PowerPC: Disable SLUB for configurations in which slab page structs are modified
[deliverable/linux.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/memory_hotplug.h>
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
38#include <linux/mempolicy.h>
39#include <linux/stop_machine.h>
40#include <linux/sort.h>
41#include <linux/pfn.h>
42#include <linux/backing-dev.h>
43#include <linux/fault-inject.h>
44
45#include <asm/tlbflush.h>
46#include <asm/div64.h>
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54EXPORT_SYMBOL(node_online_map);
55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56EXPORT_SYMBOL(node_possible_map);
57unsigned long totalram_pages __read_mostly;
58unsigned long totalreserve_pages __read_mostly;
59long nr_swap_pages;
60int percpu_pagelist_fraction;
61
62static void __free_pages_ok(struct page *page, unsigned int order);
63
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76#ifdef CONFIG_ZONE_DMA
77 256,
78#endif
79#ifdef CONFIG_ZONE_DMA32
80 256,
81#endif
82#ifdef CONFIG_HIGHMEM
83 32
84#endif
85};
86
87EXPORT_SYMBOL(totalram_pages);
88
89static char * const zone_names[MAX_NR_ZONES] = {
90#ifdef CONFIG_ZONE_DMA
91 "DMA",
92#endif
93#ifdef CONFIG_ZONE_DMA32
94 "DMA32",
95#endif
96 "Normal",
97#ifdef CONFIG_HIGHMEM
98 "HighMem"
99#endif
100};
101
102int min_free_kbytes = 1024;
103
104unsigned long __meminitdata nr_kernel_pages;
105unsigned long __meminitdata nr_all_pages;
106static unsigned long __initdata dma_reserve;
107
108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109 /*
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
115 */
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
128
129 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
130 int __initdata nr_nodemap_entries;
131 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138
139#ifdef CONFIG_DEBUG_VM
140static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
141{
142 int ret = 0;
143 unsigned seq;
144 unsigned long pfn = page_to_pfn(page);
145
146 do {
147 seq = zone_span_seqbegin(zone);
148 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
149 ret = 1;
150 else if (pfn < zone->zone_start_pfn)
151 ret = 1;
152 } while (zone_span_seqretry(zone, seq));
153
154 return ret;
155}
156
157static int page_is_consistent(struct zone *zone, struct page *page)
158{
159 if (!pfn_valid_within(page_to_pfn(page)))
160 return 0;
161 if (zone != page_zone(page))
162 return 0;
163
164 return 1;
165}
166/*
167 * Temporary debugging check for pages not lying within a given zone.
168 */
169static int bad_range(struct zone *zone, struct page *page)
170{
171 if (page_outside_zone_boundaries(zone, page))
172 return 1;
173 if (!page_is_consistent(zone, page))
174 return 1;
175
176 return 0;
177}
178#else
179static inline int bad_range(struct zone *zone, struct page *page)
180{
181 return 0;
182}
183#endif
184
185static void bad_page(struct page *page)
186{
187 printk(KERN_EMERG "Bad page state in process '%s'\n"
188 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
189 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
190 KERN_EMERG "Backtrace:\n",
191 current->comm, page, (int)(2*sizeof(unsigned long)),
192 (unsigned long)page->flags, page->mapping,
193 page_mapcount(page), page_count(page));
194 dump_stack();
195 page->flags &= ~(1 << PG_lru |
196 1 << PG_private |
197 1 << PG_locked |
198 1 << PG_active |
199 1 << PG_dirty |
200 1 << PG_reclaim |
201 1 << PG_slab |
202 1 << PG_swapcache |
203 1 << PG_writeback |
204 1 << PG_buddy );
205 set_page_count(page, 0);
206 reset_page_mapcount(page);
207 page->mapping = NULL;
208 add_taint(TAINT_BAD_PAGE);
209}
210
211/*
212 * Higher-order pages are called "compound pages". They are structured thusly:
213 *
214 * The first PAGE_SIZE page is called the "head page".
215 *
216 * The remaining PAGE_SIZE pages are called "tail pages".
217 *
218 * All pages have PG_compound set. All pages have their ->private pointing at
219 * the head page (even the head page has this).
220 *
221 * The first tail page's ->lru.next holds the address of the compound page's
222 * put_page() function. Its ->lru.prev holds the order of allocation.
223 * This usage means that zero-order pages may not be compound.
224 */
225
226static void free_compound_page(struct page *page)
227{
228 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
229}
230
231static void prep_compound_page(struct page *page, unsigned long order)
232{
233 int i;
234 int nr_pages = 1 << order;
235
236 set_compound_page_dtor(page, free_compound_page);
237 page[1].lru.prev = (void *)order;
238 for (i = 0; i < nr_pages; i++) {
239 struct page *p = page + i;
240
241 __SetPageCompound(p);
242 set_page_private(p, (unsigned long)page);
243 }
244}
245
246static void destroy_compound_page(struct page *page, unsigned long order)
247{
248 int i;
249 int nr_pages = 1 << order;
250
251 if (unlikely((unsigned long)page[1].lru.prev != order))
252 bad_page(page);
253
254 for (i = 0; i < nr_pages; i++) {
255 struct page *p = page + i;
256
257 if (unlikely(!PageCompound(p) |
258 (page_private(p) != (unsigned long)page)))
259 bad_page(page);
260 __ClearPageCompound(p);
261 }
262}
263
264static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
265{
266 int i;
267
268 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
269 /*
270 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
271 * and __GFP_HIGHMEM from hard or soft interrupt context.
272 */
273 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
274 for (i = 0; i < (1 << order); i++)
275 clear_highpage(page + i);
276}
277
278/*
279 * function for dealing with page's order in buddy system.
280 * zone->lock is already acquired when we use these.
281 * So, we don't need atomic page->flags operations here.
282 */
283static inline unsigned long page_order(struct page *page)
284{
285 return page_private(page);
286}
287
288static inline void set_page_order(struct page *page, int order)
289{
290 set_page_private(page, order);
291 __SetPageBuddy(page);
292}
293
294static inline void rmv_page_order(struct page *page)
295{
296 __ClearPageBuddy(page);
297 set_page_private(page, 0);
298}
299
300/*
301 * Locate the struct page for both the matching buddy in our
302 * pair (buddy1) and the combined O(n+1) page they form (page).
303 *
304 * 1) Any buddy B1 will have an order O twin B2 which satisfies
305 * the following equation:
306 * B2 = B1 ^ (1 << O)
307 * For example, if the starting buddy (buddy2) is #8 its order
308 * 1 buddy is #10:
309 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
310 *
311 * 2) Any buddy B will have an order O+1 parent P which
312 * satisfies the following equation:
313 * P = B & ~(1 << O)
314 *
315 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
316 */
317static inline struct page *
318__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
319{
320 unsigned long buddy_idx = page_idx ^ (1 << order);
321
322 return page + (buddy_idx - page_idx);
323}
324
325static inline unsigned long
326__find_combined_index(unsigned long page_idx, unsigned int order)
327{
328 return (page_idx & ~(1 << order));
329}
330
331/*
332 * This function checks whether a page is free && is the buddy
333 * we can do coalesce a page and its buddy if
334 * (a) the buddy is not in a hole &&
335 * (b) the buddy is in the buddy system &&
336 * (c) a page and its buddy have the same order &&
337 * (d) a page and its buddy are in the same zone.
338 *
339 * For recording whether a page is in the buddy system, we use PG_buddy.
340 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
341 *
342 * For recording page's order, we use page_private(page).
343 */
344static inline int page_is_buddy(struct page *page, struct page *buddy,
345 int order)
346{
347 if (!pfn_valid_within(page_to_pfn(buddy)))
348 return 0;
349
350 if (page_zone_id(page) != page_zone_id(buddy))
351 return 0;
352
353 if (PageBuddy(buddy) && page_order(buddy) == order) {
354 BUG_ON(page_count(buddy) != 0);
355 return 1;
356 }
357 return 0;
358}
359
360/*
361 * Freeing function for a buddy system allocator.
362 *
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
374 * order is recorded in page_private(page) field.
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other. That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
380 *
381 * -- wli
382 */
383
384static inline void __free_one_page(struct page *page,
385 struct zone *zone, unsigned int order)
386{
387 unsigned long page_idx;
388 int order_size = 1 << order;
389
390 if (unlikely(PageCompound(page)))
391 destroy_compound_page(page, order);
392
393 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394
395 VM_BUG_ON(page_idx & (order_size - 1));
396 VM_BUG_ON(bad_range(zone, page));
397
398 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
399 while (order < MAX_ORDER-1) {
400 unsigned long combined_idx;
401 struct free_area *area;
402 struct page *buddy;
403
404 buddy = __page_find_buddy(page, page_idx, order);
405 if (!page_is_buddy(page, buddy, order))
406 break; /* Move the buddy up one level. */
407
408 list_del(&buddy->lru);
409 area = zone->free_area + order;
410 area->nr_free--;
411 rmv_page_order(buddy);
412 combined_idx = __find_combined_index(page_idx, order);
413 page = page + (combined_idx - page_idx);
414 page_idx = combined_idx;
415 order++;
416 }
417 set_page_order(page, order);
418 list_add(&page->lru, &zone->free_area[order].free_list);
419 zone->free_area[order].nr_free++;
420}
421
422static inline int free_pages_check(struct page *page)
423{
424 if (unlikely(page_mapcount(page) |
425 (page->mapping != NULL) |
426 (page_count(page) != 0) |
427 (page->flags & (
428 1 << PG_lru |
429 1 << PG_private |
430 1 << PG_locked |
431 1 << PG_active |
432 1 << PG_reclaim |
433 1 << PG_slab |
434 1 << PG_swapcache |
435 1 << PG_writeback |
436 1 << PG_reserved |
437 1 << PG_buddy ))))
438 bad_page(page);
439 if (PageDirty(page))
440 __ClearPageDirty(page);
441 /*
442 * For now, we report if PG_reserved was found set, but do not
443 * clear it, and do not free the page. But we shall soon need
444 * to do more, for when the ZERO_PAGE count wraps negative.
445 */
446 return PageReserved(page);
447}
448
449/*
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
452 * count is the number of pages to free.
453 *
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
456 *
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
459 */
460static void free_pages_bulk(struct zone *zone, int count,
461 struct list_head *list, int order)
462{
463 spin_lock(&zone->lock);
464 zone->all_unreclaimable = 0;
465 zone->pages_scanned = 0;
466 while (count--) {
467 struct page *page;
468
469 VM_BUG_ON(list_empty(list));
470 page = list_entry(list->prev, struct page, lru);
471 /* have to delete it as __free_one_page list manipulates */
472 list_del(&page->lru);
473 __free_one_page(page, zone, order);
474 }
475 spin_unlock(&zone->lock);
476}
477
478static void free_one_page(struct zone *zone, struct page *page, int order)
479{
480 spin_lock(&zone->lock);
481 zone->all_unreclaimable = 0;
482 zone->pages_scanned = 0;
483 __free_one_page(page, zone, order);
484 spin_unlock(&zone->lock);
485}
486
487static void __free_pages_ok(struct page *page, unsigned int order)
488{
489 unsigned long flags;
490 int i;
491 int reserved = 0;
492
493 for (i = 0 ; i < (1 << order) ; ++i)
494 reserved += free_pages_check(page + i);
495 if (reserved)
496 return;
497
498 if (!PageHighMem(page))
499 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
500 arch_free_page(page, order);
501 kernel_map_pages(page, 1 << order, 0);
502
503 local_irq_save(flags);
504 __count_vm_events(PGFREE, 1 << order);
505 free_one_page(page_zone(page), page, order);
506 local_irq_restore(flags);
507}
508
509/*
510 * permit the bootmem allocator to evade page validation on high-order frees
511 */
512void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
513{
514 if (order == 0) {
515 __ClearPageReserved(page);
516 set_page_count(page, 0);
517 set_page_refcounted(page);
518 __free_page(page);
519 } else {
520 int loop;
521
522 prefetchw(page);
523 for (loop = 0; loop < BITS_PER_LONG; loop++) {
524 struct page *p = &page[loop];
525
526 if (loop + 1 < BITS_PER_LONG)
527 prefetchw(p + 1);
528 __ClearPageReserved(p);
529 set_page_count(p, 0);
530 }
531
532 set_page_refcounted(page);
533 __free_pages(page, order);
534 }
535}
536
537
538/*
539 * The order of subdivision here is critical for the IO subsystem.
540 * Please do not alter this order without good reasons and regression
541 * testing. Specifically, as large blocks of memory are subdivided,
542 * the order in which smaller blocks are delivered depends on the order
543 * they're subdivided in this function. This is the primary factor
544 * influencing the order in which pages are delivered to the IO
545 * subsystem according to empirical testing, and this is also justified
546 * by considering the behavior of a buddy system containing a single
547 * large block of memory acted on by a series of small allocations.
548 * This behavior is a critical factor in sglist merging's success.
549 *
550 * -- wli
551 */
552static inline void expand(struct zone *zone, struct page *page,
553 int low, int high, struct free_area *area)
554{
555 unsigned long size = 1 << high;
556
557 while (high > low) {
558 area--;
559 high--;
560 size >>= 1;
561 VM_BUG_ON(bad_range(zone, &page[size]));
562 list_add(&page[size].lru, &area->free_list);
563 area->nr_free++;
564 set_page_order(&page[size], high);
565 }
566}
567
568/*
569 * This page is about to be returned from the page allocator
570 */
571static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
572{
573 if (unlikely(page_mapcount(page) |
574 (page->mapping != NULL) |
575 (page_count(page) != 0) |
576 (page->flags & (
577 1 << PG_lru |
578 1 << PG_private |
579 1 << PG_locked |
580 1 << PG_active |
581 1 << PG_dirty |
582 1 << PG_reclaim |
583 1 << PG_slab |
584 1 << PG_swapcache |
585 1 << PG_writeback |
586 1 << PG_reserved |
587 1 << PG_buddy ))))
588 bad_page(page);
589
590 /*
591 * For now, we report if PG_reserved was found set, but do not
592 * clear it, and do not allocate the page: as a safety net.
593 */
594 if (PageReserved(page))
595 return 1;
596
597 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
598 1 << PG_referenced | 1 << PG_arch_1 |
599 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
600 set_page_private(page, 0);
601 set_page_refcounted(page);
602
603 arch_alloc_page(page, order);
604 kernel_map_pages(page, 1 << order, 1);
605
606 if (gfp_flags & __GFP_ZERO)
607 prep_zero_page(page, order, gfp_flags);
608
609 if (order && (gfp_flags & __GFP_COMP))
610 prep_compound_page(page, order);
611
612 return 0;
613}
614
615/*
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
618 */
619static struct page *__rmqueue(struct zone *zone, unsigned int order)
620{
621 struct free_area * area;
622 unsigned int current_order;
623 struct page *page;
624
625 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626 area = zone->free_area + current_order;
627 if (list_empty(&area->free_list))
628 continue;
629
630 page = list_entry(area->free_list.next, struct page, lru);
631 list_del(&page->lru);
632 rmv_page_order(page);
633 area->nr_free--;
634 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
635 expand(zone, page, order, current_order, area);
636 return page;
637 }
638
639 return NULL;
640}
641
642/*
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency. Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
646 */
647static int rmqueue_bulk(struct zone *zone, unsigned int order,
648 unsigned long count, struct list_head *list)
649{
650 int i;
651
652 spin_lock(&zone->lock);
653 for (i = 0; i < count; ++i) {
654 struct page *page = __rmqueue(zone, order);
655 if (unlikely(page == NULL))
656 break;
657 list_add_tail(&page->lru, list);
658 }
659 spin_unlock(&zone->lock);
660 return i;
661}
662
663#if MAX_NUMNODES > 1
664int nr_node_ids __read_mostly = MAX_NUMNODES;
665EXPORT_SYMBOL(nr_node_ids);
666
667/*
668 * Figure out the number of possible node ids.
669 */
670static void __init setup_nr_node_ids(void)
671{
672 unsigned int node;
673 unsigned int highest = 0;
674
675 for_each_node_mask(node, node_possible_map)
676 highest = node;
677 nr_node_ids = highest + 1;
678}
679#else
680static void __init setup_nr_node_ids(void) {}
681#endif
682
683#ifdef CONFIG_NUMA
684/*
685 * Called from the slab reaper to drain pagesets on a particular node that
686 * belongs to the currently executing processor.
687 * Note that this function must be called with the thread pinned to
688 * a single processor.
689 */
690void drain_node_pages(int nodeid)
691{
692 int i;
693 enum zone_type z;
694 unsigned long flags;
695
696 for (z = 0; z < MAX_NR_ZONES; z++) {
697 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
698 struct per_cpu_pageset *pset;
699
700 if (!populated_zone(zone))
701 continue;
702
703 pset = zone_pcp(zone, smp_processor_id());
704 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
705 struct per_cpu_pages *pcp;
706
707 pcp = &pset->pcp[i];
708 if (pcp->count) {
709 int to_drain;
710
711 local_irq_save(flags);
712 if (pcp->count >= pcp->batch)
713 to_drain = pcp->batch;
714 else
715 to_drain = pcp->count;
716 free_pages_bulk(zone, to_drain, &pcp->list, 0);
717 pcp->count -= to_drain;
718 local_irq_restore(flags);
719 }
720 }
721 }
722}
723#endif
724
725static void __drain_pages(unsigned int cpu)
726{
727 unsigned long flags;
728 struct zone *zone;
729 int i;
730
731 for_each_zone(zone) {
732 struct per_cpu_pageset *pset;
733
734 if (!populated_zone(zone))
735 continue;
736
737 pset = zone_pcp(zone, cpu);
738 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
739 struct per_cpu_pages *pcp;
740
741 pcp = &pset->pcp[i];
742 local_irq_save(flags);
743 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
744 pcp->count = 0;
745 local_irq_restore(flags);
746 }
747 }
748}
749
750#ifdef CONFIG_PM
751
752void mark_free_pages(struct zone *zone)
753{
754 unsigned long pfn, max_zone_pfn;
755 unsigned long flags;
756 int order;
757 struct list_head *curr;
758
759 if (!zone->spanned_pages)
760 return;
761
762 spin_lock_irqsave(&zone->lock, flags);
763
764 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
765 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
766 if (pfn_valid(pfn)) {
767 struct page *page = pfn_to_page(pfn);
768
769 if (!PageNosave(page))
770 ClearPageNosaveFree(page);
771 }
772
773 for (order = MAX_ORDER - 1; order >= 0; --order)
774 list_for_each(curr, &zone->free_area[order].free_list) {
775 unsigned long i;
776
777 pfn = page_to_pfn(list_entry(curr, struct page, lru));
778 for (i = 0; i < (1UL << order); i++)
779 SetPageNosaveFree(pfn_to_page(pfn + i));
780 }
781
782 spin_unlock_irqrestore(&zone->lock, flags);
783}
784
785/*
786 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
787 */
788void drain_local_pages(void)
789{
790 unsigned long flags;
791
792 local_irq_save(flags);
793 __drain_pages(smp_processor_id());
794 local_irq_restore(flags);
795}
796#endif /* CONFIG_PM */
797
798/*
799 * Free a 0-order page
800 */
801static void fastcall free_hot_cold_page(struct page *page, int cold)
802{
803 struct zone *zone = page_zone(page);
804 struct per_cpu_pages *pcp;
805 unsigned long flags;
806
807 if (PageAnon(page))
808 page->mapping = NULL;
809 if (free_pages_check(page))
810 return;
811
812 if (!PageHighMem(page))
813 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
814 arch_free_page(page, 0);
815 kernel_map_pages(page, 1, 0);
816
817 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
818 local_irq_save(flags);
819 __count_vm_event(PGFREE);
820 list_add(&page->lru, &pcp->list);
821 pcp->count++;
822 if (pcp->count >= pcp->high) {
823 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
824 pcp->count -= pcp->batch;
825 }
826 local_irq_restore(flags);
827 put_cpu();
828}
829
830void fastcall free_hot_page(struct page *page)
831{
832 free_hot_cold_page(page, 0);
833}
834
835void fastcall free_cold_page(struct page *page)
836{
837 free_hot_cold_page(page, 1);
838}
839
840/*
841 * split_page takes a non-compound higher-order page, and splits it into
842 * n (1<<order) sub-pages: page[0..n]
843 * Each sub-page must be freed individually.
844 *
845 * Note: this is probably too low level an operation for use in drivers.
846 * Please consult with lkml before using this in your driver.
847 */
848void split_page(struct page *page, unsigned int order)
849{
850 int i;
851
852 VM_BUG_ON(PageCompound(page));
853 VM_BUG_ON(!page_count(page));
854 for (i = 1; i < (1 << order); i++)
855 set_page_refcounted(page + i);
856}
857
858/*
859 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
860 * we cheat by calling it from here, in the order > 0 path. Saves a branch
861 * or two.
862 */
863static struct page *buffered_rmqueue(struct zonelist *zonelist,
864 struct zone *zone, int order, gfp_t gfp_flags)
865{
866 unsigned long flags;
867 struct page *page;
868 int cold = !!(gfp_flags & __GFP_COLD);
869 int cpu;
870
871again:
872 cpu = get_cpu();
873 if (likely(order == 0)) {
874 struct per_cpu_pages *pcp;
875
876 pcp = &zone_pcp(zone, cpu)->pcp[cold];
877 local_irq_save(flags);
878 if (!pcp->count) {
879 pcp->count = rmqueue_bulk(zone, 0,
880 pcp->batch, &pcp->list);
881 if (unlikely(!pcp->count))
882 goto failed;
883 }
884 page = list_entry(pcp->list.next, struct page, lru);
885 list_del(&page->lru);
886 pcp->count--;
887 } else {
888 spin_lock_irqsave(&zone->lock, flags);
889 page = __rmqueue(zone, order);
890 spin_unlock(&zone->lock);
891 if (!page)
892 goto failed;
893 }
894
895 __count_zone_vm_events(PGALLOC, zone, 1 << order);
896 zone_statistics(zonelist, zone);
897 local_irq_restore(flags);
898 put_cpu();
899
900 VM_BUG_ON(bad_range(zone, page));
901 if (prep_new_page(page, order, gfp_flags))
902 goto again;
903 return page;
904
905failed:
906 local_irq_restore(flags);
907 put_cpu();
908 return NULL;
909}
910
911#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
912#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
913#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
914#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
915#define ALLOC_HARDER 0x10 /* try to alloc harder */
916#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
917#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
918
919#ifdef CONFIG_FAIL_PAGE_ALLOC
920
921static struct fail_page_alloc_attr {
922 struct fault_attr attr;
923
924 u32 ignore_gfp_highmem;
925 u32 ignore_gfp_wait;
926
927#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
928
929 struct dentry *ignore_gfp_highmem_file;
930 struct dentry *ignore_gfp_wait_file;
931
932#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
933
934} fail_page_alloc = {
935 .attr = FAULT_ATTR_INITIALIZER,
936 .ignore_gfp_wait = 1,
937 .ignore_gfp_highmem = 1,
938};
939
940static int __init setup_fail_page_alloc(char *str)
941{
942 return setup_fault_attr(&fail_page_alloc.attr, str);
943}
944__setup("fail_page_alloc=", setup_fail_page_alloc);
945
946static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
947{
948 if (gfp_mask & __GFP_NOFAIL)
949 return 0;
950 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
951 return 0;
952 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
953 return 0;
954
955 return should_fail(&fail_page_alloc.attr, 1 << order);
956}
957
958#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
959
960static int __init fail_page_alloc_debugfs(void)
961{
962 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
963 struct dentry *dir;
964 int err;
965
966 err = init_fault_attr_dentries(&fail_page_alloc.attr,
967 "fail_page_alloc");
968 if (err)
969 return err;
970 dir = fail_page_alloc.attr.dentries.dir;
971
972 fail_page_alloc.ignore_gfp_wait_file =
973 debugfs_create_bool("ignore-gfp-wait", mode, dir,
974 &fail_page_alloc.ignore_gfp_wait);
975
976 fail_page_alloc.ignore_gfp_highmem_file =
977 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
978 &fail_page_alloc.ignore_gfp_highmem);
979
980 if (!fail_page_alloc.ignore_gfp_wait_file ||
981 !fail_page_alloc.ignore_gfp_highmem_file) {
982 err = -ENOMEM;
983 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
984 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
985 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
986 }
987
988 return err;
989}
990
991late_initcall(fail_page_alloc_debugfs);
992
993#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
994
995#else /* CONFIG_FAIL_PAGE_ALLOC */
996
997static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
998{
999 return 0;
1000}
1001
1002#endif /* CONFIG_FAIL_PAGE_ALLOC */
1003
1004/*
1005 * Return 1 if free pages are above 'mark'. This takes into account the order
1006 * of the allocation.
1007 */
1008int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1009 int classzone_idx, int alloc_flags)
1010{
1011 /* free_pages my go negative - that's OK */
1012 long min = mark;
1013 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1014 int o;
1015
1016 if (alloc_flags & ALLOC_HIGH)
1017 min -= min / 2;
1018 if (alloc_flags & ALLOC_HARDER)
1019 min -= min / 4;
1020
1021 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1022 return 0;
1023 for (o = 0; o < order; o++) {
1024 /* At the next order, this order's pages become unavailable */
1025 free_pages -= z->free_area[o].nr_free << o;
1026
1027 /* Require fewer higher order pages to be free */
1028 min >>= 1;
1029
1030 if (free_pages <= min)
1031 return 0;
1032 }
1033 return 1;
1034}
1035
1036#ifdef CONFIG_NUMA
1037/*
1038 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1039 * skip over zones that are not allowed by the cpuset, or that have
1040 * been recently (in last second) found to be nearly full. See further
1041 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1042 * that have to skip over alot of full or unallowed zones.
1043 *
1044 * If the zonelist cache is present in the passed in zonelist, then
1045 * returns a pointer to the allowed node mask (either the current
1046 * tasks mems_allowed, or node_online_map.)
1047 *
1048 * If the zonelist cache is not available for this zonelist, does
1049 * nothing and returns NULL.
1050 *
1051 * If the fullzones BITMAP in the zonelist cache is stale (more than
1052 * a second since last zap'd) then we zap it out (clear its bits.)
1053 *
1054 * We hold off even calling zlc_setup, until after we've checked the
1055 * first zone in the zonelist, on the theory that most allocations will
1056 * be satisfied from that first zone, so best to examine that zone as
1057 * quickly as we can.
1058 */
1059static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1060{
1061 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1062 nodemask_t *allowednodes; /* zonelist_cache approximation */
1063
1064 zlc = zonelist->zlcache_ptr;
1065 if (!zlc)
1066 return NULL;
1067
1068 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1069 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1070 zlc->last_full_zap = jiffies;
1071 }
1072
1073 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1074 &cpuset_current_mems_allowed :
1075 &node_online_map;
1076 return allowednodes;
1077}
1078
1079/*
1080 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1081 * if it is worth looking at further for free memory:
1082 * 1) Check that the zone isn't thought to be full (doesn't have its
1083 * bit set in the zonelist_cache fullzones BITMAP).
1084 * 2) Check that the zones node (obtained from the zonelist_cache
1085 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1086 * Return true (non-zero) if zone is worth looking at further, or
1087 * else return false (zero) if it is not.
1088 *
1089 * This check -ignores- the distinction between various watermarks,
1090 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1091 * found to be full for any variation of these watermarks, it will
1092 * be considered full for up to one second by all requests, unless
1093 * we are so low on memory on all allowed nodes that we are forced
1094 * into the second scan of the zonelist.
1095 *
1096 * In the second scan we ignore this zonelist cache and exactly
1097 * apply the watermarks to all zones, even it is slower to do so.
1098 * We are low on memory in the second scan, and should leave no stone
1099 * unturned looking for a free page.
1100 */
1101static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1102 nodemask_t *allowednodes)
1103{
1104 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1105 int i; /* index of *z in zonelist zones */
1106 int n; /* node that zone *z is on */
1107
1108 zlc = zonelist->zlcache_ptr;
1109 if (!zlc)
1110 return 1;
1111
1112 i = z - zonelist->zones;
1113 n = zlc->z_to_n[i];
1114
1115 /* This zone is worth trying if it is allowed but not full */
1116 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1117}
1118
1119/*
1120 * Given 'z' scanning a zonelist, set the corresponding bit in
1121 * zlc->fullzones, so that subsequent attempts to allocate a page
1122 * from that zone don't waste time re-examining it.
1123 */
1124static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1125{
1126 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1127 int i; /* index of *z in zonelist zones */
1128
1129 zlc = zonelist->zlcache_ptr;
1130 if (!zlc)
1131 return;
1132
1133 i = z - zonelist->zones;
1134
1135 set_bit(i, zlc->fullzones);
1136}
1137
1138#else /* CONFIG_NUMA */
1139
1140static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1141{
1142 return NULL;
1143}
1144
1145static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1146 nodemask_t *allowednodes)
1147{
1148 return 1;
1149}
1150
1151static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1152{
1153}
1154#endif /* CONFIG_NUMA */
1155
1156/*
1157 * get_page_from_freelist goes through the zonelist trying to allocate
1158 * a page.
1159 */
1160static struct page *
1161get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1162 struct zonelist *zonelist, int alloc_flags)
1163{
1164 struct zone **z;
1165 struct page *page = NULL;
1166 int classzone_idx = zone_idx(zonelist->zones[0]);
1167 struct zone *zone;
1168 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1169 int zlc_active = 0; /* set if using zonelist_cache */
1170 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1171
1172zonelist_scan:
1173 /*
1174 * Scan zonelist, looking for a zone with enough free.
1175 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1176 */
1177 z = zonelist->zones;
1178
1179 do {
1180 if (NUMA_BUILD && zlc_active &&
1181 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1182 continue;
1183 zone = *z;
1184 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1185 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1186 break;
1187 if ((alloc_flags & ALLOC_CPUSET) &&
1188 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1189 goto try_next_zone;
1190
1191 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1192 unsigned long mark;
1193 if (alloc_flags & ALLOC_WMARK_MIN)
1194 mark = zone->pages_min;
1195 else if (alloc_flags & ALLOC_WMARK_LOW)
1196 mark = zone->pages_low;
1197 else
1198 mark = zone->pages_high;
1199 if (!zone_watermark_ok(zone, order, mark,
1200 classzone_idx, alloc_flags)) {
1201 if (!zone_reclaim_mode ||
1202 !zone_reclaim(zone, gfp_mask, order))
1203 goto this_zone_full;
1204 }
1205 }
1206
1207 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1208 if (page)
1209 break;
1210this_zone_full:
1211 if (NUMA_BUILD)
1212 zlc_mark_zone_full(zonelist, z);
1213try_next_zone:
1214 if (NUMA_BUILD && !did_zlc_setup) {
1215 /* we do zlc_setup after the first zone is tried */
1216 allowednodes = zlc_setup(zonelist, alloc_flags);
1217 zlc_active = 1;
1218 did_zlc_setup = 1;
1219 }
1220 } while (*(++z) != NULL);
1221
1222 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1223 /* Disable zlc cache for second zonelist scan */
1224 zlc_active = 0;
1225 goto zonelist_scan;
1226 }
1227 return page;
1228}
1229
1230/*
1231 * This is the 'heart' of the zoned buddy allocator.
1232 */
1233struct page * fastcall
1234__alloc_pages(gfp_t gfp_mask, unsigned int order,
1235 struct zonelist *zonelist)
1236{
1237 const gfp_t wait = gfp_mask & __GFP_WAIT;
1238 struct zone **z;
1239 struct page *page;
1240 struct reclaim_state reclaim_state;
1241 struct task_struct *p = current;
1242 int do_retry;
1243 int alloc_flags;
1244 int did_some_progress;
1245
1246 might_sleep_if(wait);
1247
1248 if (should_fail_alloc_page(gfp_mask, order))
1249 return NULL;
1250
1251restart:
1252 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1253
1254 if (unlikely(*z == NULL)) {
1255 /* Should this ever happen?? */
1256 return NULL;
1257 }
1258
1259 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1260 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1261 if (page)
1262 goto got_pg;
1263
1264 /*
1265 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1266 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1267 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1268 * using a larger set of nodes after it has established that the
1269 * allowed per node queues are empty and that nodes are
1270 * over allocated.
1271 */
1272 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1273 goto nopage;
1274
1275 for (z = zonelist->zones; *z; z++)
1276 wakeup_kswapd(*z, order);
1277
1278 /*
1279 * OK, we're below the kswapd watermark and have kicked background
1280 * reclaim. Now things get more complex, so set up alloc_flags according
1281 * to how we want to proceed.
1282 *
1283 * The caller may dip into page reserves a bit more if the caller
1284 * cannot run direct reclaim, or if the caller has realtime scheduling
1285 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1286 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1287 */
1288 alloc_flags = ALLOC_WMARK_MIN;
1289 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1290 alloc_flags |= ALLOC_HARDER;
1291 if (gfp_mask & __GFP_HIGH)
1292 alloc_flags |= ALLOC_HIGH;
1293 if (wait)
1294 alloc_flags |= ALLOC_CPUSET;
1295
1296 /*
1297 * Go through the zonelist again. Let __GFP_HIGH and allocations
1298 * coming from realtime tasks go deeper into reserves.
1299 *
1300 * This is the last chance, in general, before the goto nopage.
1301 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1302 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1303 */
1304 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1305 if (page)
1306 goto got_pg;
1307
1308 /* This allocation should allow future memory freeing. */
1309
1310rebalance:
1311 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1312 && !in_interrupt()) {
1313 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1314nofail_alloc:
1315 /* go through the zonelist yet again, ignoring mins */
1316 page = get_page_from_freelist(gfp_mask, order,
1317 zonelist, ALLOC_NO_WATERMARKS);
1318 if (page)
1319 goto got_pg;
1320 if (gfp_mask & __GFP_NOFAIL) {
1321 congestion_wait(WRITE, HZ/50);
1322 goto nofail_alloc;
1323 }
1324 }
1325 goto nopage;
1326 }
1327
1328 /* Atomic allocations - we can't balance anything */
1329 if (!wait)
1330 goto nopage;
1331
1332 cond_resched();
1333
1334 /* We now go into synchronous reclaim */
1335 cpuset_memory_pressure_bump();
1336 p->flags |= PF_MEMALLOC;
1337 reclaim_state.reclaimed_slab = 0;
1338 p->reclaim_state = &reclaim_state;
1339
1340 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1341
1342 p->reclaim_state = NULL;
1343 p->flags &= ~PF_MEMALLOC;
1344
1345 cond_resched();
1346
1347 if (likely(did_some_progress)) {
1348 page = get_page_from_freelist(gfp_mask, order,
1349 zonelist, alloc_flags);
1350 if (page)
1351 goto got_pg;
1352 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1353 /*
1354 * Go through the zonelist yet one more time, keep
1355 * very high watermark here, this is only to catch
1356 * a parallel oom killing, we must fail if we're still
1357 * under heavy pressure.
1358 */
1359 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1360 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1361 if (page)
1362 goto got_pg;
1363
1364 out_of_memory(zonelist, gfp_mask, order);
1365 goto restart;
1366 }
1367
1368 /*
1369 * Don't let big-order allocations loop unless the caller explicitly
1370 * requests that. Wait for some write requests to complete then retry.
1371 *
1372 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1373 * <= 3, but that may not be true in other implementations.
1374 */
1375 do_retry = 0;
1376 if (!(gfp_mask & __GFP_NORETRY)) {
1377 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1378 do_retry = 1;
1379 if (gfp_mask & __GFP_NOFAIL)
1380 do_retry = 1;
1381 }
1382 if (do_retry) {
1383 congestion_wait(WRITE, HZ/50);
1384 goto rebalance;
1385 }
1386
1387nopage:
1388 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1389 printk(KERN_WARNING "%s: page allocation failure."
1390 " order:%d, mode:0x%x\n",
1391 p->comm, order, gfp_mask);
1392 dump_stack();
1393 show_mem();
1394 }
1395got_pg:
1396 return page;
1397}
1398
1399EXPORT_SYMBOL(__alloc_pages);
1400
1401/*
1402 * Common helper functions.
1403 */
1404fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1405{
1406 struct page * page;
1407 page = alloc_pages(gfp_mask, order);
1408 if (!page)
1409 return 0;
1410 return (unsigned long) page_address(page);
1411}
1412
1413EXPORT_SYMBOL(__get_free_pages);
1414
1415fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1416{
1417 struct page * page;
1418
1419 /*
1420 * get_zeroed_page() returns a 32-bit address, which cannot represent
1421 * a highmem page
1422 */
1423 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1424
1425 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1426 if (page)
1427 return (unsigned long) page_address(page);
1428 return 0;
1429}
1430
1431EXPORT_SYMBOL(get_zeroed_page);
1432
1433void __pagevec_free(struct pagevec *pvec)
1434{
1435 int i = pagevec_count(pvec);
1436
1437 while (--i >= 0)
1438 free_hot_cold_page(pvec->pages[i], pvec->cold);
1439}
1440
1441fastcall void __free_pages(struct page *page, unsigned int order)
1442{
1443 if (put_page_testzero(page)) {
1444 if (order == 0)
1445 free_hot_page(page);
1446 else
1447 __free_pages_ok(page, order);
1448 }
1449}
1450
1451EXPORT_SYMBOL(__free_pages);
1452
1453fastcall void free_pages(unsigned long addr, unsigned int order)
1454{
1455 if (addr != 0) {
1456 VM_BUG_ON(!virt_addr_valid((void *)addr));
1457 __free_pages(virt_to_page((void *)addr), order);
1458 }
1459}
1460
1461EXPORT_SYMBOL(free_pages);
1462
1463static unsigned int nr_free_zone_pages(int offset)
1464{
1465 /* Just pick one node, since fallback list is circular */
1466 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1467 unsigned int sum = 0;
1468
1469 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1470 struct zone **zonep = zonelist->zones;
1471 struct zone *zone;
1472
1473 for (zone = *zonep++; zone; zone = *zonep++) {
1474 unsigned long size = zone->present_pages;
1475 unsigned long high = zone->pages_high;
1476 if (size > high)
1477 sum += size - high;
1478 }
1479
1480 return sum;
1481}
1482
1483/*
1484 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1485 */
1486unsigned int nr_free_buffer_pages(void)
1487{
1488 return nr_free_zone_pages(gfp_zone(GFP_USER));
1489}
1490
1491/*
1492 * Amount of free RAM allocatable within all zones
1493 */
1494unsigned int nr_free_pagecache_pages(void)
1495{
1496 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1497}
1498
1499static inline void show_node(struct zone *zone)
1500{
1501 if (NUMA_BUILD)
1502 printk("Node %d ", zone_to_nid(zone));
1503}
1504
1505void si_meminfo(struct sysinfo *val)
1506{
1507 val->totalram = totalram_pages;
1508 val->sharedram = 0;
1509 val->freeram = global_page_state(NR_FREE_PAGES);
1510 val->bufferram = nr_blockdev_pages();
1511 val->totalhigh = totalhigh_pages;
1512 val->freehigh = nr_free_highpages();
1513 val->mem_unit = PAGE_SIZE;
1514}
1515
1516EXPORT_SYMBOL(si_meminfo);
1517
1518#ifdef CONFIG_NUMA
1519void si_meminfo_node(struct sysinfo *val, int nid)
1520{
1521 pg_data_t *pgdat = NODE_DATA(nid);
1522
1523 val->totalram = pgdat->node_present_pages;
1524 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1525#ifdef CONFIG_HIGHMEM
1526 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1527 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1528 NR_FREE_PAGES);
1529#else
1530 val->totalhigh = 0;
1531 val->freehigh = 0;
1532#endif
1533 val->mem_unit = PAGE_SIZE;
1534}
1535#endif
1536
1537#define K(x) ((x) << (PAGE_SHIFT-10))
1538
1539/*
1540 * Show free area list (used inside shift_scroll-lock stuff)
1541 * We also calculate the percentage fragmentation. We do this by counting the
1542 * memory on each free list with the exception of the first item on the list.
1543 */
1544void show_free_areas(void)
1545{
1546 int cpu;
1547 struct zone *zone;
1548
1549 for_each_zone(zone) {
1550 if (!populated_zone(zone))
1551 continue;
1552
1553 show_node(zone);
1554 printk("%s per-cpu:\n", zone->name);
1555
1556 for_each_online_cpu(cpu) {
1557 struct per_cpu_pageset *pageset;
1558
1559 pageset = zone_pcp(zone, cpu);
1560
1561 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1562 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1563 cpu, pageset->pcp[0].high,
1564 pageset->pcp[0].batch, pageset->pcp[0].count,
1565 pageset->pcp[1].high, pageset->pcp[1].batch,
1566 pageset->pcp[1].count);
1567 }
1568 }
1569
1570 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1571 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1572 global_page_state(NR_ACTIVE),
1573 global_page_state(NR_INACTIVE),
1574 global_page_state(NR_FILE_DIRTY),
1575 global_page_state(NR_WRITEBACK),
1576 global_page_state(NR_UNSTABLE_NFS),
1577 global_page_state(NR_FREE_PAGES),
1578 global_page_state(NR_SLAB_RECLAIMABLE) +
1579 global_page_state(NR_SLAB_UNRECLAIMABLE),
1580 global_page_state(NR_FILE_MAPPED),
1581 global_page_state(NR_PAGETABLE),
1582 global_page_state(NR_BOUNCE));
1583
1584 for_each_zone(zone) {
1585 int i;
1586
1587 if (!populated_zone(zone))
1588 continue;
1589
1590 show_node(zone);
1591 printk("%s"
1592 " free:%lukB"
1593 " min:%lukB"
1594 " low:%lukB"
1595 " high:%lukB"
1596 " active:%lukB"
1597 " inactive:%lukB"
1598 " present:%lukB"
1599 " pages_scanned:%lu"
1600 " all_unreclaimable? %s"
1601 "\n",
1602 zone->name,
1603 K(zone_page_state(zone, NR_FREE_PAGES)),
1604 K(zone->pages_min),
1605 K(zone->pages_low),
1606 K(zone->pages_high),
1607 K(zone_page_state(zone, NR_ACTIVE)),
1608 K(zone_page_state(zone, NR_INACTIVE)),
1609 K(zone->present_pages),
1610 zone->pages_scanned,
1611 (zone->all_unreclaimable ? "yes" : "no")
1612 );
1613 printk("lowmem_reserve[]:");
1614 for (i = 0; i < MAX_NR_ZONES; i++)
1615 printk(" %lu", zone->lowmem_reserve[i]);
1616 printk("\n");
1617 }
1618
1619 for_each_zone(zone) {
1620 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1621
1622 if (!populated_zone(zone))
1623 continue;
1624
1625 show_node(zone);
1626 printk("%s: ", zone->name);
1627
1628 spin_lock_irqsave(&zone->lock, flags);
1629 for (order = 0; order < MAX_ORDER; order++) {
1630 nr[order] = zone->free_area[order].nr_free;
1631 total += nr[order] << order;
1632 }
1633 spin_unlock_irqrestore(&zone->lock, flags);
1634 for (order = 0; order < MAX_ORDER; order++)
1635 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1636 printk("= %lukB\n", K(total));
1637 }
1638
1639 show_swap_cache_info();
1640}
1641
1642/*
1643 * Builds allocation fallback zone lists.
1644 *
1645 * Add all populated zones of a node to the zonelist.
1646 */
1647static int __meminit build_zonelists_node(pg_data_t *pgdat,
1648 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1649{
1650 struct zone *zone;
1651
1652 BUG_ON(zone_type >= MAX_NR_ZONES);
1653 zone_type++;
1654
1655 do {
1656 zone_type--;
1657 zone = pgdat->node_zones + zone_type;
1658 if (populated_zone(zone)) {
1659 zonelist->zones[nr_zones++] = zone;
1660 check_highest_zone(zone_type);
1661 }
1662
1663 } while (zone_type);
1664 return nr_zones;
1665}
1666
1667#ifdef CONFIG_NUMA
1668#define MAX_NODE_LOAD (num_online_nodes())
1669static int __meminitdata node_load[MAX_NUMNODES];
1670/**
1671 * find_next_best_node - find the next node that should appear in a given node's fallback list
1672 * @node: node whose fallback list we're appending
1673 * @used_node_mask: nodemask_t of already used nodes
1674 *
1675 * We use a number of factors to determine which is the next node that should
1676 * appear on a given node's fallback list. The node should not have appeared
1677 * already in @node's fallback list, and it should be the next closest node
1678 * according to the distance array (which contains arbitrary distance values
1679 * from each node to each node in the system), and should also prefer nodes
1680 * with no CPUs, since presumably they'll have very little allocation pressure
1681 * on them otherwise.
1682 * It returns -1 if no node is found.
1683 */
1684static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1685{
1686 int n, val;
1687 int min_val = INT_MAX;
1688 int best_node = -1;
1689
1690 /* Use the local node if we haven't already */
1691 if (!node_isset(node, *used_node_mask)) {
1692 node_set(node, *used_node_mask);
1693 return node;
1694 }
1695
1696 for_each_online_node(n) {
1697 cpumask_t tmp;
1698
1699 /* Don't want a node to appear more than once */
1700 if (node_isset(n, *used_node_mask))
1701 continue;
1702
1703 /* Use the distance array to find the distance */
1704 val = node_distance(node, n);
1705
1706 /* Penalize nodes under us ("prefer the next node") */
1707 val += (n < node);
1708
1709 /* Give preference to headless and unused nodes */
1710 tmp = node_to_cpumask(n);
1711 if (!cpus_empty(tmp))
1712 val += PENALTY_FOR_NODE_WITH_CPUS;
1713
1714 /* Slight preference for less loaded node */
1715 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1716 val += node_load[n];
1717
1718 if (val < min_val) {
1719 min_val = val;
1720 best_node = n;
1721 }
1722 }
1723
1724 if (best_node >= 0)
1725 node_set(best_node, *used_node_mask);
1726
1727 return best_node;
1728}
1729
1730static void __meminit build_zonelists(pg_data_t *pgdat)
1731{
1732 int j, node, local_node;
1733 enum zone_type i;
1734 int prev_node, load;
1735 struct zonelist *zonelist;
1736 nodemask_t used_mask;
1737
1738 /* initialize zonelists */
1739 for (i = 0; i < MAX_NR_ZONES; i++) {
1740 zonelist = pgdat->node_zonelists + i;
1741 zonelist->zones[0] = NULL;
1742 }
1743
1744 /* NUMA-aware ordering of nodes */
1745 local_node = pgdat->node_id;
1746 load = num_online_nodes();
1747 prev_node = local_node;
1748 nodes_clear(used_mask);
1749 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1750 int distance = node_distance(local_node, node);
1751
1752 /*
1753 * If another node is sufficiently far away then it is better
1754 * to reclaim pages in a zone before going off node.
1755 */
1756 if (distance > RECLAIM_DISTANCE)
1757 zone_reclaim_mode = 1;
1758
1759 /*
1760 * We don't want to pressure a particular node.
1761 * So adding penalty to the first node in same
1762 * distance group to make it round-robin.
1763 */
1764
1765 if (distance != node_distance(local_node, prev_node))
1766 node_load[node] += load;
1767 prev_node = node;
1768 load--;
1769 for (i = 0; i < MAX_NR_ZONES; i++) {
1770 zonelist = pgdat->node_zonelists + i;
1771 for (j = 0; zonelist->zones[j] != NULL; j++);
1772
1773 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1774 zonelist->zones[j] = NULL;
1775 }
1776 }
1777}
1778
1779/* Construct the zonelist performance cache - see further mmzone.h */
1780static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1781{
1782 int i;
1783
1784 for (i = 0; i < MAX_NR_ZONES; i++) {
1785 struct zonelist *zonelist;
1786 struct zonelist_cache *zlc;
1787 struct zone **z;
1788
1789 zonelist = pgdat->node_zonelists + i;
1790 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1791 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1792 for (z = zonelist->zones; *z; z++)
1793 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1794 }
1795}
1796
1797#else /* CONFIG_NUMA */
1798
1799static void __meminit build_zonelists(pg_data_t *pgdat)
1800{
1801 int node, local_node;
1802 enum zone_type i,j;
1803
1804 local_node = pgdat->node_id;
1805 for (i = 0; i < MAX_NR_ZONES; i++) {
1806 struct zonelist *zonelist;
1807
1808 zonelist = pgdat->node_zonelists + i;
1809
1810 j = build_zonelists_node(pgdat, zonelist, 0, i);
1811 /*
1812 * Now we build the zonelist so that it contains the zones
1813 * of all the other nodes.
1814 * We don't want to pressure a particular node, so when
1815 * building the zones for node N, we make sure that the
1816 * zones coming right after the local ones are those from
1817 * node N+1 (modulo N)
1818 */
1819 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1820 if (!node_online(node))
1821 continue;
1822 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1823 }
1824 for (node = 0; node < local_node; node++) {
1825 if (!node_online(node))
1826 continue;
1827 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1828 }
1829
1830 zonelist->zones[j] = NULL;
1831 }
1832}
1833
1834/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1835static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1836{
1837 int i;
1838
1839 for (i = 0; i < MAX_NR_ZONES; i++)
1840 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1841}
1842
1843#endif /* CONFIG_NUMA */
1844
1845/* return values int ....just for stop_machine_run() */
1846static int __meminit __build_all_zonelists(void *dummy)
1847{
1848 int nid;
1849
1850 for_each_online_node(nid) {
1851 build_zonelists(NODE_DATA(nid));
1852 build_zonelist_cache(NODE_DATA(nid));
1853 }
1854 return 0;
1855}
1856
1857void __meminit build_all_zonelists(void)
1858{
1859 if (system_state == SYSTEM_BOOTING) {
1860 __build_all_zonelists(NULL);
1861 cpuset_init_current_mems_allowed();
1862 } else {
1863 /* we have to stop all cpus to guaranntee there is no user
1864 of zonelist */
1865 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1866 /* cpuset refresh routine should be here */
1867 }
1868 vm_total_pages = nr_free_pagecache_pages();
1869 printk("Built %i zonelists. Total pages: %ld\n",
1870 num_online_nodes(), vm_total_pages);
1871}
1872
1873/*
1874 * Helper functions to size the waitqueue hash table.
1875 * Essentially these want to choose hash table sizes sufficiently
1876 * large so that collisions trying to wait on pages are rare.
1877 * But in fact, the number of active page waitqueues on typical
1878 * systems is ridiculously low, less than 200. So this is even
1879 * conservative, even though it seems large.
1880 *
1881 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1882 * waitqueues, i.e. the size of the waitq table given the number of pages.
1883 */
1884#define PAGES_PER_WAITQUEUE 256
1885
1886#ifndef CONFIG_MEMORY_HOTPLUG
1887static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1888{
1889 unsigned long size = 1;
1890
1891 pages /= PAGES_PER_WAITQUEUE;
1892
1893 while (size < pages)
1894 size <<= 1;
1895
1896 /*
1897 * Once we have dozens or even hundreds of threads sleeping
1898 * on IO we've got bigger problems than wait queue collision.
1899 * Limit the size of the wait table to a reasonable size.
1900 */
1901 size = min(size, 4096UL);
1902
1903 return max(size, 4UL);
1904}
1905#else
1906/*
1907 * A zone's size might be changed by hot-add, so it is not possible to determine
1908 * a suitable size for its wait_table. So we use the maximum size now.
1909 *
1910 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1911 *
1912 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1913 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1914 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1915 *
1916 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1917 * or more by the traditional way. (See above). It equals:
1918 *
1919 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1920 * ia64(16K page size) : = ( 8G + 4M)byte.
1921 * powerpc (64K page size) : = (32G +16M)byte.
1922 */
1923static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1924{
1925 return 4096UL;
1926}
1927#endif
1928
1929/*
1930 * This is an integer logarithm so that shifts can be used later
1931 * to extract the more random high bits from the multiplicative
1932 * hash function before the remainder is taken.
1933 */
1934static inline unsigned long wait_table_bits(unsigned long size)
1935{
1936 return ffz(~size);
1937}
1938
1939#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1940
1941/*
1942 * Initially all pages are reserved - free ones are freed
1943 * up by free_all_bootmem() once the early boot process is
1944 * done. Non-atomic initialization, single-pass.
1945 */
1946void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1947 unsigned long start_pfn, enum memmap_context context)
1948{
1949 struct page *page;
1950 unsigned long end_pfn = start_pfn + size;
1951 unsigned long pfn;
1952
1953 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1954 /*
1955 * There can be holes in boot-time mem_map[]s
1956 * handed to this function. They do not
1957 * exist on hotplugged memory.
1958 */
1959 if (context == MEMMAP_EARLY) {
1960 if (!early_pfn_valid(pfn))
1961 continue;
1962 if (!early_pfn_in_nid(pfn, nid))
1963 continue;
1964 }
1965 page = pfn_to_page(pfn);
1966 set_page_links(page, zone, nid, pfn);
1967 init_page_count(page);
1968 reset_page_mapcount(page);
1969 SetPageReserved(page);
1970 INIT_LIST_HEAD(&page->lru);
1971#ifdef WANT_PAGE_VIRTUAL
1972 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1973 if (!is_highmem_idx(zone))
1974 set_page_address(page, __va(pfn << PAGE_SHIFT));
1975#endif
1976 }
1977}
1978
1979void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1980 unsigned long size)
1981{
1982 int order;
1983 for (order = 0; order < MAX_ORDER ; order++) {
1984 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1985 zone->free_area[order].nr_free = 0;
1986 }
1987}
1988
1989#ifndef __HAVE_ARCH_MEMMAP_INIT
1990#define memmap_init(size, nid, zone, start_pfn) \
1991 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1992#endif
1993
1994static int __cpuinit zone_batchsize(struct zone *zone)
1995{
1996 int batch;
1997
1998 /*
1999 * The per-cpu-pages pools are set to around 1000th of the
2000 * size of the zone. But no more than 1/2 of a meg.
2001 *
2002 * OK, so we don't know how big the cache is. So guess.
2003 */
2004 batch = zone->present_pages / 1024;
2005 if (batch * PAGE_SIZE > 512 * 1024)
2006 batch = (512 * 1024) / PAGE_SIZE;
2007 batch /= 4; /* We effectively *= 4 below */
2008 if (batch < 1)
2009 batch = 1;
2010
2011 /*
2012 * Clamp the batch to a 2^n - 1 value. Having a power
2013 * of 2 value was found to be more likely to have
2014 * suboptimal cache aliasing properties in some cases.
2015 *
2016 * For example if 2 tasks are alternately allocating
2017 * batches of pages, one task can end up with a lot
2018 * of pages of one half of the possible page colors
2019 * and the other with pages of the other colors.
2020 */
2021 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2022
2023 return batch;
2024}
2025
2026inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2027{
2028 struct per_cpu_pages *pcp;
2029
2030 memset(p, 0, sizeof(*p));
2031
2032 pcp = &p->pcp[0]; /* hot */
2033 pcp->count = 0;
2034 pcp->high = 6 * batch;
2035 pcp->batch = max(1UL, 1 * batch);
2036 INIT_LIST_HEAD(&pcp->list);
2037
2038 pcp = &p->pcp[1]; /* cold*/
2039 pcp->count = 0;
2040 pcp->high = 2 * batch;
2041 pcp->batch = max(1UL, batch/2);
2042 INIT_LIST_HEAD(&pcp->list);
2043}
2044
2045/*
2046 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2047 * to the value high for the pageset p.
2048 */
2049
2050static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2051 unsigned long high)
2052{
2053 struct per_cpu_pages *pcp;
2054
2055 pcp = &p->pcp[0]; /* hot list */
2056 pcp->high = high;
2057 pcp->batch = max(1UL, high/4);
2058 if ((high/4) > (PAGE_SHIFT * 8))
2059 pcp->batch = PAGE_SHIFT * 8;
2060}
2061
2062
2063#ifdef CONFIG_NUMA
2064/*
2065 * Boot pageset table. One per cpu which is going to be used for all
2066 * zones and all nodes. The parameters will be set in such a way
2067 * that an item put on a list will immediately be handed over to
2068 * the buddy list. This is safe since pageset manipulation is done
2069 * with interrupts disabled.
2070 *
2071 * Some NUMA counter updates may also be caught by the boot pagesets.
2072 *
2073 * The boot_pagesets must be kept even after bootup is complete for
2074 * unused processors and/or zones. They do play a role for bootstrapping
2075 * hotplugged processors.
2076 *
2077 * zoneinfo_show() and maybe other functions do
2078 * not check if the processor is online before following the pageset pointer.
2079 * Other parts of the kernel may not check if the zone is available.
2080 */
2081static struct per_cpu_pageset boot_pageset[NR_CPUS];
2082
2083/*
2084 * Dynamically allocate memory for the
2085 * per cpu pageset array in struct zone.
2086 */
2087static int __cpuinit process_zones(int cpu)
2088{
2089 struct zone *zone, *dzone;
2090
2091 for_each_zone(zone) {
2092
2093 if (!populated_zone(zone))
2094 continue;
2095
2096 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2097 GFP_KERNEL, cpu_to_node(cpu));
2098 if (!zone_pcp(zone, cpu))
2099 goto bad;
2100
2101 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2102
2103 if (percpu_pagelist_fraction)
2104 setup_pagelist_highmark(zone_pcp(zone, cpu),
2105 (zone->present_pages / percpu_pagelist_fraction));
2106 }
2107
2108 return 0;
2109bad:
2110 for_each_zone(dzone) {
2111 if (dzone == zone)
2112 break;
2113 kfree(zone_pcp(dzone, cpu));
2114 zone_pcp(dzone, cpu) = NULL;
2115 }
2116 return -ENOMEM;
2117}
2118
2119static inline void free_zone_pagesets(int cpu)
2120{
2121 struct zone *zone;
2122
2123 for_each_zone(zone) {
2124 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2125
2126 /* Free per_cpu_pageset if it is slab allocated */
2127 if (pset != &boot_pageset[cpu])
2128 kfree(pset);
2129 zone_pcp(zone, cpu) = NULL;
2130 }
2131}
2132
2133static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2134 unsigned long action,
2135 void *hcpu)
2136{
2137 int cpu = (long)hcpu;
2138 int ret = NOTIFY_OK;
2139
2140 switch (action) {
2141 case CPU_UP_PREPARE:
2142 if (process_zones(cpu))
2143 ret = NOTIFY_BAD;
2144 break;
2145 case CPU_UP_CANCELED:
2146 case CPU_DEAD:
2147 free_zone_pagesets(cpu);
2148 break;
2149 default:
2150 break;
2151 }
2152 return ret;
2153}
2154
2155static struct notifier_block __cpuinitdata pageset_notifier =
2156 { &pageset_cpuup_callback, NULL, 0 };
2157
2158void __init setup_per_cpu_pageset(void)
2159{
2160 int err;
2161
2162 /* Initialize per_cpu_pageset for cpu 0.
2163 * A cpuup callback will do this for every cpu
2164 * as it comes online
2165 */
2166 err = process_zones(smp_processor_id());
2167 BUG_ON(err);
2168 register_cpu_notifier(&pageset_notifier);
2169}
2170
2171#endif
2172
2173static __meminit
2174int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2175{
2176 int i;
2177 struct pglist_data *pgdat = zone->zone_pgdat;
2178 size_t alloc_size;
2179
2180 /*
2181 * The per-page waitqueue mechanism uses hashed waitqueues
2182 * per zone.
2183 */
2184 zone->wait_table_hash_nr_entries =
2185 wait_table_hash_nr_entries(zone_size_pages);
2186 zone->wait_table_bits =
2187 wait_table_bits(zone->wait_table_hash_nr_entries);
2188 alloc_size = zone->wait_table_hash_nr_entries
2189 * sizeof(wait_queue_head_t);
2190
2191 if (system_state == SYSTEM_BOOTING) {
2192 zone->wait_table = (wait_queue_head_t *)
2193 alloc_bootmem_node(pgdat, alloc_size);
2194 } else {
2195 /*
2196 * This case means that a zone whose size was 0 gets new memory
2197 * via memory hot-add.
2198 * But it may be the case that a new node was hot-added. In
2199 * this case vmalloc() will not be able to use this new node's
2200 * memory - this wait_table must be initialized to use this new
2201 * node itself as well.
2202 * To use this new node's memory, further consideration will be
2203 * necessary.
2204 */
2205 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2206 }
2207 if (!zone->wait_table)
2208 return -ENOMEM;
2209
2210 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2211 init_waitqueue_head(zone->wait_table + i);
2212
2213 return 0;
2214}
2215
2216static __meminit void zone_pcp_init(struct zone *zone)
2217{
2218 int cpu;
2219 unsigned long batch = zone_batchsize(zone);
2220
2221 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2222#ifdef CONFIG_NUMA
2223 /* Early boot. Slab allocator not functional yet */
2224 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2225 setup_pageset(&boot_pageset[cpu],0);
2226#else
2227 setup_pageset(zone_pcp(zone,cpu), batch);
2228#endif
2229 }
2230 if (zone->present_pages)
2231 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2232 zone->name, zone->present_pages, batch);
2233}
2234
2235__meminit int init_currently_empty_zone(struct zone *zone,
2236 unsigned long zone_start_pfn,
2237 unsigned long size,
2238 enum memmap_context context)
2239{
2240 struct pglist_data *pgdat = zone->zone_pgdat;
2241 int ret;
2242 ret = zone_wait_table_init(zone, size);
2243 if (ret)
2244 return ret;
2245 pgdat->nr_zones = zone_idx(zone) + 1;
2246
2247 zone->zone_start_pfn = zone_start_pfn;
2248
2249 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2250
2251 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2252
2253 return 0;
2254}
2255
2256#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2257/*
2258 * Basic iterator support. Return the first range of PFNs for a node
2259 * Note: nid == MAX_NUMNODES returns first region regardless of node
2260 */
2261static int __init first_active_region_index_in_nid(int nid)
2262{
2263 int i;
2264
2265 for (i = 0; i < nr_nodemap_entries; i++)
2266 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2267 return i;
2268
2269 return -1;
2270}
2271
2272/*
2273 * Basic iterator support. Return the next active range of PFNs for a node
2274 * Note: nid == MAX_NUMNODES returns next region regardles of node
2275 */
2276static int __init next_active_region_index_in_nid(int index, int nid)
2277{
2278 for (index = index + 1; index < nr_nodemap_entries; index++)
2279 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2280 return index;
2281
2282 return -1;
2283}
2284
2285#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2286/*
2287 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2288 * Architectures may implement their own version but if add_active_range()
2289 * was used and there are no special requirements, this is a convenient
2290 * alternative
2291 */
2292int __init early_pfn_to_nid(unsigned long pfn)
2293{
2294 int i;
2295
2296 for (i = 0; i < nr_nodemap_entries; i++) {
2297 unsigned long start_pfn = early_node_map[i].start_pfn;
2298 unsigned long end_pfn = early_node_map[i].end_pfn;
2299
2300 if (start_pfn <= pfn && pfn < end_pfn)
2301 return early_node_map[i].nid;
2302 }
2303
2304 return 0;
2305}
2306#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2307
2308/* Basic iterator support to walk early_node_map[] */
2309#define for_each_active_range_index_in_nid(i, nid) \
2310 for (i = first_active_region_index_in_nid(nid); i != -1; \
2311 i = next_active_region_index_in_nid(i, nid))
2312
2313/**
2314 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2315 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2316 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2317 *
2318 * If an architecture guarantees that all ranges registered with
2319 * add_active_ranges() contain no holes and may be freed, this
2320 * this function may be used instead of calling free_bootmem() manually.
2321 */
2322void __init free_bootmem_with_active_regions(int nid,
2323 unsigned long max_low_pfn)
2324{
2325 int i;
2326
2327 for_each_active_range_index_in_nid(i, nid) {
2328 unsigned long size_pages = 0;
2329 unsigned long end_pfn = early_node_map[i].end_pfn;
2330
2331 if (early_node_map[i].start_pfn >= max_low_pfn)
2332 continue;
2333
2334 if (end_pfn > max_low_pfn)
2335 end_pfn = max_low_pfn;
2336
2337 size_pages = end_pfn - early_node_map[i].start_pfn;
2338 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2339 PFN_PHYS(early_node_map[i].start_pfn),
2340 size_pages << PAGE_SHIFT);
2341 }
2342}
2343
2344/**
2345 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2346 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2347 *
2348 * If an architecture guarantees that all ranges registered with
2349 * add_active_ranges() contain no holes and may be freed, this
2350 * function may be used instead of calling memory_present() manually.
2351 */
2352void __init sparse_memory_present_with_active_regions(int nid)
2353{
2354 int i;
2355
2356 for_each_active_range_index_in_nid(i, nid)
2357 memory_present(early_node_map[i].nid,
2358 early_node_map[i].start_pfn,
2359 early_node_map[i].end_pfn);
2360}
2361
2362/**
2363 * push_node_boundaries - Push node boundaries to at least the requested boundary
2364 * @nid: The nid of the node to push the boundary for
2365 * @start_pfn: The start pfn of the node
2366 * @end_pfn: The end pfn of the node
2367 *
2368 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2369 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2370 * be hotplugged even though no physical memory exists. This function allows
2371 * an arch to push out the node boundaries so mem_map is allocated that can
2372 * be used later.
2373 */
2374#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2375void __init push_node_boundaries(unsigned int nid,
2376 unsigned long start_pfn, unsigned long end_pfn)
2377{
2378 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2379 nid, start_pfn, end_pfn);
2380
2381 /* Initialise the boundary for this node if necessary */
2382 if (node_boundary_end_pfn[nid] == 0)
2383 node_boundary_start_pfn[nid] = -1UL;
2384
2385 /* Update the boundaries */
2386 if (node_boundary_start_pfn[nid] > start_pfn)
2387 node_boundary_start_pfn[nid] = start_pfn;
2388 if (node_boundary_end_pfn[nid] < end_pfn)
2389 node_boundary_end_pfn[nid] = end_pfn;
2390}
2391
2392/* If necessary, push the node boundary out for reserve hotadd */
2393static void __init account_node_boundary(unsigned int nid,
2394 unsigned long *start_pfn, unsigned long *end_pfn)
2395{
2396 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2397 nid, *start_pfn, *end_pfn);
2398
2399 /* Return if boundary information has not been provided */
2400 if (node_boundary_end_pfn[nid] == 0)
2401 return;
2402
2403 /* Check the boundaries and update if necessary */
2404 if (node_boundary_start_pfn[nid] < *start_pfn)
2405 *start_pfn = node_boundary_start_pfn[nid];
2406 if (node_boundary_end_pfn[nid] > *end_pfn)
2407 *end_pfn = node_boundary_end_pfn[nid];
2408}
2409#else
2410void __init push_node_boundaries(unsigned int nid,
2411 unsigned long start_pfn, unsigned long end_pfn) {}
2412
2413static void __init account_node_boundary(unsigned int nid,
2414 unsigned long *start_pfn, unsigned long *end_pfn) {}
2415#endif
2416
2417
2418/**
2419 * get_pfn_range_for_nid - Return the start and end page frames for a node
2420 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2421 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2422 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2423 *
2424 * It returns the start and end page frame of a node based on information
2425 * provided by an arch calling add_active_range(). If called for a node
2426 * with no available memory, a warning is printed and the start and end
2427 * PFNs will be 0.
2428 */
2429void __init get_pfn_range_for_nid(unsigned int nid,
2430 unsigned long *start_pfn, unsigned long *end_pfn)
2431{
2432 int i;
2433 *start_pfn = -1UL;
2434 *end_pfn = 0;
2435
2436 for_each_active_range_index_in_nid(i, nid) {
2437 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2438 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2439 }
2440
2441 if (*start_pfn == -1UL) {
2442 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2443 *start_pfn = 0;
2444 }
2445
2446 /* Push the node boundaries out if requested */
2447 account_node_boundary(nid, start_pfn, end_pfn);
2448}
2449
2450/*
2451 * Return the number of pages a zone spans in a node, including holes
2452 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2453 */
2454unsigned long __init zone_spanned_pages_in_node(int nid,
2455 unsigned long zone_type,
2456 unsigned long *ignored)
2457{
2458 unsigned long node_start_pfn, node_end_pfn;
2459 unsigned long zone_start_pfn, zone_end_pfn;
2460
2461 /* Get the start and end of the node and zone */
2462 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2463 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2464 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2465
2466 /* Check that this node has pages within the zone's required range */
2467 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2468 return 0;
2469
2470 /* Move the zone boundaries inside the node if necessary */
2471 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2472 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2473
2474 /* Return the spanned pages */
2475 return zone_end_pfn - zone_start_pfn;
2476}
2477
2478/*
2479 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2480 * then all holes in the requested range will be accounted for.
2481 */
2482unsigned long __init __absent_pages_in_range(int nid,
2483 unsigned long range_start_pfn,
2484 unsigned long range_end_pfn)
2485{
2486 int i = 0;
2487 unsigned long prev_end_pfn = 0, hole_pages = 0;
2488 unsigned long start_pfn;
2489
2490 /* Find the end_pfn of the first active range of pfns in the node */
2491 i = first_active_region_index_in_nid(nid);
2492 if (i == -1)
2493 return 0;
2494
2495 /* Account for ranges before physical memory on this node */
2496 if (early_node_map[i].start_pfn > range_start_pfn)
2497 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2498
2499 prev_end_pfn = early_node_map[i].start_pfn;
2500
2501 /* Find all holes for the zone within the node */
2502 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2503
2504 /* No need to continue if prev_end_pfn is outside the zone */
2505 if (prev_end_pfn >= range_end_pfn)
2506 break;
2507
2508 /* Make sure the end of the zone is not within the hole */
2509 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2510 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2511
2512 /* Update the hole size cound and move on */
2513 if (start_pfn > range_start_pfn) {
2514 BUG_ON(prev_end_pfn > start_pfn);
2515 hole_pages += start_pfn - prev_end_pfn;
2516 }
2517 prev_end_pfn = early_node_map[i].end_pfn;
2518 }
2519
2520 /* Account for ranges past physical memory on this node */
2521 if (range_end_pfn > prev_end_pfn)
2522 hole_pages += range_end_pfn -
2523 max(range_start_pfn, prev_end_pfn);
2524
2525 return hole_pages;
2526}
2527
2528/**
2529 * absent_pages_in_range - Return number of page frames in holes within a range
2530 * @start_pfn: The start PFN to start searching for holes
2531 * @end_pfn: The end PFN to stop searching for holes
2532 *
2533 * It returns the number of pages frames in memory holes within a range.
2534 */
2535unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2536 unsigned long end_pfn)
2537{
2538 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2539}
2540
2541/* Return the number of page frames in holes in a zone on a node */
2542unsigned long __init zone_absent_pages_in_node(int nid,
2543 unsigned long zone_type,
2544 unsigned long *ignored)
2545{
2546 unsigned long node_start_pfn, node_end_pfn;
2547 unsigned long zone_start_pfn, zone_end_pfn;
2548
2549 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2550 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2551 node_start_pfn);
2552 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2553 node_end_pfn);
2554
2555 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2556}
2557
2558#else
2559static inline unsigned long zone_spanned_pages_in_node(int nid,
2560 unsigned long zone_type,
2561 unsigned long *zones_size)
2562{
2563 return zones_size[zone_type];
2564}
2565
2566static inline unsigned long zone_absent_pages_in_node(int nid,
2567 unsigned long zone_type,
2568 unsigned long *zholes_size)
2569{
2570 if (!zholes_size)
2571 return 0;
2572
2573 return zholes_size[zone_type];
2574}
2575
2576#endif
2577
2578static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2579 unsigned long *zones_size, unsigned long *zholes_size)
2580{
2581 unsigned long realtotalpages, totalpages = 0;
2582 enum zone_type i;
2583
2584 for (i = 0; i < MAX_NR_ZONES; i++)
2585 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2586 zones_size);
2587 pgdat->node_spanned_pages = totalpages;
2588
2589 realtotalpages = totalpages;
2590 for (i = 0; i < MAX_NR_ZONES; i++)
2591 realtotalpages -=
2592 zone_absent_pages_in_node(pgdat->node_id, i,
2593 zholes_size);
2594 pgdat->node_present_pages = realtotalpages;
2595 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2596 realtotalpages);
2597}
2598
2599/*
2600 * Set up the zone data structures:
2601 * - mark all pages reserved
2602 * - mark all memory queues empty
2603 * - clear the memory bitmaps
2604 */
2605static void __meminit free_area_init_core(struct pglist_data *pgdat,
2606 unsigned long *zones_size, unsigned long *zholes_size)
2607{
2608 enum zone_type j;
2609 int nid = pgdat->node_id;
2610 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2611 int ret;
2612
2613 pgdat_resize_init(pgdat);
2614 pgdat->nr_zones = 0;
2615 init_waitqueue_head(&pgdat->kswapd_wait);
2616 pgdat->kswapd_max_order = 0;
2617
2618 for (j = 0; j < MAX_NR_ZONES; j++) {
2619 struct zone *zone = pgdat->node_zones + j;
2620 unsigned long size, realsize, memmap_pages;
2621
2622 size = zone_spanned_pages_in_node(nid, j, zones_size);
2623 realsize = size - zone_absent_pages_in_node(nid, j,
2624 zholes_size);
2625
2626 /*
2627 * Adjust realsize so that it accounts for how much memory
2628 * is used by this zone for memmap. This affects the watermark
2629 * and per-cpu initialisations
2630 */
2631 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2632 if (realsize >= memmap_pages) {
2633 realsize -= memmap_pages;
2634 printk(KERN_DEBUG
2635 " %s zone: %lu pages used for memmap\n",
2636 zone_names[j], memmap_pages);
2637 } else
2638 printk(KERN_WARNING
2639 " %s zone: %lu pages exceeds realsize %lu\n",
2640 zone_names[j], memmap_pages, realsize);
2641
2642 /* Account for reserved pages */
2643 if (j == 0 && realsize > dma_reserve) {
2644 realsize -= dma_reserve;
2645 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2646 zone_names[0], dma_reserve);
2647 }
2648
2649 if (!is_highmem_idx(j))
2650 nr_kernel_pages += realsize;
2651 nr_all_pages += realsize;
2652
2653 zone->spanned_pages = size;
2654 zone->present_pages = realsize;
2655#ifdef CONFIG_NUMA
2656 zone->node = nid;
2657 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2658 / 100;
2659 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2660#endif
2661 zone->name = zone_names[j];
2662 spin_lock_init(&zone->lock);
2663 spin_lock_init(&zone->lru_lock);
2664 zone_seqlock_init(zone);
2665 zone->zone_pgdat = pgdat;
2666
2667 zone->prev_priority = DEF_PRIORITY;
2668
2669 zone_pcp_init(zone);
2670 INIT_LIST_HEAD(&zone->active_list);
2671 INIT_LIST_HEAD(&zone->inactive_list);
2672 zone->nr_scan_active = 0;
2673 zone->nr_scan_inactive = 0;
2674 zap_zone_vm_stats(zone);
2675 atomic_set(&zone->reclaim_in_progress, 0);
2676 if (!size)
2677 continue;
2678
2679 ret = init_currently_empty_zone(zone, zone_start_pfn,
2680 size, MEMMAP_EARLY);
2681 BUG_ON(ret);
2682 zone_start_pfn += size;
2683 }
2684}
2685
2686static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2687{
2688 /* Skip empty nodes */
2689 if (!pgdat->node_spanned_pages)
2690 return;
2691
2692#ifdef CONFIG_FLAT_NODE_MEM_MAP
2693 /* ia64 gets its own node_mem_map, before this, without bootmem */
2694 if (!pgdat->node_mem_map) {
2695 unsigned long size, start, end;
2696 struct page *map;
2697
2698 /*
2699 * The zone's endpoints aren't required to be MAX_ORDER
2700 * aligned but the node_mem_map endpoints must be in order
2701 * for the buddy allocator to function correctly.
2702 */
2703 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2704 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2705 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2706 size = (end - start) * sizeof(struct page);
2707 map = alloc_remap(pgdat->node_id, size);
2708 if (!map)
2709 map = alloc_bootmem_node(pgdat, size);
2710 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2711 }
2712#ifdef CONFIG_FLATMEM
2713 /*
2714 * With no DISCONTIG, the global mem_map is just set as node 0's
2715 */
2716 if (pgdat == NODE_DATA(0)) {
2717 mem_map = NODE_DATA(0)->node_mem_map;
2718#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2719 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2720 mem_map -= pgdat->node_start_pfn;
2721#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2722 }
2723#endif
2724#endif /* CONFIG_FLAT_NODE_MEM_MAP */
2725}
2726
2727void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2728 unsigned long *zones_size, unsigned long node_start_pfn,
2729 unsigned long *zholes_size)
2730{
2731 pgdat->node_id = nid;
2732 pgdat->node_start_pfn = node_start_pfn;
2733 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2734
2735 alloc_node_mem_map(pgdat);
2736
2737 free_area_init_core(pgdat, zones_size, zholes_size);
2738}
2739
2740#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2741/**
2742 * add_active_range - Register a range of PFNs backed by physical memory
2743 * @nid: The node ID the range resides on
2744 * @start_pfn: The start PFN of the available physical memory
2745 * @end_pfn: The end PFN of the available physical memory
2746 *
2747 * These ranges are stored in an early_node_map[] and later used by
2748 * free_area_init_nodes() to calculate zone sizes and holes. If the
2749 * range spans a memory hole, it is up to the architecture to ensure
2750 * the memory is not freed by the bootmem allocator. If possible
2751 * the range being registered will be merged with existing ranges.
2752 */
2753void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2754 unsigned long end_pfn)
2755{
2756 int i;
2757
2758 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2759 "%d entries of %d used\n",
2760 nid, start_pfn, end_pfn,
2761 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2762
2763 /* Merge with existing active regions if possible */
2764 for (i = 0; i < nr_nodemap_entries; i++) {
2765 if (early_node_map[i].nid != nid)
2766 continue;
2767
2768 /* Skip if an existing region covers this new one */
2769 if (start_pfn >= early_node_map[i].start_pfn &&
2770 end_pfn <= early_node_map[i].end_pfn)
2771 return;
2772
2773 /* Merge forward if suitable */
2774 if (start_pfn <= early_node_map[i].end_pfn &&
2775 end_pfn > early_node_map[i].end_pfn) {
2776 early_node_map[i].end_pfn = end_pfn;
2777 return;
2778 }
2779
2780 /* Merge backward if suitable */
2781 if (start_pfn < early_node_map[i].end_pfn &&
2782 end_pfn >= early_node_map[i].start_pfn) {
2783 early_node_map[i].start_pfn = start_pfn;
2784 return;
2785 }
2786 }
2787
2788 /* Check that early_node_map is large enough */
2789 if (i >= MAX_ACTIVE_REGIONS) {
2790 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2791 MAX_ACTIVE_REGIONS);
2792 return;
2793 }
2794
2795 early_node_map[i].nid = nid;
2796 early_node_map[i].start_pfn = start_pfn;
2797 early_node_map[i].end_pfn = end_pfn;
2798 nr_nodemap_entries = i + 1;
2799}
2800
2801/**
2802 * shrink_active_range - Shrink an existing registered range of PFNs
2803 * @nid: The node id the range is on that should be shrunk
2804 * @old_end_pfn: The old end PFN of the range
2805 * @new_end_pfn: The new PFN of the range
2806 *
2807 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2808 * The map is kept at the end physical page range that has already been
2809 * registered with add_active_range(). This function allows an arch to shrink
2810 * an existing registered range.
2811 */
2812void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2813 unsigned long new_end_pfn)
2814{
2815 int i;
2816
2817 /* Find the old active region end and shrink */
2818 for_each_active_range_index_in_nid(i, nid)
2819 if (early_node_map[i].end_pfn == old_end_pfn) {
2820 early_node_map[i].end_pfn = new_end_pfn;
2821 break;
2822 }
2823}
2824
2825/**
2826 * remove_all_active_ranges - Remove all currently registered regions
2827 *
2828 * During discovery, it may be found that a table like SRAT is invalid
2829 * and an alternative discovery method must be used. This function removes
2830 * all currently registered regions.
2831 */
2832void __init remove_all_active_ranges(void)
2833{
2834 memset(early_node_map, 0, sizeof(early_node_map));
2835 nr_nodemap_entries = 0;
2836#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2837 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2838 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2839#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2840}
2841
2842/* Compare two active node_active_regions */
2843static int __init cmp_node_active_region(const void *a, const void *b)
2844{
2845 struct node_active_region *arange = (struct node_active_region *)a;
2846 struct node_active_region *brange = (struct node_active_region *)b;
2847
2848 /* Done this way to avoid overflows */
2849 if (arange->start_pfn > brange->start_pfn)
2850 return 1;
2851 if (arange->start_pfn < brange->start_pfn)
2852 return -1;
2853
2854 return 0;
2855}
2856
2857/* sort the node_map by start_pfn */
2858static void __init sort_node_map(void)
2859{
2860 sort(early_node_map, (size_t)nr_nodemap_entries,
2861 sizeof(struct node_active_region),
2862 cmp_node_active_region, NULL);
2863}
2864
2865/* Find the lowest pfn for a node */
2866unsigned long __init find_min_pfn_for_node(unsigned long nid)
2867{
2868 int i;
2869 unsigned long min_pfn = ULONG_MAX;
2870
2871 /* Assuming a sorted map, the first range found has the starting pfn */
2872 for_each_active_range_index_in_nid(i, nid)
2873 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2874
2875 if (min_pfn == ULONG_MAX) {
2876 printk(KERN_WARNING
2877 "Could not find start_pfn for node %lu\n", nid);
2878 return 0;
2879 }
2880
2881 return min_pfn;
2882}
2883
2884/**
2885 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2886 *
2887 * It returns the minimum PFN based on information provided via
2888 * add_active_range().
2889 */
2890unsigned long __init find_min_pfn_with_active_regions(void)
2891{
2892 return find_min_pfn_for_node(MAX_NUMNODES);
2893}
2894
2895/**
2896 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2897 *
2898 * It returns the maximum PFN based on information provided via
2899 * add_active_range().
2900 */
2901unsigned long __init find_max_pfn_with_active_regions(void)
2902{
2903 int i;
2904 unsigned long max_pfn = 0;
2905
2906 for (i = 0; i < nr_nodemap_entries; i++)
2907 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2908
2909 return max_pfn;
2910}
2911
2912/**
2913 * free_area_init_nodes - Initialise all pg_data_t and zone data
2914 * @max_zone_pfn: an array of max PFNs for each zone
2915 *
2916 * This will call free_area_init_node() for each active node in the system.
2917 * Using the page ranges provided by add_active_range(), the size of each
2918 * zone in each node and their holes is calculated. If the maximum PFN
2919 * between two adjacent zones match, it is assumed that the zone is empty.
2920 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2921 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2922 * starts where the previous one ended. For example, ZONE_DMA32 starts
2923 * at arch_max_dma_pfn.
2924 */
2925void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2926{
2927 unsigned long nid;
2928 enum zone_type i;
2929
2930 /* Sort early_node_map as initialisation assumes it is sorted */
2931 sort_node_map();
2932
2933 /* Record where the zone boundaries are */
2934 memset(arch_zone_lowest_possible_pfn, 0,
2935 sizeof(arch_zone_lowest_possible_pfn));
2936 memset(arch_zone_highest_possible_pfn, 0,
2937 sizeof(arch_zone_highest_possible_pfn));
2938 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2939 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2940 for (i = 1; i < MAX_NR_ZONES; i++) {
2941 arch_zone_lowest_possible_pfn[i] =
2942 arch_zone_highest_possible_pfn[i-1];
2943 arch_zone_highest_possible_pfn[i] =
2944 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2945 }
2946
2947 /* Print out the zone ranges */
2948 printk("Zone PFN ranges:\n");
2949 for (i = 0; i < MAX_NR_ZONES; i++)
2950 printk(" %-8s %8lu -> %8lu\n",
2951 zone_names[i],
2952 arch_zone_lowest_possible_pfn[i],
2953 arch_zone_highest_possible_pfn[i]);
2954
2955 /* Print out the early_node_map[] */
2956 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2957 for (i = 0; i < nr_nodemap_entries; i++)
2958 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2959 early_node_map[i].start_pfn,
2960 early_node_map[i].end_pfn);
2961
2962 /* Initialise every node */
2963 setup_nr_node_ids();
2964 for_each_online_node(nid) {
2965 pg_data_t *pgdat = NODE_DATA(nid);
2966 free_area_init_node(nid, pgdat, NULL,
2967 find_min_pfn_for_node(nid), NULL);
2968 }
2969}
2970#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2971
2972/**
2973 * set_dma_reserve - set the specified number of pages reserved in the first zone
2974 * @new_dma_reserve: The number of pages to mark reserved
2975 *
2976 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2977 * In the DMA zone, a significant percentage may be consumed by kernel image
2978 * and other unfreeable allocations which can skew the watermarks badly. This
2979 * function may optionally be used to account for unfreeable pages in the
2980 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2981 * smaller per-cpu batchsize.
2982 */
2983void __init set_dma_reserve(unsigned long new_dma_reserve)
2984{
2985 dma_reserve = new_dma_reserve;
2986}
2987
2988#ifndef CONFIG_NEED_MULTIPLE_NODES
2989static bootmem_data_t contig_bootmem_data;
2990struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2991
2992EXPORT_SYMBOL(contig_page_data);
2993#endif
2994
2995void __init free_area_init(unsigned long *zones_size)
2996{
2997 free_area_init_node(0, NODE_DATA(0), zones_size,
2998 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2999}
3000
3001static int page_alloc_cpu_notify(struct notifier_block *self,
3002 unsigned long action, void *hcpu)
3003{
3004 int cpu = (unsigned long)hcpu;
3005
3006 if (action == CPU_DEAD) {
3007 local_irq_disable();
3008 __drain_pages(cpu);
3009 vm_events_fold_cpu(cpu);
3010 local_irq_enable();
3011 refresh_cpu_vm_stats(cpu);
3012 }
3013 return NOTIFY_OK;
3014}
3015
3016void __init page_alloc_init(void)
3017{
3018 hotcpu_notifier(page_alloc_cpu_notify, 0);
3019}
3020
3021/*
3022 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3023 * or min_free_kbytes changes.
3024 */
3025static void calculate_totalreserve_pages(void)
3026{
3027 struct pglist_data *pgdat;
3028 unsigned long reserve_pages = 0;
3029 enum zone_type i, j;
3030
3031 for_each_online_pgdat(pgdat) {
3032 for (i = 0; i < MAX_NR_ZONES; i++) {
3033 struct zone *zone = pgdat->node_zones + i;
3034 unsigned long max = 0;
3035
3036 /* Find valid and maximum lowmem_reserve in the zone */
3037 for (j = i; j < MAX_NR_ZONES; j++) {
3038 if (zone->lowmem_reserve[j] > max)
3039 max = zone->lowmem_reserve[j];
3040 }
3041
3042 /* we treat pages_high as reserved pages. */
3043 max += zone->pages_high;
3044
3045 if (max > zone->present_pages)
3046 max = zone->present_pages;
3047 reserve_pages += max;
3048 }
3049 }
3050 totalreserve_pages = reserve_pages;
3051}
3052
3053/*
3054 * setup_per_zone_lowmem_reserve - called whenever
3055 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3056 * has a correct pages reserved value, so an adequate number of
3057 * pages are left in the zone after a successful __alloc_pages().
3058 */
3059static void setup_per_zone_lowmem_reserve(void)
3060{
3061 struct pglist_data *pgdat;
3062 enum zone_type j, idx;
3063
3064 for_each_online_pgdat(pgdat) {
3065 for (j = 0; j < MAX_NR_ZONES; j++) {
3066 struct zone *zone = pgdat->node_zones + j;
3067 unsigned long present_pages = zone->present_pages;
3068
3069 zone->lowmem_reserve[j] = 0;
3070
3071 idx = j;
3072 while (idx) {
3073 struct zone *lower_zone;
3074
3075 idx--;
3076
3077 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3078 sysctl_lowmem_reserve_ratio[idx] = 1;
3079
3080 lower_zone = pgdat->node_zones + idx;
3081 lower_zone->lowmem_reserve[j] = present_pages /
3082 sysctl_lowmem_reserve_ratio[idx];
3083 present_pages += lower_zone->present_pages;
3084 }
3085 }
3086 }
3087
3088 /* update totalreserve_pages */
3089 calculate_totalreserve_pages();
3090}
3091
3092/**
3093 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3094 *
3095 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3096 * with respect to min_free_kbytes.
3097 */
3098void setup_per_zone_pages_min(void)
3099{
3100 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3101 unsigned long lowmem_pages = 0;
3102 struct zone *zone;
3103 unsigned long flags;
3104
3105 /* Calculate total number of !ZONE_HIGHMEM pages */
3106 for_each_zone(zone) {
3107 if (!is_highmem(zone))
3108 lowmem_pages += zone->present_pages;
3109 }
3110
3111 for_each_zone(zone) {
3112 u64 tmp;
3113
3114 spin_lock_irqsave(&zone->lru_lock, flags);
3115 tmp = (u64)pages_min * zone->present_pages;
3116 do_div(tmp, lowmem_pages);
3117 if (is_highmem(zone)) {
3118 /*
3119 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3120 * need highmem pages, so cap pages_min to a small
3121 * value here.
3122 *
3123 * The (pages_high-pages_low) and (pages_low-pages_min)
3124 * deltas controls asynch page reclaim, and so should
3125 * not be capped for highmem.
3126 */
3127 int min_pages;
3128
3129 min_pages = zone->present_pages / 1024;
3130 if (min_pages < SWAP_CLUSTER_MAX)
3131 min_pages = SWAP_CLUSTER_MAX;
3132 if (min_pages > 128)
3133 min_pages = 128;
3134 zone->pages_min = min_pages;
3135 } else {
3136 /*
3137 * If it's a lowmem zone, reserve a number of pages
3138 * proportionate to the zone's size.
3139 */
3140 zone->pages_min = tmp;
3141 }
3142
3143 zone->pages_low = zone->pages_min + (tmp >> 2);
3144 zone->pages_high = zone->pages_min + (tmp >> 1);
3145 spin_unlock_irqrestore(&zone->lru_lock, flags);
3146 }
3147
3148 /* update totalreserve_pages */
3149 calculate_totalreserve_pages();
3150}
3151
3152/*
3153 * Initialise min_free_kbytes.
3154 *
3155 * For small machines we want it small (128k min). For large machines
3156 * we want it large (64MB max). But it is not linear, because network
3157 * bandwidth does not increase linearly with machine size. We use
3158 *
3159 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3160 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3161 *
3162 * which yields
3163 *
3164 * 16MB: 512k
3165 * 32MB: 724k
3166 * 64MB: 1024k
3167 * 128MB: 1448k
3168 * 256MB: 2048k
3169 * 512MB: 2896k
3170 * 1024MB: 4096k
3171 * 2048MB: 5792k
3172 * 4096MB: 8192k
3173 * 8192MB: 11584k
3174 * 16384MB: 16384k
3175 */
3176static int __init init_per_zone_pages_min(void)
3177{
3178 unsigned long lowmem_kbytes;
3179
3180 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3181
3182 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3183 if (min_free_kbytes < 128)
3184 min_free_kbytes = 128;
3185 if (min_free_kbytes > 65536)
3186 min_free_kbytes = 65536;
3187 setup_per_zone_pages_min();
3188 setup_per_zone_lowmem_reserve();
3189 return 0;
3190}
3191module_init(init_per_zone_pages_min)
3192
3193/*
3194 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3195 * that we can call two helper functions whenever min_free_kbytes
3196 * changes.
3197 */
3198int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3199 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3200{
3201 proc_dointvec(table, write, file, buffer, length, ppos);
3202 if (write)
3203 setup_per_zone_pages_min();
3204 return 0;
3205}
3206
3207#ifdef CONFIG_NUMA
3208int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3209 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3210{
3211 struct zone *zone;
3212 int rc;
3213
3214 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3215 if (rc)
3216 return rc;
3217
3218 for_each_zone(zone)
3219 zone->min_unmapped_pages = (zone->present_pages *
3220 sysctl_min_unmapped_ratio) / 100;
3221 return 0;
3222}
3223
3224int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3225 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3226{
3227 struct zone *zone;
3228 int rc;
3229
3230 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3231 if (rc)
3232 return rc;
3233
3234 for_each_zone(zone)
3235 zone->min_slab_pages = (zone->present_pages *
3236 sysctl_min_slab_ratio) / 100;
3237 return 0;
3238}
3239#endif
3240
3241/*
3242 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3243 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3244 * whenever sysctl_lowmem_reserve_ratio changes.
3245 *
3246 * The reserve ratio obviously has absolutely no relation with the
3247 * pages_min watermarks. The lowmem reserve ratio can only make sense
3248 * if in function of the boot time zone sizes.
3249 */
3250int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3251 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3252{
3253 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3254 setup_per_zone_lowmem_reserve();
3255 return 0;
3256}
3257
3258/*
3259 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3260 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3261 * can have before it gets flushed back to buddy allocator.
3262 */
3263
3264int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3265 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3266{
3267 struct zone *zone;
3268 unsigned int cpu;
3269 int ret;
3270
3271 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3272 if (!write || (ret == -EINVAL))
3273 return ret;
3274 for_each_zone(zone) {
3275 for_each_online_cpu(cpu) {
3276 unsigned long high;
3277 high = zone->present_pages / percpu_pagelist_fraction;
3278 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3279 }
3280 }
3281 return 0;
3282}
3283
3284int hashdist = HASHDIST_DEFAULT;
3285
3286#ifdef CONFIG_NUMA
3287static int __init set_hashdist(char *str)
3288{
3289 if (!str)
3290 return 0;
3291 hashdist = simple_strtoul(str, &str, 0);
3292 return 1;
3293}
3294__setup("hashdist=", set_hashdist);
3295#endif
3296
3297/*
3298 * allocate a large system hash table from bootmem
3299 * - it is assumed that the hash table must contain an exact power-of-2
3300 * quantity of entries
3301 * - limit is the number of hash buckets, not the total allocation size
3302 */
3303void *__init alloc_large_system_hash(const char *tablename,
3304 unsigned long bucketsize,
3305 unsigned long numentries,
3306 int scale,
3307 int flags,
3308 unsigned int *_hash_shift,
3309 unsigned int *_hash_mask,
3310 unsigned long limit)
3311{
3312 unsigned long long max = limit;
3313 unsigned long log2qty, size;
3314 void *table = NULL;
3315
3316 /* allow the kernel cmdline to have a say */
3317 if (!numentries) {
3318 /* round applicable memory size up to nearest megabyte */
3319 numentries = nr_kernel_pages;
3320 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3321 numentries >>= 20 - PAGE_SHIFT;
3322 numentries <<= 20 - PAGE_SHIFT;
3323
3324 /* limit to 1 bucket per 2^scale bytes of low memory */
3325 if (scale > PAGE_SHIFT)
3326 numentries >>= (scale - PAGE_SHIFT);
3327 else
3328 numentries <<= (PAGE_SHIFT - scale);
3329
3330 /* Make sure we've got at least a 0-order allocation.. */
3331 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3332 numentries = PAGE_SIZE / bucketsize;
3333 }
3334 numentries = roundup_pow_of_two(numentries);
3335
3336 /* limit allocation size to 1/16 total memory by default */
3337 if (max == 0) {
3338 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3339 do_div(max, bucketsize);
3340 }
3341
3342 if (numentries > max)
3343 numentries = max;
3344
3345 log2qty = ilog2(numentries);
3346
3347 do {
3348 size = bucketsize << log2qty;
3349 if (flags & HASH_EARLY)
3350 table = alloc_bootmem(size);
3351 else if (hashdist)
3352 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3353 else {
3354 unsigned long order;
3355 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3356 ;
3357 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3358 }
3359 } while (!table && size > PAGE_SIZE && --log2qty);
3360
3361 if (!table)
3362 panic("Failed to allocate %s hash table\n", tablename);
3363
3364 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3365 tablename,
3366 (1U << log2qty),
3367 ilog2(size) - PAGE_SHIFT,
3368 size);
3369
3370 if (_hash_shift)
3371 *_hash_shift = log2qty;
3372 if (_hash_mask)
3373 *_hash_mask = (1 << log2qty) - 1;
3374
3375 return table;
3376}
3377
3378#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3379struct page *pfn_to_page(unsigned long pfn)
3380{
3381 return __pfn_to_page(pfn);
3382}
3383unsigned long page_to_pfn(struct page *page)
3384{
3385 return __page_to_pfn(page);
3386}
3387EXPORT_SYMBOL(pfn_to_page);
3388EXPORT_SYMBOL(page_to_pfn);
3389#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3390
3391
This page took 0.034088 seconds and 5 git commands to generate.