Merge remote-tracking branch 'mailbox/mailbox-for-next'
[deliverable/linux.git] / arch / ia64 / lib / memcpy_mck.S
1 /*
2 * Itanium 2-optimized version of memcpy and copy_user function
3 *
4 * Inputs:
5 * in0: destination address
6 * in1: source address
7 * in2: number of bytes to copy
8 * Output:
9 * for memcpy: return dest
10 * for copy_user: return 0 if success,
11 * or number of byte NOT copied if error occurred.
12 *
13 * Copyright (C) 2002 Intel Corp.
14 * Copyright (C) 2002 Ken Chen <kenneth.w.chen@intel.com>
15 */
16 #include <asm/asmmacro.h>
17 #include <asm/page.h>
18 #include <asm/export.h>
19
20 #define EK(y...) EX(y)
21
22 /* McKinley specific optimization */
23
24 #define retval r8
25 #define saved_pfs r31
26 #define saved_lc r10
27 #define saved_pr r11
28 #define saved_in0 r14
29 #define saved_in1 r15
30 #define saved_in2 r16
31
32 #define src0 r2
33 #define src1 r3
34 #define dst0 r17
35 #define dst1 r18
36 #define cnt r9
37
38 /* r19-r30 are temp for each code section */
39 #define PREFETCH_DIST 8
40 #define src_pre_mem r19
41 #define dst_pre_mem r20
42 #define src_pre_l2 r21
43 #define dst_pre_l2 r22
44 #define t1 r23
45 #define t2 r24
46 #define t3 r25
47 #define t4 r26
48 #define t5 t1 // alias!
49 #define t6 t2 // alias!
50 #define t7 t3 // alias!
51 #define n8 r27
52 #define t9 t5 // alias!
53 #define t10 t4 // alias!
54 #define t11 t7 // alias!
55 #define t12 t6 // alias!
56 #define t14 t10 // alias!
57 #define t13 r28
58 #define t15 r29
59 #define tmp r30
60
61 /* defines for long_copy block */
62 #define A 0
63 #define B (PREFETCH_DIST)
64 #define C (B + PREFETCH_DIST)
65 #define D (C + 1)
66 #define N (D + 1)
67 #define Nrot ((N + 7) & ~7)
68
69 /* alias */
70 #define in0 r32
71 #define in1 r33
72 #define in2 r34
73
74 GLOBAL_ENTRY(memcpy)
75 and r28=0x7,in0
76 and r29=0x7,in1
77 mov f6=f0
78 mov retval=in0
79 br.cond.sptk .common_code
80 ;;
81 END(memcpy)
82 EXPORT_SYMBOL(memcpy)
83 GLOBAL_ENTRY(__copy_user)
84 .prologue
85 // check dest alignment
86 and r28=0x7,in0
87 and r29=0x7,in1
88 mov f6=f1
89 mov saved_in0=in0 // save dest pointer
90 mov saved_in1=in1 // save src pointer
91 mov retval=r0 // initialize return value
92 ;;
93 .common_code:
94 cmp.gt p15,p0=8,in2 // check for small size
95 cmp.ne p13,p0=0,r28 // check dest alignment
96 cmp.ne p14,p0=0,r29 // check src alignment
97 add src0=0,in1
98 sub r30=8,r28 // for .align_dest
99 mov saved_in2=in2 // save len
100 ;;
101 add dst0=0,in0
102 add dst1=1,in0 // dest odd index
103 cmp.le p6,p0 = 1,r30 // for .align_dest
104 (p15) br.cond.dpnt .memcpy_short
105 (p13) br.cond.dpnt .align_dest
106 (p14) br.cond.dpnt .unaligned_src
107 ;;
108
109 // both dest and src are aligned on 8-byte boundary
110 .aligned_src:
111 .save ar.pfs, saved_pfs
112 alloc saved_pfs=ar.pfs,3,Nrot-3,0,Nrot
113 .save pr, saved_pr
114 mov saved_pr=pr
115
116 shr.u cnt=in2,7 // this much cache line
117 ;;
118 cmp.lt p6,p0=2*PREFETCH_DIST,cnt
119 cmp.lt p7,p8=1,cnt
120 .save ar.lc, saved_lc
121 mov saved_lc=ar.lc
122 .body
123 add cnt=-1,cnt
124 add src_pre_mem=0,in1 // prefetch src pointer
125 add dst_pre_mem=0,in0 // prefetch dest pointer
126 ;;
127 (p7) mov ar.lc=cnt // prefetch count
128 (p8) mov ar.lc=r0
129 (p6) br.cond.dpnt .long_copy
130 ;;
131
132 .prefetch:
133 lfetch.fault [src_pre_mem], 128
134 lfetch.fault.excl [dst_pre_mem], 128
135 br.cloop.dptk.few .prefetch
136 ;;
137
138 .medium_copy:
139 and tmp=31,in2 // copy length after iteration
140 shr.u r29=in2,5 // number of 32-byte iteration
141 add dst1=8,dst0 // 2nd dest pointer
142 ;;
143 add cnt=-1,r29 // ctop iteration adjustment
144 cmp.eq p10,p0=r29,r0 // do we really need to loop?
145 add src1=8,src0 // 2nd src pointer
146 cmp.le p6,p0=8,tmp
147 ;;
148 cmp.le p7,p0=16,tmp
149 mov ar.lc=cnt // loop setup
150 cmp.eq p16,p17 = r0,r0
151 mov ar.ec=2
152 (p10) br.dpnt.few .aligned_src_tail
153 ;;
154 TEXT_ALIGN(32)
155 1:
156 EX(.ex_handler, (p16) ld8 r34=[src0],16)
157 EK(.ex_handler, (p16) ld8 r38=[src1],16)
158 EX(.ex_handler, (p17) st8 [dst0]=r33,16)
159 EK(.ex_handler, (p17) st8 [dst1]=r37,16)
160 ;;
161 EX(.ex_handler, (p16) ld8 r32=[src0],16)
162 EK(.ex_handler, (p16) ld8 r36=[src1],16)
163 EX(.ex_handler, (p16) st8 [dst0]=r34,16)
164 EK(.ex_handler, (p16) st8 [dst1]=r38,16)
165 br.ctop.dptk.few 1b
166 ;;
167
168 .aligned_src_tail:
169 EX(.ex_handler, (p6) ld8 t1=[src0])
170 mov ar.lc=saved_lc
171 mov ar.pfs=saved_pfs
172 EX(.ex_hndlr_s, (p7) ld8 t2=[src1],8)
173 cmp.le p8,p0=24,tmp
174 and r21=-8,tmp
175 ;;
176 EX(.ex_hndlr_s, (p8) ld8 t3=[src1])
177 EX(.ex_handler, (p6) st8 [dst0]=t1) // store byte 1
178 and in2=7,tmp // remaining length
179 EX(.ex_hndlr_d, (p7) st8 [dst1]=t2,8) // store byte 2
180 add src0=src0,r21 // setting up src pointer
181 add dst0=dst0,r21 // setting up dest pointer
182 ;;
183 EX(.ex_handler, (p8) st8 [dst1]=t3) // store byte 3
184 mov pr=saved_pr,-1
185 br.dptk.many .memcpy_short
186 ;;
187
188 /* code taken from copy_page_mck */
189 .long_copy:
190 .rotr v[2*PREFETCH_DIST]
191 .rotp p[N]
192
193 mov src_pre_mem = src0
194 mov pr.rot = 0x10000
195 mov ar.ec = 1 // special unrolled loop
196
197 mov dst_pre_mem = dst0
198
199 add src_pre_l2 = 8*8, src0
200 add dst_pre_l2 = 8*8, dst0
201 ;;
202 add src0 = 8, src_pre_mem // first t1 src
203 mov ar.lc = 2*PREFETCH_DIST - 1
204 shr.u cnt=in2,7 // number of lines
205 add src1 = 3*8, src_pre_mem // first t3 src
206 add dst0 = 8, dst_pre_mem // first t1 dst
207 add dst1 = 3*8, dst_pre_mem // first t3 dst
208 ;;
209 and tmp=127,in2 // remaining bytes after this block
210 add cnt = -(2*PREFETCH_DIST) - 1, cnt
211 // same as .line_copy loop, but with all predicated-off instructions removed:
212 .prefetch_loop:
213 EX(.ex_hndlr_lcpy_1, (p[A]) ld8 v[A] = [src_pre_mem], 128) // M0
214 EK(.ex_hndlr_lcpy_1, (p[B]) st8 [dst_pre_mem] = v[B], 128) // M2
215 br.ctop.sptk .prefetch_loop
216 ;;
217 cmp.eq p16, p0 = r0, r0 // reset p16 to 1
218 mov ar.lc = cnt
219 mov ar.ec = N // # of stages in pipeline
220 ;;
221 .line_copy:
222 EX(.ex_handler, (p[D]) ld8 t2 = [src0], 3*8) // M0
223 EK(.ex_handler, (p[D]) ld8 t4 = [src1], 3*8) // M1
224 EX(.ex_handler_lcpy, (p[B]) st8 [dst_pre_mem] = v[B], 128) // M2 prefetch dst from memory
225 EK(.ex_handler_lcpy, (p[D]) st8 [dst_pre_l2] = n8, 128) // M3 prefetch dst from L2
226 ;;
227 EX(.ex_handler_lcpy, (p[A]) ld8 v[A] = [src_pre_mem], 128) // M0 prefetch src from memory
228 EK(.ex_handler_lcpy, (p[C]) ld8 n8 = [src_pre_l2], 128) // M1 prefetch src from L2
229 EX(.ex_handler, (p[D]) st8 [dst0] = t1, 8) // M2
230 EK(.ex_handler, (p[D]) st8 [dst1] = t3, 8) // M3
231 ;;
232 EX(.ex_handler, (p[D]) ld8 t5 = [src0], 8)
233 EK(.ex_handler, (p[D]) ld8 t7 = [src1], 3*8)
234 EX(.ex_handler, (p[D]) st8 [dst0] = t2, 3*8)
235 EK(.ex_handler, (p[D]) st8 [dst1] = t4, 3*8)
236 ;;
237 EX(.ex_handler, (p[D]) ld8 t6 = [src0], 3*8)
238 EK(.ex_handler, (p[D]) ld8 t10 = [src1], 8)
239 EX(.ex_handler, (p[D]) st8 [dst0] = t5, 8)
240 EK(.ex_handler, (p[D]) st8 [dst1] = t7, 3*8)
241 ;;
242 EX(.ex_handler, (p[D]) ld8 t9 = [src0], 3*8)
243 EK(.ex_handler, (p[D]) ld8 t11 = [src1], 3*8)
244 EX(.ex_handler, (p[D]) st8 [dst0] = t6, 3*8)
245 EK(.ex_handler, (p[D]) st8 [dst1] = t10, 8)
246 ;;
247 EX(.ex_handler, (p[D]) ld8 t12 = [src0], 8)
248 EK(.ex_handler, (p[D]) ld8 t14 = [src1], 8)
249 EX(.ex_handler, (p[D]) st8 [dst0] = t9, 3*8)
250 EK(.ex_handler, (p[D]) st8 [dst1] = t11, 3*8)
251 ;;
252 EX(.ex_handler, (p[D]) ld8 t13 = [src0], 4*8)
253 EK(.ex_handler, (p[D]) ld8 t15 = [src1], 4*8)
254 EX(.ex_handler, (p[D]) st8 [dst0] = t12, 8)
255 EK(.ex_handler, (p[D]) st8 [dst1] = t14, 8)
256 ;;
257 EX(.ex_handler, (p[C]) ld8 t1 = [src0], 8)
258 EK(.ex_handler, (p[C]) ld8 t3 = [src1], 8)
259 EX(.ex_handler, (p[D]) st8 [dst0] = t13, 4*8)
260 EK(.ex_handler, (p[D]) st8 [dst1] = t15, 4*8)
261 br.ctop.sptk .line_copy
262 ;;
263
264 add dst0=-8,dst0
265 add src0=-8,src0
266 mov in2=tmp
267 .restore sp
268 br.sptk.many .medium_copy
269 ;;
270
271 #define BLOCK_SIZE 128*32
272 #define blocksize r23
273 #define curlen r24
274
275 // dest is on 8-byte boundary, src is not. We need to do
276 // ld8-ld8, shrp, then st8. Max 8 byte copy per cycle.
277 .unaligned_src:
278 .prologue
279 .save ar.pfs, saved_pfs
280 alloc saved_pfs=ar.pfs,3,5,0,8
281 .save ar.lc, saved_lc
282 mov saved_lc=ar.lc
283 .save pr, saved_pr
284 mov saved_pr=pr
285 .body
286 .4k_block:
287 mov saved_in0=dst0 // need to save all input arguments
288 mov saved_in2=in2
289 mov blocksize=BLOCK_SIZE
290 ;;
291 cmp.lt p6,p7=blocksize,in2
292 mov saved_in1=src0
293 ;;
294 (p6) mov in2=blocksize
295 ;;
296 shr.u r21=in2,7 // this much cache line
297 shr.u r22=in2,4 // number of 16-byte iteration
298 and curlen=15,in2 // copy length after iteration
299 and r30=7,src0 // source alignment
300 ;;
301 cmp.lt p7,p8=1,r21
302 add cnt=-1,r21
303 ;;
304
305 add src_pre_mem=0,src0 // prefetch src pointer
306 add dst_pre_mem=0,dst0 // prefetch dest pointer
307 and src0=-8,src0 // 1st src pointer
308 (p7) mov ar.lc = cnt
309 (p8) mov ar.lc = r0
310 ;;
311 TEXT_ALIGN(32)
312 1: lfetch.fault [src_pre_mem], 128
313 lfetch.fault.excl [dst_pre_mem], 128
314 br.cloop.dptk.few 1b
315 ;;
316
317 shladd dst1=r22,3,dst0 // 2nd dest pointer
318 shladd src1=r22,3,src0 // 2nd src pointer
319 cmp.eq p8,p9=r22,r0 // do we really need to loop?
320 cmp.le p6,p7=8,curlen; // have at least 8 byte remaining?
321 add cnt=-1,r22 // ctop iteration adjustment
322 ;;
323 EX(.ex_handler, (p9) ld8 r33=[src0],8) // loop primer
324 EK(.ex_handler, (p9) ld8 r37=[src1],8)
325 (p8) br.dpnt.few .noloop
326 ;;
327
328 // The jump address is calculated based on src alignment. The COPYU
329 // macro below need to confine its size to power of two, so an entry
330 // can be caulated using shl instead of an expensive multiply. The
331 // size is then hard coded by the following #define to match the
332 // actual size. This make it somewhat tedious when COPYU macro gets
333 // changed and this need to be adjusted to match.
334 #define LOOP_SIZE 6
335 1:
336 mov r29=ip // jmp_table thread
337 mov ar.lc=cnt
338 ;;
339 add r29=.jump_table - 1b - (.jmp1-.jump_table), r29
340 shl r28=r30, LOOP_SIZE // jmp_table thread
341 mov ar.ec=2 // loop setup
342 ;;
343 add r29=r29,r28 // jmp_table thread
344 cmp.eq p16,p17=r0,r0
345 ;;
346 mov b6=r29 // jmp_table thread
347 ;;
348 br.cond.sptk.few b6
349
350 // for 8-15 byte case
351 // We will skip the loop, but need to replicate the side effect
352 // that the loop produces.
353 .noloop:
354 EX(.ex_handler, (p6) ld8 r37=[src1],8)
355 add src0=8,src0
356 (p6) shl r25=r30,3
357 ;;
358 EX(.ex_handler, (p6) ld8 r27=[src1])
359 (p6) shr.u r28=r37,r25
360 (p6) sub r26=64,r25
361 ;;
362 (p6) shl r27=r27,r26
363 ;;
364 (p6) or r21=r28,r27
365
366 .unaligned_src_tail:
367 /* check if we have more than blocksize to copy, if so go back */
368 cmp.gt p8,p0=saved_in2,blocksize
369 ;;
370 (p8) add dst0=saved_in0,blocksize
371 (p8) add src0=saved_in1,blocksize
372 (p8) sub in2=saved_in2,blocksize
373 (p8) br.dpnt .4k_block
374 ;;
375
376 /* we have up to 15 byte to copy in the tail.
377 * part of work is already done in the jump table code
378 * we are at the following state.
379 * src side:
380 *
381 * xxxxxx xx <----- r21 has xxxxxxxx already
382 * -------- -------- --------
383 * 0 8 16
384 * ^
385 * |
386 * src1
387 *
388 * dst
389 * -------- -------- --------
390 * ^
391 * |
392 * dst1
393 */
394 EX(.ex_handler, (p6) st8 [dst1]=r21,8) // more than 8 byte to copy
395 (p6) add curlen=-8,curlen // update length
396 mov ar.pfs=saved_pfs
397 ;;
398 mov ar.lc=saved_lc
399 mov pr=saved_pr,-1
400 mov in2=curlen // remaining length
401 mov dst0=dst1 // dest pointer
402 add src0=src1,r30 // forward by src alignment
403 ;;
404
405 // 7 byte or smaller.
406 .memcpy_short:
407 cmp.le p8,p9 = 1,in2
408 cmp.le p10,p11 = 2,in2
409 cmp.le p12,p13 = 3,in2
410 cmp.le p14,p15 = 4,in2
411 add src1=1,src0 // second src pointer
412 add dst1=1,dst0 // second dest pointer
413 ;;
414
415 EX(.ex_handler_short, (p8) ld1 t1=[src0],2)
416 EK(.ex_handler_short, (p10) ld1 t2=[src1],2)
417 (p9) br.ret.dpnt rp // 0 byte copy
418 ;;
419
420 EX(.ex_handler_short, (p8) st1 [dst0]=t1,2)
421 EK(.ex_handler_short, (p10) st1 [dst1]=t2,2)
422 (p11) br.ret.dpnt rp // 1 byte copy
423
424 EX(.ex_handler_short, (p12) ld1 t3=[src0],2)
425 EK(.ex_handler_short, (p14) ld1 t4=[src1],2)
426 (p13) br.ret.dpnt rp // 2 byte copy
427 ;;
428
429 cmp.le p6,p7 = 5,in2
430 cmp.le p8,p9 = 6,in2
431 cmp.le p10,p11 = 7,in2
432
433 EX(.ex_handler_short, (p12) st1 [dst0]=t3,2)
434 EK(.ex_handler_short, (p14) st1 [dst1]=t4,2)
435 (p15) br.ret.dpnt rp // 3 byte copy
436 ;;
437
438 EX(.ex_handler_short, (p6) ld1 t5=[src0],2)
439 EK(.ex_handler_short, (p8) ld1 t6=[src1],2)
440 (p7) br.ret.dpnt rp // 4 byte copy
441 ;;
442
443 EX(.ex_handler_short, (p6) st1 [dst0]=t5,2)
444 EK(.ex_handler_short, (p8) st1 [dst1]=t6,2)
445 (p9) br.ret.dptk rp // 5 byte copy
446
447 EX(.ex_handler_short, (p10) ld1 t7=[src0],2)
448 (p11) br.ret.dptk rp // 6 byte copy
449 ;;
450
451 EX(.ex_handler_short, (p10) st1 [dst0]=t7,2)
452 br.ret.dptk rp // done all cases
453
454
455 /* Align dest to nearest 8-byte boundary. We know we have at
456 * least 7 bytes to copy, enough to crawl to 8-byte boundary.
457 * Actual number of byte to crawl depend on the dest alignment.
458 * 7 byte or less is taken care at .memcpy_short
459
460 * src0 - source even index
461 * src1 - source odd index
462 * dst0 - dest even index
463 * dst1 - dest odd index
464 * r30 - distance to 8-byte boundary
465 */
466
467 .align_dest:
468 add src1=1,in1 // source odd index
469 cmp.le p7,p0 = 2,r30 // for .align_dest
470 cmp.le p8,p0 = 3,r30 // for .align_dest
471 EX(.ex_handler_short, (p6) ld1 t1=[src0],2)
472 cmp.le p9,p0 = 4,r30 // for .align_dest
473 cmp.le p10,p0 = 5,r30
474 ;;
475 EX(.ex_handler_short, (p7) ld1 t2=[src1],2)
476 EK(.ex_handler_short, (p8) ld1 t3=[src0],2)
477 cmp.le p11,p0 = 6,r30
478 EX(.ex_handler_short, (p6) st1 [dst0] = t1,2)
479 cmp.le p12,p0 = 7,r30
480 ;;
481 EX(.ex_handler_short, (p9) ld1 t4=[src1],2)
482 EK(.ex_handler_short, (p10) ld1 t5=[src0],2)
483 EX(.ex_handler_short, (p7) st1 [dst1] = t2,2)
484 EK(.ex_handler_short, (p8) st1 [dst0] = t3,2)
485 ;;
486 EX(.ex_handler_short, (p11) ld1 t6=[src1],2)
487 EK(.ex_handler_short, (p12) ld1 t7=[src0],2)
488 cmp.eq p6,p7=r28,r29
489 EX(.ex_handler_short, (p9) st1 [dst1] = t4,2)
490 EK(.ex_handler_short, (p10) st1 [dst0] = t5,2)
491 sub in2=in2,r30
492 ;;
493 EX(.ex_handler_short, (p11) st1 [dst1] = t6,2)
494 EK(.ex_handler_short, (p12) st1 [dst0] = t7)
495 add dst0=in0,r30 // setup arguments
496 add src0=in1,r30
497 (p6) br.cond.dptk .aligned_src
498 (p7) br.cond.dpnt .unaligned_src
499 ;;
500
501 /* main loop body in jump table format */
502 #define COPYU(shift) \
503 1: \
504 EX(.ex_handler, (p16) ld8 r32=[src0],8); /* 1 */ \
505 EK(.ex_handler, (p16) ld8 r36=[src1],8); \
506 (p17) shrp r35=r33,r34,shift;; /* 1 */ \
507 EX(.ex_handler, (p6) ld8 r22=[src1]); /* common, prime for tail section */ \
508 nop.m 0; \
509 (p16) shrp r38=r36,r37,shift; \
510 EX(.ex_handler, (p17) st8 [dst0]=r35,8); /* 1 */ \
511 EK(.ex_handler, (p17) st8 [dst1]=r39,8); \
512 br.ctop.dptk.few 1b;; \
513 (p7) add src1=-8,src1; /* back out for <8 byte case */ \
514 shrp r21=r22,r38,shift; /* speculative work */ \
515 br.sptk.few .unaligned_src_tail /* branch out of jump table */ \
516 ;;
517 TEXT_ALIGN(32)
518 .jump_table:
519 COPYU(8) // unaligned cases
520 .jmp1:
521 COPYU(16)
522 COPYU(24)
523 COPYU(32)
524 COPYU(40)
525 COPYU(48)
526 COPYU(56)
527
528 #undef A
529 #undef B
530 #undef C
531 #undef D
532
533 /*
534 * Due to lack of local tag support in gcc 2.x assembler, it is not clear which
535 * instruction failed in the bundle. The exception algorithm is that we
536 * first figure out the faulting address, then detect if there is any
537 * progress made on the copy, if so, redo the copy from last known copied
538 * location up to the faulting address (exclusive). In the copy_from_user
539 * case, remaining byte in kernel buffer will be zeroed.
540 *
541 * Take copy_from_user as an example, in the code there are multiple loads
542 * in a bundle and those multiple loads could span over two pages, the
543 * faulting address is calculated as page_round_down(max(src0, src1)).
544 * This is based on knowledge that if we can access one byte in a page, we
545 * can access any byte in that page.
546 *
547 * predicate used in the exception handler:
548 * p6-p7: direction
549 * p10-p11: src faulting addr calculation
550 * p12-p13: dst faulting addr calculation
551 */
552
553 #define A r19
554 #define B r20
555 #define C r21
556 #define D r22
557 #define F r28
558
559 #define memset_arg0 r32
560 #define memset_arg2 r33
561
562 #define saved_retval loc0
563 #define saved_rtlink loc1
564 #define saved_pfs_stack loc2
565
566 .ex_hndlr_s:
567 add src0=8,src0
568 br.sptk .ex_handler
569 ;;
570 .ex_hndlr_d:
571 add dst0=8,dst0
572 br.sptk .ex_handler
573 ;;
574 .ex_hndlr_lcpy_1:
575 mov src1=src_pre_mem
576 mov dst1=dst_pre_mem
577 cmp.gtu p10,p11=src_pre_mem,saved_in1
578 cmp.gtu p12,p13=dst_pre_mem,saved_in0
579 ;;
580 (p10) add src0=8,saved_in1
581 (p11) mov src0=saved_in1
582 (p12) add dst0=8,saved_in0
583 (p13) mov dst0=saved_in0
584 br.sptk .ex_handler
585 .ex_handler_lcpy:
586 // in line_copy block, the preload addresses should always ahead
587 // of the other two src/dst pointers. Furthermore, src1/dst1 should
588 // always ahead of src0/dst0.
589 mov src1=src_pre_mem
590 mov dst1=dst_pre_mem
591 .ex_handler:
592 mov pr=saved_pr,-1 // first restore pr, lc, and pfs
593 mov ar.lc=saved_lc
594 mov ar.pfs=saved_pfs
595 ;;
596 .ex_handler_short: // fault occurred in these sections didn't change pr, lc, pfs
597 cmp.ltu p6,p7=saved_in0, saved_in1 // get the copy direction
598 cmp.ltu p10,p11=src0,src1
599 cmp.ltu p12,p13=dst0,dst1
600 fcmp.eq p8,p0=f6,f0 // is it memcpy?
601 mov tmp = dst0
602 ;;
603 (p11) mov src1 = src0 // pick the larger of the two
604 (p13) mov dst0 = dst1 // make dst0 the smaller one
605 (p13) mov dst1 = tmp // and dst1 the larger one
606 ;;
607 (p6) dep F = r0,dst1,0,PAGE_SHIFT // usr dst round down to page boundary
608 (p7) dep F = r0,src1,0,PAGE_SHIFT // usr src round down to page boundary
609 ;;
610 (p6) cmp.le p14,p0=dst0,saved_in0 // no progress has been made on store
611 (p7) cmp.le p14,p0=src0,saved_in1 // no progress has been made on load
612 mov retval=saved_in2
613 (p8) ld1 tmp=[src1] // force an oops for memcpy call
614 (p8) st1 [dst1]=r0 // force an oops for memcpy call
615 (p14) br.ret.sptk.many rp
616
617 /*
618 * The remaining byte to copy is calculated as:
619 *
620 * A = (faulting_addr - orig_src) -> len to faulting ld address
621 * or
622 * (faulting_addr - orig_dst) -> len to faulting st address
623 * B = (cur_dst - orig_dst) -> len copied so far
624 * C = A - B -> len need to be copied
625 * D = orig_len - A -> len need to be zeroed
626 */
627 (p6) sub A = F, saved_in0
628 (p7) sub A = F, saved_in1
629 clrrrb
630 ;;
631 alloc saved_pfs_stack=ar.pfs,3,3,3,0
632 cmp.lt p8,p0=A,r0
633 sub B = dst0, saved_in0 // how many byte copied so far
634 ;;
635 (p8) mov A = 0; // A shouldn't be negative, cap it
636 ;;
637 sub C = A, B
638 sub D = saved_in2, A
639 ;;
640 cmp.gt p8,p0=C,r0 // more than 1 byte?
641 add memset_arg0=saved_in0, A
642 (p6) mov memset_arg2=0 // copy_to_user should not call memset
643 (p7) mov memset_arg2=D // copy_from_user need to have kbuf zeroed
644 mov r8=0
645 mov saved_retval = D
646 mov saved_rtlink = b0
647
648 add out0=saved_in0, B
649 add out1=saved_in1, B
650 mov out2=C
651 (p8) br.call.sptk.few b0=__copy_user // recursive call
652 ;;
653
654 add saved_retval=saved_retval,r8 // above might return non-zero value
655 cmp.gt p8,p0=memset_arg2,r0 // more than 1 byte?
656 mov out0=memset_arg0 // *s
657 mov out1=r0 // c
658 mov out2=memset_arg2 // n
659 (p8) br.call.sptk.few b0=memset
660 ;;
661
662 mov retval=saved_retval
663 mov ar.pfs=saved_pfs_stack
664 mov b0=saved_rtlink
665 br.ret.sptk.many rp
666
667 /* end of McKinley specific optimization */
668 END(__copy_user)
669 EXPORT_SYMBOL(__copy_user)
This page took 0.056279 seconds and 5 git commands to generate.