mmc: sdhci-acpi: Set MMC_CAP_CMD_DURING_TFR for Intel eMMC controllers
[deliverable/linux.git] / arch / arm / kernel / setup.c
1 /*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/efi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/ioport.h>
15 #include <linux/delay.h>
16 #include <linux/utsname.h>
17 #include <linux/initrd.h>
18 #include <linux/console.h>
19 #include <linux/bootmem.h>
20 #include <linux/seq_file.h>
21 #include <linux/screen_info.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 #include <linux/psci.h>
35
36 #include <asm/unified.h>
37 #include <asm/cp15.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/efi.h>
41 #include <asm/elf.h>
42 #include <asm/early_ioremap.h>
43 #include <asm/fixmap.h>
44 #include <asm/procinfo.h>
45 #include <asm/psci.h>
46 #include <asm/sections.h>
47 #include <asm/setup.h>
48 #include <asm/smp_plat.h>
49 #include <asm/mach-types.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cachetype.h>
52 #include <asm/tlbflush.h>
53 #include <asm/xen/hypervisor.h>
54
55 #include <asm/prom.h>
56 #include <asm/mach/arch.h>
57 #include <asm/mach/irq.h>
58 #include <asm/mach/time.h>
59 #include <asm/system_info.h>
60 #include <asm/system_misc.h>
61 #include <asm/traps.h>
62 #include <asm/unwind.h>
63 #include <asm/memblock.h>
64 #include <asm/virt.h>
65
66 #include "atags.h"
67
68
69 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
70 char fpe_type[8];
71
72 static int __init fpe_setup(char *line)
73 {
74 memcpy(fpe_type, line, 8);
75 return 1;
76 }
77
78 __setup("fpe=", fpe_setup);
79 #endif
80
81 extern void init_default_cache_policy(unsigned long);
82 extern void paging_init(const struct machine_desc *desc);
83 extern void early_paging_init(const struct machine_desc *);
84 extern void sanity_check_meminfo(void);
85 extern enum reboot_mode reboot_mode;
86 extern void setup_dma_zone(const struct machine_desc *desc);
87
88 unsigned int processor_id;
89 EXPORT_SYMBOL(processor_id);
90 unsigned int __machine_arch_type __read_mostly;
91 EXPORT_SYMBOL(__machine_arch_type);
92 unsigned int cacheid __read_mostly;
93 EXPORT_SYMBOL(cacheid);
94
95 unsigned int __atags_pointer __initdata;
96
97 unsigned int system_rev;
98 EXPORT_SYMBOL(system_rev);
99
100 const char *system_serial;
101 EXPORT_SYMBOL(system_serial);
102
103 unsigned int system_serial_low;
104 EXPORT_SYMBOL(system_serial_low);
105
106 unsigned int system_serial_high;
107 EXPORT_SYMBOL(system_serial_high);
108
109 unsigned int elf_hwcap __read_mostly;
110 EXPORT_SYMBOL(elf_hwcap);
111
112 unsigned int elf_hwcap2 __read_mostly;
113 EXPORT_SYMBOL(elf_hwcap2);
114
115
116 #ifdef MULTI_CPU
117 struct processor processor __read_mostly;
118 #endif
119 #ifdef MULTI_TLB
120 struct cpu_tlb_fns cpu_tlb __read_mostly;
121 #endif
122 #ifdef MULTI_USER
123 struct cpu_user_fns cpu_user __read_mostly;
124 #endif
125 #ifdef MULTI_CACHE
126 struct cpu_cache_fns cpu_cache __read_mostly;
127 #endif
128 #ifdef CONFIG_OUTER_CACHE
129 struct outer_cache_fns outer_cache __read_mostly;
130 EXPORT_SYMBOL(outer_cache);
131 #endif
132
133 /*
134 * Cached cpu_architecture() result for use by assembler code.
135 * C code should use the cpu_architecture() function instead of accessing this
136 * variable directly.
137 */
138 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
139
140 struct stack {
141 u32 irq[3];
142 u32 abt[3];
143 u32 und[3];
144 u32 fiq[3];
145 } ____cacheline_aligned;
146
147 #ifndef CONFIG_CPU_V7M
148 static struct stack stacks[NR_CPUS];
149 #endif
150
151 char elf_platform[ELF_PLATFORM_SIZE];
152 EXPORT_SYMBOL(elf_platform);
153
154 static const char *cpu_name;
155 static const char *machine_name;
156 static char __initdata cmd_line[COMMAND_LINE_SIZE];
157 const struct machine_desc *machine_desc __initdata;
158
159 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
160 #define ENDIANNESS ((char)endian_test.l)
161
162 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
163
164 /*
165 * Standard memory resources
166 */
167 static struct resource mem_res[] = {
168 {
169 .name = "Video RAM",
170 .start = 0,
171 .end = 0,
172 .flags = IORESOURCE_MEM
173 },
174 {
175 .name = "Kernel code",
176 .start = 0,
177 .end = 0,
178 .flags = IORESOURCE_SYSTEM_RAM
179 },
180 {
181 .name = "Kernel data",
182 .start = 0,
183 .end = 0,
184 .flags = IORESOURCE_SYSTEM_RAM
185 }
186 };
187
188 #define video_ram mem_res[0]
189 #define kernel_code mem_res[1]
190 #define kernel_data mem_res[2]
191
192 static struct resource io_res[] = {
193 {
194 .name = "reserved",
195 .start = 0x3bc,
196 .end = 0x3be,
197 .flags = IORESOURCE_IO | IORESOURCE_BUSY
198 },
199 {
200 .name = "reserved",
201 .start = 0x378,
202 .end = 0x37f,
203 .flags = IORESOURCE_IO | IORESOURCE_BUSY
204 },
205 {
206 .name = "reserved",
207 .start = 0x278,
208 .end = 0x27f,
209 .flags = IORESOURCE_IO | IORESOURCE_BUSY
210 }
211 };
212
213 #define lp0 io_res[0]
214 #define lp1 io_res[1]
215 #define lp2 io_res[2]
216
217 static const char *proc_arch[] = {
218 "undefined/unknown",
219 "3",
220 "4",
221 "4T",
222 "5",
223 "5T",
224 "5TE",
225 "5TEJ",
226 "6TEJ",
227 "7",
228 "7M",
229 "?(12)",
230 "?(13)",
231 "?(14)",
232 "?(15)",
233 "?(16)",
234 "?(17)",
235 };
236
237 #ifdef CONFIG_CPU_V7M
238 static int __get_cpu_architecture(void)
239 {
240 return CPU_ARCH_ARMv7M;
241 }
242 #else
243 static int __get_cpu_architecture(void)
244 {
245 int cpu_arch;
246
247 if ((read_cpuid_id() & 0x0008f000) == 0) {
248 cpu_arch = CPU_ARCH_UNKNOWN;
249 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
250 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
251 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
252 cpu_arch = (read_cpuid_id() >> 16) & 7;
253 if (cpu_arch)
254 cpu_arch += CPU_ARCH_ARMv3;
255 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
256 /* Revised CPUID format. Read the Memory Model Feature
257 * Register 0 and check for VMSAv7 or PMSAv7 */
258 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
259 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
260 (mmfr0 & 0x000000f0) >= 0x00000030)
261 cpu_arch = CPU_ARCH_ARMv7;
262 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
263 (mmfr0 & 0x000000f0) == 0x00000020)
264 cpu_arch = CPU_ARCH_ARMv6;
265 else
266 cpu_arch = CPU_ARCH_UNKNOWN;
267 } else
268 cpu_arch = CPU_ARCH_UNKNOWN;
269
270 return cpu_arch;
271 }
272 #endif
273
274 int __pure cpu_architecture(void)
275 {
276 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
277
278 return __cpu_architecture;
279 }
280
281 static int cpu_has_aliasing_icache(unsigned int arch)
282 {
283 int aliasing_icache;
284 unsigned int id_reg, num_sets, line_size;
285
286 /* PIPT caches never alias. */
287 if (icache_is_pipt())
288 return 0;
289
290 /* arch specifies the register format */
291 switch (arch) {
292 case CPU_ARCH_ARMv7:
293 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
294 : /* No output operands */
295 : "r" (1));
296 isb();
297 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
298 : "=r" (id_reg));
299 line_size = 4 << ((id_reg & 0x7) + 2);
300 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
301 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
302 break;
303 case CPU_ARCH_ARMv6:
304 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
305 break;
306 default:
307 /* I-cache aliases will be handled by D-cache aliasing code */
308 aliasing_icache = 0;
309 }
310
311 return aliasing_icache;
312 }
313
314 static void __init cacheid_init(void)
315 {
316 unsigned int arch = cpu_architecture();
317
318 if (arch == CPU_ARCH_ARMv7M) {
319 cacheid = 0;
320 } else if (arch >= CPU_ARCH_ARMv6) {
321 unsigned int cachetype = read_cpuid_cachetype();
322 if ((cachetype & (7 << 29)) == 4 << 29) {
323 /* ARMv7 register format */
324 arch = CPU_ARCH_ARMv7;
325 cacheid = CACHEID_VIPT_NONALIASING;
326 switch (cachetype & (3 << 14)) {
327 case (1 << 14):
328 cacheid |= CACHEID_ASID_TAGGED;
329 break;
330 case (3 << 14):
331 cacheid |= CACHEID_PIPT;
332 break;
333 }
334 } else {
335 arch = CPU_ARCH_ARMv6;
336 if (cachetype & (1 << 23))
337 cacheid = CACHEID_VIPT_ALIASING;
338 else
339 cacheid = CACHEID_VIPT_NONALIASING;
340 }
341 if (cpu_has_aliasing_icache(arch))
342 cacheid |= CACHEID_VIPT_I_ALIASING;
343 } else {
344 cacheid = CACHEID_VIVT;
345 }
346
347 pr_info("CPU: %s data cache, %s instruction cache\n",
348 cache_is_vivt() ? "VIVT" :
349 cache_is_vipt_aliasing() ? "VIPT aliasing" :
350 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
351 cache_is_vivt() ? "VIVT" :
352 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
353 icache_is_vipt_aliasing() ? "VIPT aliasing" :
354 icache_is_pipt() ? "PIPT" :
355 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
356 }
357
358 /*
359 * These functions re-use the assembly code in head.S, which
360 * already provide the required functionality.
361 */
362 extern struct proc_info_list *lookup_processor_type(unsigned int);
363
364 void __init early_print(const char *str, ...)
365 {
366 extern void printascii(const char *);
367 char buf[256];
368 va_list ap;
369
370 va_start(ap, str);
371 vsnprintf(buf, sizeof(buf), str, ap);
372 va_end(ap);
373
374 #ifdef CONFIG_DEBUG_LL
375 printascii(buf);
376 #endif
377 printk("%s", buf);
378 }
379
380 #ifdef CONFIG_ARM_PATCH_IDIV
381
382 static inline u32 __attribute_const__ sdiv_instruction(void)
383 {
384 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
385 /* "sdiv r0, r0, r1" */
386 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
387 return __opcode_to_mem_thumb32(insn);
388 }
389
390 /* "sdiv r0, r0, r1" */
391 return __opcode_to_mem_arm(0xe710f110);
392 }
393
394 static inline u32 __attribute_const__ udiv_instruction(void)
395 {
396 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
397 /* "udiv r0, r0, r1" */
398 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
399 return __opcode_to_mem_thumb32(insn);
400 }
401
402 /* "udiv r0, r0, r1" */
403 return __opcode_to_mem_arm(0xe730f110);
404 }
405
406 static inline u32 __attribute_const__ bx_lr_instruction(void)
407 {
408 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
409 /* "bx lr; nop" */
410 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
411 return __opcode_to_mem_thumb32(insn);
412 }
413
414 /* "bx lr" */
415 return __opcode_to_mem_arm(0xe12fff1e);
416 }
417
418 static void __init patch_aeabi_idiv(void)
419 {
420 extern void __aeabi_uidiv(void);
421 extern void __aeabi_idiv(void);
422 uintptr_t fn_addr;
423 unsigned int mask;
424
425 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
426 if (!(elf_hwcap & mask))
427 return;
428
429 pr_info("CPU: div instructions available: patching division code\n");
430
431 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
432 asm ("" : "+g" (fn_addr));
433 ((u32 *)fn_addr)[0] = udiv_instruction();
434 ((u32 *)fn_addr)[1] = bx_lr_instruction();
435 flush_icache_range(fn_addr, fn_addr + 8);
436
437 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
438 asm ("" : "+g" (fn_addr));
439 ((u32 *)fn_addr)[0] = sdiv_instruction();
440 ((u32 *)fn_addr)[1] = bx_lr_instruction();
441 flush_icache_range(fn_addr, fn_addr + 8);
442 }
443
444 #else
445 static inline void patch_aeabi_idiv(void) { }
446 #endif
447
448 static void __init cpuid_init_hwcaps(void)
449 {
450 int block;
451 u32 isar5;
452
453 if (cpu_architecture() < CPU_ARCH_ARMv7)
454 return;
455
456 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
457 if (block >= 2)
458 elf_hwcap |= HWCAP_IDIVA;
459 if (block >= 1)
460 elf_hwcap |= HWCAP_IDIVT;
461
462 /* LPAE implies atomic ldrd/strd instructions */
463 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
464 if (block >= 5)
465 elf_hwcap |= HWCAP_LPAE;
466
467 /* check for supported v8 Crypto instructions */
468 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
469
470 block = cpuid_feature_extract_field(isar5, 4);
471 if (block >= 2)
472 elf_hwcap2 |= HWCAP2_PMULL;
473 if (block >= 1)
474 elf_hwcap2 |= HWCAP2_AES;
475
476 block = cpuid_feature_extract_field(isar5, 8);
477 if (block >= 1)
478 elf_hwcap2 |= HWCAP2_SHA1;
479
480 block = cpuid_feature_extract_field(isar5, 12);
481 if (block >= 1)
482 elf_hwcap2 |= HWCAP2_SHA2;
483
484 block = cpuid_feature_extract_field(isar5, 16);
485 if (block >= 1)
486 elf_hwcap2 |= HWCAP2_CRC32;
487 }
488
489 static void __init elf_hwcap_fixup(void)
490 {
491 unsigned id = read_cpuid_id();
492
493 /*
494 * HWCAP_TLS is available only on 1136 r1p0 and later,
495 * see also kuser_get_tls_init.
496 */
497 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
498 ((id >> 20) & 3) == 0) {
499 elf_hwcap &= ~HWCAP_TLS;
500 return;
501 }
502
503 /* Verify if CPUID scheme is implemented */
504 if ((id & 0x000f0000) != 0x000f0000)
505 return;
506
507 /*
508 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
509 * avoid advertising SWP; it may not be atomic with
510 * multiprocessing cores.
511 */
512 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
513 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
514 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
515 elf_hwcap &= ~HWCAP_SWP;
516 }
517
518 /*
519 * cpu_init - initialise one CPU.
520 *
521 * cpu_init sets up the per-CPU stacks.
522 */
523 void notrace cpu_init(void)
524 {
525 #ifndef CONFIG_CPU_V7M
526 unsigned int cpu = smp_processor_id();
527 struct stack *stk = &stacks[cpu];
528
529 if (cpu >= NR_CPUS) {
530 pr_crit("CPU%u: bad primary CPU number\n", cpu);
531 BUG();
532 }
533
534 /*
535 * This only works on resume and secondary cores. For booting on the
536 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
537 */
538 set_my_cpu_offset(per_cpu_offset(cpu));
539
540 cpu_proc_init();
541
542 /*
543 * Define the placement constraint for the inline asm directive below.
544 * In Thumb-2, msr with an immediate value is not allowed.
545 */
546 #ifdef CONFIG_THUMB2_KERNEL
547 #define PLC "r"
548 #else
549 #define PLC "I"
550 #endif
551
552 /*
553 * setup stacks for re-entrant exception handlers
554 */
555 __asm__ (
556 "msr cpsr_c, %1\n\t"
557 "add r14, %0, %2\n\t"
558 "mov sp, r14\n\t"
559 "msr cpsr_c, %3\n\t"
560 "add r14, %0, %4\n\t"
561 "mov sp, r14\n\t"
562 "msr cpsr_c, %5\n\t"
563 "add r14, %0, %6\n\t"
564 "mov sp, r14\n\t"
565 "msr cpsr_c, %7\n\t"
566 "add r14, %0, %8\n\t"
567 "mov sp, r14\n\t"
568 "msr cpsr_c, %9"
569 :
570 : "r" (stk),
571 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
572 "I" (offsetof(struct stack, irq[0])),
573 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
574 "I" (offsetof(struct stack, abt[0])),
575 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
576 "I" (offsetof(struct stack, und[0])),
577 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
578 "I" (offsetof(struct stack, fiq[0])),
579 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
580 : "r14");
581 #endif
582 }
583
584 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
585
586 void __init smp_setup_processor_id(void)
587 {
588 int i;
589 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
590 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
591
592 cpu_logical_map(0) = cpu;
593 for (i = 1; i < nr_cpu_ids; ++i)
594 cpu_logical_map(i) = i == cpu ? 0 : i;
595
596 /*
597 * clear __my_cpu_offset on boot CPU to avoid hang caused by
598 * using percpu variable early, for example, lockdep will
599 * access percpu variable inside lock_release
600 */
601 set_my_cpu_offset(0);
602
603 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
604 }
605
606 struct mpidr_hash mpidr_hash;
607 #ifdef CONFIG_SMP
608 /**
609 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
610 * level in order to build a linear index from an
611 * MPIDR value. Resulting algorithm is a collision
612 * free hash carried out through shifting and ORing
613 */
614 static void __init smp_build_mpidr_hash(void)
615 {
616 u32 i, affinity;
617 u32 fs[3], bits[3], ls, mask = 0;
618 /*
619 * Pre-scan the list of MPIDRS and filter out bits that do
620 * not contribute to affinity levels, ie they never toggle.
621 */
622 for_each_possible_cpu(i)
623 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
624 pr_debug("mask of set bits 0x%x\n", mask);
625 /*
626 * Find and stash the last and first bit set at all affinity levels to
627 * check how many bits are required to represent them.
628 */
629 for (i = 0; i < 3; i++) {
630 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
631 /*
632 * Find the MSB bit and LSB bits position
633 * to determine how many bits are required
634 * to express the affinity level.
635 */
636 ls = fls(affinity);
637 fs[i] = affinity ? ffs(affinity) - 1 : 0;
638 bits[i] = ls - fs[i];
639 }
640 /*
641 * An index can be created from the MPIDR by isolating the
642 * significant bits at each affinity level and by shifting
643 * them in order to compress the 24 bits values space to a
644 * compressed set of values. This is equivalent to hashing
645 * the MPIDR through shifting and ORing. It is a collision free
646 * hash though not minimal since some levels might contain a number
647 * of CPUs that is not an exact power of 2 and their bit
648 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
649 */
650 mpidr_hash.shift_aff[0] = fs[0];
651 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
652 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
653 (bits[1] + bits[0]);
654 mpidr_hash.mask = mask;
655 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
656 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
657 mpidr_hash.shift_aff[0],
658 mpidr_hash.shift_aff[1],
659 mpidr_hash.shift_aff[2],
660 mpidr_hash.mask,
661 mpidr_hash.bits);
662 /*
663 * 4x is an arbitrary value used to warn on a hash table much bigger
664 * than expected on most systems.
665 */
666 if (mpidr_hash_size() > 4 * num_possible_cpus())
667 pr_warn("Large number of MPIDR hash buckets detected\n");
668 sync_cache_w(&mpidr_hash);
669 }
670 #endif
671
672 static void __init setup_processor(void)
673 {
674 struct proc_info_list *list;
675
676 /*
677 * locate processor in the list of supported processor
678 * types. The linker builds this table for us from the
679 * entries in arch/arm/mm/proc-*.S
680 */
681 list = lookup_processor_type(read_cpuid_id());
682 if (!list) {
683 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
684 read_cpuid_id());
685 while (1);
686 }
687
688 cpu_name = list->cpu_name;
689 __cpu_architecture = __get_cpu_architecture();
690
691 #ifdef MULTI_CPU
692 processor = *list->proc;
693 #endif
694 #ifdef MULTI_TLB
695 cpu_tlb = *list->tlb;
696 #endif
697 #ifdef MULTI_USER
698 cpu_user = *list->user;
699 #endif
700 #ifdef MULTI_CACHE
701 cpu_cache = *list->cache;
702 #endif
703
704 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
705 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
706 proc_arch[cpu_architecture()], get_cr());
707
708 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
709 list->arch_name, ENDIANNESS);
710 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
711 list->elf_name, ENDIANNESS);
712 elf_hwcap = list->elf_hwcap;
713
714 cpuid_init_hwcaps();
715 patch_aeabi_idiv();
716
717 #ifndef CONFIG_ARM_THUMB
718 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
719 #endif
720 #ifdef CONFIG_MMU
721 init_default_cache_policy(list->__cpu_mm_mmu_flags);
722 #endif
723 erratum_a15_798181_init();
724
725 elf_hwcap_fixup();
726
727 cacheid_init();
728 cpu_init();
729 }
730
731 void __init dump_machine_table(void)
732 {
733 const struct machine_desc *p;
734
735 early_print("Available machine support:\n\nID (hex)\tNAME\n");
736 for_each_machine_desc(p)
737 early_print("%08x\t%s\n", p->nr, p->name);
738
739 early_print("\nPlease check your kernel config and/or bootloader.\n");
740
741 while (true)
742 /* can't use cpu_relax() here as it may require MMU setup */;
743 }
744
745 int __init arm_add_memory(u64 start, u64 size)
746 {
747 u64 aligned_start;
748
749 /*
750 * Ensure that start/size are aligned to a page boundary.
751 * Size is rounded down, start is rounded up.
752 */
753 aligned_start = PAGE_ALIGN(start);
754 if (aligned_start > start + size)
755 size = 0;
756 else
757 size -= aligned_start - start;
758
759 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
760 if (aligned_start > ULONG_MAX) {
761 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
762 (long long)start);
763 return -EINVAL;
764 }
765
766 if (aligned_start + size > ULONG_MAX) {
767 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
768 (long long)start);
769 /*
770 * To ensure bank->start + bank->size is representable in
771 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
772 * This means we lose a page after masking.
773 */
774 size = ULONG_MAX - aligned_start;
775 }
776 #endif
777
778 if (aligned_start < PHYS_OFFSET) {
779 if (aligned_start + size <= PHYS_OFFSET) {
780 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
781 aligned_start, aligned_start + size);
782 return -EINVAL;
783 }
784
785 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
786 aligned_start, (u64)PHYS_OFFSET);
787
788 size -= PHYS_OFFSET - aligned_start;
789 aligned_start = PHYS_OFFSET;
790 }
791
792 start = aligned_start;
793 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
794
795 /*
796 * Check whether this memory region has non-zero size or
797 * invalid node number.
798 */
799 if (size == 0)
800 return -EINVAL;
801
802 memblock_add(start, size);
803 return 0;
804 }
805
806 /*
807 * Pick out the memory size. We look for mem=size@start,
808 * where start and size are "size[KkMm]"
809 */
810
811 static int __init early_mem(char *p)
812 {
813 static int usermem __initdata = 0;
814 u64 size;
815 u64 start;
816 char *endp;
817
818 /*
819 * If the user specifies memory size, we
820 * blow away any automatically generated
821 * size.
822 */
823 if (usermem == 0) {
824 usermem = 1;
825 memblock_remove(memblock_start_of_DRAM(),
826 memblock_end_of_DRAM() - memblock_start_of_DRAM());
827 }
828
829 start = PHYS_OFFSET;
830 size = memparse(p, &endp);
831 if (*endp == '@')
832 start = memparse(endp + 1, NULL);
833
834 arm_add_memory(start, size);
835
836 return 0;
837 }
838 early_param("mem", early_mem);
839
840 static void __init request_standard_resources(const struct machine_desc *mdesc)
841 {
842 struct memblock_region *region;
843 struct resource *res;
844
845 kernel_code.start = virt_to_phys(_text);
846 kernel_code.end = virt_to_phys(__init_begin - 1);
847 kernel_data.start = virt_to_phys(_sdata);
848 kernel_data.end = virt_to_phys(_end - 1);
849
850 for_each_memblock(memory, region) {
851 phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
852 phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
853 unsigned long boot_alias_start;
854
855 /*
856 * Some systems have a special memory alias which is only
857 * used for booting. We need to advertise this region to
858 * kexec-tools so they know where bootable RAM is located.
859 */
860 boot_alias_start = phys_to_idmap(start);
861 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
862 res = memblock_virt_alloc(sizeof(*res), 0);
863 res->name = "System RAM (boot alias)";
864 res->start = boot_alias_start;
865 res->end = phys_to_idmap(end);
866 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
867 request_resource(&iomem_resource, res);
868 }
869
870 res = memblock_virt_alloc(sizeof(*res), 0);
871 res->name = "System RAM";
872 res->start = start;
873 res->end = end;
874 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
875
876 request_resource(&iomem_resource, res);
877
878 if (kernel_code.start >= res->start &&
879 kernel_code.end <= res->end)
880 request_resource(res, &kernel_code);
881 if (kernel_data.start >= res->start &&
882 kernel_data.end <= res->end)
883 request_resource(res, &kernel_data);
884 }
885
886 if (mdesc->video_start) {
887 video_ram.start = mdesc->video_start;
888 video_ram.end = mdesc->video_end;
889 request_resource(&iomem_resource, &video_ram);
890 }
891
892 /*
893 * Some machines don't have the possibility of ever
894 * possessing lp0, lp1 or lp2
895 */
896 if (mdesc->reserve_lp0)
897 request_resource(&ioport_resource, &lp0);
898 if (mdesc->reserve_lp1)
899 request_resource(&ioport_resource, &lp1);
900 if (mdesc->reserve_lp2)
901 request_resource(&ioport_resource, &lp2);
902 }
903
904 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
905 defined(CONFIG_EFI)
906 struct screen_info screen_info = {
907 .orig_video_lines = 30,
908 .orig_video_cols = 80,
909 .orig_video_mode = 0,
910 .orig_video_ega_bx = 0,
911 .orig_video_isVGA = 1,
912 .orig_video_points = 8
913 };
914 #endif
915
916 static int __init customize_machine(void)
917 {
918 /*
919 * customizes platform devices, or adds new ones
920 * On DT based machines, we fall back to populating the
921 * machine from the device tree, if no callback is provided,
922 * otherwise we would always need an init_machine callback.
923 */
924 if (machine_desc->init_machine)
925 machine_desc->init_machine();
926
927 return 0;
928 }
929 arch_initcall(customize_machine);
930
931 static int __init init_machine_late(void)
932 {
933 struct device_node *root;
934 int ret;
935
936 if (machine_desc->init_late)
937 machine_desc->init_late();
938
939 root = of_find_node_by_path("/");
940 if (root) {
941 ret = of_property_read_string(root, "serial-number",
942 &system_serial);
943 if (ret)
944 system_serial = NULL;
945 }
946
947 if (!system_serial)
948 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
949 system_serial_high,
950 system_serial_low);
951
952 return 0;
953 }
954 late_initcall(init_machine_late);
955
956 #ifdef CONFIG_KEXEC
957 /*
958 * The crash region must be aligned to 128MB to avoid
959 * zImage relocating below the reserved region.
960 */
961 #define CRASH_ALIGN (128 << 20)
962
963 static inline unsigned long long get_total_mem(void)
964 {
965 unsigned long total;
966
967 total = max_low_pfn - min_low_pfn;
968 return total << PAGE_SHIFT;
969 }
970
971 /**
972 * reserve_crashkernel() - reserves memory are for crash kernel
973 *
974 * This function reserves memory area given in "crashkernel=" kernel command
975 * line parameter. The memory reserved is used by a dump capture kernel when
976 * primary kernel is crashing.
977 */
978 static void __init reserve_crashkernel(void)
979 {
980 unsigned long long crash_size, crash_base;
981 unsigned long long total_mem;
982 int ret;
983
984 total_mem = get_total_mem();
985 ret = parse_crashkernel(boot_command_line, total_mem,
986 &crash_size, &crash_base);
987 if (ret)
988 return;
989
990 if (crash_base <= 0) {
991 unsigned long long crash_max = idmap_to_phys((u32)~0);
992 crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
993 crash_size, CRASH_ALIGN);
994 if (!crash_base) {
995 pr_err("crashkernel reservation failed - No suitable area found.\n");
996 return;
997 }
998 } else {
999 unsigned long long start;
1000
1001 start = memblock_find_in_range(crash_base,
1002 crash_base + crash_size,
1003 crash_size, SECTION_SIZE);
1004 if (start != crash_base) {
1005 pr_err("crashkernel reservation failed - memory is in use.\n");
1006 return;
1007 }
1008 }
1009
1010 ret = memblock_reserve(crash_base, crash_size);
1011 if (ret < 0) {
1012 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1013 (unsigned long)crash_base);
1014 return;
1015 }
1016
1017 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1018 (unsigned long)(crash_size >> 20),
1019 (unsigned long)(crash_base >> 20),
1020 (unsigned long)(total_mem >> 20));
1021
1022 /* The crashk resource must always be located in normal mem */
1023 crashk_res.start = crash_base;
1024 crashk_res.end = crash_base + crash_size - 1;
1025 insert_resource(&iomem_resource, &crashk_res);
1026
1027 if (arm_has_idmap_alias()) {
1028 /*
1029 * If we have a special RAM alias for use at boot, we
1030 * need to advertise to kexec tools where the alias is.
1031 */
1032 static struct resource crashk_boot_res = {
1033 .name = "Crash kernel (boot alias)",
1034 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1035 };
1036
1037 crashk_boot_res.start = phys_to_idmap(crash_base);
1038 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1039 insert_resource(&iomem_resource, &crashk_boot_res);
1040 }
1041 }
1042 #else
1043 static inline void reserve_crashkernel(void) {}
1044 #endif /* CONFIG_KEXEC */
1045
1046 void __init hyp_mode_check(void)
1047 {
1048 #ifdef CONFIG_ARM_VIRT_EXT
1049 sync_boot_mode();
1050
1051 if (is_hyp_mode_available()) {
1052 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1053 pr_info("CPU: Virtualization extensions available.\n");
1054 } else if (is_hyp_mode_mismatched()) {
1055 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1056 __boot_cpu_mode & MODE_MASK);
1057 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1058 } else
1059 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1060 #endif
1061 }
1062
1063 void __init setup_arch(char **cmdline_p)
1064 {
1065 const struct machine_desc *mdesc;
1066
1067 setup_processor();
1068 mdesc = setup_machine_fdt(__atags_pointer);
1069 if (!mdesc)
1070 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1071 machine_desc = mdesc;
1072 machine_name = mdesc->name;
1073 dump_stack_set_arch_desc("%s", mdesc->name);
1074
1075 if (mdesc->reboot_mode != REBOOT_HARD)
1076 reboot_mode = mdesc->reboot_mode;
1077
1078 init_mm.start_code = (unsigned long) _text;
1079 init_mm.end_code = (unsigned long) _etext;
1080 init_mm.end_data = (unsigned long) _edata;
1081 init_mm.brk = (unsigned long) _end;
1082
1083 /* populate cmd_line too for later use, preserving boot_command_line */
1084 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1085 *cmdline_p = cmd_line;
1086
1087 early_fixmap_init();
1088 early_ioremap_init();
1089
1090 parse_early_param();
1091
1092 #ifdef CONFIG_MMU
1093 early_paging_init(mdesc);
1094 #endif
1095 setup_dma_zone(mdesc);
1096 xen_early_init();
1097 efi_init();
1098 sanity_check_meminfo();
1099 arm_memblock_init(mdesc);
1100
1101 early_ioremap_reset();
1102
1103 paging_init(mdesc);
1104 request_standard_resources(mdesc);
1105
1106 if (mdesc->restart)
1107 arm_pm_restart = mdesc->restart;
1108
1109 unflatten_device_tree();
1110
1111 arm_dt_init_cpu_maps();
1112 psci_dt_init();
1113 #ifdef CONFIG_SMP
1114 if (is_smp()) {
1115 if (!mdesc->smp_init || !mdesc->smp_init()) {
1116 if (psci_smp_available())
1117 smp_set_ops(&psci_smp_ops);
1118 else if (mdesc->smp)
1119 smp_set_ops(mdesc->smp);
1120 }
1121 smp_init_cpus();
1122 smp_build_mpidr_hash();
1123 }
1124 #endif
1125
1126 if (!is_smp())
1127 hyp_mode_check();
1128
1129 reserve_crashkernel();
1130
1131 #ifdef CONFIG_MULTI_IRQ_HANDLER
1132 handle_arch_irq = mdesc->handle_irq;
1133 #endif
1134
1135 #ifdef CONFIG_VT
1136 #if defined(CONFIG_VGA_CONSOLE)
1137 conswitchp = &vga_con;
1138 #elif defined(CONFIG_DUMMY_CONSOLE)
1139 conswitchp = &dummy_con;
1140 #endif
1141 #endif
1142
1143 if (mdesc->init_early)
1144 mdesc->init_early();
1145 }
1146
1147
1148 static int __init topology_init(void)
1149 {
1150 int cpu;
1151
1152 for_each_possible_cpu(cpu) {
1153 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1154 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1155 register_cpu(&cpuinfo->cpu, cpu);
1156 }
1157
1158 return 0;
1159 }
1160 subsys_initcall(topology_init);
1161
1162 #ifdef CONFIG_HAVE_PROC_CPU
1163 static int __init proc_cpu_init(void)
1164 {
1165 struct proc_dir_entry *res;
1166
1167 res = proc_mkdir("cpu", NULL);
1168 if (!res)
1169 return -ENOMEM;
1170 return 0;
1171 }
1172 fs_initcall(proc_cpu_init);
1173 #endif
1174
1175 static const char *hwcap_str[] = {
1176 "swp",
1177 "half",
1178 "thumb",
1179 "26bit",
1180 "fastmult",
1181 "fpa",
1182 "vfp",
1183 "edsp",
1184 "java",
1185 "iwmmxt",
1186 "crunch",
1187 "thumbee",
1188 "neon",
1189 "vfpv3",
1190 "vfpv3d16",
1191 "tls",
1192 "vfpv4",
1193 "idiva",
1194 "idivt",
1195 "vfpd32",
1196 "lpae",
1197 "evtstrm",
1198 NULL
1199 };
1200
1201 static const char *hwcap2_str[] = {
1202 "aes",
1203 "pmull",
1204 "sha1",
1205 "sha2",
1206 "crc32",
1207 NULL
1208 };
1209
1210 static int c_show(struct seq_file *m, void *v)
1211 {
1212 int i, j;
1213 u32 cpuid;
1214
1215 for_each_online_cpu(i) {
1216 /*
1217 * glibc reads /proc/cpuinfo to determine the number of
1218 * online processors, looking for lines beginning with
1219 * "processor". Give glibc what it expects.
1220 */
1221 seq_printf(m, "processor\t: %d\n", i);
1222 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1223 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1224 cpu_name, cpuid & 15, elf_platform);
1225
1226 #if defined(CONFIG_SMP)
1227 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1228 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1229 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1230 #else
1231 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1232 loops_per_jiffy / (500000/HZ),
1233 (loops_per_jiffy / (5000/HZ)) % 100);
1234 #endif
1235 /* dump out the processor features */
1236 seq_puts(m, "Features\t: ");
1237
1238 for (j = 0; hwcap_str[j]; j++)
1239 if (elf_hwcap & (1 << j))
1240 seq_printf(m, "%s ", hwcap_str[j]);
1241
1242 for (j = 0; hwcap2_str[j]; j++)
1243 if (elf_hwcap2 & (1 << j))
1244 seq_printf(m, "%s ", hwcap2_str[j]);
1245
1246 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1247 seq_printf(m, "CPU architecture: %s\n",
1248 proc_arch[cpu_architecture()]);
1249
1250 if ((cpuid & 0x0008f000) == 0x00000000) {
1251 /* pre-ARM7 */
1252 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1253 } else {
1254 if ((cpuid & 0x0008f000) == 0x00007000) {
1255 /* ARM7 */
1256 seq_printf(m, "CPU variant\t: 0x%02x\n",
1257 (cpuid >> 16) & 127);
1258 } else {
1259 /* post-ARM7 */
1260 seq_printf(m, "CPU variant\t: 0x%x\n",
1261 (cpuid >> 20) & 15);
1262 }
1263 seq_printf(m, "CPU part\t: 0x%03x\n",
1264 (cpuid >> 4) & 0xfff);
1265 }
1266 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1267 }
1268
1269 seq_printf(m, "Hardware\t: %s\n", machine_name);
1270 seq_printf(m, "Revision\t: %04x\n", system_rev);
1271 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1272
1273 return 0;
1274 }
1275
1276 static void *c_start(struct seq_file *m, loff_t *pos)
1277 {
1278 return *pos < 1 ? (void *)1 : NULL;
1279 }
1280
1281 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1282 {
1283 ++*pos;
1284 return NULL;
1285 }
1286
1287 static void c_stop(struct seq_file *m, void *v)
1288 {
1289 }
1290
1291 const struct seq_operations cpuinfo_op = {
1292 .start = c_start,
1293 .next = c_next,
1294 .stop = c_stop,
1295 .show = c_show
1296 };
This page took 0.059164 seconds and 5 git commands to generate.