gpiolib-acpi: Duplicate con_id string when adding it to the crs lookup list
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41
42 #include "dma.h"
43 #include "mm.h"
44
45 struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 };
53
54 struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60 };
61
62 struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66 };
67
68 struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72 };
73
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92 }
93
94 /*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 size_t, enum dma_data_direction);
110
111 /**
112 * arm_dma_map_page - map a portion of a page for streaming DMA
113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114 * @page: page that buffer resides in
115 * @offset: offset into page for start of buffer
116 * @size: size of buffer to map
117 * @dir: DMA transfer direction
118 *
119 * Ensure that any data held in the cache is appropriately discarded
120 * or written back.
121 *
122 * The device owns this memory once this call has completed. The CPU
123 * can regain ownership by calling dma_unmap_page().
124 */
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 unsigned long offset, size_t size, enum dma_data_direction dir,
127 struct dma_attrs *attrs)
128 {
129 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
130 __dma_page_cpu_to_dev(page, offset, size, dir);
131 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 unsigned long offset, size_t size, enum dma_data_direction dir,
136 struct dma_attrs *attrs)
137 {
138 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140
141 /**
142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144 * @handle: DMA address of buffer
145 * @size: size of buffer (same as passed to dma_map_page)
146 * @dir: DMA transfer direction (same as passed to dma_map_page)
147 *
148 * Unmap a page streaming mode DMA translation. The handle and size
149 * must match what was provided in the previous dma_map_page() call.
150 * All other usages are undefined.
151 *
152 * After this call, reads by the CPU to the buffer are guaranteed to see
153 * whatever the device wrote there.
154 */
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 size_t size, enum dma_data_direction dir,
157 struct dma_attrs *attrs)
158 {
159 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 handle & ~PAGE_MASK, size, dir);
162 }
163
164 static void arm_dma_sync_single_for_cpu(struct device *dev,
165 dma_addr_t handle, size_t size, enum dma_data_direction dir)
166 {
167 unsigned int offset = handle & (PAGE_SIZE - 1);
168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
169 __dma_page_dev_to_cpu(page, offset, size, dir);
170 }
171
172 static void arm_dma_sync_single_for_device(struct device *dev,
173 dma_addr_t handle, size_t size, enum dma_data_direction dir)
174 {
175 unsigned int offset = handle & (PAGE_SIZE - 1);
176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
177 __dma_page_cpu_to_dev(page, offset, size, dir);
178 }
179
180 struct dma_map_ops arm_dma_ops = {
181 .alloc = arm_dma_alloc,
182 .free = arm_dma_free,
183 .mmap = arm_dma_mmap,
184 .get_sgtable = arm_dma_get_sgtable,
185 .map_page = arm_dma_map_page,
186 .unmap_page = arm_dma_unmap_page,
187 .map_sg = arm_dma_map_sg,
188 .unmap_sg = arm_dma_unmap_sg,
189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
190 .sync_single_for_device = arm_dma_sync_single_for_device,
191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
192 .sync_sg_for_device = arm_dma_sync_sg_for_device,
193 .set_dma_mask = arm_dma_set_mask,
194 };
195 EXPORT_SYMBOL(arm_dma_ops);
196
197 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
198 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
199 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
200 dma_addr_t handle, struct dma_attrs *attrs);
201 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 void *cpu_addr, dma_addr_t dma_addr, size_t size,
203 struct dma_attrs *attrs);
204
205 struct dma_map_ops arm_coherent_dma_ops = {
206 .alloc = arm_coherent_dma_alloc,
207 .free = arm_coherent_dma_free,
208 .mmap = arm_coherent_dma_mmap,
209 .get_sgtable = arm_dma_get_sgtable,
210 .map_page = arm_coherent_dma_map_page,
211 .map_sg = arm_dma_map_sg,
212 .set_dma_mask = arm_dma_set_mask,
213 };
214 EXPORT_SYMBOL(arm_coherent_dma_ops);
215
216 static int __dma_supported(struct device *dev, u64 mask, bool warn)
217 {
218 unsigned long max_dma_pfn;
219
220 /*
221 * If the mask allows for more memory than we can address,
222 * and we actually have that much memory, then we must
223 * indicate that DMA to this device is not supported.
224 */
225 if (sizeof(mask) != sizeof(dma_addr_t) &&
226 mask > (dma_addr_t)~0 &&
227 dma_to_pfn(dev, ~0) < max_pfn - 1) {
228 if (warn) {
229 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
230 mask);
231 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
232 }
233 return 0;
234 }
235
236 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
237
238 /*
239 * Translate the device's DMA mask to a PFN limit. This
240 * PFN number includes the page which we can DMA to.
241 */
242 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
243 if (warn)
244 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
245 mask,
246 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
247 max_dma_pfn + 1);
248 return 0;
249 }
250
251 return 1;
252 }
253
254 static u64 get_coherent_dma_mask(struct device *dev)
255 {
256 u64 mask = (u64)DMA_BIT_MASK(32);
257
258 if (dev) {
259 mask = dev->coherent_dma_mask;
260
261 /*
262 * Sanity check the DMA mask - it must be non-zero, and
263 * must be able to be satisfied by a DMA allocation.
264 */
265 if (mask == 0) {
266 dev_warn(dev, "coherent DMA mask is unset\n");
267 return 0;
268 }
269
270 if (!__dma_supported(dev, mask, true))
271 return 0;
272 }
273
274 return mask;
275 }
276
277 static void __dma_clear_buffer(struct page *page, size_t size)
278 {
279 /*
280 * Ensure that the allocated pages are zeroed, and that any data
281 * lurking in the kernel direct-mapped region is invalidated.
282 */
283 if (PageHighMem(page)) {
284 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
285 phys_addr_t end = base + size;
286 while (size > 0) {
287 void *ptr = kmap_atomic(page);
288 memset(ptr, 0, PAGE_SIZE);
289 dmac_flush_range(ptr, ptr + PAGE_SIZE);
290 kunmap_atomic(ptr);
291 page++;
292 size -= PAGE_SIZE;
293 }
294 outer_flush_range(base, end);
295 } else {
296 void *ptr = page_address(page);
297 memset(ptr, 0, size);
298 dmac_flush_range(ptr, ptr + size);
299 outer_flush_range(__pa(ptr), __pa(ptr) + size);
300 }
301 }
302
303 /*
304 * Allocate a DMA buffer for 'dev' of size 'size' using the
305 * specified gfp mask. Note that 'size' must be page aligned.
306 */
307 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
308 {
309 unsigned long order = get_order(size);
310 struct page *page, *p, *e;
311
312 page = alloc_pages(gfp, order);
313 if (!page)
314 return NULL;
315
316 /*
317 * Now split the huge page and free the excess pages
318 */
319 split_page(page, order);
320 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
321 __free_page(p);
322
323 __dma_clear_buffer(page, size);
324
325 return page;
326 }
327
328 /*
329 * Free a DMA buffer. 'size' must be page aligned.
330 */
331 static void __dma_free_buffer(struct page *page, size_t size)
332 {
333 struct page *e = page + (size >> PAGE_SHIFT);
334
335 while (page < e) {
336 __free_page(page);
337 page++;
338 }
339 }
340
341 #ifdef CONFIG_MMU
342
343 static void *__alloc_from_contiguous(struct device *dev, size_t size,
344 pgprot_t prot, struct page **ret_page,
345 const void *caller, bool want_vaddr);
346
347 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
348 pgprot_t prot, struct page **ret_page,
349 const void *caller, bool want_vaddr);
350
351 static void *
352 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
353 const void *caller)
354 {
355 /*
356 * DMA allocation can be mapped to user space, so lets
357 * set VM_USERMAP flags too.
358 */
359 return dma_common_contiguous_remap(page, size,
360 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
361 prot, caller);
362 }
363
364 static void __dma_free_remap(void *cpu_addr, size_t size)
365 {
366 dma_common_free_remap(cpu_addr, size,
367 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
368 }
369
370 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
371 static struct gen_pool *atomic_pool;
372
373 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
374
375 static int __init early_coherent_pool(char *p)
376 {
377 atomic_pool_size = memparse(p, &p);
378 return 0;
379 }
380 early_param("coherent_pool", early_coherent_pool);
381
382 void __init init_dma_coherent_pool_size(unsigned long size)
383 {
384 /*
385 * Catch any attempt to set the pool size too late.
386 */
387 BUG_ON(atomic_pool);
388
389 /*
390 * Set architecture specific coherent pool size only if
391 * it has not been changed by kernel command line parameter.
392 */
393 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
394 atomic_pool_size = size;
395 }
396
397 /*
398 * Initialise the coherent pool for atomic allocations.
399 */
400 static int __init atomic_pool_init(void)
401 {
402 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
403 gfp_t gfp = GFP_KERNEL | GFP_DMA;
404 struct page *page;
405 void *ptr;
406
407 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
408 if (!atomic_pool)
409 goto out;
410
411 if (dev_get_cma_area(NULL))
412 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
413 &page, atomic_pool_init, true);
414 else
415 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
416 &page, atomic_pool_init, true);
417 if (ptr) {
418 int ret;
419
420 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
421 page_to_phys(page),
422 atomic_pool_size, -1);
423 if (ret)
424 goto destroy_genpool;
425
426 gen_pool_set_algo(atomic_pool,
427 gen_pool_first_fit_order_align,
428 (void *)PAGE_SHIFT);
429 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
430 atomic_pool_size / 1024);
431 return 0;
432 }
433
434 destroy_genpool:
435 gen_pool_destroy(atomic_pool);
436 atomic_pool = NULL;
437 out:
438 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
439 atomic_pool_size / 1024);
440 return -ENOMEM;
441 }
442 /*
443 * CMA is activated by core_initcall, so we must be called after it.
444 */
445 postcore_initcall(atomic_pool_init);
446
447 struct dma_contig_early_reserve {
448 phys_addr_t base;
449 unsigned long size;
450 };
451
452 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
453
454 static int dma_mmu_remap_num __initdata;
455
456 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
457 {
458 dma_mmu_remap[dma_mmu_remap_num].base = base;
459 dma_mmu_remap[dma_mmu_remap_num].size = size;
460 dma_mmu_remap_num++;
461 }
462
463 void __init dma_contiguous_remap(void)
464 {
465 int i;
466 for (i = 0; i < dma_mmu_remap_num; i++) {
467 phys_addr_t start = dma_mmu_remap[i].base;
468 phys_addr_t end = start + dma_mmu_remap[i].size;
469 struct map_desc map;
470 unsigned long addr;
471
472 if (end > arm_lowmem_limit)
473 end = arm_lowmem_limit;
474 if (start >= end)
475 continue;
476
477 map.pfn = __phys_to_pfn(start);
478 map.virtual = __phys_to_virt(start);
479 map.length = end - start;
480 map.type = MT_MEMORY_DMA_READY;
481
482 /*
483 * Clear previous low-memory mapping to ensure that the
484 * TLB does not see any conflicting entries, then flush
485 * the TLB of the old entries before creating new mappings.
486 *
487 * This ensures that any speculatively loaded TLB entries
488 * (even though they may be rare) can not cause any problems,
489 * and ensures that this code is architecturally compliant.
490 */
491 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
492 addr += PMD_SIZE)
493 pmd_clear(pmd_off_k(addr));
494
495 flush_tlb_kernel_range(__phys_to_virt(start),
496 __phys_to_virt(end));
497
498 iotable_init(&map, 1);
499 }
500 }
501
502 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
503 void *data)
504 {
505 struct page *page = virt_to_page(addr);
506 pgprot_t prot = *(pgprot_t *)data;
507
508 set_pte_ext(pte, mk_pte(page, prot), 0);
509 return 0;
510 }
511
512 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
513 {
514 unsigned long start = (unsigned long) page_address(page);
515 unsigned end = start + size;
516
517 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
518 flush_tlb_kernel_range(start, end);
519 }
520
521 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
522 pgprot_t prot, struct page **ret_page,
523 const void *caller, bool want_vaddr)
524 {
525 struct page *page;
526 void *ptr = NULL;
527 page = __dma_alloc_buffer(dev, size, gfp);
528 if (!page)
529 return NULL;
530 if (!want_vaddr)
531 goto out;
532
533 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
534 if (!ptr) {
535 __dma_free_buffer(page, size);
536 return NULL;
537 }
538
539 out:
540 *ret_page = page;
541 return ptr;
542 }
543
544 static void *__alloc_from_pool(size_t size, struct page **ret_page)
545 {
546 unsigned long val;
547 void *ptr = NULL;
548
549 if (!atomic_pool) {
550 WARN(1, "coherent pool not initialised!\n");
551 return NULL;
552 }
553
554 val = gen_pool_alloc(atomic_pool, size);
555 if (val) {
556 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
557
558 *ret_page = phys_to_page(phys);
559 ptr = (void *)val;
560 }
561
562 return ptr;
563 }
564
565 static bool __in_atomic_pool(void *start, size_t size)
566 {
567 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
568 }
569
570 static int __free_from_pool(void *start, size_t size)
571 {
572 if (!__in_atomic_pool(start, size))
573 return 0;
574
575 gen_pool_free(atomic_pool, (unsigned long)start, size);
576
577 return 1;
578 }
579
580 static void *__alloc_from_contiguous(struct device *dev, size_t size,
581 pgprot_t prot, struct page **ret_page,
582 const void *caller, bool want_vaddr)
583 {
584 unsigned long order = get_order(size);
585 size_t count = size >> PAGE_SHIFT;
586 struct page *page;
587 void *ptr = NULL;
588
589 page = dma_alloc_from_contiguous(dev, count, order);
590 if (!page)
591 return NULL;
592
593 __dma_clear_buffer(page, size);
594
595 if (!want_vaddr)
596 goto out;
597
598 if (PageHighMem(page)) {
599 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
600 if (!ptr) {
601 dma_release_from_contiguous(dev, page, count);
602 return NULL;
603 }
604 } else {
605 __dma_remap(page, size, prot);
606 ptr = page_address(page);
607 }
608
609 out:
610 *ret_page = page;
611 return ptr;
612 }
613
614 static void __free_from_contiguous(struct device *dev, struct page *page,
615 void *cpu_addr, size_t size, bool want_vaddr)
616 {
617 if (want_vaddr) {
618 if (PageHighMem(page))
619 __dma_free_remap(cpu_addr, size);
620 else
621 __dma_remap(page, size, PAGE_KERNEL);
622 }
623 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
624 }
625
626 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
627 {
628 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
629 pgprot_writecombine(prot) :
630 pgprot_dmacoherent(prot);
631 return prot;
632 }
633
634 #define nommu() 0
635
636 #else /* !CONFIG_MMU */
637
638 #define nommu() 1
639
640 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
641 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
642 #define __alloc_from_pool(size, ret_page) NULL
643 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
644 #define __free_from_pool(cpu_addr, size) do { } while (0)
645 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
646 #define __dma_free_remap(cpu_addr, size) do { } while (0)
647
648 #endif /* CONFIG_MMU */
649
650 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
651 struct page **ret_page)
652 {
653 struct page *page;
654 page = __dma_alloc_buffer(dev, size, gfp);
655 if (!page)
656 return NULL;
657
658 *ret_page = page;
659 return page_address(page);
660 }
661
662 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
663 struct page **ret_page)
664 {
665 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
666 ret_page);
667 }
668
669 static void simple_allocator_free(struct arm_dma_free_args *args)
670 {
671 __dma_free_buffer(args->page, args->size);
672 }
673
674 static struct arm_dma_allocator simple_allocator = {
675 .alloc = simple_allocator_alloc,
676 .free = simple_allocator_free,
677 };
678
679 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
680 struct page **ret_page)
681 {
682 return __alloc_from_contiguous(args->dev, args->size, args->prot,
683 ret_page, args->caller,
684 args->want_vaddr);
685 }
686
687 static void cma_allocator_free(struct arm_dma_free_args *args)
688 {
689 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
690 args->size, args->want_vaddr);
691 }
692
693 static struct arm_dma_allocator cma_allocator = {
694 .alloc = cma_allocator_alloc,
695 .free = cma_allocator_free,
696 };
697
698 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
699 struct page **ret_page)
700 {
701 return __alloc_from_pool(args->size, ret_page);
702 }
703
704 static void pool_allocator_free(struct arm_dma_free_args *args)
705 {
706 __free_from_pool(args->cpu_addr, args->size);
707 }
708
709 static struct arm_dma_allocator pool_allocator = {
710 .alloc = pool_allocator_alloc,
711 .free = pool_allocator_free,
712 };
713
714 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
715 struct page **ret_page)
716 {
717 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
718 args->prot, ret_page, args->caller,
719 args->want_vaddr);
720 }
721
722 static void remap_allocator_free(struct arm_dma_free_args *args)
723 {
724 if (args->want_vaddr)
725 __dma_free_remap(args->cpu_addr, args->size);
726
727 __dma_free_buffer(args->page, args->size);
728 }
729
730 static struct arm_dma_allocator remap_allocator = {
731 .alloc = remap_allocator_alloc,
732 .free = remap_allocator_free,
733 };
734
735 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
736 gfp_t gfp, pgprot_t prot, bool is_coherent,
737 struct dma_attrs *attrs, const void *caller)
738 {
739 u64 mask = get_coherent_dma_mask(dev);
740 struct page *page = NULL;
741 void *addr;
742 bool allowblock, cma;
743 struct arm_dma_buffer *buf;
744 struct arm_dma_alloc_args args = {
745 .dev = dev,
746 .size = PAGE_ALIGN(size),
747 .gfp = gfp,
748 .prot = prot,
749 .caller = caller,
750 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
751 };
752
753 #ifdef CONFIG_DMA_API_DEBUG
754 u64 limit = (mask + 1) & ~mask;
755 if (limit && size >= limit) {
756 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
757 size, mask);
758 return NULL;
759 }
760 #endif
761
762 if (!mask)
763 return NULL;
764
765 buf = kzalloc(sizeof(*buf), gfp);
766 if (!buf)
767 return NULL;
768
769 if (mask < 0xffffffffULL)
770 gfp |= GFP_DMA;
771
772 /*
773 * Following is a work-around (a.k.a. hack) to prevent pages
774 * with __GFP_COMP being passed to split_page() which cannot
775 * handle them. The real problem is that this flag probably
776 * should be 0 on ARM as it is not supported on this
777 * platform; see CONFIG_HUGETLBFS.
778 */
779 gfp &= ~(__GFP_COMP);
780 args.gfp = gfp;
781
782 *handle = DMA_ERROR_CODE;
783 allowblock = gfpflags_allow_blocking(gfp);
784 cma = allowblock ? dev_get_cma_area(dev) : false;
785
786 if (cma)
787 buf->allocator = &cma_allocator;
788 else if (nommu() || is_coherent)
789 buf->allocator = &simple_allocator;
790 else if (allowblock)
791 buf->allocator = &remap_allocator;
792 else
793 buf->allocator = &pool_allocator;
794
795 addr = buf->allocator->alloc(&args, &page);
796
797 if (page) {
798 unsigned long flags;
799
800 *handle = pfn_to_dma(dev, page_to_pfn(page));
801 buf->virt = args.want_vaddr ? addr : page;
802
803 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
804 list_add(&buf->list, &arm_dma_bufs);
805 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
806 } else {
807 kfree(buf);
808 }
809
810 return args.want_vaddr ? addr : page;
811 }
812
813 /*
814 * Allocate DMA-coherent memory space and return both the kernel remapped
815 * virtual and bus address for that space.
816 */
817 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
818 gfp_t gfp, struct dma_attrs *attrs)
819 {
820 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
821
822 return __dma_alloc(dev, size, handle, gfp, prot, false,
823 attrs, __builtin_return_address(0));
824 }
825
826 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
827 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
828 {
829 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
830 attrs, __builtin_return_address(0));
831 }
832
833 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
834 void *cpu_addr, dma_addr_t dma_addr, size_t size,
835 struct dma_attrs *attrs)
836 {
837 int ret = -ENXIO;
838 #ifdef CONFIG_MMU
839 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
840 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
841 unsigned long pfn = dma_to_pfn(dev, dma_addr);
842 unsigned long off = vma->vm_pgoff;
843
844 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
845 return ret;
846
847 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
848 ret = remap_pfn_range(vma, vma->vm_start,
849 pfn + off,
850 vma->vm_end - vma->vm_start,
851 vma->vm_page_prot);
852 }
853 #endif /* CONFIG_MMU */
854
855 return ret;
856 }
857
858 /*
859 * Create userspace mapping for the DMA-coherent memory.
860 */
861 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
862 void *cpu_addr, dma_addr_t dma_addr, size_t size,
863 struct dma_attrs *attrs)
864 {
865 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
866 }
867
868 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
869 void *cpu_addr, dma_addr_t dma_addr, size_t size,
870 struct dma_attrs *attrs)
871 {
872 #ifdef CONFIG_MMU
873 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
874 #endif /* CONFIG_MMU */
875 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
876 }
877
878 /*
879 * Free a buffer as defined by the above mapping.
880 */
881 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
882 dma_addr_t handle, struct dma_attrs *attrs,
883 bool is_coherent)
884 {
885 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
886 struct arm_dma_buffer *buf;
887 struct arm_dma_free_args args = {
888 .dev = dev,
889 .size = PAGE_ALIGN(size),
890 .cpu_addr = cpu_addr,
891 .page = page,
892 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
893 };
894
895 buf = arm_dma_buffer_find(cpu_addr);
896 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
897 return;
898
899 buf->allocator->free(&args);
900 kfree(buf);
901 }
902
903 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
904 dma_addr_t handle, struct dma_attrs *attrs)
905 {
906 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
907 }
908
909 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
910 dma_addr_t handle, struct dma_attrs *attrs)
911 {
912 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
913 }
914
915 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
916 void *cpu_addr, dma_addr_t handle, size_t size,
917 struct dma_attrs *attrs)
918 {
919 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
920 int ret;
921
922 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
923 if (unlikely(ret))
924 return ret;
925
926 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
927 return 0;
928 }
929
930 static void dma_cache_maint_page(struct page *page, unsigned long offset,
931 size_t size, enum dma_data_direction dir,
932 void (*op)(const void *, size_t, int))
933 {
934 unsigned long pfn;
935 size_t left = size;
936
937 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
938 offset %= PAGE_SIZE;
939
940 /*
941 * A single sg entry may refer to multiple physically contiguous
942 * pages. But we still need to process highmem pages individually.
943 * If highmem is not configured then the bulk of this loop gets
944 * optimized out.
945 */
946 do {
947 size_t len = left;
948 void *vaddr;
949
950 page = pfn_to_page(pfn);
951
952 if (PageHighMem(page)) {
953 if (len + offset > PAGE_SIZE)
954 len = PAGE_SIZE - offset;
955
956 if (cache_is_vipt_nonaliasing()) {
957 vaddr = kmap_atomic(page);
958 op(vaddr + offset, len, dir);
959 kunmap_atomic(vaddr);
960 } else {
961 vaddr = kmap_high_get(page);
962 if (vaddr) {
963 op(vaddr + offset, len, dir);
964 kunmap_high(page);
965 }
966 }
967 } else {
968 vaddr = page_address(page) + offset;
969 op(vaddr, len, dir);
970 }
971 offset = 0;
972 pfn++;
973 left -= len;
974 } while (left);
975 }
976
977 /*
978 * Make an area consistent for devices.
979 * Note: Drivers should NOT use this function directly, as it will break
980 * platforms with CONFIG_DMABOUNCE.
981 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
982 */
983 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
984 size_t size, enum dma_data_direction dir)
985 {
986 phys_addr_t paddr;
987
988 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
989
990 paddr = page_to_phys(page) + off;
991 if (dir == DMA_FROM_DEVICE) {
992 outer_inv_range(paddr, paddr + size);
993 } else {
994 outer_clean_range(paddr, paddr + size);
995 }
996 /* FIXME: non-speculating: flush on bidirectional mappings? */
997 }
998
999 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1000 size_t size, enum dma_data_direction dir)
1001 {
1002 phys_addr_t paddr = page_to_phys(page) + off;
1003
1004 /* FIXME: non-speculating: not required */
1005 /* in any case, don't bother invalidating if DMA to device */
1006 if (dir != DMA_TO_DEVICE) {
1007 outer_inv_range(paddr, paddr + size);
1008
1009 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1010 }
1011
1012 /*
1013 * Mark the D-cache clean for these pages to avoid extra flushing.
1014 */
1015 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1016 unsigned long pfn;
1017 size_t left = size;
1018
1019 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1020 off %= PAGE_SIZE;
1021 if (off) {
1022 pfn++;
1023 left -= PAGE_SIZE - off;
1024 }
1025 while (left >= PAGE_SIZE) {
1026 page = pfn_to_page(pfn++);
1027 set_bit(PG_dcache_clean, &page->flags);
1028 left -= PAGE_SIZE;
1029 }
1030 }
1031 }
1032
1033 /**
1034 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1035 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1036 * @sg: list of buffers
1037 * @nents: number of buffers to map
1038 * @dir: DMA transfer direction
1039 *
1040 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1041 * This is the scatter-gather version of the dma_map_single interface.
1042 * Here the scatter gather list elements are each tagged with the
1043 * appropriate dma address and length. They are obtained via
1044 * sg_dma_{address,length}.
1045 *
1046 * Device ownership issues as mentioned for dma_map_single are the same
1047 * here.
1048 */
1049 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1050 enum dma_data_direction dir, struct dma_attrs *attrs)
1051 {
1052 struct dma_map_ops *ops = get_dma_ops(dev);
1053 struct scatterlist *s;
1054 int i, j;
1055
1056 for_each_sg(sg, s, nents, i) {
1057 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1058 s->dma_length = s->length;
1059 #endif
1060 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1061 s->length, dir, attrs);
1062 if (dma_mapping_error(dev, s->dma_address))
1063 goto bad_mapping;
1064 }
1065 return nents;
1066
1067 bad_mapping:
1068 for_each_sg(sg, s, i, j)
1069 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1070 return 0;
1071 }
1072
1073 /**
1074 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1075 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1076 * @sg: list of buffers
1077 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1078 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1079 *
1080 * Unmap a set of streaming mode DMA translations. Again, CPU access
1081 * rules concerning calls here are the same as for dma_unmap_single().
1082 */
1083 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1084 enum dma_data_direction dir, struct dma_attrs *attrs)
1085 {
1086 struct dma_map_ops *ops = get_dma_ops(dev);
1087 struct scatterlist *s;
1088
1089 int i;
1090
1091 for_each_sg(sg, s, nents, i)
1092 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1093 }
1094
1095 /**
1096 * arm_dma_sync_sg_for_cpu
1097 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1098 * @sg: list of buffers
1099 * @nents: number of buffers to map (returned from dma_map_sg)
1100 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1101 */
1102 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1103 int nents, enum dma_data_direction dir)
1104 {
1105 struct dma_map_ops *ops = get_dma_ops(dev);
1106 struct scatterlist *s;
1107 int i;
1108
1109 for_each_sg(sg, s, nents, i)
1110 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1111 dir);
1112 }
1113
1114 /**
1115 * arm_dma_sync_sg_for_device
1116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1117 * @sg: list of buffers
1118 * @nents: number of buffers to map (returned from dma_map_sg)
1119 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1120 */
1121 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1122 int nents, enum dma_data_direction dir)
1123 {
1124 struct dma_map_ops *ops = get_dma_ops(dev);
1125 struct scatterlist *s;
1126 int i;
1127
1128 for_each_sg(sg, s, nents, i)
1129 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1130 dir);
1131 }
1132
1133 /*
1134 * Return whether the given device DMA address mask can be supported
1135 * properly. For example, if your device can only drive the low 24-bits
1136 * during bus mastering, then you would pass 0x00ffffff as the mask
1137 * to this function.
1138 */
1139 int dma_supported(struct device *dev, u64 mask)
1140 {
1141 return __dma_supported(dev, mask, false);
1142 }
1143 EXPORT_SYMBOL(dma_supported);
1144
1145 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1146 {
1147 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1148 return -EIO;
1149
1150 *dev->dma_mask = dma_mask;
1151
1152 return 0;
1153 }
1154
1155 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1156
1157 static int __init dma_debug_do_init(void)
1158 {
1159 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1160 return 0;
1161 }
1162 fs_initcall(dma_debug_do_init);
1163
1164 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1165
1166 /* IOMMU */
1167
1168 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1169
1170 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1171 size_t size)
1172 {
1173 unsigned int order = get_order(size);
1174 unsigned int align = 0;
1175 unsigned int count, start;
1176 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1177 unsigned long flags;
1178 dma_addr_t iova;
1179 int i;
1180
1181 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1182 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1183
1184 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1185 align = (1 << order) - 1;
1186
1187 spin_lock_irqsave(&mapping->lock, flags);
1188 for (i = 0; i < mapping->nr_bitmaps; i++) {
1189 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1190 mapping->bits, 0, count, align);
1191
1192 if (start > mapping->bits)
1193 continue;
1194
1195 bitmap_set(mapping->bitmaps[i], start, count);
1196 break;
1197 }
1198
1199 /*
1200 * No unused range found. Try to extend the existing mapping
1201 * and perform a second attempt to reserve an IO virtual
1202 * address range of size bytes.
1203 */
1204 if (i == mapping->nr_bitmaps) {
1205 if (extend_iommu_mapping(mapping)) {
1206 spin_unlock_irqrestore(&mapping->lock, flags);
1207 return DMA_ERROR_CODE;
1208 }
1209
1210 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1211 mapping->bits, 0, count, align);
1212
1213 if (start > mapping->bits) {
1214 spin_unlock_irqrestore(&mapping->lock, flags);
1215 return DMA_ERROR_CODE;
1216 }
1217
1218 bitmap_set(mapping->bitmaps[i], start, count);
1219 }
1220 spin_unlock_irqrestore(&mapping->lock, flags);
1221
1222 iova = mapping->base + (mapping_size * i);
1223 iova += start << PAGE_SHIFT;
1224
1225 return iova;
1226 }
1227
1228 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1229 dma_addr_t addr, size_t size)
1230 {
1231 unsigned int start, count;
1232 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1233 unsigned long flags;
1234 dma_addr_t bitmap_base;
1235 u32 bitmap_index;
1236
1237 if (!size)
1238 return;
1239
1240 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1241 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1242
1243 bitmap_base = mapping->base + mapping_size * bitmap_index;
1244
1245 start = (addr - bitmap_base) >> PAGE_SHIFT;
1246
1247 if (addr + size > bitmap_base + mapping_size) {
1248 /*
1249 * The address range to be freed reaches into the iova
1250 * range of the next bitmap. This should not happen as
1251 * we don't allow this in __alloc_iova (at the
1252 * moment).
1253 */
1254 BUG();
1255 } else
1256 count = size >> PAGE_SHIFT;
1257
1258 spin_lock_irqsave(&mapping->lock, flags);
1259 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1260 spin_unlock_irqrestore(&mapping->lock, flags);
1261 }
1262
1263 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1264 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1265
1266 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1267 gfp_t gfp, struct dma_attrs *attrs)
1268 {
1269 struct page **pages;
1270 int count = size >> PAGE_SHIFT;
1271 int array_size = count * sizeof(struct page *);
1272 int i = 0;
1273 int order_idx = 0;
1274
1275 if (array_size <= PAGE_SIZE)
1276 pages = kzalloc(array_size, GFP_KERNEL);
1277 else
1278 pages = vzalloc(array_size);
1279 if (!pages)
1280 return NULL;
1281
1282 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1283 {
1284 unsigned long order = get_order(size);
1285 struct page *page;
1286
1287 page = dma_alloc_from_contiguous(dev, count, order);
1288 if (!page)
1289 goto error;
1290
1291 __dma_clear_buffer(page, size);
1292
1293 for (i = 0; i < count; i++)
1294 pages[i] = page + i;
1295
1296 return pages;
1297 }
1298
1299 /* Go straight to 4K chunks if caller says it's OK. */
1300 if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1301 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1302
1303 /*
1304 * IOMMU can map any pages, so himem can also be used here
1305 */
1306 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1307
1308 while (count) {
1309 int j, order;
1310
1311 order = iommu_order_array[order_idx];
1312
1313 /* Drop down when we get small */
1314 if (__fls(count) < order) {
1315 order_idx++;
1316 continue;
1317 }
1318
1319 if (order) {
1320 /* See if it's easy to allocate a high-order chunk */
1321 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1322
1323 /* Go down a notch at first sign of pressure */
1324 if (!pages[i]) {
1325 order_idx++;
1326 continue;
1327 }
1328 } else {
1329 pages[i] = alloc_pages(gfp, 0);
1330 if (!pages[i])
1331 goto error;
1332 }
1333
1334 if (order) {
1335 split_page(pages[i], order);
1336 j = 1 << order;
1337 while (--j)
1338 pages[i + j] = pages[i] + j;
1339 }
1340
1341 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1342 i += 1 << order;
1343 count -= 1 << order;
1344 }
1345
1346 return pages;
1347 error:
1348 while (i--)
1349 if (pages[i])
1350 __free_pages(pages[i], 0);
1351 kvfree(pages);
1352 return NULL;
1353 }
1354
1355 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1356 size_t size, struct dma_attrs *attrs)
1357 {
1358 int count = size >> PAGE_SHIFT;
1359 int i;
1360
1361 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1362 dma_release_from_contiguous(dev, pages[0], count);
1363 } else {
1364 for (i = 0; i < count; i++)
1365 if (pages[i])
1366 __free_pages(pages[i], 0);
1367 }
1368
1369 kvfree(pages);
1370 return 0;
1371 }
1372
1373 /*
1374 * Create a CPU mapping for a specified pages
1375 */
1376 static void *
1377 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1378 const void *caller)
1379 {
1380 return dma_common_pages_remap(pages, size,
1381 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1382 }
1383
1384 /*
1385 * Create a mapping in device IO address space for specified pages
1386 */
1387 static dma_addr_t
1388 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1389 {
1390 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1392 dma_addr_t dma_addr, iova;
1393 int i;
1394
1395 dma_addr = __alloc_iova(mapping, size);
1396 if (dma_addr == DMA_ERROR_CODE)
1397 return dma_addr;
1398
1399 iova = dma_addr;
1400 for (i = 0; i < count; ) {
1401 int ret;
1402
1403 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1404 phys_addr_t phys = page_to_phys(pages[i]);
1405 unsigned int len, j;
1406
1407 for (j = i + 1; j < count; j++, next_pfn++)
1408 if (page_to_pfn(pages[j]) != next_pfn)
1409 break;
1410
1411 len = (j - i) << PAGE_SHIFT;
1412 ret = iommu_map(mapping->domain, iova, phys, len,
1413 IOMMU_READ|IOMMU_WRITE);
1414 if (ret < 0)
1415 goto fail;
1416 iova += len;
1417 i = j;
1418 }
1419 return dma_addr;
1420 fail:
1421 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1422 __free_iova(mapping, dma_addr, size);
1423 return DMA_ERROR_CODE;
1424 }
1425
1426 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1427 {
1428 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1429
1430 /*
1431 * add optional in-page offset from iova to size and align
1432 * result to page size
1433 */
1434 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1435 iova &= PAGE_MASK;
1436
1437 iommu_unmap(mapping->domain, iova, size);
1438 __free_iova(mapping, iova, size);
1439 return 0;
1440 }
1441
1442 static struct page **__atomic_get_pages(void *addr)
1443 {
1444 struct page *page;
1445 phys_addr_t phys;
1446
1447 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1448 page = phys_to_page(phys);
1449
1450 return (struct page **)page;
1451 }
1452
1453 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1454 {
1455 struct vm_struct *area;
1456
1457 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1458 return __atomic_get_pages(cpu_addr);
1459
1460 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1461 return cpu_addr;
1462
1463 area = find_vm_area(cpu_addr);
1464 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1465 return area->pages;
1466 return NULL;
1467 }
1468
1469 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1470 dma_addr_t *handle)
1471 {
1472 struct page *page;
1473 void *addr;
1474
1475 addr = __alloc_from_pool(size, &page);
1476 if (!addr)
1477 return NULL;
1478
1479 *handle = __iommu_create_mapping(dev, &page, size);
1480 if (*handle == DMA_ERROR_CODE)
1481 goto err_mapping;
1482
1483 return addr;
1484
1485 err_mapping:
1486 __free_from_pool(addr, size);
1487 return NULL;
1488 }
1489
1490 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1491 dma_addr_t handle, size_t size)
1492 {
1493 __iommu_remove_mapping(dev, handle, size);
1494 __free_from_pool(cpu_addr, size);
1495 }
1496
1497 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1498 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1499 {
1500 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1501 struct page **pages;
1502 void *addr = NULL;
1503
1504 *handle = DMA_ERROR_CODE;
1505 size = PAGE_ALIGN(size);
1506
1507 if (!gfpflags_allow_blocking(gfp))
1508 return __iommu_alloc_atomic(dev, size, handle);
1509
1510 /*
1511 * Following is a work-around (a.k.a. hack) to prevent pages
1512 * with __GFP_COMP being passed to split_page() which cannot
1513 * handle them. The real problem is that this flag probably
1514 * should be 0 on ARM as it is not supported on this
1515 * platform; see CONFIG_HUGETLBFS.
1516 */
1517 gfp &= ~(__GFP_COMP);
1518
1519 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1520 if (!pages)
1521 return NULL;
1522
1523 *handle = __iommu_create_mapping(dev, pages, size);
1524 if (*handle == DMA_ERROR_CODE)
1525 goto err_buffer;
1526
1527 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1528 return pages;
1529
1530 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1531 __builtin_return_address(0));
1532 if (!addr)
1533 goto err_mapping;
1534
1535 return addr;
1536
1537 err_mapping:
1538 __iommu_remove_mapping(dev, *handle, size);
1539 err_buffer:
1540 __iommu_free_buffer(dev, pages, size, attrs);
1541 return NULL;
1542 }
1543
1544 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1545 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1546 struct dma_attrs *attrs)
1547 {
1548 unsigned long uaddr = vma->vm_start;
1549 unsigned long usize = vma->vm_end - vma->vm_start;
1550 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1551 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1552 unsigned long off = vma->vm_pgoff;
1553
1554 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1555
1556 if (!pages)
1557 return -ENXIO;
1558
1559 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1560 return -ENXIO;
1561
1562 pages += off;
1563
1564 do {
1565 int ret = vm_insert_page(vma, uaddr, *pages++);
1566 if (ret) {
1567 pr_err("Remapping memory failed: %d\n", ret);
1568 return ret;
1569 }
1570 uaddr += PAGE_SIZE;
1571 usize -= PAGE_SIZE;
1572 } while (usize > 0);
1573
1574 return 0;
1575 }
1576
1577 /*
1578 * free a page as defined by the above mapping.
1579 * Must not be called with IRQs disabled.
1580 */
1581 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1582 dma_addr_t handle, struct dma_attrs *attrs)
1583 {
1584 struct page **pages;
1585 size = PAGE_ALIGN(size);
1586
1587 if (__in_atomic_pool(cpu_addr, size)) {
1588 __iommu_free_atomic(dev, cpu_addr, handle, size);
1589 return;
1590 }
1591
1592 pages = __iommu_get_pages(cpu_addr, attrs);
1593 if (!pages) {
1594 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1595 return;
1596 }
1597
1598 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1599 dma_common_free_remap(cpu_addr, size,
1600 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1601 }
1602
1603 __iommu_remove_mapping(dev, handle, size);
1604 __iommu_free_buffer(dev, pages, size, attrs);
1605 }
1606
1607 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1608 void *cpu_addr, dma_addr_t dma_addr,
1609 size_t size, struct dma_attrs *attrs)
1610 {
1611 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1612 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1613
1614 if (!pages)
1615 return -ENXIO;
1616
1617 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1618 GFP_KERNEL);
1619 }
1620
1621 static int __dma_direction_to_prot(enum dma_data_direction dir)
1622 {
1623 int prot;
1624
1625 switch (dir) {
1626 case DMA_BIDIRECTIONAL:
1627 prot = IOMMU_READ | IOMMU_WRITE;
1628 break;
1629 case DMA_TO_DEVICE:
1630 prot = IOMMU_READ;
1631 break;
1632 case DMA_FROM_DEVICE:
1633 prot = IOMMU_WRITE;
1634 break;
1635 default:
1636 prot = 0;
1637 }
1638
1639 return prot;
1640 }
1641
1642 /*
1643 * Map a part of the scatter-gather list into contiguous io address space
1644 */
1645 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1646 size_t size, dma_addr_t *handle,
1647 enum dma_data_direction dir, struct dma_attrs *attrs,
1648 bool is_coherent)
1649 {
1650 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1651 dma_addr_t iova, iova_base;
1652 int ret = 0;
1653 unsigned int count;
1654 struct scatterlist *s;
1655 int prot;
1656
1657 size = PAGE_ALIGN(size);
1658 *handle = DMA_ERROR_CODE;
1659
1660 iova_base = iova = __alloc_iova(mapping, size);
1661 if (iova == DMA_ERROR_CODE)
1662 return -ENOMEM;
1663
1664 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1665 phys_addr_t phys = page_to_phys(sg_page(s));
1666 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1667
1668 if (!is_coherent &&
1669 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1670 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1671
1672 prot = __dma_direction_to_prot(dir);
1673
1674 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1675 if (ret < 0)
1676 goto fail;
1677 count += len >> PAGE_SHIFT;
1678 iova += len;
1679 }
1680 *handle = iova_base;
1681
1682 return 0;
1683 fail:
1684 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1685 __free_iova(mapping, iova_base, size);
1686 return ret;
1687 }
1688
1689 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1690 enum dma_data_direction dir, struct dma_attrs *attrs,
1691 bool is_coherent)
1692 {
1693 struct scatterlist *s = sg, *dma = sg, *start = sg;
1694 int i, count = 0;
1695 unsigned int offset = s->offset;
1696 unsigned int size = s->offset + s->length;
1697 unsigned int max = dma_get_max_seg_size(dev);
1698
1699 for (i = 1; i < nents; i++) {
1700 s = sg_next(s);
1701
1702 s->dma_address = DMA_ERROR_CODE;
1703 s->dma_length = 0;
1704
1705 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1706 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1707 dir, attrs, is_coherent) < 0)
1708 goto bad_mapping;
1709
1710 dma->dma_address += offset;
1711 dma->dma_length = size - offset;
1712
1713 size = offset = s->offset;
1714 start = s;
1715 dma = sg_next(dma);
1716 count += 1;
1717 }
1718 size += s->length;
1719 }
1720 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1721 is_coherent) < 0)
1722 goto bad_mapping;
1723
1724 dma->dma_address += offset;
1725 dma->dma_length = size - offset;
1726
1727 return count+1;
1728
1729 bad_mapping:
1730 for_each_sg(sg, s, count, i)
1731 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1732 return 0;
1733 }
1734
1735 /**
1736 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1737 * @dev: valid struct device pointer
1738 * @sg: list of buffers
1739 * @nents: number of buffers to map
1740 * @dir: DMA transfer direction
1741 *
1742 * Map a set of i/o coherent buffers described by scatterlist in streaming
1743 * mode for DMA. The scatter gather list elements are merged together (if
1744 * possible) and tagged with the appropriate dma address and length. They are
1745 * obtained via sg_dma_{address,length}.
1746 */
1747 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1748 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1749 {
1750 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1751 }
1752
1753 /**
1754 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1755 * @dev: valid struct device pointer
1756 * @sg: list of buffers
1757 * @nents: number of buffers to map
1758 * @dir: DMA transfer direction
1759 *
1760 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1761 * The scatter gather list elements are merged together (if possible) and
1762 * tagged with the appropriate dma address and length. They are obtained via
1763 * sg_dma_{address,length}.
1764 */
1765 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1766 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1767 {
1768 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1769 }
1770
1771 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1772 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1773 bool is_coherent)
1774 {
1775 struct scatterlist *s;
1776 int i;
1777
1778 for_each_sg(sg, s, nents, i) {
1779 if (sg_dma_len(s))
1780 __iommu_remove_mapping(dev, sg_dma_address(s),
1781 sg_dma_len(s));
1782 if (!is_coherent &&
1783 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1784 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1785 s->length, dir);
1786 }
1787 }
1788
1789 /**
1790 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1791 * @dev: valid struct device pointer
1792 * @sg: list of buffers
1793 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1794 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1795 *
1796 * Unmap a set of streaming mode DMA translations. Again, CPU access
1797 * rules concerning calls here are the same as for dma_unmap_single().
1798 */
1799 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1800 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1801 {
1802 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1803 }
1804
1805 /**
1806 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1807 * @dev: valid struct device pointer
1808 * @sg: list of buffers
1809 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1810 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1811 *
1812 * Unmap a set of streaming mode DMA translations. Again, CPU access
1813 * rules concerning calls here are the same as for dma_unmap_single().
1814 */
1815 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1816 enum dma_data_direction dir, struct dma_attrs *attrs)
1817 {
1818 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1819 }
1820
1821 /**
1822 * arm_iommu_sync_sg_for_cpu
1823 * @dev: valid struct device pointer
1824 * @sg: list of buffers
1825 * @nents: number of buffers to map (returned from dma_map_sg)
1826 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1827 */
1828 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1829 int nents, enum dma_data_direction dir)
1830 {
1831 struct scatterlist *s;
1832 int i;
1833
1834 for_each_sg(sg, s, nents, i)
1835 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1836
1837 }
1838
1839 /**
1840 * arm_iommu_sync_sg_for_device
1841 * @dev: valid struct device pointer
1842 * @sg: list of buffers
1843 * @nents: number of buffers to map (returned from dma_map_sg)
1844 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1845 */
1846 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1847 int nents, enum dma_data_direction dir)
1848 {
1849 struct scatterlist *s;
1850 int i;
1851
1852 for_each_sg(sg, s, nents, i)
1853 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1854 }
1855
1856
1857 /**
1858 * arm_coherent_iommu_map_page
1859 * @dev: valid struct device pointer
1860 * @page: page that buffer resides in
1861 * @offset: offset into page for start of buffer
1862 * @size: size of buffer to map
1863 * @dir: DMA transfer direction
1864 *
1865 * Coherent IOMMU aware version of arm_dma_map_page()
1866 */
1867 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1868 unsigned long offset, size_t size, enum dma_data_direction dir,
1869 struct dma_attrs *attrs)
1870 {
1871 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1872 dma_addr_t dma_addr;
1873 int ret, prot, len = PAGE_ALIGN(size + offset);
1874
1875 dma_addr = __alloc_iova(mapping, len);
1876 if (dma_addr == DMA_ERROR_CODE)
1877 return dma_addr;
1878
1879 prot = __dma_direction_to_prot(dir);
1880
1881 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1882 if (ret < 0)
1883 goto fail;
1884
1885 return dma_addr + offset;
1886 fail:
1887 __free_iova(mapping, dma_addr, len);
1888 return DMA_ERROR_CODE;
1889 }
1890
1891 /**
1892 * arm_iommu_map_page
1893 * @dev: valid struct device pointer
1894 * @page: page that buffer resides in
1895 * @offset: offset into page for start of buffer
1896 * @size: size of buffer to map
1897 * @dir: DMA transfer direction
1898 *
1899 * IOMMU aware version of arm_dma_map_page()
1900 */
1901 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1902 unsigned long offset, size_t size, enum dma_data_direction dir,
1903 struct dma_attrs *attrs)
1904 {
1905 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1906 __dma_page_cpu_to_dev(page, offset, size, dir);
1907
1908 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1909 }
1910
1911 /**
1912 * arm_coherent_iommu_unmap_page
1913 * @dev: valid struct device pointer
1914 * @handle: DMA address of buffer
1915 * @size: size of buffer (same as passed to dma_map_page)
1916 * @dir: DMA transfer direction (same as passed to dma_map_page)
1917 *
1918 * Coherent IOMMU aware version of arm_dma_unmap_page()
1919 */
1920 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1921 size_t size, enum dma_data_direction dir,
1922 struct dma_attrs *attrs)
1923 {
1924 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1925 dma_addr_t iova = handle & PAGE_MASK;
1926 int offset = handle & ~PAGE_MASK;
1927 int len = PAGE_ALIGN(size + offset);
1928
1929 if (!iova)
1930 return;
1931
1932 iommu_unmap(mapping->domain, iova, len);
1933 __free_iova(mapping, iova, len);
1934 }
1935
1936 /**
1937 * arm_iommu_unmap_page
1938 * @dev: valid struct device pointer
1939 * @handle: DMA address of buffer
1940 * @size: size of buffer (same as passed to dma_map_page)
1941 * @dir: DMA transfer direction (same as passed to dma_map_page)
1942 *
1943 * IOMMU aware version of arm_dma_unmap_page()
1944 */
1945 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1946 size_t size, enum dma_data_direction dir,
1947 struct dma_attrs *attrs)
1948 {
1949 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1950 dma_addr_t iova = handle & PAGE_MASK;
1951 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1952 int offset = handle & ~PAGE_MASK;
1953 int len = PAGE_ALIGN(size + offset);
1954
1955 if (!iova)
1956 return;
1957
1958 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1959 __dma_page_dev_to_cpu(page, offset, size, dir);
1960
1961 iommu_unmap(mapping->domain, iova, len);
1962 __free_iova(mapping, iova, len);
1963 }
1964
1965 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1966 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1967 {
1968 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1969 dma_addr_t iova = handle & PAGE_MASK;
1970 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1971 unsigned int offset = handle & ~PAGE_MASK;
1972
1973 if (!iova)
1974 return;
1975
1976 __dma_page_dev_to_cpu(page, offset, size, dir);
1977 }
1978
1979 static void arm_iommu_sync_single_for_device(struct device *dev,
1980 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1981 {
1982 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1983 dma_addr_t iova = handle & PAGE_MASK;
1984 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1985 unsigned int offset = handle & ~PAGE_MASK;
1986
1987 if (!iova)
1988 return;
1989
1990 __dma_page_cpu_to_dev(page, offset, size, dir);
1991 }
1992
1993 struct dma_map_ops iommu_ops = {
1994 .alloc = arm_iommu_alloc_attrs,
1995 .free = arm_iommu_free_attrs,
1996 .mmap = arm_iommu_mmap_attrs,
1997 .get_sgtable = arm_iommu_get_sgtable,
1998
1999 .map_page = arm_iommu_map_page,
2000 .unmap_page = arm_iommu_unmap_page,
2001 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2002 .sync_single_for_device = arm_iommu_sync_single_for_device,
2003
2004 .map_sg = arm_iommu_map_sg,
2005 .unmap_sg = arm_iommu_unmap_sg,
2006 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2007 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2008
2009 .set_dma_mask = arm_dma_set_mask,
2010 };
2011
2012 struct dma_map_ops iommu_coherent_ops = {
2013 .alloc = arm_iommu_alloc_attrs,
2014 .free = arm_iommu_free_attrs,
2015 .mmap = arm_iommu_mmap_attrs,
2016 .get_sgtable = arm_iommu_get_sgtable,
2017
2018 .map_page = arm_coherent_iommu_map_page,
2019 .unmap_page = arm_coherent_iommu_unmap_page,
2020
2021 .map_sg = arm_coherent_iommu_map_sg,
2022 .unmap_sg = arm_coherent_iommu_unmap_sg,
2023
2024 .set_dma_mask = arm_dma_set_mask,
2025 };
2026
2027 /**
2028 * arm_iommu_create_mapping
2029 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2030 * @base: start address of the valid IO address space
2031 * @size: maximum size of the valid IO address space
2032 *
2033 * Creates a mapping structure which holds information about used/unused
2034 * IO address ranges, which is required to perform memory allocation and
2035 * mapping with IOMMU aware functions.
2036 *
2037 * The client device need to be attached to the mapping with
2038 * arm_iommu_attach_device function.
2039 */
2040 struct dma_iommu_mapping *
2041 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2042 {
2043 unsigned int bits = size >> PAGE_SHIFT;
2044 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2045 struct dma_iommu_mapping *mapping;
2046 int extensions = 1;
2047 int err = -ENOMEM;
2048
2049 /* currently only 32-bit DMA address space is supported */
2050 if (size > DMA_BIT_MASK(32) + 1)
2051 return ERR_PTR(-ERANGE);
2052
2053 if (!bitmap_size)
2054 return ERR_PTR(-EINVAL);
2055
2056 if (bitmap_size > PAGE_SIZE) {
2057 extensions = bitmap_size / PAGE_SIZE;
2058 bitmap_size = PAGE_SIZE;
2059 }
2060
2061 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2062 if (!mapping)
2063 goto err;
2064
2065 mapping->bitmap_size = bitmap_size;
2066 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2067 GFP_KERNEL);
2068 if (!mapping->bitmaps)
2069 goto err2;
2070
2071 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2072 if (!mapping->bitmaps[0])
2073 goto err3;
2074
2075 mapping->nr_bitmaps = 1;
2076 mapping->extensions = extensions;
2077 mapping->base = base;
2078 mapping->bits = BITS_PER_BYTE * bitmap_size;
2079
2080 spin_lock_init(&mapping->lock);
2081
2082 mapping->domain = iommu_domain_alloc(bus);
2083 if (!mapping->domain)
2084 goto err4;
2085
2086 kref_init(&mapping->kref);
2087 return mapping;
2088 err4:
2089 kfree(mapping->bitmaps[0]);
2090 err3:
2091 kfree(mapping->bitmaps);
2092 err2:
2093 kfree(mapping);
2094 err:
2095 return ERR_PTR(err);
2096 }
2097 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2098
2099 static void release_iommu_mapping(struct kref *kref)
2100 {
2101 int i;
2102 struct dma_iommu_mapping *mapping =
2103 container_of(kref, struct dma_iommu_mapping, kref);
2104
2105 iommu_domain_free(mapping->domain);
2106 for (i = 0; i < mapping->nr_bitmaps; i++)
2107 kfree(mapping->bitmaps[i]);
2108 kfree(mapping->bitmaps);
2109 kfree(mapping);
2110 }
2111
2112 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2113 {
2114 int next_bitmap;
2115
2116 if (mapping->nr_bitmaps >= mapping->extensions)
2117 return -EINVAL;
2118
2119 next_bitmap = mapping->nr_bitmaps;
2120 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2121 GFP_ATOMIC);
2122 if (!mapping->bitmaps[next_bitmap])
2123 return -ENOMEM;
2124
2125 mapping->nr_bitmaps++;
2126
2127 return 0;
2128 }
2129
2130 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2131 {
2132 if (mapping)
2133 kref_put(&mapping->kref, release_iommu_mapping);
2134 }
2135 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2136
2137 static int __arm_iommu_attach_device(struct device *dev,
2138 struct dma_iommu_mapping *mapping)
2139 {
2140 int err;
2141
2142 err = iommu_attach_device(mapping->domain, dev);
2143 if (err)
2144 return err;
2145
2146 kref_get(&mapping->kref);
2147 to_dma_iommu_mapping(dev) = mapping;
2148
2149 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2150 return 0;
2151 }
2152
2153 /**
2154 * arm_iommu_attach_device
2155 * @dev: valid struct device pointer
2156 * @mapping: io address space mapping structure (returned from
2157 * arm_iommu_create_mapping)
2158 *
2159 * Attaches specified io address space mapping to the provided device.
2160 * This replaces the dma operations (dma_map_ops pointer) with the
2161 * IOMMU aware version.
2162 *
2163 * More than one client might be attached to the same io address space
2164 * mapping.
2165 */
2166 int arm_iommu_attach_device(struct device *dev,
2167 struct dma_iommu_mapping *mapping)
2168 {
2169 int err;
2170
2171 err = __arm_iommu_attach_device(dev, mapping);
2172 if (err)
2173 return err;
2174
2175 set_dma_ops(dev, &iommu_ops);
2176 return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2179
2180 static void __arm_iommu_detach_device(struct device *dev)
2181 {
2182 struct dma_iommu_mapping *mapping;
2183
2184 mapping = to_dma_iommu_mapping(dev);
2185 if (!mapping) {
2186 dev_warn(dev, "Not attached\n");
2187 return;
2188 }
2189
2190 iommu_detach_device(mapping->domain, dev);
2191 kref_put(&mapping->kref, release_iommu_mapping);
2192 to_dma_iommu_mapping(dev) = NULL;
2193
2194 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2195 }
2196
2197 /**
2198 * arm_iommu_detach_device
2199 * @dev: valid struct device pointer
2200 *
2201 * Detaches the provided device from a previously attached map.
2202 * This voids the dma operations (dma_map_ops pointer)
2203 */
2204 void arm_iommu_detach_device(struct device *dev)
2205 {
2206 __arm_iommu_detach_device(dev);
2207 set_dma_ops(dev, NULL);
2208 }
2209 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2210
2211 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2212 {
2213 return coherent ? &iommu_coherent_ops : &iommu_ops;
2214 }
2215
2216 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2217 struct iommu_ops *iommu)
2218 {
2219 struct dma_iommu_mapping *mapping;
2220
2221 if (!iommu)
2222 return false;
2223
2224 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2225 if (IS_ERR(mapping)) {
2226 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2227 size, dev_name(dev));
2228 return false;
2229 }
2230
2231 if (__arm_iommu_attach_device(dev, mapping)) {
2232 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2233 dev_name(dev));
2234 arm_iommu_release_mapping(mapping);
2235 return false;
2236 }
2237
2238 return true;
2239 }
2240
2241 static void arm_teardown_iommu_dma_ops(struct device *dev)
2242 {
2243 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2244
2245 if (!mapping)
2246 return;
2247
2248 __arm_iommu_detach_device(dev);
2249 arm_iommu_release_mapping(mapping);
2250 }
2251
2252 #else
2253
2254 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2255 struct iommu_ops *iommu)
2256 {
2257 return false;
2258 }
2259
2260 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2261
2262 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2263
2264 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2265
2266 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2267 {
2268 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2269 }
2270
2271 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2272 struct iommu_ops *iommu, bool coherent)
2273 {
2274 struct dma_map_ops *dma_ops;
2275
2276 dev->archdata.dma_coherent = coherent;
2277 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2278 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2279 else
2280 dma_ops = arm_get_dma_map_ops(coherent);
2281
2282 set_dma_ops(dev, dma_ops);
2283 }
2284
2285 void arch_teardown_dma_ops(struct device *dev)
2286 {
2287 arm_teardown_iommu_dma_ops(dev);
2288 }
This page took 0.100064 seconds and 5 git commands to generate.