MIPS: uasm: Add CFC1/CTC1 instructions
[deliverable/linux.git] / arch / mips / mm / uasm-micromips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
9 *
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18
19 #include <asm/inst.h>
20 #include <asm/elf.h>
21 #include <asm/bugs.h>
22 #define UASM_ISA _UASM_ISA_MICROMIPS
23 #include <asm/uasm.h>
24
25 #define RS_MASK 0x1f
26 #define RS_SH 16
27 #define RT_MASK 0x1f
28 #define RT_SH 21
29 #define SCIMM_MASK 0x3ff
30 #define SCIMM_SH 16
31
32 /* This macro sets the non-variable bits of an instruction. */
33 #define M(a, b, c, d, e, f) \
34 ((a) << OP_SH \
35 | (b) << RT_SH \
36 | (c) << RS_SH \
37 | (d) << RD_SH \
38 | (e) << RE_SH \
39 | (f) << FUNC_SH)
40
41 #include "uasm.c"
42
43 static struct insn insn_table_MM[] = {
44 { insn_addu, M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD },
45 { insn_addiu, M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
46 { insn_and, M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD },
47 { insn_andi, M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
48 { insn_beq, M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
49 { insn_beql, 0, 0 },
50 { insn_bgez, M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM },
51 { insn_bgezl, 0, 0 },
52 { insn_bltz, M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM },
53 { insn_bltzl, 0, 0 },
54 { insn_bne, M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM },
55 { insn_cache, M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM },
56 { insn_cfc1, M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS },
57 { insn_ctc1, M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS },
58 { insn_daddu, 0, 0 },
59 { insn_daddiu, 0, 0 },
60 { insn_divu, M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS },
61 { insn_dmfc0, 0, 0 },
62 { insn_dmtc0, 0, 0 },
63 { insn_dsll, 0, 0 },
64 { insn_dsll32, 0, 0 },
65 { insn_dsra, 0, 0 },
66 { insn_dsrl, 0, 0 },
67 { insn_dsrl32, 0, 0 },
68 { insn_drotr, 0, 0 },
69 { insn_drotr32, 0, 0 },
70 { insn_dsubu, 0, 0 },
71 { insn_eret, M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0 },
72 { insn_ins, M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE },
73 { insn_ext, M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE },
74 { insn_j, M(mm_j32_op, 0, 0, 0, 0, 0), JIMM },
75 { insn_jal, M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM },
76 { insn_jalr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS },
77 { insn_jr, M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS },
78 { insn_lb, M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
79 { insn_ld, 0, 0 },
80 { insn_lh, M(mm_lh32_op, 0, 0, 0, 0, 0), RS | RS | SIMM },
81 { insn_ll, M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM },
82 { insn_lld, 0, 0 },
83 { insn_lui, M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM },
84 { insn_lw, M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
85 { insn_mfc0, M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD },
86 { insn_mfhi, M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS },
87 { insn_mflo, M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS },
88 { insn_mtc0, M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD },
89 { insn_mul, M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD },
90 { insn_or, M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD },
91 { insn_ori, M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
92 { insn_pref, M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM },
93 { insn_rfe, 0, 0 },
94 { insn_sc, M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM },
95 { insn_scd, 0, 0 },
96 { insn_sd, 0, 0 },
97 { insn_sll, M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD },
98 { insn_sllv, M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD },
99 { insn_slt, M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD },
100 { insn_sltiu, M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
101 { insn_sltu, M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD },
102 { insn_sra, M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD },
103 { insn_srl, M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD },
104 { insn_srlv, M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD },
105 { insn_rotr, M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD },
106 { insn_subu, M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD },
107 { insn_sw, M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM },
108 { insn_sync, M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS },
109 { insn_tlbp, M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0 },
110 { insn_tlbr, M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0 },
111 { insn_tlbwi, M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0 },
112 { insn_tlbwr, M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0 },
113 { insn_wait, M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM },
114 { insn_wsbh, M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS },
115 { insn_xor, M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD },
116 { insn_xori, M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM },
117 { insn_dins, 0, 0 },
118 { insn_dinsm, 0, 0 },
119 { insn_syscall, M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
120 { insn_bbit0, 0, 0 },
121 { insn_bbit1, 0, 0 },
122 { insn_lwx, 0, 0 },
123 { insn_ldx, 0, 0 },
124 { insn_invalid, 0, 0 }
125 };
126
127 #undef M
128
129 static inline u32 build_bimm(s32 arg)
130 {
131 WARN(arg > 0xffff || arg < -0x10000,
132 KERN_WARNING "Micro-assembler field overflow\n");
133
134 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
135
136 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
137 }
138
139 static inline u32 build_jimm(u32 arg)
140 {
141
142 WARN(arg & ~((JIMM_MASK << 2) | 1),
143 KERN_WARNING "Micro-assembler field overflow\n");
144
145 return (arg >> 1) & JIMM_MASK;
146 }
147
148 /*
149 * The order of opcode arguments is implicitly left to right,
150 * starting with RS and ending with FUNC or IMM.
151 */
152 static void build_insn(u32 **buf, enum opcode opc, ...)
153 {
154 struct insn *ip = NULL;
155 unsigned int i;
156 va_list ap;
157 u32 op;
158
159 for (i = 0; insn_table_MM[i].opcode != insn_invalid; i++)
160 if (insn_table_MM[i].opcode == opc) {
161 ip = &insn_table_MM[i];
162 break;
163 }
164
165 if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
166 panic("Unsupported Micro-assembler instruction %d", opc);
167
168 op = ip->match;
169 va_start(ap, opc);
170 if (ip->fields & RS) {
171 if (opc == insn_mfc0 || opc == insn_mtc0 ||
172 opc == insn_cfc1 || opc == insn_ctc1)
173 op |= build_rt(va_arg(ap, u32));
174 else
175 op |= build_rs(va_arg(ap, u32));
176 }
177 if (ip->fields & RT) {
178 if (opc == insn_mfc0 || opc == insn_mtc0 ||
179 opc == insn_cfc1 || opc == insn_ctc1)
180 op |= build_rs(va_arg(ap, u32));
181 else
182 op |= build_rt(va_arg(ap, u32));
183 }
184 if (ip->fields & RD)
185 op |= build_rd(va_arg(ap, u32));
186 if (ip->fields & RE)
187 op |= build_re(va_arg(ap, u32));
188 if (ip->fields & SIMM)
189 op |= build_simm(va_arg(ap, s32));
190 if (ip->fields & UIMM)
191 op |= build_uimm(va_arg(ap, u32));
192 if (ip->fields & BIMM)
193 op |= build_bimm(va_arg(ap, s32));
194 if (ip->fields & JIMM)
195 op |= build_jimm(va_arg(ap, u32));
196 if (ip->fields & FUNC)
197 op |= build_func(va_arg(ap, u32));
198 if (ip->fields & SET)
199 op |= build_set(va_arg(ap, u32));
200 if (ip->fields & SCIMM)
201 op |= build_scimm(va_arg(ap, u32));
202 va_end(ap);
203
204 #ifdef CONFIG_CPU_LITTLE_ENDIAN
205 **buf = ((op & 0xffff) << 16) | (op >> 16);
206 #else
207 **buf = op;
208 #endif
209 (*buf)++;
210 }
211
212 static inline void
213 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
214 {
215 long laddr = (long)lab->addr;
216 long raddr = (long)rel->addr;
217
218 switch (rel->type) {
219 case R_MIPS_PC16:
220 #ifdef CONFIG_CPU_LITTLE_ENDIAN
221 *rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
222 #else
223 *rel->addr |= build_bimm(laddr - (raddr + 4));
224 #endif
225 break;
226
227 default:
228 panic("Unsupported Micro-assembler relocation %d",
229 rel->type);
230 }
231 }
This page took 0.053136 seconds and 5 git commands to generate.