KVM: PPC: Move xics_debugfs_init out of create
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <asm/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73 BUG_ON(preemptible());
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 /**
78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79 * Must be called from non-preemptible context
80 */
81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83 BUG_ON(preemptible());
84 return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86
87 /**
88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89 */
90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92 return &kvm_arm_running_vcpu;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102 return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 *(int *)rtn = 0;
108 }
109
110
111 /**
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
114 */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 int ret = 0;
118
119 if (type)
120 return -EINVAL;
121
122 ret = kvm_alloc_stage2_pgd(kvm);
123 if (ret)
124 goto out_fail_alloc;
125
126 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 if (ret)
128 goto out_free_stage2_pgd;
129
130 kvm_vgic_early_init(kvm);
131 kvm_timer_init(kvm);
132
133 /* Mark the initial VMID generation invalid */
134 kvm->arch.vmid_gen = 0;
135
136 /* The maximum number of VCPUs is limited by the host's GIC model */
137 kvm->arch.max_vcpus = vgic_present ?
138 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
139
140 return ret;
141 out_free_stage2_pgd:
142 kvm_free_stage2_pgd(kvm);
143 out_fail_alloc:
144 return ret;
145 }
146
147 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
148 {
149 return VM_FAULT_SIGBUS;
150 }
151
152
153 /**
154 * kvm_arch_destroy_vm - destroy the VM data structure
155 * @kvm: pointer to the KVM struct
156 */
157 void kvm_arch_destroy_vm(struct kvm *kvm)
158 {
159 int i;
160
161 kvm_free_stage2_pgd(kvm);
162
163 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
164 if (kvm->vcpus[i]) {
165 kvm_arch_vcpu_free(kvm->vcpus[i]);
166 kvm->vcpus[i] = NULL;
167 }
168 }
169
170 kvm_vgic_destroy(kvm);
171 }
172
173 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
174 {
175 int r;
176 switch (ext) {
177 case KVM_CAP_IRQCHIP:
178 r = vgic_present;
179 break;
180 case KVM_CAP_IOEVENTFD:
181 case KVM_CAP_DEVICE_CTRL:
182 case KVM_CAP_USER_MEMORY:
183 case KVM_CAP_SYNC_MMU:
184 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
185 case KVM_CAP_ONE_REG:
186 case KVM_CAP_ARM_PSCI:
187 case KVM_CAP_ARM_PSCI_0_2:
188 case KVM_CAP_READONLY_MEM:
189 case KVM_CAP_MP_STATE:
190 r = 1;
191 break;
192 case KVM_CAP_COALESCED_MMIO:
193 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
194 break;
195 case KVM_CAP_ARM_SET_DEVICE_ADDR:
196 r = 1;
197 break;
198 case KVM_CAP_NR_VCPUS:
199 r = num_online_cpus();
200 break;
201 case KVM_CAP_MAX_VCPUS:
202 r = KVM_MAX_VCPUS;
203 break;
204 default:
205 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
206 break;
207 }
208 return r;
209 }
210
211 long kvm_arch_dev_ioctl(struct file *filp,
212 unsigned int ioctl, unsigned long arg)
213 {
214 return -EINVAL;
215 }
216
217
218 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
219 {
220 int err;
221 struct kvm_vcpu *vcpu;
222
223 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
224 err = -EBUSY;
225 goto out;
226 }
227
228 if (id >= kvm->arch.max_vcpus) {
229 err = -EINVAL;
230 goto out;
231 }
232
233 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
234 if (!vcpu) {
235 err = -ENOMEM;
236 goto out;
237 }
238
239 err = kvm_vcpu_init(vcpu, kvm, id);
240 if (err)
241 goto free_vcpu;
242
243 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
244 if (err)
245 goto vcpu_uninit;
246
247 return vcpu;
248 vcpu_uninit:
249 kvm_vcpu_uninit(vcpu);
250 free_vcpu:
251 kmem_cache_free(kvm_vcpu_cache, vcpu);
252 out:
253 return ERR_PTR(err);
254 }
255
256 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
257 {
258 kvm_vgic_vcpu_early_init(vcpu);
259 }
260
261 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
262 {
263 kvm_mmu_free_memory_caches(vcpu);
264 kvm_timer_vcpu_terminate(vcpu);
265 kvm_vgic_vcpu_destroy(vcpu);
266 kvm_pmu_vcpu_destroy(vcpu);
267 kvm_vcpu_uninit(vcpu);
268 kmem_cache_free(kvm_vcpu_cache, vcpu);
269 }
270
271 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
272 {
273 kvm_arch_vcpu_free(vcpu);
274 }
275
276 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
277 {
278 return kvm_timer_should_fire(vcpu);
279 }
280
281 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
282 {
283 kvm_timer_schedule(vcpu);
284 }
285
286 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
287 {
288 kvm_timer_unschedule(vcpu);
289 }
290
291 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
292 {
293 /* Force users to call KVM_ARM_VCPU_INIT */
294 vcpu->arch.target = -1;
295 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
296
297 /* Set up the timer */
298 kvm_timer_vcpu_init(vcpu);
299
300 kvm_arm_reset_debug_ptr(vcpu);
301
302 return 0;
303 }
304
305 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
306 {
307 vcpu->cpu = cpu;
308 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
309
310 kvm_arm_set_running_vcpu(vcpu);
311 }
312
313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
314 {
315 /*
316 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
317 * if the vcpu is no longer assigned to a cpu. This is used for the
318 * optimized make_all_cpus_request path.
319 */
320 vcpu->cpu = -1;
321
322 kvm_arm_set_running_vcpu(NULL);
323 kvm_timer_vcpu_put(vcpu);
324 }
325
326 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
327 struct kvm_mp_state *mp_state)
328 {
329 if (vcpu->arch.power_off)
330 mp_state->mp_state = KVM_MP_STATE_STOPPED;
331 else
332 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
333
334 return 0;
335 }
336
337 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
338 struct kvm_mp_state *mp_state)
339 {
340 switch (mp_state->mp_state) {
341 case KVM_MP_STATE_RUNNABLE:
342 vcpu->arch.power_off = false;
343 break;
344 case KVM_MP_STATE_STOPPED:
345 vcpu->arch.power_off = true;
346 break;
347 default:
348 return -EINVAL;
349 }
350
351 return 0;
352 }
353
354 /**
355 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
356 * @v: The VCPU pointer
357 *
358 * If the guest CPU is not waiting for interrupts or an interrupt line is
359 * asserted, the CPU is by definition runnable.
360 */
361 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
362 {
363 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
364 && !v->arch.power_off && !v->arch.pause);
365 }
366
367 /* Just ensure a guest exit from a particular CPU */
368 static void exit_vm_noop(void *info)
369 {
370 }
371
372 void force_vm_exit(const cpumask_t *mask)
373 {
374 preempt_disable();
375 smp_call_function_many(mask, exit_vm_noop, NULL, true);
376 preempt_enable();
377 }
378
379 /**
380 * need_new_vmid_gen - check that the VMID is still valid
381 * @kvm: The VM's VMID to check
382 *
383 * return true if there is a new generation of VMIDs being used
384 *
385 * The hardware supports only 256 values with the value zero reserved for the
386 * host, so we check if an assigned value belongs to a previous generation,
387 * which which requires us to assign a new value. If we're the first to use a
388 * VMID for the new generation, we must flush necessary caches and TLBs on all
389 * CPUs.
390 */
391 static bool need_new_vmid_gen(struct kvm *kvm)
392 {
393 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
394 }
395
396 /**
397 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
398 * @kvm The guest that we are about to run
399 *
400 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
401 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
402 * caches and TLBs.
403 */
404 static void update_vttbr(struct kvm *kvm)
405 {
406 phys_addr_t pgd_phys;
407 u64 vmid;
408
409 if (!need_new_vmid_gen(kvm))
410 return;
411
412 spin_lock(&kvm_vmid_lock);
413
414 /*
415 * We need to re-check the vmid_gen here to ensure that if another vcpu
416 * already allocated a valid vmid for this vm, then this vcpu should
417 * use the same vmid.
418 */
419 if (!need_new_vmid_gen(kvm)) {
420 spin_unlock(&kvm_vmid_lock);
421 return;
422 }
423
424 /* First user of a new VMID generation? */
425 if (unlikely(kvm_next_vmid == 0)) {
426 atomic64_inc(&kvm_vmid_gen);
427 kvm_next_vmid = 1;
428
429 /*
430 * On SMP we know no other CPUs can use this CPU's or each
431 * other's VMID after force_vm_exit returns since the
432 * kvm_vmid_lock blocks them from reentry to the guest.
433 */
434 force_vm_exit(cpu_all_mask);
435 /*
436 * Now broadcast TLB + ICACHE invalidation over the inner
437 * shareable domain to make sure all data structures are
438 * clean.
439 */
440 kvm_call_hyp(__kvm_flush_vm_context);
441 }
442
443 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
444 kvm->arch.vmid = kvm_next_vmid;
445 kvm_next_vmid++;
446 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
447
448 /* update vttbr to be used with the new vmid */
449 pgd_phys = virt_to_phys(kvm->arch.pgd);
450 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
451 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
452 kvm->arch.vttbr = pgd_phys | vmid;
453
454 spin_unlock(&kvm_vmid_lock);
455 }
456
457 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
458 {
459 struct kvm *kvm = vcpu->kvm;
460 int ret = 0;
461
462 if (likely(vcpu->arch.has_run_once))
463 return 0;
464
465 vcpu->arch.has_run_once = true;
466
467 /*
468 * Map the VGIC hardware resources before running a vcpu the first
469 * time on this VM.
470 */
471 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
472 ret = kvm_vgic_map_resources(kvm);
473 if (ret)
474 return ret;
475 }
476
477 /*
478 * Enable the arch timers only if we have an in-kernel VGIC
479 * and it has been properly initialized, since we cannot handle
480 * interrupts from the virtual timer with a userspace gic.
481 */
482 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
483 ret = kvm_timer_enable(vcpu);
484
485 return ret;
486 }
487
488 bool kvm_arch_intc_initialized(struct kvm *kvm)
489 {
490 return vgic_initialized(kvm);
491 }
492
493 void kvm_arm_halt_guest(struct kvm *kvm)
494 {
495 int i;
496 struct kvm_vcpu *vcpu;
497
498 kvm_for_each_vcpu(i, vcpu, kvm)
499 vcpu->arch.pause = true;
500 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
501 }
502
503 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
504 {
505 vcpu->arch.pause = true;
506 kvm_vcpu_kick(vcpu);
507 }
508
509 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
510 {
511 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
512
513 vcpu->arch.pause = false;
514 swake_up(wq);
515 }
516
517 void kvm_arm_resume_guest(struct kvm *kvm)
518 {
519 int i;
520 struct kvm_vcpu *vcpu;
521
522 kvm_for_each_vcpu(i, vcpu, kvm)
523 kvm_arm_resume_vcpu(vcpu);
524 }
525
526 static void vcpu_sleep(struct kvm_vcpu *vcpu)
527 {
528 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
529
530 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
531 (!vcpu->arch.pause)));
532 }
533
534 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
535 {
536 return vcpu->arch.target >= 0;
537 }
538
539 /**
540 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
541 * @vcpu: The VCPU pointer
542 * @run: The kvm_run structure pointer used for userspace state exchange
543 *
544 * This function is called through the VCPU_RUN ioctl called from user space. It
545 * will execute VM code in a loop until the time slice for the process is used
546 * or some emulation is needed from user space in which case the function will
547 * return with return value 0 and with the kvm_run structure filled in with the
548 * required data for the requested emulation.
549 */
550 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
551 {
552 int ret;
553 sigset_t sigsaved;
554
555 if (unlikely(!kvm_vcpu_initialized(vcpu)))
556 return -ENOEXEC;
557
558 ret = kvm_vcpu_first_run_init(vcpu);
559 if (ret)
560 return ret;
561
562 if (run->exit_reason == KVM_EXIT_MMIO) {
563 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
564 if (ret)
565 return ret;
566 }
567
568 if (vcpu->sigset_active)
569 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
570
571 ret = 1;
572 run->exit_reason = KVM_EXIT_UNKNOWN;
573 while (ret > 0) {
574 /*
575 * Check conditions before entering the guest
576 */
577 cond_resched();
578
579 update_vttbr(vcpu->kvm);
580
581 if (vcpu->arch.power_off || vcpu->arch.pause)
582 vcpu_sleep(vcpu);
583
584 /*
585 * Preparing the interrupts to be injected also
586 * involves poking the GIC, which must be done in a
587 * non-preemptible context.
588 */
589 preempt_disable();
590 kvm_pmu_flush_hwstate(vcpu);
591 kvm_timer_flush_hwstate(vcpu);
592 kvm_vgic_flush_hwstate(vcpu);
593
594 local_irq_disable();
595
596 /*
597 * Re-check atomic conditions
598 */
599 if (signal_pending(current)) {
600 ret = -EINTR;
601 run->exit_reason = KVM_EXIT_INTR;
602 }
603
604 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
605 vcpu->arch.power_off || vcpu->arch.pause) {
606 local_irq_enable();
607 kvm_pmu_sync_hwstate(vcpu);
608 kvm_timer_sync_hwstate(vcpu);
609 kvm_vgic_sync_hwstate(vcpu);
610 preempt_enable();
611 continue;
612 }
613
614 kvm_arm_setup_debug(vcpu);
615
616 /**************************************************************
617 * Enter the guest
618 */
619 trace_kvm_entry(*vcpu_pc(vcpu));
620 guest_enter_irqoff();
621 vcpu->mode = IN_GUEST_MODE;
622
623 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
624
625 vcpu->mode = OUTSIDE_GUEST_MODE;
626 vcpu->stat.exits++;
627 /*
628 * Back from guest
629 *************************************************************/
630
631 kvm_arm_clear_debug(vcpu);
632
633 /*
634 * We may have taken a host interrupt in HYP mode (ie
635 * while executing the guest). This interrupt is still
636 * pending, as we haven't serviced it yet!
637 *
638 * We're now back in SVC mode, with interrupts
639 * disabled. Enabling the interrupts now will have
640 * the effect of taking the interrupt again, in SVC
641 * mode this time.
642 */
643 local_irq_enable();
644
645 /*
646 * We do local_irq_enable() before calling guest_exit() so
647 * that if a timer interrupt hits while running the guest we
648 * account that tick as being spent in the guest. We enable
649 * preemption after calling guest_exit() so that if we get
650 * preempted we make sure ticks after that is not counted as
651 * guest time.
652 */
653 guest_exit();
654 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
655
656 /*
657 * We must sync the PMU and timer state before the vgic state so
658 * that the vgic can properly sample the updated state of the
659 * interrupt line.
660 */
661 kvm_pmu_sync_hwstate(vcpu);
662 kvm_timer_sync_hwstate(vcpu);
663
664 kvm_vgic_sync_hwstate(vcpu);
665
666 preempt_enable();
667
668 ret = handle_exit(vcpu, run, ret);
669 }
670
671 if (vcpu->sigset_active)
672 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
673 return ret;
674 }
675
676 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
677 {
678 int bit_index;
679 bool set;
680 unsigned long *ptr;
681
682 if (number == KVM_ARM_IRQ_CPU_IRQ)
683 bit_index = __ffs(HCR_VI);
684 else /* KVM_ARM_IRQ_CPU_FIQ */
685 bit_index = __ffs(HCR_VF);
686
687 ptr = (unsigned long *)&vcpu->arch.irq_lines;
688 if (level)
689 set = test_and_set_bit(bit_index, ptr);
690 else
691 set = test_and_clear_bit(bit_index, ptr);
692
693 /*
694 * If we didn't change anything, no need to wake up or kick other CPUs
695 */
696 if (set == level)
697 return 0;
698
699 /*
700 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
701 * trigger a world-switch round on the running physical CPU to set the
702 * virtual IRQ/FIQ fields in the HCR appropriately.
703 */
704 kvm_vcpu_kick(vcpu);
705
706 return 0;
707 }
708
709 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
710 bool line_status)
711 {
712 u32 irq = irq_level->irq;
713 unsigned int irq_type, vcpu_idx, irq_num;
714 int nrcpus = atomic_read(&kvm->online_vcpus);
715 struct kvm_vcpu *vcpu = NULL;
716 bool level = irq_level->level;
717
718 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
719 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
720 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
721
722 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
723
724 switch (irq_type) {
725 case KVM_ARM_IRQ_TYPE_CPU:
726 if (irqchip_in_kernel(kvm))
727 return -ENXIO;
728
729 if (vcpu_idx >= nrcpus)
730 return -EINVAL;
731
732 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
733 if (!vcpu)
734 return -EINVAL;
735
736 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
737 return -EINVAL;
738
739 return vcpu_interrupt_line(vcpu, irq_num, level);
740 case KVM_ARM_IRQ_TYPE_PPI:
741 if (!irqchip_in_kernel(kvm))
742 return -ENXIO;
743
744 if (vcpu_idx >= nrcpus)
745 return -EINVAL;
746
747 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
748 if (!vcpu)
749 return -EINVAL;
750
751 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
752 return -EINVAL;
753
754 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
755 case KVM_ARM_IRQ_TYPE_SPI:
756 if (!irqchip_in_kernel(kvm))
757 return -ENXIO;
758
759 if (irq_num < VGIC_NR_PRIVATE_IRQS)
760 return -EINVAL;
761
762 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
763 }
764
765 return -EINVAL;
766 }
767
768 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
769 const struct kvm_vcpu_init *init)
770 {
771 unsigned int i;
772 int phys_target = kvm_target_cpu();
773
774 if (init->target != phys_target)
775 return -EINVAL;
776
777 /*
778 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
779 * use the same target.
780 */
781 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
782 return -EINVAL;
783
784 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
785 for (i = 0; i < sizeof(init->features) * 8; i++) {
786 bool set = (init->features[i / 32] & (1 << (i % 32)));
787
788 if (set && i >= KVM_VCPU_MAX_FEATURES)
789 return -ENOENT;
790
791 /*
792 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
793 * use the same feature set.
794 */
795 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
796 test_bit(i, vcpu->arch.features) != set)
797 return -EINVAL;
798
799 if (set)
800 set_bit(i, vcpu->arch.features);
801 }
802
803 vcpu->arch.target = phys_target;
804
805 /* Now we know what it is, we can reset it. */
806 return kvm_reset_vcpu(vcpu);
807 }
808
809
810 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
811 struct kvm_vcpu_init *init)
812 {
813 int ret;
814
815 ret = kvm_vcpu_set_target(vcpu, init);
816 if (ret)
817 return ret;
818
819 /*
820 * Ensure a rebooted VM will fault in RAM pages and detect if the
821 * guest MMU is turned off and flush the caches as needed.
822 */
823 if (vcpu->arch.has_run_once)
824 stage2_unmap_vm(vcpu->kvm);
825
826 vcpu_reset_hcr(vcpu);
827
828 /*
829 * Handle the "start in power-off" case.
830 */
831 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
832 vcpu->arch.power_off = true;
833 else
834 vcpu->arch.power_off = false;
835
836 return 0;
837 }
838
839 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
840 struct kvm_device_attr *attr)
841 {
842 int ret = -ENXIO;
843
844 switch (attr->group) {
845 default:
846 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
847 break;
848 }
849
850 return ret;
851 }
852
853 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
854 struct kvm_device_attr *attr)
855 {
856 int ret = -ENXIO;
857
858 switch (attr->group) {
859 default:
860 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
861 break;
862 }
863
864 return ret;
865 }
866
867 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
868 struct kvm_device_attr *attr)
869 {
870 int ret = -ENXIO;
871
872 switch (attr->group) {
873 default:
874 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
875 break;
876 }
877
878 return ret;
879 }
880
881 long kvm_arch_vcpu_ioctl(struct file *filp,
882 unsigned int ioctl, unsigned long arg)
883 {
884 struct kvm_vcpu *vcpu = filp->private_data;
885 void __user *argp = (void __user *)arg;
886 struct kvm_device_attr attr;
887
888 switch (ioctl) {
889 case KVM_ARM_VCPU_INIT: {
890 struct kvm_vcpu_init init;
891
892 if (copy_from_user(&init, argp, sizeof(init)))
893 return -EFAULT;
894
895 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
896 }
897 case KVM_SET_ONE_REG:
898 case KVM_GET_ONE_REG: {
899 struct kvm_one_reg reg;
900
901 if (unlikely(!kvm_vcpu_initialized(vcpu)))
902 return -ENOEXEC;
903
904 if (copy_from_user(&reg, argp, sizeof(reg)))
905 return -EFAULT;
906 if (ioctl == KVM_SET_ONE_REG)
907 return kvm_arm_set_reg(vcpu, &reg);
908 else
909 return kvm_arm_get_reg(vcpu, &reg);
910 }
911 case KVM_GET_REG_LIST: {
912 struct kvm_reg_list __user *user_list = argp;
913 struct kvm_reg_list reg_list;
914 unsigned n;
915
916 if (unlikely(!kvm_vcpu_initialized(vcpu)))
917 return -ENOEXEC;
918
919 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
920 return -EFAULT;
921 n = reg_list.n;
922 reg_list.n = kvm_arm_num_regs(vcpu);
923 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
924 return -EFAULT;
925 if (n < reg_list.n)
926 return -E2BIG;
927 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
928 }
929 case KVM_SET_DEVICE_ATTR: {
930 if (copy_from_user(&attr, argp, sizeof(attr)))
931 return -EFAULT;
932 return kvm_arm_vcpu_set_attr(vcpu, &attr);
933 }
934 case KVM_GET_DEVICE_ATTR: {
935 if (copy_from_user(&attr, argp, sizeof(attr)))
936 return -EFAULT;
937 return kvm_arm_vcpu_get_attr(vcpu, &attr);
938 }
939 case KVM_HAS_DEVICE_ATTR: {
940 if (copy_from_user(&attr, argp, sizeof(attr)))
941 return -EFAULT;
942 return kvm_arm_vcpu_has_attr(vcpu, &attr);
943 }
944 default:
945 return -EINVAL;
946 }
947 }
948
949 /**
950 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
951 * @kvm: kvm instance
952 * @log: slot id and address to which we copy the log
953 *
954 * Steps 1-4 below provide general overview of dirty page logging. See
955 * kvm_get_dirty_log_protect() function description for additional details.
956 *
957 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
958 * always flush the TLB (step 4) even if previous step failed and the dirty
959 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
960 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
961 * writes will be marked dirty for next log read.
962 *
963 * 1. Take a snapshot of the bit and clear it if needed.
964 * 2. Write protect the corresponding page.
965 * 3. Copy the snapshot to the userspace.
966 * 4. Flush TLB's if needed.
967 */
968 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
969 {
970 bool is_dirty = false;
971 int r;
972
973 mutex_lock(&kvm->slots_lock);
974
975 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
976
977 if (is_dirty)
978 kvm_flush_remote_tlbs(kvm);
979
980 mutex_unlock(&kvm->slots_lock);
981 return r;
982 }
983
984 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
985 struct kvm_arm_device_addr *dev_addr)
986 {
987 unsigned long dev_id, type;
988
989 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
990 KVM_ARM_DEVICE_ID_SHIFT;
991 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
992 KVM_ARM_DEVICE_TYPE_SHIFT;
993
994 switch (dev_id) {
995 case KVM_ARM_DEVICE_VGIC_V2:
996 if (!vgic_present)
997 return -ENXIO;
998 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
999 default:
1000 return -ENODEV;
1001 }
1002 }
1003
1004 long kvm_arch_vm_ioctl(struct file *filp,
1005 unsigned int ioctl, unsigned long arg)
1006 {
1007 struct kvm *kvm = filp->private_data;
1008 void __user *argp = (void __user *)arg;
1009
1010 switch (ioctl) {
1011 case KVM_CREATE_IRQCHIP: {
1012 if (!vgic_present)
1013 return -ENXIO;
1014 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1015 }
1016 case KVM_ARM_SET_DEVICE_ADDR: {
1017 struct kvm_arm_device_addr dev_addr;
1018
1019 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1020 return -EFAULT;
1021 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1022 }
1023 case KVM_ARM_PREFERRED_TARGET: {
1024 int err;
1025 struct kvm_vcpu_init init;
1026
1027 err = kvm_vcpu_preferred_target(&init);
1028 if (err)
1029 return err;
1030
1031 if (copy_to_user(argp, &init, sizeof(init)))
1032 return -EFAULT;
1033
1034 return 0;
1035 }
1036 default:
1037 return -EINVAL;
1038 }
1039 }
1040
1041 static void cpu_init_hyp_mode(void *dummy)
1042 {
1043 phys_addr_t pgd_ptr;
1044 unsigned long hyp_stack_ptr;
1045 unsigned long stack_page;
1046 unsigned long vector_ptr;
1047
1048 /* Switch from the HYP stub to our own HYP init vector */
1049 __hyp_set_vectors(kvm_get_idmap_vector());
1050
1051 pgd_ptr = kvm_mmu_get_httbr();
1052 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1053 hyp_stack_ptr = stack_page + PAGE_SIZE;
1054 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1055
1056 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1057 __cpu_init_stage2();
1058
1059 kvm_arm_init_debug();
1060 }
1061
1062 static void cpu_hyp_reinit(void)
1063 {
1064 if (is_kernel_in_hyp_mode()) {
1065 /*
1066 * __cpu_init_stage2() is safe to call even if the PM
1067 * event was cancelled before the CPU was reset.
1068 */
1069 __cpu_init_stage2();
1070 } else {
1071 if (__hyp_get_vectors() == hyp_default_vectors)
1072 cpu_init_hyp_mode(NULL);
1073 }
1074 }
1075
1076 static void cpu_hyp_reset(void)
1077 {
1078 if (!is_kernel_in_hyp_mode())
1079 __cpu_reset_hyp_mode(hyp_default_vectors,
1080 kvm_get_idmap_start());
1081 }
1082
1083 static void _kvm_arch_hardware_enable(void *discard)
1084 {
1085 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1086 cpu_hyp_reinit();
1087 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1088 }
1089 }
1090
1091 int kvm_arch_hardware_enable(void)
1092 {
1093 _kvm_arch_hardware_enable(NULL);
1094 return 0;
1095 }
1096
1097 static void _kvm_arch_hardware_disable(void *discard)
1098 {
1099 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1100 cpu_hyp_reset();
1101 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1102 }
1103 }
1104
1105 void kvm_arch_hardware_disable(void)
1106 {
1107 _kvm_arch_hardware_disable(NULL);
1108 }
1109
1110 #ifdef CONFIG_CPU_PM
1111 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1112 unsigned long cmd,
1113 void *v)
1114 {
1115 /*
1116 * kvm_arm_hardware_enabled is left with its old value over
1117 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1118 * re-enable hyp.
1119 */
1120 switch (cmd) {
1121 case CPU_PM_ENTER:
1122 if (__this_cpu_read(kvm_arm_hardware_enabled))
1123 /*
1124 * don't update kvm_arm_hardware_enabled here
1125 * so that the hardware will be re-enabled
1126 * when we resume. See below.
1127 */
1128 cpu_hyp_reset();
1129
1130 return NOTIFY_OK;
1131 case CPU_PM_EXIT:
1132 if (__this_cpu_read(kvm_arm_hardware_enabled))
1133 /* The hardware was enabled before suspend. */
1134 cpu_hyp_reinit();
1135
1136 return NOTIFY_OK;
1137
1138 default:
1139 return NOTIFY_DONE;
1140 }
1141 }
1142
1143 static struct notifier_block hyp_init_cpu_pm_nb = {
1144 .notifier_call = hyp_init_cpu_pm_notifier,
1145 };
1146
1147 static void __init hyp_cpu_pm_init(void)
1148 {
1149 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1150 }
1151 static void __init hyp_cpu_pm_exit(void)
1152 {
1153 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1154 }
1155 #else
1156 static inline void hyp_cpu_pm_init(void)
1157 {
1158 }
1159 static inline void hyp_cpu_pm_exit(void)
1160 {
1161 }
1162 #endif
1163
1164 static void teardown_common_resources(void)
1165 {
1166 free_percpu(kvm_host_cpu_state);
1167 }
1168
1169 static int init_common_resources(void)
1170 {
1171 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1172 if (!kvm_host_cpu_state) {
1173 kvm_err("Cannot allocate host CPU state\n");
1174 return -ENOMEM;
1175 }
1176
1177 return 0;
1178 }
1179
1180 static int init_subsystems(void)
1181 {
1182 int err = 0;
1183
1184 /*
1185 * Enable hardware so that subsystem initialisation can access EL2.
1186 */
1187 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1188
1189 /*
1190 * Register CPU lower-power notifier
1191 */
1192 hyp_cpu_pm_init();
1193
1194 /*
1195 * Init HYP view of VGIC
1196 */
1197 err = kvm_vgic_hyp_init();
1198 switch (err) {
1199 case 0:
1200 vgic_present = true;
1201 break;
1202 case -ENODEV:
1203 case -ENXIO:
1204 vgic_present = false;
1205 err = 0;
1206 break;
1207 default:
1208 goto out;
1209 }
1210
1211 /*
1212 * Init HYP architected timer support
1213 */
1214 err = kvm_timer_hyp_init();
1215 if (err)
1216 goto out;
1217
1218 kvm_perf_init();
1219 kvm_coproc_table_init();
1220
1221 out:
1222 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1223
1224 return err;
1225 }
1226
1227 static void teardown_hyp_mode(void)
1228 {
1229 int cpu;
1230
1231 if (is_kernel_in_hyp_mode())
1232 return;
1233
1234 free_hyp_pgds();
1235 for_each_possible_cpu(cpu)
1236 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1237 hyp_cpu_pm_exit();
1238 }
1239
1240 static int init_vhe_mode(void)
1241 {
1242 /* set size of VMID supported by CPU */
1243 kvm_vmid_bits = kvm_get_vmid_bits();
1244 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1245
1246 kvm_info("VHE mode initialized successfully\n");
1247 return 0;
1248 }
1249
1250 /**
1251 * Inits Hyp-mode on all online CPUs
1252 */
1253 static int init_hyp_mode(void)
1254 {
1255 int cpu;
1256 int err = 0;
1257
1258 /*
1259 * Allocate Hyp PGD and setup Hyp identity mapping
1260 */
1261 err = kvm_mmu_init();
1262 if (err)
1263 goto out_err;
1264
1265 /*
1266 * It is probably enough to obtain the default on one
1267 * CPU. It's unlikely to be different on the others.
1268 */
1269 hyp_default_vectors = __hyp_get_vectors();
1270
1271 /*
1272 * Allocate stack pages for Hypervisor-mode
1273 */
1274 for_each_possible_cpu(cpu) {
1275 unsigned long stack_page;
1276
1277 stack_page = __get_free_page(GFP_KERNEL);
1278 if (!stack_page) {
1279 err = -ENOMEM;
1280 goto out_err;
1281 }
1282
1283 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1284 }
1285
1286 /*
1287 * Map the Hyp-code called directly from the host
1288 */
1289 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1290 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1291 if (err) {
1292 kvm_err("Cannot map world-switch code\n");
1293 goto out_err;
1294 }
1295
1296 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1297 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1298 if (err) {
1299 kvm_err("Cannot map rodata section\n");
1300 goto out_err;
1301 }
1302
1303 /*
1304 * Map the Hyp stack pages
1305 */
1306 for_each_possible_cpu(cpu) {
1307 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1308 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1309 PAGE_HYP);
1310
1311 if (err) {
1312 kvm_err("Cannot map hyp stack\n");
1313 goto out_err;
1314 }
1315 }
1316
1317 for_each_possible_cpu(cpu) {
1318 kvm_cpu_context_t *cpu_ctxt;
1319
1320 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1321 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1322
1323 if (err) {
1324 kvm_err("Cannot map host CPU state: %d\n", err);
1325 goto out_err;
1326 }
1327 }
1328
1329 /* set size of VMID supported by CPU */
1330 kvm_vmid_bits = kvm_get_vmid_bits();
1331 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1332
1333 kvm_info("Hyp mode initialized successfully\n");
1334
1335 return 0;
1336
1337 out_err:
1338 teardown_hyp_mode();
1339 kvm_err("error initializing Hyp mode: %d\n", err);
1340 return err;
1341 }
1342
1343 static void check_kvm_target_cpu(void *ret)
1344 {
1345 *(int *)ret = kvm_target_cpu();
1346 }
1347
1348 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1349 {
1350 struct kvm_vcpu *vcpu;
1351 int i;
1352
1353 mpidr &= MPIDR_HWID_BITMASK;
1354 kvm_for_each_vcpu(i, vcpu, kvm) {
1355 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1356 return vcpu;
1357 }
1358 return NULL;
1359 }
1360
1361 /**
1362 * Initialize Hyp-mode and memory mappings on all CPUs.
1363 */
1364 int kvm_arch_init(void *opaque)
1365 {
1366 int err;
1367 int ret, cpu;
1368
1369 if (!is_hyp_mode_available()) {
1370 kvm_err("HYP mode not available\n");
1371 return -ENODEV;
1372 }
1373
1374 for_each_online_cpu(cpu) {
1375 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1376 if (ret < 0) {
1377 kvm_err("Error, CPU %d not supported!\n", cpu);
1378 return -ENODEV;
1379 }
1380 }
1381
1382 err = init_common_resources();
1383 if (err)
1384 return err;
1385
1386 if (is_kernel_in_hyp_mode())
1387 err = init_vhe_mode();
1388 else
1389 err = init_hyp_mode();
1390 if (err)
1391 goto out_err;
1392
1393 err = init_subsystems();
1394 if (err)
1395 goto out_hyp;
1396
1397 return 0;
1398
1399 out_hyp:
1400 teardown_hyp_mode();
1401 out_err:
1402 teardown_common_resources();
1403 return err;
1404 }
1405
1406 /* NOP: Compiling as a module not supported */
1407 void kvm_arch_exit(void)
1408 {
1409 kvm_perf_teardown();
1410 }
1411
1412 static int arm_init(void)
1413 {
1414 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1415 return rc;
1416 }
1417
1418 module_init(arm_init);
This page took 0.058352 seconds and 5 git commands to generate.