3c9d708832764f347607bbdee22c099df73031ab
[deliverable/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30
31 unsigned long elf_hwcap __read_mostly;
32 EXPORT_SYMBOL_GPL(elf_hwcap);
33
34 #ifdef CONFIG_COMPAT
35 #define COMPAT_ELF_HWCAP_DEFAULT \
36 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
37 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
38 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
39 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
40 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
41 COMPAT_HWCAP_LPAE)
42 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
43 unsigned int compat_elf_hwcap2 __read_mostly;
44 #endif
45
46 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
47
48 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
49 { \
50 .sign = SIGNED, \
51 .strict = STRICT, \
52 .type = TYPE, \
53 .shift = SHIFT, \
54 .width = WIDTH, \
55 .safe_val = SAFE_VAL, \
56 }
57
58 /* Define a feature with unsigned values */
59 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
60 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
61
62 /* Define a feature with a signed value */
63 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
64 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
65
66 #define ARM64_FTR_END \
67 { \
68 .width = 0, \
69 }
70
71 /* meta feature for alternatives */
72 static bool __maybe_unused
73 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
74
75 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
76 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
77 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
78 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
79 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
80 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
81 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
82 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
83 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
85 ARM64_FTR_END,
86 };
87
88 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
89 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
90 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
91 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
92 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
93 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
94 /* Linux doesn't care about the EL3 */
95 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
96 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
97 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
98 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
99 ARM64_FTR_END,
100 };
101
102 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
103 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
104 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
105 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
106 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
107 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
108 /* Linux shouldn't care about secure memory */
109 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
110 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
111 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
112 /*
113 * Differing PARange is fine as long as all peripherals and memory are mapped
114 * within the minimum PARange of all CPUs
115 */
116 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
117 ARM64_FTR_END,
118 };
119
120 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
121 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
122 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
123 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
124 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
125 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
126 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
128 ARM64_FTR_END,
129 };
130
131 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
132 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
133 ARM64_FTR_END,
134 };
135
136 static struct arm64_ftr_bits ftr_ctr[] = {
137 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
138 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
139 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
140 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
141 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
142 /*
143 * Linux can handle differing I-cache policies. Userspace JITs will
144 * make use of *minLine
145 */
146 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
147 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
148 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
149 ARM64_FTR_END,
150 };
151
152 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
153 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
154 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
155 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
156 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
157 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
158 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
159 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
160 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
161 ARM64_FTR_END,
162 };
163
164 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
165 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
166 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
167 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
169 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
170 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
171 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
172 ARM64_FTR_END,
173 };
174
175 static struct arm64_ftr_bits ftr_mvfr2[] = {
176 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
177 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
178 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
179 ARM64_FTR_END,
180 };
181
182 static struct arm64_ftr_bits ftr_dczid[] = {
183 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
184 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
185 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
186 ARM64_FTR_END,
187 };
188
189
190 static struct arm64_ftr_bits ftr_id_isar5[] = {
191 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
193 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
198 ARM64_FTR_END,
199 };
200
201 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
202 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
203 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
204 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
205 ARM64_FTR_END,
206 };
207
208 static struct arm64_ftr_bits ftr_id_pfr0[] = {
209 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
210 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
211 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
212 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
213 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
214 ARM64_FTR_END,
215 };
216
217 static struct arm64_ftr_bits ftr_id_dfr0[] = {
218 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
219 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
220 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
221 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
222 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
223 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
224 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
225 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
226 ARM64_FTR_END,
227 };
228
229 /*
230 * Common ftr bits for a 32bit register with all hidden, strict
231 * attributes, with 4bit feature fields and a default safe value of
232 * 0. Covers the following 32bit registers:
233 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
234 */
235 static struct arm64_ftr_bits ftr_generic_32bits[] = {
236 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
237 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
238 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
239 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
240 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
241 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
242 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
243 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
244 ARM64_FTR_END,
245 };
246
247 static struct arm64_ftr_bits ftr_generic[] = {
248 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
249 ARM64_FTR_END,
250 };
251
252 static struct arm64_ftr_bits ftr_generic32[] = {
253 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
254 ARM64_FTR_END,
255 };
256
257 static struct arm64_ftr_bits ftr_aa64raz[] = {
258 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
259 ARM64_FTR_END,
260 };
261
262 #define ARM64_FTR_REG(id, table) \
263 { \
264 .sys_id = id, \
265 .name = #id, \
266 .ftr_bits = &((table)[0]), \
267 }
268
269 static struct arm64_ftr_reg arm64_ftr_regs[] = {
270
271 /* Op1 = 0, CRn = 0, CRm = 1 */
272 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
273 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
274 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
275 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
276 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
277 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
278 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
279
280 /* Op1 = 0, CRn = 0, CRm = 2 */
281 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
282 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
283 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
284 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
285 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
286 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
287 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
288
289 /* Op1 = 0, CRn = 0, CRm = 3 */
290 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
291 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
292 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
293
294 /* Op1 = 0, CRn = 0, CRm = 4 */
295 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
296 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
297
298 /* Op1 = 0, CRn = 0, CRm = 5 */
299 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
300 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
301
302 /* Op1 = 0, CRn = 0, CRm = 6 */
303 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
304 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
305
306 /* Op1 = 0, CRn = 0, CRm = 7 */
307 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
308 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
309 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
310
311 /* Op1 = 3, CRn = 0, CRm = 0 */
312 ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
313 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
314
315 /* Op1 = 3, CRn = 14, CRm = 0 */
316 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
317 };
318
319 static int search_cmp_ftr_reg(const void *id, const void *regp)
320 {
321 return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
322 }
323
324 /*
325 * get_arm64_ftr_reg - Lookup a feature register entry using its
326 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
327 * ascending order of sys_id , we use binary search to find a matching
328 * entry.
329 *
330 * returns - Upon success, matching ftr_reg entry for id.
331 * - NULL on failure. It is upto the caller to decide
332 * the impact of a failure.
333 */
334 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
335 {
336 return bsearch((const void *)(unsigned long)sys_id,
337 arm64_ftr_regs,
338 ARRAY_SIZE(arm64_ftr_regs),
339 sizeof(arm64_ftr_regs[0]),
340 search_cmp_ftr_reg);
341 }
342
343 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
344 {
345 u64 mask = arm64_ftr_mask(ftrp);
346
347 reg &= ~mask;
348 reg |= (ftr_val << ftrp->shift) & mask;
349 return reg;
350 }
351
352 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
353 {
354 s64 ret = 0;
355
356 switch (ftrp->type) {
357 case FTR_EXACT:
358 ret = ftrp->safe_val;
359 break;
360 case FTR_LOWER_SAFE:
361 ret = new < cur ? new : cur;
362 break;
363 case FTR_HIGHER_SAFE:
364 ret = new > cur ? new : cur;
365 break;
366 default:
367 BUG();
368 }
369
370 return ret;
371 }
372
373 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
374 {
375 return ((const struct arm64_ftr_reg *)a)->sys_id -
376 ((const struct arm64_ftr_reg *)b)->sys_id;
377 }
378
379 static void __init swap_ftr_regs(void *a, void *b, int size)
380 {
381 struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
382 *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
383 *(struct arm64_ftr_reg *)b = tmp;
384 }
385
386 static void __init sort_ftr_regs(void)
387 {
388 /* Keep the array sorted so that we can do the binary search */
389 sort(arm64_ftr_regs,
390 ARRAY_SIZE(arm64_ftr_regs),
391 sizeof(arm64_ftr_regs[0]),
392 sort_cmp_ftr_regs,
393 swap_ftr_regs);
394 }
395
396 /*
397 * Initialise the CPU feature register from Boot CPU values.
398 * Also initiliases the strict_mask for the register.
399 */
400 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
401 {
402 u64 val = 0;
403 u64 strict_mask = ~0x0ULL;
404 struct arm64_ftr_bits *ftrp;
405 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
406
407 BUG_ON(!reg);
408
409 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
410 s64 ftr_new = arm64_ftr_value(ftrp, new);
411
412 val = arm64_ftr_set_value(ftrp, val, ftr_new);
413 if (!ftrp->strict)
414 strict_mask &= ~arm64_ftr_mask(ftrp);
415 }
416 reg->sys_val = val;
417 reg->strict_mask = strict_mask;
418 }
419
420 void __init init_cpu_features(struct cpuinfo_arm64 *info)
421 {
422 /* Before we start using the tables, make sure it is sorted */
423 sort_ftr_regs();
424
425 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
426 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
427 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
428 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
429 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
430 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
431 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
432 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
433 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
434 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
435 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
436 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
437 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
438 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
439 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
440 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
441 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
442 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
443 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
444 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
445 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
446 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
447 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
448 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
449 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
450 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
451 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
452 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
453 }
454
455 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
456 {
457 struct arm64_ftr_bits *ftrp;
458
459 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
460 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
461 s64 ftr_new = arm64_ftr_value(ftrp, new);
462
463 if (ftr_cur == ftr_new)
464 continue;
465 /* Find a safe value */
466 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
467 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
468 }
469
470 }
471
472 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
473 {
474 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
475
476 BUG_ON(!regp);
477 update_cpu_ftr_reg(regp, val);
478 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
479 return 0;
480 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
481 regp->name, boot, cpu, val);
482 return 1;
483 }
484
485 /*
486 * Update system wide CPU feature registers with the values from a
487 * non-boot CPU. Also performs SANITY checks to make sure that there
488 * aren't any insane variations from that of the boot CPU.
489 */
490 void update_cpu_features(int cpu,
491 struct cpuinfo_arm64 *info,
492 struct cpuinfo_arm64 *boot)
493 {
494 int taint = 0;
495
496 /*
497 * The kernel can handle differing I-cache policies, but otherwise
498 * caches should look identical. Userspace JITs will make use of
499 * *minLine.
500 */
501 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
502 info->reg_ctr, boot->reg_ctr);
503
504 /*
505 * Userspace may perform DC ZVA instructions. Mismatched block sizes
506 * could result in too much or too little memory being zeroed if a
507 * process is preempted and migrated between CPUs.
508 */
509 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
510 info->reg_dczid, boot->reg_dczid);
511
512 /* If different, timekeeping will be broken (especially with KVM) */
513 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
514 info->reg_cntfrq, boot->reg_cntfrq);
515
516 /*
517 * The kernel uses self-hosted debug features and expects CPUs to
518 * support identical debug features. We presently need CTX_CMPs, WRPs,
519 * and BRPs to be identical.
520 * ID_AA64DFR1 is currently RES0.
521 */
522 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
523 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
524 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
525 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
526 /*
527 * Even in big.LITTLE, processors should be identical instruction-set
528 * wise.
529 */
530 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
531 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
532 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
533 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
534
535 /*
536 * Differing PARange support is fine as long as all peripherals and
537 * memory are mapped within the minimum PARange of all CPUs.
538 * Linux should not care about secure memory.
539 */
540 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
541 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
542 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
543 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
544 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
545 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
546
547 /*
548 * EL3 is not our concern.
549 * ID_AA64PFR1 is currently RES0.
550 */
551 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
552 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
553 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
554 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
555
556 /*
557 * If we have AArch32, we care about 32-bit features for compat. These
558 * registers should be RES0 otherwise.
559 */
560 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
561 info->reg_id_dfr0, boot->reg_id_dfr0);
562 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
563 info->reg_id_isar0, boot->reg_id_isar0);
564 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
565 info->reg_id_isar1, boot->reg_id_isar1);
566 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
567 info->reg_id_isar2, boot->reg_id_isar2);
568 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
569 info->reg_id_isar3, boot->reg_id_isar3);
570 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
571 info->reg_id_isar4, boot->reg_id_isar4);
572 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
573 info->reg_id_isar5, boot->reg_id_isar5);
574
575 /*
576 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
577 * ACTLR formats could differ across CPUs and therefore would have to
578 * be trapped for virtualization anyway.
579 */
580 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
581 info->reg_id_mmfr0, boot->reg_id_mmfr0);
582 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
583 info->reg_id_mmfr1, boot->reg_id_mmfr1);
584 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
585 info->reg_id_mmfr2, boot->reg_id_mmfr2);
586 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
587 info->reg_id_mmfr3, boot->reg_id_mmfr3);
588 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
589 info->reg_id_pfr0, boot->reg_id_pfr0);
590 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
591 info->reg_id_pfr1, boot->reg_id_pfr1);
592 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
593 info->reg_mvfr0, boot->reg_mvfr0);
594 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
595 info->reg_mvfr1, boot->reg_mvfr1);
596 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
597 info->reg_mvfr2, boot->reg_mvfr2);
598
599 /*
600 * Mismatched CPU features are a recipe for disaster. Don't even
601 * pretend to support them.
602 */
603 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
604 "Unsupported CPU feature variation.\n");
605 }
606
607 u64 read_system_reg(u32 id)
608 {
609 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
610
611 /* We shouldn't get a request for an unsupported register */
612 BUG_ON(!regp);
613 return regp->sys_val;
614 }
615
616 #include <linux/irqchip/arm-gic-v3.h>
617
618 static bool
619 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
620 {
621 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
622
623 return val >= entry->min_field_value;
624 }
625
626 static bool
627 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
628 {
629 u64 val;
630
631 val = read_system_reg(entry->sys_reg);
632 return feature_matches(val, entry);
633 }
634
635 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
636 {
637 bool has_sre;
638
639 if (!has_cpuid_feature(entry))
640 return false;
641
642 has_sre = gic_enable_sre();
643 if (!has_sre)
644 pr_warn_once("%s present but disabled by higher exception level\n",
645 entry->desc);
646
647 return has_sre;
648 }
649
650 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
651 {
652 u32 midr = read_cpuid_id();
653 u32 rv_min, rv_max;
654
655 /* Cavium ThunderX pass 1.x and 2.x */
656 rv_min = 0;
657 rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
658
659 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
660 }
661
662 static const struct arm64_cpu_capabilities arm64_features[] = {
663 {
664 .desc = "GIC system register CPU interface",
665 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
666 .matches = has_useable_gicv3_cpuif,
667 .sys_reg = SYS_ID_AA64PFR0_EL1,
668 .field_pos = ID_AA64PFR0_GIC_SHIFT,
669 .sign = FTR_UNSIGNED,
670 .min_field_value = 1,
671 },
672 #ifdef CONFIG_ARM64_PAN
673 {
674 .desc = "Privileged Access Never",
675 .capability = ARM64_HAS_PAN,
676 .matches = has_cpuid_feature,
677 .sys_reg = SYS_ID_AA64MMFR1_EL1,
678 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
679 .sign = FTR_UNSIGNED,
680 .min_field_value = 1,
681 .enable = cpu_enable_pan,
682 },
683 #endif /* CONFIG_ARM64_PAN */
684 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
685 {
686 .desc = "LSE atomic instructions",
687 .capability = ARM64_HAS_LSE_ATOMICS,
688 .matches = has_cpuid_feature,
689 .sys_reg = SYS_ID_AA64ISAR0_EL1,
690 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
691 .sign = FTR_UNSIGNED,
692 .min_field_value = 2,
693 },
694 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
695 {
696 .desc = "Software prefetching using PRFM",
697 .capability = ARM64_HAS_NO_HW_PREFETCH,
698 .matches = has_no_hw_prefetch,
699 },
700 #ifdef CONFIG_ARM64_UAO
701 {
702 .desc = "User Access Override",
703 .capability = ARM64_HAS_UAO,
704 .matches = has_cpuid_feature,
705 .sys_reg = SYS_ID_AA64MMFR2_EL1,
706 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
707 .min_field_value = 1,
708 .enable = cpu_enable_uao,
709 },
710 #endif /* CONFIG_ARM64_UAO */
711 #ifdef CONFIG_ARM64_PAN
712 {
713 .capability = ARM64_ALT_PAN_NOT_UAO,
714 .matches = cpufeature_pan_not_uao,
715 },
716 #endif /* CONFIG_ARM64_PAN */
717 {},
718 };
719
720 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
721 { \
722 .desc = #cap, \
723 .matches = has_cpuid_feature, \
724 .sys_reg = reg, \
725 .field_pos = field, \
726 .sign = s, \
727 .min_field_value = min_value, \
728 .hwcap_type = type, \
729 .hwcap = cap, \
730 }
731
732 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
733 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
734 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
735 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
736 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
737 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
738 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
739 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
740 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
741 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
742 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
743 #ifdef CONFIG_COMPAT
744 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
745 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
746 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
747 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
748 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
749 #endif
750 {},
751 };
752
753 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
754 {
755 switch (cap->hwcap_type) {
756 case CAP_HWCAP:
757 elf_hwcap |= cap->hwcap;
758 break;
759 #ifdef CONFIG_COMPAT
760 case CAP_COMPAT_HWCAP:
761 compat_elf_hwcap |= (u32)cap->hwcap;
762 break;
763 case CAP_COMPAT_HWCAP2:
764 compat_elf_hwcap2 |= (u32)cap->hwcap;
765 break;
766 #endif
767 default:
768 WARN_ON(1);
769 break;
770 }
771 }
772
773 /* Check if we have a particular HWCAP enabled */
774 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
775 {
776 bool rc;
777
778 switch (cap->hwcap_type) {
779 case CAP_HWCAP:
780 rc = (elf_hwcap & cap->hwcap) != 0;
781 break;
782 #ifdef CONFIG_COMPAT
783 case CAP_COMPAT_HWCAP:
784 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
785 break;
786 case CAP_COMPAT_HWCAP2:
787 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
788 break;
789 #endif
790 default:
791 WARN_ON(1);
792 rc = false;
793 }
794
795 return rc;
796 }
797
798 static void __init setup_cpu_hwcaps(void)
799 {
800 int i;
801 const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
802
803 for (i = 0; hwcaps[i].matches; i++)
804 if (hwcaps[i].matches(&hwcaps[i]))
805 cap_set_hwcap(&hwcaps[i]);
806 }
807
808 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
809 const char *info)
810 {
811 int i;
812
813 for (i = 0; caps[i].matches; i++) {
814 if (!caps[i].matches(&caps[i]))
815 continue;
816
817 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
818 pr_info("%s %s\n", info, caps[i].desc);
819 cpus_set_cap(caps[i].capability);
820 }
821 }
822
823 /*
824 * Run through the enabled capabilities and enable() it on all active
825 * CPUs
826 */
827 static void __init
828 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
829 {
830 int i;
831
832 for (i = 0; caps[i].matches; i++)
833 if (caps[i].enable && cpus_have_cap(caps[i].capability))
834 on_each_cpu(caps[i].enable, NULL, true);
835 }
836
837 /*
838 * Flag to indicate if we have computed the system wide
839 * capabilities based on the boot time active CPUs. This
840 * will be used to determine if a new booting CPU should
841 * go through the verification process to make sure that it
842 * supports the system capabilities, without using a hotplug
843 * notifier.
844 */
845 static bool sys_caps_initialised;
846
847 static inline void set_sys_caps_initialised(void)
848 {
849 sys_caps_initialised = true;
850 }
851
852 /*
853 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
854 */
855 static u64 __raw_read_system_reg(u32 sys_id)
856 {
857 switch (sys_id) {
858 case SYS_ID_PFR0_EL1: return read_cpuid(SYS_ID_PFR0_EL1);
859 case SYS_ID_PFR1_EL1: return read_cpuid(SYS_ID_PFR1_EL1);
860 case SYS_ID_DFR0_EL1: return read_cpuid(SYS_ID_DFR0_EL1);
861 case SYS_ID_MMFR0_EL1: return read_cpuid(SYS_ID_MMFR0_EL1);
862 case SYS_ID_MMFR1_EL1: return read_cpuid(SYS_ID_MMFR1_EL1);
863 case SYS_ID_MMFR2_EL1: return read_cpuid(SYS_ID_MMFR2_EL1);
864 case SYS_ID_MMFR3_EL1: return read_cpuid(SYS_ID_MMFR3_EL1);
865 case SYS_ID_ISAR0_EL1: return read_cpuid(SYS_ID_ISAR0_EL1);
866 case SYS_ID_ISAR1_EL1: return read_cpuid(SYS_ID_ISAR1_EL1);
867 case SYS_ID_ISAR2_EL1: return read_cpuid(SYS_ID_ISAR2_EL1);
868 case SYS_ID_ISAR3_EL1: return read_cpuid(SYS_ID_ISAR3_EL1);
869 case SYS_ID_ISAR4_EL1: return read_cpuid(SYS_ID_ISAR4_EL1);
870 case SYS_ID_ISAR5_EL1: return read_cpuid(SYS_ID_ISAR4_EL1);
871 case SYS_MVFR0_EL1: return read_cpuid(SYS_MVFR0_EL1);
872 case SYS_MVFR1_EL1: return read_cpuid(SYS_MVFR1_EL1);
873 case SYS_MVFR2_EL1: return read_cpuid(SYS_MVFR2_EL1);
874
875 case SYS_ID_AA64PFR0_EL1: return read_cpuid(SYS_ID_AA64PFR0_EL1);
876 case SYS_ID_AA64PFR1_EL1: return read_cpuid(SYS_ID_AA64PFR0_EL1);
877 case SYS_ID_AA64DFR0_EL1: return read_cpuid(SYS_ID_AA64DFR0_EL1);
878 case SYS_ID_AA64DFR1_EL1: return read_cpuid(SYS_ID_AA64DFR0_EL1);
879 case SYS_ID_AA64MMFR0_EL1: return read_cpuid(SYS_ID_AA64MMFR0_EL1);
880 case SYS_ID_AA64MMFR1_EL1: return read_cpuid(SYS_ID_AA64MMFR1_EL1);
881 case SYS_ID_AA64MMFR2_EL1: return read_cpuid(SYS_ID_AA64MMFR2_EL1);
882 case SYS_ID_AA64ISAR0_EL1: return read_cpuid(SYS_ID_AA64ISAR0_EL1);
883 case SYS_ID_AA64ISAR1_EL1: return read_cpuid(SYS_ID_AA64ISAR1_EL1);
884
885 case SYS_CNTFRQ_EL0: return read_cpuid(SYS_CNTFRQ_EL0);
886 case SYS_CTR_EL0: return read_cpuid(SYS_CTR_EL0);
887 case SYS_DCZID_EL0: return read_cpuid(SYS_DCZID_EL0);
888 default:
889 BUG();
890 return 0;
891 }
892 }
893
894 /*
895 * Check for CPU features that are used in early boot
896 * based on the Boot CPU value.
897 */
898 static void check_early_cpu_features(void)
899 {
900 verify_cpu_asid_bits();
901 }
902
903 /*
904 * Run through the enabled system capabilities and enable() it on this CPU.
905 * The capabilities were decided based on the available CPUs at the boot time.
906 * Any new CPU should match the system wide status of the capability. If the
907 * new CPU doesn't have a capability which the system now has enabled, we
908 * cannot do anything to fix it up and could cause unexpected failures. So
909 * we park the CPU.
910 */
911 void verify_local_cpu_capabilities(void)
912 {
913 int i;
914 const struct arm64_cpu_capabilities *caps;
915
916 check_early_cpu_features();
917
918 /*
919 * If we haven't computed the system capabilities, there is nothing
920 * to verify.
921 */
922 if (!sys_caps_initialised)
923 return;
924
925 caps = arm64_features;
926 for (i = 0; caps[i].matches; i++) {
927 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
928 continue;
929 /*
930 * If the new CPU misses an advertised feature, we cannot proceed
931 * further, park the cpu.
932 */
933 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) {
934 pr_crit("CPU%d: missing feature: %s\n",
935 smp_processor_id(), caps[i].desc);
936 cpu_die_early();
937 }
938 if (caps[i].enable)
939 caps[i].enable(NULL);
940 }
941
942 for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
943 if (!cpus_have_hwcap(&caps[i]))
944 continue;
945 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) {
946 pr_crit("CPU%d: missing HWCAP: %s\n",
947 smp_processor_id(), caps[i].desc);
948 cpu_die_early();
949 }
950 }
951 }
952
953 static void __init setup_feature_capabilities(void)
954 {
955 update_cpu_capabilities(arm64_features, "detected feature:");
956 enable_cpu_capabilities(arm64_features);
957 }
958
959 void __init setup_cpu_features(void)
960 {
961 u32 cwg;
962 int cls;
963
964 /* Set the CPU feature capabilies */
965 setup_feature_capabilities();
966 setup_cpu_hwcaps();
967
968 /* Advertise that we have computed the system capabilities */
969 set_sys_caps_initialised();
970
971 /*
972 * Check for sane CTR_EL0.CWG value.
973 */
974 cwg = cache_type_cwg();
975 cls = cache_line_size();
976 if (!cwg)
977 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
978 cls);
979 if (L1_CACHE_BYTES < cls)
980 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
981 L1_CACHE_BYTES, cls);
982 }
983
984 static bool __maybe_unused
985 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
986 {
987 return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
988 }
This page took 0.051974 seconds and 4 git commands to generate.