removed or never actually created. */
4730 break;
4731
4732 /* If this is a COFF shared library section, use the size and
4733 address from the input section. FIXME: This is COFF
4734 specific; it would be cleaner if there were some other way
4735 to do this, but nothing simple comes to mind. */
4736 if (((bfd_get_flavour (link_info.output_bfd)
4737 == bfd_target_ecoff_flavour)
4738 || (bfd_get_flavour (link_info.output_bfd)
4739 == bfd_target_coff_flavour))
4740 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4741 {
4742 asection *input;
4743
4744 if (os->children.head == NULL
4745 || os->children.head->header.next != NULL
4746 || (os->children.head->header.type
4747 != lang_input_section_enum))
4748 einfo (_("%P%X: Internal error on COFF shared library"
4749 " section %s\n"), os->name);
4750
4751 input = os->children.head->input_section.section;
4752 bfd_set_section_vma (os->bfd_section->owner,
4753 os->bfd_section,
4754 bfd_section_vma (input->owner, input));
4755 os->bfd_section->size = input->size;
4756 break;
4757 }
4758
4759 newdot = dot;
4760 if (bfd_is_abs_section (os->bfd_section))
4761 {
4762 /* No matter what happens, an abs section starts at zero. */
4763 ASSERT (os->bfd_section->vma == 0);
4764 }
4765 else
4766 {
4767 int align;
4768
4769 if (os->addr_tree == NULL)
4770 {
4771 /* No address specified for this section, get one
4772 from the region specification. */
4773 if (os->region == NULL
4774 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4775 && os->region->name_list.name[0] == '*'
4776 && strcmp (os->region->name_list.name,
4777 DEFAULT_MEMORY_REGION) == 0))
4778 {
4779 os->region = lang_memory_default (os->bfd_section);
4780 }
4781
4782 /* If a loadable section is using the default memory
4783 region, and some non default memory regions were
4784 defined, issue an error message. */
4785 if (!os->ignored
4786 && !IGNORE_SECTION (os->bfd_section)
4787 && ! link_info.relocatable
4788 && check_regions
4789 && strcmp (os->region->name_list.name,
4790 DEFAULT_MEMORY_REGION) == 0
4791 && lang_memory_region_list != NULL
4792 && (strcmp (lang_memory_region_list->name_list.name,
4793 DEFAULT_MEMORY_REGION) != 0
4794 || lang_memory_region_list->next != NULL)
4795 && expld.phase != lang_mark_phase_enum)
4796 {
4797 /* By default this is an error rather than just a
4798 warning because if we allocate the section to the
4799 default memory region we can end up creating an
4800 excessively large binary, or even seg faulting when
4801 attempting to perform a negative seek. See
4802 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4803 for an example of this. This behaviour can be
4804 overridden by the using the --no-check-sections
4805 switch. */
4806 if (command_line.check_section_addresses)
4807 einfo (_("%P%F: error: no memory region specified"
4808 " for loadable section `%s'\n"),
4809 bfd_get_section_name (link_info.output_bfd,
4810 os->bfd_section));
4811 else
4812 einfo (_("%P: warning: no memory region specified"
4813 " for loadable section `%s'\n"),
4814 bfd_get_section_name (link_info.output_bfd,
4815 os->bfd_section));
4816 }
4817
4818 newdot = os->region->current;
4819 align = os->bfd_section->alignment_power;
4820 }
4821 else
4822 align = os->section_alignment;
4823
4824 /* Align to what the section needs. */
4825 if (align > 0)
4826 {
4827 bfd_vma savedot = newdot;
4828 newdot = align_power (newdot, align);
4829
4830 if (newdot != savedot
4831 && (config.warn_section_align
4832 || os->addr_tree != NULL)
4833 && expld.phase != lang_mark_phase_enum)
4834 einfo (_("%P: warning: changing start of section"
4835 " %s by %lu bytes\n"),
4836 os->name, (unsigned long) (newdot - savedot));
4837 }
4838
4839 bfd_set_section_vma (0, os->bfd_section, newdot);
4840
4841 os->bfd_section->output_offset = 0;
4842 }
4843
4844 lang_size_sections_1 (&os->children.head, os,
4845 os->fill, newdot, relax, check_regions);
4846
4847 os->processed_vma = TRUE;
4848
4849 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4850 /* Except for some special linker created sections,
4851 no output section should change from zero size
4852 after strip_excluded_output_sections. A non-zero
4853 size on an ignored section indicates that some
4854 input section was not sized early enough. */
4855 ASSERT (os->bfd_section->size == 0);
4856 else
4857 {
4858 dot = os->bfd_section->vma;
4859
4860 /* Put the section within the requested block size, or
4861 align at the block boundary. */
4862 after = ((dot
4863 + TO_ADDR (os->bfd_section->size)
4864 + os->block_value - 1)
4865 & - (bfd_vma) os->block_value);
4866
4867 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
4868 }
4869
4870 /* Set section lma. */
4871 r = os->region;
4872 if (r == NULL)
4873 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
4874
4875 if (os->load_base)
4876 {
4877 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
4878 os->bfd_section->lma = lma;
4879 }
4880 else if (os->lma_region != NULL)
4881 {
4882 bfd_vma lma = os->lma_region->current;
4883
4884 if (os->section_alignment != -1)
4885 lma = align_power (lma, os->section_alignment);
4886 os->bfd_section->lma = lma;
4887 }
4888 else if (r->last_os != NULL
4889 && (os->bfd_section->flags & SEC_ALLOC) != 0)
4890 {
4891 bfd_vma lma;
4892 asection *last;
4893
4894 last = r->last_os->output_section_statement.bfd_section;
4895
4896 /* A backwards move of dot should be accompanied by
4897 an explicit assignment to the section LMA (ie.
4898 os->load_base set) because backwards moves can
4899 create overlapping LMAs. */
4900 if (dot < last->vma
4901 && os->bfd_section->size != 0
4902 && dot + os->bfd_section->size <= last->vma)
4903 {
4904 /* If dot moved backwards then leave lma equal to
4905 vma. This is the old default lma, which might
4906 just happen to work when the backwards move is
4907 sufficiently large. Nag if this changes anything,
4908 so people can fix their linker scripts. */
4909
4910 if (last->vma != last->lma)
4911 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
4912 os->name);
4913 }
4914 else
4915 {
4916 /* If this is an overlay, set the current lma to that
4917 at the end of the previous section. */
4918 if (os->sectype == overlay_section)
4919 lma = last->lma + last->size;
4920
4921 /* Otherwise, keep the same lma to vma relationship
4922 as the previous section. */
4923 else
4924 lma = dot + last->lma - last->vma;
4925
4926 if (os->section_alignment != -1)
4927 lma = align_power (lma, os->section_alignment);
4928 os->bfd_section->lma = lma;
4929 }
4930 }
4931 os->processed_lma = TRUE;
4932
4933 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4934 break;
4935
4936 /* Keep track of normal sections using the default
4937 lma region. We use this to set the lma for
4938 following sections. Overlays or other linker
4939 script assignment to lma might mean that the
4940 default lma == vma is incorrect.
4941 To avoid warnings about dot moving backwards when using
4942 -Ttext, don't start tracking sections until we find one
4943 of non-zero size or with lma set differently to vma. */
4944 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
4945 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
4946 && (os->bfd_section->flags & SEC_ALLOC) != 0
4947 && (os->bfd_section->size != 0
4948 || (r->last_os == NULL
4949 && os->bfd_section->vma != os->bfd_section->lma)
4950 || (r->last_os != NULL
4951 && dot >= (r->last_os->output_section_statement
4952 .bfd_section->vma)))
4953 && os->lma_region == NULL
4954 && !link_info.relocatable)
4955 r->last_os = s;
4956
4957 /* .tbss sections effectively have zero size. */
4958 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
4959 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
4960 || link_info.relocatable)
4961 dot += TO_ADDR (os->bfd_section->size);
4962
4963 if (os->update_dot_tree != 0)
4964 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
4965
4966 /* Update dot in the region ?
4967 We only do this if the section is going to be allocated,
4968 since unallocated sections do not contribute to the region's
4969 overall size in memory.
4970
4971 If the SEC_NEVER_LOAD bit is not set, it will affect the
4972 addresses of sections after it. We have to update
4973 dot. */
4974 if (os->region != NULL
4975 && ((os->bfd_section->flags & SEC_NEVER_LOAD) == 0
4976 || (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))))
4977 {
4978 os->region->current = dot;
4979
4980 if (check_regions)
4981 /* Make sure the new address is within the region. */
4982 os_region_check (os, os->region, os->addr_tree,
4983 os->bfd_section->vma);
4984
4985 if (os->lma_region != NULL && os->lma_region != os->region
4986 && (os->bfd_section->flags & SEC_LOAD))
4987 {
4988 os->lma_region->current
4989 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
4990
4991 if (check_regions)
4992 os_region_check (os, os->lma_region, NULL,
4993 os->bfd_section->lma);
4994 }
4995 }
4996 }
4997 break;
4998
4999 case lang_constructors_statement_enum:
5000 dot = lang_size_sections_1 (&constructor_list.head,
5001 output_section_statement,
5002 fill, dot, relax, check_regions);
5003 break;
5004
5005 case lang_data_statement_enum:
5006 {
5007 unsigned int size = 0;
5008
5009 s->data_statement.output_offset =
5010 dot - output_section_statement->bfd_section->vma;
5011 s->data_statement.output_section =
5012 output_section_statement->bfd_section;
5013
5014 /* We might refer to provided symbols in the expression, and
5015 need to mark them as needed. */
5016 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5017
5018 switch (s->data_statement.type)
5019 {
5020 default:
5021 abort ();
5022 case QUAD:
5023 case SQUAD:
5024 size = QUAD_SIZE;
5025 break;
5026 case LONG:
5027 size = LONG_SIZE;
5028 break;
5029 case SHORT:
5030 size = SHORT_SIZE;
5031 break;
5032 case BYTE:
5033 size = BYTE_SIZE;
5034 break;
5035 }
5036 if (size < TO_SIZE ((unsigned) 1))
5037 size = TO_SIZE ((unsigned) 1);
5038 dot += TO_ADDR (size);
5039 output_section_statement->bfd_section->size += size;
5040 }
5041 break;
5042
5043 case lang_reloc_statement_enum:
5044 {
5045 int size;
5046
5047 s->reloc_statement.output_offset =
5048 dot - output_section_statement->bfd_section->vma;
5049 s->reloc_statement.output_section =
5050 output_section_statement->bfd_section;
5051 size = bfd_get_reloc_size (s->reloc_statement.howto);
5052 dot += TO_ADDR (size);
5053 output_section_statement->bfd_section->size += size;
5054 }
5055 break;
5056
5057 case lang_wild_statement_enum:
5058 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5059 output_section_statement,
5060 fill, dot, relax, check_regions);
5061 break;
5062
5063 case lang_object_symbols_statement_enum:
5064 link_info.create_object_symbols_section =
5065 output_section_statement->bfd_section;
5066 break;
5067
5068 case lang_output_statement_enum:
5069 case lang_target_statement_enum:
5070 break;
5071
5072 case lang_input_section_enum:
5073 {
5074 asection *i;
5075
5076 i = s->input_section.section;
5077 if (relax)
5078 {
5079 bfd_boolean again;
5080
5081 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5082 einfo (_("%P%F: can't relax section: %E\n"));
5083 if (again)
5084 *relax = TRUE;
5085 }
5086 dot = size_input_section (prev, output_section_statement,
5087 output_section_statement->fill, dot);
5088 }
5089 break;
5090
5091 case lang_input_statement_enum:
5092 break;
5093
5094 case lang_fill_statement_enum:
5095 s->fill_statement.output_section =
5096 output_section_statement->bfd_section;
5097
5098 fill = s->fill_statement.fill;
5099 break;
5100
5101 case lang_assignment_statement_enum:
5102 {
5103 bfd_vma newdot = dot;
5104 etree_type *tree = s->assignment_statement.exp;
5105
5106 expld.dataseg.relro = exp_dataseg_relro_none;
5107
5108 exp_fold_tree (tree,
5109 output_section_statement->bfd_section,
5110 &newdot);
5111
5112 if (expld.dataseg.relro == exp_dataseg_relro_start)
5113 {
5114 if (!expld.dataseg.relro_start_stat)
5115 expld.dataseg.relro_start_stat = s;
5116 else
5117 {
5118 ASSERT (expld.dataseg.relro_start_stat == s);
5119 }
5120 }
5121 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5122 {
5123 if (!expld.dataseg.relro_end_stat)
5124 expld.dataseg.relro_end_stat = s;
5125 else
5126 {
5127 ASSERT (expld.dataseg.relro_end_stat == s);
5128 }
5129 }
5130 expld.dataseg.relro = exp_dataseg_relro_none;
5131
5132 /* This symbol is relative to this section. */
5133 if ((tree->type.node_class == etree_provided
5134 || tree->type.node_class == etree_assign)
5135 && (tree->assign.dst [0] != '.'
5136 || tree->assign.dst [1] != '\0'))
5137 output_section_statement->section_relative_symbol = 1;
5138
5139 if (!output_section_statement->ignored)
5140 {
5141 if (output_section_statement == abs_output_section)
5142 {
5143 /* If we don't have an output section, then just adjust
5144 the default memory address. */
5145 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5146 FALSE)->current = newdot;
5147 }
5148 else if (newdot != dot)
5149 {
5150 /* Insert a pad after this statement. We can't
5151 put the pad before when relaxing, in case the
5152 assignment references dot. */
5153 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5154 output_section_statement->bfd_section, dot);
5155
5156 /* Don't neuter the pad below when relaxing. */
5157 s = s->header.next;
5158
5159 /* If dot is advanced, this implies that the section
5160 should have space allocated to it, unless the
5161 user has explicitly stated that the section
5162 should never be loaded. */
5163 if (!(output_section_statement->flags & SEC_NEVER_LOAD))
5164 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5165 }
5166 dot = newdot;
5167 }
5168 }
5169 break;
5170
5171 case lang_padding_statement_enum:
5172 /* If this is the first time lang_size_sections is called,
5173 we won't have any padding statements. If this is the
5174 second or later passes when relaxing, we should allow
5175 padding to shrink. If padding is needed on this pass, it
5176 will be added back in. */
5177 s->padding_statement.size = 0;
5178
5179 /* Make sure output_offset is valid. If relaxation shrinks
5180 the section and this pad isn't needed, it's possible to
5181 have output_offset larger than the final size of the
5182 section. bfd_set_section_contents will complain even for
5183 a pad size of zero. */
5184 s->padding_statement.output_offset
5185 = dot - output_section_statement->bfd_section->vma;
5186 break;
5187
5188 case lang_group_statement_enum:
5189 dot = lang_size_sections_1 (&s->group_statement.children.head,
5190 output_section_statement,
5191 fill, dot, relax, check_regions);
5192 break;
5193
5194 case lang_insert_statement_enum:
5195 break;
5196
5197 /* We can only get here when relaxing is turned on. */
5198 case lang_address_statement_enum:
5199 break;
5200
5201 default:
5202 FAIL ();
5203 break;
5204 }
5205 prev = &s->header.next;
5206 }
5207 return dot;
5208}
5209
5210/* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5211 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5212 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5213 segments. We are allowed an opportunity to override this decision. */
5214
5215bfd_boolean
5216ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5217 bfd * abfd ATTRIBUTE_UNUSED,
5218 asection * current_section,
5219 asection * previous_section,
5220 bfd_boolean new_segment)
5221{
5222 lang_output_section_statement_type * cur;
5223 lang_output_section_statement_type * prev;
5224
5225 /* The checks below are only necessary when the BFD library has decided
5226 that the two sections ought to be placed into the same segment. */
5227 if (new_segment)
5228 return TRUE;
5229
5230 /* Paranoia checks. */
5231 if (current_section == NULL || previous_section == NULL)
5232 return new_segment;
5233
5234 /* Find the memory regions associated with the two sections.
5235 We call lang_output_section_find() here rather than scanning the list
5236 of output sections looking for a matching section pointer because if
5237 we have a large number of sections then a hash lookup is faster. */
5238 cur = lang_output_section_find (current_section->name);
5239 prev = lang_output_section_find (previous_section->name);
5240
5241 /* More paranoia. */
5242 if (cur == NULL || prev == NULL)
5243 return new_segment;
5244
5245 /* If the regions are different then force the sections to live in
5246 different segments. See the email thread starting at the following
5247 URL for the reasons why this is necessary:
5248 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5249 return cur->region != prev->region;
5250}
5251
5252void
5253one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5254{
5255 lang_statement_iteration++;
5256 lang_size_sections_1 (&statement_list.head, abs_output_section,
5257 0, 0, relax, check_regions);
5258}
5259
5260void
5261lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5262{
5263 expld.phase = lang_allocating_phase_enum;
5264 expld.dataseg.phase = exp_dataseg_none;
5265
5266 one_lang_size_sections_pass (relax, check_regions);
5267 if (expld.dataseg.phase == exp_dataseg_end_seen
5268 && link_info.relro && expld.dataseg.relro_end)
5269 {
5270 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5271 to put expld.dataseg.relro on a (common) page boundary. */
5272 bfd_vma min_base, old_base, relro_end, maxpage;
5273
5274 expld.dataseg.phase = exp_dataseg_relro_adjust;
5275 maxpage = expld.dataseg.maxpagesize;
5276 /* MIN_BASE is the absolute minimum address we are allowed to start the
5277 read-write segment (byte before will be mapped read-only). */
5278 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5279 /* OLD_BASE is the address for a feasible minimum address which will
5280 still not cause a data overlap inside MAXPAGE causing file offset skip
5281 by MAXPAGE. */
5282 old_base = expld.dataseg.base;
5283 expld.dataseg.base += (-expld.dataseg.relro_end
5284 & (expld.dataseg.pagesize - 1));
5285 /* Compute the expected PT_GNU_RELRO segment end. */
5286 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5287 & ~(expld.dataseg.pagesize - 1));
5288 if (min_base + maxpage < expld.dataseg.base)
5289 {
5290 expld.dataseg.base -= maxpage;
5291 relro_end -= maxpage;
5292 }
5293 lang_reset_memory_regions ();
5294 one_lang_size_sections_pass (relax, check_regions);
5295 if (expld.dataseg.relro_end > relro_end)
5296 {
5297 /* The alignment of sections between DATA_SEGMENT_ALIGN
5298 and DATA_SEGMENT_RELRO_END caused huge padding to be
5299 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5300 that the section alignments will fit in. */
5301 asection *sec;
5302 unsigned int max_alignment_power = 0;
5303
5304 /* Find maximum alignment power of sections between
5305 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5306 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5307 if (sec->vma >= expld.dataseg.base
5308 && sec->vma < expld.dataseg.relro_end
5309 && sec->alignment_power > max_alignment_power)
5310 max_alignment_power = sec->alignment_power;
5311
5312 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5313 {
5314 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5315 expld.dataseg.base += expld.dataseg.pagesize;
5316 expld.dataseg.base -= (1 << max_alignment_power);
5317 lang_reset_memory_regions ();
5318 one_lang_size_sections_pass (relax, check_regions);
5319 }
5320 }
5321 link_info.relro_start = expld.dataseg.base;
5322 link_info.relro_end = expld.dataseg.relro_end;
5323 }
5324 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5325 {
5326 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5327 a page could be saved in the data segment. */
5328 bfd_vma first, last;
5329
5330 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5331 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5332 if (first && last
5333 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5334 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5335 && first + last <= expld.dataseg.pagesize)
5336 {
5337 expld.dataseg.phase = exp_dataseg_adjust;
5338 lang_reset_memory_regions ();
5339 one_lang_size_sections_pass (relax, check_regions);
5340 }
5341 }
5342
5343 expld.phase = lang_final_phase_enum;
5344}
5345
5346/* Worker function for lang_do_assignments. Recursiveness goes here. */
5347
5348static bfd_vma
5349lang_do_assignments_1 (lang_statement_union_type *s,
5350 lang_output_section_statement_type *current_os,
5351 fill_type *fill,
5352 bfd_vma dot)
5353{
5354 for (; s != NULL; s = s->header.next)
5355 {
5356 switch (s->header.type)
5357 {
5358 case lang_constructors_statement_enum:
5359 dot = lang_do_assignments_1 (constructor_list.head,
5360 current_os, fill, dot);
5361 break;
5362
5363 case lang_output_section_statement_enum:
5364 {
5365 lang_output_section_statement_type *os;
5366
5367 os = &(s->output_section_statement);
5368 if (os->bfd_section != NULL && !os->ignored)
5369 {
5370 dot = os->bfd_section->vma;
5371
5372 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5373
5374 /* .tbss sections effectively have zero size. */
5375 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5376 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5377 || link_info.relocatable)
5378 dot += TO_ADDR (os->bfd_section->size);
5379
5380 if (os->update_dot_tree != NULL)
5381 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5382 }
5383 }
5384 break;
5385
5386 case lang_wild_statement_enum:
5387
5388 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5389 current_os, fill, dot);
5390 break;
5391
5392 case lang_object_symbols_statement_enum:
5393 case lang_output_statement_enum:
5394 case lang_target_statement_enum:
5395 break;
5396
5397 case lang_data_statement_enum:
5398 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5399 if (expld.result.valid_p)
5400 s->data_statement.value = (expld.result.value
5401 + expld.result.section->vma);
5402 else
5403 einfo (_("%F%P: invalid data statement\n"));
5404 {
5405 unsigned int size;
5406 switch (s->data_statement.type)
5407 {
5408 default:
5409 abort ();
5410 case QUAD:
5411 case SQUAD:
5412 size = QUAD_SIZE;
5413 break;
5414 case LONG:
5415 size = LONG_SIZE;
5416 break;
5417 case SHORT:
5418 size = SHORT_SIZE;
5419 break;
5420 case BYTE:
5421 size = BYTE_SIZE;
5422 break;
5423 }
5424 if (size < TO_SIZE ((unsigned) 1))
5425 size = TO_SIZE ((unsigned) 1);
5426 dot += TO_ADDR (size);
5427 }
5428 break;
5429
5430 case lang_reloc_statement_enum:
5431 exp_fold_tree (s->reloc_statement.addend_exp,
5432 bfd_abs_section_ptr, &dot);
5433 if (expld.result.valid_p)
5434 s->reloc_statement.addend_value = expld.result.value;
5435 else
5436 einfo (_("%F%P: invalid reloc statement\n"));
5437 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5438 break;
5439
5440 case lang_input_section_enum:
5441 {
5442 asection *in = s->input_section.section;
5443
5444 if ((in->flags & SEC_EXCLUDE) == 0)
5445 dot += TO_ADDR (in->size);
5446 }
5447 break;
5448
5449 case lang_input_statement_enum:
5450 break;
5451
5452 case lang_fill_statement_enum:
5453 fill = s->fill_statement.fill;
5454 break;
5455
5456 case lang_assignment_statement_enum:
5457 exp_fold_tree (s->assignment_statement.exp,
5458 current_os->bfd_section,
5459 &dot);
5460 break;
5461
5462 case lang_padding_statement_enum:
5463 dot += TO_ADDR (s->padding_statement.size);
5464 break;
5465
5466 case lang_group_statement_enum:
5467 dot = lang_do_assignments_1 (s->group_statement.children.head,
5468 current_os, fill, dot);
5469 break;
5470
5471 case lang_insert_statement_enum:
5472 break;
5473
5474 case lang_address_statement_enum:
5475 break;
5476
5477 default:
5478 FAIL ();
5479 break;
5480 }
5481 }
5482 return dot;
5483}
5484
5485void
5486lang_do_assignments (void)
5487{
5488 lang_statement_iteration++;
5489 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5490}
5491
5492/* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5493 operator .startof. (section_name), it produces an undefined symbol
5494 .startof.section_name. Similarly, when it sees
5495 .sizeof. (section_name), it produces an undefined symbol
5496 .sizeof.section_name. For all the output sections, we look for
5497 such symbols, and set them to the correct value. */
5498
5499static void
5500lang_set_startof (void)
5501{
5502 asection *s;
5503
5504 if (link_info.relocatable)
5505 return;
5506
5507 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5508 {
5509 const char *secname;
5510 char *buf;
5511 struct bfd_link_hash_entry *h;
5512
5513 secname = bfd_get_section_name (link_info.output_bfd, s);
5514 buf = (char *) xmalloc (10 + strlen (secname));
5515
5516 sprintf (buf, ".startof.%s", secname);
5517 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5518 if (h != NULL && h->type == bfd_link_hash_undefined)
5519 {
5520 h->type = bfd_link_hash_defined;
5521 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5522 h->u.def.section = bfd_abs_section_ptr;
5523 }
5524
5525 sprintf (buf, ".sizeof.%s", secname);
5526 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5527 if (h != NULL && h->type == bfd_link_hash_undefined)
5528 {
5529 h->type = bfd_link_hash_defined;
5530 h->u.def.value = TO_ADDR (s->size);
5531 h->u.def.section = bfd_abs_section_ptr;
5532 }
5533
5534 free (buf);
5535 }
5536}
5537
5538static void
5539lang_end (void)
5540{
5541 struct bfd_link_hash_entry *h;
5542 bfd_boolean warn;
5543
5544 if ((link_info.relocatable && !link_info.gc_sections)
5545 || (link_info.shared && !link_info.executable))
5546 warn = entry_from_cmdline;
5547 else
5548 warn = TRUE;
5549
5550 /* Force the user to specify a root when generating a relocatable with
5551 --gc-sections. */
5552 if (link_info.gc_sections && link_info.relocatable
5553 && (entry_symbol.name == NULL
5554 && ldlang_undef_chain_list_head == NULL))
5555 einfo (_("%P%F: gc-sections requires either an entry or "
5556 "an undefined symbol\n"));
5557
5558 if (entry_symbol.name == NULL)
5559 {
5560 /* No entry has been specified. Look for the default entry, but
5561 don't warn if we don't find it. */
5562 entry_symbol.name = entry_symbol_default;
5563 warn = FALSE;
5564 }
5565
5566 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5567 FALSE, FALSE, TRUE);
5568 if (h != NULL
5569 && (h->type == bfd_link_hash_defined
5570 || h->type == bfd_link_hash_defweak)
5571 && h->u.def.section->output_section != NULL)
5572 {
5573 bfd_vma val;
5574
5575 val = (h->u.def.value
5576 + bfd_get_section_vma (link_info.output_bfd,
5577 h->u.def.section->output_section)
5578 + h->u.def.section->output_offset);
5579 if (! bfd_set_start_address (link_info.output_bfd, val))
5580 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5581 }
5582 else
5583 {
5584 bfd_vma val;
5585 const char *send;
5586
5587 /* We couldn't find the entry symbol. Try parsing it as a
5588 number. */
5589 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5590 if (*send == '\0')
5591 {
5592 if (! bfd_set_start_address (link_info.output_bfd, val))
5593 einfo (_("%P%F: can't set start address\n"));
5594 }
5595 else
5596 {
5597 asection *ts;
5598
5599 /* Can't find the entry symbol, and it's not a number. Use
5600 the first address in the text section. */
5601 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5602 if (ts != NULL)
5603 {
5604 if (warn)
5605 einfo (_("%P: warning: cannot find entry symbol %s;"
5606 " defaulting to %V\n"),
5607 entry_symbol.name,
5608 bfd_get_section_vma (link_info.output_bfd, ts));
5609 if (!(bfd_set_start_address
5610 (link_info.output_bfd,
5611 bfd_get_section_vma (link_info.output_bfd, ts))))
5612 einfo (_("%P%F: can't set start address\n"));
5613 }
5614 else
5615 {
5616 if (warn)
5617 einfo (_("%P: warning: cannot find entry symbol %s;"
5618 " not setting start address\n"),
5619 entry_symbol.name);
5620 }
5621 }
5622 }
5623
5624 /* Don't bfd_hash_table_free (&lang_definedness_table);
5625 map file output may result in a call of lang_track_definedness. */
5626}
5627
5628/* This is a small function used when we want to ignore errors from
5629 BFD. */
5630
5631static void
5632ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5633{
5634 /* Don't do anything. */
5635}
5636
5637/* Check that the architecture of all the input files is compatible
5638 with the output file. Also call the backend to let it do any
5639 other checking that is needed. */
5640
5641static void
5642lang_check (void)
5643{
5644 lang_statement_union_type *file;
5645 bfd *input_bfd;
5646 const bfd_arch_info_type *compatible;
5647
5648 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5649 {
5650 input_bfd = file->input_statement.the_bfd;
5651 compatible
5652 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5653 command_line.accept_unknown_input_arch);
5654
5655 /* In general it is not possible to perform a relocatable
5656 link between differing object formats when the input
5657 file has relocations, because the relocations in the
5658 input format may not have equivalent representations in
5659 the output format (and besides BFD does not translate
5660 relocs for other link purposes than a final link). */
5661 if ((link_info.relocatable || link_info.emitrelocations)
5662 && (compatible == NULL
5663 || (bfd_get_flavour (input_bfd)
5664 != bfd_get_flavour (link_info.output_bfd)))
5665 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5666 {
5667 einfo (_("%P%F: Relocatable linking with relocations from"
5668 " format %s (%B) to format %s (%B) is not supported\n"),
5669 bfd_get_target (input_bfd), input_bfd,
5670 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5671 /* einfo with %F exits. */
5672 }
5673
5674 if (compatible == NULL)
5675 {
5676 if (command_line.warn_mismatch)
5677 einfo (_("%P%X: %s architecture of input file `%B'"
5678 " is incompatible with %s output\n"),
5679 bfd_printable_name (input_bfd), input_bfd,
5680 bfd_printable_name (link_info.output_bfd));
5681 }
5682 else if (bfd_count_sections (input_bfd))
5683 {
5684 /* If the input bfd has no contents, it shouldn't set the
5685 private data of the output bfd. */
5686
5687 bfd_error_handler_type pfn = NULL;
5688
5689 /* If we aren't supposed to warn about mismatched input
5690 files, temporarily set the BFD error handler to a
5691 function which will do nothing. We still want to call
5692 bfd_merge_private_bfd_data, since it may set up
5693 information which is needed in the output file. */
5694 if (! command_line.warn_mismatch)
5695 pfn = bfd_set_error_handler (ignore_bfd_errors);
5696 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5697 {
5698 if (command_line.warn_mismatch)
5699 einfo (_("%P%X: failed to merge target specific data"
5700 " of file %B\n"), input_bfd);
5701 }
5702 if (! command_line.warn_mismatch)
5703 bfd_set_error_handler (pfn);
5704 }
5705 }
5706}
5707
5708/* Look through all the global common symbols and attach them to the
5709 correct section. The -sort-common command line switch may be used
5710 to roughly sort the entries by alignment. */
5711
5712static void
5713lang_common (void)
5714{
5715 if (command_line.inhibit_common_definition)
5716 return;
5717 if (link_info.relocatable
5718 && ! command_line.force_common_definition)
5719 return;
5720
5721 if (! config.sort_common)
5722 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5723 else
5724 {
5725 unsigned int power;
5726
5727 if (config.sort_common == sort_descending)
5728 {
5729 for (power = 4; power > 0; power--)
5730 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5731
5732 power = 0;
5733 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5734 }
5735 else
5736 {
5737 for (power = 0; power <= 4; power++)
5738 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5739
5740 power = UINT_MAX;
5741 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5742 }
5743 }
5744}
5745
5746/* Place one common symbol in the correct section. */
5747
5748static bfd_boolean
5749lang_one_common (struct bfd_link_hash_entry *h, void *info)
5750{
5751 unsigned int power_of_two;
5752 bfd_vma size;
5753 asection *section;
5754
5755 if (h->type != bfd_link_hash_common)
5756 return TRUE;
5757
5758 size = h->u.c.size;
5759 power_of_two = h->u.c.p->alignment_power;
5760
5761 if (config.sort_common == sort_descending
5762 && power_of_two < *(unsigned int *) info)
5763 return TRUE;
5764 else if (config.sort_common == sort_ascending
5765 && power_of_two > *(unsigned int *) info)
5766 return TRUE;
5767
5768 section = h->u.c.p->section;
5769 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5770 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5771 h->root.string);
5772
5773 if (config.map_file != NULL)
5774 {
5775 static bfd_boolean header_printed;
5776 int len;
5777 char *name;
5778 char buf[50];
5779
5780 if (! header_printed)
5781 {
5782 minfo (_("\nAllocating common symbols\n"));
5783 minfo (_("Common symbol size file\n\n"));
5784 header_printed = TRUE;
5785 }
5786
5787 name = bfd_demangle (link_info.output_bfd, h->root.string,
5788 DMGL_ANSI | DMGL_PARAMS);
5789 if (name == NULL)
5790 {
5791 minfo ("%s", h->root.string);
5792 len = strlen (h->root.string);
5793 }
5794 else
5795 {
5796 minfo ("%s", name);
5797 len = strlen (name);
5798 free (name);
5799 }
5800
5801 if (len >= 19)
5802 {
5803 print_nl ();
5804 len = 0;
5805 }
5806 while (len < 20)
5807 {
5808 print_space ();
5809 ++len;
5810 }
5811
5812 minfo ("0x");
5813 if (size <= 0xffffffff)
5814 sprintf (buf, "%lx", (unsigned long) size);
5815 else
5816 sprintf_vma (buf, size);
5817 minfo ("%s", buf);
5818 len = strlen (buf);
5819
5820 while (len < 16)
5821 {
5822 print_space ();
5823 ++len;
5824 }
5825
5826 minfo ("%B\n", section->owner);
5827 }
5828
5829 return TRUE;
5830}
5831
5832/* Run through the input files and ensure that every input section has
5833 somewhere to go. If one is found without a destination then create
5834 an input request and place it into the statement tree. */
5835
5836static void
5837lang_place_orphans (void)
5838{
5839 LANG_FOR_EACH_INPUT_STATEMENT (file)
5840 {
5841 asection *s;
5842
5843 for (s = file->the_bfd->sections; s != NULL; s = s->next)
5844 {
5845 if (s->output_section == NULL)
5846 {
5847 /* This section of the file is not attached, root
5848 around for a sensible place for it to go. */
5849
5850 if (file->just_syms_flag)
5851 bfd_link_just_syms (file->the_bfd, s, &link_info);
5852 else if ((s->flags & SEC_EXCLUDE) != 0)
5853 s->output_section = bfd_abs_section_ptr;
5854 else if (strcmp (s->name, "COMMON") == 0)
5855 {
5856 /* This is a lonely common section which must have
5857 come from an archive. We attach to the section
5858 with the wildcard. */
5859 if (! link_info.relocatable
5860 || command_line.force_common_definition)
5861 {
5862 if (default_common_section == NULL)
5863 default_common_section
5864 = lang_output_section_statement_lookup (".bss", 0,
5865 TRUE);
5866 lang_add_section (&default_common_section->children, s,
5867 default_common_section);
5868 }
5869 }
5870 else
5871 {
5872 const char *name = s->name;
5873 int constraint = 0;
5874
5875 if (config.unique_orphan_sections
5876 || unique_section_p (s, NULL))
5877 constraint = SPECIAL;
5878
5879 if (!ldemul_place_orphan (s, name, constraint))
5880 {
5881 lang_output_section_statement_type *os;
5882 os = lang_output_section_statement_lookup (name,
5883 constraint,
5884 TRUE);
5885 lang_add_section (&os->children, s, os);
5886 }
5887 }
5888 }
5889 }
5890 }
5891}
5892
5893void
5894lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
5895{
5896 flagword *ptr_flags;
5897
5898 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
5899 while (*flags)
5900 {
5901 switch (*flags)
5902 {
5903 case 'A': case 'a':
5904 *ptr_flags |= SEC_ALLOC;
5905 break;
5906
5907 case 'R': case 'r':
5908 *ptr_flags |= SEC_READONLY;
5909 break;
5910
5911 case 'W': case 'w':
5912 *ptr_flags |= SEC_DATA;
5913 break;
5914
5915 case 'X': case 'x':
5916 *ptr_flags |= SEC_CODE;
5917 break;
5918
5919 case 'L': case 'l':
5920 case 'I': case 'i':
5921 *ptr_flags |= SEC_LOAD;
5922 break;
5923
5924 default:
5925 einfo (_("%P%F: invalid syntax in flags\n"));
5926 break;
5927 }
5928 flags++;
5929 }
5930}
5931
5932/* Call a function on each input file. This function will be called
5933 on an archive, but not on the elements. */
5934
5935void
5936lang_for_each_input_file (void (*func) (lang_input_statement_type *))
5937{
5938 lang_input_statement_type *f;
5939
5940 for (f = (lang_input_statement_type *) input_file_chain.head;
5941 f != NULL;
5942 f = (lang_input_statement_type *) f->next_real_file)
5943 func (f);
5944}
5945
5946/* Call a function on each file. The function will be called on all
5947 the elements of an archive which are included in the link, but will
5948 not be called on the archive file itself. */
5949
5950void
5951lang_for_each_file (void (*func) (lang_input_statement_type *))
5952{
5953 LANG_FOR_EACH_INPUT_STATEMENT (f)
5954 {
5955 func (f);
5956 }
5957}
5958
5959void
5960ldlang_add_file (lang_input_statement_type *entry)
5961{
5962 lang_statement_append (&file_chain,
5963 (lang_statement_union_type *) entry,
5964 &entry->next);
5965
5966 /* The BFD linker needs to have a list of all input BFDs involved in
5967 a link. */
5968 ASSERT (entry->the_bfd->link_next == NULL);
5969 ASSERT (entry->the_bfd != link_info.output_bfd);
5970
5971 *link_info.input_bfds_tail = entry->the_bfd;
5972 link_info.input_bfds_tail = &entry->the_bfd->link_next;
5973 entry->the_bfd->usrdata = entry;
5974 bfd_set_gp_size (entry->the_bfd, g_switch_value);
5975
5976 /* Look through the sections and check for any which should not be
5977 included in the link. We need to do this now, so that we can
5978 notice when the backend linker tries to report multiple
5979 definition errors for symbols which are in sections we aren't
5980 going to link. FIXME: It might be better to entirely ignore
5981 symbols which are defined in sections which are going to be
5982 discarded. This would require modifying the backend linker for
5983 each backend which might set the SEC_LINK_ONCE flag. If we do
5984 this, we should probably handle SEC_EXCLUDE in the same way. */
5985
5986 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
5987}
5988
5989void
5990lang_add_output (const char *name, int from_script)
5991{
5992 /* Make -o on command line override OUTPUT in script. */
5993 if (!had_output_filename || !from_script)
5994 {
5995 output_filename = name;
5996 had_output_filename = TRUE;
5997 }
5998}
5999
6000static lang_output_section_statement_type *current_section;
6001
6002static int
6003topower (int x)
6004{
6005 unsigned int i = 1;
6006 int l;
6007
6008 if (x < 0)
6009 return -1;
6010
6011 for (l = 0; l < 32; l++)
6012 {
6013 if (i >= (unsigned int) x)
6014 return l;
6015 i <<= 1;
6016 }
6017
6018 return 0;
6019}
6020
6021lang_output_section_statement_type *
6022lang_enter_output_section_statement (const char *output_section_statement_name,
6023 etree_type *address_exp,
6024 enum section_type sectype,
6025 etree_type *align,
6026 etree_type *subalign,
6027 etree_type *ebase,
6028 int constraint)
6029{
6030 lang_output_section_statement_type *os;
6031
6032 os = lang_output_section_statement_lookup (output_section_statement_name,
6033 constraint, TRUE);
6034 current_section = os;
6035
6036 if (os->addr_tree == NULL)
6037 {
6038 os->addr_tree = address_exp;
6039 }
6040 os->sectype = sectype;
6041 if (sectype != noload_section)
6042 os->flags = SEC_NO_FLAGS;
6043 else
6044 os->flags = SEC_NEVER_LOAD;
6045 os->block_value = 1;
6046
6047 /* Make next things chain into subchain of this. */
6048 push_stat_ptr (&os->children);
6049
6050 os->subsection_alignment =
6051 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6052 os->section_alignment =
6053 topower (exp_get_value_int (align, -1, "section alignment"));
6054
6055 os->load_base = ebase;
6056 return os;
6057}
6058
6059void
6060lang_final (void)
6061{
6062 lang_output_statement_type *new_stmt;
6063
6064 new_stmt = new_stat (lang_output_statement, stat_ptr);
6065 new_stmt->name = output_filename;
6066
6067}
6068
6069/* Reset the current counters in the regions. */
6070
6071void
6072lang_reset_memory_regions (void)
6073{
6074 lang_memory_region_type *p = lang_memory_region_list;
6075 asection *o;
6076 lang_output_section_statement_type *os;
6077
6078 for (p = lang_memory_region_list; p != NULL; p = p->next)
6079 {
6080 p->current = p->origin;
6081 p->last_os = NULL;
6082 }
6083
6084 for (os = &lang_output_section_statement.head->output_section_statement;
6085 os != NULL;
6086 os = os->next)
6087 {
6088 os->processed_vma = FALSE;
6089 os->processed_lma = FALSE;
6090 }
6091
6092 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6093 {
6094 /* Save the last size for possible use by bfd_relax_section. */
6095 o->rawsize = o->size;
6096 o->size = 0;
6097 }
6098}
6099
6100/* Worker for lang_gc_sections_1. */
6101
6102static void
6103gc_section_callback (lang_wild_statement_type *ptr,
6104 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6105 asection *section,
6106 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6107 void *data ATTRIBUTE_UNUSED)
6108{
6109 /* If the wild pattern was marked KEEP, the member sections
6110 should be as well. */
6111 if (ptr->keep_sections)
6112 section->flags |= SEC_KEEP;
6113}
6114
6115/* Iterate over sections marking them against GC. */
6116
6117static void
6118lang_gc_sections_1 (lang_statement_union_type *s)
6119{
6120 for (; s != NULL; s = s->header.next)
6121 {
6122 switch (s->header.type)
6123 {
6124 case lang_wild_statement_enum:
6125 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6126 break;
6127 case lang_constructors_statement_enum:
6128 lang_gc_sections_1 (constructor_list.head);
6129 break;
6130 case lang_output_section_statement_enum:
6131 lang_gc_sections_1 (s->output_section_statement.children.head);
6132 break;
6133 case lang_group_statement_enum:
6134 lang_gc_sections_1 (s->group_statement.children.head);
6135 break;
6136 default:
6137 break;
6138 }
6139 }
6140}
6141
6142static void
6143lang_gc_sections (void)
6144{
6145 /* Keep all sections so marked in the link script. */
6146
6147 lang_gc_sections_1 (statement_list.head);
6148
6149 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6150 the special case of debug info. (See bfd/stabs.c)
6151 Twiddle the flag here, to simplify later linker code. */
6152 if (link_info.relocatable)
6153 {
6154 LANG_FOR_EACH_INPUT_STATEMENT (f)
6155 {
6156 asection *sec;
6157 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6158 if ((sec->flags & SEC_DEBUGGING) == 0)
6159 sec->flags &= ~SEC_EXCLUDE;
6160 }
6161 }
6162
6163 if (link_info.gc_sections)
6164 bfd_gc_sections (link_info.output_bfd, &link_info);
6165}
6166
6167/* Worker for lang_find_relro_sections_1. */
6168
6169static void
6170find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6171 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6172 asection *section,
6173 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6174 void *data)
6175{
6176 /* Discarded, excluded and ignored sections effectively have zero
6177 size. */
6178 if (section->output_section != NULL
6179 && section->output_section->owner == link_info.output_bfd
6180 && (section->output_section->flags & SEC_EXCLUDE) == 0
6181 && !IGNORE_SECTION (section)
6182 && section->size != 0)
6183 {
6184 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6185 *has_relro_section = TRUE;
6186 }
6187}
6188
6189/* Iterate over sections for relro sections. */
6190
6191static void
6192lang_find_relro_sections_1 (lang_statement_union_type *s,
6193 bfd_boolean *has_relro_section)
6194{
6195 if (*has_relro_section)
6196 return;
6197
6198 for (; s != NULL; s = s->header.next)
6199 {
6200 if (s == expld.dataseg.relro_end_stat)
6201 break;
6202
6203 switch (s->header.type)
6204 {
6205 case lang_wild_statement_enum:
6206 walk_wild (&s->wild_statement,
6207 find_relro_section_callback,
6208 has_relro_section);
6209 break;
6210 case lang_constructors_statement_enum:
6211 lang_find_relro_sections_1 (constructor_list.head,
6212 has_relro_section);
6213 break;
6214 case lang_output_section_statement_enum:
6215 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6216 has_relro_section);
6217 break;
6218 case lang_group_statement_enum:
6219 lang_find_relro_sections_1 (s->group_statement.children.head,
6220 has_relro_section);
6221 break;
6222 default:
6223 break;
6224 }
6225 }
6226}
6227
6228static void
6229lang_find_relro_sections (void)
6230{
6231 bfd_boolean has_relro_section = FALSE;
6232
6233 /* Check all sections in the link script. */
6234
6235 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6236 &has_relro_section);
6237
6238 if (!has_relro_section)
6239 link_info.relro = FALSE;
6240}
6241
6242/* Relax all sections until bfd_relax_section gives up. */
6243
6244void
6245lang_relax_sections (bfd_boolean need_layout)
6246{
6247 if (RELAXATION_ENABLED)
6248 {
6249 /* We may need more than one relaxation pass. */
6250 int i = link_info.relax_pass;
6251
6252 /* The backend can use it to determine the current pass. */
6253 link_info.relax_pass = 0;
6254
6255 while (i--)
6256 {
6257 /* Keep relaxing until bfd_relax_section gives up. */
6258 bfd_boolean relax_again;
6259
6260 link_info.relax_trip = -1;
6261 do
6262 {
6263 link_info.relax_trip++;
6264
6265 /* Note: pe-dll.c does something like this also. If you find
6266 you need to change this code, you probably need to change
6267 pe-dll.c also. DJ */
6268
6269 /* Do all the assignments with our current guesses as to
6270 section sizes. */
6271 lang_do_assignments ();
6272
6273 /* We must do this after lang_do_assignments, because it uses
6274 size. */
6275 lang_reset_memory_regions ();
6276
6277 /* Perform another relax pass - this time we know where the
6278 globals are, so can make a better guess. */
6279 relax_again = FALSE;
6280 lang_size_sections (&relax_again, FALSE);
6281 }
6282 while (relax_again);
6283
6284 link_info.relax_pass++;
6285 }
6286 need_layout = TRUE;
6287 }
6288
6289 if (need_layout)
6290 {
6291 /* Final extra sizing to report errors. */
6292 lang_do_assignments ();
6293 lang_reset_memory_regions ();
6294 lang_size_sections (NULL, TRUE);
6295 }
6296}
6297
6298void
6299lang_process (void)
6300{
6301 /* Finalize dynamic list. */
6302 if (link_info.dynamic_list)
6303 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6304
6305 current_target = default_target;
6306
6307 /* Open the output file. */
6308 lang_for_each_statement (ldlang_open_output);
6309 init_opb ();
6310
6311 ldemul_create_output_section_statements ();
6312
6313 /* Add to the hash table all undefineds on the command line. */
6314 lang_place_undefineds ();
6315
6316 if (!bfd_section_already_linked_table_init ())
6317 einfo (_("%P%F: Failed to create hash table\n"));
6318
6319 /* Create a bfd for each input file. */
6320 current_target = default_target;
6321 open_input_bfds (statement_list.head, FALSE);
6322
6323 link_info.gc_sym_list = &entry_symbol;
6324 if (entry_symbol.name == NULL)
6325 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6326
6327 ldemul_after_open ();
6328
6329 bfd_section_already_linked_table_free ();
6330
6331 /* Make sure that we're not mixing architectures. We call this
6332 after all the input files have been opened, but before we do any
6333 other processing, so that any operations merge_private_bfd_data
6334 does on the output file will be known during the rest of the
6335 link. */
6336 lang_check ();
6337
6338 /* Handle .exports instead of a version script if we're told to do so. */
6339 if (command_line.version_exports_section)
6340 lang_do_version_exports_section ();
6341
6342 /* Build all sets based on the information gathered from the input
6343 files. */
6344 ldctor_build_sets ();
6345
6346 /* Remove unreferenced sections if asked to. */
6347 lang_gc_sections ();
6348
6349 /* Size up the common data. */
6350 lang_common ();
6351
6352 /* Update wild statements. */
6353 update_wild_statements (statement_list.head);
6354
6355 /* Run through the contours of the script and attach input sections
6356 to the correct output sections. */
6357 map_input_to_output_sections (statement_list.head, NULL, NULL);
6358
6359 process_insert_statements ();
6360
6361 /* Find any sections not attached explicitly and handle them. */
6362 lang_place_orphans ();
6363
6364 if (! link_info.relocatable)
6365 {
6366 asection *found;
6367
6368 /* Merge SEC_MERGE sections. This has to be done after GC of
6369 sections, so that GCed sections are not merged, but before
6370 assigning dynamic symbols, since removing whole input sections
6371 is hard then. */
6372 bfd_merge_sections (link_info.output_bfd, &link_info);
6373
6374 /* Look for a text section and set the readonly attribute in it. */
6375 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6376
6377 if (found != NULL)
6378 {
6379 if (config.text_read_only)
6380 found->flags |= SEC_READONLY;
6381 else
6382 found->flags &= ~SEC_READONLY;
6383 }
6384 }
6385
6386 /* Do anything special before sizing sections. This is where ELF
6387 and other back-ends size dynamic sections. */
6388 ldemul_before_allocation ();
6389
6390 /* We must record the program headers before we try to fix the
6391 section positions, since they will affect SIZEOF_HEADERS. */
6392 lang_record_phdrs ();
6393
6394 /* Check relro sections. */
6395 if (link_info.relro && ! link_info.relocatable)
6396 lang_find_relro_sections ();
6397
6398 /* Size up the sections. */
6399 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6400
6401 /* See if anything special should be done now we know how big
6402 everything is. This is where relaxation is done. */
6403 ldemul_after_allocation ();
6404
6405 /* Fix any .startof. or .sizeof. symbols. */
6406 lang_set_startof ();
6407
6408 /* Do all the assignments, now that we know the final resting places
6409 of all the symbols. */
6410
6411 lang_do_assignments ();
6412
6413 ldemul_finish ();
6414
6415 /* Make sure that the section addresses make sense. */
6416 if (command_line.check_section_addresses)
6417 lang_check_section_addresses ();
6418
6419 lang_end ();
6420}
6421
6422/* EXPORTED TO YACC */
6423
6424void
6425lang_add_wild (struct wildcard_spec *filespec,
6426 struct wildcard_list *section_list,
6427 bfd_boolean keep_sections)
6428{
6429 struct wildcard_list *curr, *next;
6430 lang_wild_statement_type *new_stmt;
6431
6432 /* Reverse the list as the parser puts it back to front. */
6433 for (curr = section_list, section_list = NULL;
6434 curr != NULL;
6435 section_list = curr, curr = next)
6436 {
6437 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6438 placed_commons = TRUE;
6439
6440 next = curr->next;
6441 curr->next = section_list;
6442 }
6443
6444 if (filespec != NULL && filespec->name != NULL)
6445 {
6446 if (strcmp (filespec->name, "*") == 0)
6447 filespec->name = NULL;
6448 else if (! wildcardp (filespec->name))
6449 lang_has_input_file = TRUE;
6450 }
6451
6452 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6453 new_stmt->filename = NULL;
6454 new_stmt->filenames_sorted = FALSE;
6455 if (filespec != NULL)
6456 {
6457 new_stmt->filename = filespec->name;
6458 new_stmt->filenames_sorted = filespec->sorted == by_name;
6459 }
6460 new_stmt->section_list = section_list;
6461 new_stmt->keep_sections = keep_sections;
6462 lang_list_init (&new_stmt->children);
6463 analyze_walk_wild_section_handler (new_stmt);
6464}
6465
6466void
6467lang_section_start (const char *name, etree_type *address,
6468 const segment_type *segment)
6469{
6470 lang_address_statement_type *ad;
6471
6472 ad = new_stat (lang_address_statement, stat_ptr);
6473 ad->section_name = name;
6474 ad->address = address;
6475 ad->segment = segment;
6476}
6477
6478/* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6479 because of a -e argument on the command line, or zero if this is
6480 called by ENTRY in a linker script. Command line arguments take
6481 precedence. */
6482
6483void
6484lang_add_entry (const char *name, bfd_boolean cmdline)
6485{
6486 if (entry_symbol.name == NULL
6487 || cmdline
6488 || ! entry_from_cmdline)
6489 {
6490 entry_symbol.name = name;
6491 entry_from_cmdline = cmdline;
6492 }
6493}
6494
6495/* Set the default start symbol to NAME. .em files should use this,
6496 not lang_add_entry, to override the use of "start" if neither the
6497 linker script nor the command line specifies an entry point. NAME
6498 must be permanently allocated. */
6499void
6500lang_default_entry (const char *name)
6501{
6502 entry_symbol_default = name;
6503}
6504
6505void
6506lang_add_target (const char *name)
6507{
6508 lang_target_statement_type *new_stmt;
6509
6510 new_stmt = new_stat (lang_target_statement, stat_ptr);
6511 new_stmt->target = name;
6512}
6513
6514void
6515lang_add_map (const char *name)
6516{
6517 while (*name)
6518 {
6519 switch (*name)
6520 {
6521 case 'F':
6522 map_option_f = TRUE;
6523 break;
6524 }
6525 name++;
6526 }
6527}
6528
6529void
6530lang_add_fill (fill_type *fill)
6531{
6532 lang_fill_statement_type *new_stmt;
6533
6534 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6535 new_stmt->fill = fill;
6536}
6537
6538void
6539lang_add_data (int type, union etree_union *exp)
6540{
6541 lang_data_statement_type *new_stmt;
6542
6543 new_stmt = new_stat (lang_data_statement, stat_ptr);
6544 new_stmt->exp = exp;
6545 new_stmt->type = type;
6546}
6547
6548/* Create a new reloc statement. RELOC is the BFD relocation type to
6549 generate. HOWTO is the corresponding howto structure (we could
6550 look this up, but the caller has already done so). SECTION is the
6551 section to generate a reloc against, or NAME is the name of the
6552 symbol to generate a reloc against. Exactly one of SECTION and
6553 NAME must be NULL. ADDEND is an expression for the addend. */
6554
6555void
6556lang_add_reloc (bfd_reloc_code_real_type reloc,
6557 reloc_howto_type *howto,
6558 asection *section,
6559 const char *name,
6560 union etree_union *addend)
6561{
6562 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6563
6564 p->reloc = reloc;
6565 p->howto = howto;
6566 p->section = section;
6567 p->name = name;
6568 p->addend_exp = addend;
6569
6570 p->addend_value = 0;
6571 p->output_section = NULL;
6572 p->output_offset = 0;
6573}
6574
6575lang_assignment_statement_type *
6576lang_add_assignment (etree_type *exp)
6577{
6578 lang_assignment_statement_type *new_stmt;
6579
6580 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6581 new_stmt->exp = exp;
6582 return new_stmt;
6583}
6584
6585void
6586lang_add_attribute (enum statement_enum attribute)
6587{
6588 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6589}
6590
6591void
6592lang_startup (const char *name)
6593{
6594 if (startup_file != NULL)
6595 {
6596 einfo (_("%P%F: multiple STARTUP files\n"));
6597 }
6598 first_file->filename = name;
6599 first_file->local_sym_name = name;
6600 first_file->real = TRUE;
6601
6602 startup_file = name;
6603}
6604
6605void
6606lang_float (bfd_boolean maybe)
6607{
6608 lang_float_flag = maybe;
6609}
6610
6611
6612/* Work out the load- and run-time regions from a script statement, and
6613 store them in *LMA_REGION and *REGION respectively.
6614
6615 MEMSPEC is the name of the run-time region, or the value of
6616 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6617 LMA_MEMSPEC is the name of the load-time region, or null if the
6618 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6619 had an explicit load address.
6620
6621 It is an error to specify both a load region and a load address. */
6622
6623static void
6624lang_get_regions (lang_memory_region_type **region,
6625 lang_memory_region_type **lma_region,
6626 const char *memspec,
6627 const char *lma_memspec,
6628 bfd_boolean have_lma,
6629 bfd_boolean have_vma)
6630{
6631 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6632
6633 /* If no runtime region or VMA has been specified, but the load region
6634 has been specified, then use the load region for the runtime region
6635 as well. */
6636 if (lma_memspec != NULL
6637 && ! have_vma
6638 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6639 *region = *lma_region;
6640 else
6641 *region = lang_memory_region_lookup (memspec, FALSE);
6642
6643 if (have_lma && lma_memspec != 0)
6644 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6645}
6646
6647void
6648lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6649 lang_output_section_phdr_list *phdrs,
6650 const char *lma_memspec)
6651{
6652 lang_get_regions (&current_section->region,
6653 &current_section->lma_region,
6654 memspec, lma_memspec,
6655 current_section->load_base != NULL,
6656 current_section->addr_tree != NULL);
6657
6658 /* If this section has no load region or base, but has the same
6659 region as the previous section, then propagate the previous
6660 section's load region. */
6661
6662 if (!current_section->lma_region && !current_section->load_base
6663 && current_section->region == current_section->prev->region)
6664 current_section->lma_region = current_section->prev->lma_region;
6665
6666 current_section->fill = fill;
6667 current_section->phdrs = phdrs;
6668 pop_stat_ptr ();
6669}
6670
6671/* Create an absolute symbol with the given name with the value of the
6672 address of first byte of the section named.
6673
6674 If the symbol already exists, then do nothing. */
6675
6676void
6677lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6678{
6679 struct bfd_link_hash_entry *h;
6680
6681 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6682 if (h == NULL)
6683 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6684
6685 if (h->type == bfd_link_hash_new
6686 || h->type == bfd_link_hash_undefined)
6687 {
6688 asection *sec;
6689
6690 h->type = bfd_link_hash_defined;
6691
6692 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6693 if (sec == NULL)
6694 h->u.def.value = 0;
6695 else
6696 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
6697
6698 h->u.def.section = bfd_abs_section_ptr;
6699 }
6700}
6701
6702/* Create an absolute symbol with the given name with the value of the
6703 address of the first byte after the end of the section named.
6704
6705 If the symbol already exists, then do nothing. */
6706
6707void
6708lang_abs_symbol_at_end_of (const char *secname, const char *name)
6709{
6710 struct bfd_link_hash_entry *h;
6711
6712 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6713 if (h == NULL)
6714 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6715
6716 if (h->type == bfd_link_hash_new
6717 || h->type == bfd_link_hash_undefined)
6718 {
6719 asection *sec;
6720
6721 h->type = bfd_link_hash_defined;
6722
6723 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6724 if (sec == NULL)
6725 h->u.def.value = 0;
6726 else
6727 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
6728 + TO_ADDR (sec->size));
6729
6730 h->u.def.section = bfd_abs_section_ptr;
6731 }
6732}
6733
6734void
6735lang_statement_append (lang_statement_list_type *list,
6736 lang_statement_union_type *element,
6737 lang_statement_union_type **field)
6738{
6739 *(list->tail) = element;
6740 list->tail = field;
6741}
6742
6743/* Set the output format type. -oformat overrides scripts. */
6744
6745void
6746lang_add_output_format (const char *format,
6747 const char *big,
6748 const char *little,
6749 int from_script)
6750{
6751 if (output_target == NULL || !from_script)
6752 {
6753 if (command_line.endian == ENDIAN_BIG
6754 && big != NULL)
6755 format = big;
6756 else if (command_line.endian == ENDIAN_LITTLE
6757 && little != NULL)
6758 format = little;
6759
6760 output_target = format;
6761 }
6762}
6763
6764void
6765lang_add_insert (const char *where, int is_before)
6766{
6767 lang_insert_statement_type *new_stmt;
6768
6769 new_stmt = new_stat (lang_insert_statement, stat_ptr);
6770 new_stmt->where = where;
6771 new_stmt->is_before = is_before;
6772 saved_script_handle = previous_script_handle;
6773}
6774
6775/* Enter a group. This creates a new lang_group_statement, and sets
6776 stat_ptr to build new statements within the group. */
6777
6778void
6779lang_enter_group (void)
6780{
6781 lang_group_statement_type *g;
6782
6783 g = new_stat (lang_group_statement, stat_ptr);
6784 lang_list_init (&g->children);
6785 push_stat_ptr (&g->children);
6786}
6787
6788/* Leave a group. This just resets stat_ptr to start writing to the
6789 regular list of statements again. Note that this will not work if
6790 groups can occur inside anything else which can adjust stat_ptr,
6791 but currently they can't. */
6792
6793void
6794lang_leave_group (void)
6795{
6796 pop_stat_ptr ();
6797}
6798
6799/* Add a new program header. This is called for each entry in a PHDRS
6800 command in a linker script. */
6801
6802void
6803lang_new_phdr (const char *name,
6804 etree_type *type,
6805 bfd_boolean filehdr,
6806 bfd_boolean phdrs,
6807 etree_type *at,
6808 etree_type *flags)
6809{
6810 struct lang_phdr *n, **pp;
6811 bfd_boolean hdrs;
6812
6813 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
6814 n->next = NULL;
6815 n->name = name;
6816 n->type = exp_get_value_int (type, 0, "program header type");
6817 n->filehdr = filehdr;
6818 n->phdrs = phdrs;
6819 n->at = at;
6820 n->flags = flags;
6821
6822 hdrs = n->type == 1 && (phdrs || filehdr);
6823
6824 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
6825 if (hdrs
6826 && (*pp)->type == 1
6827 && !((*pp)->filehdr || (*pp)->phdrs))
6828 {
6829 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n"));
6830 hdrs = FALSE;
6831 }
6832
6833 *pp = n;
6834}
6835
6836/* Record the program header information in the output BFD. FIXME: We
6837 should not be calling an ELF specific function here. */
6838
6839static void
6840lang_record_phdrs (void)
6841{
6842 unsigned int alc;
6843 asection **secs;
6844 lang_output_section_phdr_list *last;
6845 struct lang_phdr *l;
6846 lang_output_section_statement_type *os;
6847
6848 alc = 10;
6849 secs = (asection **) xmalloc (alc * sizeof (asection *));
6850 last = NULL;
6851
6852 for (l = lang_phdr_list; l != NULL; l = l->next)
6853 {
6854 unsigned int c;
6855 flagword flags;
6856 bfd_vma at;
6857
6858 c = 0;
6859 for (os = &lang_output_section_statement.head->output_section_statement;
6860 os != NULL;
6861 os = os->next)
6862 {
6863 lang_output_section_phdr_list *pl;
6864
6865 if (os->constraint < 0)
6866 continue;
6867
6868 pl = os->phdrs;
6869 if (pl != NULL)
6870 last = pl;
6871 else
6872 {
6873 if (os->sectype == noload_section
6874 || os->bfd_section == NULL
6875 || (os->bfd_section->flags & SEC_ALLOC) == 0)
6876 continue;
6877
6878 /* Don't add orphans to PT_INTERP header. */
6879 if (l->type == 3)
6880 continue;
6881
6882 if (last == NULL)
6883 {
6884 lang_output_section_statement_type * tmp_os;
6885
6886 /* If we have not run across a section with a program
6887 header assigned to it yet, then scan forwards to find
6888 one. This prevents inconsistencies in the linker's
6889 behaviour when a script has specified just a single
6890 header and there are sections in that script which are
6891 not assigned to it, and which occur before the first
6892 use of that header. See here for more details:
6893 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
6894 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
6895 if (tmp_os->phdrs)
6896 {
6897 last = tmp_os->phdrs;
6898 break;
6899 }
6900 if (last == NULL)
6901 einfo (_("%F%P: no sections assigned to phdrs\n"));
6902 }
6903 pl = last;
6904 }
6905
6906 if (os->bfd_section == NULL)
6907 continue;
6908
6909 for (; pl != NULL; pl = pl->next)
6910 {
6911 if (strcmp (pl->name, l->name) == 0)
6912 {
6913 if (c >= alc)
6914 {
6915 alc *= 2;
6916 secs = (asection **) xrealloc (secs,
6917 alc * sizeof (asection *));
6918 }
6919 secs[c] = os->bfd_section;
6920 ++c;
6921 pl->used = TRUE;
6922 }
6923 }
6924 }
6925
6926 if (l->flags == NULL)
6927 flags = 0;
6928 else
6929 flags = exp_get_vma (l->flags, 0, "phdr flags");
6930
6931 if (l->at == NULL)
6932 at = 0;
6933 else
6934 at = exp_get_vma (l->at, 0, "phdr load address");
6935
6936 if (! bfd_record_phdr (link_info.output_bfd, l->type,
6937 l->flags != NULL, flags, l->at != NULL,
6938 at, l->filehdr, l->phdrs, c, secs))
6939 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
6940 }
6941
6942 free (secs);
6943
6944 /* Make sure all the phdr assignments succeeded. */
6945 for (os = &lang_output_section_statement.head->output_section_statement;
6946 os != NULL;
6947 os = os->next)
6948 {
6949 lang_output_section_phdr_list *pl;
6950
6951 if (os->constraint < 0
6952 || os->bfd_section == NULL)
6953 continue;
6954
6955 for (pl = os->phdrs;
6956 pl != NULL;
6957 pl = pl->next)
6958 if (! pl->used && strcmp (pl->name, "NONE") != 0)
6959 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
6960 os->name, pl->name);
6961 }
6962}
6963
6964/* Record a list of sections which may not be cross referenced. */
6965
6966void
6967lang_add_nocrossref (lang_nocrossref_type *l)
6968{
6969 struct lang_nocrossrefs *n;
6970
6971 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
6972 n->next = nocrossref_list;
6973 n->list = l;
6974 nocrossref_list = n;
6975
6976 /* Set notice_all so that we get informed about all symbols. */
6977 link_info.notice_all = TRUE;
6978}
6979\f
6980/* Overlay handling. We handle overlays with some static variables. */
6981
6982/* The overlay virtual address. */
6983static etree_type *overlay_vma;
6984/* And subsection alignment. */
6985static etree_type *overlay_subalign;
6986
6987/* An expression for the maximum section size seen so far. */
6988static etree_type *overlay_max;
6989
6990/* A list of all the sections in this overlay. */
6991
6992struct overlay_list {
6993 struct overlay_list *next;
6994 lang_output_section_statement_type *os;
6995};
6996
6997static struct overlay_list *overlay_list;
6998
6999/* Start handling an overlay. */
7000
7001void
7002lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7003{
7004 /* The grammar should prevent nested overlays from occurring. */
7005 ASSERT (overlay_vma == NULL
7006 && overlay_subalign == NULL
7007 && overlay_max == NULL);
7008
7009 overlay_vma = vma_expr;
7010 overlay_subalign = subalign;
7011}
7012
7013/* Start a section in an overlay. We handle this by calling
7014 lang_enter_output_section_statement with the correct VMA.
7015 lang_leave_overlay sets up the LMA and memory regions. */
7016
7017void
7018lang_enter_overlay_section (const char *name)
7019{
7020 struct overlay_list *n;
7021 etree_type *size;
7022
7023 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7024 0, overlay_subalign, 0, 0);
7025
7026 /* If this is the first section, then base the VMA of future
7027 sections on this one. This will work correctly even if `.' is
7028 used in the addresses. */
7029 if (overlay_list == NULL)
7030 overlay_vma = exp_nameop (ADDR, name);
7031
7032 /* Remember the section. */
7033 n = (struct overlay_list *) xmalloc (sizeof *n);
7034 n->os = current_section;
7035 n->next = overlay_list;
7036 overlay_list = n;
7037
7038 size = exp_nameop (SIZEOF, name);
7039
7040 /* Arrange to work out the maximum section end address. */
7041 if (overlay_max == NULL)
7042 overlay_max = size;
7043 else
7044 overlay_max = exp_binop (MAX_K, overlay_max, size);
7045}
7046
7047/* Finish a section in an overlay. There isn't any special to do
7048 here. */
7049
7050void
7051lang_leave_overlay_section (fill_type *fill,
7052 lang_output_section_phdr_list *phdrs)
7053{
7054 const char *name;
7055 char *clean, *s2;
7056 const char *s1;
7057 char *buf;
7058
7059 name = current_section->name;
7060
7061 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7062 region and that no load-time region has been specified. It doesn't
7063 really matter what we say here, since lang_leave_overlay will
7064 override it. */
7065 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7066
7067 /* Define the magic symbols. */
7068
7069 clean = (char *) xmalloc (strlen (name) + 1);
7070 s2 = clean;
7071 for (s1 = name; *s1 != '\0'; s1++)
7072 if (ISALNUM (*s1) || *s1 == '_')
7073 *s2++ = *s1;
7074 *s2 = '\0';
7075
7076 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7077 sprintf (buf, "__load_start_%s", clean);
7078 lang_add_assignment (exp_provide (buf,
7079 exp_nameop (LOADADDR, name),
7080 FALSE));
7081
7082 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7083 sprintf (buf, "__load_stop_%s", clean);
7084 lang_add_assignment (exp_provide (buf,
7085 exp_binop ('+',
7086 exp_nameop (LOADADDR, name),
7087 exp_nameop (SIZEOF, name)),
7088 FALSE));
7089
7090 free (clean);
7091}
7092
7093/* Finish an overlay. If there are any overlay wide settings, this
7094 looks through all the sections in the overlay and sets them. */
7095
7096void
7097lang_leave_overlay (etree_type *lma_expr,
7098 int nocrossrefs,
7099 fill_type *fill,
7100 const char *memspec,
7101 lang_output_section_phdr_list *phdrs,
7102 const char *lma_memspec)
7103{
7104 lang_memory_region_type *region;
7105 lang_memory_region_type *lma_region;
7106 struct overlay_list *l;
7107 lang_nocrossref_type *nocrossref;
7108
7109 lang_get_regions (&region, &lma_region,
7110 memspec, lma_memspec,
7111 lma_expr != NULL, FALSE);
7112
7113 nocrossref = NULL;
7114
7115 /* After setting the size of the last section, set '.' to end of the
7116 overlay region. */
7117 if (overlay_list != NULL)
7118 overlay_list->os->update_dot_tree
7119 = exp_assop ('=', ".", exp_binop ('+', overlay_vma, overlay_max));
7120
7121 l = overlay_list;
7122 while (l != NULL)
7123 {
7124 struct overlay_list *next;
7125
7126 if (fill != NULL && l->os->fill == NULL)
7127 l->os->fill = fill;
7128
7129 l->os->region = region;
7130 l->os->lma_region = lma_region;
7131
7132 /* The first section has the load address specified in the
7133 OVERLAY statement. The rest are worked out from that.
7134 The base address is not needed (and should be null) if
7135 an LMA region was specified. */
7136 if (l->next == 0)
7137 {
7138 l->os->load_base = lma_expr;
7139 l->os->sectype = normal_section;
7140 }
7141 if (phdrs != NULL && l->os->phdrs == NULL)
7142 l->os->phdrs = phdrs;
7143
7144 if (nocrossrefs)
7145 {
7146 lang_nocrossref_type *nc;
7147
7148 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7149 nc->name = l->os->name;
7150 nc->next = nocrossref;
7151 nocrossref = nc;
7152 }
7153
7154 next = l->next;
7155 free (l);
7156 l = next;
7157 }
7158
7159 if (nocrossref != NULL)
7160 lang_add_nocrossref (nocrossref);
7161
7162 overlay_vma = NULL;
7163 overlay_list = NULL;
7164 overlay_max = NULL;
7165}
7166\f
7167/* Version handling. This is only useful for ELF. */
7168
7169/* This global variable holds the version tree that we build. */
7170
7171struct bfd_elf_version_tree *lang_elf_version_info;
7172
7173/* If PREV is NULL, return first version pattern matching particular symbol.
7174 If PREV is non-NULL, return first version pattern matching particular
7175 symbol after PREV (previously returned by lang_vers_match). */
7176
7177static struct bfd_elf_version_expr *
7178lang_vers_match (struct bfd_elf_version_expr_head *head,
7179 struct bfd_elf_version_expr *prev,
7180 const char *sym)
7181{
7182 const char *cxx_sym = sym;
7183 const char *java_sym = sym;
7184 struct bfd_elf_version_expr *expr = NULL;
7185
7186 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7187 {
7188 cxx_sym = cplus_demangle (sym, DMGL_PARAMS | DMGL_ANSI);
7189 if (!cxx_sym)
7190 cxx_sym = sym;
7191 }
7192 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7193 {
7194 java_sym = cplus_demangle (sym, DMGL_JAVA);
7195 if (!java_sym)
7196 java_sym = sym;
7197 }
7198
7199 if (head->htab && (prev == NULL || prev->literal))
7200 {
7201 struct bfd_elf_version_expr e;
7202
7203 switch (prev ? prev->mask : 0)
7204 {
7205 case 0:
7206 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7207 {
7208 e.pattern = sym;
7209 expr = (struct bfd_elf_version_expr *)
7210 htab_find ((htab_t) head->htab, &e);
7211 while (expr && strcmp (expr->pattern, sym) == 0)
7212 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7213 goto out_ret;
7214 else
7215 expr = expr->next;
7216 }
7217 /* Fallthrough */
7218 case BFD_ELF_VERSION_C_TYPE:
7219 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7220 {
7221 e.pattern = cxx_sym;
7222 expr = (struct bfd_elf_version_expr *)
7223 htab_find ((htab_t) head->htab, &e);
7224 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7225 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7226 goto out_ret;
7227 else
7228 expr = expr->next;
7229 }
7230 /* Fallthrough */
7231 case BFD_ELF_VERSION_CXX_TYPE:
7232 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7233 {
7234 e.pattern = java_sym;
7235 expr = (struct bfd_elf_version_expr *)
7236 htab_find ((htab_t) head->htab, &e);
7237 while (expr && strcmp (expr->pattern, java_sym) == 0)
7238 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7239 goto out_ret;
7240 else
7241 expr = expr->next;
7242 }
7243 /* Fallthrough */
7244 default:
7245 break;
7246 }
7247 }
7248
7249 /* Finally, try the wildcards. */
7250 if (prev == NULL || prev->literal)
7251 expr = head->remaining;
7252 else
7253 expr = prev->next;
7254 for (; expr; expr = expr->next)
7255 {
7256 const char *s;
7257
7258 if (!expr->pattern)
7259 continue;
7260
7261 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7262 break;
7263
7264 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7265 s = java_sym;
7266 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7267 s = cxx_sym;
7268 else
7269 s = sym;
7270 if (fnmatch (expr->pattern, s, 0) == 0)
7271 break;
7272 }
7273
7274 out_ret:
7275 if (cxx_sym != sym)
7276 free ((char *) cxx_sym);
7277 if (java_sym != sym)
7278 free ((char *) java_sym);
7279 return expr;
7280}
7281
7282/* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7283 return a pointer to the symbol name with any backslash quotes removed. */
7284
7285static const char *
7286realsymbol (const char *pattern)
7287{
7288 const char *p;
7289 bfd_boolean changed = FALSE, backslash = FALSE;
7290 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7291
7292 for (p = pattern, s = symbol; *p != '\0'; ++p)
7293 {
7294 /* It is a glob pattern only if there is no preceding
7295 backslash. */
7296 if (backslash)
7297 {
7298 /* Remove the preceding backslash. */
7299 *(s - 1) = *p;
7300 backslash = FALSE;
7301 changed = TRUE;
7302 }
7303 else
7304 {
7305 if (*p == '?' || *p == '*' || *p == '[')
7306 {
7307 free (symbol);
7308 return NULL;
7309 }
7310
7311 *s++ = *p;
7312 backslash = *p == '\\';
7313 }
7314 }
7315
7316 if (changed)
7317 {
7318 *s = '\0';
7319 return symbol;
7320 }
7321 else
7322 {
7323 free (symbol);
7324 return pattern;
7325 }
7326}
7327
7328/* This is called for each variable name or match expression. NEW_NAME is
7329 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7330 pattern to be matched against symbol names. */
7331
7332struct bfd_elf_version_expr *
7333lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7334 const char *new_name,
7335 const char *lang,
7336 bfd_boolean literal_p)
7337{
7338 struct bfd_elf_version_expr *ret;
7339
7340 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7341 ret->next = orig;
7342 ret->symver = 0;
7343 ret->script = 0;
7344 ret->literal = TRUE;
7345 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7346 if (ret->pattern == NULL)
7347 {
7348 ret->pattern = new_name;
7349 ret->literal = FALSE;
7350 }
7351
7352 if (lang == NULL || strcasecmp (lang, "C") == 0)
7353 ret->mask = BFD_ELF_VERSION_C_TYPE;
7354 else if (strcasecmp (lang, "C++") == 0)
7355 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7356 else if (strcasecmp (lang, "Java") == 0)
7357 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7358 else
7359 {
7360 einfo (_("%X%P: unknown language `%s' in version information\n"),
7361 lang);
7362 ret->mask = BFD_ELF_VERSION_C_TYPE;
7363 }
7364
7365 return ldemul_new_vers_pattern (ret);
7366}
7367
7368/* This is called for each set of variable names and match
7369 expressions. */
7370
7371struct bfd_elf_version_tree *
7372lang_new_vers_node (struct bfd_elf_version_expr *globals,
7373 struct bfd_elf_version_expr *locals)
7374{
7375 struct bfd_elf_version_tree *ret;
7376
7377 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7378 ret->globals.list = globals;
7379 ret->locals.list = locals;
7380 ret->match = lang_vers_match;
7381 ret->name_indx = (unsigned int) -1;
7382 return ret;
7383}
7384
7385/* This static variable keeps track of version indices. */
7386
7387static int version_index;
7388
7389static hashval_t
7390version_expr_head_hash (const void *p)
7391{
7392 const struct bfd_elf_version_expr *e =
7393 (const struct bfd_elf_version_expr *) p;
7394
7395 return htab_hash_string (e->pattern);
7396}
7397
7398static int
7399version_expr_head_eq (const void *p1, const void *p2)
7400{
7401 const struct bfd_elf_version_expr *e1 =
7402 (const struct bfd_elf_version_expr *) p1;
7403 const struct bfd_elf_version_expr *e2 =
7404 (const struct bfd_elf_version_expr *) p2;
7405
7406 return strcmp (e1->pattern, e2->pattern) == 0;
7407}
7408
7409static void
7410lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7411{
7412 size_t count = 0;
7413 struct bfd_elf_version_expr *e, *next;
7414 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7415
7416 for (e = head->list; e; e = e->next)
7417 {
7418 if (e->literal)
7419 count++;
7420 head->mask |= e->mask;
7421 }
7422
7423 if (count)
7424 {
7425 head->htab = htab_create (count * 2, version_expr_head_hash,
7426 version_expr_head_eq, NULL);
7427 list_loc = &head->list;
7428 remaining_loc = &head->remaining;
7429 for (e = head->list; e; e = next)
7430 {
7431 next = e->next;
7432 if (!e->literal)
7433 {
7434 *remaining_loc = e;
7435 remaining_loc = &e->next;
7436 }
7437 else
7438 {
7439 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7440
7441 if (*loc)
7442 {
7443 struct bfd_elf_version_expr *e1, *last;
7444
7445 e1 = (struct bfd_elf_version_expr *) *loc;
7446 last = NULL;
7447 do
7448 {
7449 if (e1->mask == e->mask)
7450 {
7451 last = NULL;
7452 break;
7453 }
7454 last = e1;
7455 e1 = e1->next;
7456 }
7457 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7458
7459 if (last == NULL)
7460 {
7461 /* This is a duplicate. */
7462 /* FIXME: Memory leak. Sometimes pattern is not
7463 xmalloced alone, but in larger chunk of memory. */
7464 /* free (e->pattern); */
7465 free (e);
7466 }
7467 else
7468 {
7469 e->next = last->next;
7470 last->next = e;
7471 }
7472 }
7473 else
7474 {
7475 *loc = e;
7476 *list_loc = e;
7477 list_loc = &e->next;
7478 }
7479 }
7480 }
7481 *remaining_loc = NULL;
7482 *list_loc = head->remaining;
7483 }
7484 else
7485 head->remaining = head->list;
7486}
7487
7488/* This is called when we know the name and dependencies of the
7489 version. */
7490
7491void
7492lang_register_vers_node (const char *name,
7493 struct bfd_elf_version_tree *version,
7494 struct bfd_elf_version_deps *deps)
7495{
7496 struct bfd_elf_version_tree *t, **pp;
7497 struct bfd_elf_version_expr *e1;
7498
7499 if (name == NULL)
7500 name = "";
7501
7502 if ((name[0] == '\0' && lang_elf_version_info != NULL)
7503 || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
7504 {
7505 einfo (_("%X%P: anonymous version tag cannot be combined"
7506 " with other version tags\n"));
7507 free (version);
7508 return;
7509 }
7510
7511 /* Make sure this node has a unique name. */
7512 for (t = lang_elf_version_info; t != NULL; t = t->next)
7513 if (strcmp (t->name, name) == 0)
7514 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7515
7516 lang_finalize_version_expr_head (&version->globals);
7517 lang_finalize_version_expr_head (&version->locals);
7518
7519 /* Check the global and local match names, and make sure there
7520 aren't any duplicates. */
7521
7522 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7523 {
7524 for (t = lang_elf_version_info; t != NULL; t = t->next)
7525 {
7526 struct bfd_elf_version_expr *e2;
7527
7528 if (t->locals.htab && e1->literal)
7529 {
7530 e2 = (struct bfd_elf_version_expr *)
7531 htab_find ((htab_t) t->locals.htab, e1);
7532 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7533 {
7534 if (e1->mask == e2->mask)
7535 einfo (_("%X%P: duplicate expression `%s'"
7536 " in version information\n"), e1->pattern);
7537 e2 = e2->next;
7538 }
7539 }
7540 else if (!e1->literal)
7541 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7542 if (strcmp (e1->pattern, e2->pattern) == 0
7543 && e1->mask == e2->mask)
7544 einfo (_("%X%P: duplicate expression `%s'"
7545 " in version information\n"), e1->pattern);
7546 }
7547 }
7548
7549 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7550 {
7551 for (t = lang_elf_version_info; t != NULL; t = t->next)
7552 {
7553 struct bfd_elf_version_expr *e2;
7554
7555 if (t->globals.htab && e1->literal)
7556 {
7557 e2 = (struct bfd_elf_version_expr *)
7558 htab_find ((htab_t) t->globals.htab, e1);
7559 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7560 {
7561 if (e1->mask == e2->mask)
7562 einfo (_("%X%P: duplicate expression `%s'"
7563 " in version information\n"),
7564 e1->pattern);
7565 e2 = e2->next;
7566 }
7567 }
7568 else if (!e1->literal)
7569 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7570 if (strcmp (e1->pattern, e2->pattern) == 0
7571 && e1->mask == e2->mask)
7572 einfo (_("%X%P: duplicate expression `%s'"
7573 " in version information\n"), e1->pattern);
7574 }
7575 }
7576
7577 version->deps = deps;
7578 version->name = name;
7579 if (name[0] != '\0')
7580 {
7581 ++version_index;
7582 version->vernum = version_index;
7583 }
7584 else
7585 version->vernum = 0;
7586
7587 for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
7588 ;
7589 *pp = version;
7590}
7591
7592/* This is called when we see a version dependency. */
7593
7594struct bfd_elf_version_deps *
7595lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7596{
7597 struct bfd_elf_version_deps *ret;
7598 struct bfd_elf_version_tree *t;
7599
7600 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7601 ret->next = list;
7602
7603 for (t = lang_elf_version_info; t != NULL; t = t->next)
7604 {
7605 if (strcmp (t->name, name) == 0)
7606 {
7607 ret->version_needed = t;
7608 return ret;
7609 }
7610 }
7611
7612 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7613
7614 ret->version_needed = NULL;
7615 return ret;
7616}
7617
7618static void
7619lang_do_version_exports_section (void)
7620{
7621 struct bfd_elf_version_expr *greg = NULL, *lreg;
7622
7623 LANG_FOR_EACH_INPUT_STATEMENT (is)
7624 {
7625 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7626 char *contents, *p;
7627 bfd_size_type len;
7628
7629 if (sec == NULL)
7630 continue;
7631
7632 len = sec->size;
7633 contents = (char *) xmalloc (len);
7634 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7635 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7636
7637 p = contents;
7638 while (p < contents + len)
7639 {
7640 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7641 p = strchr (p, '\0') + 1;
7642 }
7643
7644 /* Do not free the contents, as we used them creating the regex. */
7645
7646 /* Do not include this section in the link. */
7647 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7648 }
7649
7650 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7651 lang_register_vers_node (command_line.version_exports_section,
7652 lang_new_vers_node (greg, lreg), NULL);
7653}
7654
7655void
7656lang_add_unique (const char *name)
7657{
7658 struct unique_sections *ent;
7659
7660 for (ent = unique_section_list; ent; ent = ent->next)
7661 if (strcmp (ent->name, name) == 0)
7662 return;
7663
7664 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7665 ent->name = xstrdup (name);
7666 ent->next = unique_section_list;
7667 unique_section_list = ent;
7668}
7669
7670/* Append the list of dynamic symbols to the existing one. */
7671
7672void
7673lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7674{
7675 if (link_info.dynamic_list)
7676 {
7677 struct bfd_elf_version_expr *tail;
7678 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7679 ;
7680 tail->next = link_info.dynamic_list->head.list;
7681 link_info.dynamic_list->head.list = dynamic;
7682 }
7683 else
7684 {
7685 struct bfd_elf_dynamic_list *d;
7686
7687 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
7688 d->head.list = dynamic;
7689 d->match = lang_vers_match;
7690 link_info.dynamic_list = d;
7691 }
7692}
7693
7694/* Append the list of C++ typeinfo dynamic symbols to the existing
7695 one. */
7696
7697void
7698lang_append_dynamic_list_cpp_typeinfo (void)
7699{
7700 const char * symbols [] =
7701 {
7702 "typeinfo name for*",
7703 "typeinfo for*"
7704 };
7705 struct bfd_elf_version_expr *dynamic = NULL;
7706 unsigned int i;
7707
7708 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7709 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7710 FALSE);
7711
7712 lang_append_dynamic_list (dynamic);
7713}
7714
7715/* Append the list of C++ operator new and delete dynamic symbols to the
7716 existing one. */
7717
7718void
7719lang_append_dynamic_list_cpp_new (void)
7720{
7721 const char * symbols [] =
7722 {
7723 "operator new*",
7724 "operator delete*"
7725 };
7726 struct bfd_elf_version_expr *dynamic = NULL;
7727 unsigned int i;
7728
7729 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7730 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7731 FALSE);
7732
7733 lang_append_dynamic_list (dynamic);
7734}
This page took 0.048302 seconds and 4 git commands to generate.