MIPS: Don't BUG_ON when no IPI domain is found
[deliverable/linux.git] / arch / mips / kernel / smp.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20 */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
52
53 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55
56 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70
71 /*
72 * A logcal cpu mask containing only one VPE per core to
73 * reduce the number of IPIs on large MT systems.
74 */
75 cpumask_t cpu_foreign_map __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83
84 cpumask_t cpu_coherent_mask;
85
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 int i;
94
95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96
97 if (smp_num_siblings > 1) {
98 for_each_cpu(i, &cpu_sibling_setup_map) {
99 if (cpu_data[cpu].package == cpu_data[i].package &&
100 cpu_data[cpu].core == cpu_data[i].core) {
101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 }
104 }
105 } else
106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111 int i;
112
113 cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115 for_each_cpu(i, &cpu_core_setup_map) {
116 if (cpu_data[cpu].package == cpu_data[i].package) {
117 cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 }
120 }
121 }
122
123 /*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127 static inline void calculate_cpu_foreign_map(void)
128 {
129 int i, k, core_present;
130 cpumask_t temp_foreign_map;
131
132 /* Re-calculate the mask */
133 cpumask_clear(&temp_foreign_map);
134 for_each_online_cpu(i) {
135 core_present = 0;
136 for_each_cpu(k, &temp_foreign_map)
137 if (cpu_data[i].package == cpu_data[k].package &&
138 cpu_data[i].core == cpu_data[k].core)
139 core_present = 1;
140 if (!core_present)
141 cpumask_set_cpu(i, &temp_foreign_map);
142 }
143
144 cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
145 }
146
147 struct plat_smp_ops *mp_ops;
148 EXPORT_SYMBOL(mp_ops);
149
150 void register_smp_ops(struct plat_smp_ops *ops)
151 {
152 if (mp_ops)
153 printk(KERN_WARNING "Overriding previously set SMP ops\n");
154
155 mp_ops = ops;
156 }
157
158 #ifdef CONFIG_GENERIC_IRQ_IPI
159 void mips_smp_send_ipi_single(int cpu, unsigned int action)
160 {
161 mips_smp_send_ipi_mask(cpumask_of(cpu), action);
162 }
163
164 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
165 {
166 unsigned long flags;
167 unsigned int core;
168 int cpu;
169
170 local_irq_save(flags);
171
172 switch (action) {
173 case SMP_CALL_FUNCTION:
174 __ipi_send_mask(call_desc, mask);
175 break;
176
177 case SMP_RESCHEDULE_YOURSELF:
178 __ipi_send_mask(sched_desc, mask);
179 break;
180
181 default:
182 BUG();
183 }
184
185 if (mips_cpc_present()) {
186 for_each_cpu(cpu, mask) {
187 core = cpu_data[cpu].core;
188
189 if (core == current_cpu_data.core)
190 continue;
191
192 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
193 mips_cpc_lock_other(core);
194 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
195 mips_cpc_unlock_other();
196 }
197 }
198 }
199
200 local_irq_restore(flags);
201 }
202
203
204 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
205 {
206 scheduler_ipi();
207
208 return IRQ_HANDLED;
209 }
210
211 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
212 {
213 generic_smp_call_function_interrupt();
214
215 return IRQ_HANDLED;
216 }
217
218 static struct irqaction irq_resched = {
219 .handler = ipi_resched_interrupt,
220 .flags = IRQF_PERCPU,
221 .name = "IPI resched"
222 };
223
224 static struct irqaction irq_call = {
225 .handler = ipi_call_interrupt,
226 .flags = IRQF_PERCPU,
227 .name = "IPI call"
228 };
229
230 static __init void smp_ipi_init_one(unsigned int virq,
231 struct irqaction *action)
232 {
233 int ret;
234
235 irq_set_handler(virq, handle_percpu_irq);
236 ret = setup_irq(virq, action);
237 BUG_ON(ret);
238 }
239
240 static int __init mips_smp_ipi_init(void)
241 {
242 unsigned int call_virq, sched_virq;
243 struct irq_domain *ipidomain;
244 struct device_node *node;
245
246 node = of_irq_find_parent(of_root);
247 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
248
249 /*
250 * Some platforms have half DT setup. So if we found irq node but
251 * didn't find an ipidomain, try to search for one that is not in the
252 * DT.
253 */
254 if (node && !ipidomain)
255 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
256
257 /*
258 * There are systems which only use IPI domains some of the time,
259 * depending upon configuration we don't know until runtime. An
260 * example is Malta where we may compile in support for GIC & the
261 * MT ASE, but run on a system which has multiple VPEs in a single
262 * core and doesn't include a GIC. Until all IPI implementations
263 * have been converted to use IPI domains the best we can do here
264 * is to return & hope some other code sets up the IPIs.
265 */
266 if (!ipidomain)
267 return 0;
268
269 call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
270 BUG_ON(!call_virq);
271
272 sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
273 BUG_ON(!sched_virq);
274
275 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
276 int cpu;
277
278 for_each_cpu(cpu, cpu_possible_mask) {
279 smp_ipi_init_one(call_virq + cpu, &irq_call);
280 smp_ipi_init_one(sched_virq + cpu, &irq_resched);
281 }
282 } else {
283 smp_ipi_init_one(call_virq, &irq_call);
284 smp_ipi_init_one(sched_virq, &irq_resched);
285 }
286
287 call_desc = irq_to_desc(call_virq);
288 sched_desc = irq_to_desc(sched_virq);
289
290 return 0;
291 }
292 early_initcall(mips_smp_ipi_init);
293 #endif
294
295 /*
296 * First C code run on the secondary CPUs after being started up by
297 * the master.
298 */
299 asmlinkage void start_secondary(void)
300 {
301 unsigned int cpu;
302
303 cpu_probe();
304 per_cpu_trap_init(false);
305 mips_clockevent_init();
306 mp_ops->init_secondary();
307 cpu_report();
308 maar_init();
309
310 /*
311 * XXX parity protection should be folded in here when it's converted
312 * to an option instead of something based on .cputype
313 */
314
315 calibrate_delay();
316 preempt_disable();
317 cpu = smp_processor_id();
318 cpu_data[cpu].udelay_val = loops_per_jiffy;
319
320 cpumask_set_cpu(cpu, &cpu_coherent_mask);
321 notify_cpu_starting(cpu);
322
323 set_cpu_online(cpu, true);
324
325 set_cpu_sibling_map(cpu);
326 set_cpu_core_map(cpu);
327
328 calculate_cpu_foreign_map();
329
330 cpumask_set_cpu(cpu, &cpu_callin_map);
331
332 synchronise_count_slave(cpu);
333
334 /*
335 * irq will be enabled in ->smp_finish(), enabling it too early
336 * is dangerous.
337 */
338 WARN_ON_ONCE(!irqs_disabled());
339 mp_ops->smp_finish();
340
341 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
342 }
343
344 static void stop_this_cpu(void *dummy)
345 {
346 /*
347 * Remove this CPU. Be a bit slow here and
348 * set the bits for every online CPU so we don't miss
349 * any IPI whilst taking this VPE down.
350 */
351
352 cpumask_copy(&cpu_foreign_map, cpu_online_mask);
353
354 /* Make it visible to every other CPU */
355 smp_mb();
356
357 set_cpu_online(smp_processor_id(), false);
358 calculate_cpu_foreign_map();
359 local_irq_disable();
360 while (1);
361 }
362
363 void smp_send_stop(void)
364 {
365 smp_call_function(stop_this_cpu, NULL, 0);
366 }
367
368 void __init smp_cpus_done(unsigned int max_cpus)
369 {
370 }
371
372 /* called from main before smp_init() */
373 void __init smp_prepare_cpus(unsigned int max_cpus)
374 {
375 init_new_context(current, &init_mm);
376 current_thread_info()->cpu = 0;
377 mp_ops->prepare_cpus(max_cpus);
378 set_cpu_sibling_map(0);
379 set_cpu_core_map(0);
380 calculate_cpu_foreign_map();
381 #ifndef CONFIG_HOTPLUG_CPU
382 init_cpu_present(cpu_possible_mask);
383 #endif
384 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
385 }
386
387 /* preload SMP state for boot cpu */
388 void smp_prepare_boot_cpu(void)
389 {
390 set_cpu_possible(0, true);
391 set_cpu_online(0, true);
392 cpumask_set_cpu(0, &cpu_callin_map);
393 }
394
395 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
396 {
397 mp_ops->boot_secondary(cpu, tidle);
398
399 /*
400 * Trust is futile. We should really have timeouts ...
401 */
402 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
403 udelay(100);
404 schedule();
405 }
406
407 synchronise_count_master(cpu);
408 return 0;
409 }
410
411 /* Not really SMP stuff ... */
412 int setup_profiling_timer(unsigned int multiplier)
413 {
414 return 0;
415 }
416
417 static void flush_tlb_all_ipi(void *info)
418 {
419 local_flush_tlb_all();
420 }
421
422 void flush_tlb_all(void)
423 {
424 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
425 }
426
427 static void flush_tlb_mm_ipi(void *mm)
428 {
429 local_flush_tlb_mm((struct mm_struct *)mm);
430 }
431
432 /*
433 * Special Variant of smp_call_function for use by TLB functions:
434 *
435 * o No return value
436 * o collapses to normal function call on UP kernels
437 * o collapses to normal function call on systems with a single shared
438 * primary cache.
439 */
440 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
441 {
442 smp_call_function(func, info, 1);
443 }
444
445 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
446 {
447 preempt_disable();
448
449 smp_on_other_tlbs(func, info);
450 func(info);
451
452 preempt_enable();
453 }
454
455 /*
456 * The following tlb flush calls are invoked when old translations are
457 * being torn down, or pte attributes are changing. For single threaded
458 * address spaces, a new context is obtained on the current cpu, and tlb
459 * context on other cpus are invalidated to force a new context allocation
460 * at switch_mm time, should the mm ever be used on other cpus. For
461 * multithreaded address spaces, intercpu interrupts have to be sent.
462 * Another case where intercpu interrupts are required is when the target
463 * mm might be active on another cpu (eg debuggers doing the flushes on
464 * behalf of debugees, kswapd stealing pages from another process etc).
465 * Kanoj 07/00.
466 */
467
468 void flush_tlb_mm(struct mm_struct *mm)
469 {
470 preempt_disable();
471
472 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
473 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
474 } else {
475 unsigned int cpu;
476
477 for_each_online_cpu(cpu) {
478 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
479 cpu_context(cpu, mm) = 0;
480 }
481 }
482 local_flush_tlb_mm(mm);
483
484 preempt_enable();
485 }
486
487 struct flush_tlb_data {
488 struct vm_area_struct *vma;
489 unsigned long addr1;
490 unsigned long addr2;
491 };
492
493 static void flush_tlb_range_ipi(void *info)
494 {
495 struct flush_tlb_data *fd = info;
496
497 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
498 }
499
500 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
501 {
502 struct mm_struct *mm = vma->vm_mm;
503
504 preempt_disable();
505 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
506 struct flush_tlb_data fd = {
507 .vma = vma,
508 .addr1 = start,
509 .addr2 = end,
510 };
511
512 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
513 } else {
514 unsigned int cpu;
515
516 for_each_online_cpu(cpu) {
517 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
518 cpu_context(cpu, mm) = 0;
519 }
520 }
521 local_flush_tlb_range(vma, start, end);
522 preempt_enable();
523 }
524
525 static void flush_tlb_kernel_range_ipi(void *info)
526 {
527 struct flush_tlb_data *fd = info;
528
529 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
530 }
531
532 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
533 {
534 struct flush_tlb_data fd = {
535 .addr1 = start,
536 .addr2 = end,
537 };
538
539 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
540 }
541
542 static void flush_tlb_page_ipi(void *info)
543 {
544 struct flush_tlb_data *fd = info;
545
546 local_flush_tlb_page(fd->vma, fd->addr1);
547 }
548
549 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
550 {
551 preempt_disable();
552 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
553 struct flush_tlb_data fd = {
554 .vma = vma,
555 .addr1 = page,
556 };
557
558 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
559 } else {
560 unsigned int cpu;
561
562 for_each_online_cpu(cpu) {
563 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
564 cpu_context(cpu, vma->vm_mm) = 0;
565 }
566 }
567 local_flush_tlb_page(vma, page);
568 preempt_enable();
569 }
570
571 static void flush_tlb_one_ipi(void *info)
572 {
573 unsigned long vaddr = (unsigned long) info;
574
575 local_flush_tlb_one(vaddr);
576 }
577
578 void flush_tlb_one(unsigned long vaddr)
579 {
580 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
581 }
582
583 EXPORT_SYMBOL(flush_tlb_page);
584 EXPORT_SYMBOL(flush_tlb_one);
585
586 #if defined(CONFIG_KEXEC)
587 void (*dump_ipi_function_ptr)(void *) = NULL;
588 void dump_send_ipi(void (*dump_ipi_callback)(void *))
589 {
590 int i;
591 int cpu = smp_processor_id();
592
593 dump_ipi_function_ptr = dump_ipi_callback;
594 smp_mb();
595 for_each_online_cpu(i)
596 if (i != cpu)
597 mp_ops->send_ipi_single(i, SMP_DUMP);
598
599 }
600 EXPORT_SYMBOL(dump_send_ipi);
601 #endif
602
603 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
604
605 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
606 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
607
608 void tick_broadcast(const struct cpumask *mask)
609 {
610 atomic_t *count;
611 struct call_single_data *csd;
612 int cpu;
613
614 for_each_cpu(cpu, mask) {
615 count = &per_cpu(tick_broadcast_count, cpu);
616 csd = &per_cpu(tick_broadcast_csd, cpu);
617
618 if (atomic_inc_return(count) == 1)
619 smp_call_function_single_async(cpu, csd);
620 }
621 }
622
623 static void tick_broadcast_callee(void *info)
624 {
625 int cpu = smp_processor_id();
626 tick_receive_broadcast();
627 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
628 }
629
630 static int __init tick_broadcast_init(void)
631 {
632 struct call_single_data *csd;
633 int cpu;
634
635 for (cpu = 0; cpu < NR_CPUS; cpu++) {
636 csd = &per_cpu(tick_broadcast_csd, cpu);
637 csd->func = tick_broadcast_callee;
638 }
639
640 return 0;
641 }
642 early_initcall(tick_broadcast_init);
643
644 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
This page took 0.052692 seconds and 5 git commands to generate.