Merge branches 'x86/amd', 'x86/vt-d', 'arm/exynos', 'arm/mediatek' and 'arm/renesas...
[deliverable/linux.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2 * SWIOTLB-based DMA API implementation
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/genalloc.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dma-contiguous.h>
28 #include <linux/vmalloc.h>
29 #include <linux/swiotlb.h>
30
31 #include <asm/cacheflush.h>
32
33 static int swiotlb __read_mostly;
34
35 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
36 bool coherent)
37 {
38 if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
39 return pgprot_writecombine(prot);
40 return prot;
41 }
42
43 static struct gen_pool *atomic_pool;
44
45 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
46 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
47
48 static int __init early_coherent_pool(char *p)
49 {
50 atomic_pool_size = memparse(p, &p);
51 return 0;
52 }
53 early_param("coherent_pool", early_coherent_pool);
54
55 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
56 {
57 unsigned long val;
58 void *ptr = NULL;
59
60 if (!atomic_pool) {
61 WARN(1, "coherent pool not initialised!\n");
62 return NULL;
63 }
64
65 val = gen_pool_alloc(atomic_pool, size);
66 if (val) {
67 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
68
69 *ret_page = phys_to_page(phys);
70 ptr = (void *)val;
71 memset(ptr, 0, size);
72 }
73
74 return ptr;
75 }
76
77 static bool __in_atomic_pool(void *start, size_t size)
78 {
79 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
80 }
81
82 static int __free_from_pool(void *start, size_t size)
83 {
84 if (!__in_atomic_pool(start, size))
85 return 0;
86
87 gen_pool_free(atomic_pool, (unsigned long)start, size);
88
89 return 1;
90 }
91
92 static void *__dma_alloc_coherent(struct device *dev, size_t size,
93 dma_addr_t *dma_handle, gfp_t flags,
94 unsigned long attrs)
95 {
96 if (dev == NULL) {
97 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
98 return NULL;
99 }
100
101 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
102 dev->coherent_dma_mask <= DMA_BIT_MASK(32))
103 flags |= GFP_DMA;
104 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
105 struct page *page;
106 void *addr;
107
108 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
109 get_order(size));
110 if (!page)
111 return NULL;
112
113 *dma_handle = phys_to_dma(dev, page_to_phys(page));
114 addr = page_address(page);
115 memset(addr, 0, size);
116 return addr;
117 } else {
118 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
119 }
120 }
121
122 static void __dma_free_coherent(struct device *dev, size_t size,
123 void *vaddr, dma_addr_t dma_handle,
124 unsigned long attrs)
125 {
126 bool freed;
127 phys_addr_t paddr = dma_to_phys(dev, dma_handle);
128
129 if (dev == NULL) {
130 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
131 return;
132 }
133
134 freed = dma_release_from_contiguous(dev,
135 phys_to_page(paddr),
136 size >> PAGE_SHIFT);
137 if (!freed)
138 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
139 }
140
141 static void *__dma_alloc(struct device *dev, size_t size,
142 dma_addr_t *dma_handle, gfp_t flags,
143 unsigned long attrs)
144 {
145 struct page *page;
146 void *ptr, *coherent_ptr;
147 bool coherent = is_device_dma_coherent(dev);
148 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
149
150 size = PAGE_ALIGN(size);
151
152 if (!coherent && !gfpflags_allow_blocking(flags)) {
153 struct page *page = NULL;
154 void *addr = __alloc_from_pool(size, &page, flags);
155
156 if (addr)
157 *dma_handle = phys_to_dma(dev, page_to_phys(page));
158
159 return addr;
160 }
161
162 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
163 if (!ptr)
164 goto no_mem;
165
166 /* no need for non-cacheable mapping if coherent */
167 if (coherent)
168 return ptr;
169
170 /* remove any dirty cache lines on the kernel alias */
171 __dma_flush_range(ptr, ptr + size);
172
173 /* create a coherent mapping */
174 page = virt_to_page(ptr);
175 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
176 prot, NULL);
177 if (!coherent_ptr)
178 goto no_map;
179
180 return coherent_ptr;
181
182 no_map:
183 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
184 no_mem:
185 *dma_handle = DMA_ERROR_CODE;
186 return NULL;
187 }
188
189 static void __dma_free(struct device *dev, size_t size,
190 void *vaddr, dma_addr_t dma_handle,
191 unsigned long attrs)
192 {
193 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
194
195 size = PAGE_ALIGN(size);
196
197 if (!is_device_dma_coherent(dev)) {
198 if (__free_from_pool(vaddr, size))
199 return;
200 vunmap(vaddr);
201 }
202 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
203 }
204
205 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
206 unsigned long offset, size_t size,
207 enum dma_data_direction dir,
208 unsigned long attrs)
209 {
210 dma_addr_t dev_addr;
211
212 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
213 if (!is_device_dma_coherent(dev))
214 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
215
216 return dev_addr;
217 }
218
219
220 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
221 size_t size, enum dma_data_direction dir,
222 unsigned long attrs)
223 {
224 if (!is_device_dma_coherent(dev))
225 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
226 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
227 }
228
229 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
230 int nelems, enum dma_data_direction dir,
231 unsigned long attrs)
232 {
233 struct scatterlist *sg;
234 int i, ret;
235
236 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
237 if (!is_device_dma_coherent(dev))
238 for_each_sg(sgl, sg, ret, i)
239 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
240 sg->length, dir);
241
242 return ret;
243 }
244
245 static void __swiotlb_unmap_sg_attrs(struct device *dev,
246 struct scatterlist *sgl, int nelems,
247 enum dma_data_direction dir,
248 unsigned long attrs)
249 {
250 struct scatterlist *sg;
251 int i;
252
253 if (!is_device_dma_coherent(dev))
254 for_each_sg(sgl, sg, nelems, i)
255 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
256 sg->length, dir);
257 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
258 }
259
260 static void __swiotlb_sync_single_for_cpu(struct device *dev,
261 dma_addr_t dev_addr, size_t size,
262 enum dma_data_direction dir)
263 {
264 if (!is_device_dma_coherent(dev))
265 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
266 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
267 }
268
269 static void __swiotlb_sync_single_for_device(struct device *dev,
270 dma_addr_t dev_addr, size_t size,
271 enum dma_data_direction dir)
272 {
273 swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
274 if (!is_device_dma_coherent(dev))
275 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
276 }
277
278 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
279 struct scatterlist *sgl, int nelems,
280 enum dma_data_direction dir)
281 {
282 struct scatterlist *sg;
283 int i;
284
285 if (!is_device_dma_coherent(dev))
286 for_each_sg(sgl, sg, nelems, i)
287 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
288 sg->length, dir);
289 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
290 }
291
292 static void __swiotlb_sync_sg_for_device(struct device *dev,
293 struct scatterlist *sgl, int nelems,
294 enum dma_data_direction dir)
295 {
296 struct scatterlist *sg;
297 int i;
298
299 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
300 if (!is_device_dma_coherent(dev))
301 for_each_sg(sgl, sg, nelems, i)
302 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
303 sg->length, dir);
304 }
305
306 static int __swiotlb_mmap(struct device *dev,
307 struct vm_area_struct *vma,
308 void *cpu_addr, dma_addr_t dma_addr, size_t size,
309 unsigned long attrs)
310 {
311 int ret = -ENXIO;
312 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
313 PAGE_SHIFT;
314 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
315 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
316 unsigned long off = vma->vm_pgoff;
317
318 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
319 is_device_dma_coherent(dev));
320
321 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
322 return ret;
323
324 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
325 ret = remap_pfn_range(vma, vma->vm_start,
326 pfn + off,
327 vma->vm_end - vma->vm_start,
328 vma->vm_page_prot);
329 }
330
331 return ret;
332 }
333
334 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
335 void *cpu_addr, dma_addr_t handle, size_t size,
336 unsigned long attrs)
337 {
338 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
339
340 if (!ret)
341 sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
342 PAGE_ALIGN(size), 0);
343
344 return ret;
345 }
346
347 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
348 {
349 if (swiotlb)
350 return swiotlb_dma_supported(hwdev, mask);
351 return 1;
352 }
353
354 static struct dma_map_ops swiotlb_dma_ops = {
355 .alloc = __dma_alloc,
356 .free = __dma_free,
357 .mmap = __swiotlb_mmap,
358 .get_sgtable = __swiotlb_get_sgtable,
359 .map_page = __swiotlb_map_page,
360 .unmap_page = __swiotlb_unmap_page,
361 .map_sg = __swiotlb_map_sg_attrs,
362 .unmap_sg = __swiotlb_unmap_sg_attrs,
363 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
364 .sync_single_for_device = __swiotlb_sync_single_for_device,
365 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
366 .sync_sg_for_device = __swiotlb_sync_sg_for_device,
367 .dma_supported = __swiotlb_dma_supported,
368 .mapping_error = swiotlb_dma_mapping_error,
369 };
370
371 static int __init atomic_pool_init(void)
372 {
373 pgprot_t prot = __pgprot(PROT_NORMAL_NC);
374 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
375 struct page *page;
376 void *addr;
377 unsigned int pool_size_order = get_order(atomic_pool_size);
378
379 if (dev_get_cma_area(NULL))
380 page = dma_alloc_from_contiguous(NULL, nr_pages,
381 pool_size_order);
382 else
383 page = alloc_pages(GFP_DMA, pool_size_order);
384
385 if (page) {
386 int ret;
387 void *page_addr = page_address(page);
388
389 memset(page_addr, 0, atomic_pool_size);
390 __dma_flush_range(page_addr, page_addr + atomic_pool_size);
391
392 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
393 if (!atomic_pool)
394 goto free_page;
395
396 addr = dma_common_contiguous_remap(page, atomic_pool_size,
397 VM_USERMAP, prot, atomic_pool_init);
398
399 if (!addr)
400 goto destroy_genpool;
401
402 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
403 page_to_phys(page),
404 atomic_pool_size, -1);
405 if (ret)
406 goto remove_mapping;
407
408 gen_pool_set_algo(atomic_pool,
409 gen_pool_first_fit_order_align,
410 (void *)PAGE_SHIFT);
411
412 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
413 atomic_pool_size / 1024);
414 return 0;
415 }
416 goto out;
417
418 remove_mapping:
419 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
420 destroy_genpool:
421 gen_pool_destroy(atomic_pool);
422 atomic_pool = NULL;
423 free_page:
424 if (!dma_release_from_contiguous(NULL, page, nr_pages))
425 __free_pages(page, pool_size_order);
426 out:
427 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
428 atomic_pool_size / 1024);
429 return -ENOMEM;
430 }
431
432 /********************************************
433 * The following APIs are for dummy DMA ops *
434 ********************************************/
435
436 static void *__dummy_alloc(struct device *dev, size_t size,
437 dma_addr_t *dma_handle, gfp_t flags,
438 unsigned long attrs)
439 {
440 return NULL;
441 }
442
443 static void __dummy_free(struct device *dev, size_t size,
444 void *vaddr, dma_addr_t dma_handle,
445 unsigned long attrs)
446 {
447 }
448
449 static int __dummy_mmap(struct device *dev,
450 struct vm_area_struct *vma,
451 void *cpu_addr, dma_addr_t dma_addr, size_t size,
452 unsigned long attrs)
453 {
454 return -ENXIO;
455 }
456
457 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
458 unsigned long offset, size_t size,
459 enum dma_data_direction dir,
460 unsigned long attrs)
461 {
462 return DMA_ERROR_CODE;
463 }
464
465 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
466 size_t size, enum dma_data_direction dir,
467 unsigned long attrs)
468 {
469 }
470
471 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
472 int nelems, enum dma_data_direction dir,
473 unsigned long attrs)
474 {
475 return 0;
476 }
477
478 static void __dummy_unmap_sg(struct device *dev,
479 struct scatterlist *sgl, int nelems,
480 enum dma_data_direction dir,
481 unsigned long attrs)
482 {
483 }
484
485 static void __dummy_sync_single(struct device *dev,
486 dma_addr_t dev_addr, size_t size,
487 enum dma_data_direction dir)
488 {
489 }
490
491 static void __dummy_sync_sg(struct device *dev,
492 struct scatterlist *sgl, int nelems,
493 enum dma_data_direction dir)
494 {
495 }
496
497 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
498 {
499 return 1;
500 }
501
502 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
503 {
504 return 0;
505 }
506
507 struct dma_map_ops dummy_dma_ops = {
508 .alloc = __dummy_alloc,
509 .free = __dummy_free,
510 .mmap = __dummy_mmap,
511 .map_page = __dummy_map_page,
512 .unmap_page = __dummy_unmap_page,
513 .map_sg = __dummy_map_sg,
514 .unmap_sg = __dummy_unmap_sg,
515 .sync_single_for_cpu = __dummy_sync_single,
516 .sync_single_for_device = __dummy_sync_single,
517 .sync_sg_for_cpu = __dummy_sync_sg,
518 .sync_sg_for_device = __dummy_sync_sg,
519 .mapping_error = __dummy_mapping_error,
520 .dma_supported = __dummy_dma_supported,
521 };
522 EXPORT_SYMBOL(dummy_dma_ops);
523
524 static int __init arm64_dma_init(void)
525 {
526 if (swiotlb_force || max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
527 swiotlb = 1;
528
529 return atomic_pool_init();
530 }
531 arch_initcall(arm64_dma_init);
532
533 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
534
535 static int __init dma_debug_do_init(void)
536 {
537 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
538 return 0;
539 }
540 fs_initcall(dma_debug_do_init);
541
542
543 #ifdef CONFIG_IOMMU_DMA
544 #include <linux/dma-iommu.h>
545 #include <linux/platform_device.h>
546 #include <linux/amba/bus.h>
547
548 /* Thankfully, all cache ops are by VA so we can ignore phys here */
549 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
550 {
551 __dma_flush_range(virt, virt + PAGE_SIZE);
552 }
553
554 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
555 dma_addr_t *handle, gfp_t gfp,
556 unsigned long attrs)
557 {
558 bool coherent = is_device_dma_coherent(dev);
559 int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
560 size_t iosize = size;
561 void *addr;
562
563 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
564 return NULL;
565
566 size = PAGE_ALIGN(size);
567
568 /*
569 * Some drivers rely on this, and we probably don't want the
570 * possibility of stale kernel data being read by devices anyway.
571 */
572 gfp |= __GFP_ZERO;
573
574 if (gfpflags_allow_blocking(gfp)) {
575 struct page **pages;
576 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
577
578 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
579 handle, flush_page);
580 if (!pages)
581 return NULL;
582
583 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
584 __builtin_return_address(0));
585 if (!addr)
586 iommu_dma_free(dev, pages, iosize, handle);
587 } else {
588 struct page *page;
589 /*
590 * In atomic context we can't remap anything, so we'll only
591 * get the virtually contiguous buffer we need by way of a
592 * physically contiguous allocation.
593 */
594 if (coherent) {
595 page = alloc_pages(gfp, get_order(size));
596 addr = page ? page_address(page) : NULL;
597 } else {
598 addr = __alloc_from_pool(size, &page, gfp);
599 }
600 if (!addr)
601 return NULL;
602
603 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
604 if (iommu_dma_mapping_error(dev, *handle)) {
605 if (coherent)
606 __free_pages(page, get_order(size));
607 else
608 __free_from_pool(addr, size);
609 addr = NULL;
610 }
611 }
612 return addr;
613 }
614
615 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
616 dma_addr_t handle, unsigned long attrs)
617 {
618 size_t iosize = size;
619
620 size = PAGE_ALIGN(size);
621 /*
622 * @cpu_addr will be one of 3 things depending on how it was allocated:
623 * - A remapped array of pages from iommu_dma_alloc(), for all
624 * non-atomic allocations.
625 * - A non-cacheable alias from the atomic pool, for atomic
626 * allocations by non-coherent devices.
627 * - A normal lowmem address, for atomic allocations by
628 * coherent devices.
629 * Hence how dodgy the below logic looks...
630 */
631 if (__in_atomic_pool(cpu_addr, size)) {
632 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
633 __free_from_pool(cpu_addr, size);
634 } else if (is_vmalloc_addr(cpu_addr)){
635 struct vm_struct *area = find_vm_area(cpu_addr);
636
637 if (WARN_ON(!area || !area->pages))
638 return;
639 iommu_dma_free(dev, area->pages, iosize, &handle);
640 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
641 } else {
642 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
643 __free_pages(virt_to_page(cpu_addr), get_order(size));
644 }
645 }
646
647 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
648 void *cpu_addr, dma_addr_t dma_addr, size_t size,
649 unsigned long attrs)
650 {
651 struct vm_struct *area;
652 int ret;
653
654 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
655 is_device_dma_coherent(dev));
656
657 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
658 return ret;
659
660 area = find_vm_area(cpu_addr);
661 if (WARN_ON(!area || !area->pages))
662 return -ENXIO;
663
664 return iommu_dma_mmap(area->pages, size, vma);
665 }
666
667 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
668 void *cpu_addr, dma_addr_t dma_addr,
669 size_t size, unsigned long attrs)
670 {
671 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
672 struct vm_struct *area = find_vm_area(cpu_addr);
673
674 if (WARN_ON(!area || !area->pages))
675 return -ENXIO;
676
677 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
678 GFP_KERNEL);
679 }
680
681 static void __iommu_sync_single_for_cpu(struct device *dev,
682 dma_addr_t dev_addr, size_t size,
683 enum dma_data_direction dir)
684 {
685 phys_addr_t phys;
686
687 if (is_device_dma_coherent(dev))
688 return;
689
690 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
691 __dma_unmap_area(phys_to_virt(phys), size, dir);
692 }
693
694 static void __iommu_sync_single_for_device(struct device *dev,
695 dma_addr_t dev_addr, size_t size,
696 enum dma_data_direction dir)
697 {
698 phys_addr_t phys;
699
700 if (is_device_dma_coherent(dev))
701 return;
702
703 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
704 __dma_map_area(phys_to_virt(phys), size, dir);
705 }
706
707 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
708 unsigned long offset, size_t size,
709 enum dma_data_direction dir,
710 unsigned long attrs)
711 {
712 bool coherent = is_device_dma_coherent(dev);
713 int prot = dma_direction_to_prot(dir, coherent);
714 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
715
716 if (!iommu_dma_mapping_error(dev, dev_addr) &&
717 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
718 __iommu_sync_single_for_device(dev, dev_addr, size, dir);
719
720 return dev_addr;
721 }
722
723 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
724 size_t size, enum dma_data_direction dir,
725 unsigned long attrs)
726 {
727 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
728 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
729
730 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
731 }
732
733 static void __iommu_sync_sg_for_cpu(struct device *dev,
734 struct scatterlist *sgl, int nelems,
735 enum dma_data_direction dir)
736 {
737 struct scatterlist *sg;
738 int i;
739
740 if (is_device_dma_coherent(dev))
741 return;
742
743 for_each_sg(sgl, sg, nelems, i)
744 __dma_unmap_area(sg_virt(sg), sg->length, dir);
745 }
746
747 static void __iommu_sync_sg_for_device(struct device *dev,
748 struct scatterlist *sgl, int nelems,
749 enum dma_data_direction dir)
750 {
751 struct scatterlist *sg;
752 int i;
753
754 if (is_device_dma_coherent(dev))
755 return;
756
757 for_each_sg(sgl, sg, nelems, i)
758 __dma_map_area(sg_virt(sg), sg->length, dir);
759 }
760
761 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
762 int nelems, enum dma_data_direction dir,
763 unsigned long attrs)
764 {
765 bool coherent = is_device_dma_coherent(dev);
766
767 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
768 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
769
770 return iommu_dma_map_sg(dev, sgl, nelems,
771 dma_direction_to_prot(dir, coherent));
772 }
773
774 static void __iommu_unmap_sg_attrs(struct device *dev,
775 struct scatterlist *sgl, int nelems,
776 enum dma_data_direction dir,
777 unsigned long attrs)
778 {
779 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
780 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
781
782 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
783 }
784
785 static struct dma_map_ops iommu_dma_ops = {
786 .alloc = __iommu_alloc_attrs,
787 .free = __iommu_free_attrs,
788 .mmap = __iommu_mmap_attrs,
789 .get_sgtable = __iommu_get_sgtable,
790 .map_page = __iommu_map_page,
791 .unmap_page = __iommu_unmap_page,
792 .map_sg = __iommu_map_sg_attrs,
793 .unmap_sg = __iommu_unmap_sg_attrs,
794 .sync_single_for_cpu = __iommu_sync_single_for_cpu,
795 .sync_single_for_device = __iommu_sync_single_for_device,
796 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
797 .sync_sg_for_device = __iommu_sync_sg_for_device,
798 .dma_supported = iommu_dma_supported,
799 .mapping_error = iommu_dma_mapping_error,
800 };
801
802 /*
803 * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
804 * everything it needs to - the device is only partially created and the
805 * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
806 * need this delayed attachment dance. Once IOMMU probe ordering is sorted
807 * to move the arch_setup_dma_ops() call later, all the notifier bits below
808 * become unnecessary, and will go away.
809 */
810 struct iommu_dma_notifier_data {
811 struct list_head list;
812 struct device *dev;
813 const struct iommu_ops *ops;
814 u64 dma_base;
815 u64 size;
816 };
817 static LIST_HEAD(iommu_dma_masters);
818 static DEFINE_MUTEX(iommu_dma_notifier_lock);
819
820 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
821 u64 dma_base, u64 size)
822 {
823 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
824
825 /*
826 * If the IOMMU driver has the DMA domain support that we require,
827 * then the IOMMU core will have already configured a group for this
828 * device, and allocated the default domain for that group.
829 */
830 if (!domain || iommu_dma_init_domain(domain, dma_base, size)) {
831 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
832 dev_name(dev));
833 return false;
834 }
835
836 dev->archdata.dma_ops = &iommu_dma_ops;
837 return true;
838 }
839
840 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
841 u64 dma_base, u64 size)
842 {
843 struct iommu_dma_notifier_data *iommudata;
844
845 iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
846 if (!iommudata)
847 return;
848
849 iommudata->dev = dev;
850 iommudata->ops = ops;
851 iommudata->dma_base = dma_base;
852 iommudata->size = size;
853
854 mutex_lock(&iommu_dma_notifier_lock);
855 list_add(&iommudata->list, &iommu_dma_masters);
856 mutex_unlock(&iommu_dma_notifier_lock);
857 }
858
859 static int __iommu_attach_notifier(struct notifier_block *nb,
860 unsigned long action, void *data)
861 {
862 struct iommu_dma_notifier_data *master, *tmp;
863
864 if (action != BUS_NOTIFY_BIND_DRIVER)
865 return 0;
866
867 mutex_lock(&iommu_dma_notifier_lock);
868 list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
869 if (data == master->dev && do_iommu_attach(master->dev,
870 master->ops, master->dma_base, master->size)) {
871 list_del(&master->list);
872 kfree(master);
873 break;
874 }
875 }
876 mutex_unlock(&iommu_dma_notifier_lock);
877 return 0;
878 }
879
880 static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
881 {
882 struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
883 int ret;
884
885 if (!nb)
886 return -ENOMEM;
887
888 nb->notifier_call = __iommu_attach_notifier;
889
890 ret = bus_register_notifier(bus, nb);
891 if (ret) {
892 pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
893 bus->name);
894 kfree(nb);
895 }
896 return ret;
897 }
898
899 static int __init __iommu_dma_init(void)
900 {
901 int ret;
902
903 ret = iommu_dma_init();
904 if (!ret)
905 ret = register_iommu_dma_ops_notifier(&platform_bus_type);
906 if (!ret)
907 ret = register_iommu_dma_ops_notifier(&amba_bustype);
908 #ifdef CONFIG_PCI
909 if (!ret)
910 ret = register_iommu_dma_ops_notifier(&pci_bus_type);
911 #endif
912 return ret;
913 }
914 arch_initcall(__iommu_dma_init);
915
916 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
917 const struct iommu_ops *ops)
918 {
919 struct iommu_group *group;
920
921 if (!ops)
922 return;
923 /*
924 * TODO: As a concession to the future, we're ready to handle being
925 * called both early and late (i.e. after bus_add_device). Once all
926 * the platform bus code is reworked to call us late and the notifier
927 * junk above goes away, move the body of do_iommu_attach here.
928 */
929 group = iommu_group_get(dev);
930 if (group) {
931 do_iommu_attach(dev, ops, dma_base, size);
932 iommu_group_put(group);
933 } else {
934 queue_iommu_attach(dev, ops, dma_base, size);
935 }
936 }
937
938 void arch_teardown_dma_ops(struct device *dev)
939 {
940 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
941
942 if (WARN_ON(domain))
943 iommu_detach_device(domain, dev);
944
945 dev->archdata.dma_ops = NULL;
946 }
947
948 #else
949
950 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
951 const struct iommu_ops *iommu)
952 { }
953
954 #endif /* CONFIG_IOMMU_DMA */
955
956 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
957 const struct iommu_ops *iommu, bool coherent)
958 {
959 if (!dev->archdata.dma_ops)
960 dev->archdata.dma_ops = &swiotlb_dma_ops;
961
962 dev->archdata.dma_coherent = coherent;
963 __iommu_setup_dma_ops(dev, dma_base, size, iommu);
964 }
This page took 0.050581 seconds and 5 git commands to generate.