arm64: Call numa_store_cpu_info() earlier.
[deliverable/linux.git] / arch / arm64 / kernel / smp.c
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/processor.h>
52 #include <asm/smp_plat.h>
53 #include <asm/sections.h>
54 #include <asm/tlbflush.h>
55 #include <asm/ptrace.h>
56 #include <asm/virt.h>
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ipi.h>
60
61 /*
62 * as from 2.5, kernels no longer have an init_tasks structure
63 * so we need some other way of telling a new secondary core
64 * where to place its SVC stack
65 */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 int cpus_stuck_in_kernel;
69
70 enum ipi_msg_type {
71 IPI_RESCHEDULE,
72 IPI_CALL_FUNC,
73 IPI_CPU_STOP,
74 IPI_TIMER,
75 IPI_IRQ_WORK,
76 IPI_WAKEUP
77 };
78
79 #ifdef CONFIG_ARM64_VHE
80
81 /* Whether the boot CPU is running in HYP mode or not*/
82 static bool boot_cpu_hyp_mode;
83
84 static inline void save_boot_cpu_run_el(void)
85 {
86 boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
87 }
88
89 static inline bool is_boot_cpu_in_hyp_mode(void)
90 {
91 return boot_cpu_hyp_mode;
92 }
93
94 /*
95 * Verify that a secondary CPU is running the kernel at the same
96 * EL as that of the boot CPU.
97 */
98 void verify_cpu_run_el(void)
99 {
100 bool in_el2 = is_kernel_in_hyp_mode();
101 bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
102
103 if (in_el2 ^ boot_cpu_el2) {
104 pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
105 smp_processor_id(),
106 in_el2 ? 2 : 1,
107 boot_cpu_el2 ? 2 : 1);
108 cpu_panic_kernel();
109 }
110 }
111
112 #else
113 static inline void save_boot_cpu_run_el(void) {}
114 #endif
115
116 #ifdef CONFIG_HOTPLUG_CPU
117 static int op_cpu_kill(unsigned int cpu);
118 #else
119 static inline int op_cpu_kill(unsigned int cpu)
120 {
121 return -ENOSYS;
122 }
123 #endif
124
125
126 /*
127 * Boot a secondary CPU, and assign it the specified idle task.
128 * This also gives us the initial stack to use for this CPU.
129 */
130 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
131 {
132 if (cpu_ops[cpu]->cpu_boot)
133 return cpu_ops[cpu]->cpu_boot(cpu);
134
135 return -EOPNOTSUPP;
136 }
137
138 static DECLARE_COMPLETION(cpu_running);
139
140 int __cpu_up(unsigned int cpu, struct task_struct *idle)
141 {
142 int ret;
143 long status;
144
145 /*
146 * We need to tell the secondary core where to find its stack and the
147 * page tables.
148 */
149 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
150 update_cpu_boot_status(CPU_MMU_OFF);
151 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
152
153 /*
154 * Now bring the CPU into our world.
155 */
156 ret = boot_secondary(cpu, idle);
157 if (ret == 0) {
158 /*
159 * CPU was successfully started, wait for it to come online or
160 * time out.
161 */
162 wait_for_completion_timeout(&cpu_running,
163 msecs_to_jiffies(1000));
164
165 if (!cpu_online(cpu)) {
166 pr_crit("CPU%u: failed to come online\n", cpu);
167 ret = -EIO;
168 }
169 } else {
170 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
171 }
172
173 secondary_data.stack = NULL;
174 status = READ_ONCE(secondary_data.status);
175 if (ret && status) {
176
177 if (status == CPU_MMU_OFF)
178 status = READ_ONCE(__early_cpu_boot_status);
179
180 switch (status) {
181 default:
182 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
183 cpu, status);
184 break;
185 case CPU_KILL_ME:
186 if (!op_cpu_kill(cpu)) {
187 pr_crit("CPU%u: died during early boot\n", cpu);
188 break;
189 }
190 /* Fall through */
191 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
192 case CPU_STUCK_IN_KERNEL:
193 pr_crit("CPU%u: is stuck in kernel\n", cpu);
194 cpus_stuck_in_kernel++;
195 break;
196 case CPU_PANIC_KERNEL:
197 panic("CPU%u detected unsupported configuration\n", cpu);
198 }
199 }
200
201 return ret;
202 }
203
204 /*
205 * This is the secondary CPU boot entry. We're using this CPUs
206 * idle thread stack, but a set of temporary page tables.
207 */
208 asmlinkage void secondary_start_kernel(void)
209 {
210 struct mm_struct *mm = &init_mm;
211 unsigned int cpu = smp_processor_id();
212
213 /*
214 * All kernel threads share the same mm context; grab a
215 * reference and switch to it.
216 */
217 atomic_inc(&mm->mm_count);
218 current->active_mm = mm;
219
220 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
221
222 /*
223 * TTBR0 is only used for the identity mapping at this stage. Make it
224 * point to zero page to avoid speculatively fetching new entries.
225 */
226 cpu_uninstall_idmap();
227
228 preempt_disable();
229 trace_hardirqs_off();
230
231 /*
232 * If the system has established the capabilities, make sure
233 * this CPU ticks all of those. If it doesn't, the CPU will
234 * fail to come online.
235 */
236 verify_local_cpu_capabilities();
237
238 if (cpu_ops[cpu]->cpu_postboot)
239 cpu_ops[cpu]->cpu_postboot();
240
241 /*
242 * Log the CPU info before it is marked online and might get read.
243 */
244 cpuinfo_store_cpu();
245
246 /*
247 * Enable GIC and timers.
248 */
249 notify_cpu_starting(cpu);
250
251 store_cpu_topology(cpu);
252
253 /*
254 * OK, now it's safe to let the boot CPU continue. Wait for
255 * the CPU migration code to notice that the CPU is online
256 * before we continue.
257 */
258 pr_info("CPU%u: Booted secondary processor [%08x]\n",
259 cpu, read_cpuid_id());
260 update_cpu_boot_status(CPU_BOOT_SUCCESS);
261 set_cpu_online(cpu, true);
262 complete(&cpu_running);
263
264 local_irq_enable();
265 local_async_enable();
266
267 /*
268 * OK, it's off to the idle thread for us
269 */
270 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271 }
272
273 #ifdef CONFIG_HOTPLUG_CPU
274 static int op_cpu_disable(unsigned int cpu)
275 {
276 /*
277 * If we don't have a cpu_die method, abort before we reach the point
278 * of no return. CPU0 may not have an cpu_ops, so test for it.
279 */
280 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
281 return -EOPNOTSUPP;
282
283 /*
284 * We may need to abort a hot unplug for some other mechanism-specific
285 * reason.
286 */
287 if (cpu_ops[cpu]->cpu_disable)
288 return cpu_ops[cpu]->cpu_disable(cpu);
289
290 return 0;
291 }
292
293 /*
294 * __cpu_disable runs on the processor to be shutdown.
295 */
296 int __cpu_disable(void)
297 {
298 unsigned int cpu = smp_processor_id();
299 int ret;
300
301 ret = op_cpu_disable(cpu);
302 if (ret)
303 return ret;
304
305 /*
306 * Take this CPU offline. Once we clear this, we can't return,
307 * and we must not schedule until we're ready to give up the cpu.
308 */
309 set_cpu_online(cpu, false);
310
311 /*
312 * OK - migrate IRQs away from this CPU
313 */
314 irq_migrate_all_off_this_cpu();
315
316 return 0;
317 }
318
319 static int op_cpu_kill(unsigned int cpu)
320 {
321 /*
322 * If we have no means of synchronising with the dying CPU, then assume
323 * that it is really dead. We can only wait for an arbitrary length of
324 * time and hope that it's dead, so let's skip the wait and just hope.
325 */
326 if (!cpu_ops[cpu]->cpu_kill)
327 return 0;
328
329 return cpu_ops[cpu]->cpu_kill(cpu);
330 }
331
332 /*
333 * called on the thread which is asking for a CPU to be shutdown -
334 * waits until shutdown has completed, or it is timed out.
335 */
336 void __cpu_die(unsigned int cpu)
337 {
338 int err;
339
340 if (!cpu_wait_death(cpu, 5)) {
341 pr_crit("CPU%u: cpu didn't die\n", cpu);
342 return;
343 }
344 pr_notice("CPU%u: shutdown\n", cpu);
345
346 /*
347 * Now that the dying CPU is beyond the point of no return w.r.t.
348 * in-kernel synchronisation, try to get the firwmare to help us to
349 * verify that it has really left the kernel before we consider
350 * clobbering anything it might still be using.
351 */
352 err = op_cpu_kill(cpu);
353 if (err)
354 pr_warn("CPU%d may not have shut down cleanly: %d\n",
355 cpu, err);
356 }
357
358 /*
359 * Called from the idle thread for the CPU which has been shutdown.
360 *
361 * Note that we disable IRQs here, but do not re-enable them
362 * before returning to the caller. This is also the behaviour
363 * of the other hotplug-cpu capable cores, so presumably coming
364 * out of idle fixes this.
365 */
366 void cpu_die(void)
367 {
368 unsigned int cpu = smp_processor_id();
369
370 idle_task_exit();
371
372 local_irq_disable();
373
374 /* Tell __cpu_die() that this CPU is now safe to dispose of */
375 (void)cpu_report_death();
376
377 /*
378 * Actually shutdown the CPU. This must never fail. The specific hotplug
379 * mechanism must perform all required cache maintenance to ensure that
380 * no dirty lines are lost in the process of shutting down the CPU.
381 */
382 cpu_ops[cpu]->cpu_die(cpu);
383
384 BUG();
385 }
386 #endif
387
388 /*
389 * Kill the calling secondary CPU, early in bringup before it is turned
390 * online.
391 */
392 void cpu_die_early(void)
393 {
394 int cpu = smp_processor_id();
395
396 pr_crit("CPU%d: will not boot\n", cpu);
397
398 /* Mark this CPU absent */
399 set_cpu_present(cpu, 0);
400
401 #ifdef CONFIG_HOTPLUG_CPU
402 update_cpu_boot_status(CPU_KILL_ME);
403 /* Check if we can park ourselves */
404 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
405 cpu_ops[cpu]->cpu_die(cpu);
406 #endif
407 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
408
409 cpu_park_loop();
410 }
411
412 static void __init hyp_mode_check(void)
413 {
414 if (is_hyp_mode_available())
415 pr_info("CPU: All CPU(s) started at EL2\n");
416 else if (is_hyp_mode_mismatched())
417 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
418 "CPU: CPUs started in inconsistent modes");
419 else
420 pr_info("CPU: All CPU(s) started at EL1\n");
421 }
422
423 void __init smp_cpus_done(unsigned int max_cpus)
424 {
425 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
426 setup_cpu_features();
427 hyp_mode_check();
428 apply_alternatives_all();
429 }
430
431 void __init smp_prepare_boot_cpu(void)
432 {
433 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
434 cpuinfo_store_boot_cpu();
435 save_boot_cpu_run_el();
436 }
437
438 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
439 {
440 const __be32 *cell;
441 u64 hwid;
442
443 /*
444 * A cpu node with missing "reg" property is
445 * considered invalid to build a cpu_logical_map
446 * entry.
447 */
448 cell = of_get_property(dn, "reg", NULL);
449 if (!cell) {
450 pr_err("%s: missing reg property\n", dn->full_name);
451 return INVALID_HWID;
452 }
453
454 hwid = of_read_number(cell, of_n_addr_cells(dn));
455 /*
456 * Non affinity bits must be set to 0 in the DT
457 */
458 if (hwid & ~MPIDR_HWID_BITMASK) {
459 pr_err("%s: invalid reg property\n", dn->full_name);
460 return INVALID_HWID;
461 }
462 return hwid;
463 }
464
465 /*
466 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
467 * entries and check for duplicates. If any is found just ignore the
468 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
469 * matching valid MPIDR values.
470 */
471 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
472 {
473 unsigned int i;
474
475 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
476 if (cpu_logical_map(i) == hwid)
477 return true;
478 return false;
479 }
480
481 /*
482 * Initialize cpu operations for a logical cpu and
483 * set it in the possible mask on success
484 */
485 static int __init smp_cpu_setup(int cpu)
486 {
487 if (cpu_read_ops(cpu))
488 return -ENODEV;
489
490 if (cpu_ops[cpu]->cpu_init(cpu))
491 return -ENODEV;
492
493 set_cpu_possible(cpu, true);
494
495 return 0;
496 }
497
498 static bool bootcpu_valid __initdata;
499 static unsigned int cpu_count = 1;
500
501 #ifdef CONFIG_ACPI
502 /*
503 * acpi_map_gic_cpu_interface - parse processor MADT entry
504 *
505 * Carry out sanity checks on MADT processor entry and initialize
506 * cpu_logical_map on success
507 */
508 static void __init
509 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
510 {
511 u64 hwid = processor->arm_mpidr;
512
513 if (!(processor->flags & ACPI_MADT_ENABLED)) {
514 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
515 return;
516 }
517
518 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
519 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
520 return;
521 }
522
523 if (is_mpidr_duplicate(cpu_count, hwid)) {
524 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
525 return;
526 }
527
528 /* Check if GICC structure of boot CPU is available in the MADT */
529 if (cpu_logical_map(0) == hwid) {
530 if (bootcpu_valid) {
531 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
532 hwid);
533 return;
534 }
535 bootcpu_valid = true;
536 return;
537 }
538
539 if (cpu_count >= NR_CPUS)
540 return;
541
542 /* map the logical cpu id to cpu MPIDR */
543 cpu_logical_map(cpu_count) = hwid;
544
545 /*
546 * Set-up the ACPI parking protocol cpu entries
547 * while initializing the cpu_logical_map to
548 * avoid parsing MADT entries multiple times for
549 * nothing (ie a valid cpu_logical_map entry should
550 * contain a valid parking protocol data set to
551 * initialize the cpu if the parking protocol is
552 * the only available enable method).
553 */
554 acpi_set_mailbox_entry(cpu_count, processor);
555
556 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
557
558 cpu_count++;
559 }
560
561 static int __init
562 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
563 const unsigned long end)
564 {
565 struct acpi_madt_generic_interrupt *processor;
566
567 processor = (struct acpi_madt_generic_interrupt *)header;
568 if (BAD_MADT_GICC_ENTRY(processor, end))
569 return -EINVAL;
570
571 acpi_table_print_madt_entry(header);
572
573 acpi_map_gic_cpu_interface(processor);
574
575 return 0;
576 }
577 #else
578 #define acpi_table_parse_madt(...) do { } while (0)
579 #endif
580
581 /*
582 * Enumerate the possible CPU set from the device tree and build the
583 * cpu logical map array containing MPIDR values related to logical
584 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
585 */
586 static void __init of_parse_and_init_cpus(void)
587 {
588 struct device_node *dn = NULL;
589
590 while ((dn = of_find_node_by_type(dn, "cpu"))) {
591 u64 hwid = of_get_cpu_mpidr(dn);
592
593 if (hwid == INVALID_HWID)
594 goto next;
595
596 if (is_mpidr_duplicate(cpu_count, hwid)) {
597 pr_err("%s: duplicate cpu reg properties in the DT\n",
598 dn->full_name);
599 goto next;
600 }
601
602 /*
603 * The numbering scheme requires that the boot CPU
604 * must be assigned logical id 0. Record it so that
605 * the logical map built from DT is validated and can
606 * be used.
607 */
608 if (hwid == cpu_logical_map(0)) {
609 if (bootcpu_valid) {
610 pr_err("%s: duplicate boot cpu reg property in DT\n",
611 dn->full_name);
612 goto next;
613 }
614
615 bootcpu_valid = true;
616
617 /*
618 * cpu_logical_map has already been
619 * initialized and the boot cpu doesn't need
620 * the enable-method so continue without
621 * incrementing cpu.
622 */
623 continue;
624 }
625
626 if (cpu_count >= NR_CPUS)
627 goto next;
628
629 pr_debug("cpu logical map 0x%llx\n", hwid);
630 cpu_logical_map(cpu_count) = hwid;
631
632 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
633 next:
634 cpu_count++;
635 }
636 }
637
638 /*
639 * Enumerate the possible CPU set from the device tree or ACPI and build the
640 * cpu logical map array containing MPIDR values related to logical
641 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
642 */
643 void __init smp_init_cpus(void)
644 {
645 int i;
646
647 if (acpi_disabled)
648 of_parse_and_init_cpus();
649 else
650 /*
651 * do a walk of MADT to determine how many CPUs
652 * we have including disabled CPUs, and get information
653 * we need for SMP init
654 */
655 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
656 acpi_parse_gic_cpu_interface, 0);
657
658 if (cpu_count > nr_cpu_ids)
659 pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n",
660 cpu_count, nr_cpu_ids);
661
662 if (!bootcpu_valid) {
663 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
664 return;
665 }
666
667 /*
668 * We need to set the cpu_logical_map entries before enabling
669 * the cpus so that cpu processor description entries (DT cpu nodes
670 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
671 * with entries in cpu_logical_map while initializing the cpus.
672 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
673 */
674 for (i = 1; i < nr_cpu_ids; i++) {
675 if (cpu_logical_map(i) != INVALID_HWID) {
676 if (smp_cpu_setup(i))
677 cpu_logical_map(i) = INVALID_HWID;
678 }
679 }
680 }
681
682 void __init smp_prepare_cpus(unsigned int max_cpus)
683 {
684 int err;
685 unsigned int cpu;
686 unsigned int this_cpu;
687
688 init_cpu_topology();
689
690 this_cpu = smp_processor_id();
691 store_cpu_topology(this_cpu);
692 numa_store_cpu_info(this_cpu);
693
694 /*
695 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
696 * secondary CPUs present.
697 */
698 if (max_cpus == 0)
699 return;
700
701 /*
702 * Initialise the present map (which describes the set of CPUs
703 * actually populated at the present time) and release the
704 * secondaries from the bootloader.
705 */
706 for_each_possible_cpu(cpu) {
707
708 if (cpu == smp_processor_id())
709 continue;
710
711 if (!cpu_ops[cpu])
712 continue;
713
714 err = cpu_ops[cpu]->cpu_prepare(cpu);
715 if (err)
716 continue;
717
718 set_cpu_present(cpu, true);
719 numa_store_cpu_info(cpu);
720 }
721 }
722
723 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
724
725 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
726 {
727 __smp_cross_call = fn;
728 }
729
730 static const char *ipi_types[NR_IPI] __tracepoint_string = {
731 #define S(x,s) [x] = s
732 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
733 S(IPI_CALL_FUNC, "Function call interrupts"),
734 S(IPI_CPU_STOP, "CPU stop interrupts"),
735 S(IPI_TIMER, "Timer broadcast interrupts"),
736 S(IPI_IRQ_WORK, "IRQ work interrupts"),
737 S(IPI_WAKEUP, "CPU wake-up interrupts"),
738 };
739
740 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
741 {
742 trace_ipi_raise(target, ipi_types[ipinr]);
743 __smp_cross_call(target, ipinr);
744 }
745
746 void show_ipi_list(struct seq_file *p, int prec)
747 {
748 unsigned int cpu, i;
749
750 for (i = 0; i < NR_IPI; i++) {
751 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
752 prec >= 4 ? " " : "");
753 for_each_online_cpu(cpu)
754 seq_printf(p, "%10u ",
755 __get_irq_stat(cpu, ipi_irqs[i]));
756 seq_printf(p, " %s\n", ipi_types[i]);
757 }
758 }
759
760 u64 smp_irq_stat_cpu(unsigned int cpu)
761 {
762 u64 sum = 0;
763 int i;
764
765 for (i = 0; i < NR_IPI; i++)
766 sum += __get_irq_stat(cpu, ipi_irqs[i]);
767
768 return sum;
769 }
770
771 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
772 {
773 smp_cross_call(mask, IPI_CALL_FUNC);
774 }
775
776 void arch_send_call_function_single_ipi(int cpu)
777 {
778 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
779 }
780
781 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
782 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
783 {
784 smp_cross_call(mask, IPI_WAKEUP);
785 }
786 #endif
787
788 #ifdef CONFIG_IRQ_WORK
789 void arch_irq_work_raise(void)
790 {
791 if (__smp_cross_call)
792 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
793 }
794 #endif
795
796 /*
797 * ipi_cpu_stop - handle IPI from smp_send_stop()
798 */
799 static void ipi_cpu_stop(unsigned int cpu)
800 {
801 set_cpu_online(cpu, false);
802
803 local_irq_disable();
804
805 while (1)
806 cpu_relax();
807 }
808
809 /*
810 * Main handler for inter-processor interrupts
811 */
812 void handle_IPI(int ipinr, struct pt_regs *regs)
813 {
814 unsigned int cpu = smp_processor_id();
815 struct pt_regs *old_regs = set_irq_regs(regs);
816
817 if ((unsigned)ipinr < NR_IPI) {
818 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
819 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
820 }
821
822 switch (ipinr) {
823 case IPI_RESCHEDULE:
824 scheduler_ipi();
825 break;
826
827 case IPI_CALL_FUNC:
828 irq_enter();
829 generic_smp_call_function_interrupt();
830 irq_exit();
831 break;
832
833 case IPI_CPU_STOP:
834 irq_enter();
835 ipi_cpu_stop(cpu);
836 irq_exit();
837 break;
838
839 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
840 case IPI_TIMER:
841 irq_enter();
842 tick_receive_broadcast();
843 irq_exit();
844 break;
845 #endif
846
847 #ifdef CONFIG_IRQ_WORK
848 case IPI_IRQ_WORK:
849 irq_enter();
850 irq_work_run();
851 irq_exit();
852 break;
853 #endif
854
855 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
856 case IPI_WAKEUP:
857 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
858 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
859 cpu);
860 break;
861 #endif
862
863 default:
864 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
865 break;
866 }
867
868 if ((unsigned)ipinr < NR_IPI)
869 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
870 set_irq_regs(old_regs);
871 }
872
873 void smp_send_reschedule(int cpu)
874 {
875 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
876 }
877
878 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
879 void tick_broadcast(const struct cpumask *mask)
880 {
881 smp_cross_call(mask, IPI_TIMER);
882 }
883 #endif
884
885 void smp_send_stop(void)
886 {
887 unsigned long timeout;
888
889 if (num_online_cpus() > 1) {
890 cpumask_t mask;
891
892 cpumask_copy(&mask, cpu_online_mask);
893 cpumask_clear_cpu(smp_processor_id(), &mask);
894
895 if (system_state == SYSTEM_BOOTING ||
896 system_state == SYSTEM_RUNNING)
897 pr_crit("SMP: stopping secondary CPUs\n");
898 smp_cross_call(&mask, IPI_CPU_STOP);
899 }
900
901 /* Wait up to one second for other CPUs to stop */
902 timeout = USEC_PER_SEC;
903 while (num_online_cpus() > 1 && timeout--)
904 udelay(1);
905
906 if (num_online_cpus() > 1)
907 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
908 cpumask_pr_args(cpu_online_mask));
909 }
910
911 /*
912 * not supported here
913 */
914 int setup_profiling_timer(unsigned int multiplier)
915 {
916 return -EINVAL;
917 }
918
919 static bool have_cpu_die(void)
920 {
921 #ifdef CONFIG_HOTPLUG_CPU
922 int any_cpu = raw_smp_processor_id();
923
924 if (cpu_ops[any_cpu]->cpu_die)
925 return true;
926 #endif
927 return false;
928 }
929
930 bool cpus_are_stuck_in_kernel(void)
931 {
932 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
933
934 return !!cpus_stuck_in_kernel || smp_spin_tables;
935 }
This page took 0.0507 seconds and 5 git commands to generate.