raid5: allow arbitrary max_hw_sectors
[deliverable/linux.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/fixmap.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <asm/smp_plat.h>
29 #include <asm/tlb.h>
30 #include <asm/highmem.h>
31 #include <asm/system_info.h>
32 #include <asm/traps.h>
33 #include <asm/procinfo.h>
34 #include <asm/memory.h>
35
36 #include <asm/mach/arch.h>
37 #include <asm/mach/map.h>
38 #include <asm/mach/pci.h>
39 #include <asm/fixmap.h>
40
41 #include "fault.h"
42 #include "mm.h"
43 #include "tcm.h"
44
45 /*
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
48 */
49 struct page *empty_zero_page;
50 EXPORT_SYMBOL(empty_zero_page);
51
52 /*
53 * The pmd table for the upper-most set of pages.
54 */
55 pmd_t *top_pmd;
56
57 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58
59 #define CPOLICY_UNCACHED 0
60 #define CPOLICY_BUFFERED 1
61 #define CPOLICY_WRITETHROUGH 2
62 #define CPOLICY_WRITEBACK 3
63 #define CPOLICY_WRITEALLOC 4
64
65 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66 static unsigned int ecc_mask __initdata = 0;
67 pgprot_t pgprot_user;
68 pgprot_t pgprot_kernel;
69 pgprot_t pgprot_hyp_device;
70 pgprot_t pgprot_s2;
71 pgprot_t pgprot_s2_device;
72
73 EXPORT_SYMBOL(pgprot_user);
74 EXPORT_SYMBOL(pgprot_kernel);
75
76 struct cachepolicy {
77 const char policy[16];
78 unsigned int cr_mask;
79 pmdval_t pmd;
80 pteval_t pte;
81 pteval_t pte_s2;
82 };
83
84 #ifdef CONFIG_ARM_LPAE
85 #define s2_policy(policy) policy
86 #else
87 #define s2_policy(policy) 0
88 #endif
89
90 static struct cachepolicy cache_policies[] __initdata = {
91 {
92 .policy = "uncached",
93 .cr_mask = CR_W|CR_C,
94 .pmd = PMD_SECT_UNCACHED,
95 .pte = L_PTE_MT_UNCACHED,
96 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
97 }, {
98 .policy = "buffered",
99 .cr_mask = CR_C,
100 .pmd = PMD_SECT_BUFFERED,
101 .pte = L_PTE_MT_BUFFERABLE,
102 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
103 }, {
104 .policy = "writethrough",
105 .cr_mask = 0,
106 .pmd = PMD_SECT_WT,
107 .pte = L_PTE_MT_WRITETHROUGH,
108 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
109 }, {
110 .policy = "writeback",
111 .cr_mask = 0,
112 .pmd = PMD_SECT_WB,
113 .pte = L_PTE_MT_WRITEBACK,
114 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
115 }, {
116 .policy = "writealloc",
117 .cr_mask = 0,
118 .pmd = PMD_SECT_WBWA,
119 .pte = L_PTE_MT_WRITEALLOC,
120 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
121 }
122 };
123
124 #ifdef CONFIG_CPU_CP15
125 static unsigned long initial_pmd_value __initdata = 0;
126
127 /*
128 * Initialise the cache_policy variable with the initial state specified
129 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
130 * the C code sets the page tables up with the same policy as the head
131 * assembly code, which avoids an illegal state where the TLBs can get
132 * confused. See comments in early_cachepolicy() for more information.
133 */
134 void __init init_default_cache_policy(unsigned long pmd)
135 {
136 int i;
137
138 initial_pmd_value = pmd;
139
140 pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
141
142 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
143 if (cache_policies[i].pmd == pmd) {
144 cachepolicy = i;
145 break;
146 }
147
148 if (i == ARRAY_SIZE(cache_policies))
149 pr_err("ERROR: could not find cache policy\n");
150 }
151
152 /*
153 * These are useful for identifying cache coherency problems by allowing
154 * the cache or the cache and writebuffer to be turned off. (Note: the
155 * write buffer should not be on and the cache off).
156 */
157 static int __init early_cachepolicy(char *p)
158 {
159 int i, selected = -1;
160
161 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
162 int len = strlen(cache_policies[i].policy);
163
164 if (memcmp(p, cache_policies[i].policy, len) == 0) {
165 selected = i;
166 break;
167 }
168 }
169
170 if (selected == -1)
171 pr_err("ERROR: unknown or unsupported cache policy\n");
172
173 /*
174 * This restriction is partly to do with the way we boot; it is
175 * unpredictable to have memory mapped using two different sets of
176 * memory attributes (shared, type, and cache attribs). We can not
177 * change these attributes once the initial assembly has setup the
178 * page tables.
179 */
180 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
181 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
182 cache_policies[cachepolicy].policy);
183 return 0;
184 }
185
186 if (selected != cachepolicy) {
187 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
188 cachepolicy = selected;
189 flush_cache_all();
190 set_cr(cr);
191 }
192 return 0;
193 }
194 early_param("cachepolicy", early_cachepolicy);
195
196 static int __init early_nocache(char *__unused)
197 {
198 char *p = "buffered";
199 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
200 early_cachepolicy(p);
201 return 0;
202 }
203 early_param("nocache", early_nocache);
204
205 static int __init early_nowrite(char *__unused)
206 {
207 char *p = "uncached";
208 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
209 early_cachepolicy(p);
210 return 0;
211 }
212 early_param("nowb", early_nowrite);
213
214 #ifndef CONFIG_ARM_LPAE
215 static int __init early_ecc(char *p)
216 {
217 if (memcmp(p, "on", 2) == 0)
218 ecc_mask = PMD_PROTECTION;
219 else if (memcmp(p, "off", 3) == 0)
220 ecc_mask = 0;
221 return 0;
222 }
223 early_param("ecc", early_ecc);
224 #endif
225
226 #else /* ifdef CONFIG_CPU_CP15 */
227
228 static int __init early_cachepolicy(char *p)
229 {
230 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 }
232 early_param("cachepolicy", early_cachepolicy);
233
234 static int __init noalign_setup(char *__unused)
235 {
236 pr_warn("noalign kernel parameter not supported without cp15\n");
237 }
238 __setup("noalign", noalign_setup);
239
240 #endif /* ifdef CONFIG_CPU_CP15 / else */
241
242 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
243 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
244 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245
246 static struct mem_type mem_types[] = {
247 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
248 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
249 L_PTE_SHARED,
250 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
251 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
252 L_PTE_SHARED,
253 .prot_l1 = PMD_TYPE_TABLE,
254 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
255 .domain = DOMAIN_IO,
256 },
257 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
258 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
259 .prot_l1 = PMD_TYPE_TABLE,
260 .prot_sect = PROT_SECT_DEVICE,
261 .domain = DOMAIN_IO,
262 },
263 [MT_DEVICE_CACHED] = { /* ioremap_cached */
264 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
265 .prot_l1 = PMD_TYPE_TABLE,
266 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
267 .domain = DOMAIN_IO,
268 },
269 [MT_DEVICE_WC] = { /* ioremap_wc */
270 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
271 .prot_l1 = PMD_TYPE_TABLE,
272 .prot_sect = PROT_SECT_DEVICE,
273 .domain = DOMAIN_IO,
274 },
275 [MT_UNCACHED] = {
276 .prot_pte = PROT_PTE_DEVICE,
277 .prot_l1 = PMD_TYPE_TABLE,
278 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
279 .domain = DOMAIN_IO,
280 },
281 [MT_CACHECLEAN] = {
282 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
283 .domain = DOMAIN_KERNEL,
284 },
285 #ifndef CONFIG_ARM_LPAE
286 [MT_MINICLEAN] = {
287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
288 .domain = DOMAIN_KERNEL,
289 },
290 #endif
291 [MT_LOW_VECTORS] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
293 L_PTE_RDONLY,
294 .prot_l1 = PMD_TYPE_TABLE,
295 .domain = DOMAIN_VECTORS,
296 },
297 [MT_HIGH_VECTORS] = {
298 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299 L_PTE_USER | L_PTE_RDONLY,
300 .prot_l1 = PMD_TYPE_TABLE,
301 .domain = DOMAIN_VECTORS,
302 },
303 [MT_MEMORY_RWX] = {
304 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
305 .prot_l1 = PMD_TYPE_TABLE,
306 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
307 .domain = DOMAIN_KERNEL,
308 },
309 [MT_MEMORY_RW] = {
310 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
311 L_PTE_XN,
312 .prot_l1 = PMD_TYPE_TABLE,
313 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
314 .domain = DOMAIN_KERNEL,
315 },
316 [MT_ROM] = {
317 .prot_sect = PMD_TYPE_SECT,
318 .domain = DOMAIN_KERNEL,
319 },
320 [MT_MEMORY_RWX_NONCACHED] = {
321 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322 L_PTE_MT_BUFFERABLE,
323 .prot_l1 = PMD_TYPE_TABLE,
324 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
325 .domain = DOMAIN_KERNEL,
326 },
327 [MT_MEMORY_RW_DTCM] = {
328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329 L_PTE_XN,
330 .prot_l1 = PMD_TYPE_TABLE,
331 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
332 .domain = DOMAIN_KERNEL,
333 },
334 [MT_MEMORY_RWX_ITCM] = {
335 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
336 .prot_l1 = PMD_TYPE_TABLE,
337 .domain = DOMAIN_KERNEL,
338 },
339 [MT_MEMORY_RW_SO] = {
340 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341 L_PTE_MT_UNCACHED | L_PTE_XN,
342 .prot_l1 = PMD_TYPE_TABLE,
343 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
344 PMD_SECT_UNCACHED | PMD_SECT_XN,
345 .domain = DOMAIN_KERNEL,
346 },
347 [MT_MEMORY_DMA_READY] = {
348 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
349 L_PTE_XN,
350 .prot_l1 = PMD_TYPE_TABLE,
351 .domain = DOMAIN_KERNEL,
352 },
353 };
354
355 const struct mem_type *get_mem_type(unsigned int type)
356 {
357 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
358 }
359 EXPORT_SYMBOL(get_mem_type);
360
361 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
362
363 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
364 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
365
366 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
367 {
368 return &bm_pte[pte_index(addr)];
369 }
370
371 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
372 {
373 return pte_offset_kernel(dir, addr);
374 }
375
376 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
377 {
378 pgd_t *pgd = pgd_offset_k(addr);
379 pud_t *pud = pud_offset(pgd, addr);
380 pmd_t *pmd = pmd_offset(pud, addr);
381
382 return pmd;
383 }
384
385 void __init early_fixmap_init(void)
386 {
387 pmd_t *pmd;
388
389 /*
390 * The early fixmap range spans multiple pmds, for which
391 * we are not prepared:
392 */
393 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
394 != FIXADDR_TOP >> PMD_SHIFT);
395
396 pmd = fixmap_pmd(FIXADDR_TOP);
397 pmd_populate_kernel(&init_mm, pmd, bm_pte);
398
399 pte_offset_fixmap = pte_offset_early_fixmap;
400 }
401
402 /*
403 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
404 * As a result, this can only be called with preemption disabled, as under
405 * stop_machine().
406 */
407 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
408 {
409 unsigned long vaddr = __fix_to_virt(idx);
410 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
411
412 /* Make sure fixmap region does not exceed available allocation. */
413 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
414 FIXADDR_END);
415 BUG_ON(idx >= __end_of_fixed_addresses);
416
417 if (pgprot_val(prot))
418 set_pte_at(NULL, vaddr, pte,
419 pfn_pte(phys >> PAGE_SHIFT, prot));
420 else
421 pte_clear(NULL, vaddr, pte);
422 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
423 }
424
425 /*
426 * Adjust the PMD section entries according to the CPU in use.
427 */
428 static void __init build_mem_type_table(void)
429 {
430 struct cachepolicy *cp;
431 unsigned int cr = get_cr();
432 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
433 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
434 int cpu_arch = cpu_architecture();
435 int i;
436
437 if (cpu_arch < CPU_ARCH_ARMv6) {
438 #if defined(CONFIG_CPU_DCACHE_DISABLE)
439 if (cachepolicy > CPOLICY_BUFFERED)
440 cachepolicy = CPOLICY_BUFFERED;
441 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
442 if (cachepolicy > CPOLICY_WRITETHROUGH)
443 cachepolicy = CPOLICY_WRITETHROUGH;
444 #endif
445 }
446 if (cpu_arch < CPU_ARCH_ARMv5) {
447 if (cachepolicy >= CPOLICY_WRITEALLOC)
448 cachepolicy = CPOLICY_WRITEBACK;
449 ecc_mask = 0;
450 }
451
452 if (is_smp()) {
453 if (cachepolicy != CPOLICY_WRITEALLOC) {
454 pr_warn("Forcing write-allocate cache policy for SMP\n");
455 cachepolicy = CPOLICY_WRITEALLOC;
456 }
457 if (!(initial_pmd_value & PMD_SECT_S)) {
458 pr_warn("Forcing shared mappings for SMP\n");
459 initial_pmd_value |= PMD_SECT_S;
460 }
461 }
462
463 /*
464 * Strip out features not present on earlier architectures.
465 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
466 * without extended page tables don't have the 'Shared' bit.
467 */
468 if (cpu_arch < CPU_ARCH_ARMv5)
469 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
470 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
471 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
472 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
473 mem_types[i].prot_sect &= ~PMD_SECT_S;
474
475 /*
476 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
477 * "update-able on write" bit on ARM610). However, Xscale and
478 * Xscale3 require this bit to be cleared.
479 */
480 if (cpu_is_xscale_family()) {
481 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
482 mem_types[i].prot_sect &= ~PMD_BIT4;
483 mem_types[i].prot_l1 &= ~PMD_BIT4;
484 }
485 } else if (cpu_arch < CPU_ARCH_ARMv6) {
486 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
487 if (mem_types[i].prot_l1)
488 mem_types[i].prot_l1 |= PMD_BIT4;
489 if (mem_types[i].prot_sect)
490 mem_types[i].prot_sect |= PMD_BIT4;
491 }
492 }
493
494 /*
495 * Mark the device areas according to the CPU/architecture.
496 */
497 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
498 if (!cpu_is_xsc3()) {
499 /*
500 * Mark device regions on ARMv6+ as execute-never
501 * to prevent speculative instruction fetches.
502 */
503 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
504 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
505 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
506 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
507
508 /* Also setup NX memory mapping */
509 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
510 }
511 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
512 /*
513 * For ARMv7 with TEX remapping,
514 * - shared device is SXCB=1100
515 * - nonshared device is SXCB=0100
516 * - write combine device mem is SXCB=0001
517 * (Uncached Normal memory)
518 */
519 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
520 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
521 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
522 } else if (cpu_is_xsc3()) {
523 /*
524 * For Xscale3,
525 * - shared device is TEXCB=00101
526 * - nonshared device is TEXCB=01000
527 * - write combine device mem is TEXCB=00100
528 * (Inner/Outer Uncacheable in xsc3 parlance)
529 */
530 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
531 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
532 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
533 } else {
534 /*
535 * For ARMv6 and ARMv7 without TEX remapping,
536 * - shared device is TEXCB=00001
537 * - nonshared device is TEXCB=01000
538 * - write combine device mem is TEXCB=00100
539 * (Uncached Normal in ARMv6 parlance).
540 */
541 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
542 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
543 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
544 }
545 } else {
546 /*
547 * On others, write combining is "Uncached/Buffered"
548 */
549 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
550 }
551
552 /*
553 * Now deal with the memory-type mappings
554 */
555 cp = &cache_policies[cachepolicy];
556 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
557 s2_pgprot = cp->pte_s2;
558 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
559 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
560
561 #ifndef CONFIG_ARM_LPAE
562 /*
563 * We don't use domains on ARMv6 (since this causes problems with
564 * v6/v7 kernels), so we must use a separate memory type for user
565 * r/o, kernel r/w to map the vectors page.
566 */
567 if (cpu_arch == CPU_ARCH_ARMv6)
568 vecs_pgprot |= L_PTE_MT_VECTORS;
569
570 /*
571 * Check is it with support for the PXN bit
572 * in the Short-descriptor translation table format descriptors.
573 */
574 if (cpu_arch == CPU_ARCH_ARMv7 &&
575 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
576 user_pmd_table |= PMD_PXNTABLE;
577 }
578 #endif
579
580 /*
581 * ARMv6 and above have extended page tables.
582 */
583 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
584 #ifndef CONFIG_ARM_LPAE
585 /*
586 * Mark cache clean areas and XIP ROM read only
587 * from SVC mode and no access from userspace.
588 */
589 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
590 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
591 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
592 #endif
593
594 /*
595 * If the initial page tables were created with the S bit
596 * set, then we need to do the same here for the same
597 * reasons given in early_cachepolicy().
598 */
599 if (initial_pmd_value & PMD_SECT_S) {
600 user_pgprot |= L_PTE_SHARED;
601 kern_pgprot |= L_PTE_SHARED;
602 vecs_pgprot |= L_PTE_SHARED;
603 s2_pgprot |= L_PTE_SHARED;
604 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
605 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
606 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
607 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
608 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
609 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
610 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
611 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
612 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
613 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
614 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
615 }
616 }
617
618 /*
619 * Non-cacheable Normal - intended for memory areas that must
620 * not cause dirty cache line writebacks when used
621 */
622 if (cpu_arch >= CPU_ARCH_ARMv6) {
623 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
624 /* Non-cacheable Normal is XCB = 001 */
625 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
626 PMD_SECT_BUFFERED;
627 } else {
628 /* For both ARMv6 and non-TEX-remapping ARMv7 */
629 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
630 PMD_SECT_TEX(1);
631 }
632 } else {
633 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
634 }
635
636 #ifdef CONFIG_ARM_LPAE
637 /*
638 * Do not generate access flag faults for the kernel mappings.
639 */
640 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
641 mem_types[i].prot_pte |= PTE_EXT_AF;
642 if (mem_types[i].prot_sect)
643 mem_types[i].prot_sect |= PMD_SECT_AF;
644 }
645 kern_pgprot |= PTE_EXT_AF;
646 vecs_pgprot |= PTE_EXT_AF;
647
648 /*
649 * Set PXN for user mappings
650 */
651 user_pgprot |= PTE_EXT_PXN;
652 #endif
653
654 for (i = 0; i < 16; i++) {
655 pteval_t v = pgprot_val(protection_map[i]);
656 protection_map[i] = __pgprot(v | user_pgprot);
657 }
658
659 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
660 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
661
662 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
663 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
664 L_PTE_DIRTY | kern_pgprot);
665 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
666 pgprot_s2_device = __pgprot(s2_device_pgprot);
667 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
668
669 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
670 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
671 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
672 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
673 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
674 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
675 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
676 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
677 mem_types[MT_ROM].prot_sect |= cp->pmd;
678
679 switch (cp->pmd) {
680 case PMD_SECT_WT:
681 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
682 break;
683 case PMD_SECT_WB:
684 case PMD_SECT_WBWA:
685 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
686 break;
687 }
688 pr_info("Memory policy: %sData cache %s\n",
689 ecc_mask ? "ECC enabled, " : "", cp->policy);
690
691 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
692 struct mem_type *t = &mem_types[i];
693 if (t->prot_l1)
694 t->prot_l1 |= PMD_DOMAIN(t->domain);
695 if (t->prot_sect)
696 t->prot_sect |= PMD_DOMAIN(t->domain);
697 }
698 }
699
700 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
701 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
702 unsigned long size, pgprot_t vma_prot)
703 {
704 if (!pfn_valid(pfn))
705 return pgprot_noncached(vma_prot);
706 else if (file->f_flags & O_SYNC)
707 return pgprot_writecombine(vma_prot);
708 return vma_prot;
709 }
710 EXPORT_SYMBOL(phys_mem_access_prot);
711 #endif
712
713 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
714
715 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
716 {
717 void *ptr = __va(memblock_alloc(sz, align));
718 memset(ptr, 0, sz);
719 return ptr;
720 }
721
722 static void __init *early_alloc(unsigned long sz)
723 {
724 return early_alloc_aligned(sz, sz);
725 }
726
727 static void *__init late_alloc(unsigned long sz)
728 {
729 void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
730
731 if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
732 BUG();
733 return ptr;
734 }
735
736 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
737 unsigned long prot,
738 void *(*alloc)(unsigned long sz))
739 {
740 if (pmd_none(*pmd)) {
741 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
742 __pmd_populate(pmd, __pa(pte), prot);
743 }
744 BUG_ON(pmd_bad(*pmd));
745 return pte_offset_kernel(pmd, addr);
746 }
747
748 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
749 unsigned long prot)
750 {
751 return arm_pte_alloc(pmd, addr, prot, early_alloc);
752 }
753
754 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
755 unsigned long end, unsigned long pfn,
756 const struct mem_type *type,
757 void *(*alloc)(unsigned long sz),
758 bool ng)
759 {
760 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
761 do {
762 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
763 ng ? PTE_EXT_NG : 0);
764 pfn++;
765 } while (pte++, addr += PAGE_SIZE, addr != end);
766 }
767
768 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
769 unsigned long end, phys_addr_t phys,
770 const struct mem_type *type, bool ng)
771 {
772 pmd_t *p = pmd;
773
774 #ifndef CONFIG_ARM_LPAE
775 /*
776 * In classic MMU format, puds and pmds are folded in to
777 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
778 * group of L1 entries making up one logical pointer to
779 * an L2 table (2MB), where as PMDs refer to the individual
780 * L1 entries (1MB). Hence increment to get the correct
781 * offset for odd 1MB sections.
782 * (See arch/arm/include/asm/pgtable-2level.h)
783 */
784 if (addr & SECTION_SIZE)
785 pmd++;
786 #endif
787 do {
788 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
789 phys += SECTION_SIZE;
790 } while (pmd++, addr += SECTION_SIZE, addr != end);
791
792 flush_pmd_entry(p);
793 }
794
795 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
796 unsigned long end, phys_addr_t phys,
797 const struct mem_type *type,
798 void *(*alloc)(unsigned long sz), bool ng)
799 {
800 pmd_t *pmd = pmd_offset(pud, addr);
801 unsigned long next;
802
803 do {
804 /*
805 * With LPAE, we must loop over to map
806 * all the pmds for the given range.
807 */
808 next = pmd_addr_end(addr, end);
809
810 /*
811 * Try a section mapping - addr, next and phys must all be
812 * aligned to a section boundary.
813 */
814 if (type->prot_sect &&
815 ((addr | next | phys) & ~SECTION_MASK) == 0) {
816 __map_init_section(pmd, addr, next, phys, type, ng);
817 } else {
818 alloc_init_pte(pmd, addr, next,
819 __phys_to_pfn(phys), type, alloc, ng);
820 }
821
822 phys += next - addr;
823
824 } while (pmd++, addr = next, addr != end);
825 }
826
827 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
828 unsigned long end, phys_addr_t phys,
829 const struct mem_type *type,
830 void *(*alloc)(unsigned long sz), bool ng)
831 {
832 pud_t *pud = pud_offset(pgd, addr);
833 unsigned long next;
834
835 do {
836 next = pud_addr_end(addr, end);
837 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
838 phys += next - addr;
839 } while (pud++, addr = next, addr != end);
840 }
841
842 #ifndef CONFIG_ARM_LPAE
843 static void __init create_36bit_mapping(struct mm_struct *mm,
844 struct map_desc *md,
845 const struct mem_type *type,
846 bool ng)
847 {
848 unsigned long addr, length, end;
849 phys_addr_t phys;
850 pgd_t *pgd;
851
852 addr = md->virtual;
853 phys = __pfn_to_phys(md->pfn);
854 length = PAGE_ALIGN(md->length);
855
856 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
857 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
858 (long long)__pfn_to_phys((u64)md->pfn), addr);
859 return;
860 }
861
862 /* N.B. ARMv6 supersections are only defined to work with domain 0.
863 * Since domain assignments can in fact be arbitrary, the
864 * 'domain == 0' check below is required to insure that ARMv6
865 * supersections are only allocated for domain 0 regardless
866 * of the actual domain assignments in use.
867 */
868 if (type->domain) {
869 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
870 (long long)__pfn_to_phys((u64)md->pfn), addr);
871 return;
872 }
873
874 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
875 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
876 (long long)__pfn_to_phys((u64)md->pfn), addr);
877 return;
878 }
879
880 /*
881 * Shift bits [35:32] of address into bits [23:20] of PMD
882 * (See ARMv6 spec).
883 */
884 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
885
886 pgd = pgd_offset(mm, addr);
887 end = addr + length;
888 do {
889 pud_t *pud = pud_offset(pgd, addr);
890 pmd_t *pmd = pmd_offset(pud, addr);
891 int i;
892
893 for (i = 0; i < 16; i++)
894 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
895 (ng ? PMD_SECT_nG : 0));
896
897 addr += SUPERSECTION_SIZE;
898 phys += SUPERSECTION_SIZE;
899 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
900 } while (addr != end);
901 }
902 #endif /* !CONFIG_ARM_LPAE */
903
904 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
905 void *(*alloc)(unsigned long sz),
906 bool ng)
907 {
908 unsigned long addr, length, end;
909 phys_addr_t phys;
910 const struct mem_type *type;
911 pgd_t *pgd;
912
913 type = &mem_types[md->type];
914
915 #ifndef CONFIG_ARM_LPAE
916 /*
917 * Catch 36-bit addresses
918 */
919 if (md->pfn >= 0x100000) {
920 create_36bit_mapping(mm, md, type, ng);
921 return;
922 }
923 #endif
924
925 addr = md->virtual & PAGE_MASK;
926 phys = __pfn_to_phys(md->pfn);
927 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
928
929 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
930 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
931 (long long)__pfn_to_phys(md->pfn), addr);
932 return;
933 }
934
935 pgd = pgd_offset(mm, addr);
936 end = addr + length;
937 do {
938 unsigned long next = pgd_addr_end(addr, end);
939
940 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
941
942 phys += next - addr;
943 addr = next;
944 } while (pgd++, addr != end);
945 }
946
947 /*
948 * Create the page directory entries and any necessary
949 * page tables for the mapping specified by `md'. We
950 * are able to cope here with varying sizes and address
951 * offsets, and we take full advantage of sections and
952 * supersections.
953 */
954 static void __init create_mapping(struct map_desc *md)
955 {
956 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
957 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
958 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
959 return;
960 }
961
962 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
963 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
964 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
965 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
966 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
967 }
968
969 __create_mapping(&init_mm, md, early_alloc, false);
970 }
971
972 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
973 bool ng)
974 {
975 #ifdef CONFIG_ARM_LPAE
976 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
977 if (WARN_ON(!pud))
978 return;
979 pmd_alloc(mm, pud, 0);
980 #endif
981 __create_mapping(mm, md, late_alloc, ng);
982 }
983
984 /*
985 * Create the architecture specific mappings
986 */
987 void __init iotable_init(struct map_desc *io_desc, int nr)
988 {
989 struct map_desc *md;
990 struct vm_struct *vm;
991 struct static_vm *svm;
992
993 if (!nr)
994 return;
995
996 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
997
998 for (md = io_desc; nr; md++, nr--) {
999 create_mapping(md);
1000
1001 vm = &svm->vm;
1002 vm->addr = (void *)(md->virtual & PAGE_MASK);
1003 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1004 vm->phys_addr = __pfn_to_phys(md->pfn);
1005 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1006 vm->flags |= VM_ARM_MTYPE(md->type);
1007 vm->caller = iotable_init;
1008 add_static_vm_early(svm++);
1009 }
1010 }
1011
1012 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1013 void *caller)
1014 {
1015 struct vm_struct *vm;
1016 struct static_vm *svm;
1017
1018 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1019
1020 vm = &svm->vm;
1021 vm->addr = (void *)addr;
1022 vm->size = size;
1023 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1024 vm->caller = caller;
1025 add_static_vm_early(svm);
1026 }
1027
1028 #ifndef CONFIG_ARM_LPAE
1029
1030 /*
1031 * The Linux PMD is made of two consecutive section entries covering 2MB
1032 * (see definition in include/asm/pgtable-2level.h). However a call to
1033 * create_mapping() may optimize static mappings by using individual
1034 * 1MB section mappings. This leaves the actual PMD potentially half
1035 * initialized if the top or bottom section entry isn't used, leaving it
1036 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037 * the virtual space left free by that unused section entry.
1038 *
1039 * Let's avoid the issue by inserting dummy vm entries covering the unused
1040 * PMD halves once the static mappings are in place.
1041 */
1042
1043 static void __init pmd_empty_section_gap(unsigned long addr)
1044 {
1045 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046 }
1047
1048 static void __init fill_pmd_gaps(void)
1049 {
1050 struct static_vm *svm;
1051 struct vm_struct *vm;
1052 unsigned long addr, next = 0;
1053 pmd_t *pmd;
1054
1055 list_for_each_entry(svm, &static_vmlist, list) {
1056 vm = &svm->vm;
1057 addr = (unsigned long)vm->addr;
1058 if (addr < next)
1059 continue;
1060
1061 /*
1062 * Check if this vm starts on an odd section boundary.
1063 * If so and the first section entry for this PMD is free
1064 * then we block the corresponding virtual address.
1065 */
1066 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067 pmd = pmd_off_k(addr);
1068 if (pmd_none(*pmd))
1069 pmd_empty_section_gap(addr & PMD_MASK);
1070 }
1071
1072 /*
1073 * Then check if this vm ends on an odd section boundary.
1074 * If so and the second section entry for this PMD is empty
1075 * then we block the corresponding virtual address.
1076 */
1077 addr += vm->size;
1078 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079 pmd = pmd_off_k(addr) + 1;
1080 if (pmd_none(*pmd))
1081 pmd_empty_section_gap(addr);
1082 }
1083
1084 /* no need to look at any vm entry until we hit the next PMD */
1085 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086 }
1087 }
1088
1089 #else
1090 #define fill_pmd_gaps() do { } while (0)
1091 #endif
1092
1093 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094 static void __init pci_reserve_io(void)
1095 {
1096 struct static_vm *svm;
1097
1098 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099 if (svm)
1100 return;
1101
1102 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103 }
1104 #else
1105 #define pci_reserve_io() do { } while (0)
1106 #endif
1107
1108 #ifdef CONFIG_DEBUG_LL
1109 void __init debug_ll_io_init(void)
1110 {
1111 struct map_desc map;
1112
1113 debug_ll_addr(&map.pfn, &map.virtual);
1114 if (!map.pfn || !map.virtual)
1115 return;
1116 map.pfn = __phys_to_pfn(map.pfn);
1117 map.virtual &= PAGE_MASK;
1118 map.length = PAGE_SIZE;
1119 map.type = MT_DEVICE;
1120 iotable_init(&map, 1);
1121 }
1122 #endif
1123
1124 static void * __initdata vmalloc_min =
1125 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1126
1127 /*
1128 * vmalloc=size forces the vmalloc area to be exactly 'size'
1129 * bytes. This can be used to increase (or decrease) the vmalloc
1130 * area - the default is 240m.
1131 */
1132 static int __init early_vmalloc(char *arg)
1133 {
1134 unsigned long vmalloc_reserve = memparse(arg, NULL);
1135
1136 if (vmalloc_reserve < SZ_16M) {
1137 vmalloc_reserve = SZ_16M;
1138 pr_warn("vmalloc area too small, limiting to %luMB\n",
1139 vmalloc_reserve >> 20);
1140 }
1141
1142 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1143 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1144 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1145 vmalloc_reserve >> 20);
1146 }
1147
1148 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1149 return 0;
1150 }
1151 early_param("vmalloc", early_vmalloc);
1152
1153 phys_addr_t arm_lowmem_limit __initdata = 0;
1154
1155 void __init sanity_check_meminfo(void)
1156 {
1157 phys_addr_t memblock_limit = 0;
1158 int highmem = 0;
1159 u64 vmalloc_limit;
1160 struct memblock_region *reg;
1161 bool should_use_highmem = false;
1162
1163 /*
1164 * Let's use our own (unoptimized) equivalent of __pa() that is
1165 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1166 * The result is used as the upper bound on physical memory address
1167 * and may itself be outside the valid range for which phys_addr_t
1168 * and therefore __pa() is defined.
1169 */
1170 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1171
1172 for_each_memblock(memory, reg) {
1173 phys_addr_t block_start = reg->base;
1174 phys_addr_t block_end = reg->base + reg->size;
1175 phys_addr_t size_limit = reg->size;
1176
1177 if (reg->base >= vmalloc_limit)
1178 highmem = 1;
1179 else
1180 size_limit = vmalloc_limit - reg->base;
1181
1182
1183 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1184
1185 if (highmem) {
1186 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1187 &block_start, &block_end);
1188 memblock_remove(reg->base, reg->size);
1189 should_use_highmem = true;
1190 continue;
1191 }
1192
1193 if (reg->size > size_limit) {
1194 phys_addr_t overlap_size = reg->size - size_limit;
1195
1196 pr_notice("Truncating RAM at %pa-%pa",
1197 &block_start, &block_end);
1198 block_end = vmalloc_limit;
1199 pr_cont(" to -%pa", &block_end);
1200 memblock_remove(vmalloc_limit, overlap_size);
1201 should_use_highmem = true;
1202 }
1203 }
1204
1205 if (!highmem) {
1206 if (block_end > arm_lowmem_limit) {
1207 if (reg->size > size_limit)
1208 arm_lowmem_limit = vmalloc_limit;
1209 else
1210 arm_lowmem_limit = block_end;
1211 }
1212
1213 /*
1214 * Find the first non-pmd-aligned page, and point
1215 * memblock_limit at it. This relies on rounding the
1216 * limit down to be pmd-aligned, which happens at the
1217 * end of this function.
1218 *
1219 * With this algorithm, the start or end of almost any
1220 * bank can be non-pmd-aligned. The only exception is
1221 * that the start of the bank 0 must be section-
1222 * aligned, since otherwise memory would need to be
1223 * allocated when mapping the start of bank 0, which
1224 * occurs before any free memory is mapped.
1225 */
1226 if (!memblock_limit) {
1227 if (!IS_ALIGNED(block_start, PMD_SIZE))
1228 memblock_limit = block_start;
1229 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1230 memblock_limit = arm_lowmem_limit;
1231 }
1232
1233 }
1234 }
1235
1236 if (should_use_highmem)
1237 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1238
1239 high_memory = __va(arm_lowmem_limit - 1) + 1;
1240
1241 /*
1242 * Round the memblock limit down to a pmd size. This
1243 * helps to ensure that we will allocate memory from the
1244 * last full pmd, which should be mapped.
1245 */
1246 if (memblock_limit)
1247 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1248 if (!memblock_limit)
1249 memblock_limit = arm_lowmem_limit;
1250
1251 memblock_set_current_limit(memblock_limit);
1252 }
1253
1254 static inline void prepare_page_table(void)
1255 {
1256 unsigned long addr;
1257 phys_addr_t end;
1258
1259 /*
1260 * Clear out all the mappings below the kernel image.
1261 */
1262 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1263 pmd_clear(pmd_off_k(addr));
1264
1265 #ifdef CONFIG_XIP_KERNEL
1266 /* The XIP kernel is mapped in the module area -- skip over it */
1267 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1268 #endif
1269 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1270 pmd_clear(pmd_off_k(addr));
1271
1272 /*
1273 * Find the end of the first block of lowmem.
1274 */
1275 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1276 if (end >= arm_lowmem_limit)
1277 end = arm_lowmem_limit;
1278
1279 /*
1280 * Clear out all the kernel space mappings, except for the first
1281 * memory bank, up to the vmalloc region.
1282 */
1283 for (addr = __phys_to_virt(end);
1284 addr < VMALLOC_START; addr += PMD_SIZE)
1285 pmd_clear(pmd_off_k(addr));
1286 }
1287
1288 #ifdef CONFIG_ARM_LPAE
1289 /* the first page is reserved for pgd */
1290 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1291 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1292 #else
1293 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1294 #endif
1295
1296 /*
1297 * Reserve the special regions of memory
1298 */
1299 void __init arm_mm_memblock_reserve(void)
1300 {
1301 /*
1302 * Reserve the page tables. These are already in use,
1303 * and can only be in node 0.
1304 */
1305 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1306
1307 #ifdef CONFIG_SA1111
1308 /*
1309 * Because of the SA1111 DMA bug, we want to preserve our
1310 * precious DMA-able memory...
1311 */
1312 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1313 #endif
1314 }
1315
1316 /*
1317 * Set up the device mappings. Since we clear out the page tables for all
1318 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1319 * device mappings. This means earlycon can be used to debug this function
1320 * Any other function or debugging method which may touch any device _will_
1321 * crash the kernel.
1322 */
1323 static void __init devicemaps_init(const struct machine_desc *mdesc)
1324 {
1325 struct map_desc map;
1326 unsigned long addr;
1327 void *vectors;
1328
1329 /*
1330 * Allocate the vector page early.
1331 */
1332 vectors = early_alloc(PAGE_SIZE * 2);
1333
1334 early_trap_init(vectors);
1335
1336 /*
1337 * Clear page table except top pmd used by early fixmaps
1338 */
1339 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1340 pmd_clear(pmd_off_k(addr));
1341
1342 /*
1343 * Map the kernel if it is XIP.
1344 * It is always first in the modulearea.
1345 */
1346 #ifdef CONFIG_XIP_KERNEL
1347 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1348 map.virtual = MODULES_VADDR;
1349 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1350 map.type = MT_ROM;
1351 create_mapping(&map);
1352 #endif
1353
1354 /*
1355 * Map the cache flushing regions.
1356 */
1357 #ifdef FLUSH_BASE
1358 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1359 map.virtual = FLUSH_BASE;
1360 map.length = SZ_1M;
1361 map.type = MT_CACHECLEAN;
1362 create_mapping(&map);
1363 #endif
1364 #ifdef FLUSH_BASE_MINICACHE
1365 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1366 map.virtual = FLUSH_BASE_MINICACHE;
1367 map.length = SZ_1M;
1368 map.type = MT_MINICLEAN;
1369 create_mapping(&map);
1370 #endif
1371
1372 /*
1373 * Create a mapping for the machine vectors at the high-vectors
1374 * location (0xffff0000). If we aren't using high-vectors, also
1375 * create a mapping at the low-vectors virtual address.
1376 */
1377 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1378 map.virtual = 0xffff0000;
1379 map.length = PAGE_SIZE;
1380 #ifdef CONFIG_KUSER_HELPERS
1381 map.type = MT_HIGH_VECTORS;
1382 #else
1383 map.type = MT_LOW_VECTORS;
1384 #endif
1385 create_mapping(&map);
1386
1387 if (!vectors_high()) {
1388 map.virtual = 0;
1389 map.length = PAGE_SIZE * 2;
1390 map.type = MT_LOW_VECTORS;
1391 create_mapping(&map);
1392 }
1393
1394 /* Now create a kernel read-only mapping */
1395 map.pfn += 1;
1396 map.virtual = 0xffff0000 + PAGE_SIZE;
1397 map.length = PAGE_SIZE;
1398 map.type = MT_LOW_VECTORS;
1399 create_mapping(&map);
1400
1401 /*
1402 * Ask the machine support to map in the statically mapped devices.
1403 */
1404 if (mdesc->map_io)
1405 mdesc->map_io();
1406 else
1407 debug_ll_io_init();
1408 fill_pmd_gaps();
1409
1410 /* Reserve fixed i/o space in VMALLOC region */
1411 pci_reserve_io();
1412
1413 /*
1414 * Finally flush the caches and tlb to ensure that we're in a
1415 * consistent state wrt the writebuffer. This also ensures that
1416 * any write-allocated cache lines in the vector page are written
1417 * back. After this point, we can start to touch devices again.
1418 */
1419 local_flush_tlb_all();
1420 flush_cache_all();
1421
1422 /* Enable asynchronous aborts */
1423 early_abt_enable();
1424 }
1425
1426 static void __init kmap_init(void)
1427 {
1428 #ifdef CONFIG_HIGHMEM
1429 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1430 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1431 #endif
1432
1433 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1434 _PAGE_KERNEL_TABLE);
1435 }
1436
1437 static void __init map_lowmem(void)
1438 {
1439 struct memblock_region *reg;
1440 #ifdef CONFIG_XIP_KERNEL
1441 phys_addr_t kernel_x_start = round_down(__pa(_sdata), SECTION_SIZE);
1442 #else
1443 phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1444 #endif
1445 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1446
1447 /* Map all the lowmem memory banks. */
1448 for_each_memblock(memory, reg) {
1449 phys_addr_t start = reg->base;
1450 phys_addr_t end = start + reg->size;
1451 struct map_desc map;
1452
1453 if (memblock_is_nomap(reg))
1454 continue;
1455
1456 if (end > arm_lowmem_limit)
1457 end = arm_lowmem_limit;
1458 if (start >= end)
1459 break;
1460
1461 if (end < kernel_x_start) {
1462 map.pfn = __phys_to_pfn(start);
1463 map.virtual = __phys_to_virt(start);
1464 map.length = end - start;
1465 map.type = MT_MEMORY_RWX;
1466
1467 create_mapping(&map);
1468 } else if (start >= kernel_x_end) {
1469 map.pfn = __phys_to_pfn(start);
1470 map.virtual = __phys_to_virt(start);
1471 map.length = end - start;
1472 map.type = MT_MEMORY_RW;
1473
1474 create_mapping(&map);
1475 } else {
1476 /* This better cover the entire kernel */
1477 if (start < kernel_x_start) {
1478 map.pfn = __phys_to_pfn(start);
1479 map.virtual = __phys_to_virt(start);
1480 map.length = kernel_x_start - start;
1481 map.type = MT_MEMORY_RW;
1482
1483 create_mapping(&map);
1484 }
1485
1486 map.pfn = __phys_to_pfn(kernel_x_start);
1487 map.virtual = __phys_to_virt(kernel_x_start);
1488 map.length = kernel_x_end - kernel_x_start;
1489 map.type = MT_MEMORY_RWX;
1490
1491 create_mapping(&map);
1492
1493 if (kernel_x_end < end) {
1494 map.pfn = __phys_to_pfn(kernel_x_end);
1495 map.virtual = __phys_to_virt(kernel_x_end);
1496 map.length = end - kernel_x_end;
1497 map.type = MT_MEMORY_RW;
1498
1499 create_mapping(&map);
1500 }
1501 }
1502 }
1503 }
1504
1505 #ifdef CONFIG_ARM_PV_FIXUP
1506 extern unsigned long __atags_pointer;
1507 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1508 pgtables_remap lpae_pgtables_remap_asm;
1509
1510 /*
1511 * early_paging_init() recreates boot time page table setup, allowing machines
1512 * to switch over to a high (>4G) address space on LPAE systems
1513 */
1514 void __init early_paging_init(const struct machine_desc *mdesc)
1515 {
1516 pgtables_remap *lpae_pgtables_remap;
1517 unsigned long pa_pgd;
1518 unsigned int cr, ttbcr;
1519 long long offset;
1520 void *boot_data;
1521
1522 if (!mdesc->pv_fixup)
1523 return;
1524
1525 offset = mdesc->pv_fixup();
1526 if (offset == 0)
1527 return;
1528
1529 /*
1530 * Get the address of the remap function in the 1:1 identity
1531 * mapping setup by the early page table assembly code. We
1532 * must get this prior to the pv update. The following barrier
1533 * ensures that this is complete before we fixup any P:V offsets.
1534 */
1535 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1536 pa_pgd = __pa(swapper_pg_dir);
1537 boot_data = __va(__atags_pointer);
1538 barrier();
1539
1540 pr_info("Switching physical address space to 0x%08llx\n",
1541 (u64)PHYS_OFFSET + offset);
1542
1543 /* Re-set the phys pfn offset, and the pv offset */
1544 __pv_offset += offset;
1545 __pv_phys_pfn_offset += PFN_DOWN(offset);
1546
1547 /* Run the patch stub to update the constants */
1548 fixup_pv_table(&__pv_table_begin,
1549 (&__pv_table_end - &__pv_table_begin) << 2);
1550
1551 /*
1552 * We changing not only the virtual to physical mapping, but also
1553 * the physical addresses used to access memory. We need to flush
1554 * all levels of cache in the system with caching disabled to
1555 * ensure that all data is written back, and nothing is prefetched
1556 * into the caches. We also need to prevent the TLB walkers
1557 * allocating into the caches too. Note that this is ARMv7 LPAE
1558 * specific.
1559 */
1560 cr = get_cr();
1561 set_cr(cr & ~(CR_I | CR_C));
1562 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1563 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1564 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1565 flush_cache_all();
1566
1567 /*
1568 * Fixup the page tables - this must be in the idmap region as
1569 * we need to disable the MMU to do this safely, and hence it
1570 * needs to be assembly. It's fairly simple, as we're using the
1571 * temporary tables setup by the initial assembly code.
1572 */
1573 lpae_pgtables_remap(offset, pa_pgd, boot_data);
1574
1575 /* Re-enable the caches and cacheable TLB walks */
1576 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1577 set_cr(cr);
1578 }
1579
1580 #else
1581
1582 void __init early_paging_init(const struct machine_desc *mdesc)
1583 {
1584 long long offset;
1585
1586 if (!mdesc->pv_fixup)
1587 return;
1588
1589 offset = mdesc->pv_fixup();
1590 if (offset == 0)
1591 return;
1592
1593 pr_crit("Physical address space modification is only to support Keystone2.\n");
1594 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1595 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1596 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1597 }
1598
1599 #endif
1600
1601 static void __init early_fixmap_shutdown(void)
1602 {
1603 int i;
1604 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1605
1606 pte_offset_fixmap = pte_offset_late_fixmap;
1607 pmd_clear(fixmap_pmd(va));
1608 local_flush_tlb_kernel_page(va);
1609
1610 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1611 pte_t *pte;
1612 struct map_desc map;
1613
1614 map.virtual = fix_to_virt(i);
1615 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1616
1617 /* Only i/o device mappings are supported ATM */
1618 if (pte_none(*pte) ||
1619 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1620 continue;
1621
1622 map.pfn = pte_pfn(*pte);
1623 map.type = MT_DEVICE;
1624 map.length = PAGE_SIZE;
1625
1626 create_mapping(&map);
1627 }
1628 }
1629
1630 /*
1631 * paging_init() sets up the page tables, initialises the zone memory
1632 * maps, and sets up the zero page, bad page and bad page tables.
1633 */
1634 void __init paging_init(const struct machine_desc *mdesc)
1635 {
1636 void *zero_page;
1637
1638 build_mem_type_table();
1639 prepare_page_table();
1640 map_lowmem();
1641 memblock_set_current_limit(arm_lowmem_limit);
1642 dma_contiguous_remap();
1643 early_fixmap_shutdown();
1644 devicemaps_init(mdesc);
1645 kmap_init();
1646 tcm_init();
1647
1648 top_pmd = pmd_off_k(0xffff0000);
1649
1650 /* allocate the zero page. */
1651 zero_page = early_alloc(PAGE_SIZE);
1652
1653 bootmem_init();
1654
1655 empty_zero_page = virt_to_page(zero_page);
1656 __flush_dcache_page(NULL, empty_zero_page);
1657 }
This page took 0.06672 seconds and 5 git commands to generate.