Merge remote-tracking branch 'mkp-scsi/4.8/scsi-fixes' into fixes
[deliverable/linux.git] / arch / mips / mm / c-r4k.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cm.h>
41
42 /*
43 * Bits describing what cache ops an SMP callback function may perform.
44 *
45 * R4K_HIT - Virtual user or kernel address based cache operations. The
46 * active_mm must be checked before using user addresses, falling
47 * back to kmap.
48 * R4K_INDEX - Index based cache operations.
49 */
50
51 #define R4K_HIT BIT(0)
52 #define R4K_INDEX BIT(1)
53
54 /**
55 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
57 *
58 * Decides whether a cache op needs to be performed on every core in the system.
59 * This may change depending on the @type of cache operation, as well as the set
60 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61 * hotplug from changing the result.
62 *
63 * Returns: 1 if the cache operation @type should be done on every core in
64 * the system.
65 * 0 if the cache operation @type is globalized and only needs to
66 * be performed on a simple CPU.
67 */
68 static inline bool r4k_op_needs_ipi(unsigned int type)
69 {
70 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 if (type == R4K_HIT && mips_cm_present())
72 return false;
73
74 /*
75 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 * be needed, but only if there are foreign CPUs (non-siblings with
77 * separate caches).
78 */
79 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80 #ifdef CONFIG_SMP
81 return !cpumask_empty(&cpu_foreign_map[0]);
82 #else
83 return false;
84 #endif
85 }
86
87 /*
88 * Special Variant of smp_call_function for use by cache functions:
89 *
90 * o No return value
91 * o collapses to normal function call on UP kernels
92 * o collapses to normal function call on systems with a single shared
93 * primary cache.
94 * o doesn't disable interrupts on the local CPU
95 */
96 static inline void r4k_on_each_cpu(unsigned int type,
97 void (*func)(void *info), void *info)
98 {
99 preempt_disable();
100 if (r4k_op_needs_ipi(type))
101 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102 func, info, 1);
103 func(info);
104 preempt_enable();
105 }
106
107 /*
108 * Must die.
109 */
110 static unsigned long icache_size __read_mostly;
111 static unsigned long dcache_size __read_mostly;
112 static unsigned long vcache_size __read_mostly;
113 static unsigned long scache_size __read_mostly;
114
115 /*
116 * Dummy cache handling routines for machines without boardcaches
117 */
118 static void cache_noop(void) {}
119
120 static struct bcache_ops no_sc_ops = {
121 .bc_enable = (void *)cache_noop,
122 .bc_disable = (void *)cache_noop,
123 .bc_wback_inv = (void *)cache_noop,
124 .bc_inv = (void *)cache_noop
125 };
126
127 struct bcache_ops *bcops = &no_sc_ops;
128
129 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
131
132 #define R4600_HIT_CACHEOP_WAR_IMPL \
133 do { \
134 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
135 *(volatile unsigned long *)CKSEG1; \
136 if (R4600_V1_HIT_CACHEOP_WAR) \
137 __asm__ __volatile__("nop;nop;nop;nop"); \
138 } while (0)
139
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 R4600_HIT_CACHEOP_WAR_IMPL;
145 blast_dcache32_page(addr);
146 }
147
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 blast_dcache64_page(addr);
151 }
152
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 blast_dcache128_page(addr);
156 }
157
158 static void r4k_blast_dcache_page_setup(void)
159 {
160 unsigned long dc_lsize = cpu_dcache_line_size();
161
162 switch (dc_lsize) {
163 case 0:
164 r4k_blast_dcache_page = (void *)cache_noop;
165 break;
166 case 16:
167 r4k_blast_dcache_page = blast_dcache16_page;
168 break;
169 case 32:
170 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 break;
172 case 64:
173 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 break;
175 case 128:
176 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 break;
178 default:
179 break;
180 }
181 }
182
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page r4k_blast_dcache_page
185 #else
186
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188
189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 unsigned long dc_lsize = cpu_dcache_line_size();
192
193 if (dc_lsize == 0)
194 r4k_blast_dcache_user_page = (void *)cache_noop;
195 else if (dc_lsize == 16)
196 r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 else if (dc_lsize == 32)
198 r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 else if (dc_lsize == 64)
200 r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202
203 #endif
204
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206
207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 unsigned long dc_lsize = cpu_dcache_line_size();
210
211 if (dc_lsize == 0)
212 r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 else if (dc_lsize == 16)
214 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 else if (dc_lsize == 32)
216 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 else if (dc_lsize == 64)
218 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 else if (dc_lsize == 128)
220 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225
226 static void r4k_blast_dcache_setup(void)
227 {
228 unsigned long dc_lsize = cpu_dcache_line_size();
229
230 if (dc_lsize == 0)
231 r4k_blast_dcache = (void *)cache_noop;
232 else if (dc_lsize == 16)
233 r4k_blast_dcache = blast_dcache16;
234 else if (dc_lsize == 32)
235 r4k_blast_dcache = blast_dcache32;
236 else if (dc_lsize == 64)
237 r4k_blast_dcache = blast_dcache64;
238 else if (dc_lsize == 128)
239 r4k_blast_dcache = blast_dcache128;
240 }
241
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244 __asm__ __volatile__( \
245 "b\t1f\n\t" \
246 ".align\t" #order "\n\t" \
247 "1:\n\t" \
248 )
249 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251
252 static inline void blast_r4600_v1_icache32(void)
253 {
254 unsigned long flags;
255
256 local_irq_save(flags);
257 blast_icache32();
258 local_irq_restore(flags);
259 }
260
261 static inline void tx49_blast_icache32(void)
262 {
263 unsigned long start = INDEX_BASE;
264 unsigned long end = start + current_cpu_data.icache.waysize;
265 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 unsigned long ws_end = current_cpu_data.icache.ways <<
267 current_cpu_data.icache.waybit;
268 unsigned long ws, addr;
269
270 CACHE32_UNROLL32_ALIGN2;
271 /* I'm in even chunk. blast odd chunks */
272 for (ws = 0; ws < ws_end; ws += ws_inc)
273 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 cache32_unroll32(addr|ws, Index_Invalidate_I);
275 CACHE32_UNROLL32_ALIGN;
276 /* I'm in odd chunk. blast even chunks */
277 for (ws = 0; ws < ws_end; ws += ws_inc)
278 for (addr = start; addr < end; addr += 0x400 * 2)
279 cache32_unroll32(addr|ws, Index_Invalidate_I);
280 }
281
282 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
283 {
284 unsigned long flags;
285
286 local_irq_save(flags);
287 blast_icache32_page_indexed(page);
288 local_irq_restore(flags);
289 }
290
291 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
292 {
293 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
294 unsigned long start = INDEX_BASE + (page & indexmask);
295 unsigned long end = start + PAGE_SIZE;
296 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
297 unsigned long ws_end = current_cpu_data.icache.ways <<
298 current_cpu_data.icache.waybit;
299 unsigned long ws, addr;
300
301 CACHE32_UNROLL32_ALIGN2;
302 /* I'm in even chunk. blast odd chunks */
303 for (ws = 0; ws < ws_end; ws += ws_inc)
304 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
305 cache32_unroll32(addr|ws, Index_Invalidate_I);
306 CACHE32_UNROLL32_ALIGN;
307 /* I'm in odd chunk. blast even chunks */
308 for (ws = 0; ws < ws_end; ws += ws_inc)
309 for (addr = start; addr < end; addr += 0x400 * 2)
310 cache32_unroll32(addr|ws, Index_Invalidate_I);
311 }
312
313 static void (* r4k_blast_icache_page)(unsigned long addr);
314
315 static void r4k_blast_icache_page_setup(void)
316 {
317 unsigned long ic_lsize = cpu_icache_line_size();
318
319 if (ic_lsize == 0)
320 r4k_blast_icache_page = (void *)cache_noop;
321 else if (ic_lsize == 16)
322 r4k_blast_icache_page = blast_icache16_page;
323 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
324 r4k_blast_icache_page = loongson2_blast_icache32_page;
325 else if (ic_lsize == 32)
326 r4k_blast_icache_page = blast_icache32_page;
327 else if (ic_lsize == 64)
328 r4k_blast_icache_page = blast_icache64_page;
329 else if (ic_lsize == 128)
330 r4k_blast_icache_page = blast_icache128_page;
331 }
332
333 #ifndef CONFIG_EVA
334 #define r4k_blast_icache_user_page r4k_blast_icache_page
335 #else
336
337 static void (*r4k_blast_icache_user_page)(unsigned long addr);
338
339 static void r4k_blast_icache_user_page_setup(void)
340 {
341 unsigned long ic_lsize = cpu_icache_line_size();
342
343 if (ic_lsize == 0)
344 r4k_blast_icache_user_page = (void *)cache_noop;
345 else if (ic_lsize == 16)
346 r4k_blast_icache_user_page = blast_icache16_user_page;
347 else if (ic_lsize == 32)
348 r4k_blast_icache_user_page = blast_icache32_user_page;
349 else if (ic_lsize == 64)
350 r4k_blast_icache_user_page = blast_icache64_user_page;
351 }
352
353 #endif
354
355 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
356
357 static void r4k_blast_icache_page_indexed_setup(void)
358 {
359 unsigned long ic_lsize = cpu_icache_line_size();
360
361 if (ic_lsize == 0)
362 r4k_blast_icache_page_indexed = (void *)cache_noop;
363 else if (ic_lsize == 16)
364 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
365 else if (ic_lsize == 32) {
366 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
367 r4k_blast_icache_page_indexed =
368 blast_icache32_r4600_v1_page_indexed;
369 else if (TX49XX_ICACHE_INDEX_INV_WAR)
370 r4k_blast_icache_page_indexed =
371 tx49_blast_icache32_page_indexed;
372 else if (current_cpu_type() == CPU_LOONGSON2)
373 r4k_blast_icache_page_indexed =
374 loongson2_blast_icache32_page_indexed;
375 else
376 r4k_blast_icache_page_indexed =
377 blast_icache32_page_indexed;
378 } else if (ic_lsize == 64)
379 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
380 }
381
382 void (* r4k_blast_icache)(void);
383 EXPORT_SYMBOL(r4k_blast_icache);
384
385 static void r4k_blast_icache_setup(void)
386 {
387 unsigned long ic_lsize = cpu_icache_line_size();
388
389 if (ic_lsize == 0)
390 r4k_blast_icache = (void *)cache_noop;
391 else if (ic_lsize == 16)
392 r4k_blast_icache = blast_icache16;
393 else if (ic_lsize == 32) {
394 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
395 r4k_blast_icache = blast_r4600_v1_icache32;
396 else if (TX49XX_ICACHE_INDEX_INV_WAR)
397 r4k_blast_icache = tx49_blast_icache32;
398 else if (current_cpu_type() == CPU_LOONGSON2)
399 r4k_blast_icache = loongson2_blast_icache32;
400 else
401 r4k_blast_icache = blast_icache32;
402 } else if (ic_lsize == 64)
403 r4k_blast_icache = blast_icache64;
404 else if (ic_lsize == 128)
405 r4k_blast_icache = blast_icache128;
406 }
407
408 static void (* r4k_blast_scache_page)(unsigned long addr);
409
410 static void r4k_blast_scache_page_setup(void)
411 {
412 unsigned long sc_lsize = cpu_scache_line_size();
413
414 if (scache_size == 0)
415 r4k_blast_scache_page = (void *)cache_noop;
416 else if (sc_lsize == 16)
417 r4k_blast_scache_page = blast_scache16_page;
418 else if (sc_lsize == 32)
419 r4k_blast_scache_page = blast_scache32_page;
420 else if (sc_lsize == 64)
421 r4k_blast_scache_page = blast_scache64_page;
422 else if (sc_lsize == 128)
423 r4k_blast_scache_page = blast_scache128_page;
424 }
425
426 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
427
428 static void r4k_blast_scache_page_indexed_setup(void)
429 {
430 unsigned long sc_lsize = cpu_scache_line_size();
431
432 if (scache_size == 0)
433 r4k_blast_scache_page_indexed = (void *)cache_noop;
434 else if (sc_lsize == 16)
435 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
436 else if (sc_lsize == 32)
437 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
438 else if (sc_lsize == 64)
439 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
440 else if (sc_lsize == 128)
441 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
442 }
443
444 static void (* r4k_blast_scache)(void);
445
446 static void r4k_blast_scache_setup(void)
447 {
448 unsigned long sc_lsize = cpu_scache_line_size();
449
450 if (scache_size == 0)
451 r4k_blast_scache = (void *)cache_noop;
452 else if (sc_lsize == 16)
453 r4k_blast_scache = blast_scache16;
454 else if (sc_lsize == 32)
455 r4k_blast_scache = blast_scache32;
456 else if (sc_lsize == 64)
457 r4k_blast_scache = blast_scache64;
458 else if (sc_lsize == 128)
459 r4k_blast_scache = blast_scache128;
460 }
461
462 static inline void local_r4k___flush_cache_all(void * args)
463 {
464 switch (current_cpu_type()) {
465 case CPU_LOONGSON2:
466 case CPU_LOONGSON3:
467 case CPU_R4000SC:
468 case CPU_R4000MC:
469 case CPU_R4400SC:
470 case CPU_R4400MC:
471 case CPU_R10000:
472 case CPU_R12000:
473 case CPU_R14000:
474 case CPU_R16000:
475 /*
476 * These caches are inclusive caches, that is, if something
477 * is not cached in the S-cache, we know it also won't be
478 * in one of the primary caches.
479 */
480 r4k_blast_scache();
481 break;
482
483 case CPU_BMIPS5000:
484 r4k_blast_scache();
485 __sync();
486 break;
487
488 default:
489 r4k_blast_dcache();
490 r4k_blast_icache();
491 break;
492 }
493 }
494
495 static void r4k___flush_cache_all(void)
496 {
497 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
498 }
499
500 /**
501 * has_valid_asid() - Determine if an mm already has an ASID.
502 * @mm: Memory map.
503 * @type: R4K_HIT or R4K_INDEX, type of cache op.
504 *
505 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
506 * of type @type within an r4k_on_each_cpu() call will affect. If
507 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
508 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
509 * will need to be checked.
510 *
511 * Must be called in non-preemptive context.
512 *
513 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
514 * 0 otherwise.
515 */
516 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
517 {
518 unsigned int i;
519 const cpumask_t *mask = cpu_present_mask;
520
521 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
522 #ifdef CONFIG_SMP
523 /*
524 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
525 * each foreign core, so we only need to worry about siblings.
526 * Otherwise we need to worry about all present CPUs.
527 */
528 if (r4k_op_needs_ipi(type))
529 mask = &cpu_sibling_map[smp_processor_id()];
530 #endif
531 for_each_cpu(i, mask)
532 if (cpu_context(i, mm))
533 return 1;
534 return 0;
535 }
536
537 static void r4k__flush_cache_vmap(void)
538 {
539 r4k_blast_dcache();
540 }
541
542 static void r4k__flush_cache_vunmap(void)
543 {
544 r4k_blast_dcache();
545 }
546
547 /*
548 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
549 * whole caches when vma is executable.
550 */
551 static inline void local_r4k_flush_cache_range(void * args)
552 {
553 struct vm_area_struct *vma = args;
554 int exec = vma->vm_flags & VM_EXEC;
555
556 if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
557 return;
558
559 /*
560 * If dcache can alias, we must blast it since mapping is changing.
561 * If executable, we must ensure any dirty lines are written back far
562 * enough to be visible to icache.
563 */
564 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
565 r4k_blast_dcache();
566 /* If executable, blast stale lines from icache */
567 if (exec)
568 r4k_blast_icache();
569 }
570
571 static void r4k_flush_cache_range(struct vm_area_struct *vma,
572 unsigned long start, unsigned long end)
573 {
574 int exec = vma->vm_flags & VM_EXEC;
575
576 if (cpu_has_dc_aliases || exec)
577 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
578 }
579
580 static inline void local_r4k_flush_cache_mm(void * args)
581 {
582 struct mm_struct *mm = args;
583
584 if (!has_valid_asid(mm, R4K_INDEX))
585 return;
586
587 /*
588 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
589 * only flush the primary caches but R1x000 behave sane ...
590 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
591 * caches, so we can bail out early.
592 */
593 if (current_cpu_type() == CPU_R4000SC ||
594 current_cpu_type() == CPU_R4000MC ||
595 current_cpu_type() == CPU_R4400SC ||
596 current_cpu_type() == CPU_R4400MC) {
597 r4k_blast_scache();
598 return;
599 }
600
601 r4k_blast_dcache();
602 }
603
604 static void r4k_flush_cache_mm(struct mm_struct *mm)
605 {
606 if (!cpu_has_dc_aliases)
607 return;
608
609 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
610 }
611
612 struct flush_cache_page_args {
613 struct vm_area_struct *vma;
614 unsigned long addr;
615 unsigned long pfn;
616 };
617
618 static inline void local_r4k_flush_cache_page(void *args)
619 {
620 struct flush_cache_page_args *fcp_args = args;
621 struct vm_area_struct *vma = fcp_args->vma;
622 unsigned long addr = fcp_args->addr;
623 struct page *page = pfn_to_page(fcp_args->pfn);
624 int exec = vma->vm_flags & VM_EXEC;
625 struct mm_struct *mm = vma->vm_mm;
626 int map_coherent = 0;
627 pgd_t *pgdp;
628 pud_t *pudp;
629 pmd_t *pmdp;
630 pte_t *ptep;
631 void *vaddr;
632
633 /*
634 * If owns no valid ASID yet, cannot possibly have gotten
635 * this page into the cache.
636 */
637 if (!has_valid_asid(mm, R4K_HIT))
638 return;
639
640 addr &= PAGE_MASK;
641 pgdp = pgd_offset(mm, addr);
642 pudp = pud_offset(pgdp, addr);
643 pmdp = pmd_offset(pudp, addr);
644 ptep = pte_offset(pmdp, addr);
645
646 /*
647 * If the page isn't marked valid, the page cannot possibly be
648 * in the cache.
649 */
650 if (!(pte_present(*ptep)))
651 return;
652
653 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
654 vaddr = NULL;
655 else {
656 /*
657 * Use kmap_coherent or kmap_atomic to do flushes for
658 * another ASID than the current one.
659 */
660 map_coherent = (cpu_has_dc_aliases &&
661 page_mapcount(page) &&
662 !Page_dcache_dirty(page));
663 if (map_coherent)
664 vaddr = kmap_coherent(page, addr);
665 else
666 vaddr = kmap_atomic(page);
667 addr = (unsigned long)vaddr;
668 }
669
670 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
671 vaddr ? r4k_blast_dcache_page(addr) :
672 r4k_blast_dcache_user_page(addr);
673 if (exec && !cpu_icache_snoops_remote_store)
674 r4k_blast_scache_page(addr);
675 }
676 if (exec) {
677 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
678 int cpu = smp_processor_id();
679
680 if (cpu_context(cpu, mm) != 0)
681 drop_mmu_context(mm, cpu);
682 } else
683 vaddr ? r4k_blast_icache_page(addr) :
684 r4k_blast_icache_user_page(addr);
685 }
686
687 if (vaddr) {
688 if (map_coherent)
689 kunmap_coherent();
690 else
691 kunmap_atomic(vaddr);
692 }
693 }
694
695 static void r4k_flush_cache_page(struct vm_area_struct *vma,
696 unsigned long addr, unsigned long pfn)
697 {
698 struct flush_cache_page_args args;
699
700 args.vma = vma;
701 args.addr = addr;
702 args.pfn = pfn;
703
704 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
705 }
706
707 static inline void local_r4k_flush_data_cache_page(void * addr)
708 {
709 r4k_blast_dcache_page((unsigned long) addr);
710 }
711
712 static void r4k_flush_data_cache_page(unsigned long addr)
713 {
714 if (in_atomic())
715 local_r4k_flush_data_cache_page((void *)addr);
716 else
717 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
718 (void *) addr);
719 }
720
721 struct flush_icache_range_args {
722 unsigned long start;
723 unsigned long end;
724 unsigned int type;
725 };
726
727 static inline void __local_r4k_flush_icache_range(unsigned long start,
728 unsigned long end,
729 unsigned int type)
730 {
731 if (!cpu_has_ic_fills_f_dc) {
732 if (type == R4K_INDEX ||
733 (type & R4K_INDEX && end - start >= dcache_size)) {
734 r4k_blast_dcache();
735 } else {
736 R4600_HIT_CACHEOP_WAR_IMPL;
737 protected_blast_dcache_range(start, end);
738 }
739 }
740
741 if (type == R4K_INDEX ||
742 (type & R4K_INDEX && end - start > icache_size))
743 r4k_blast_icache();
744 else {
745 switch (boot_cpu_type()) {
746 case CPU_LOONGSON2:
747 protected_loongson2_blast_icache_range(start, end);
748 break;
749
750 default:
751 protected_blast_icache_range(start, end);
752 break;
753 }
754 }
755 #ifdef CONFIG_EVA
756 /*
757 * Due to all possible segment mappings, there might cache aliases
758 * caused by the bootloader being in non-EVA mode, and the CPU switching
759 * to EVA during early kernel init. It's best to flush the scache
760 * to avoid having secondary cores fetching stale data and lead to
761 * kernel crashes.
762 */
763 bc_wback_inv(start, (end - start));
764 __sync();
765 #endif
766 }
767
768 static inline void local_r4k_flush_icache_range(unsigned long start,
769 unsigned long end)
770 {
771 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX);
772 }
773
774 static inline void local_r4k_flush_icache_range_ipi(void *args)
775 {
776 struct flush_icache_range_args *fir_args = args;
777 unsigned long start = fir_args->start;
778 unsigned long end = fir_args->end;
779 unsigned int type = fir_args->type;
780
781 __local_r4k_flush_icache_range(start, end, type);
782 }
783
784 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
785 {
786 struct flush_icache_range_args args;
787 unsigned long size, cache_size;
788
789 args.start = start;
790 args.end = end;
791 args.type = R4K_HIT | R4K_INDEX;
792
793 /*
794 * Indexed cache ops require an SMP call.
795 * Consider if that can or should be avoided.
796 */
797 preempt_disable();
798 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
799 /*
800 * If address-based cache ops don't require an SMP call, then
801 * use them exclusively for small flushes.
802 */
803 size = start - end;
804 cache_size = icache_size;
805 if (!cpu_has_ic_fills_f_dc) {
806 size *= 2;
807 cache_size += dcache_size;
808 }
809 if (size <= cache_size)
810 args.type &= ~R4K_INDEX;
811 }
812 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
813 preempt_enable();
814 instruction_hazard();
815 }
816
817 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
818
819 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
820 {
821 /* Catch bad driver code */
822 BUG_ON(size == 0);
823
824 preempt_disable();
825 if (cpu_has_inclusive_pcaches) {
826 if (size >= scache_size)
827 r4k_blast_scache();
828 else
829 blast_scache_range(addr, addr + size);
830 preempt_enable();
831 __sync();
832 return;
833 }
834
835 /*
836 * Either no secondary cache or the available caches don't have the
837 * subset property so we have to flush the primary caches
838 * explicitly
839 */
840 if (size >= dcache_size) {
841 r4k_blast_dcache();
842 } else {
843 R4600_HIT_CACHEOP_WAR_IMPL;
844 blast_dcache_range(addr, addr + size);
845 }
846 preempt_enable();
847
848 bc_wback_inv(addr, size);
849 __sync();
850 }
851
852 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
853 {
854 /* Catch bad driver code */
855 BUG_ON(size == 0);
856
857 preempt_disable();
858 if (cpu_has_inclusive_pcaches) {
859 if (size >= scache_size)
860 r4k_blast_scache();
861 else {
862 /*
863 * There is no clearly documented alignment requirement
864 * for the cache instruction on MIPS processors and
865 * some processors, among them the RM5200 and RM7000
866 * QED processors will throw an address error for cache
867 * hit ops with insufficient alignment. Solved by
868 * aligning the address to cache line size.
869 */
870 blast_inv_scache_range(addr, addr + size);
871 }
872 preempt_enable();
873 __sync();
874 return;
875 }
876
877 if (size >= dcache_size) {
878 r4k_blast_dcache();
879 } else {
880 R4600_HIT_CACHEOP_WAR_IMPL;
881 blast_inv_dcache_range(addr, addr + size);
882 }
883 preempt_enable();
884
885 bc_inv(addr, size);
886 __sync();
887 }
888 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
889
890 struct flush_cache_sigtramp_args {
891 struct mm_struct *mm;
892 struct page *page;
893 unsigned long addr;
894 };
895
896 /*
897 * While we're protected against bad userland addresses we don't care
898 * very much about what happens in that case. Usually a segmentation
899 * fault will dump the process later on anyway ...
900 */
901 static void local_r4k_flush_cache_sigtramp(void *args)
902 {
903 struct flush_cache_sigtramp_args *fcs_args = args;
904 unsigned long addr = fcs_args->addr;
905 struct page *page = fcs_args->page;
906 struct mm_struct *mm = fcs_args->mm;
907 int map_coherent = 0;
908 void *vaddr;
909
910 unsigned long ic_lsize = cpu_icache_line_size();
911 unsigned long dc_lsize = cpu_dcache_line_size();
912 unsigned long sc_lsize = cpu_scache_line_size();
913
914 /*
915 * If owns no valid ASID yet, cannot possibly have gotten
916 * this page into the cache.
917 */
918 if (!has_valid_asid(mm, R4K_HIT))
919 return;
920
921 if (mm == current->active_mm) {
922 vaddr = NULL;
923 } else {
924 /*
925 * Use kmap_coherent or kmap_atomic to do flushes for
926 * another ASID than the current one.
927 */
928 map_coherent = (cpu_has_dc_aliases &&
929 page_mapcount(page) &&
930 !Page_dcache_dirty(page));
931 if (map_coherent)
932 vaddr = kmap_coherent(page, addr);
933 else
934 vaddr = kmap_atomic(page);
935 addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
936 }
937
938 R4600_HIT_CACHEOP_WAR_IMPL;
939 if (!cpu_has_ic_fills_f_dc) {
940 if (dc_lsize)
941 vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
942 : protected_writeback_dcache_line(
943 addr & ~(dc_lsize - 1));
944 if (!cpu_icache_snoops_remote_store && scache_size)
945 vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
946 : protected_writeback_scache_line(
947 addr & ~(sc_lsize - 1));
948 }
949 if (ic_lsize)
950 vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
951 : protected_flush_icache_line(addr & ~(ic_lsize - 1));
952
953 if (vaddr) {
954 if (map_coherent)
955 kunmap_coherent();
956 else
957 kunmap_atomic(vaddr);
958 }
959
960 if (MIPS4K_ICACHE_REFILL_WAR) {
961 __asm__ __volatile__ (
962 ".set push\n\t"
963 ".set noat\n\t"
964 ".set "MIPS_ISA_LEVEL"\n\t"
965 #ifdef CONFIG_32BIT
966 "la $at,1f\n\t"
967 #endif
968 #ifdef CONFIG_64BIT
969 "dla $at,1f\n\t"
970 #endif
971 "cache %0,($at)\n\t"
972 "nop; nop; nop\n"
973 "1:\n\t"
974 ".set pop"
975 :
976 : "i" (Hit_Invalidate_I));
977 }
978 if (MIPS_CACHE_SYNC_WAR)
979 __asm__ __volatile__ ("sync");
980 }
981
982 static void r4k_flush_cache_sigtramp(unsigned long addr)
983 {
984 struct flush_cache_sigtramp_args args;
985 int npages;
986
987 down_read(&current->mm->mmap_sem);
988
989 npages = get_user_pages_fast(addr, 1, 0, &args.page);
990 if (npages < 1)
991 goto out;
992
993 args.mm = current->mm;
994 args.addr = addr;
995
996 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
997
998 put_page(args.page);
999 out:
1000 up_read(&current->mm->mmap_sem);
1001 }
1002
1003 static void r4k_flush_icache_all(void)
1004 {
1005 if (cpu_has_vtag_icache)
1006 r4k_blast_icache();
1007 }
1008
1009 struct flush_kernel_vmap_range_args {
1010 unsigned long vaddr;
1011 int size;
1012 };
1013
1014 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
1015 {
1016 /*
1017 * Aliases only affect the primary caches so don't bother with
1018 * S-caches or T-caches.
1019 */
1020 r4k_blast_dcache();
1021 }
1022
1023 static inline void local_r4k_flush_kernel_vmap_range(void *args)
1024 {
1025 struct flush_kernel_vmap_range_args *vmra = args;
1026 unsigned long vaddr = vmra->vaddr;
1027 int size = vmra->size;
1028
1029 /*
1030 * Aliases only affect the primary caches so don't bother with
1031 * S-caches or T-caches.
1032 */
1033 R4600_HIT_CACHEOP_WAR_IMPL;
1034 blast_dcache_range(vaddr, vaddr + size);
1035 }
1036
1037 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1038 {
1039 struct flush_kernel_vmap_range_args args;
1040
1041 args.vaddr = (unsigned long) vaddr;
1042 args.size = size;
1043
1044 if (size >= dcache_size)
1045 r4k_on_each_cpu(R4K_INDEX,
1046 local_r4k_flush_kernel_vmap_range_index, NULL);
1047 else
1048 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1049 &args);
1050 }
1051
1052 static inline void rm7k_erratum31(void)
1053 {
1054 const unsigned long ic_lsize = 32;
1055 unsigned long addr;
1056
1057 /* RM7000 erratum #31. The icache is screwed at startup. */
1058 write_c0_taglo(0);
1059 write_c0_taghi(0);
1060
1061 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1062 __asm__ __volatile__ (
1063 ".set push\n\t"
1064 ".set noreorder\n\t"
1065 ".set mips3\n\t"
1066 "cache\t%1, 0(%0)\n\t"
1067 "cache\t%1, 0x1000(%0)\n\t"
1068 "cache\t%1, 0x2000(%0)\n\t"
1069 "cache\t%1, 0x3000(%0)\n\t"
1070 "cache\t%2, 0(%0)\n\t"
1071 "cache\t%2, 0x1000(%0)\n\t"
1072 "cache\t%2, 0x2000(%0)\n\t"
1073 "cache\t%2, 0x3000(%0)\n\t"
1074 "cache\t%1, 0(%0)\n\t"
1075 "cache\t%1, 0x1000(%0)\n\t"
1076 "cache\t%1, 0x2000(%0)\n\t"
1077 "cache\t%1, 0x3000(%0)\n\t"
1078 ".set pop\n"
1079 :
1080 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1081 }
1082 }
1083
1084 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1085 {
1086 unsigned int imp = c->processor_id & PRID_IMP_MASK;
1087 unsigned int rev = c->processor_id & PRID_REV_MASK;
1088 int present = 0;
1089
1090 /*
1091 * Early versions of the 74K do not update the cache tags on a
1092 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1093 * aliases. In this case it is better to treat the cache as always
1094 * having aliases. Also disable the synonym tag update feature
1095 * where available. In this case no opportunistic tag update will
1096 * happen where a load causes a virtual address miss but a physical
1097 * address hit during a D-cache look-up.
1098 */
1099 switch (imp) {
1100 case PRID_IMP_74K:
1101 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1102 present = 1;
1103 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1104 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1105 break;
1106 case PRID_IMP_1074K:
1107 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1108 present = 1;
1109 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1110 }
1111 break;
1112 default:
1113 BUG();
1114 }
1115
1116 return present;
1117 }
1118
1119 static void b5k_instruction_hazard(void)
1120 {
1121 __sync();
1122 __sync();
1123 __asm__ __volatile__(
1124 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1125 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1126 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1127 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1128 : : : "memory");
1129 }
1130
1131 static char *way_string[] = { NULL, "direct mapped", "2-way",
1132 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1133 "9-way", "10-way", "11-way", "12-way",
1134 "13-way", "14-way", "15-way", "16-way",
1135 };
1136
1137 static void probe_pcache(void)
1138 {
1139 struct cpuinfo_mips *c = &current_cpu_data;
1140 unsigned int config = read_c0_config();
1141 unsigned int prid = read_c0_prid();
1142 int has_74k_erratum = 0;
1143 unsigned long config1;
1144 unsigned int lsize;
1145
1146 switch (current_cpu_type()) {
1147 case CPU_R4600: /* QED style two way caches? */
1148 case CPU_R4700:
1149 case CPU_R5000:
1150 case CPU_NEVADA:
1151 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1152 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1153 c->icache.ways = 2;
1154 c->icache.waybit = __ffs(icache_size/2);
1155
1156 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1157 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1158 c->dcache.ways = 2;
1159 c->dcache.waybit= __ffs(dcache_size/2);
1160
1161 c->options |= MIPS_CPU_CACHE_CDEX_P;
1162 break;
1163
1164 case CPU_R5432:
1165 case CPU_R5500:
1166 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1167 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1168 c->icache.ways = 2;
1169 c->icache.waybit= 0;
1170
1171 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1172 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1173 c->dcache.ways = 2;
1174 c->dcache.waybit = 0;
1175
1176 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1177 break;
1178
1179 case CPU_TX49XX:
1180 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1181 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1182 c->icache.ways = 4;
1183 c->icache.waybit= 0;
1184
1185 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1186 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1187 c->dcache.ways = 4;
1188 c->dcache.waybit = 0;
1189
1190 c->options |= MIPS_CPU_CACHE_CDEX_P;
1191 c->options |= MIPS_CPU_PREFETCH;
1192 break;
1193
1194 case CPU_R4000PC:
1195 case CPU_R4000SC:
1196 case CPU_R4000MC:
1197 case CPU_R4400PC:
1198 case CPU_R4400SC:
1199 case CPU_R4400MC:
1200 case CPU_R4300:
1201 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1202 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1203 c->icache.ways = 1;
1204 c->icache.waybit = 0; /* doesn't matter */
1205
1206 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1207 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1208 c->dcache.ways = 1;
1209 c->dcache.waybit = 0; /* does not matter */
1210
1211 c->options |= MIPS_CPU_CACHE_CDEX_P;
1212 break;
1213
1214 case CPU_R10000:
1215 case CPU_R12000:
1216 case CPU_R14000:
1217 case CPU_R16000:
1218 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1219 c->icache.linesz = 64;
1220 c->icache.ways = 2;
1221 c->icache.waybit = 0;
1222
1223 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1224 c->dcache.linesz = 32;
1225 c->dcache.ways = 2;
1226 c->dcache.waybit = 0;
1227
1228 c->options |= MIPS_CPU_PREFETCH;
1229 break;
1230
1231 case CPU_VR4133:
1232 write_c0_config(config & ~VR41_CONF_P4K);
1233 case CPU_VR4131:
1234 /* Workaround for cache instruction bug of VR4131 */
1235 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1236 c->processor_id == 0x0c82U) {
1237 config |= 0x00400000U;
1238 if (c->processor_id == 0x0c80U)
1239 config |= VR41_CONF_BP;
1240 write_c0_config(config);
1241 } else
1242 c->options |= MIPS_CPU_CACHE_CDEX_P;
1243
1244 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1245 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1246 c->icache.ways = 2;
1247 c->icache.waybit = __ffs(icache_size/2);
1248
1249 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1250 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1251 c->dcache.ways = 2;
1252 c->dcache.waybit = __ffs(dcache_size/2);
1253 break;
1254
1255 case CPU_VR41XX:
1256 case CPU_VR4111:
1257 case CPU_VR4121:
1258 case CPU_VR4122:
1259 case CPU_VR4181:
1260 case CPU_VR4181A:
1261 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1262 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1263 c->icache.ways = 1;
1264 c->icache.waybit = 0; /* doesn't matter */
1265
1266 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1267 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1268 c->dcache.ways = 1;
1269 c->dcache.waybit = 0; /* does not matter */
1270
1271 c->options |= MIPS_CPU_CACHE_CDEX_P;
1272 break;
1273
1274 case CPU_RM7000:
1275 rm7k_erratum31();
1276
1277 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1278 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1279 c->icache.ways = 4;
1280 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1281
1282 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1283 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1284 c->dcache.ways = 4;
1285 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1286
1287 c->options |= MIPS_CPU_CACHE_CDEX_P;
1288 c->options |= MIPS_CPU_PREFETCH;
1289 break;
1290
1291 case CPU_LOONGSON2:
1292 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1293 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1294 if (prid & 0x3)
1295 c->icache.ways = 4;
1296 else
1297 c->icache.ways = 2;
1298 c->icache.waybit = 0;
1299
1300 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1301 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1302 if (prid & 0x3)
1303 c->dcache.ways = 4;
1304 else
1305 c->dcache.ways = 2;
1306 c->dcache.waybit = 0;
1307 break;
1308
1309 case CPU_LOONGSON3:
1310 config1 = read_c0_config1();
1311 lsize = (config1 >> 19) & 7;
1312 if (lsize)
1313 c->icache.linesz = 2 << lsize;
1314 else
1315 c->icache.linesz = 0;
1316 c->icache.sets = 64 << ((config1 >> 22) & 7);
1317 c->icache.ways = 1 + ((config1 >> 16) & 7);
1318 icache_size = c->icache.sets *
1319 c->icache.ways *
1320 c->icache.linesz;
1321 c->icache.waybit = 0;
1322
1323 lsize = (config1 >> 10) & 7;
1324 if (lsize)
1325 c->dcache.linesz = 2 << lsize;
1326 else
1327 c->dcache.linesz = 0;
1328 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1329 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1330 dcache_size = c->dcache.sets *
1331 c->dcache.ways *
1332 c->dcache.linesz;
1333 c->dcache.waybit = 0;
1334 if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
1335 c->options |= MIPS_CPU_PREFETCH;
1336 break;
1337
1338 case CPU_CAVIUM_OCTEON3:
1339 /* For now lie about the number of ways. */
1340 c->icache.linesz = 128;
1341 c->icache.sets = 16;
1342 c->icache.ways = 8;
1343 c->icache.flags |= MIPS_CACHE_VTAG;
1344 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1345
1346 c->dcache.linesz = 128;
1347 c->dcache.ways = 8;
1348 c->dcache.sets = 8;
1349 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1350 c->options |= MIPS_CPU_PREFETCH;
1351 break;
1352
1353 default:
1354 if (!(config & MIPS_CONF_M))
1355 panic("Don't know how to probe P-caches on this cpu.");
1356
1357 /*
1358 * So we seem to be a MIPS32 or MIPS64 CPU
1359 * So let's probe the I-cache ...
1360 */
1361 config1 = read_c0_config1();
1362
1363 lsize = (config1 >> 19) & 7;
1364
1365 /* IL == 7 is reserved */
1366 if (lsize == 7)
1367 panic("Invalid icache line size");
1368
1369 c->icache.linesz = lsize ? 2 << lsize : 0;
1370
1371 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1372 c->icache.ways = 1 + ((config1 >> 16) & 7);
1373
1374 icache_size = c->icache.sets *
1375 c->icache.ways *
1376 c->icache.linesz;
1377 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1378
1379 if (config & MIPS_CONF_VI)
1380 c->icache.flags |= MIPS_CACHE_VTAG;
1381
1382 /*
1383 * Now probe the MIPS32 / MIPS64 data cache.
1384 */
1385 c->dcache.flags = 0;
1386
1387 lsize = (config1 >> 10) & 7;
1388
1389 /* DL == 7 is reserved */
1390 if (lsize == 7)
1391 panic("Invalid dcache line size");
1392
1393 c->dcache.linesz = lsize ? 2 << lsize : 0;
1394
1395 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1396 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1397
1398 dcache_size = c->dcache.sets *
1399 c->dcache.ways *
1400 c->dcache.linesz;
1401 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1402
1403 c->options |= MIPS_CPU_PREFETCH;
1404 break;
1405 }
1406
1407 /*
1408 * Processor configuration sanity check for the R4000SC erratum
1409 * #5. With page sizes larger than 32kB there is no possibility
1410 * to get a VCE exception anymore so we don't care about this
1411 * misconfiguration. The case is rather theoretical anyway;
1412 * presumably no vendor is shipping his hardware in the "bad"
1413 * configuration.
1414 */
1415 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1416 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1417 !(config & CONF_SC) && c->icache.linesz != 16 &&
1418 PAGE_SIZE <= 0x8000)
1419 panic("Improper R4000SC processor configuration detected");
1420
1421 /* compute a couple of other cache variables */
1422 c->icache.waysize = icache_size / c->icache.ways;
1423 c->dcache.waysize = dcache_size / c->dcache.ways;
1424
1425 c->icache.sets = c->icache.linesz ?
1426 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1427 c->dcache.sets = c->dcache.linesz ?
1428 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1429
1430 /*
1431 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1432 * virtually indexed so normally would suffer from aliases. So
1433 * normally they'd suffer from aliases but magic in the hardware deals
1434 * with that for us so we don't need to take care ourselves.
1435 */
1436 switch (current_cpu_type()) {
1437 case CPU_20KC:
1438 case CPU_25KF:
1439 case CPU_SB1:
1440 case CPU_SB1A:
1441 case CPU_XLR:
1442 c->dcache.flags |= MIPS_CACHE_PINDEX;
1443 break;
1444
1445 case CPU_R10000:
1446 case CPU_R12000:
1447 case CPU_R14000:
1448 case CPU_R16000:
1449 break;
1450
1451 case CPU_74K:
1452 case CPU_1074K:
1453 has_74k_erratum = alias_74k_erratum(c);
1454 /* Fall through. */
1455 case CPU_M14KC:
1456 case CPU_M14KEC:
1457 case CPU_24K:
1458 case CPU_34K:
1459 case CPU_1004K:
1460 case CPU_INTERAPTIV:
1461 case CPU_P5600:
1462 case CPU_PROAPTIV:
1463 case CPU_M5150:
1464 case CPU_QEMU_GENERIC:
1465 case CPU_I6400:
1466 case CPU_P6600:
1467 case CPU_M6250:
1468 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1469 (c->icache.waysize > PAGE_SIZE))
1470 c->icache.flags |= MIPS_CACHE_ALIASES;
1471 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1472 /*
1473 * Effectively physically indexed dcache,
1474 * thus no virtual aliases.
1475 */
1476 c->dcache.flags |= MIPS_CACHE_PINDEX;
1477 break;
1478 }
1479 default:
1480 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1481 c->dcache.flags |= MIPS_CACHE_ALIASES;
1482 }
1483
1484 switch (current_cpu_type()) {
1485 case CPU_20KC:
1486 /*
1487 * Some older 20Kc chips doesn't have the 'VI' bit in
1488 * the config register.
1489 */
1490 c->icache.flags |= MIPS_CACHE_VTAG;
1491 break;
1492
1493 case CPU_ALCHEMY:
1494 case CPU_I6400:
1495 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1496 break;
1497
1498 case CPU_BMIPS5000:
1499 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1500 /* Cache aliases are handled in hardware; allow HIGHMEM */
1501 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1502 break;
1503
1504 case CPU_LOONGSON2:
1505 /*
1506 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1507 * one op will act on all 4 ways
1508 */
1509 c->icache.ways = 1;
1510 }
1511
1512 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1513 icache_size >> 10,
1514 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1515 way_string[c->icache.ways], c->icache.linesz);
1516
1517 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1518 dcache_size >> 10, way_string[c->dcache.ways],
1519 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1520 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1521 "cache aliases" : "no aliases",
1522 c->dcache.linesz);
1523 }
1524
1525 static void probe_vcache(void)
1526 {
1527 struct cpuinfo_mips *c = &current_cpu_data;
1528 unsigned int config2, lsize;
1529
1530 if (current_cpu_type() != CPU_LOONGSON3)
1531 return;
1532
1533 config2 = read_c0_config2();
1534 if ((lsize = ((config2 >> 20) & 15)))
1535 c->vcache.linesz = 2 << lsize;
1536 else
1537 c->vcache.linesz = lsize;
1538
1539 c->vcache.sets = 64 << ((config2 >> 24) & 15);
1540 c->vcache.ways = 1 + ((config2 >> 16) & 15);
1541
1542 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1543
1544 c->vcache.waybit = 0;
1545
1546 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1547 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1548 }
1549
1550 /*
1551 * If you even _breathe_ on this function, look at the gcc output and make sure
1552 * it does not pop things on and off the stack for the cache sizing loop that
1553 * executes in KSEG1 space or else you will crash and burn badly. You have
1554 * been warned.
1555 */
1556 static int probe_scache(void)
1557 {
1558 unsigned long flags, addr, begin, end, pow2;
1559 unsigned int config = read_c0_config();
1560 struct cpuinfo_mips *c = &current_cpu_data;
1561
1562 if (config & CONF_SC)
1563 return 0;
1564
1565 begin = (unsigned long) &_stext;
1566 begin &= ~((4 * 1024 * 1024) - 1);
1567 end = begin + (4 * 1024 * 1024);
1568
1569 /*
1570 * This is such a bitch, you'd think they would make it easy to do
1571 * this. Away you daemons of stupidity!
1572 */
1573 local_irq_save(flags);
1574
1575 /* Fill each size-multiple cache line with a valid tag. */
1576 pow2 = (64 * 1024);
1577 for (addr = begin; addr < end; addr = (begin + pow2)) {
1578 unsigned long *p = (unsigned long *) addr;
1579 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1580 pow2 <<= 1;
1581 }
1582
1583 /* Load first line with zero (therefore invalid) tag. */
1584 write_c0_taglo(0);
1585 write_c0_taghi(0);
1586 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1587 cache_op(Index_Store_Tag_I, begin);
1588 cache_op(Index_Store_Tag_D, begin);
1589 cache_op(Index_Store_Tag_SD, begin);
1590
1591 /* Now search for the wrap around point. */
1592 pow2 = (128 * 1024);
1593 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1594 cache_op(Index_Load_Tag_SD, addr);
1595 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1596 if (!read_c0_taglo())
1597 break;
1598 pow2 <<= 1;
1599 }
1600 local_irq_restore(flags);
1601 addr -= begin;
1602
1603 scache_size = addr;
1604 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1605 c->scache.ways = 1;
1606 c->scache.waybit = 0; /* does not matter */
1607
1608 return 1;
1609 }
1610
1611 static void __init loongson2_sc_init(void)
1612 {
1613 struct cpuinfo_mips *c = &current_cpu_data;
1614
1615 scache_size = 512*1024;
1616 c->scache.linesz = 32;
1617 c->scache.ways = 4;
1618 c->scache.waybit = 0;
1619 c->scache.waysize = scache_size / (c->scache.ways);
1620 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1621 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1622 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1623
1624 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1625 }
1626
1627 static void __init loongson3_sc_init(void)
1628 {
1629 struct cpuinfo_mips *c = &current_cpu_data;
1630 unsigned int config2, lsize;
1631
1632 config2 = read_c0_config2();
1633 lsize = (config2 >> 4) & 15;
1634 if (lsize)
1635 c->scache.linesz = 2 << lsize;
1636 else
1637 c->scache.linesz = 0;
1638 c->scache.sets = 64 << ((config2 >> 8) & 15);
1639 c->scache.ways = 1 + (config2 & 15);
1640
1641 scache_size = c->scache.sets *
1642 c->scache.ways *
1643 c->scache.linesz;
1644 /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1645 scache_size *= 4;
1646 c->scache.waybit = 0;
1647 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1648 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1649 if (scache_size)
1650 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1651 return;
1652 }
1653
1654 extern int r5k_sc_init(void);
1655 extern int rm7k_sc_init(void);
1656 extern int mips_sc_init(void);
1657
1658 static void setup_scache(void)
1659 {
1660 struct cpuinfo_mips *c = &current_cpu_data;
1661 unsigned int config = read_c0_config();
1662 int sc_present = 0;
1663
1664 /*
1665 * Do the probing thing on R4000SC and R4400SC processors. Other
1666 * processors don't have a S-cache that would be relevant to the
1667 * Linux memory management.
1668 */
1669 switch (current_cpu_type()) {
1670 case CPU_R4000SC:
1671 case CPU_R4000MC:
1672 case CPU_R4400SC:
1673 case CPU_R4400MC:
1674 sc_present = run_uncached(probe_scache);
1675 if (sc_present)
1676 c->options |= MIPS_CPU_CACHE_CDEX_S;
1677 break;
1678
1679 case CPU_R10000:
1680 case CPU_R12000:
1681 case CPU_R14000:
1682 case CPU_R16000:
1683 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1684 c->scache.linesz = 64 << ((config >> 13) & 1);
1685 c->scache.ways = 2;
1686 c->scache.waybit= 0;
1687 sc_present = 1;
1688 break;
1689
1690 case CPU_R5000:
1691 case CPU_NEVADA:
1692 #ifdef CONFIG_R5000_CPU_SCACHE
1693 r5k_sc_init();
1694 #endif
1695 return;
1696
1697 case CPU_RM7000:
1698 #ifdef CONFIG_RM7000_CPU_SCACHE
1699 rm7k_sc_init();
1700 #endif
1701 return;
1702
1703 case CPU_LOONGSON2:
1704 loongson2_sc_init();
1705 return;
1706
1707 case CPU_LOONGSON3:
1708 loongson3_sc_init();
1709 return;
1710
1711 case CPU_CAVIUM_OCTEON3:
1712 case CPU_XLP:
1713 /* don't need to worry about L2, fully coherent */
1714 return;
1715
1716 default:
1717 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1718 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1719 MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1720 #ifdef CONFIG_MIPS_CPU_SCACHE
1721 if (mips_sc_init ()) {
1722 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1723 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1724 scache_size >> 10,
1725 way_string[c->scache.ways], c->scache.linesz);
1726 }
1727 #else
1728 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1729 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1730 #endif
1731 return;
1732 }
1733 sc_present = 0;
1734 }
1735
1736 if (!sc_present)
1737 return;
1738
1739 /* compute a couple of other cache variables */
1740 c->scache.waysize = scache_size / c->scache.ways;
1741
1742 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1743
1744 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1745 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1746
1747 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1748 }
1749
1750 void au1x00_fixup_config_od(void)
1751 {
1752 /*
1753 * c0_config.od (bit 19) was write only (and read as 0)
1754 * on the early revisions of Alchemy SOCs. It disables the bus
1755 * transaction overlapping and needs to be set to fix various errata.
1756 */
1757 switch (read_c0_prid()) {
1758 case 0x00030100: /* Au1000 DA */
1759 case 0x00030201: /* Au1000 HA */
1760 case 0x00030202: /* Au1000 HB */
1761 case 0x01030200: /* Au1500 AB */
1762 /*
1763 * Au1100 errata actually keeps silence about this bit, so we set it
1764 * just in case for those revisions that require it to be set according
1765 * to the (now gone) cpu table.
1766 */
1767 case 0x02030200: /* Au1100 AB */
1768 case 0x02030201: /* Au1100 BA */
1769 case 0x02030202: /* Au1100 BC */
1770 set_c0_config(1 << 19);
1771 break;
1772 }
1773 }
1774
1775 /* CP0 hazard avoidance. */
1776 #define NXP_BARRIER() \
1777 __asm__ __volatile__( \
1778 ".set noreorder\n\t" \
1779 "nop; nop; nop; nop; nop; nop;\n\t" \
1780 ".set reorder\n\t")
1781
1782 static void nxp_pr4450_fixup_config(void)
1783 {
1784 unsigned long config0;
1785
1786 config0 = read_c0_config();
1787
1788 /* clear all three cache coherency fields */
1789 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1790 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1791 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1792 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1793 write_c0_config(config0);
1794 NXP_BARRIER();
1795 }
1796
1797 static int cca = -1;
1798
1799 static int __init cca_setup(char *str)
1800 {
1801 get_option(&str, &cca);
1802
1803 return 0;
1804 }
1805
1806 early_param("cca", cca_setup);
1807
1808 static void coherency_setup(void)
1809 {
1810 if (cca < 0 || cca > 7)
1811 cca = read_c0_config() & CONF_CM_CMASK;
1812 _page_cachable_default = cca << _CACHE_SHIFT;
1813
1814 pr_debug("Using cache attribute %d\n", cca);
1815 change_c0_config(CONF_CM_CMASK, cca);
1816
1817 /*
1818 * c0_status.cu=0 specifies that updates by the sc instruction use
1819 * the coherency mode specified by the TLB; 1 means cachable
1820 * coherent update on write will be used. Not all processors have
1821 * this bit and; some wire it to zero, others like Toshiba had the
1822 * silly idea of putting something else there ...
1823 */
1824 switch (current_cpu_type()) {
1825 case CPU_R4000PC:
1826 case CPU_R4000SC:
1827 case CPU_R4000MC:
1828 case CPU_R4400PC:
1829 case CPU_R4400SC:
1830 case CPU_R4400MC:
1831 clear_c0_config(CONF_CU);
1832 break;
1833 /*
1834 * We need to catch the early Alchemy SOCs with
1835 * the write-only co_config.od bit and set it back to one on:
1836 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1837 */
1838 case CPU_ALCHEMY:
1839 au1x00_fixup_config_od();
1840 break;
1841
1842 case PRID_IMP_PR4450:
1843 nxp_pr4450_fixup_config();
1844 break;
1845 }
1846 }
1847
1848 static void r4k_cache_error_setup(void)
1849 {
1850 extern char __weak except_vec2_generic;
1851 extern char __weak except_vec2_sb1;
1852
1853 switch (current_cpu_type()) {
1854 case CPU_SB1:
1855 case CPU_SB1A:
1856 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1857 break;
1858
1859 default:
1860 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1861 break;
1862 }
1863 }
1864
1865 void r4k_cache_init(void)
1866 {
1867 extern void build_clear_page(void);
1868 extern void build_copy_page(void);
1869 struct cpuinfo_mips *c = &current_cpu_data;
1870
1871 probe_pcache();
1872 probe_vcache();
1873 setup_scache();
1874
1875 r4k_blast_dcache_page_setup();
1876 r4k_blast_dcache_page_indexed_setup();
1877 r4k_blast_dcache_setup();
1878 r4k_blast_icache_page_setup();
1879 r4k_blast_icache_page_indexed_setup();
1880 r4k_blast_icache_setup();
1881 r4k_blast_scache_page_setup();
1882 r4k_blast_scache_page_indexed_setup();
1883 r4k_blast_scache_setup();
1884 #ifdef CONFIG_EVA
1885 r4k_blast_dcache_user_page_setup();
1886 r4k_blast_icache_user_page_setup();
1887 #endif
1888
1889 /*
1890 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1891 * This code supports virtually indexed processors and will be
1892 * unnecessarily inefficient on physically indexed processors.
1893 */
1894 if (c->dcache.linesz && cpu_has_dc_aliases)
1895 shm_align_mask = max_t( unsigned long,
1896 c->dcache.sets * c->dcache.linesz - 1,
1897 PAGE_SIZE - 1);
1898 else
1899 shm_align_mask = PAGE_SIZE-1;
1900
1901 __flush_cache_vmap = r4k__flush_cache_vmap;
1902 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1903
1904 flush_cache_all = cache_noop;
1905 __flush_cache_all = r4k___flush_cache_all;
1906 flush_cache_mm = r4k_flush_cache_mm;
1907 flush_cache_page = r4k_flush_cache_page;
1908 flush_cache_range = r4k_flush_cache_range;
1909
1910 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1911
1912 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1913 flush_icache_all = r4k_flush_icache_all;
1914 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1915 flush_data_cache_page = r4k_flush_data_cache_page;
1916 flush_icache_range = r4k_flush_icache_range;
1917 local_flush_icache_range = local_r4k_flush_icache_range;
1918
1919 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1920 if (coherentio) {
1921 _dma_cache_wback_inv = (void *)cache_noop;
1922 _dma_cache_wback = (void *)cache_noop;
1923 _dma_cache_inv = (void *)cache_noop;
1924 } else {
1925 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1926 _dma_cache_wback = r4k_dma_cache_wback_inv;
1927 _dma_cache_inv = r4k_dma_cache_inv;
1928 }
1929 #endif
1930
1931 build_clear_page();
1932 build_copy_page();
1933
1934 /*
1935 * We want to run CMP kernels on core with and without coherent
1936 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1937 * or not to flush caches.
1938 */
1939 local_r4k___flush_cache_all(NULL);
1940
1941 coherency_setup();
1942 board_cache_error_setup = r4k_cache_error_setup;
1943
1944 /*
1945 * Per-CPU overrides
1946 */
1947 switch (current_cpu_type()) {
1948 case CPU_BMIPS4350:
1949 case CPU_BMIPS4380:
1950 /* No IPI is needed because all CPUs share the same D$ */
1951 flush_data_cache_page = r4k_blast_dcache_page;
1952 break;
1953 case CPU_BMIPS5000:
1954 /* We lose our superpowers if L2 is disabled */
1955 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1956 break;
1957
1958 /* I$ fills from D$ just by emptying the write buffers */
1959 flush_cache_page = (void *)b5k_instruction_hazard;
1960 flush_cache_range = (void *)b5k_instruction_hazard;
1961 flush_cache_sigtramp = (void *)b5k_instruction_hazard;
1962 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1963 flush_data_cache_page = (void *)b5k_instruction_hazard;
1964 flush_icache_range = (void *)b5k_instruction_hazard;
1965 local_flush_icache_range = (void *)b5k_instruction_hazard;
1966
1967
1968 /* Optimization: an L2 flush implicitly flushes the L1 */
1969 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1970 break;
1971 case CPU_LOONGSON3:
1972 /* Loongson-3 maintains cache coherency by hardware */
1973 __flush_cache_all = cache_noop;
1974 __flush_cache_vmap = cache_noop;
1975 __flush_cache_vunmap = cache_noop;
1976 __flush_kernel_vmap_range = (void *)cache_noop;
1977 flush_cache_mm = (void *)cache_noop;
1978 flush_cache_page = (void *)cache_noop;
1979 flush_cache_range = (void *)cache_noop;
1980 flush_cache_sigtramp = (void *)cache_noop;
1981 flush_icache_all = (void *)cache_noop;
1982 flush_data_cache_page = (void *)cache_noop;
1983 local_flush_data_cache_page = (void *)cache_noop;
1984 break;
1985 }
1986 }
1987
1988 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1989 void *v)
1990 {
1991 switch (cmd) {
1992 case CPU_PM_ENTER_FAILED:
1993 case CPU_PM_EXIT:
1994 coherency_setup();
1995 break;
1996 }
1997
1998 return NOTIFY_OK;
1999 }
2000
2001 static struct notifier_block r4k_cache_pm_notifier_block = {
2002 .notifier_call = r4k_cache_pm_notifier,
2003 };
2004
2005 int __init r4k_cache_init_pm(void)
2006 {
2007 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2008 }
2009 arch_initcall(r4k_cache_init_pm);
This page took 0.073186 seconds and 5 git commands to generate.