892f36f56d32e60975ba2b0d97af6f7a50e1f4c6
[deliverable/linux.git] / arch / mips / kvm / emulate.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cacheops.h>
24 #include <asm/cpu-info.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 #include <asm/inst.h>
28
29 #undef CONFIG_MIPS_MT
30 #include <asm/r4kcache.h>
31 #define CONFIG_MIPS_MT
32
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
41 */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 unsigned long instpc)
44 {
45 unsigned int dspcontrol;
46 union mips_instruction insn;
47 struct kvm_vcpu_arch *arch = &vcpu->arch;
48 long epc = instpc;
49 long nextpc = KVM_INVALID_INST;
50
51 if (epc & 3)
52 goto unaligned;
53
54 /* Read the instruction */
55 insn.word = kvm_get_inst((u32 *) epc, vcpu);
56
57 if (insn.word == KVM_INVALID_INST)
58 return KVM_INVALID_INST;
59
60 switch (insn.i_format.opcode) {
61 /* jr and jalr are in r_format format. */
62 case spec_op:
63 switch (insn.r_format.func) {
64 case jalr_op:
65 arch->gprs[insn.r_format.rd] = epc + 8;
66 /* Fall through */
67 case jr_op:
68 nextpc = arch->gprs[insn.r_format.rs];
69 break;
70 }
71 break;
72
73 /*
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 */
78 case bcond_op:
79 switch (insn.i_format.rt) {
80 case bltz_op:
81 case bltzl_op:
82 if ((long)arch->gprs[insn.i_format.rs] < 0)
83 epc = epc + 4 + (insn.i_format.simmediate << 2);
84 else
85 epc += 8;
86 nextpc = epc;
87 break;
88
89 case bgez_op:
90 case bgezl_op:
91 if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 epc = epc + 4 + (insn.i_format.simmediate << 2);
93 else
94 epc += 8;
95 nextpc = epc;
96 break;
97
98 case bltzal_op:
99 case bltzall_op:
100 arch->gprs[31] = epc + 8;
101 if ((long)arch->gprs[insn.i_format.rs] < 0)
102 epc = epc + 4 + (insn.i_format.simmediate << 2);
103 else
104 epc += 8;
105 nextpc = epc;
106 break;
107
108 case bgezal_op:
109 case bgezall_op:
110 arch->gprs[31] = epc + 8;
111 if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 epc = epc + 4 + (insn.i_format.simmediate << 2);
113 else
114 epc += 8;
115 nextpc = epc;
116 break;
117 case bposge32_op:
118 if (!cpu_has_dsp)
119 goto sigill;
120
121 dspcontrol = rddsp(0x01);
122
123 if (dspcontrol >= 32)
124 epc = epc + 4 + (insn.i_format.simmediate << 2);
125 else
126 epc += 8;
127 nextpc = epc;
128 break;
129 }
130 break;
131
132 /* These are unconditional and in j_format. */
133 case jal_op:
134 arch->gprs[31] = instpc + 8;
135 case j_op:
136 epc += 4;
137 epc >>= 28;
138 epc <<= 28;
139 epc |= (insn.j_format.target << 2);
140 nextpc = epc;
141 break;
142
143 /* These are conditional and in i_format. */
144 case beq_op:
145 case beql_op:
146 if (arch->gprs[insn.i_format.rs] ==
147 arch->gprs[insn.i_format.rt])
148 epc = epc + 4 + (insn.i_format.simmediate << 2);
149 else
150 epc += 8;
151 nextpc = epc;
152 break;
153
154 case bne_op:
155 case bnel_op:
156 if (arch->gprs[insn.i_format.rs] !=
157 arch->gprs[insn.i_format.rt])
158 epc = epc + 4 + (insn.i_format.simmediate << 2);
159 else
160 epc += 8;
161 nextpc = epc;
162 break;
163
164 case blez_op: /* not really i_format */
165 case blezl_op:
166 /* rt field assumed to be zero */
167 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 epc = epc + 4 + (insn.i_format.simmediate << 2);
169 else
170 epc += 8;
171 nextpc = epc;
172 break;
173
174 case bgtz_op:
175 case bgtzl_op:
176 /* rt field assumed to be zero */
177 if ((long)arch->gprs[insn.i_format.rs] > 0)
178 epc = epc + 4 + (insn.i_format.simmediate << 2);
179 else
180 epc += 8;
181 nextpc = epc;
182 break;
183
184 /* And now the FPA/cp1 branch instructions. */
185 case cop1_op:
186 kvm_err("%s: unsupported cop1_op\n", __func__);
187 break;
188 }
189
190 return nextpc;
191
192 unaligned:
193 kvm_err("%s: unaligned epc\n", __func__);
194 return nextpc;
195
196 sigill:
197 kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 return nextpc;
199 }
200
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
202 {
203 unsigned long branch_pc;
204 enum emulation_result er = EMULATE_DONE;
205
206 if (cause & CAUSEF_BD) {
207 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 if (branch_pc == KVM_INVALID_INST) {
209 er = EMULATE_FAIL;
210 } else {
211 vcpu->arch.pc = branch_pc;
212 kvm_debug("BD update_pc(): New PC: %#lx\n",
213 vcpu->arch.pc);
214 }
215 } else
216 vcpu->arch.pc += 4;
217
218 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220 return er;
221 }
222
223 /**
224 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225 * @vcpu: Virtual CPU.
226 *
227 * Returns: 1 if the CP0_Count timer is disabled by either the guest
228 * CP0_Cause.DC bit or the count_ctl.DC bit.
229 * 0 otherwise (in which case CP0_Count timer is running).
230 */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233 struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238
239 /**
240 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241 *
242 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243 *
244 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245 */
246 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248 s64 now_ns, periods;
249 u64 delta;
250
251 now_ns = ktime_to_ns(now);
252 delta = now_ns + vcpu->arch.count_dyn_bias;
253
254 if (delta >= vcpu->arch.count_period) {
255 /* If delta is out of safe range the bias needs adjusting */
256 periods = div64_s64(now_ns, vcpu->arch.count_period);
257 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 /* Recalculate delta with new bias */
259 delta = now_ns + vcpu->arch.count_dyn_bias;
260 }
261
262 /*
263 * We've ensured that:
264 * delta < count_period
265 *
266 * Therefore the intermediate delta*count_hz will never overflow since
267 * at the boundary condition:
268 * delta = count_period
269 * delta = NSEC_PER_SEC * 2^32 / count_hz
270 * delta * count_hz = NSEC_PER_SEC * 2^32
271 */
272 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274
275 /**
276 * kvm_mips_count_time() - Get effective current time.
277 * @vcpu: Virtual CPU.
278 *
279 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280 * except when the master disable bit is set in count_ctl, in which case it is
281 * count_resume, i.e. the time that the count was disabled.
282 *
283 * Returns: Effective monotonic ktime for CP0_Count.
284 */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 return vcpu->arch.count_resume;
289
290 return ktime_get();
291 }
292
293 /**
294 * kvm_mips_read_count_running() - Read the current count value as if running.
295 * @vcpu: Virtual CPU.
296 * @now: Kernel time to read CP0_Count at.
297 *
298 * Returns the current guest CP0_Count register at time @now and handles if the
299 * timer interrupt is pending and hasn't been handled yet.
300 *
301 * Returns: The current value of the guest CP0_Count register.
302 */
303 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305 struct mips_coproc *cop0 = vcpu->arch.cop0;
306 ktime_t expires, threshold;
307 u32 count, compare;
308 int running;
309
310 /* Calculate the biased and scaled guest CP0_Count */
311 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312 compare = kvm_read_c0_guest_compare(cop0);
313
314 /*
315 * Find whether CP0_Count has reached the closest timer interrupt. If
316 * not, we shouldn't inject it.
317 */
318 if ((s32)(count - compare) < 0)
319 return count;
320
321 /*
322 * The CP0_Count we're going to return has already reached the closest
323 * timer interrupt. Quickly check if it really is a new interrupt by
324 * looking at whether the interval until the hrtimer expiry time is
325 * less than 1/4 of the timer period.
326 */
327 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329 if (ktime_before(expires, threshold)) {
330 /*
331 * Cancel it while we handle it so there's no chance of
332 * interference with the timeout handler.
333 */
334 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335
336 /* Nothing should be waiting on the timeout */
337 kvm_mips_callbacks->queue_timer_int(vcpu);
338
339 /*
340 * Restart the timer if it was running based on the expiry time
341 * we read, so that we don't push it back 2 periods.
342 */
343 if (running) {
344 expires = ktime_add_ns(expires,
345 vcpu->arch.count_period);
346 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347 HRTIMER_MODE_ABS);
348 }
349 }
350
351 return count;
352 }
353
354 /**
355 * kvm_mips_read_count() - Read the current count value.
356 * @vcpu: Virtual CPU.
357 *
358 * Read the current guest CP0_Count value, taking into account whether the timer
359 * is stopped.
360 *
361 * Returns: The current guest CP0_Count value.
362 */
363 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
364 {
365 struct mips_coproc *cop0 = vcpu->arch.cop0;
366
367 /* If count disabled just read static copy of count */
368 if (kvm_mips_count_disabled(vcpu))
369 return kvm_read_c0_guest_count(cop0);
370
371 return kvm_mips_read_count_running(vcpu, ktime_get());
372 }
373
374 /**
375 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376 * @vcpu: Virtual CPU.
377 * @count: Output pointer for CP0_Count value at point of freeze.
378 *
379 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380 * at the point it was frozen. It is guaranteed that any pending interrupts at
381 * the point it was frozen are handled, and none after that point.
382 *
383 * This is useful where the time/CP0_Count is needed in the calculation of the
384 * new parameters.
385 *
386 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387 *
388 * Returns: The ktime at the point of freeze.
389 */
390 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
391 {
392 ktime_t now;
393
394 /* stop hrtimer before finding time */
395 hrtimer_cancel(&vcpu->arch.comparecount_timer);
396 now = ktime_get();
397
398 /* find count at this point and handle pending hrtimer */
399 *count = kvm_mips_read_count_running(vcpu, now);
400
401 return now;
402 }
403
404 /**
405 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
406 * @vcpu: Virtual CPU.
407 * @now: ktime at point of resume.
408 * @count: CP0_Count at point of resume.
409 *
410 * Resumes the timer and updates the timer expiry based on @now and @count.
411 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
412 * parameters need to be changed.
413 *
414 * It is guaranteed that a timer interrupt immediately after resume will be
415 * handled, but not if CP_Compare is exactly at @count. That case is already
416 * handled by kvm_mips_freeze_timer().
417 *
418 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
419 */
420 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
421 ktime_t now, u32 count)
422 {
423 struct mips_coproc *cop0 = vcpu->arch.cop0;
424 u32 compare;
425 u64 delta;
426 ktime_t expire;
427
428 /* Calculate timeout (wrap 0 to 2^32) */
429 compare = kvm_read_c0_guest_compare(cop0);
430 delta = (u64)(u32)(compare - count - 1) + 1;
431 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
432 expire = ktime_add_ns(now, delta);
433
434 /* Update hrtimer to use new timeout */
435 hrtimer_cancel(&vcpu->arch.comparecount_timer);
436 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
437 }
438
439 /**
440 * kvm_mips_write_count() - Modify the count and update timer.
441 * @vcpu: Virtual CPU.
442 * @count: Guest CP0_Count value to set.
443 *
444 * Sets the CP0_Count value and updates the timer accordingly.
445 */
446 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
447 {
448 struct mips_coproc *cop0 = vcpu->arch.cop0;
449 ktime_t now;
450
451 /* Calculate bias */
452 now = kvm_mips_count_time(vcpu);
453 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
454
455 if (kvm_mips_count_disabled(vcpu))
456 /* The timer's disabled, adjust the static count */
457 kvm_write_c0_guest_count(cop0, count);
458 else
459 /* Update timeout */
460 kvm_mips_resume_hrtimer(vcpu, now, count);
461 }
462
463 /**
464 * kvm_mips_init_count() - Initialise timer.
465 * @vcpu: Virtual CPU.
466 *
467 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
468 * it going if it's enabled.
469 */
470 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
471 {
472 /* 100 MHz */
473 vcpu->arch.count_hz = 100*1000*1000;
474 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
475 vcpu->arch.count_hz);
476 vcpu->arch.count_dyn_bias = 0;
477
478 /* Starting at 0 */
479 kvm_mips_write_count(vcpu, 0);
480 }
481
482 /**
483 * kvm_mips_set_count_hz() - Update the frequency of the timer.
484 * @vcpu: Virtual CPU.
485 * @count_hz: Frequency of CP0_Count timer in Hz.
486 *
487 * Change the frequency of the CP0_Count timer. This is done atomically so that
488 * CP0_Count is continuous and no timer interrupt is lost.
489 *
490 * Returns: -EINVAL if @count_hz is out of range.
491 * 0 on success.
492 */
493 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
494 {
495 struct mips_coproc *cop0 = vcpu->arch.cop0;
496 int dc;
497 ktime_t now;
498 u32 count;
499
500 /* ensure the frequency is in a sensible range... */
501 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
502 return -EINVAL;
503 /* ... and has actually changed */
504 if (vcpu->arch.count_hz == count_hz)
505 return 0;
506
507 /* Safely freeze timer so we can keep it continuous */
508 dc = kvm_mips_count_disabled(vcpu);
509 if (dc) {
510 now = kvm_mips_count_time(vcpu);
511 count = kvm_read_c0_guest_count(cop0);
512 } else {
513 now = kvm_mips_freeze_hrtimer(vcpu, &count);
514 }
515
516 /* Update the frequency */
517 vcpu->arch.count_hz = count_hz;
518 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
519 vcpu->arch.count_dyn_bias = 0;
520
521 /* Calculate adjusted bias so dynamic count is unchanged */
522 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
523
524 /* Update and resume hrtimer */
525 if (!dc)
526 kvm_mips_resume_hrtimer(vcpu, now, count);
527 return 0;
528 }
529
530 /**
531 * kvm_mips_write_compare() - Modify compare and update timer.
532 * @vcpu: Virtual CPU.
533 * @compare: New CP0_Compare value.
534 * @ack: Whether to acknowledge timer interrupt.
535 *
536 * Update CP0_Compare to a new value and update the timeout.
537 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
538 * any pending timer interrupt is preserved.
539 */
540 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
541 {
542 struct mips_coproc *cop0 = vcpu->arch.cop0;
543 int dc;
544 u32 old_compare = kvm_read_c0_guest_compare(cop0);
545 ktime_t now;
546 u32 count;
547
548 /* if unchanged, must just be an ack */
549 if (old_compare == compare) {
550 if (!ack)
551 return;
552 kvm_mips_callbacks->dequeue_timer_int(vcpu);
553 kvm_write_c0_guest_compare(cop0, compare);
554 return;
555 }
556
557 /* freeze_hrtimer() takes care of timer interrupts <= count */
558 dc = kvm_mips_count_disabled(vcpu);
559 if (!dc)
560 now = kvm_mips_freeze_hrtimer(vcpu, &count);
561
562 if (ack)
563 kvm_mips_callbacks->dequeue_timer_int(vcpu);
564
565 kvm_write_c0_guest_compare(cop0, compare);
566
567 /* resume_hrtimer() takes care of timer interrupts > count */
568 if (!dc)
569 kvm_mips_resume_hrtimer(vcpu, now, count);
570 }
571
572 /**
573 * kvm_mips_count_disable() - Disable count.
574 * @vcpu: Virtual CPU.
575 *
576 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
577 * time will be handled but not after.
578 *
579 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
580 * count_ctl.DC has been set (count disabled).
581 *
582 * Returns: The time that the timer was stopped.
583 */
584 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
585 {
586 struct mips_coproc *cop0 = vcpu->arch.cop0;
587 u32 count;
588 ktime_t now;
589
590 /* Stop hrtimer */
591 hrtimer_cancel(&vcpu->arch.comparecount_timer);
592
593 /* Set the static count from the dynamic count, handling pending TI */
594 now = ktime_get();
595 count = kvm_mips_read_count_running(vcpu, now);
596 kvm_write_c0_guest_count(cop0, count);
597
598 return now;
599 }
600
601 /**
602 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
603 * @vcpu: Virtual CPU.
604 *
605 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
606 * before the final stop time will be handled if the timer isn't disabled by
607 * count_ctl.DC, but not after.
608 *
609 * Assumes CP0_Cause.DC is clear (count enabled).
610 */
611 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
612 {
613 struct mips_coproc *cop0 = vcpu->arch.cop0;
614
615 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
616 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
617 kvm_mips_count_disable(vcpu);
618 }
619
620 /**
621 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
622 * @vcpu: Virtual CPU.
623 *
624 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
625 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
626 * potentially before even returning, so the caller should be careful with
627 * ordering of CP0_Cause modifications so as not to lose it.
628 *
629 * Assumes CP0_Cause.DC is set (count disabled).
630 */
631 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
632 {
633 struct mips_coproc *cop0 = vcpu->arch.cop0;
634 u32 count;
635
636 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
637
638 /*
639 * Set the dynamic count to match the static count.
640 * This starts the hrtimer if count_ctl.DC allows it.
641 * Otherwise it conveniently updates the biases.
642 */
643 count = kvm_read_c0_guest_count(cop0);
644 kvm_mips_write_count(vcpu, count);
645 }
646
647 /**
648 * kvm_mips_set_count_ctl() - Update the count control KVM register.
649 * @vcpu: Virtual CPU.
650 * @count_ctl: Count control register new value.
651 *
652 * Set the count control KVM register. The timer is updated accordingly.
653 *
654 * Returns: -EINVAL if reserved bits are set.
655 * 0 on success.
656 */
657 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
658 {
659 struct mips_coproc *cop0 = vcpu->arch.cop0;
660 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
661 s64 delta;
662 ktime_t expire, now;
663 u32 count, compare;
664
665 /* Only allow defined bits to be changed */
666 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
667 return -EINVAL;
668
669 /* Apply new value */
670 vcpu->arch.count_ctl = count_ctl;
671
672 /* Master CP0_Count disable */
673 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
674 /* Is CP0_Cause.DC already disabling CP0_Count? */
675 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
676 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
677 /* Just record the current time */
678 vcpu->arch.count_resume = ktime_get();
679 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
680 /* disable timer and record current time */
681 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
682 } else {
683 /*
684 * Calculate timeout relative to static count at resume
685 * time (wrap 0 to 2^32).
686 */
687 count = kvm_read_c0_guest_count(cop0);
688 compare = kvm_read_c0_guest_compare(cop0);
689 delta = (u64)(u32)(compare - count - 1) + 1;
690 delta = div_u64(delta * NSEC_PER_SEC,
691 vcpu->arch.count_hz);
692 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
693
694 /* Handle pending interrupt */
695 now = ktime_get();
696 if (ktime_compare(now, expire) >= 0)
697 /* Nothing should be waiting on the timeout */
698 kvm_mips_callbacks->queue_timer_int(vcpu);
699
700 /* Resume hrtimer without changing bias */
701 count = kvm_mips_read_count_running(vcpu, now);
702 kvm_mips_resume_hrtimer(vcpu, now, count);
703 }
704 }
705
706 return 0;
707 }
708
709 /**
710 * kvm_mips_set_count_resume() - Update the count resume KVM register.
711 * @vcpu: Virtual CPU.
712 * @count_resume: Count resume register new value.
713 *
714 * Set the count resume KVM register.
715 *
716 * Returns: -EINVAL if out of valid range (0..now).
717 * 0 on success.
718 */
719 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
720 {
721 /*
722 * It doesn't make sense for the resume time to be in the future, as it
723 * would be possible for the next interrupt to be more than a full
724 * period in the future.
725 */
726 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
727 return -EINVAL;
728
729 vcpu->arch.count_resume = ns_to_ktime(count_resume);
730 return 0;
731 }
732
733 /**
734 * kvm_mips_count_timeout() - Push timer forward on timeout.
735 * @vcpu: Virtual CPU.
736 *
737 * Handle an hrtimer event by push the hrtimer forward a period.
738 *
739 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
740 */
741 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
742 {
743 /* Add the Count period to the current expiry time */
744 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
745 vcpu->arch.count_period);
746 return HRTIMER_RESTART;
747 }
748
749 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
750 {
751 struct mips_coproc *cop0 = vcpu->arch.cop0;
752 enum emulation_result er = EMULATE_DONE;
753
754 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
755 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
756 kvm_read_c0_guest_epc(cop0));
757 kvm_clear_c0_guest_status(cop0, ST0_EXL);
758 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
759
760 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
761 kvm_clear_c0_guest_status(cop0, ST0_ERL);
762 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
763 } else {
764 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
765 vcpu->arch.pc);
766 er = EMULATE_FAIL;
767 }
768
769 return er;
770 }
771
772 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
773 {
774 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
775 vcpu->arch.pending_exceptions);
776
777 ++vcpu->stat.wait_exits;
778 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
779 if (!vcpu->arch.pending_exceptions) {
780 vcpu->arch.wait = 1;
781 kvm_vcpu_block(vcpu);
782
783 /*
784 * We we are runnable, then definitely go off to user space to
785 * check if any I/O interrupts are pending.
786 */
787 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
788 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
789 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
790 }
791 }
792
793 return EMULATE_DONE;
794 }
795
796 /*
797 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
798 * we can catch this, if things ever change
799 */
800 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
801 {
802 struct mips_coproc *cop0 = vcpu->arch.cop0;
803 unsigned long pc = vcpu->arch.pc;
804
805 kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
806 return EMULATE_FAIL;
807 }
808
809 /* Write Guest TLB Entry @ Index */
810 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
811 {
812 struct mips_coproc *cop0 = vcpu->arch.cop0;
813 int index = kvm_read_c0_guest_index(cop0);
814 struct kvm_mips_tlb *tlb = NULL;
815 unsigned long pc = vcpu->arch.pc;
816
817 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
818 kvm_debug("%s: illegal index: %d\n", __func__, index);
819 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
820 pc, index, kvm_read_c0_guest_entryhi(cop0),
821 kvm_read_c0_guest_entrylo0(cop0),
822 kvm_read_c0_guest_entrylo1(cop0),
823 kvm_read_c0_guest_pagemask(cop0));
824 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
825 }
826
827 tlb = &vcpu->arch.guest_tlb[index];
828 /*
829 * Probe the shadow host TLB for the entry being overwritten, if one
830 * matches, invalidate it
831 */
832 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
833
834 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
835 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
836 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
837 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
838
839 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
840 pc, index, kvm_read_c0_guest_entryhi(cop0),
841 kvm_read_c0_guest_entrylo0(cop0),
842 kvm_read_c0_guest_entrylo1(cop0),
843 kvm_read_c0_guest_pagemask(cop0));
844
845 return EMULATE_DONE;
846 }
847
848 /* Write Guest TLB Entry @ Random Index */
849 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
850 {
851 struct mips_coproc *cop0 = vcpu->arch.cop0;
852 struct kvm_mips_tlb *tlb = NULL;
853 unsigned long pc = vcpu->arch.pc;
854 int index;
855
856 get_random_bytes(&index, sizeof(index));
857 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
858
859 tlb = &vcpu->arch.guest_tlb[index];
860
861 /*
862 * Probe the shadow host TLB for the entry being overwritten, if one
863 * matches, invalidate it
864 */
865 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
866
867 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
868 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
869 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
870 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
871
872 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
873 pc, index, kvm_read_c0_guest_entryhi(cop0),
874 kvm_read_c0_guest_entrylo0(cop0),
875 kvm_read_c0_guest_entrylo1(cop0));
876
877 return EMULATE_DONE;
878 }
879
880 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
881 {
882 struct mips_coproc *cop0 = vcpu->arch.cop0;
883 long entryhi = kvm_read_c0_guest_entryhi(cop0);
884 unsigned long pc = vcpu->arch.pc;
885 int index = -1;
886
887 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
888
889 kvm_write_c0_guest_index(cop0, index);
890
891 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
892 index);
893
894 return EMULATE_DONE;
895 }
896
897 /**
898 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
899 * @vcpu: Virtual CPU.
900 *
901 * Finds the mask of bits which are writable in the guest's Config1 CP0
902 * register, by userland (currently read-only to the guest).
903 */
904 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
905 {
906 unsigned int mask = 0;
907
908 /* Permit FPU to be present if FPU is supported */
909 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
910 mask |= MIPS_CONF1_FP;
911
912 return mask;
913 }
914
915 /**
916 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
917 * @vcpu: Virtual CPU.
918 *
919 * Finds the mask of bits which are writable in the guest's Config3 CP0
920 * register, by userland (currently read-only to the guest).
921 */
922 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
923 {
924 /* Config4 is optional */
925 unsigned int mask = MIPS_CONF_M;
926
927 /* Permit MSA to be present if MSA is supported */
928 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
929 mask |= MIPS_CONF3_MSA;
930
931 return mask;
932 }
933
934 /**
935 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
936 * @vcpu: Virtual CPU.
937 *
938 * Finds the mask of bits which are writable in the guest's Config4 CP0
939 * register, by userland (currently read-only to the guest).
940 */
941 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
942 {
943 /* Config5 is optional */
944 return MIPS_CONF_M;
945 }
946
947 /**
948 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
949 * @vcpu: Virtual CPU.
950 *
951 * Finds the mask of bits which are writable in the guest's Config5 CP0
952 * register, by the guest itself.
953 */
954 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
955 {
956 unsigned int mask = 0;
957
958 /* Permit MSAEn changes if MSA supported and enabled */
959 if (kvm_mips_guest_has_msa(&vcpu->arch))
960 mask |= MIPS_CONF5_MSAEN;
961
962 /*
963 * Permit guest FPU mode changes if FPU is enabled and the relevant
964 * feature exists according to FIR register.
965 */
966 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
967 if (cpu_has_fre)
968 mask |= MIPS_CONF5_FRE;
969 /* We don't support UFR or UFE */
970 }
971
972 return mask;
973 }
974
975 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
976 u32 *opc, u32 cause,
977 struct kvm_run *run,
978 struct kvm_vcpu *vcpu)
979 {
980 struct mips_coproc *cop0 = vcpu->arch.cop0;
981 enum emulation_result er = EMULATE_DONE;
982 u32 rt, rd, sel;
983 unsigned long curr_pc;
984
985 /*
986 * Update PC and hold onto current PC in case there is
987 * an error and we want to rollback the PC
988 */
989 curr_pc = vcpu->arch.pc;
990 er = update_pc(vcpu, cause);
991 if (er == EMULATE_FAIL)
992 return er;
993
994 if (inst.co_format.co) {
995 switch (inst.co_format.func) {
996 case tlbr_op: /* Read indexed TLB entry */
997 er = kvm_mips_emul_tlbr(vcpu);
998 break;
999 case tlbwi_op: /* Write indexed */
1000 er = kvm_mips_emul_tlbwi(vcpu);
1001 break;
1002 case tlbwr_op: /* Write random */
1003 er = kvm_mips_emul_tlbwr(vcpu);
1004 break;
1005 case tlbp_op: /* TLB Probe */
1006 er = kvm_mips_emul_tlbp(vcpu);
1007 break;
1008 case rfe_op:
1009 kvm_err("!!!COP0_RFE!!!\n");
1010 break;
1011 case eret_op:
1012 er = kvm_mips_emul_eret(vcpu);
1013 goto dont_update_pc;
1014 case wait_op:
1015 er = kvm_mips_emul_wait(vcpu);
1016 break;
1017 }
1018 } else {
1019 rt = inst.c0r_format.rt;
1020 rd = inst.c0r_format.rd;
1021 sel = inst.c0r_format.sel;
1022
1023 switch (inst.c0r_format.rs) {
1024 case mfc_op:
1025 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1026 cop0->stat[rd][sel]++;
1027 #endif
1028 /* Get reg */
1029 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1030 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1031 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1032 vcpu->arch.gprs[rt] = 0x0;
1033 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1034 kvm_mips_trans_mfc0(inst, opc, vcpu);
1035 #endif
1036 } else {
1037 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1038
1039 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1040 kvm_mips_trans_mfc0(inst, opc, vcpu);
1041 #endif
1042 }
1043
1044 trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1045 KVM_TRACE_COP0(rd, sel),
1046 vcpu->arch.gprs[rt]);
1047 break;
1048
1049 case dmfc_op:
1050 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1051
1052 trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1053 KVM_TRACE_COP0(rd, sel),
1054 vcpu->arch.gprs[rt]);
1055 break;
1056
1057 case mtc_op:
1058 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1059 cop0->stat[rd][sel]++;
1060 #endif
1061 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1062 KVM_TRACE_COP0(rd, sel),
1063 vcpu->arch.gprs[rt]);
1064
1065 if ((rd == MIPS_CP0_TLB_INDEX)
1066 && (vcpu->arch.gprs[rt] >=
1067 KVM_MIPS_GUEST_TLB_SIZE)) {
1068 kvm_err("Invalid TLB Index: %ld",
1069 vcpu->arch.gprs[rt]);
1070 er = EMULATE_FAIL;
1071 break;
1072 }
1073 #define C0_EBASE_CORE_MASK 0xff
1074 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1075 /* Preserve CORE number */
1076 kvm_change_c0_guest_ebase(cop0,
1077 ~(C0_EBASE_CORE_MASK),
1078 vcpu->arch.gprs[rt]);
1079 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1080 kvm_read_c0_guest_ebase(cop0));
1081 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1082 u32 nasid =
1083 vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1084 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1085 ((kvm_read_c0_guest_entryhi(cop0) &
1086 KVM_ENTRYHI_ASID) != nasid)) {
1087 trace_kvm_asid_change(vcpu,
1088 kvm_read_c0_guest_entryhi(cop0)
1089 & KVM_ENTRYHI_ASID,
1090 nasid);
1091
1092 /* Blow away the shadow host TLBs */
1093 kvm_mips_flush_host_tlb(1);
1094 }
1095 kvm_write_c0_guest_entryhi(cop0,
1096 vcpu->arch.gprs[rt]);
1097 }
1098 /* Are we writing to COUNT */
1099 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1100 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1101 goto done;
1102 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1103 /* If we are writing to COMPARE */
1104 /* Clear pending timer interrupt, if any */
1105 kvm_mips_write_compare(vcpu,
1106 vcpu->arch.gprs[rt],
1107 true);
1108 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1109 unsigned int old_val, val, change;
1110
1111 old_val = kvm_read_c0_guest_status(cop0);
1112 val = vcpu->arch.gprs[rt];
1113 change = val ^ old_val;
1114
1115 /* Make sure that the NMI bit is never set */
1116 val &= ~ST0_NMI;
1117
1118 /*
1119 * Don't allow CU1 or FR to be set unless FPU
1120 * capability enabled and exists in guest
1121 * configuration.
1122 */
1123 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1124 val &= ~(ST0_CU1 | ST0_FR);
1125
1126 /*
1127 * Also don't allow FR to be set if host doesn't
1128 * support it.
1129 */
1130 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1131 val &= ~ST0_FR;
1132
1133
1134 /* Handle changes in FPU mode */
1135 preempt_disable();
1136
1137 /*
1138 * FPU and Vector register state is made
1139 * UNPREDICTABLE by a change of FR, so don't
1140 * even bother saving it.
1141 */
1142 if (change & ST0_FR)
1143 kvm_drop_fpu(vcpu);
1144
1145 /*
1146 * If MSA state is already live, it is undefined
1147 * how it interacts with FR=0 FPU state, and we
1148 * don't want to hit reserved instruction
1149 * exceptions trying to save the MSA state later
1150 * when CU=1 && FR=1, so play it safe and save
1151 * it first.
1152 */
1153 if (change & ST0_CU1 && !(val & ST0_FR) &&
1154 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1155 kvm_lose_fpu(vcpu);
1156
1157 /*
1158 * Propagate CU1 (FPU enable) changes
1159 * immediately if the FPU context is already
1160 * loaded. When disabling we leave the context
1161 * loaded so it can be quickly enabled again in
1162 * the near future.
1163 */
1164 if (change & ST0_CU1 &&
1165 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1166 change_c0_status(ST0_CU1, val);
1167
1168 preempt_enable();
1169
1170 kvm_write_c0_guest_status(cop0, val);
1171
1172 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1173 /*
1174 * If FPU present, we need CU1/FR bits to take
1175 * effect fairly soon.
1176 */
1177 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1178 kvm_mips_trans_mtc0(inst, opc, vcpu);
1179 #endif
1180 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1181 unsigned int old_val, val, change, wrmask;
1182
1183 old_val = kvm_read_c0_guest_config5(cop0);
1184 val = vcpu->arch.gprs[rt];
1185
1186 /* Only a few bits are writable in Config5 */
1187 wrmask = kvm_mips_config5_wrmask(vcpu);
1188 change = (val ^ old_val) & wrmask;
1189 val = old_val ^ change;
1190
1191
1192 /* Handle changes in FPU/MSA modes */
1193 preempt_disable();
1194
1195 /*
1196 * Propagate FRE changes immediately if the FPU
1197 * context is already loaded.
1198 */
1199 if (change & MIPS_CONF5_FRE &&
1200 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1201 change_c0_config5(MIPS_CONF5_FRE, val);
1202
1203 /*
1204 * Propagate MSAEn changes immediately if the
1205 * MSA context is already loaded. When disabling
1206 * we leave the context loaded so it can be
1207 * quickly enabled again in the near future.
1208 */
1209 if (change & MIPS_CONF5_MSAEN &&
1210 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1211 change_c0_config5(MIPS_CONF5_MSAEN,
1212 val);
1213
1214 preempt_enable();
1215
1216 kvm_write_c0_guest_config5(cop0, val);
1217 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1218 u32 old_cause, new_cause;
1219
1220 old_cause = kvm_read_c0_guest_cause(cop0);
1221 new_cause = vcpu->arch.gprs[rt];
1222 /* Update R/W bits */
1223 kvm_change_c0_guest_cause(cop0, 0x08800300,
1224 new_cause);
1225 /* DC bit enabling/disabling timer? */
1226 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1227 if (new_cause & CAUSEF_DC)
1228 kvm_mips_count_disable_cause(vcpu);
1229 else
1230 kvm_mips_count_enable_cause(vcpu);
1231 }
1232 } else {
1233 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1234 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1235 kvm_mips_trans_mtc0(inst, opc, vcpu);
1236 #endif
1237 }
1238 break;
1239
1240 case dmtc_op:
1241 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1242 vcpu->arch.pc, rt, rd, sel);
1243 trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1244 KVM_TRACE_COP0(rd, sel),
1245 vcpu->arch.gprs[rt]);
1246 er = EMULATE_FAIL;
1247 break;
1248
1249 case mfmc0_op:
1250 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1251 cop0->stat[MIPS_CP0_STATUS][0]++;
1252 #endif
1253 if (rt != 0)
1254 vcpu->arch.gprs[rt] =
1255 kvm_read_c0_guest_status(cop0);
1256 /* EI */
1257 if (inst.mfmc0_format.sc) {
1258 kvm_debug("[%#lx] mfmc0_op: EI\n",
1259 vcpu->arch.pc);
1260 kvm_set_c0_guest_status(cop0, ST0_IE);
1261 } else {
1262 kvm_debug("[%#lx] mfmc0_op: DI\n",
1263 vcpu->arch.pc);
1264 kvm_clear_c0_guest_status(cop0, ST0_IE);
1265 }
1266
1267 break;
1268
1269 case wrpgpr_op:
1270 {
1271 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1272 u32 pss =
1273 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1274 /*
1275 * We don't support any shadow register sets, so
1276 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1277 */
1278 if (css || pss) {
1279 er = EMULATE_FAIL;
1280 break;
1281 }
1282 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1283 vcpu->arch.gprs[rt]);
1284 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1285 }
1286 break;
1287 default:
1288 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1289 vcpu->arch.pc, inst.c0r_format.rs);
1290 er = EMULATE_FAIL;
1291 break;
1292 }
1293 }
1294
1295 done:
1296 /* Rollback PC only if emulation was unsuccessful */
1297 if (er == EMULATE_FAIL)
1298 vcpu->arch.pc = curr_pc;
1299
1300 dont_update_pc:
1301 /*
1302 * This is for special instructions whose emulation
1303 * updates the PC, so do not overwrite the PC under
1304 * any circumstances
1305 */
1306
1307 return er;
1308 }
1309
1310 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1311 u32 cause,
1312 struct kvm_run *run,
1313 struct kvm_vcpu *vcpu)
1314 {
1315 enum emulation_result er = EMULATE_DO_MMIO;
1316 u32 rt;
1317 u32 bytes;
1318 void *data = run->mmio.data;
1319 unsigned long curr_pc;
1320
1321 /*
1322 * Update PC and hold onto current PC in case there is
1323 * an error and we want to rollback the PC
1324 */
1325 curr_pc = vcpu->arch.pc;
1326 er = update_pc(vcpu, cause);
1327 if (er == EMULATE_FAIL)
1328 return er;
1329
1330 rt = inst.i_format.rt;
1331
1332 switch (inst.i_format.opcode) {
1333 case sb_op:
1334 bytes = 1;
1335 if (bytes > sizeof(run->mmio.data)) {
1336 kvm_err("%s: bad MMIO length: %d\n", __func__,
1337 run->mmio.len);
1338 }
1339 run->mmio.phys_addr =
1340 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1341 host_cp0_badvaddr);
1342 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1343 er = EMULATE_FAIL;
1344 break;
1345 }
1346 run->mmio.len = bytes;
1347 run->mmio.is_write = 1;
1348 vcpu->mmio_needed = 1;
1349 vcpu->mmio_is_write = 1;
1350 *(u8 *) data = vcpu->arch.gprs[rt];
1351 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1352 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1353 *(u8 *) data);
1354
1355 break;
1356
1357 case sw_op:
1358 bytes = 4;
1359 if (bytes > sizeof(run->mmio.data)) {
1360 kvm_err("%s: bad MMIO length: %d\n", __func__,
1361 run->mmio.len);
1362 }
1363 run->mmio.phys_addr =
1364 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1365 host_cp0_badvaddr);
1366 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1367 er = EMULATE_FAIL;
1368 break;
1369 }
1370
1371 run->mmio.len = bytes;
1372 run->mmio.is_write = 1;
1373 vcpu->mmio_needed = 1;
1374 vcpu->mmio_is_write = 1;
1375 *(u32 *) data = vcpu->arch.gprs[rt];
1376
1377 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1378 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1379 vcpu->arch.gprs[rt], *(u32 *) data);
1380 break;
1381
1382 case sh_op:
1383 bytes = 2;
1384 if (bytes > sizeof(run->mmio.data)) {
1385 kvm_err("%s: bad MMIO length: %d\n", __func__,
1386 run->mmio.len);
1387 }
1388 run->mmio.phys_addr =
1389 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1390 host_cp0_badvaddr);
1391 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1392 er = EMULATE_FAIL;
1393 break;
1394 }
1395
1396 run->mmio.len = bytes;
1397 run->mmio.is_write = 1;
1398 vcpu->mmio_needed = 1;
1399 vcpu->mmio_is_write = 1;
1400 *(u16 *) data = vcpu->arch.gprs[rt];
1401
1402 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1403 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1404 vcpu->arch.gprs[rt], *(u32 *) data);
1405 break;
1406
1407 default:
1408 kvm_err("Store not yet supported (inst=0x%08x)\n",
1409 inst.word);
1410 er = EMULATE_FAIL;
1411 break;
1412 }
1413
1414 /* Rollback PC if emulation was unsuccessful */
1415 if (er == EMULATE_FAIL)
1416 vcpu->arch.pc = curr_pc;
1417
1418 return er;
1419 }
1420
1421 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1422 u32 cause, struct kvm_run *run,
1423 struct kvm_vcpu *vcpu)
1424 {
1425 enum emulation_result er = EMULATE_DO_MMIO;
1426 u32 op, rt;
1427 u32 bytes;
1428
1429 rt = inst.i_format.rt;
1430 op = inst.i_format.opcode;
1431
1432 vcpu->arch.pending_load_cause = cause;
1433 vcpu->arch.io_gpr = rt;
1434
1435 switch (op) {
1436 case lw_op:
1437 bytes = 4;
1438 if (bytes > sizeof(run->mmio.data)) {
1439 kvm_err("%s: bad MMIO length: %d\n", __func__,
1440 run->mmio.len);
1441 er = EMULATE_FAIL;
1442 break;
1443 }
1444 run->mmio.phys_addr =
1445 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1446 host_cp0_badvaddr);
1447 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1448 er = EMULATE_FAIL;
1449 break;
1450 }
1451
1452 run->mmio.len = bytes;
1453 run->mmio.is_write = 0;
1454 vcpu->mmio_needed = 1;
1455 vcpu->mmio_is_write = 0;
1456 break;
1457
1458 case lh_op:
1459 case lhu_op:
1460 bytes = 2;
1461 if (bytes > sizeof(run->mmio.data)) {
1462 kvm_err("%s: bad MMIO length: %d\n", __func__,
1463 run->mmio.len);
1464 er = EMULATE_FAIL;
1465 break;
1466 }
1467 run->mmio.phys_addr =
1468 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1469 host_cp0_badvaddr);
1470 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1471 er = EMULATE_FAIL;
1472 break;
1473 }
1474
1475 run->mmio.len = bytes;
1476 run->mmio.is_write = 0;
1477 vcpu->mmio_needed = 1;
1478 vcpu->mmio_is_write = 0;
1479
1480 if (op == lh_op)
1481 vcpu->mmio_needed = 2;
1482 else
1483 vcpu->mmio_needed = 1;
1484
1485 break;
1486
1487 case lbu_op:
1488 case lb_op:
1489 bytes = 1;
1490 if (bytes > sizeof(run->mmio.data)) {
1491 kvm_err("%s: bad MMIO length: %d\n", __func__,
1492 run->mmio.len);
1493 er = EMULATE_FAIL;
1494 break;
1495 }
1496 run->mmio.phys_addr =
1497 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1498 host_cp0_badvaddr);
1499 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1500 er = EMULATE_FAIL;
1501 break;
1502 }
1503
1504 run->mmio.len = bytes;
1505 run->mmio.is_write = 0;
1506 vcpu->mmio_is_write = 0;
1507
1508 if (op == lb_op)
1509 vcpu->mmio_needed = 2;
1510 else
1511 vcpu->mmio_needed = 1;
1512
1513 break;
1514
1515 default:
1516 kvm_err("Load not yet supported (inst=0x%08x)\n",
1517 inst.word);
1518 er = EMULATE_FAIL;
1519 break;
1520 }
1521
1522 return er;
1523 }
1524
1525 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1526 u32 *opc, u32 cause,
1527 struct kvm_run *run,
1528 struct kvm_vcpu *vcpu)
1529 {
1530 struct mips_coproc *cop0 = vcpu->arch.cop0;
1531 enum emulation_result er = EMULATE_DONE;
1532 u32 cache, op_inst, op, base;
1533 s16 offset;
1534 struct kvm_vcpu_arch *arch = &vcpu->arch;
1535 unsigned long va;
1536 unsigned long curr_pc;
1537
1538 /*
1539 * Update PC and hold onto current PC in case there is
1540 * an error and we want to rollback the PC
1541 */
1542 curr_pc = vcpu->arch.pc;
1543 er = update_pc(vcpu, cause);
1544 if (er == EMULATE_FAIL)
1545 return er;
1546
1547 base = inst.i_format.rs;
1548 op_inst = inst.i_format.rt;
1549 offset = inst.i_format.simmediate;
1550 cache = op_inst & CacheOp_Cache;
1551 op = op_inst & CacheOp_Op;
1552
1553 va = arch->gprs[base] + offset;
1554
1555 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1556 cache, op, base, arch->gprs[base], offset);
1557
1558 /*
1559 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1560 * invalidate the caches entirely by stepping through all the
1561 * ways/indexes
1562 */
1563 if (op == Index_Writeback_Inv) {
1564 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1565 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1566 arch->gprs[base], offset);
1567
1568 if (cache == Cache_D)
1569 r4k_blast_dcache();
1570 else if (cache == Cache_I)
1571 r4k_blast_icache();
1572 else {
1573 kvm_err("%s: unsupported CACHE INDEX operation\n",
1574 __func__);
1575 return EMULATE_FAIL;
1576 }
1577
1578 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1579 kvm_mips_trans_cache_index(inst, opc, vcpu);
1580 #endif
1581 goto done;
1582 }
1583
1584 preempt_disable();
1585 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1586 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1587 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1588 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1589 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1590 int index;
1591
1592 /* If an entry already exists then skip */
1593 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1594 goto skip_fault;
1595
1596 /*
1597 * If address not in the guest TLB, then give the guest a fault,
1598 * the resulting handler will do the right thing
1599 */
1600 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1601 (kvm_read_c0_guest_entryhi
1602 (cop0) & KVM_ENTRYHI_ASID));
1603
1604 if (index < 0) {
1605 vcpu->arch.host_cp0_badvaddr = va;
1606 vcpu->arch.pc = curr_pc;
1607 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1608 vcpu);
1609 preempt_enable();
1610 goto dont_update_pc;
1611 } else {
1612 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1613 /*
1614 * Check if the entry is valid, if not then setup a TLB
1615 * invalid exception to the guest
1616 */
1617 if (!TLB_IS_VALID(*tlb, va)) {
1618 vcpu->arch.host_cp0_badvaddr = va;
1619 vcpu->arch.pc = curr_pc;
1620 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1621 run, vcpu);
1622 preempt_enable();
1623 goto dont_update_pc;
1624 } else {
1625 /*
1626 * We fault an entry from the guest tlb to the
1627 * shadow host TLB
1628 */
1629 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb);
1630 }
1631 }
1632 } else {
1633 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1634 cache, op, base, arch->gprs[base], offset);
1635 er = EMULATE_FAIL;
1636 preempt_enable();
1637 goto done;
1638
1639 }
1640
1641 skip_fault:
1642 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1643 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1644 flush_dcache_line(va);
1645
1646 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1647 /*
1648 * Replace the CACHE instruction, with a SYNCI, not the same,
1649 * but avoids a trap
1650 */
1651 kvm_mips_trans_cache_va(inst, opc, vcpu);
1652 #endif
1653 } else if (op_inst == Hit_Invalidate_I) {
1654 flush_dcache_line(va);
1655 flush_icache_line(va);
1656
1657 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1658 /* Replace the CACHE instruction, with a SYNCI */
1659 kvm_mips_trans_cache_va(inst, opc, vcpu);
1660 #endif
1661 } else {
1662 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1663 cache, op, base, arch->gprs[base], offset);
1664 er = EMULATE_FAIL;
1665 }
1666
1667 preempt_enable();
1668 done:
1669 /* Rollback PC only if emulation was unsuccessful */
1670 if (er == EMULATE_FAIL)
1671 vcpu->arch.pc = curr_pc;
1672
1673 dont_update_pc:
1674 /*
1675 * This is for exceptions whose emulation updates the PC, so do not
1676 * overwrite the PC under any circumstances
1677 */
1678
1679 return er;
1680 }
1681
1682 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1683 struct kvm_run *run,
1684 struct kvm_vcpu *vcpu)
1685 {
1686 union mips_instruction inst;
1687 enum emulation_result er = EMULATE_DONE;
1688
1689 /* Fetch the instruction. */
1690 if (cause & CAUSEF_BD)
1691 opc += 1;
1692
1693 inst.word = kvm_get_inst(opc, vcpu);
1694
1695 switch (inst.r_format.opcode) {
1696 case cop0_op:
1697 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1698 break;
1699 case sb_op:
1700 case sh_op:
1701 case sw_op:
1702 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1703 break;
1704 case lb_op:
1705 case lbu_op:
1706 case lhu_op:
1707 case lh_op:
1708 case lw_op:
1709 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1710 break;
1711
1712 case cache_op:
1713 ++vcpu->stat.cache_exits;
1714 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1715 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1716 break;
1717
1718 default:
1719 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1720 inst.word);
1721 kvm_arch_vcpu_dump_regs(vcpu);
1722 er = EMULATE_FAIL;
1723 break;
1724 }
1725
1726 return er;
1727 }
1728
1729 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1730 u32 *opc,
1731 struct kvm_run *run,
1732 struct kvm_vcpu *vcpu)
1733 {
1734 struct mips_coproc *cop0 = vcpu->arch.cop0;
1735 struct kvm_vcpu_arch *arch = &vcpu->arch;
1736 enum emulation_result er = EMULATE_DONE;
1737
1738 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1739 /* save old pc */
1740 kvm_write_c0_guest_epc(cop0, arch->pc);
1741 kvm_set_c0_guest_status(cop0, ST0_EXL);
1742
1743 if (cause & CAUSEF_BD)
1744 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1745 else
1746 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1747
1748 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1749
1750 kvm_change_c0_guest_cause(cop0, (0xff),
1751 (EXCCODE_SYS << CAUSEB_EXCCODE));
1752
1753 /* Set PC to the exception entry point */
1754 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1755
1756 } else {
1757 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1758 er = EMULATE_FAIL;
1759 }
1760
1761 return er;
1762 }
1763
1764 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1765 u32 *opc,
1766 struct kvm_run *run,
1767 struct kvm_vcpu *vcpu)
1768 {
1769 struct mips_coproc *cop0 = vcpu->arch.cop0;
1770 struct kvm_vcpu_arch *arch = &vcpu->arch;
1771 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
1772 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1773
1774 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1775 /* save old pc */
1776 kvm_write_c0_guest_epc(cop0, arch->pc);
1777 kvm_set_c0_guest_status(cop0, ST0_EXL);
1778
1779 if (cause & CAUSEF_BD)
1780 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1781 else
1782 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1783
1784 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1785 arch->pc);
1786
1787 /* set pc to the exception entry point */
1788 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1789
1790 } else {
1791 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1792 arch->pc);
1793
1794 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1795 }
1796
1797 kvm_change_c0_guest_cause(cop0, (0xff),
1798 (EXCCODE_TLBL << CAUSEB_EXCCODE));
1799
1800 /* setup badvaddr, context and entryhi registers for the guest */
1801 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1802 /* XXXKYMA: is the context register used by linux??? */
1803 kvm_write_c0_guest_entryhi(cop0, entryhi);
1804 /* Blow away the shadow host TLBs */
1805 kvm_mips_flush_host_tlb(1);
1806
1807 return EMULATE_DONE;
1808 }
1809
1810 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
1811 u32 *opc,
1812 struct kvm_run *run,
1813 struct kvm_vcpu *vcpu)
1814 {
1815 struct mips_coproc *cop0 = vcpu->arch.cop0;
1816 struct kvm_vcpu_arch *arch = &vcpu->arch;
1817 unsigned long entryhi =
1818 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1819 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1820
1821 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1822 /* save old pc */
1823 kvm_write_c0_guest_epc(cop0, arch->pc);
1824 kvm_set_c0_guest_status(cop0, ST0_EXL);
1825
1826 if (cause & CAUSEF_BD)
1827 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1828 else
1829 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1830
1831 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1832 arch->pc);
1833
1834 /* set pc to the exception entry point */
1835 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1836
1837 } else {
1838 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1839 arch->pc);
1840 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1841 }
1842
1843 kvm_change_c0_guest_cause(cop0, (0xff),
1844 (EXCCODE_TLBL << CAUSEB_EXCCODE));
1845
1846 /* setup badvaddr, context and entryhi registers for the guest */
1847 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1848 /* XXXKYMA: is the context register used by linux??? */
1849 kvm_write_c0_guest_entryhi(cop0, entryhi);
1850 /* Blow away the shadow host TLBs */
1851 kvm_mips_flush_host_tlb(1);
1852
1853 return EMULATE_DONE;
1854 }
1855
1856 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
1857 u32 *opc,
1858 struct kvm_run *run,
1859 struct kvm_vcpu *vcpu)
1860 {
1861 struct mips_coproc *cop0 = vcpu->arch.cop0;
1862 struct kvm_vcpu_arch *arch = &vcpu->arch;
1863 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1864 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1865
1866 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1867 /* save old pc */
1868 kvm_write_c0_guest_epc(cop0, arch->pc);
1869 kvm_set_c0_guest_status(cop0, ST0_EXL);
1870
1871 if (cause & CAUSEF_BD)
1872 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1873 else
1874 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1875
1876 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1877 arch->pc);
1878
1879 /* Set PC to the exception entry point */
1880 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1881 } else {
1882 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1883 arch->pc);
1884 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1885 }
1886
1887 kvm_change_c0_guest_cause(cop0, (0xff),
1888 (EXCCODE_TLBS << CAUSEB_EXCCODE));
1889
1890 /* setup badvaddr, context and entryhi registers for the guest */
1891 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1892 /* XXXKYMA: is the context register used by linux??? */
1893 kvm_write_c0_guest_entryhi(cop0, entryhi);
1894 /* Blow away the shadow host TLBs */
1895 kvm_mips_flush_host_tlb(1);
1896
1897 return EMULATE_DONE;
1898 }
1899
1900 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
1901 u32 *opc,
1902 struct kvm_run *run,
1903 struct kvm_vcpu *vcpu)
1904 {
1905 struct mips_coproc *cop0 = vcpu->arch.cop0;
1906 struct kvm_vcpu_arch *arch = &vcpu->arch;
1907 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1908 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1909
1910 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1911 /* save old pc */
1912 kvm_write_c0_guest_epc(cop0, arch->pc);
1913 kvm_set_c0_guest_status(cop0, ST0_EXL);
1914
1915 if (cause & CAUSEF_BD)
1916 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1917 else
1918 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1919
1920 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1921 arch->pc);
1922
1923 /* Set PC to the exception entry point */
1924 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1925 } else {
1926 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1927 arch->pc);
1928 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1929 }
1930
1931 kvm_change_c0_guest_cause(cop0, (0xff),
1932 (EXCCODE_TLBS << CAUSEB_EXCCODE));
1933
1934 /* setup badvaddr, context and entryhi registers for the guest */
1935 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1936 /* XXXKYMA: is the context register used by linux??? */
1937 kvm_write_c0_guest_entryhi(cop0, entryhi);
1938 /* Blow away the shadow host TLBs */
1939 kvm_mips_flush_host_tlb(1);
1940
1941 return EMULATE_DONE;
1942 }
1943
1944 /* TLBMOD: store into address matching TLB with Dirty bit off */
1945 enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
1946 struct kvm_run *run,
1947 struct kvm_vcpu *vcpu)
1948 {
1949 enum emulation_result er = EMULATE_DONE;
1950 #ifdef DEBUG
1951 struct mips_coproc *cop0 = vcpu->arch.cop0;
1952 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1953 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1954 int index;
1955
1956 /* If address not in the guest TLB, then we are in trouble */
1957 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1958 if (index < 0) {
1959 /* XXXKYMA Invalidate and retry */
1960 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1961 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1962 __func__, entryhi);
1963 kvm_mips_dump_guest_tlbs(vcpu);
1964 kvm_mips_dump_host_tlbs();
1965 return EMULATE_FAIL;
1966 }
1967 #endif
1968
1969 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1970 return er;
1971 }
1972
1973 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
1974 u32 *opc,
1975 struct kvm_run *run,
1976 struct kvm_vcpu *vcpu)
1977 {
1978 struct mips_coproc *cop0 = vcpu->arch.cop0;
1979 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1980 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1981 struct kvm_vcpu_arch *arch = &vcpu->arch;
1982
1983 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1984 /* save old pc */
1985 kvm_write_c0_guest_epc(cop0, arch->pc);
1986 kvm_set_c0_guest_status(cop0, ST0_EXL);
1987
1988 if (cause & CAUSEF_BD)
1989 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1990 else
1991 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1992
1993 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
1994 arch->pc);
1995
1996 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1997 } else {
1998 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
1999 arch->pc);
2000 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2001 }
2002
2003 kvm_change_c0_guest_cause(cop0, (0xff),
2004 (EXCCODE_MOD << CAUSEB_EXCCODE));
2005
2006 /* setup badvaddr, context and entryhi registers for the guest */
2007 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2008 /* XXXKYMA: is the context register used by linux??? */
2009 kvm_write_c0_guest_entryhi(cop0, entryhi);
2010 /* Blow away the shadow host TLBs */
2011 kvm_mips_flush_host_tlb(1);
2012
2013 return EMULATE_DONE;
2014 }
2015
2016 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2017 u32 *opc,
2018 struct kvm_run *run,
2019 struct kvm_vcpu *vcpu)
2020 {
2021 struct mips_coproc *cop0 = vcpu->arch.cop0;
2022 struct kvm_vcpu_arch *arch = &vcpu->arch;
2023
2024 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2025 /* save old pc */
2026 kvm_write_c0_guest_epc(cop0, arch->pc);
2027 kvm_set_c0_guest_status(cop0, ST0_EXL);
2028
2029 if (cause & CAUSEF_BD)
2030 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2031 else
2032 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2033
2034 }
2035
2036 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2037
2038 kvm_change_c0_guest_cause(cop0, (0xff),
2039 (EXCCODE_CPU << CAUSEB_EXCCODE));
2040 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2041
2042 return EMULATE_DONE;
2043 }
2044
2045 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2046 u32 *opc,
2047 struct kvm_run *run,
2048 struct kvm_vcpu *vcpu)
2049 {
2050 struct mips_coproc *cop0 = vcpu->arch.cop0;
2051 struct kvm_vcpu_arch *arch = &vcpu->arch;
2052 enum emulation_result er = EMULATE_DONE;
2053
2054 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2055 /* save old pc */
2056 kvm_write_c0_guest_epc(cop0, arch->pc);
2057 kvm_set_c0_guest_status(cop0, ST0_EXL);
2058
2059 if (cause & CAUSEF_BD)
2060 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2061 else
2062 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2063
2064 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2065
2066 kvm_change_c0_guest_cause(cop0, (0xff),
2067 (EXCCODE_RI << CAUSEB_EXCCODE));
2068
2069 /* Set PC to the exception entry point */
2070 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2071
2072 } else {
2073 kvm_err("Trying to deliver RI when EXL is already set\n");
2074 er = EMULATE_FAIL;
2075 }
2076
2077 return er;
2078 }
2079
2080 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2081 u32 *opc,
2082 struct kvm_run *run,
2083 struct kvm_vcpu *vcpu)
2084 {
2085 struct mips_coproc *cop0 = vcpu->arch.cop0;
2086 struct kvm_vcpu_arch *arch = &vcpu->arch;
2087 enum emulation_result er = EMULATE_DONE;
2088
2089 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2090 /* save old pc */
2091 kvm_write_c0_guest_epc(cop0, arch->pc);
2092 kvm_set_c0_guest_status(cop0, ST0_EXL);
2093
2094 if (cause & CAUSEF_BD)
2095 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2096 else
2097 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2098
2099 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2100
2101 kvm_change_c0_guest_cause(cop0, (0xff),
2102 (EXCCODE_BP << CAUSEB_EXCCODE));
2103
2104 /* Set PC to the exception entry point */
2105 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2106
2107 } else {
2108 kvm_err("Trying to deliver BP when EXL is already set\n");
2109 er = EMULATE_FAIL;
2110 }
2111
2112 return er;
2113 }
2114
2115 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2116 u32 *opc,
2117 struct kvm_run *run,
2118 struct kvm_vcpu *vcpu)
2119 {
2120 struct mips_coproc *cop0 = vcpu->arch.cop0;
2121 struct kvm_vcpu_arch *arch = &vcpu->arch;
2122 enum emulation_result er = EMULATE_DONE;
2123
2124 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2125 /* save old pc */
2126 kvm_write_c0_guest_epc(cop0, arch->pc);
2127 kvm_set_c0_guest_status(cop0, ST0_EXL);
2128
2129 if (cause & CAUSEF_BD)
2130 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2131 else
2132 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2133
2134 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2135
2136 kvm_change_c0_guest_cause(cop0, (0xff),
2137 (EXCCODE_TR << CAUSEB_EXCCODE));
2138
2139 /* Set PC to the exception entry point */
2140 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2141
2142 } else {
2143 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2144 er = EMULATE_FAIL;
2145 }
2146
2147 return er;
2148 }
2149
2150 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2151 u32 *opc,
2152 struct kvm_run *run,
2153 struct kvm_vcpu *vcpu)
2154 {
2155 struct mips_coproc *cop0 = vcpu->arch.cop0;
2156 struct kvm_vcpu_arch *arch = &vcpu->arch;
2157 enum emulation_result er = EMULATE_DONE;
2158
2159 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2160 /* save old pc */
2161 kvm_write_c0_guest_epc(cop0, arch->pc);
2162 kvm_set_c0_guest_status(cop0, ST0_EXL);
2163
2164 if (cause & CAUSEF_BD)
2165 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2166 else
2167 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2168
2169 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2170
2171 kvm_change_c0_guest_cause(cop0, (0xff),
2172 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2173
2174 /* Set PC to the exception entry point */
2175 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2176
2177 } else {
2178 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2179 er = EMULATE_FAIL;
2180 }
2181
2182 return er;
2183 }
2184
2185 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2186 u32 *opc,
2187 struct kvm_run *run,
2188 struct kvm_vcpu *vcpu)
2189 {
2190 struct mips_coproc *cop0 = vcpu->arch.cop0;
2191 struct kvm_vcpu_arch *arch = &vcpu->arch;
2192 enum emulation_result er = EMULATE_DONE;
2193
2194 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2195 /* save old pc */
2196 kvm_write_c0_guest_epc(cop0, arch->pc);
2197 kvm_set_c0_guest_status(cop0, ST0_EXL);
2198
2199 if (cause & CAUSEF_BD)
2200 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2201 else
2202 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2203
2204 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2205
2206 kvm_change_c0_guest_cause(cop0, (0xff),
2207 (EXCCODE_FPE << CAUSEB_EXCCODE));
2208
2209 /* Set PC to the exception entry point */
2210 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2211
2212 } else {
2213 kvm_err("Trying to deliver FPE when EXL is already set\n");
2214 er = EMULATE_FAIL;
2215 }
2216
2217 return er;
2218 }
2219
2220 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2221 u32 *opc,
2222 struct kvm_run *run,
2223 struct kvm_vcpu *vcpu)
2224 {
2225 struct mips_coproc *cop0 = vcpu->arch.cop0;
2226 struct kvm_vcpu_arch *arch = &vcpu->arch;
2227 enum emulation_result er = EMULATE_DONE;
2228
2229 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2230 /* save old pc */
2231 kvm_write_c0_guest_epc(cop0, arch->pc);
2232 kvm_set_c0_guest_status(cop0, ST0_EXL);
2233
2234 if (cause & CAUSEF_BD)
2235 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2236 else
2237 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2238
2239 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2240
2241 kvm_change_c0_guest_cause(cop0, (0xff),
2242 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2243
2244 /* Set PC to the exception entry point */
2245 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2246
2247 } else {
2248 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2249 er = EMULATE_FAIL;
2250 }
2251
2252 return er;
2253 }
2254
2255 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2256 struct kvm_run *run,
2257 struct kvm_vcpu *vcpu)
2258 {
2259 struct mips_coproc *cop0 = vcpu->arch.cop0;
2260 struct kvm_vcpu_arch *arch = &vcpu->arch;
2261 enum emulation_result er = EMULATE_DONE;
2262 unsigned long curr_pc;
2263 union mips_instruction inst;
2264
2265 /*
2266 * Update PC and hold onto current PC in case there is
2267 * an error and we want to rollback the PC
2268 */
2269 curr_pc = vcpu->arch.pc;
2270 er = update_pc(vcpu, cause);
2271 if (er == EMULATE_FAIL)
2272 return er;
2273
2274 /* Fetch the instruction. */
2275 if (cause & CAUSEF_BD)
2276 opc += 1;
2277
2278 inst.word = kvm_get_inst(opc, vcpu);
2279
2280 if (inst.word == KVM_INVALID_INST) {
2281 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2282 return EMULATE_FAIL;
2283 }
2284
2285 if (inst.r_format.opcode == spec3_op &&
2286 inst.r_format.func == rdhwr_op) {
2287 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2288 int rd = inst.r_format.rd;
2289 int rt = inst.r_format.rt;
2290 int sel = inst.r_format.re & 0x7;
2291
2292 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2293 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2294 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2295 rd, opc);
2296 goto emulate_ri;
2297 }
2298 switch (rd) {
2299 case MIPS_HWR_CPUNUM: /* CPU number */
2300 arch->gprs[rt] = 0;
2301 break;
2302 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2303 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2304 current_cpu_data.icache.linesz);
2305 break;
2306 case MIPS_HWR_CC: /* Read count register */
2307 arch->gprs[rt] = kvm_mips_read_count(vcpu);
2308 break;
2309 case MIPS_HWR_CCRES: /* Count register resolution */
2310 switch (current_cpu_data.cputype) {
2311 case CPU_20KC:
2312 case CPU_25KF:
2313 arch->gprs[rt] = 1;
2314 break;
2315 default:
2316 arch->gprs[rt] = 2;
2317 }
2318 break;
2319 case MIPS_HWR_ULR: /* Read UserLocal register */
2320 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2321 break;
2322
2323 default:
2324 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2325 goto emulate_ri;
2326 }
2327
2328 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2329 vcpu->arch.gprs[rt]);
2330 } else {
2331 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2332 opc, inst.word);
2333 goto emulate_ri;
2334 }
2335
2336 return EMULATE_DONE;
2337
2338 emulate_ri:
2339 /*
2340 * Rollback PC (if in branch delay slot then the PC already points to
2341 * branch target), and pass the RI exception to the guest OS.
2342 */
2343 vcpu->arch.pc = curr_pc;
2344 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2345 }
2346
2347 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2348 struct kvm_run *run)
2349 {
2350 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2351 enum emulation_result er = EMULATE_DONE;
2352
2353 if (run->mmio.len > sizeof(*gpr)) {
2354 kvm_err("Bad MMIO length: %d", run->mmio.len);
2355 er = EMULATE_FAIL;
2356 goto done;
2357 }
2358
2359 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2360 if (er == EMULATE_FAIL)
2361 return er;
2362
2363 switch (run->mmio.len) {
2364 case 4:
2365 *gpr = *(s32 *) run->mmio.data;
2366 break;
2367
2368 case 2:
2369 if (vcpu->mmio_needed == 2)
2370 *gpr = *(s16 *) run->mmio.data;
2371 else
2372 *gpr = *(u16 *)run->mmio.data;
2373
2374 break;
2375 case 1:
2376 if (vcpu->mmio_needed == 2)
2377 *gpr = *(s8 *) run->mmio.data;
2378 else
2379 *gpr = *(u8 *) run->mmio.data;
2380 break;
2381 }
2382
2383 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2384 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2385 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2386 vcpu->mmio_needed);
2387
2388 done:
2389 return er;
2390 }
2391
2392 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2393 u32 *opc,
2394 struct kvm_run *run,
2395 struct kvm_vcpu *vcpu)
2396 {
2397 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2398 struct mips_coproc *cop0 = vcpu->arch.cop0;
2399 struct kvm_vcpu_arch *arch = &vcpu->arch;
2400 enum emulation_result er = EMULATE_DONE;
2401
2402 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2403 /* save old pc */
2404 kvm_write_c0_guest_epc(cop0, arch->pc);
2405 kvm_set_c0_guest_status(cop0, ST0_EXL);
2406
2407 if (cause & CAUSEF_BD)
2408 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2409 else
2410 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2411
2412 kvm_change_c0_guest_cause(cop0, (0xff),
2413 (exccode << CAUSEB_EXCCODE));
2414
2415 /* Set PC to the exception entry point */
2416 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2417 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2418
2419 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2420 exccode, kvm_read_c0_guest_epc(cop0),
2421 kvm_read_c0_guest_badvaddr(cop0));
2422 } else {
2423 kvm_err("Trying to deliver EXC when EXL is already set\n");
2424 er = EMULATE_FAIL;
2425 }
2426
2427 return er;
2428 }
2429
2430 enum emulation_result kvm_mips_check_privilege(u32 cause,
2431 u32 *opc,
2432 struct kvm_run *run,
2433 struct kvm_vcpu *vcpu)
2434 {
2435 enum emulation_result er = EMULATE_DONE;
2436 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2437 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2438
2439 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2440
2441 if (usermode) {
2442 switch (exccode) {
2443 case EXCCODE_INT:
2444 case EXCCODE_SYS:
2445 case EXCCODE_BP:
2446 case EXCCODE_RI:
2447 case EXCCODE_TR:
2448 case EXCCODE_MSAFPE:
2449 case EXCCODE_FPE:
2450 case EXCCODE_MSADIS:
2451 break;
2452
2453 case EXCCODE_CPU:
2454 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2455 er = EMULATE_PRIV_FAIL;
2456 break;
2457
2458 case EXCCODE_MOD:
2459 break;
2460
2461 case EXCCODE_TLBL:
2462 /*
2463 * We we are accessing Guest kernel space, then send an
2464 * address error exception to the guest
2465 */
2466 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2467 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2468 badvaddr);
2469 cause &= ~0xff;
2470 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2471 er = EMULATE_PRIV_FAIL;
2472 }
2473 break;
2474
2475 case EXCCODE_TLBS:
2476 /*
2477 * We we are accessing Guest kernel space, then send an
2478 * address error exception to the guest
2479 */
2480 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2481 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2482 badvaddr);
2483 cause &= ~0xff;
2484 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2485 er = EMULATE_PRIV_FAIL;
2486 }
2487 break;
2488
2489 case EXCCODE_ADES:
2490 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2491 badvaddr);
2492 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2493 cause &= ~0xff;
2494 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2495 }
2496 er = EMULATE_PRIV_FAIL;
2497 break;
2498 case EXCCODE_ADEL:
2499 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2500 badvaddr);
2501 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2502 cause &= ~0xff;
2503 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2504 }
2505 er = EMULATE_PRIV_FAIL;
2506 break;
2507 default:
2508 er = EMULATE_PRIV_FAIL;
2509 break;
2510 }
2511 }
2512
2513 if (er == EMULATE_PRIV_FAIL)
2514 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2515
2516 return er;
2517 }
2518
2519 /*
2520 * User Address (UA) fault, this could happen if
2521 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2522 * case we pass on the fault to the guest kernel and let it handle it.
2523 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2524 * case we inject the TLB from the Guest TLB into the shadow host TLB
2525 */
2526 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2527 u32 *opc,
2528 struct kvm_run *run,
2529 struct kvm_vcpu *vcpu)
2530 {
2531 enum emulation_result er = EMULATE_DONE;
2532 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2533 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2534 int index;
2535
2536 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2537 vcpu->arch.host_cp0_badvaddr);
2538
2539 /*
2540 * KVM would not have got the exception if this entry was valid in the
2541 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2542 * send the guest an exception. The guest exc handler should then inject
2543 * an entry into the guest TLB.
2544 */
2545 index = kvm_mips_guest_tlb_lookup(vcpu,
2546 (va & VPN2_MASK) |
2547 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2548 KVM_ENTRYHI_ASID));
2549 if (index < 0) {
2550 if (exccode == EXCCODE_TLBL) {
2551 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2552 } else if (exccode == EXCCODE_TLBS) {
2553 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2554 } else {
2555 kvm_err("%s: invalid exc code: %d\n", __func__,
2556 exccode);
2557 er = EMULATE_FAIL;
2558 }
2559 } else {
2560 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2561
2562 /*
2563 * Check if the entry is valid, if not then setup a TLB invalid
2564 * exception to the guest
2565 */
2566 if (!TLB_IS_VALID(*tlb, va)) {
2567 if (exccode == EXCCODE_TLBL) {
2568 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2569 vcpu);
2570 } else if (exccode == EXCCODE_TLBS) {
2571 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2572 vcpu);
2573 } else {
2574 kvm_err("%s: invalid exc code: %d\n", __func__,
2575 exccode);
2576 er = EMULATE_FAIL;
2577 }
2578 } else {
2579 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2580 tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2581 /*
2582 * OK we have a Guest TLB entry, now inject it into the
2583 * shadow host TLB
2584 */
2585 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb);
2586 }
2587 }
2588
2589 return er;
2590 }
This page took 0.085027 seconds and 4 git commands to generate.