sched/cputime: Fix omitted ticks passed in parameter
[deliverable/linux.git] / arch / powerpc / kernel / eeh.c
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48
49
50 /** Overview:
51 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84 /* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89 #define EEH_MAX_FAILS 2100000
90
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94 /*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106
107 /*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112 int eeh_max_freezes = 5;
113
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
125 * can access it.
126 */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129
130 /*
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
134 */
135 struct eeh_stats {
136 u64 no_device; /* PCI device not found */
137 u64 no_dn; /* OF node not found */
138 u64 no_cfg_addr; /* Config address not found */
139 u64 ignored_check; /* EEH check skipped */
140 u64 total_mmio_ffs; /* Total EEH checks */
141 u64 false_positives; /* Unnecessary EEH checks */
142 u64 slot_resets; /* PE reset */
143 };
144
145 static struct eeh_stats eeh_stats;
146
147 static int __init eeh_setup(char *str)
148 {
149 if (!strcmp(str, "off"))
150 eeh_add_flag(EEH_FORCE_DISABLED);
151 else if (!strcmp(str, "early_log"))
152 eeh_add_flag(EEH_EARLY_DUMP_LOG);
153
154 return 1;
155 }
156 __setup("eeh=", eeh_setup);
157
158 /*
159 * This routine captures assorted PCI configuration space data
160 * for the indicated PCI device, and puts them into a buffer
161 * for RTAS error logging.
162 */
163 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
164 {
165 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
166 u32 cfg;
167 int cap, i;
168 int n = 0, l = 0;
169 char buffer[128];
170
171 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
172 edev->phb->global_number, pdn->busno,
173 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
175 edev->phb->global_number, pdn->busno,
176 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177
178 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181
182 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185
186 /* Gather bridge-specific registers */
187 if (edev->mode & EEH_DEV_BRIDGE) {
188 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191
192 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 pr_warn("EEH: Bridge control: %04x\n", cfg);
195 }
196
197 /* Dump out the PCI-X command and status regs */
198 cap = edev->pcix_cap;
199 if (cap) {
200 eeh_ops->read_config(pdn, cap, 4, &cfg);
201 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203
204 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 }
208
209 /* If PCI-E capable, dump PCI-E cap 10 */
210 cap = edev->pcie_cap;
211 if (cap) {
212 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 pr_warn("EEH: PCI-E capabilities and status follow:\n");
214
215 for (i=0; i<=8; i++) {
216 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218
219 if ((i % 4) == 0) {
220 if (i != 0)
221 pr_warn("%s\n", buffer);
222
223 l = scnprintf(buffer, sizeof(buffer),
224 "EEH: PCI-E %02x: %08x ",
225 4*i, cfg);
226 } else {
227 l += scnprintf(buffer+l, sizeof(buffer)-l,
228 "%08x ", cfg);
229 }
230
231 }
232
233 pr_warn("%s\n", buffer);
234 }
235
236 /* If AER capable, dump it */
237 cap = edev->aer_cap;
238 if (cap) {
239 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 pr_warn("EEH: PCI-E AER capability register set follows:\n");
241
242 for (i=0; i<=13; i++) {
243 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245
246 if ((i % 4) == 0) {
247 if (i != 0)
248 pr_warn("%s\n", buffer);
249
250 l = scnprintf(buffer, sizeof(buffer),
251 "EEH: PCI-E AER %02x: %08x ",
252 4*i, cfg);
253 } else {
254 l += scnprintf(buffer+l, sizeof(buffer)-l,
255 "%08x ", cfg);
256 }
257 }
258
259 pr_warn("%s\n", buffer);
260 }
261
262 return n;
263 }
264
265 static void *eeh_dump_pe_log(void *data, void *flag)
266 {
267 struct eeh_pe *pe = data;
268 struct eeh_dev *edev, *tmp;
269 size_t *plen = flag;
270
271 eeh_pe_for_each_dev(pe, edev, tmp)
272 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
273 EEH_PCI_REGS_LOG_LEN - *plen);
274
275 return NULL;
276 }
277
278 /**
279 * eeh_slot_error_detail - Generate combined log including driver log and error log
280 * @pe: EEH PE
281 * @severity: temporary or permanent error log
282 *
283 * This routine should be called to generate the combined log, which
284 * is comprised of driver log and error log. The driver log is figured
285 * out from the config space of the corresponding PCI device, while
286 * the error log is fetched through platform dependent function call.
287 */
288 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
289 {
290 size_t loglen = 0;
291
292 /*
293 * When the PHB is fenced or dead, it's pointless to collect
294 * the data from PCI config space because it should return
295 * 0xFF's. For ER, we still retrieve the data from the PCI
296 * config space.
297 *
298 * For pHyp, we have to enable IO for log retrieval. Otherwise,
299 * 0xFF's is always returned from PCI config space.
300 */
301 if (!(pe->type & EEH_PE_PHB)) {
302 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
303 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
304
305 /*
306 * The config space of some PCI devices can't be accessed
307 * when their PEs are in frozen state. Otherwise, fenced
308 * PHB might be seen. Those PEs are identified with flag
309 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
310 * is set automatically when the PE is put to EEH_PE_ISOLATED.
311 *
312 * Restoring BARs possibly triggers PCI config access in
313 * (OPAL) firmware and then causes fenced PHB. If the
314 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
315 * pointless to restore BARs and dump config space.
316 */
317 eeh_ops->configure_bridge(pe);
318 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
319 eeh_pe_restore_bars(pe);
320
321 pci_regs_buf[0] = 0;
322 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
323 }
324 }
325
326 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
327 }
328
329 /**
330 * eeh_token_to_phys - Convert EEH address token to phys address
331 * @token: I/O token, should be address in the form 0xA....
332 *
333 * This routine should be called to convert virtual I/O address
334 * to physical one.
335 */
336 static inline unsigned long eeh_token_to_phys(unsigned long token)
337 {
338 pte_t *ptep;
339 unsigned long pa;
340 int hugepage_shift;
341
342 /*
343 * We won't find hugepages here(this is iomem). Hence we are not
344 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
345 * page table free, because of init_mm.
346 */
347 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
348 NULL, &hugepage_shift);
349 if (!ptep)
350 return token;
351 WARN_ON(hugepage_shift);
352 pa = pte_pfn(*ptep) << PAGE_SHIFT;
353
354 return pa | (token & (PAGE_SIZE-1));
355 }
356
357 /*
358 * On PowerNV platform, we might already have fenced PHB there.
359 * For that case, it's meaningless to recover frozen PE. Intead,
360 * We have to handle fenced PHB firstly.
361 */
362 static int eeh_phb_check_failure(struct eeh_pe *pe)
363 {
364 struct eeh_pe *phb_pe;
365 unsigned long flags;
366 int ret;
367
368 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
369 return -EPERM;
370
371 /* Find the PHB PE */
372 phb_pe = eeh_phb_pe_get(pe->phb);
373 if (!phb_pe) {
374 pr_warn("%s Can't find PE for PHB#%d\n",
375 __func__, pe->phb->global_number);
376 return -EEXIST;
377 }
378
379 /* If the PHB has been in problematic state */
380 eeh_serialize_lock(&flags);
381 if (phb_pe->state & EEH_PE_ISOLATED) {
382 ret = 0;
383 goto out;
384 }
385
386 /* Check PHB state */
387 ret = eeh_ops->get_state(phb_pe, NULL);
388 if ((ret < 0) ||
389 (ret == EEH_STATE_NOT_SUPPORT) ||
390 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
391 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
392 ret = 0;
393 goto out;
394 }
395
396 /* Isolate the PHB and send event */
397 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
398 eeh_serialize_unlock(flags);
399
400 pr_err("EEH: PHB#%x failure detected, location: %s\n",
401 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
402 dump_stack();
403 eeh_send_failure_event(phb_pe);
404
405 return 1;
406 out:
407 eeh_serialize_unlock(flags);
408 return ret;
409 }
410
411 /**
412 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
413 * @edev: eeh device
414 *
415 * Check for an EEH failure for the given device node. Call this
416 * routine if the result of a read was all 0xff's and you want to
417 * find out if this is due to an EEH slot freeze. This routine
418 * will query firmware for the EEH status.
419 *
420 * Returns 0 if there has not been an EEH error; otherwise returns
421 * a non-zero value and queues up a slot isolation event notification.
422 *
423 * It is safe to call this routine in an interrupt context.
424 */
425 int eeh_dev_check_failure(struct eeh_dev *edev)
426 {
427 int ret;
428 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
429 unsigned long flags;
430 struct pci_dn *pdn;
431 struct pci_dev *dev;
432 struct eeh_pe *pe, *parent_pe, *phb_pe;
433 int rc = 0;
434 const char *location = NULL;
435
436 eeh_stats.total_mmio_ffs++;
437
438 if (!eeh_enabled())
439 return 0;
440
441 if (!edev) {
442 eeh_stats.no_dn++;
443 return 0;
444 }
445 dev = eeh_dev_to_pci_dev(edev);
446 pe = eeh_dev_to_pe(edev);
447
448 /* Access to IO BARs might get this far and still not want checking. */
449 if (!pe) {
450 eeh_stats.ignored_check++;
451 pr_debug("EEH: Ignored check for %s\n",
452 eeh_pci_name(dev));
453 return 0;
454 }
455
456 if (!pe->addr && !pe->config_addr) {
457 eeh_stats.no_cfg_addr++;
458 return 0;
459 }
460
461 /*
462 * On PowerNV platform, we might already have fenced PHB
463 * there and we need take care of that firstly.
464 */
465 ret = eeh_phb_check_failure(pe);
466 if (ret > 0)
467 return ret;
468
469 /*
470 * If the PE isn't owned by us, we shouldn't check the
471 * state. Instead, let the owner handle it if the PE has
472 * been frozen.
473 */
474 if (eeh_pe_passed(pe))
475 return 0;
476
477 /* If we already have a pending isolation event for this
478 * slot, we know it's bad already, we don't need to check.
479 * Do this checking under a lock; as multiple PCI devices
480 * in one slot might report errors simultaneously, and we
481 * only want one error recovery routine running.
482 */
483 eeh_serialize_lock(&flags);
484 rc = 1;
485 if (pe->state & EEH_PE_ISOLATED) {
486 pe->check_count++;
487 if (pe->check_count % EEH_MAX_FAILS == 0) {
488 pdn = eeh_dev_to_pdn(edev);
489 if (pdn->node)
490 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
491 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
492 "location=%s driver=%s pci addr=%s\n",
493 pe->check_count,
494 location ? location : "unknown",
495 eeh_driver_name(dev), eeh_pci_name(dev));
496 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
497 eeh_driver_name(dev));
498 dump_stack();
499 }
500 goto dn_unlock;
501 }
502
503 /*
504 * Now test for an EEH failure. This is VERY expensive.
505 * Note that the eeh_config_addr may be a parent device
506 * in the case of a device behind a bridge, or it may be
507 * function zero of a multi-function device.
508 * In any case they must share a common PHB.
509 */
510 ret = eeh_ops->get_state(pe, NULL);
511
512 /* Note that config-io to empty slots may fail;
513 * they are empty when they don't have children.
514 * We will punt with the following conditions: Failure to get
515 * PE's state, EEH not support and Permanently unavailable
516 * state, PE is in good state.
517 */
518 if ((ret < 0) ||
519 (ret == EEH_STATE_NOT_SUPPORT) ||
520 ((ret & active_flags) == active_flags)) {
521 eeh_stats.false_positives++;
522 pe->false_positives++;
523 rc = 0;
524 goto dn_unlock;
525 }
526
527 /*
528 * It should be corner case that the parent PE has been
529 * put into frozen state as well. We should take care
530 * that at first.
531 */
532 parent_pe = pe->parent;
533 while (parent_pe) {
534 /* Hit the ceiling ? */
535 if (parent_pe->type & EEH_PE_PHB)
536 break;
537
538 /* Frozen parent PE ? */
539 ret = eeh_ops->get_state(parent_pe, NULL);
540 if (ret > 0 &&
541 (ret & active_flags) != active_flags)
542 pe = parent_pe;
543
544 /* Next parent level */
545 parent_pe = parent_pe->parent;
546 }
547
548 eeh_stats.slot_resets++;
549
550 /* Avoid repeated reports of this failure, including problems
551 * with other functions on this device, and functions under
552 * bridges.
553 */
554 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
555 eeh_serialize_unlock(flags);
556
557 /* Most EEH events are due to device driver bugs. Having
558 * a stack trace will help the device-driver authors figure
559 * out what happened. So print that out.
560 */
561 phb_pe = eeh_phb_pe_get(pe->phb);
562 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
563 pe->phb->global_number, pe->addr);
564 pr_err("EEH: PE location: %s, PHB location: %s\n",
565 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
566 dump_stack();
567
568 eeh_send_failure_event(pe);
569
570 return 1;
571
572 dn_unlock:
573 eeh_serialize_unlock(flags);
574 return rc;
575 }
576
577 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
578
579 /**
580 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
581 * @token: I/O address
582 *
583 * Check for an EEH failure at the given I/O address. Call this
584 * routine if the result of a read was all 0xff's and you want to
585 * find out if this is due to an EEH slot freeze event. This routine
586 * will query firmware for the EEH status.
587 *
588 * Note this routine is safe to call in an interrupt context.
589 */
590 int eeh_check_failure(const volatile void __iomem *token)
591 {
592 unsigned long addr;
593 struct eeh_dev *edev;
594
595 /* Finding the phys addr + pci device; this is pretty quick. */
596 addr = eeh_token_to_phys((unsigned long __force) token);
597 edev = eeh_addr_cache_get_dev(addr);
598 if (!edev) {
599 eeh_stats.no_device++;
600 return 0;
601 }
602
603 return eeh_dev_check_failure(edev);
604 }
605 EXPORT_SYMBOL(eeh_check_failure);
606
607
608 /**
609 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
610 * @pe: EEH PE
611 *
612 * This routine should be called to reenable frozen MMIO or DMA
613 * so that it would work correctly again. It's useful while doing
614 * recovery or log collection on the indicated device.
615 */
616 int eeh_pci_enable(struct eeh_pe *pe, int function)
617 {
618 int active_flag, rc;
619
620 /*
621 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
622 * Also, it's pointless to enable them on unfrozen PE. So
623 * we have to check before enabling IO or DMA.
624 */
625 switch (function) {
626 case EEH_OPT_THAW_MMIO:
627 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
628 break;
629 case EEH_OPT_THAW_DMA:
630 active_flag = EEH_STATE_DMA_ACTIVE;
631 break;
632 case EEH_OPT_DISABLE:
633 case EEH_OPT_ENABLE:
634 case EEH_OPT_FREEZE_PE:
635 active_flag = 0;
636 break;
637 default:
638 pr_warn("%s: Invalid function %d\n",
639 __func__, function);
640 return -EINVAL;
641 }
642
643 /*
644 * Check if IO or DMA has been enabled before
645 * enabling them.
646 */
647 if (active_flag) {
648 rc = eeh_ops->get_state(pe, NULL);
649 if (rc < 0)
650 return rc;
651
652 /* Needn't enable it at all */
653 if (rc == EEH_STATE_NOT_SUPPORT)
654 return 0;
655
656 /* It's already enabled */
657 if (rc & active_flag)
658 return 0;
659 }
660
661
662 /* Issue the request */
663 rc = eeh_ops->set_option(pe, function);
664 if (rc)
665 pr_warn("%s: Unexpected state change %d on "
666 "PHB#%d-PE#%x, err=%d\n",
667 __func__, function, pe->phb->global_number,
668 pe->addr, rc);
669
670 /* Check if the request is finished successfully */
671 if (active_flag) {
672 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
673 if (rc < 0)
674 return rc;
675
676 if (rc & active_flag)
677 return 0;
678
679 return -EIO;
680 }
681
682 return rc;
683 }
684
685 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
686 {
687 struct eeh_dev *edev = data;
688 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
689 struct pci_dev *dev = userdata;
690
691 /*
692 * The caller should have disabled and saved the
693 * state for the specified device
694 */
695 if (!pdev || pdev == dev)
696 return NULL;
697
698 /* Ensure we have D0 power state */
699 pci_set_power_state(pdev, PCI_D0);
700
701 /* Save device state */
702 pci_save_state(pdev);
703
704 /*
705 * Disable device to avoid any DMA traffic and
706 * interrupt from the device
707 */
708 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
709
710 return NULL;
711 }
712
713 static void *eeh_restore_dev_state(void *data, void *userdata)
714 {
715 struct eeh_dev *edev = data;
716 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
717 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
718 struct pci_dev *dev = userdata;
719
720 if (!pdev)
721 return NULL;
722
723 /* Apply customization from firmware */
724 if (pdn && eeh_ops->restore_config)
725 eeh_ops->restore_config(pdn);
726
727 /* The caller should restore state for the specified device */
728 if (pdev != dev)
729 pci_restore_state(pdev);
730
731 return NULL;
732 }
733
734 /**
735 * pcibios_set_pcie_reset_state - Set PCI-E reset state
736 * @dev: pci device struct
737 * @state: reset state to enter
738 *
739 * Return value:
740 * 0 if success
741 */
742 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
743 {
744 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
745 struct eeh_pe *pe = eeh_dev_to_pe(edev);
746
747 if (!pe) {
748 pr_err("%s: No PE found on PCI device %s\n",
749 __func__, pci_name(dev));
750 return -EINVAL;
751 }
752
753 switch (state) {
754 case pcie_deassert_reset:
755 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
756 eeh_unfreeze_pe(pe, false);
757 if (!(pe->type & EEH_PE_VF))
758 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
759 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
760 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
761 break;
762 case pcie_hot_reset:
763 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
764 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
765 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
766 if (!(pe->type & EEH_PE_VF))
767 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
768 eeh_ops->reset(pe, EEH_RESET_HOT);
769 break;
770 case pcie_warm_reset:
771 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
772 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
773 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
774 if (!(pe->type & EEH_PE_VF))
775 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
776 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
777 break;
778 default:
779 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
780 return -EINVAL;
781 };
782
783 return 0;
784 }
785
786 /**
787 * eeh_set_pe_freset - Check the required reset for the indicated device
788 * @data: EEH device
789 * @flag: return value
790 *
791 * Each device might have its preferred reset type: fundamental or
792 * hot reset. The routine is used to collected the information for
793 * the indicated device and its children so that the bunch of the
794 * devices could be reset properly.
795 */
796 static void *eeh_set_dev_freset(void *data, void *flag)
797 {
798 struct pci_dev *dev;
799 unsigned int *freset = (unsigned int *)flag;
800 struct eeh_dev *edev = (struct eeh_dev *)data;
801
802 dev = eeh_dev_to_pci_dev(edev);
803 if (dev)
804 *freset |= dev->needs_freset;
805
806 return NULL;
807 }
808
809 /**
810 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
811 * @pe: EEH PE
812 *
813 * Assert the PCI #RST line for 1/4 second.
814 */
815 static void eeh_reset_pe_once(struct eeh_pe *pe)
816 {
817 unsigned int freset = 0;
818
819 /* Determine type of EEH reset required for
820 * Partitionable Endpoint, a hot-reset (1)
821 * or a fundamental reset (3).
822 * A fundamental reset required by any device under
823 * Partitionable Endpoint trumps hot-reset.
824 */
825 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
826
827 if (freset)
828 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
829 else
830 eeh_ops->reset(pe, EEH_RESET_HOT);
831
832 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
833 }
834
835 /**
836 * eeh_reset_pe - Reset the indicated PE
837 * @pe: EEH PE
838 *
839 * This routine should be called to reset indicated device, including
840 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
841 * might be involved as well.
842 */
843 int eeh_reset_pe(struct eeh_pe *pe)
844 {
845 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
846 int i, state, ret;
847
848 /* Mark as reset and block config space */
849 eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
850
851 /* Take three shots at resetting the bus */
852 for (i = 0; i < 3; i++) {
853 eeh_reset_pe_once(pe);
854
855 /*
856 * EEH_PE_ISOLATED is expected to be removed after
857 * BAR restore.
858 */
859 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
860 if ((state & flags) == flags) {
861 ret = 0;
862 goto out;
863 }
864
865 if (state < 0) {
866 pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
867 __func__, pe->phb->global_number, pe->addr);
868 ret = -ENOTRECOVERABLE;
869 goto out;
870 }
871
872 /* We might run out of credits */
873 ret = -EIO;
874 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
875 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
876 }
877
878 out:
879 eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
880 return ret;
881 }
882
883 /**
884 * eeh_save_bars - Save device bars
885 * @edev: PCI device associated EEH device
886 *
887 * Save the values of the device bars. Unlike the restore
888 * routine, this routine is *not* recursive. This is because
889 * PCI devices are added individually; but, for the restore,
890 * an entire slot is reset at a time.
891 */
892 void eeh_save_bars(struct eeh_dev *edev)
893 {
894 struct pci_dn *pdn;
895 int i;
896
897 pdn = eeh_dev_to_pdn(edev);
898 if (!pdn)
899 return;
900
901 for (i = 0; i < 16; i++)
902 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
903
904 /*
905 * For PCI bridges including root port, we need enable bus
906 * master explicitly. Otherwise, it can't fetch IODA table
907 * entries correctly. So we cache the bit in advance so that
908 * we can restore it after reset, either PHB range or PE range.
909 */
910 if (edev->mode & EEH_DEV_BRIDGE)
911 edev->config_space[1] |= PCI_COMMAND_MASTER;
912 }
913
914 /**
915 * eeh_ops_register - Register platform dependent EEH operations
916 * @ops: platform dependent EEH operations
917 *
918 * Register the platform dependent EEH operation callback
919 * functions. The platform should call this function before
920 * any other EEH operations.
921 */
922 int __init eeh_ops_register(struct eeh_ops *ops)
923 {
924 if (!ops->name) {
925 pr_warn("%s: Invalid EEH ops name for %p\n",
926 __func__, ops);
927 return -EINVAL;
928 }
929
930 if (eeh_ops && eeh_ops != ops) {
931 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
932 __func__, eeh_ops->name, ops->name);
933 return -EEXIST;
934 }
935
936 eeh_ops = ops;
937
938 return 0;
939 }
940
941 /**
942 * eeh_ops_unregister - Unreigster platform dependent EEH operations
943 * @name: name of EEH platform operations
944 *
945 * Unregister the platform dependent EEH operation callback
946 * functions.
947 */
948 int __exit eeh_ops_unregister(const char *name)
949 {
950 if (!name || !strlen(name)) {
951 pr_warn("%s: Invalid EEH ops name\n",
952 __func__);
953 return -EINVAL;
954 }
955
956 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
957 eeh_ops = NULL;
958 return 0;
959 }
960
961 return -EEXIST;
962 }
963
964 static int eeh_reboot_notifier(struct notifier_block *nb,
965 unsigned long action, void *unused)
966 {
967 eeh_clear_flag(EEH_ENABLED);
968 return NOTIFY_DONE;
969 }
970
971 static struct notifier_block eeh_reboot_nb = {
972 .notifier_call = eeh_reboot_notifier,
973 };
974
975 /**
976 * eeh_init - EEH initialization
977 *
978 * Initialize EEH by trying to enable it for all of the adapters in the system.
979 * As a side effect we can determine here if eeh is supported at all.
980 * Note that we leave EEH on so failed config cycles won't cause a machine
981 * check. If a user turns off EEH for a particular adapter they are really
982 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
983 * grant access to a slot if EEH isn't enabled, and so we always enable
984 * EEH for all slots/all devices.
985 *
986 * The eeh-force-off option disables EEH checking globally, for all slots.
987 * Even if force-off is set, the EEH hardware is still enabled, so that
988 * newer systems can boot.
989 */
990 int eeh_init(void)
991 {
992 struct pci_controller *hose, *tmp;
993 struct pci_dn *pdn;
994 static int cnt = 0;
995 int ret = 0;
996
997 /*
998 * We have to delay the initialization on PowerNV after
999 * the PCI hierarchy tree has been built because the PEs
1000 * are figured out based on PCI devices instead of device
1001 * tree nodes
1002 */
1003 if (machine_is(powernv) && cnt++ <= 0)
1004 return ret;
1005
1006 /* Register reboot notifier */
1007 ret = register_reboot_notifier(&eeh_reboot_nb);
1008 if (ret) {
1009 pr_warn("%s: Failed to register notifier (%d)\n",
1010 __func__, ret);
1011 return ret;
1012 }
1013
1014 /* call platform initialization function */
1015 if (!eeh_ops) {
1016 pr_warn("%s: Platform EEH operation not found\n",
1017 __func__);
1018 return -EEXIST;
1019 } else if ((ret = eeh_ops->init()))
1020 return ret;
1021
1022 /* Initialize EEH event */
1023 ret = eeh_event_init();
1024 if (ret)
1025 return ret;
1026
1027 /* Enable EEH for all adapters */
1028 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1029 pdn = hose->pci_data;
1030 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1031 }
1032
1033 /*
1034 * Call platform post-initialization. Actually, It's good chance
1035 * to inform platform that EEH is ready to supply service if the
1036 * I/O cache stuff has been built up.
1037 */
1038 if (eeh_ops->post_init) {
1039 ret = eeh_ops->post_init();
1040 if (ret)
1041 return ret;
1042 }
1043
1044 if (eeh_enabled())
1045 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1046 else
1047 pr_warn("EEH: No capable adapters found\n");
1048
1049 return ret;
1050 }
1051
1052 core_initcall_sync(eeh_init);
1053
1054 /**
1055 * eeh_add_device_early - Enable EEH for the indicated device node
1056 * @pdn: PCI device node for which to set up EEH
1057 *
1058 * This routine must be used to perform EEH initialization for PCI
1059 * devices that were added after system boot (e.g. hotplug, dlpar).
1060 * This routine must be called before any i/o is performed to the
1061 * adapter (inluding any config-space i/o).
1062 * Whether this actually enables EEH or not for this device depends
1063 * on the CEC architecture, type of the device, on earlier boot
1064 * command-line arguments & etc.
1065 */
1066 void eeh_add_device_early(struct pci_dn *pdn)
1067 {
1068 struct pci_controller *phb;
1069 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1070
1071 if (!edev)
1072 return;
1073
1074 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1075 return;
1076
1077 /* USB Bus children of PCI devices will not have BUID's */
1078 phb = edev->phb;
1079 if (NULL == phb ||
1080 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1081 return;
1082
1083 eeh_ops->probe(pdn, NULL);
1084 }
1085
1086 /**
1087 * eeh_add_device_tree_early - Enable EEH for the indicated device
1088 * @pdn: PCI device node
1089 *
1090 * This routine must be used to perform EEH initialization for the
1091 * indicated PCI device that was added after system boot (e.g.
1092 * hotplug, dlpar).
1093 */
1094 void eeh_add_device_tree_early(struct pci_dn *pdn)
1095 {
1096 struct pci_dn *n;
1097
1098 if (!pdn)
1099 return;
1100
1101 list_for_each_entry(n, &pdn->child_list, list)
1102 eeh_add_device_tree_early(n);
1103 eeh_add_device_early(pdn);
1104 }
1105 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1106
1107 /**
1108 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1109 * @dev: pci device for which to set up EEH
1110 *
1111 * This routine must be used to complete EEH initialization for PCI
1112 * devices that were added after system boot (e.g. hotplug, dlpar).
1113 */
1114 void eeh_add_device_late(struct pci_dev *dev)
1115 {
1116 struct pci_dn *pdn;
1117 struct eeh_dev *edev;
1118
1119 if (!dev || !eeh_enabled())
1120 return;
1121
1122 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1123
1124 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1125 edev = pdn_to_eeh_dev(pdn);
1126 if (edev->pdev == dev) {
1127 pr_debug("EEH: Already referenced !\n");
1128 return;
1129 }
1130
1131 /*
1132 * The EEH cache might not be removed correctly because of
1133 * unbalanced kref to the device during unplug time, which
1134 * relies on pcibios_release_device(). So we have to remove
1135 * that here explicitly.
1136 */
1137 if (edev->pdev) {
1138 eeh_rmv_from_parent_pe(edev);
1139 eeh_addr_cache_rmv_dev(edev->pdev);
1140 eeh_sysfs_remove_device(edev->pdev);
1141 edev->mode &= ~EEH_DEV_SYSFS;
1142
1143 /*
1144 * We definitely should have the PCI device removed
1145 * though it wasn't correctly. So we needn't call
1146 * into error handler afterwards.
1147 */
1148 edev->mode |= EEH_DEV_NO_HANDLER;
1149
1150 edev->pdev = NULL;
1151 dev->dev.archdata.edev = NULL;
1152 }
1153
1154 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1155 eeh_ops->probe(pdn, NULL);
1156
1157 edev->pdev = dev;
1158 dev->dev.archdata.edev = edev;
1159
1160 eeh_addr_cache_insert_dev(dev);
1161 }
1162
1163 /**
1164 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1165 * @bus: PCI bus
1166 *
1167 * This routine must be used to perform EEH initialization for PCI
1168 * devices which are attached to the indicated PCI bus. The PCI bus
1169 * is added after system boot through hotplug or dlpar.
1170 */
1171 void eeh_add_device_tree_late(struct pci_bus *bus)
1172 {
1173 struct pci_dev *dev;
1174
1175 list_for_each_entry(dev, &bus->devices, bus_list) {
1176 eeh_add_device_late(dev);
1177 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1178 struct pci_bus *subbus = dev->subordinate;
1179 if (subbus)
1180 eeh_add_device_tree_late(subbus);
1181 }
1182 }
1183 }
1184 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1185
1186 /**
1187 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1188 * @bus: PCI bus
1189 *
1190 * This routine must be used to add EEH sysfs files for PCI
1191 * devices which are attached to the indicated PCI bus. The PCI bus
1192 * is added after system boot through hotplug or dlpar.
1193 */
1194 void eeh_add_sysfs_files(struct pci_bus *bus)
1195 {
1196 struct pci_dev *dev;
1197
1198 list_for_each_entry(dev, &bus->devices, bus_list) {
1199 eeh_sysfs_add_device(dev);
1200 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1201 struct pci_bus *subbus = dev->subordinate;
1202 if (subbus)
1203 eeh_add_sysfs_files(subbus);
1204 }
1205 }
1206 }
1207 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1208
1209 /**
1210 * eeh_remove_device - Undo EEH setup for the indicated pci device
1211 * @dev: pci device to be removed
1212 *
1213 * This routine should be called when a device is removed from
1214 * a running system (e.g. by hotplug or dlpar). It unregisters
1215 * the PCI device from the EEH subsystem. I/O errors affecting
1216 * this device will no longer be detected after this call; thus,
1217 * i/o errors affecting this slot may leave this device unusable.
1218 */
1219 void eeh_remove_device(struct pci_dev *dev)
1220 {
1221 struct eeh_dev *edev;
1222
1223 if (!dev || !eeh_enabled())
1224 return;
1225 edev = pci_dev_to_eeh_dev(dev);
1226
1227 /* Unregister the device with the EEH/PCI address search system */
1228 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1229
1230 if (!edev || !edev->pdev || !edev->pe) {
1231 pr_debug("EEH: Not referenced !\n");
1232 return;
1233 }
1234
1235 /*
1236 * During the hotplug for EEH error recovery, we need the EEH
1237 * device attached to the parent PE in order for BAR restore
1238 * a bit later. So we keep it for BAR restore and remove it
1239 * from the parent PE during the BAR resotre.
1240 */
1241 edev->pdev = NULL;
1242
1243 /*
1244 * The flag "in_error" is used to trace EEH devices for VFs
1245 * in error state or not. It's set in eeh_report_error(). If
1246 * it's not set, eeh_report_{reset,resume}() won't be called
1247 * for the VF EEH device.
1248 */
1249 edev->in_error = false;
1250 dev->dev.archdata.edev = NULL;
1251 if (!(edev->pe->state & EEH_PE_KEEP))
1252 eeh_rmv_from_parent_pe(edev);
1253 else
1254 edev->mode |= EEH_DEV_DISCONNECTED;
1255
1256 /*
1257 * We're removing from the PCI subsystem, that means
1258 * the PCI device driver can't support EEH or not
1259 * well. So we rely on hotplug completely to do recovery
1260 * for the specific PCI device.
1261 */
1262 edev->mode |= EEH_DEV_NO_HANDLER;
1263
1264 eeh_addr_cache_rmv_dev(dev);
1265 eeh_sysfs_remove_device(dev);
1266 edev->mode &= ~EEH_DEV_SYSFS;
1267 }
1268
1269 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1270 {
1271 int ret;
1272
1273 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1274 if (ret) {
1275 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1276 __func__, ret, pe->phb->global_number, pe->addr);
1277 return ret;
1278 }
1279
1280 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1281 if (ret) {
1282 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1283 __func__, ret, pe->phb->global_number, pe->addr);
1284 return ret;
1285 }
1286
1287 /* Clear software isolated state */
1288 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1289 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1290
1291 return ret;
1292 }
1293
1294
1295 static struct pci_device_id eeh_reset_ids[] = {
1296 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1297 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1298 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1299 { 0 }
1300 };
1301
1302 static int eeh_pe_change_owner(struct eeh_pe *pe)
1303 {
1304 struct eeh_dev *edev, *tmp;
1305 struct pci_dev *pdev;
1306 struct pci_device_id *id;
1307 int flags, ret;
1308
1309 /* Check PE state */
1310 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1311 ret = eeh_ops->get_state(pe, NULL);
1312 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1313 return 0;
1314
1315 /* Unfrozen PE, nothing to do */
1316 if ((ret & flags) == flags)
1317 return 0;
1318
1319 /* Frozen PE, check if it needs PE level reset */
1320 eeh_pe_for_each_dev(pe, edev, tmp) {
1321 pdev = eeh_dev_to_pci_dev(edev);
1322 if (!pdev)
1323 continue;
1324
1325 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1326 if (id->vendor != PCI_ANY_ID &&
1327 id->vendor != pdev->vendor)
1328 continue;
1329 if (id->device != PCI_ANY_ID &&
1330 id->device != pdev->device)
1331 continue;
1332 if (id->subvendor != PCI_ANY_ID &&
1333 id->subvendor != pdev->subsystem_vendor)
1334 continue;
1335 if (id->subdevice != PCI_ANY_ID &&
1336 id->subdevice != pdev->subsystem_device)
1337 continue;
1338
1339 return eeh_pe_reset_and_recover(pe);
1340 }
1341 }
1342
1343 return eeh_unfreeze_pe(pe, true);
1344 }
1345
1346 /**
1347 * eeh_dev_open - Increase count of pass through devices for PE
1348 * @pdev: PCI device
1349 *
1350 * Increase count of passed through devices for the indicated
1351 * PE. In the result, the EEH errors detected on the PE won't be
1352 * reported. The PE owner will be responsible for detection
1353 * and recovery.
1354 */
1355 int eeh_dev_open(struct pci_dev *pdev)
1356 {
1357 struct eeh_dev *edev;
1358 int ret = -ENODEV;
1359
1360 mutex_lock(&eeh_dev_mutex);
1361
1362 /* No PCI device ? */
1363 if (!pdev)
1364 goto out;
1365
1366 /* No EEH device or PE ? */
1367 edev = pci_dev_to_eeh_dev(pdev);
1368 if (!edev || !edev->pe)
1369 goto out;
1370
1371 /*
1372 * The PE might have been put into frozen state, but we
1373 * didn't detect that yet. The passed through PCI devices
1374 * in frozen PE won't work properly. Clear the frozen state
1375 * in advance.
1376 */
1377 ret = eeh_pe_change_owner(edev->pe);
1378 if (ret)
1379 goto out;
1380
1381 /* Increase PE's pass through count */
1382 atomic_inc(&edev->pe->pass_dev_cnt);
1383 mutex_unlock(&eeh_dev_mutex);
1384
1385 return 0;
1386 out:
1387 mutex_unlock(&eeh_dev_mutex);
1388 return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(eeh_dev_open);
1391
1392 /**
1393 * eeh_dev_release - Decrease count of pass through devices for PE
1394 * @pdev: PCI device
1395 *
1396 * Decrease count of pass through devices for the indicated PE. If
1397 * there is no passed through device in PE, the EEH errors detected
1398 * on the PE will be reported and handled as usual.
1399 */
1400 void eeh_dev_release(struct pci_dev *pdev)
1401 {
1402 struct eeh_dev *edev;
1403
1404 mutex_lock(&eeh_dev_mutex);
1405
1406 /* No PCI device ? */
1407 if (!pdev)
1408 goto out;
1409
1410 /* No EEH device ? */
1411 edev = pci_dev_to_eeh_dev(pdev);
1412 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1413 goto out;
1414
1415 /* Decrease PE's pass through count */
1416 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1417 eeh_pe_change_owner(edev->pe);
1418 out:
1419 mutex_unlock(&eeh_dev_mutex);
1420 }
1421 EXPORT_SYMBOL(eeh_dev_release);
1422
1423 #ifdef CONFIG_IOMMU_API
1424
1425 static int dev_has_iommu_table(struct device *dev, void *data)
1426 {
1427 struct pci_dev *pdev = to_pci_dev(dev);
1428 struct pci_dev **ppdev = data;
1429
1430 if (!dev)
1431 return 0;
1432
1433 if (dev->iommu_group) {
1434 *ppdev = pdev;
1435 return 1;
1436 }
1437
1438 return 0;
1439 }
1440
1441 /**
1442 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1443 * @group: IOMMU group
1444 *
1445 * The routine is called to convert IOMMU group to EEH PE.
1446 */
1447 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1448 {
1449 struct pci_dev *pdev = NULL;
1450 struct eeh_dev *edev;
1451 int ret;
1452
1453 /* No IOMMU group ? */
1454 if (!group)
1455 return NULL;
1456
1457 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1458 if (!ret || !pdev)
1459 return NULL;
1460
1461 /* No EEH device or PE ? */
1462 edev = pci_dev_to_eeh_dev(pdev);
1463 if (!edev || !edev->pe)
1464 return NULL;
1465
1466 return edev->pe;
1467 }
1468 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1469
1470 #endif /* CONFIG_IOMMU_API */
1471
1472 /**
1473 * eeh_pe_set_option - Set options for the indicated PE
1474 * @pe: EEH PE
1475 * @option: requested option
1476 *
1477 * The routine is called to enable or disable EEH functionality
1478 * on the indicated PE, to enable IO or DMA for the frozen PE.
1479 */
1480 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1481 {
1482 int ret = 0;
1483
1484 /* Invalid PE ? */
1485 if (!pe)
1486 return -ENODEV;
1487
1488 /*
1489 * EEH functionality could possibly be disabled, just
1490 * return error for the case. And the EEH functinality
1491 * isn't expected to be disabled on one specific PE.
1492 */
1493 switch (option) {
1494 case EEH_OPT_ENABLE:
1495 if (eeh_enabled()) {
1496 ret = eeh_pe_change_owner(pe);
1497 break;
1498 }
1499 ret = -EIO;
1500 break;
1501 case EEH_OPT_DISABLE:
1502 break;
1503 case EEH_OPT_THAW_MMIO:
1504 case EEH_OPT_THAW_DMA:
1505 if (!eeh_ops || !eeh_ops->set_option) {
1506 ret = -ENOENT;
1507 break;
1508 }
1509
1510 ret = eeh_pci_enable(pe, option);
1511 break;
1512 default:
1513 pr_debug("%s: Option %d out of range (%d, %d)\n",
1514 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1515 ret = -EINVAL;
1516 }
1517
1518 return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1521
1522 /**
1523 * eeh_pe_get_state - Retrieve PE's state
1524 * @pe: EEH PE
1525 *
1526 * Retrieve the PE's state, which includes 3 aspects: enabled
1527 * DMA, enabled IO and asserted reset.
1528 */
1529 int eeh_pe_get_state(struct eeh_pe *pe)
1530 {
1531 int result, ret = 0;
1532 bool rst_active, dma_en, mmio_en;
1533
1534 /* Existing PE ? */
1535 if (!pe)
1536 return -ENODEV;
1537
1538 if (!eeh_ops || !eeh_ops->get_state)
1539 return -ENOENT;
1540
1541 /*
1542 * If the parent PE is owned by the host kernel and is undergoing
1543 * error recovery, we should return the PE state as temporarily
1544 * unavailable so that the error recovery on the guest is suspended
1545 * until the recovery completes on the host.
1546 */
1547 if (pe->parent &&
1548 !(pe->state & EEH_PE_REMOVED) &&
1549 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1550 return EEH_PE_STATE_UNAVAIL;
1551
1552 result = eeh_ops->get_state(pe, NULL);
1553 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1554 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1555 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1556
1557 if (rst_active)
1558 ret = EEH_PE_STATE_RESET;
1559 else if (dma_en && mmio_en)
1560 ret = EEH_PE_STATE_NORMAL;
1561 else if (!dma_en && !mmio_en)
1562 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1563 else if (!dma_en && mmio_en)
1564 ret = EEH_PE_STATE_STOPPED_DMA;
1565 else
1566 ret = EEH_PE_STATE_UNAVAIL;
1567
1568 return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1571
1572 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1573 {
1574 struct eeh_dev *edev, *tmp;
1575 struct pci_dev *pdev;
1576 int ret = 0;
1577
1578 /* Restore config space */
1579 eeh_pe_restore_bars(pe);
1580
1581 /*
1582 * Reenable PCI devices as the devices passed
1583 * through are always enabled before the reset.
1584 */
1585 eeh_pe_for_each_dev(pe, edev, tmp) {
1586 pdev = eeh_dev_to_pci_dev(edev);
1587 if (!pdev)
1588 continue;
1589
1590 ret = pci_reenable_device(pdev);
1591 if (ret) {
1592 pr_warn("%s: Failure %d reenabling %s\n",
1593 __func__, ret, pci_name(pdev));
1594 return ret;
1595 }
1596 }
1597
1598 /* The PE is still in frozen state */
1599 return eeh_unfreeze_pe(pe, true);
1600 }
1601
1602 /**
1603 * eeh_pe_reset - Issue PE reset according to specified type
1604 * @pe: EEH PE
1605 * @option: reset type
1606 *
1607 * The routine is called to reset the specified PE with the
1608 * indicated type, either fundamental reset or hot reset.
1609 * PE reset is the most important part for error recovery.
1610 */
1611 int eeh_pe_reset(struct eeh_pe *pe, int option)
1612 {
1613 int ret = 0;
1614
1615 /* Invalid PE ? */
1616 if (!pe)
1617 return -ENODEV;
1618
1619 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1620 return -ENOENT;
1621
1622 switch (option) {
1623 case EEH_RESET_DEACTIVATE:
1624 ret = eeh_ops->reset(pe, option);
1625 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1626 if (ret)
1627 break;
1628
1629 ret = eeh_pe_reenable_devices(pe);
1630 break;
1631 case EEH_RESET_HOT:
1632 case EEH_RESET_FUNDAMENTAL:
1633 /*
1634 * Proactively freeze the PE to drop all MMIO access
1635 * during reset, which should be banned as it's always
1636 * cause recursive EEH error.
1637 */
1638 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1639
1640 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1641 ret = eeh_ops->reset(pe, option);
1642 break;
1643 default:
1644 pr_debug("%s: Unsupported option %d\n",
1645 __func__, option);
1646 ret = -EINVAL;
1647 }
1648
1649 return ret;
1650 }
1651 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1652
1653 /**
1654 * eeh_pe_configure - Configure PCI bridges after PE reset
1655 * @pe: EEH PE
1656 *
1657 * The routine is called to restore the PCI config space for
1658 * those PCI devices, especially PCI bridges affected by PE
1659 * reset issued previously.
1660 */
1661 int eeh_pe_configure(struct eeh_pe *pe)
1662 {
1663 int ret = 0;
1664
1665 /* Invalid PE ? */
1666 if (!pe)
1667 return -ENODEV;
1668
1669 return ret;
1670 }
1671 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1672
1673 /**
1674 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1675 * @pe: the indicated PE
1676 * @type: error type
1677 * @function: error function
1678 * @addr: address
1679 * @mask: address mask
1680 *
1681 * The routine is called to inject the specified PCI error, which
1682 * is determined by @type and @function, to the indicated PE for
1683 * testing purpose.
1684 */
1685 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1686 unsigned long addr, unsigned long mask)
1687 {
1688 /* Invalid PE ? */
1689 if (!pe)
1690 return -ENODEV;
1691
1692 /* Unsupported operation ? */
1693 if (!eeh_ops || !eeh_ops->err_inject)
1694 return -ENOENT;
1695
1696 /* Check on PCI error type */
1697 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1698 return -EINVAL;
1699
1700 /* Check on PCI error function */
1701 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1702 return -EINVAL;
1703
1704 return eeh_ops->err_inject(pe, type, func, addr, mask);
1705 }
1706 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1707
1708 static int proc_eeh_show(struct seq_file *m, void *v)
1709 {
1710 if (!eeh_enabled()) {
1711 seq_printf(m, "EEH Subsystem is globally disabled\n");
1712 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1713 } else {
1714 seq_printf(m, "EEH Subsystem is enabled\n");
1715 seq_printf(m,
1716 "no device=%llu\n"
1717 "no device node=%llu\n"
1718 "no config address=%llu\n"
1719 "check not wanted=%llu\n"
1720 "eeh_total_mmio_ffs=%llu\n"
1721 "eeh_false_positives=%llu\n"
1722 "eeh_slot_resets=%llu\n",
1723 eeh_stats.no_device,
1724 eeh_stats.no_dn,
1725 eeh_stats.no_cfg_addr,
1726 eeh_stats.ignored_check,
1727 eeh_stats.total_mmio_ffs,
1728 eeh_stats.false_positives,
1729 eeh_stats.slot_resets);
1730 }
1731
1732 return 0;
1733 }
1734
1735 static int proc_eeh_open(struct inode *inode, struct file *file)
1736 {
1737 return single_open(file, proc_eeh_show, NULL);
1738 }
1739
1740 static const struct file_operations proc_eeh_operations = {
1741 .open = proc_eeh_open,
1742 .read = seq_read,
1743 .llseek = seq_lseek,
1744 .release = single_release,
1745 };
1746
1747 #ifdef CONFIG_DEBUG_FS
1748 static int eeh_enable_dbgfs_set(void *data, u64 val)
1749 {
1750 if (val)
1751 eeh_clear_flag(EEH_FORCE_DISABLED);
1752 else
1753 eeh_add_flag(EEH_FORCE_DISABLED);
1754
1755 /* Notify the backend */
1756 if (eeh_ops->post_init)
1757 eeh_ops->post_init();
1758
1759 return 0;
1760 }
1761
1762 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1763 {
1764 if (eeh_enabled())
1765 *val = 0x1ul;
1766 else
1767 *val = 0x0ul;
1768 return 0;
1769 }
1770
1771 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1772 {
1773 eeh_max_freezes = val;
1774 return 0;
1775 }
1776
1777 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1778 {
1779 *val = eeh_max_freezes;
1780 return 0;
1781 }
1782
1783 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1784 eeh_enable_dbgfs_set, "0x%llx\n");
1785 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1786 eeh_freeze_dbgfs_set, "0x%llx\n");
1787 #endif
1788
1789 static int __init eeh_init_proc(void)
1790 {
1791 if (machine_is(pseries) || machine_is(powernv)) {
1792 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1793 #ifdef CONFIG_DEBUG_FS
1794 debugfs_create_file("eeh_enable", 0600,
1795 powerpc_debugfs_root, NULL,
1796 &eeh_enable_dbgfs_ops);
1797 debugfs_create_file("eeh_max_freezes", 0600,
1798 powerpc_debugfs_root, NULL,
1799 &eeh_freeze_dbgfs_ops);
1800 #endif
1801 }
1802
1803 return 0;
1804 }
1805 __initcall(eeh_init_proc);
This page took 0.066991 seconds and 5 git commands to generate.