arm/arm64: KVM: Allow handle_hva_to_gpa to return a value
[deliverable/linux.git] / arch / arm / kvm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x) pud_huge(_x)
49
50 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52
53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57
58 /**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68
69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71 /*
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
75 * anything there.
76 */
77 if (kvm)
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
79 }
80
81 /*
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
84 * kmap on 32bit).
85 */
86 static void kvm_flush_dcache_pte(pte_t pte)
87 {
88 __kvm_flush_dcache_pte(pte);
89 }
90
91 static void kvm_flush_dcache_pmd(pmd_t pmd)
92 {
93 __kvm_flush_dcache_pmd(pmd);
94 }
95
96 static void kvm_flush_dcache_pud(pud_t pud)
97 {
98 __kvm_flush_dcache_pud(pud);
99 }
100
101 /**
102 * stage2_dissolve_pmd() - clear and flush huge PMD entry
103 * @kvm: pointer to kvm structure.
104 * @addr: IPA
105 * @pmd: pmd pointer for IPA
106 *
107 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
108 * pages in the range dirty.
109 */
110 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
111 {
112 if (!kvm_pmd_huge(*pmd))
113 return;
114
115 pmd_clear(pmd);
116 kvm_tlb_flush_vmid_ipa(kvm, addr);
117 put_page(virt_to_page(pmd));
118 }
119
120 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
121 int min, int max)
122 {
123 void *page;
124
125 BUG_ON(max > KVM_NR_MEM_OBJS);
126 if (cache->nobjs >= min)
127 return 0;
128 while (cache->nobjs < max) {
129 page = (void *)__get_free_page(PGALLOC_GFP);
130 if (!page)
131 return -ENOMEM;
132 cache->objects[cache->nobjs++] = page;
133 }
134 return 0;
135 }
136
137 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
138 {
139 while (mc->nobjs)
140 free_page((unsigned long)mc->objects[--mc->nobjs]);
141 }
142
143 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
144 {
145 void *p;
146
147 BUG_ON(!mc || !mc->nobjs);
148 p = mc->objects[--mc->nobjs];
149 return p;
150 }
151
152 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
153 {
154 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
155 pgd_clear(pgd);
156 kvm_tlb_flush_vmid_ipa(kvm, addr);
157 pud_free(NULL, pud_table);
158 put_page(virt_to_page(pgd));
159 }
160
161 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
162 {
163 pmd_t *pmd_table = pmd_offset(pud, 0);
164 VM_BUG_ON(pud_huge(*pud));
165 pud_clear(pud);
166 kvm_tlb_flush_vmid_ipa(kvm, addr);
167 pmd_free(NULL, pmd_table);
168 put_page(virt_to_page(pud));
169 }
170
171 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
172 {
173 pte_t *pte_table = pte_offset_kernel(pmd, 0);
174 VM_BUG_ON(kvm_pmd_huge(*pmd));
175 pmd_clear(pmd);
176 kvm_tlb_flush_vmid_ipa(kvm, addr);
177 pte_free_kernel(NULL, pte_table);
178 put_page(virt_to_page(pmd));
179 }
180
181 /*
182 * Unmapping vs dcache management:
183 *
184 * If a guest maps certain memory pages as uncached, all writes will
185 * bypass the data cache and go directly to RAM. However, the CPUs
186 * can still speculate reads (not writes) and fill cache lines with
187 * data.
188 *
189 * Those cache lines will be *clean* cache lines though, so a
190 * clean+invalidate operation is equivalent to an invalidate
191 * operation, because no cache lines are marked dirty.
192 *
193 * Those clean cache lines could be filled prior to an uncached write
194 * by the guest, and the cache coherent IO subsystem would therefore
195 * end up writing old data to disk.
196 *
197 * This is why right after unmapping a page/section and invalidating
198 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
199 * the IO subsystem will never hit in the cache.
200 */
201 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
202 phys_addr_t addr, phys_addr_t end)
203 {
204 phys_addr_t start_addr = addr;
205 pte_t *pte, *start_pte;
206
207 start_pte = pte = pte_offset_kernel(pmd, addr);
208 do {
209 if (!pte_none(*pte)) {
210 pte_t old_pte = *pte;
211
212 kvm_set_pte(pte, __pte(0));
213 kvm_tlb_flush_vmid_ipa(kvm, addr);
214
215 /* No need to invalidate the cache for device mappings */
216 if ((pte_val(old_pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
217 kvm_flush_dcache_pte(old_pte);
218
219 put_page(virt_to_page(pte));
220 }
221 } while (pte++, addr += PAGE_SIZE, addr != end);
222
223 if (kvm_pte_table_empty(kvm, start_pte))
224 clear_pmd_entry(kvm, pmd, start_addr);
225 }
226
227 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
228 phys_addr_t addr, phys_addr_t end)
229 {
230 phys_addr_t next, start_addr = addr;
231 pmd_t *pmd, *start_pmd;
232
233 start_pmd = pmd = pmd_offset(pud, addr);
234 do {
235 next = kvm_pmd_addr_end(addr, end);
236 if (!pmd_none(*pmd)) {
237 if (kvm_pmd_huge(*pmd)) {
238 pmd_t old_pmd = *pmd;
239
240 pmd_clear(pmd);
241 kvm_tlb_flush_vmid_ipa(kvm, addr);
242
243 kvm_flush_dcache_pmd(old_pmd);
244
245 put_page(virt_to_page(pmd));
246 } else {
247 unmap_ptes(kvm, pmd, addr, next);
248 }
249 }
250 } while (pmd++, addr = next, addr != end);
251
252 if (kvm_pmd_table_empty(kvm, start_pmd))
253 clear_pud_entry(kvm, pud, start_addr);
254 }
255
256 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
257 phys_addr_t addr, phys_addr_t end)
258 {
259 phys_addr_t next, start_addr = addr;
260 pud_t *pud, *start_pud;
261
262 start_pud = pud = pud_offset(pgd, addr);
263 do {
264 next = kvm_pud_addr_end(addr, end);
265 if (!pud_none(*pud)) {
266 if (pud_huge(*pud)) {
267 pud_t old_pud = *pud;
268
269 pud_clear(pud);
270 kvm_tlb_flush_vmid_ipa(kvm, addr);
271
272 kvm_flush_dcache_pud(old_pud);
273
274 put_page(virt_to_page(pud));
275 } else {
276 unmap_pmds(kvm, pud, addr, next);
277 }
278 }
279 } while (pud++, addr = next, addr != end);
280
281 if (kvm_pud_table_empty(kvm, start_pud))
282 clear_pgd_entry(kvm, pgd, start_addr);
283 }
284
285
286 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
287 phys_addr_t start, u64 size)
288 {
289 pgd_t *pgd;
290 phys_addr_t addr = start, end = start + size;
291 phys_addr_t next;
292
293 pgd = pgdp + pgd_index(addr);
294 do {
295 next = kvm_pgd_addr_end(addr, end);
296 if (!pgd_none(*pgd))
297 unmap_puds(kvm, pgd, addr, next);
298 } while (pgd++, addr = next, addr != end);
299 }
300
301 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
302 phys_addr_t addr, phys_addr_t end)
303 {
304 pte_t *pte;
305
306 pte = pte_offset_kernel(pmd, addr);
307 do {
308 if (!pte_none(*pte) &&
309 (pte_val(*pte) & PAGE_S2_DEVICE) != PAGE_S2_DEVICE)
310 kvm_flush_dcache_pte(*pte);
311 } while (pte++, addr += PAGE_SIZE, addr != end);
312 }
313
314 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
315 phys_addr_t addr, phys_addr_t end)
316 {
317 pmd_t *pmd;
318 phys_addr_t next;
319
320 pmd = pmd_offset(pud, addr);
321 do {
322 next = kvm_pmd_addr_end(addr, end);
323 if (!pmd_none(*pmd)) {
324 if (kvm_pmd_huge(*pmd))
325 kvm_flush_dcache_pmd(*pmd);
326 else
327 stage2_flush_ptes(kvm, pmd, addr, next);
328 }
329 } while (pmd++, addr = next, addr != end);
330 }
331
332 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
333 phys_addr_t addr, phys_addr_t end)
334 {
335 pud_t *pud;
336 phys_addr_t next;
337
338 pud = pud_offset(pgd, addr);
339 do {
340 next = kvm_pud_addr_end(addr, end);
341 if (!pud_none(*pud)) {
342 if (pud_huge(*pud))
343 kvm_flush_dcache_pud(*pud);
344 else
345 stage2_flush_pmds(kvm, pud, addr, next);
346 }
347 } while (pud++, addr = next, addr != end);
348 }
349
350 static void stage2_flush_memslot(struct kvm *kvm,
351 struct kvm_memory_slot *memslot)
352 {
353 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
354 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
355 phys_addr_t next;
356 pgd_t *pgd;
357
358 pgd = kvm->arch.pgd + pgd_index(addr);
359 do {
360 next = kvm_pgd_addr_end(addr, end);
361 stage2_flush_puds(kvm, pgd, addr, next);
362 } while (pgd++, addr = next, addr != end);
363 }
364
365 /**
366 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
367 * @kvm: The struct kvm pointer
368 *
369 * Go through the stage 2 page tables and invalidate any cache lines
370 * backing memory already mapped to the VM.
371 */
372 static void stage2_flush_vm(struct kvm *kvm)
373 {
374 struct kvm_memslots *slots;
375 struct kvm_memory_slot *memslot;
376 int idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380
381 slots = kvm_memslots(kvm);
382 kvm_for_each_memslot(memslot, slots)
383 stage2_flush_memslot(kvm, memslot);
384
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
387 }
388
389 /**
390 * free_boot_hyp_pgd - free HYP boot page tables
391 *
392 * Free the HYP boot page tables. The bounce page is also freed.
393 */
394 void free_boot_hyp_pgd(void)
395 {
396 mutex_lock(&kvm_hyp_pgd_mutex);
397
398 if (boot_hyp_pgd) {
399 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
400 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
401 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
402 boot_hyp_pgd = NULL;
403 }
404
405 if (hyp_pgd)
406 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
407
408 free_page((unsigned long)init_bounce_page);
409 init_bounce_page = NULL;
410
411 mutex_unlock(&kvm_hyp_pgd_mutex);
412 }
413
414 /**
415 * free_hyp_pgds - free Hyp-mode page tables
416 *
417 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
418 * therefore contains either mappings in the kernel memory area (above
419 * PAGE_OFFSET), or device mappings in the vmalloc range (from
420 * VMALLOC_START to VMALLOC_END).
421 *
422 * boot_hyp_pgd should only map two pages for the init code.
423 */
424 void free_hyp_pgds(void)
425 {
426 unsigned long addr;
427
428 free_boot_hyp_pgd();
429
430 mutex_lock(&kvm_hyp_pgd_mutex);
431
432 if (hyp_pgd) {
433 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
434 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
435 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
436 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
437
438 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
439 hyp_pgd = NULL;
440 }
441
442 mutex_unlock(&kvm_hyp_pgd_mutex);
443 }
444
445 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
446 unsigned long end, unsigned long pfn,
447 pgprot_t prot)
448 {
449 pte_t *pte;
450 unsigned long addr;
451
452 addr = start;
453 do {
454 pte = pte_offset_kernel(pmd, addr);
455 kvm_set_pte(pte, pfn_pte(pfn, prot));
456 get_page(virt_to_page(pte));
457 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
458 pfn++;
459 } while (addr += PAGE_SIZE, addr != end);
460 }
461
462 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
463 unsigned long end, unsigned long pfn,
464 pgprot_t prot)
465 {
466 pmd_t *pmd;
467 pte_t *pte;
468 unsigned long addr, next;
469
470 addr = start;
471 do {
472 pmd = pmd_offset(pud, addr);
473
474 BUG_ON(pmd_sect(*pmd));
475
476 if (pmd_none(*pmd)) {
477 pte = pte_alloc_one_kernel(NULL, addr);
478 if (!pte) {
479 kvm_err("Cannot allocate Hyp pte\n");
480 return -ENOMEM;
481 }
482 pmd_populate_kernel(NULL, pmd, pte);
483 get_page(virt_to_page(pmd));
484 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
485 }
486
487 next = pmd_addr_end(addr, end);
488
489 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
490 pfn += (next - addr) >> PAGE_SHIFT;
491 } while (addr = next, addr != end);
492
493 return 0;
494 }
495
496 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
497 unsigned long end, unsigned long pfn,
498 pgprot_t prot)
499 {
500 pud_t *pud;
501 pmd_t *pmd;
502 unsigned long addr, next;
503 int ret;
504
505 addr = start;
506 do {
507 pud = pud_offset(pgd, addr);
508
509 if (pud_none_or_clear_bad(pud)) {
510 pmd = pmd_alloc_one(NULL, addr);
511 if (!pmd) {
512 kvm_err("Cannot allocate Hyp pmd\n");
513 return -ENOMEM;
514 }
515 pud_populate(NULL, pud, pmd);
516 get_page(virt_to_page(pud));
517 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
518 }
519
520 next = pud_addr_end(addr, end);
521 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
522 if (ret)
523 return ret;
524 pfn += (next - addr) >> PAGE_SHIFT;
525 } while (addr = next, addr != end);
526
527 return 0;
528 }
529
530 static int __create_hyp_mappings(pgd_t *pgdp,
531 unsigned long start, unsigned long end,
532 unsigned long pfn, pgprot_t prot)
533 {
534 pgd_t *pgd;
535 pud_t *pud;
536 unsigned long addr, next;
537 int err = 0;
538
539 mutex_lock(&kvm_hyp_pgd_mutex);
540 addr = start & PAGE_MASK;
541 end = PAGE_ALIGN(end);
542 do {
543 pgd = pgdp + pgd_index(addr);
544
545 if (pgd_none(*pgd)) {
546 pud = pud_alloc_one(NULL, addr);
547 if (!pud) {
548 kvm_err("Cannot allocate Hyp pud\n");
549 err = -ENOMEM;
550 goto out;
551 }
552 pgd_populate(NULL, pgd, pud);
553 get_page(virt_to_page(pgd));
554 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
555 }
556
557 next = pgd_addr_end(addr, end);
558 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
559 if (err)
560 goto out;
561 pfn += (next - addr) >> PAGE_SHIFT;
562 } while (addr = next, addr != end);
563 out:
564 mutex_unlock(&kvm_hyp_pgd_mutex);
565 return err;
566 }
567
568 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
569 {
570 if (!is_vmalloc_addr(kaddr)) {
571 BUG_ON(!virt_addr_valid(kaddr));
572 return __pa(kaddr);
573 } else {
574 return page_to_phys(vmalloc_to_page(kaddr)) +
575 offset_in_page(kaddr);
576 }
577 }
578
579 /**
580 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
581 * @from: The virtual kernel start address of the range
582 * @to: The virtual kernel end address of the range (exclusive)
583 *
584 * The same virtual address as the kernel virtual address is also used
585 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
586 * physical pages.
587 */
588 int create_hyp_mappings(void *from, void *to)
589 {
590 phys_addr_t phys_addr;
591 unsigned long virt_addr;
592 unsigned long start = KERN_TO_HYP((unsigned long)from);
593 unsigned long end = KERN_TO_HYP((unsigned long)to);
594
595 start = start & PAGE_MASK;
596 end = PAGE_ALIGN(end);
597
598 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
599 int err;
600
601 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
602 err = __create_hyp_mappings(hyp_pgd, virt_addr,
603 virt_addr + PAGE_SIZE,
604 __phys_to_pfn(phys_addr),
605 PAGE_HYP);
606 if (err)
607 return err;
608 }
609
610 return 0;
611 }
612
613 /**
614 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
615 * @from: The kernel start VA of the range
616 * @to: The kernel end VA of the range (exclusive)
617 * @phys_addr: The physical start address which gets mapped
618 *
619 * The resulting HYP VA is the same as the kernel VA, modulo
620 * HYP_PAGE_OFFSET.
621 */
622 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
623 {
624 unsigned long start = KERN_TO_HYP((unsigned long)from);
625 unsigned long end = KERN_TO_HYP((unsigned long)to);
626
627 /* Check for a valid kernel IO mapping */
628 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
629 return -EINVAL;
630
631 return __create_hyp_mappings(hyp_pgd, start, end,
632 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
633 }
634
635 /**
636 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
637 * @kvm: The KVM struct pointer for the VM.
638 *
639 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
640 * support either full 40-bit input addresses or limited to 32-bit input
641 * addresses). Clears the allocated pages.
642 *
643 * Note we don't need locking here as this is only called when the VM is
644 * created, which can only be done once.
645 */
646 int kvm_alloc_stage2_pgd(struct kvm *kvm)
647 {
648 int ret;
649 pgd_t *pgd;
650
651 if (kvm->arch.pgd != NULL) {
652 kvm_err("kvm_arch already initialized?\n");
653 return -EINVAL;
654 }
655
656 if (KVM_PREALLOC_LEVEL > 0) {
657 /*
658 * Allocate fake pgd for the page table manipulation macros to
659 * work. This is not used by the hardware and we have no
660 * alignment requirement for this allocation.
661 */
662 pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
663 GFP_KERNEL | __GFP_ZERO);
664 } else {
665 /*
666 * Allocate actual first-level Stage-2 page table used by the
667 * hardware for Stage-2 page table walks.
668 */
669 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, S2_PGD_ORDER);
670 }
671
672 if (!pgd)
673 return -ENOMEM;
674
675 ret = kvm_prealloc_hwpgd(kvm, pgd);
676 if (ret)
677 goto out_err;
678
679 kvm_clean_pgd(pgd);
680 kvm->arch.pgd = pgd;
681 return 0;
682 out_err:
683 if (KVM_PREALLOC_LEVEL > 0)
684 kfree(pgd);
685 else
686 free_pages((unsigned long)pgd, S2_PGD_ORDER);
687 return ret;
688 }
689
690 /**
691 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
692 * @kvm: The VM pointer
693 * @start: The intermediate physical base address of the range to unmap
694 * @size: The size of the area to unmap
695 *
696 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
697 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
698 * destroying the VM), otherwise another faulting VCPU may come in and mess
699 * with things behind our backs.
700 */
701 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
702 {
703 unmap_range(kvm, kvm->arch.pgd, start, size);
704 }
705
706 static void stage2_unmap_memslot(struct kvm *kvm,
707 struct kvm_memory_slot *memslot)
708 {
709 hva_t hva = memslot->userspace_addr;
710 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
711 phys_addr_t size = PAGE_SIZE * memslot->npages;
712 hva_t reg_end = hva + size;
713
714 /*
715 * A memory region could potentially cover multiple VMAs, and any holes
716 * between them, so iterate over all of them to find out if we should
717 * unmap any of them.
718 *
719 * +--------------------------------------------+
720 * +---------------+----------------+ +----------------+
721 * | : VMA 1 | VMA 2 | | VMA 3 : |
722 * +---------------+----------------+ +----------------+
723 * | memory region |
724 * +--------------------------------------------+
725 */
726 do {
727 struct vm_area_struct *vma = find_vma(current->mm, hva);
728 hva_t vm_start, vm_end;
729
730 if (!vma || vma->vm_start >= reg_end)
731 break;
732
733 /*
734 * Take the intersection of this VMA with the memory region
735 */
736 vm_start = max(hva, vma->vm_start);
737 vm_end = min(reg_end, vma->vm_end);
738
739 if (!(vma->vm_flags & VM_PFNMAP)) {
740 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
741 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
742 }
743 hva = vm_end;
744 } while (hva < reg_end);
745 }
746
747 /**
748 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
749 * @kvm: The struct kvm pointer
750 *
751 * Go through the memregions and unmap any reguler RAM
752 * backing memory already mapped to the VM.
753 */
754 void stage2_unmap_vm(struct kvm *kvm)
755 {
756 struct kvm_memslots *slots;
757 struct kvm_memory_slot *memslot;
758 int idx;
759
760 idx = srcu_read_lock(&kvm->srcu);
761 spin_lock(&kvm->mmu_lock);
762
763 slots = kvm_memslots(kvm);
764 kvm_for_each_memslot(memslot, slots)
765 stage2_unmap_memslot(kvm, memslot);
766
767 spin_unlock(&kvm->mmu_lock);
768 srcu_read_unlock(&kvm->srcu, idx);
769 }
770
771 /**
772 * kvm_free_stage2_pgd - free all stage-2 tables
773 * @kvm: The KVM struct pointer for the VM.
774 *
775 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
776 * underlying level-2 and level-3 tables before freeing the actual level-1 table
777 * and setting the struct pointer to NULL.
778 *
779 * Note we don't need locking here as this is only called when the VM is
780 * destroyed, which can only be done once.
781 */
782 void kvm_free_stage2_pgd(struct kvm *kvm)
783 {
784 if (kvm->arch.pgd == NULL)
785 return;
786
787 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
788 kvm_free_hwpgd(kvm);
789 if (KVM_PREALLOC_LEVEL > 0)
790 kfree(kvm->arch.pgd);
791 else
792 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
793 kvm->arch.pgd = NULL;
794 }
795
796 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
797 phys_addr_t addr)
798 {
799 pgd_t *pgd;
800 pud_t *pud;
801
802 pgd = kvm->arch.pgd + pgd_index(addr);
803 if (WARN_ON(pgd_none(*pgd))) {
804 if (!cache)
805 return NULL;
806 pud = mmu_memory_cache_alloc(cache);
807 pgd_populate(NULL, pgd, pud);
808 get_page(virt_to_page(pgd));
809 }
810
811 return pud_offset(pgd, addr);
812 }
813
814 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
815 phys_addr_t addr)
816 {
817 pud_t *pud;
818 pmd_t *pmd;
819
820 pud = stage2_get_pud(kvm, cache, addr);
821 if (pud_none(*pud)) {
822 if (!cache)
823 return NULL;
824 pmd = mmu_memory_cache_alloc(cache);
825 pud_populate(NULL, pud, pmd);
826 get_page(virt_to_page(pud));
827 }
828
829 return pmd_offset(pud, addr);
830 }
831
832 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
833 *cache, phys_addr_t addr, const pmd_t *new_pmd)
834 {
835 pmd_t *pmd, old_pmd;
836
837 pmd = stage2_get_pmd(kvm, cache, addr);
838 VM_BUG_ON(!pmd);
839
840 /*
841 * Mapping in huge pages should only happen through a fault. If a
842 * page is merged into a transparent huge page, the individual
843 * subpages of that huge page should be unmapped through MMU
844 * notifiers before we get here.
845 *
846 * Merging of CompoundPages is not supported; they should become
847 * splitting first, unmapped, merged, and mapped back in on-demand.
848 */
849 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
850
851 old_pmd = *pmd;
852 kvm_set_pmd(pmd, *new_pmd);
853 if (pmd_present(old_pmd))
854 kvm_tlb_flush_vmid_ipa(kvm, addr);
855 else
856 get_page(virt_to_page(pmd));
857 return 0;
858 }
859
860 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
861 phys_addr_t addr, const pte_t *new_pte,
862 unsigned long flags)
863 {
864 pmd_t *pmd;
865 pte_t *pte, old_pte;
866 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
867 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
868
869 VM_BUG_ON(logging_active && !cache);
870
871 /* Create stage-2 page table mapping - Levels 0 and 1 */
872 pmd = stage2_get_pmd(kvm, cache, addr);
873 if (!pmd) {
874 /*
875 * Ignore calls from kvm_set_spte_hva for unallocated
876 * address ranges.
877 */
878 return 0;
879 }
880
881 /*
882 * While dirty page logging - dissolve huge PMD, then continue on to
883 * allocate page.
884 */
885 if (logging_active)
886 stage2_dissolve_pmd(kvm, addr, pmd);
887
888 /* Create stage-2 page mappings - Level 2 */
889 if (pmd_none(*pmd)) {
890 if (!cache)
891 return 0; /* ignore calls from kvm_set_spte_hva */
892 pte = mmu_memory_cache_alloc(cache);
893 kvm_clean_pte(pte);
894 pmd_populate_kernel(NULL, pmd, pte);
895 get_page(virt_to_page(pmd));
896 }
897
898 pte = pte_offset_kernel(pmd, addr);
899
900 if (iomap && pte_present(*pte))
901 return -EFAULT;
902
903 /* Create 2nd stage page table mapping - Level 3 */
904 old_pte = *pte;
905 kvm_set_pte(pte, *new_pte);
906 if (pte_present(old_pte))
907 kvm_tlb_flush_vmid_ipa(kvm, addr);
908 else
909 get_page(virt_to_page(pte));
910
911 return 0;
912 }
913
914 /**
915 * kvm_phys_addr_ioremap - map a device range to guest IPA
916 *
917 * @kvm: The KVM pointer
918 * @guest_ipa: The IPA at which to insert the mapping
919 * @pa: The physical address of the device
920 * @size: The size of the mapping
921 */
922 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
923 phys_addr_t pa, unsigned long size, bool writable)
924 {
925 phys_addr_t addr, end;
926 int ret = 0;
927 unsigned long pfn;
928 struct kvm_mmu_memory_cache cache = { 0, };
929
930 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
931 pfn = __phys_to_pfn(pa);
932
933 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
934 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
935
936 if (writable)
937 kvm_set_s2pte_writable(&pte);
938
939 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
940 KVM_NR_MEM_OBJS);
941 if (ret)
942 goto out;
943 spin_lock(&kvm->mmu_lock);
944 ret = stage2_set_pte(kvm, &cache, addr, &pte,
945 KVM_S2PTE_FLAG_IS_IOMAP);
946 spin_unlock(&kvm->mmu_lock);
947 if (ret)
948 goto out;
949
950 pfn++;
951 }
952
953 out:
954 mmu_free_memory_cache(&cache);
955 return ret;
956 }
957
958 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
959 {
960 pfn_t pfn = *pfnp;
961 gfn_t gfn = *ipap >> PAGE_SHIFT;
962
963 if (PageTransCompound(pfn_to_page(pfn))) {
964 unsigned long mask;
965 /*
966 * The address we faulted on is backed by a transparent huge
967 * page. However, because we map the compound huge page and
968 * not the individual tail page, we need to transfer the
969 * refcount to the head page. We have to be careful that the
970 * THP doesn't start to split while we are adjusting the
971 * refcounts.
972 *
973 * We are sure this doesn't happen, because mmu_notifier_retry
974 * was successful and we are holding the mmu_lock, so if this
975 * THP is trying to split, it will be blocked in the mmu
976 * notifier before touching any of the pages, specifically
977 * before being able to call __split_huge_page_refcount().
978 *
979 * We can therefore safely transfer the refcount from PG_tail
980 * to PG_head and switch the pfn from a tail page to the head
981 * page accordingly.
982 */
983 mask = PTRS_PER_PMD - 1;
984 VM_BUG_ON((gfn & mask) != (pfn & mask));
985 if (pfn & mask) {
986 *ipap &= PMD_MASK;
987 kvm_release_pfn_clean(pfn);
988 pfn &= ~mask;
989 kvm_get_pfn(pfn);
990 *pfnp = pfn;
991 }
992
993 return true;
994 }
995
996 return false;
997 }
998
999 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1000 {
1001 if (kvm_vcpu_trap_is_iabt(vcpu))
1002 return false;
1003
1004 return kvm_vcpu_dabt_iswrite(vcpu);
1005 }
1006
1007 static bool kvm_is_device_pfn(unsigned long pfn)
1008 {
1009 return !pfn_valid(pfn);
1010 }
1011
1012 /**
1013 * stage2_wp_ptes - write protect PMD range
1014 * @pmd: pointer to pmd entry
1015 * @addr: range start address
1016 * @end: range end address
1017 */
1018 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1019 {
1020 pte_t *pte;
1021
1022 pte = pte_offset_kernel(pmd, addr);
1023 do {
1024 if (!pte_none(*pte)) {
1025 if (!kvm_s2pte_readonly(pte))
1026 kvm_set_s2pte_readonly(pte);
1027 }
1028 } while (pte++, addr += PAGE_SIZE, addr != end);
1029 }
1030
1031 /**
1032 * stage2_wp_pmds - write protect PUD range
1033 * @pud: pointer to pud entry
1034 * @addr: range start address
1035 * @end: range end address
1036 */
1037 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1038 {
1039 pmd_t *pmd;
1040 phys_addr_t next;
1041
1042 pmd = pmd_offset(pud, addr);
1043
1044 do {
1045 next = kvm_pmd_addr_end(addr, end);
1046 if (!pmd_none(*pmd)) {
1047 if (kvm_pmd_huge(*pmd)) {
1048 if (!kvm_s2pmd_readonly(pmd))
1049 kvm_set_s2pmd_readonly(pmd);
1050 } else {
1051 stage2_wp_ptes(pmd, addr, next);
1052 }
1053 }
1054 } while (pmd++, addr = next, addr != end);
1055 }
1056
1057 /**
1058 * stage2_wp_puds - write protect PGD range
1059 * @pgd: pointer to pgd entry
1060 * @addr: range start address
1061 * @end: range end address
1062 *
1063 * Process PUD entries, for a huge PUD we cause a panic.
1064 */
1065 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1066 {
1067 pud_t *pud;
1068 phys_addr_t next;
1069
1070 pud = pud_offset(pgd, addr);
1071 do {
1072 next = kvm_pud_addr_end(addr, end);
1073 if (!pud_none(*pud)) {
1074 /* TODO:PUD not supported, revisit later if supported */
1075 BUG_ON(kvm_pud_huge(*pud));
1076 stage2_wp_pmds(pud, addr, next);
1077 }
1078 } while (pud++, addr = next, addr != end);
1079 }
1080
1081 /**
1082 * stage2_wp_range() - write protect stage2 memory region range
1083 * @kvm: The KVM pointer
1084 * @addr: Start address of range
1085 * @end: End address of range
1086 */
1087 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1088 {
1089 pgd_t *pgd;
1090 phys_addr_t next;
1091
1092 pgd = kvm->arch.pgd + pgd_index(addr);
1093 do {
1094 /*
1095 * Release kvm_mmu_lock periodically if the memory region is
1096 * large. Otherwise, we may see kernel panics with
1097 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1098 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1099 * will also starve other vCPUs.
1100 */
1101 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1102 cond_resched_lock(&kvm->mmu_lock);
1103
1104 next = kvm_pgd_addr_end(addr, end);
1105 if (pgd_present(*pgd))
1106 stage2_wp_puds(pgd, addr, next);
1107 } while (pgd++, addr = next, addr != end);
1108 }
1109
1110 /**
1111 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1112 * @kvm: The KVM pointer
1113 * @slot: The memory slot to write protect
1114 *
1115 * Called to start logging dirty pages after memory region
1116 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1117 * all present PMD and PTEs are write protected in the memory region.
1118 * Afterwards read of dirty page log can be called.
1119 *
1120 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1121 * serializing operations for VM memory regions.
1122 */
1123 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1124 {
1125 struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
1126 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1127 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1128
1129 spin_lock(&kvm->mmu_lock);
1130 stage2_wp_range(kvm, start, end);
1131 spin_unlock(&kvm->mmu_lock);
1132 kvm_flush_remote_tlbs(kvm);
1133 }
1134
1135 /**
1136 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1137 * @kvm: The KVM pointer
1138 * @slot: The memory slot associated with mask
1139 * @gfn_offset: The gfn offset in memory slot
1140 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1141 * slot to be write protected
1142 *
1143 * Walks bits set in mask write protects the associated pte's. Caller must
1144 * acquire kvm_mmu_lock.
1145 */
1146 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1147 struct kvm_memory_slot *slot,
1148 gfn_t gfn_offset, unsigned long mask)
1149 {
1150 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1151 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1152 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1153
1154 stage2_wp_range(kvm, start, end);
1155 }
1156
1157 /*
1158 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1159 * dirty pages.
1160 *
1161 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1162 * enable dirty logging for them.
1163 */
1164 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1165 struct kvm_memory_slot *slot,
1166 gfn_t gfn_offset, unsigned long mask)
1167 {
1168 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1169 }
1170
1171 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1172 unsigned long size, bool uncached)
1173 {
1174 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1175 }
1176
1177 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1178 struct kvm_memory_slot *memslot, unsigned long hva,
1179 unsigned long fault_status)
1180 {
1181 int ret;
1182 bool write_fault, writable, hugetlb = false, force_pte = false;
1183 unsigned long mmu_seq;
1184 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1185 struct kvm *kvm = vcpu->kvm;
1186 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1187 struct vm_area_struct *vma;
1188 pfn_t pfn;
1189 pgprot_t mem_type = PAGE_S2;
1190 bool fault_ipa_uncached;
1191 bool logging_active = memslot_is_logging(memslot);
1192 unsigned long flags = 0;
1193
1194 write_fault = kvm_is_write_fault(vcpu);
1195 if (fault_status == FSC_PERM && !write_fault) {
1196 kvm_err("Unexpected L2 read permission error\n");
1197 return -EFAULT;
1198 }
1199
1200 /* Let's check if we will get back a huge page backed by hugetlbfs */
1201 down_read(&current->mm->mmap_sem);
1202 vma = find_vma_intersection(current->mm, hva, hva + 1);
1203 if (unlikely(!vma)) {
1204 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1205 up_read(&current->mm->mmap_sem);
1206 return -EFAULT;
1207 }
1208
1209 if (is_vm_hugetlb_page(vma) && !logging_active) {
1210 hugetlb = true;
1211 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1212 } else {
1213 /*
1214 * Pages belonging to memslots that don't have the same
1215 * alignment for userspace and IPA cannot be mapped using
1216 * block descriptors even if the pages belong to a THP for
1217 * the process, because the stage-2 block descriptor will
1218 * cover more than a single THP and we loose atomicity for
1219 * unmapping, updates, and splits of the THP or other pages
1220 * in the stage-2 block range.
1221 */
1222 if ((memslot->userspace_addr & ~PMD_MASK) !=
1223 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1224 force_pte = true;
1225 }
1226 up_read(&current->mm->mmap_sem);
1227
1228 /* We need minimum second+third level pages */
1229 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1230 KVM_NR_MEM_OBJS);
1231 if (ret)
1232 return ret;
1233
1234 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1235 /*
1236 * Ensure the read of mmu_notifier_seq happens before we call
1237 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1238 * the page we just got a reference to gets unmapped before we have a
1239 * chance to grab the mmu_lock, which ensure that if the page gets
1240 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1241 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1242 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1243 */
1244 smp_rmb();
1245
1246 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1247 if (is_error_pfn(pfn))
1248 return -EFAULT;
1249
1250 if (kvm_is_device_pfn(pfn)) {
1251 mem_type = PAGE_S2_DEVICE;
1252 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1253 } else if (logging_active) {
1254 /*
1255 * Faults on pages in a memslot with logging enabled
1256 * should not be mapped with huge pages (it introduces churn
1257 * and performance degradation), so force a pte mapping.
1258 */
1259 force_pte = true;
1260 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1261
1262 /*
1263 * Only actually map the page as writable if this was a write
1264 * fault.
1265 */
1266 if (!write_fault)
1267 writable = false;
1268 }
1269
1270 spin_lock(&kvm->mmu_lock);
1271 if (mmu_notifier_retry(kvm, mmu_seq))
1272 goto out_unlock;
1273
1274 if (!hugetlb && !force_pte)
1275 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1276
1277 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1278
1279 if (hugetlb) {
1280 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1281 new_pmd = pmd_mkhuge(new_pmd);
1282 if (writable) {
1283 kvm_set_s2pmd_writable(&new_pmd);
1284 kvm_set_pfn_dirty(pfn);
1285 }
1286 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1287 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1288 } else {
1289 pte_t new_pte = pfn_pte(pfn, mem_type);
1290
1291 if (writable) {
1292 kvm_set_s2pte_writable(&new_pte);
1293 kvm_set_pfn_dirty(pfn);
1294 mark_page_dirty(kvm, gfn);
1295 }
1296 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1297 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1298 }
1299
1300 out_unlock:
1301 spin_unlock(&kvm->mmu_lock);
1302 kvm_release_pfn_clean(pfn);
1303 return ret;
1304 }
1305
1306 /**
1307 * kvm_handle_guest_abort - handles all 2nd stage aborts
1308 * @vcpu: the VCPU pointer
1309 * @run: the kvm_run structure
1310 *
1311 * Any abort that gets to the host is almost guaranteed to be caused by a
1312 * missing second stage translation table entry, which can mean that either the
1313 * guest simply needs more memory and we must allocate an appropriate page or it
1314 * can mean that the guest tried to access I/O memory, which is emulated by user
1315 * space. The distinction is based on the IPA causing the fault and whether this
1316 * memory region has been registered as standard RAM by user space.
1317 */
1318 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1319 {
1320 unsigned long fault_status;
1321 phys_addr_t fault_ipa;
1322 struct kvm_memory_slot *memslot;
1323 unsigned long hva;
1324 bool is_iabt, write_fault, writable;
1325 gfn_t gfn;
1326 int ret, idx;
1327
1328 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1329 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1330
1331 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1332 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1333
1334 /* Check the stage-2 fault is trans. fault or write fault */
1335 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1336 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
1337 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1338 kvm_vcpu_trap_get_class(vcpu),
1339 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1340 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1341 return -EFAULT;
1342 }
1343
1344 idx = srcu_read_lock(&vcpu->kvm->srcu);
1345
1346 gfn = fault_ipa >> PAGE_SHIFT;
1347 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1348 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1349 write_fault = kvm_is_write_fault(vcpu);
1350 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1351 if (is_iabt) {
1352 /* Prefetch Abort on I/O address */
1353 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1354 ret = 1;
1355 goto out_unlock;
1356 }
1357
1358 /*
1359 * The IPA is reported as [MAX:12], so we need to
1360 * complement it with the bottom 12 bits from the
1361 * faulting VA. This is always 12 bits, irrespective
1362 * of the page size.
1363 */
1364 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1365 ret = io_mem_abort(vcpu, run, fault_ipa);
1366 goto out_unlock;
1367 }
1368
1369 /* Userspace should not be able to register out-of-bounds IPAs */
1370 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1371
1372 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1373 if (ret == 0)
1374 ret = 1;
1375 out_unlock:
1376 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1377 return ret;
1378 }
1379
1380 static int handle_hva_to_gpa(struct kvm *kvm,
1381 unsigned long start,
1382 unsigned long end,
1383 int (*handler)(struct kvm *kvm,
1384 gpa_t gpa, void *data),
1385 void *data)
1386 {
1387 struct kvm_memslots *slots;
1388 struct kvm_memory_slot *memslot;
1389 int ret = 0;
1390
1391 slots = kvm_memslots(kvm);
1392
1393 /* we only care about the pages that the guest sees */
1394 kvm_for_each_memslot(memslot, slots) {
1395 unsigned long hva_start, hva_end;
1396 gfn_t gfn, gfn_end;
1397
1398 hva_start = max(start, memslot->userspace_addr);
1399 hva_end = min(end, memslot->userspace_addr +
1400 (memslot->npages << PAGE_SHIFT));
1401 if (hva_start >= hva_end)
1402 continue;
1403
1404 /*
1405 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1406 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1407 */
1408 gfn = hva_to_gfn_memslot(hva_start, memslot);
1409 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1410
1411 for (; gfn < gfn_end; ++gfn) {
1412 gpa_t gpa = gfn << PAGE_SHIFT;
1413 ret |= handler(kvm, gpa, data);
1414 }
1415 }
1416
1417 return ret;
1418 }
1419
1420 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1421 {
1422 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1423 return 0;
1424 }
1425
1426 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1427 {
1428 unsigned long end = hva + PAGE_SIZE;
1429
1430 if (!kvm->arch.pgd)
1431 return 0;
1432
1433 trace_kvm_unmap_hva(hva);
1434 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1435 return 0;
1436 }
1437
1438 int kvm_unmap_hva_range(struct kvm *kvm,
1439 unsigned long start, unsigned long end)
1440 {
1441 if (!kvm->arch.pgd)
1442 return 0;
1443
1444 trace_kvm_unmap_hva_range(start, end);
1445 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1446 return 0;
1447 }
1448
1449 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1450 {
1451 pte_t *pte = (pte_t *)data;
1452
1453 /*
1454 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1455 * flag clear because MMU notifiers will have unmapped a huge PMD before
1456 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1457 * therefore stage2_set_pte() never needs to clear out a huge PMD
1458 * through this calling path.
1459 */
1460 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1461 return 0;
1462 }
1463
1464
1465 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1466 {
1467 unsigned long end = hva + PAGE_SIZE;
1468 pte_t stage2_pte;
1469
1470 if (!kvm->arch.pgd)
1471 return;
1472
1473 trace_kvm_set_spte_hva(hva);
1474 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1475 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1476 }
1477
1478 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1479 {
1480 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1481 }
1482
1483 phys_addr_t kvm_mmu_get_httbr(void)
1484 {
1485 return virt_to_phys(hyp_pgd);
1486 }
1487
1488 phys_addr_t kvm_mmu_get_boot_httbr(void)
1489 {
1490 return virt_to_phys(boot_hyp_pgd);
1491 }
1492
1493 phys_addr_t kvm_get_idmap_vector(void)
1494 {
1495 return hyp_idmap_vector;
1496 }
1497
1498 int kvm_mmu_init(void)
1499 {
1500 int err;
1501
1502 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1503 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1504 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1505
1506 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1507 /*
1508 * Our init code is crossing a page boundary. Allocate
1509 * a bounce page, copy the code over and use that.
1510 */
1511 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1512 phys_addr_t phys_base;
1513
1514 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1515 if (!init_bounce_page) {
1516 kvm_err("Couldn't allocate HYP init bounce page\n");
1517 err = -ENOMEM;
1518 goto out;
1519 }
1520
1521 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1522 /*
1523 * Warning: the code we just copied to the bounce page
1524 * must be flushed to the point of coherency.
1525 * Otherwise, the data may be sitting in L2, and HYP
1526 * mode won't be able to observe it as it runs with
1527 * caches off at that point.
1528 */
1529 kvm_flush_dcache_to_poc(init_bounce_page, len);
1530
1531 phys_base = kvm_virt_to_phys(init_bounce_page);
1532 hyp_idmap_vector += phys_base - hyp_idmap_start;
1533 hyp_idmap_start = phys_base;
1534 hyp_idmap_end = phys_base + len;
1535
1536 kvm_info("Using HYP init bounce page @%lx\n",
1537 (unsigned long)phys_base);
1538 }
1539
1540 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1541 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1542
1543 if (!hyp_pgd || !boot_hyp_pgd) {
1544 kvm_err("Hyp mode PGD not allocated\n");
1545 err = -ENOMEM;
1546 goto out;
1547 }
1548
1549 /* Create the idmap in the boot page tables */
1550 err = __create_hyp_mappings(boot_hyp_pgd,
1551 hyp_idmap_start, hyp_idmap_end,
1552 __phys_to_pfn(hyp_idmap_start),
1553 PAGE_HYP);
1554
1555 if (err) {
1556 kvm_err("Failed to idmap %lx-%lx\n",
1557 hyp_idmap_start, hyp_idmap_end);
1558 goto out;
1559 }
1560
1561 /* Map the very same page at the trampoline VA */
1562 err = __create_hyp_mappings(boot_hyp_pgd,
1563 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1564 __phys_to_pfn(hyp_idmap_start),
1565 PAGE_HYP);
1566 if (err) {
1567 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1568 TRAMPOLINE_VA);
1569 goto out;
1570 }
1571
1572 /* Map the same page again into the runtime page tables */
1573 err = __create_hyp_mappings(hyp_pgd,
1574 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1575 __phys_to_pfn(hyp_idmap_start),
1576 PAGE_HYP);
1577 if (err) {
1578 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1579 TRAMPOLINE_VA);
1580 goto out;
1581 }
1582
1583 return 0;
1584 out:
1585 free_hyp_pgds();
1586 return err;
1587 }
1588
1589 void kvm_arch_commit_memory_region(struct kvm *kvm,
1590 struct kvm_userspace_memory_region *mem,
1591 const struct kvm_memory_slot *old,
1592 enum kvm_mr_change change)
1593 {
1594 /*
1595 * At this point memslot has been committed and there is an
1596 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1597 * memory slot is write protected.
1598 */
1599 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1600 kvm_mmu_wp_memory_region(kvm, mem->slot);
1601 }
1602
1603 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1604 struct kvm_memory_slot *memslot,
1605 struct kvm_userspace_memory_region *mem,
1606 enum kvm_mr_change change)
1607 {
1608 hva_t hva = mem->userspace_addr;
1609 hva_t reg_end = hva + mem->memory_size;
1610 bool writable = !(mem->flags & KVM_MEM_READONLY);
1611 int ret = 0;
1612
1613 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1614 change != KVM_MR_FLAGS_ONLY)
1615 return 0;
1616
1617 /*
1618 * Prevent userspace from creating a memory region outside of the IPA
1619 * space addressable by the KVM guest IPA space.
1620 */
1621 if (memslot->base_gfn + memslot->npages >=
1622 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1623 return -EFAULT;
1624
1625 /*
1626 * A memory region could potentially cover multiple VMAs, and any holes
1627 * between them, so iterate over all of them to find out if we can map
1628 * any of them right now.
1629 *
1630 * +--------------------------------------------+
1631 * +---------------+----------------+ +----------------+
1632 * | : VMA 1 | VMA 2 | | VMA 3 : |
1633 * +---------------+----------------+ +----------------+
1634 * | memory region |
1635 * +--------------------------------------------+
1636 */
1637 do {
1638 struct vm_area_struct *vma = find_vma(current->mm, hva);
1639 hva_t vm_start, vm_end;
1640
1641 if (!vma || vma->vm_start >= reg_end)
1642 break;
1643
1644 /*
1645 * Mapping a read-only VMA is only allowed if the
1646 * memory region is configured as read-only.
1647 */
1648 if (writable && !(vma->vm_flags & VM_WRITE)) {
1649 ret = -EPERM;
1650 break;
1651 }
1652
1653 /*
1654 * Take the intersection of this VMA with the memory region
1655 */
1656 vm_start = max(hva, vma->vm_start);
1657 vm_end = min(reg_end, vma->vm_end);
1658
1659 if (vma->vm_flags & VM_PFNMAP) {
1660 gpa_t gpa = mem->guest_phys_addr +
1661 (vm_start - mem->userspace_addr);
1662 phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
1663 vm_start - vma->vm_start;
1664
1665 /* IO region dirty page logging not allowed */
1666 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1667 return -EINVAL;
1668
1669 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1670 vm_end - vm_start,
1671 writable);
1672 if (ret)
1673 break;
1674 }
1675 hva = vm_end;
1676 } while (hva < reg_end);
1677
1678 if (change == KVM_MR_FLAGS_ONLY)
1679 return ret;
1680
1681 spin_lock(&kvm->mmu_lock);
1682 if (ret)
1683 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1684 else
1685 stage2_flush_memslot(kvm, memslot);
1686 spin_unlock(&kvm->mmu_lock);
1687 return ret;
1688 }
1689
1690 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1691 struct kvm_memory_slot *dont)
1692 {
1693 }
1694
1695 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1696 unsigned long npages)
1697 {
1698 /*
1699 * Readonly memslots are not incoherent with the caches by definition,
1700 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1701 * that the guest may consider devices and hence map as uncached.
1702 * To prevent incoherency issues in these cases, tag all readonly
1703 * regions as incoherent.
1704 */
1705 if (slot->flags & KVM_MEM_READONLY)
1706 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1707 return 0;
1708 }
1709
1710 void kvm_arch_memslots_updated(struct kvm *kvm)
1711 {
1712 }
1713
1714 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1715 {
1716 }
1717
1718 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1719 struct kvm_memory_slot *slot)
1720 {
1721 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1722 phys_addr_t size = slot->npages << PAGE_SHIFT;
1723
1724 spin_lock(&kvm->mmu_lock);
1725 unmap_stage2_range(kvm, gpa, size);
1726 spin_unlock(&kvm->mmu_lock);
1727 }
1728
1729 /*
1730 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1731 *
1732 * Main problems:
1733 * - S/W ops are local to a CPU (not broadcast)
1734 * - We have line migration behind our back (speculation)
1735 * - System caches don't support S/W at all (damn!)
1736 *
1737 * In the face of the above, the best we can do is to try and convert
1738 * S/W ops to VA ops. Because the guest is not allowed to infer the
1739 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1740 * which is a rather good thing for us.
1741 *
1742 * Also, it is only used when turning caches on/off ("The expected
1743 * usage of the cache maintenance instructions that operate by set/way
1744 * is associated with the cache maintenance instructions associated
1745 * with the powerdown and powerup of caches, if this is required by
1746 * the implementation.").
1747 *
1748 * We use the following policy:
1749 *
1750 * - If we trap a S/W operation, we enable VM trapping to detect
1751 * caches being turned on/off, and do a full clean.
1752 *
1753 * - We flush the caches on both caches being turned on and off.
1754 *
1755 * - Once the caches are enabled, we stop trapping VM ops.
1756 */
1757 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1758 {
1759 unsigned long hcr = vcpu_get_hcr(vcpu);
1760
1761 /*
1762 * If this is the first time we do a S/W operation
1763 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1764 * VM trapping.
1765 *
1766 * Otherwise, rely on the VM trapping to wait for the MMU +
1767 * Caches to be turned off. At that point, we'll be able to
1768 * clean the caches again.
1769 */
1770 if (!(hcr & HCR_TVM)) {
1771 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1772 vcpu_has_cache_enabled(vcpu));
1773 stage2_flush_vm(vcpu->kvm);
1774 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1775 }
1776 }
1777
1778 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1779 {
1780 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1781
1782 /*
1783 * If switching the MMU+caches on, need to invalidate the caches.
1784 * If switching it off, need to clean the caches.
1785 * Clean + invalidate does the trick always.
1786 */
1787 if (now_enabled != was_enabled)
1788 stage2_flush_vm(vcpu->kvm);
1789
1790 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1791 if (now_enabled)
1792 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1793
1794 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1795 }
This page took 0.083578 seconds and 5 git commands to generate.