Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / arch / ia64 / lib / clear_user.S
1 /*
2 * This routine clears to zero a linear memory buffer in user space.
3 *
4 * Inputs:
5 * in0: address of buffer
6 * in1: length of buffer in bytes
7 * Outputs:
8 * r8: number of bytes that didn't get cleared due to a fault
9 *
10 * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co
11 * Stephane Eranian <eranian@hpl.hp.com>
12 */
13
14 #include <asm/asmmacro.h>
15 #include <asm/export.h>
16
17 //
18 // arguments
19 //
20 #define buf r32
21 #define len r33
22
23 //
24 // local registers
25 //
26 #define cnt r16
27 #define buf2 r17
28 #define saved_lc r18
29 #define saved_pfs r19
30 #define tmp r20
31 #define len2 r21
32 #define len3 r22
33
34 //
35 // Theory of operations:
36 // - we check whether or not the buffer is small, i.e., less than 17
37 // in which case we do the byte by byte loop.
38 //
39 // - Otherwise we go progressively from 1 byte store to 8byte store in
40 // the head part, the body is a 16byte store loop and we finish we the
41 // tail for the last 15 bytes.
42 // The good point about this breakdown is that the long buffer handling
43 // contains only 2 branches.
44 //
45 // The reason for not using shifting & masking for both the head and the
46 // tail is to stay semantically correct. This routine is not supposed
47 // to write bytes outside of the buffer. While most of the time this would
48 // be ok, we can't tolerate a mistake. A classical example is the case
49 // of multithreaded code were to the extra bytes touched is actually owned
50 // by another thread which runs concurrently to ours. Another, less likely,
51 // example is with device drivers where reading an I/O mapped location may
52 // have side effects (same thing for writing).
53 //
54
55 GLOBAL_ENTRY(__do_clear_user)
56 .prologue
57 .save ar.pfs, saved_pfs
58 alloc saved_pfs=ar.pfs,2,0,0,0
59 cmp.eq p6,p0=r0,len // check for zero length
60 .save ar.lc, saved_lc
61 mov saved_lc=ar.lc // preserve ar.lc (slow)
62 .body
63 ;; // avoid WAW on CFM
64 adds tmp=-1,len // br.ctop is repeat/until
65 mov ret0=len // return value is length at this point
66 (p6) br.ret.spnt.many rp
67 ;;
68 cmp.lt p6,p0=16,len // if len > 16 then long memset
69 mov ar.lc=tmp // initialize lc for small count
70 (p6) br.cond.dptk .long_do_clear
71 ;; // WAR on ar.lc
72 //
73 // worst case 16 iterations, avg 8 iterations
74 //
75 // We could have played with the predicates to use the extra
76 // M slot for 2 stores/iteration but the cost the initialization
77 // the various counters compared to how long the loop is supposed
78 // to last on average does not make this solution viable.
79 //
80 1:
81 EX( .Lexit1, st1 [buf]=r0,1 )
82 adds len=-1,len // countdown length using len
83 br.cloop.dptk 1b
84 ;; // avoid RAW on ar.lc
85 //
86 // .Lexit4: comes from byte by byte loop
87 // len contains bytes left
88 .Lexit1:
89 mov ret0=len // faster than using ar.lc
90 mov ar.lc=saved_lc
91 br.ret.sptk.many rp // end of short clear_user
92
93
94 //
95 // At this point we know we have more than 16 bytes to copy
96 // so we focus on alignment (no branches required)
97 //
98 // The use of len/len2 for countdown of the number of bytes left
99 // instead of ret0 is due to the fact that the exception code
100 // changes the values of r8.
101 //
102 .long_do_clear:
103 tbit.nz p6,p0=buf,0 // odd alignment (for long_do_clear)
104 ;;
105 EX( .Lexit3, (p6) st1 [buf]=r0,1 ) // 1-byte aligned
106 (p6) adds len=-1,len;; // sync because buf is modified
107 tbit.nz p6,p0=buf,1
108 ;;
109 EX( .Lexit3, (p6) st2 [buf]=r0,2 ) // 2-byte aligned
110 (p6) adds len=-2,len;;
111 tbit.nz p6,p0=buf,2
112 ;;
113 EX( .Lexit3, (p6) st4 [buf]=r0,4 ) // 4-byte aligned
114 (p6) adds len=-4,len;;
115 tbit.nz p6,p0=buf,3
116 ;;
117 EX( .Lexit3, (p6) st8 [buf]=r0,8 ) // 8-byte aligned
118 (p6) adds len=-8,len;;
119 shr.u cnt=len,4 // number of 128-bit (2x64bit) words
120 ;;
121 cmp.eq p6,p0=r0,cnt
122 adds tmp=-1,cnt
123 (p6) br.cond.dpnt .dotail // we have less than 16 bytes left
124 ;;
125 adds buf2=8,buf // setup second base pointer
126 mov ar.lc=tmp
127 ;;
128
129 //
130 // 16bytes/iteration core loop
131 //
132 // The second store can never generate a fault because
133 // we come into the loop only when we are 16-byte aligned.
134 // This means that if we cross a page then it will always be
135 // in the first store and never in the second.
136 //
137 //
138 // We need to keep track of the remaining length. A possible (optimistic)
139 // way would be to use ar.lc and derive how many byte were left by
140 // doing : left= 16*ar.lc + 16. this would avoid the addition at
141 // every iteration.
142 // However we need to keep the synchronization point. A template
143 // M;;MB does not exist and thus we can keep the addition at no
144 // extra cycle cost (use a nop slot anyway). It also simplifies the
145 // (unlikely) error recovery code
146 //
147
148 2: EX(.Lexit3, st8 [buf]=r0,16 )
149 ;; // needed to get len correct when error
150 st8 [buf2]=r0,16
151 adds len=-16,len
152 br.cloop.dptk 2b
153 ;;
154 mov ar.lc=saved_lc
155 //
156 // tail correction based on len only
157 //
158 // We alternate the use of len3,len2 to allow parallelism and correct
159 // error handling. We also reuse p6/p7 to return correct value.
160 // The addition of len2/len3 does not cost anything more compared to
161 // the regular memset as we had empty slots.
162 //
163 .dotail:
164 mov len2=len // for parallelization of error handling
165 mov len3=len
166 tbit.nz p6,p0=len,3
167 ;;
168 EX( .Lexit2, (p6) st8 [buf]=r0,8 ) // at least 8 bytes
169 (p6) adds len3=-8,len2
170 tbit.nz p7,p6=len,2
171 ;;
172 EX( .Lexit2, (p7) st4 [buf]=r0,4 ) // at least 4 bytes
173 (p7) adds len2=-4,len3
174 tbit.nz p6,p7=len,1
175 ;;
176 EX( .Lexit2, (p6) st2 [buf]=r0,2 ) // at least 2 bytes
177 (p6) adds len3=-2,len2
178 tbit.nz p7,p6=len,0
179 ;;
180 EX( .Lexit2, (p7) st1 [buf]=r0 ) // only 1 byte left
181 mov ret0=r0 // success
182 br.ret.sptk.many rp // end of most likely path
183
184 //
185 // Outlined error handling code
186 //
187
188 //
189 // .Lexit3: comes from core loop, need restore pr/lc
190 // len contains bytes left
191 //
192 //
193 // .Lexit2:
194 // if p6 -> coming from st8 or st2 : len2 contains what's left
195 // if p7 -> coming from st4 or st1 : len3 contains what's left
196 // We must restore lc/pr even though might not have been used.
197 .Lexit2:
198 .pred.rel "mutex", p6, p7
199 (p6) mov len=len2
200 (p7) mov len=len3
201 ;;
202 //
203 // .Lexit4: comes from head, need not restore pr/lc
204 // len contains bytes left
205 //
206 .Lexit3:
207 mov ret0=len
208 mov ar.lc=saved_lc
209 br.ret.sptk.many rp
210 END(__do_clear_user)
211 EXPORT_SYMBOL(__do_clear_user)
This page took 0.036578 seconds and 5 git commands to generate.