Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / arch / powerpc / kernel / pci-common.c
1 /*
2 * Contains common pci routines for ALL ppc platform
3 * (based on pci_32.c and pci_64.c)
4 *
5 * Port for PPC64 David Engebretsen, IBM Corp.
6 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7 *
8 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9 * Rework, based on alpha PCI code.
10 *
11 * Common pmac/prep/chrp pci routines. -- Cort
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/list.h>
29 #include <linux/syscalls.h>
30 #include <linux/irq.h>
31 #include <linux/vmalloc.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34
35 #include <asm/processor.h>
36 #include <asm/io.h>
37 #include <asm/prom.h>
38 #include <asm/pci-bridge.h>
39 #include <asm/byteorder.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/eeh.h>
43
44 /* hose_spinlock protects accesses to the the phb_bitmap. */
45 static DEFINE_SPINLOCK(hose_spinlock);
46 LIST_HEAD(hose_list);
47
48 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
49 #define MAX_PHBS 0x10000
50
51 /*
52 * For dynamic PHB numbering: used/free PHBs tracking bitmap.
53 * Accesses to this bitmap should be protected by hose_spinlock.
54 */
55 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
56
57 /* ISA Memory physical address */
58 resource_size_t isa_mem_base;
59
60
61 static struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
62
63 void set_pci_dma_ops(struct dma_map_ops *dma_ops)
64 {
65 pci_dma_ops = dma_ops;
66 }
67
68 struct dma_map_ops *get_pci_dma_ops(void)
69 {
70 return pci_dma_ops;
71 }
72 EXPORT_SYMBOL(get_pci_dma_ops);
73
74 /*
75 * This function should run under locking protection, specifically
76 * hose_spinlock.
77 */
78 static int get_phb_number(struct device_node *dn)
79 {
80 int ret, phb_id = -1;
81 u32 prop_32;
82 u64 prop;
83
84 /*
85 * Try fixed PHB numbering first, by checking archs and reading
86 * the respective device-tree properties. Firstly, try powernv by
87 * reading "ibm,opal-phbid", only present in OPAL environment.
88 */
89 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
90 if (ret) {
91 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
92 prop = prop_32;
93 }
94
95 if (!ret)
96 phb_id = (int)(prop & (MAX_PHBS - 1));
97
98 /* We need to be sure to not use the same PHB number twice. */
99 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
100 return phb_id;
101
102 /*
103 * If not pseries nor powernv, or if fixed PHB numbering tried to add
104 * the same PHB number twice, then fallback to dynamic PHB numbering.
105 */
106 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
107 BUG_ON(phb_id >= MAX_PHBS);
108 set_bit(phb_id, phb_bitmap);
109
110 return phb_id;
111 }
112
113 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
114 {
115 struct pci_controller *phb;
116
117 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
118 if (phb == NULL)
119 return NULL;
120 spin_lock(&hose_spinlock);
121 phb->global_number = get_phb_number(dev);
122 list_add_tail(&phb->list_node, &hose_list);
123 spin_unlock(&hose_spinlock);
124 phb->dn = dev;
125 phb->is_dynamic = slab_is_available();
126 #ifdef CONFIG_PPC64
127 if (dev) {
128 int nid = of_node_to_nid(dev);
129
130 if (nid < 0 || !node_online(nid))
131 nid = -1;
132
133 PHB_SET_NODE(phb, nid);
134 }
135 #endif
136 return phb;
137 }
138 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
139
140 void pcibios_free_controller(struct pci_controller *phb)
141 {
142 spin_lock(&hose_spinlock);
143
144 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */
145 if (phb->global_number < MAX_PHBS)
146 clear_bit(phb->global_number, phb_bitmap);
147
148 list_del(&phb->list_node);
149 spin_unlock(&hose_spinlock);
150
151 if (phb->is_dynamic)
152 kfree(phb);
153 }
154 EXPORT_SYMBOL_GPL(pcibios_free_controller);
155
156 /*
157 * This function is used to call pcibios_free_controller()
158 * in a deferred manner: a callback from the PCI subsystem.
159 *
160 * _*DO NOT*_ call pcibios_free_controller() explicitly if
161 * this is used (or it may access an invalid *phb pointer).
162 *
163 * The callback occurs when all references to the root bus
164 * are dropped (e.g., child buses/devices and their users).
165 *
166 * It's called as .release_fn() of 'struct pci_host_bridge'
167 * which is associated with the 'struct pci_controller.bus'
168 * (root bus) - it expects .release_data to hold a pointer
169 * to 'struct pci_controller'.
170 *
171 * In order to use it, register .release_fn()/release_data
172 * like this:
173 *
174 * pci_set_host_bridge_release(bridge,
175 * pcibios_free_controller_deferred
176 * (void *) phb);
177 *
178 * e.g. in the pcibios_root_bridge_prepare() callback from
179 * pci_create_root_bus().
180 */
181 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
182 {
183 struct pci_controller *phb = (struct pci_controller *)
184 bridge->release_data;
185
186 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
187
188 pcibios_free_controller(phb);
189 }
190 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
191
192 /*
193 * The function is used to return the minimal alignment
194 * for memory or I/O windows of the associated P2P bridge.
195 * By default, 4KiB alignment for I/O windows and 1MiB for
196 * memory windows.
197 */
198 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
199 unsigned long type)
200 {
201 struct pci_controller *phb = pci_bus_to_host(bus);
202
203 if (phb->controller_ops.window_alignment)
204 return phb->controller_ops.window_alignment(bus, type);
205
206 /*
207 * PCI core will figure out the default
208 * alignment: 4KiB for I/O and 1MiB for
209 * memory window.
210 */
211 return 1;
212 }
213
214 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
215 {
216 struct pci_controller *hose = pci_bus_to_host(bus);
217
218 if (hose->controller_ops.setup_bridge)
219 hose->controller_ops.setup_bridge(bus, type);
220 }
221
222 void pcibios_reset_secondary_bus(struct pci_dev *dev)
223 {
224 struct pci_controller *phb = pci_bus_to_host(dev->bus);
225
226 if (phb->controller_ops.reset_secondary_bus) {
227 phb->controller_ops.reset_secondary_bus(dev);
228 return;
229 }
230
231 pci_reset_secondary_bus(dev);
232 }
233
234 #ifdef CONFIG_PCI_IOV
235 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
236 {
237 if (ppc_md.pcibios_iov_resource_alignment)
238 return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
239
240 return pci_iov_resource_size(pdev, resno);
241 }
242 #endif /* CONFIG_PCI_IOV */
243
244 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
245 {
246 #ifdef CONFIG_PPC64
247 return hose->pci_io_size;
248 #else
249 return resource_size(&hose->io_resource);
250 #endif
251 }
252
253 int pcibios_vaddr_is_ioport(void __iomem *address)
254 {
255 int ret = 0;
256 struct pci_controller *hose;
257 resource_size_t size;
258
259 spin_lock(&hose_spinlock);
260 list_for_each_entry(hose, &hose_list, list_node) {
261 size = pcibios_io_size(hose);
262 if (address >= hose->io_base_virt &&
263 address < (hose->io_base_virt + size)) {
264 ret = 1;
265 break;
266 }
267 }
268 spin_unlock(&hose_spinlock);
269 return ret;
270 }
271
272 unsigned long pci_address_to_pio(phys_addr_t address)
273 {
274 struct pci_controller *hose;
275 resource_size_t size;
276 unsigned long ret = ~0;
277
278 spin_lock(&hose_spinlock);
279 list_for_each_entry(hose, &hose_list, list_node) {
280 size = pcibios_io_size(hose);
281 if (address >= hose->io_base_phys &&
282 address < (hose->io_base_phys + size)) {
283 unsigned long base =
284 (unsigned long)hose->io_base_virt - _IO_BASE;
285 ret = base + (address - hose->io_base_phys);
286 break;
287 }
288 }
289 spin_unlock(&hose_spinlock);
290
291 return ret;
292 }
293 EXPORT_SYMBOL_GPL(pci_address_to_pio);
294
295 /*
296 * Return the domain number for this bus.
297 */
298 int pci_domain_nr(struct pci_bus *bus)
299 {
300 struct pci_controller *hose = pci_bus_to_host(bus);
301
302 return hose->global_number;
303 }
304 EXPORT_SYMBOL(pci_domain_nr);
305
306 /* This routine is meant to be used early during boot, when the
307 * PCI bus numbers have not yet been assigned, and you need to
308 * issue PCI config cycles to an OF device.
309 * It could also be used to "fix" RTAS config cycles if you want
310 * to set pci_assign_all_buses to 1 and still use RTAS for PCI
311 * config cycles.
312 */
313 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
314 {
315 while(node) {
316 struct pci_controller *hose, *tmp;
317 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
318 if (hose->dn == node)
319 return hose;
320 node = node->parent;
321 }
322 return NULL;
323 }
324
325 /*
326 * Reads the interrupt pin to determine if interrupt is use by card.
327 * If the interrupt is used, then gets the interrupt line from the
328 * openfirmware and sets it in the pci_dev and pci_config line.
329 */
330 static int pci_read_irq_line(struct pci_dev *pci_dev)
331 {
332 struct of_phandle_args oirq;
333 unsigned int virq;
334
335 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
336
337 #ifdef DEBUG
338 memset(&oirq, 0xff, sizeof(oirq));
339 #endif
340 /* Try to get a mapping from the device-tree */
341 if (of_irq_parse_pci(pci_dev, &oirq)) {
342 u8 line, pin;
343
344 /* If that fails, lets fallback to what is in the config
345 * space and map that through the default controller. We
346 * also set the type to level low since that's what PCI
347 * interrupts are. If your platform does differently, then
348 * either provide a proper interrupt tree or don't use this
349 * function.
350 */
351 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
352 return -1;
353 if (pin == 0)
354 return -1;
355 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
356 line == 0xff || line == 0) {
357 return -1;
358 }
359 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
360 line, pin);
361
362 virq = irq_create_mapping(NULL, line);
363 if (virq != NO_IRQ)
364 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
365 } else {
366 pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n",
367 oirq.args_count, oirq.args[0], oirq.args[1],
368 of_node_full_name(oirq.np));
369
370 virq = irq_create_of_mapping(&oirq);
371 }
372 if(virq == NO_IRQ) {
373 pr_debug(" Failed to map !\n");
374 return -1;
375 }
376
377 pr_debug(" Mapped to linux irq %d\n", virq);
378
379 pci_dev->irq = virq;
380
381 return 0;
382 }
383
384 /*
385 * Platform support for /proc/bus/pci/X/Y mmap()s,
386 * modelled on the sparc64 implementation by Dave Miller.
387 * -- paulus.
388 */
389
390 /*
391 * Adjust vm_pgoff of VMA such that it is the physical page offset
392 * corresponding to the 32-bit pci bus offset for DEV requested by the user.
393 *
394 * Basically, the user finds the base address for his device which he wishes
395 * to mmap. They read the 32-bit value from the config space base register,
396 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
397 * offset parameter of mmap on /proc/bus/pci/XXX for that device.
398 *
399 * Returns negative error code on failure, zero on success.
400 */
401 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
402 resource_size_t *offset,
403 enum pci_mmap_state mmap_state)
404 {
405 struct pci_controller *hose = pci_bus_to_host(dev->bus);
406 unsigned long io_offset = 0;
407 int i, res_bit;
408
409 if (hose == NULL)
410 return NULL; /* should never happen */
411
412 /* If memory, add on the PCI bridge address offset */
413 if (mmap_state == pci_mmap_mem) {
414 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
415 *offset += hose->pci_mem_offset;
416 #endif
417 res_bit = IORESOURCE_MEM;
418 } else {
419 io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
420 *offset += io_offset;
421 res_bit = IORESOURCE_IO;
422 }
423
424 /*
425 * Check that the offset requested corresponds to one of the
426 * resources of the device.
427 */
428 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
429 struct resource *rp = &dev->resource[i];
430 int flags = rp->flags;
431
432 /* treat ROM as memory (should be already) */
433 if (i == PCI_ROM_RESOURCE)
434 flags |= IORESOURCE_MEM;
435
436 /* Active and same type? */
437 if ((flags & res_bit) == 0)
438 continue;
439
440 /* In the range of this resource? */
441 if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
442 continue;
443
444 /* found it! construct the final physical address */
445 if (mmap_state == pci_mmap_io)
446 *offset += hose->io_base_phys - io_offset;
447 return rp;
448 }
449
450 return NULL;
451 }
452
453 /*
454 * This one is used by /dev/mem and fbdev who have no clue about the
455 * PCI device, it tries to find the PCI device first and calls the
456 * above routine
457 */
458 pgprot_t pci_phys_mem_access_prot(struct file *file,
459 unsigned long pfn,
460 unsigned long size,
461 pgprot_t prot)
462 {
463 struct pci_dev *pdev = NULL;
464 struct resource *found = NULL;
465 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
466 int i;
467
468 if (page_is_ram(pfn))
469 return prot;
470
471 prot = pgprot_noncached(prot);
472 for_each_pci_dev(pdev) {
473 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
474 struct resource *rp = &pdev->resource[i];
475 int flags = rp->flags;
476
477 /* Active and same type? */
478 if ((flags & IORESOURCE_MEM) == 0)
479 continue;
480 /* In the range of this resource? */
481 if (offset < (rp->start & PAGE_MASK) ||
482 offset > rp->end)
483 continue;
484 found = rp;
485 break;
486 }
487 if (found)
488 break;
489 }
490 if (found) {
491 if (found->flags & IORESOURCE_PREFETCH)
492 prot = pgprot_noncached_wc(prot);
493 pci_dev_put(pdev);
494 }
495
496 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
497 (unsigned long long)offset, pgprot_val(prot));
498
499 return prot;
500 }
501
502
503 /*
504 * Perform the actual remap of the pages for a PCI device mapping, as
505 * appropriate for this architecture. The region in the process to map
506 * is described by vm_start and vm_end members of VMA, the base physical
507 * address is found in vm_pgoff.
508 * The pci device structure is provided so that architectures may make mapping
509 * decisions on a per-device or per-bus basis.
510 *
511 * Returns a negative error code on failure, zero on success.
512 */
513 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
514 enum pci_mmap_state mmap_state, int write_combine)
515 {
516 resource_size_t offset =
517 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
518 struct resource *rp;
519 int ret;
520
521 rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
522 if (rp == NULL)
523 return -EINVAL;
524
525 vma->vm_pgoff = offset >> PAGE_SHIFT;
526 if (write_combine)
527 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
528 else
529 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
530
531 ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
532 vma->vm_end - vma->vm_start, vma->vm_page_prot);
533
534 return ret;
535 }
536
537 /* This provides legacy IO read access on a bus */
538 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
539 {
540 unsigned long offset;
541 struct pci_controller *hose = pci_bus_to_host(bus);
542 struct resource *rp = &hose->io_resource;
543 void __iomem *addr;
544
545 /* Check if port can be supported by that bus. We only check
546 * the ranges of the PHB though, not the bus itself as the rules
547 * for forwarding legacy cycles down bridges are not our problem
548 * here. So if the host bridge supports it, we do it.
549 */
550 offset = (unsigned long)hose->io_base_virt - _IO_BASE;
551 offset += port;
552
553 if (!(rp->flags & IORESOURCE_IO))
554 return -ENXIO;
555 if (offset < rp->start || (offset + size) > rp->end)
556 return -ENXIO;
557 addr = hose->io_base_virt + port;
558
559 switch(size) {
560 case 1:
561 *((u8 *)val) = in_8(addr);
562 return 1;
563 case 2:
564 if (port & 1)
565 return -EINVAL;
566 *((u16 *)val) = in_le16(addr);
567 return 2;
568 case 4:
569 if (port & 3)
570 return -EINVAL;
571 *((u32 *)val) = in_le32(addr);
572 return 4;
573 }
574 return -EINVAL;
575 }
576
577 /* This provides legacy IO write access on a bus */
578 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
579 {
580 unsigned long offset;
581 struct pci_controller *hose = pci_bus_to_host(bus);
582 struct resource *rp = &hose->io_resource;
583 void __iomem *addr;
584
585 /* Check if port can be supported by that bus. We only check
586 * the ranges of the PHB though, not the bus itself as the rules
587 * for forwarding legacy cycles down bridges are not our problem
588 * here. So if the host bridge supports it, we do it.
589 */
590 offset = (unsigned long)hose->io_base_virt - _IO_BASE;
591 offset += port;
592
593 if (!(rp->flags & IORESOURCE_IO))
594 return -ENXIO;
595 if (offset < rp->start || (offset + size) > rp->end)
596 return -ENXIO;
597 addr = hose->io_base_virt + port;
598
599 /* WARNING: The generic code is idiotic. It gets passed a pointer
600 * to what can be a 1, 2 or 4 byte quantity and always reads that
601 * as a u32, which means that we have to correct the location of
602 * the data read within those 32 bits for size 1 and 2
603 */
604 switch(size) {
605 case 1:
606 out_8(addr, val >> 24);
607 return 1;
608 case 2:
609 if (port & 1)
610 return -EINVAL;
611 out_le16(addr, val >> 16);
612 return 2;
613 case 4:
614 if (port & 3)
615 return -EINVAL;
616 out_le32(addr, val);
617 return 4;
618 }
619 return -EINVAL;
620 }
621
622 /* This provides legacy IO or memory mmap access on a bus */
623 int pci_mmap_legacy_page_range(struct pci_bus *bus,
624 struct vm_area_struct *vma,
625 enum pci_mmap_state mmap_state)
626 {
627 struct pci_controller *hose = pci_bus_to_host(bus);
628 resource_size_t offset =
629 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
630 resource_size_t size = vma->vm_end - vma->vm_start;
631 struct resource *rp;
632
633 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
634 pci_domain_nr(bus), bus->number,
635 mmap_state == pci_mmap_mem ? "MEM" : "IO",
636 (unsigned long long)offset,
637 (unsigned long long)(offset + size - 1));
638
639 if (mmap_state == pci_mmap_mem) {
640 /* Hack alert !
641 *
642 * Because X is lame and can fail starting if it gets an error trying
643 * to mmap legacy_mem (instead of just moving on without legacy memory
644 * access) we fake it here by giving it anonymous memory, effectively
645 * behaving just like /dev/zero
646 */
647 if ((offset + size) > hose->isa_mem_size) {
648 printk(KERN_DEBUG
649 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
650 current->comm, current->pid, pci_domain_nr(bus), bus->number);
651 if (vma->vm_flags & VM_SHARED)
652 return shmem_zero_setup(vma);
653 return 0;
654 }
655 offset += hose->isa_mem_phys;
656 } else {
657 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
658 unsigned long roffset = offset + io_offset;
659 rp = &hose->io_resource;
660 if (!(rp->flags & IORESOURCE_IO))
661 return -ENXIO;
662 if (roffset < rp->start || (roffset + size) > rp->end)
663 return -ENXIO;
664 offset += hose->io_base_phys;
665 }
666 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
667
668 vma->vm_pgoff = offset >> PAGE_SHIFT;
669 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
670 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
671 vma->vm_end - vma->vm_start,
672 vma->vm_page_prot);
673 }
674
675 void pci_resource_to_user(const struct pci_dev *dev, int bar,
676 const struct resource *rsrc,
677 resource_size_t *start, resource_size_t *end)
678 {
679 struct pci_bus_region region;
680
681 if (rsrc->flags & IORESOURCE_IO) {
682 pcibios_resource_to_bus(dev->bus, &region,
683 (struct resource *) rsrc);
684 *start = region.start;
685 *end = region.end;
686 return;
687 }
688
689 /* We pass a CPU physical address to userland for MMIO instead of a
690 * BAR value because X is lame and expects to be able to use that
691 * to pass to /dev/mem!
692 *
693 * That means we may have 64-bit values where some apps only expect
694 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
695 */
696 *start = rsrc->start;
697 *end = rsrc->end;
698 }
699
700 /**
701 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
702 * @hose: newly allocated pci_controller to be setup
703 * @dev: device node of the host bridge
704 * @primary: set if primary bus (32 bits only, soon to be deprecated)
705 *
706 * This function will parse the "ranges" property of a PCI host bridge device
707 * node and setup the resource mapping of a pci controller based on its
708 * content.
709 *
710 * Life would be boring if it wasn't for a few issues that we have to deal
711 * with here:
712 *
713 * - We can only cope with one IO space range and up to 3 Memory space
714 * ranges. However, some machines (thanks Apple !) tend to split their
715 * space into lots of small contiguous ranges. So we have to coalesce.
716 *
717 * - Some busses have IO space not starting at 0, which causes trouble with
718 * the way we do our IO resource renumbering. The code somewhat deals with
719 * it for 64 bits but I would expect problems on 32 bits.
720 *
721 * - Some 32 bits platforms such as 4xx can have physical space larger than
722 * 32 bits so we need to use 64 bits values for the parsing
723 */
724 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
725 struct device_node *dev, int primary)
726 {
727 int memno = 0;
728 struct resource *res;
729 struct of_pci_range range;
730 struct of_pci_range_parser parser;
731
732 printk(KERN_INFO "PCI host bridge %s %s ranges:\n",
733 dev->full_name, primary ? "(primary)" : "");
734
735 /* Check for ranges property */
736 if (of_pci_range_parser_init(&parser, dev))
737 return;
738
739 /* Parse it */
740 for_each_of_pci_range(&parser, &range) {
741 /* If we failed translation or got a zero-sized region
742 * (some FW try to feed us with non sensical zero sized regions
743 * such as power3 which look like some kind of attempt at exposing
744 * the VGA memory hole)
745 */
746 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
747 continue;
748
749 /* Act based on address space type */
750 res = NULL;
751 switch (range.flags & IORESOURCE_TYPE_BITS) {
752 case IORESOURCE_IO:
753 printk(KERN_INFO
754 " IO 0x%016llx..0x%016llx -> 0x%016llx\n",
755 range.cpu_addr, range.cpu_addr + range.size - 1,
756 range.pci_addr);
757
758 /* We support only one IO range */
759 if (hose->pci_io_size) {
760 printk(KERN_INFO
761 " \\--> Skipped (too many) !\n");
762 continue;
763 }
764 #ifdef CONFIG_PPC32
765 /* On 32 bits, limit I/O space to 16MB */
766 if (range.size > 0x01000000)
767 range.size = 0x01000000;
768
769 /* 32 bits needs to map IOs here */
770 hose->io_base_virt = ioremap(range.cpu_addr,
771 range.size);
772
773 /* Expect trouble if pci_addr is not 0 */
774 if (primary)
775 isa_io_base =
776 (unsigned long)hose->io_base_virt;
777 #endif /* CONFIG_PPC32 */
778 /* pci_io_size and io_base_phys always represent IO
779 * space starting at 0 so we factor in pci_addr
780 */
781 hose->pci_io_size = range.pci_addr + range.size;
782 hose->io_base_phys = range.cpu_addr - range.pci_addr;
783
784 /* Build resource */
785 res = &hose->io_resource;
786 range.cpu_addr = range.pci_addr;
787 break;
788 case IORESOURCE_MEM:
789 printk(KERN_INFO
790 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
791 range.cpu_addr, range.cpu_addr + range.size - 1,
792 range.pci_addr,
793 (range.pci_space & 0x40000000) ?
794 "Prefetch" : "");
795
796 /* We support only 3 memory ranges */
797 if (memno >= 3) {
798 printk(KERN_INFO
799 " \\--> Skipped (too many) !\n");
800 continue;
801 }
802 /* Handles ISA memory hole space here */
803 if (range.pci_addr == 0) {
804 if (primary || isa_mem_base == 0)
805 isa_mem_base = range.cpu_addr;
806 hose->isa_mem_phys = range.cpu_addr;
807 hose->isa_mem_size = range.size;
808 }
809
810 /* Build resource */
811 hose->mem_offset[memno] = range.cpu_addr -
812 range.pci_addr;
813 res = &hose->mem_resources[memno++];
814 break;
815 }
816 if (res != NULL) {
817 res->name = dev->full_name;
818 res->flags = range.flags;
819 res->start = range.cpu_addr;
820 res->end = range.cpu_addr + range.size - 1;
821 res->parent = res->child = res->sibling = NULL;
822 }
823 }
824 }
825
826 /* Decide whether to display the domain number in /proc */
827 int pci_proc_domain(struct pci_bus *bus)
828 {
829 struct pci_controller *hose = pci_bus_to_host(bus);
830
831 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
832 return 0;
833 if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
834 return hose->global_number != 0;
835 return 1;
836 }
837
838 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
839 {
840 if (ppc_md.pcibios_root_bridge_prepare)
841 return ppc_md.pcibios_root_bridge_prepare(bridge);
842
843 return 0;
844 }
845
846 /* This header fixup will do the resource fixup for all devices as they are
847 * probed, but not for bridge ranges
848 */
849 static void pcibios_fixup_resources(struct pci_dev *dev)
850 {
851 struct pci_controller *hose = pci_bus_to_host(dev->bus);
852 int i;
853
854 if (!hose) {
855 printk(KERN_ERR "No host bridge for PCI dev %s !\n",
856 pci_name(dev));
857 return;
858 }
859
860 if (dev->is_virtfn)
861 return;
862
863 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
864 struct resource *res = dev->resource + i;
865 struct pci_bus_region reg;
866 if (!res->flags)
867 continue;
868
869 /* If we're going to re-assign everything, we mark all resources
870 * as unset (and 0-base them). In addition, we mark BARs starting
871 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
872 * since in that case, we don't want to re-assign anything
873 */
874 pcibios_resource_to_bus(dev->bus, &reg, res);
875 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
876 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
877 /* Only print message if not re-assigning */
878 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
879 pr_debug("PCI:%s Resource %d %pR is unassigned\n",
880 pci_name(dev), i, res);
881 res->end -= res->start;
882 res->start = 0;
883 res->flags |= IORESOURCE_UNSET;
884 continue;
885 }
886
887 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
888 }
889
890 /* Call machine specific resource fixup */
891 if (ppc_md.pcibios_fixup_resources)
892 ppc_md.pcibios_fixup_resources(dev);
893 }
894 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
895
896 /* This function tries to figure out if a bridge resource has been initialized
897 * by the firmware or not. It doesn't have to be absolutely bullet proof, but
898 * things go more smoothly when it gets it right. It should covers cases such
899 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
900 */
901 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
902 struct resource *res)
903 {
904 struct pci_controller *hose = pci_bus_to_host(bus);
905 struct pci_dev *dev = bus->self;
906 resource_size_t offset;
907 struct pci_bus_region region;
908 u16 command;
909 int i;
910
911 /* We don't do anything if PCI_PROBE_ONLY is set */
912 if (pci_has_flag(PCI_PROBE_ONLY))
913 return 0;
914
915 /* Job is a bit different between memory and IO */
916 if (res->flags & IORESOURCE_MEM) {
917 pcibios_resource_to_bus(dev->bus, &region, res);
918
919 /* If the BAR is non-0 then it's probably been initialized */
920 if (region.start != 0)
921 return 0;
922
923 /* The BAR is 0, let's check if memory decoding is enabled on
924 * the bridge. If not, we consider it unassigned
925 */
926 pci_read_config_word(dev, PCI_COMMAND, &command);
927 if ((command & PCI_COMMAND_MEMORY) == 0)
928 return 1;
929
930 /* Memory decoding is enabled and the BAR is 0. If any of the bridge
931 * resources covers that starting address (0 then it's good enough for
932 * us for memory space)
933 */
934 for (i = 0; i < 3; i++) {
935 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
936 hose->mem_resources[i].start == hose->mem_offset[i])
937 return 0;
938 }
939
940 /* Well, it starts at 0 and we know it will collide so we may as
941 * well consider it as unassigned. That covers the Apple case.
942 */
943 return 1;
944 } else {
945 /* If the BAR is non-0, then we consider it assigned */
946 offset = (unsigned long)hose->io_base_virt - _IO_BASE;
947 if (((res->start - offset) & 0xfffffffful) != 0)
948 return 0;
949
950 /* Here, we are a bit different than memory as typically IO space
951 * starting at low addresses -is- valid. What we do instead if that
952 * we consider as unassigned anything that doesn't have IO enabled
953 * in the PCI command register, and that's it.
954 */
955 pci_read_config_word(dev, PCI_COMMAND, &command);
956 if (command & PCI_COMMAND_IO)
957 return 0;
958
959 /* It's starting at 0 and IO is disabled in the bridge, consider
960 * it unassigned
961 */
962 return 1;
963 }
964 }
965
966 /* Fixup resources of a PCI<->PCI bridge */
967 static void pcibios_fixup_bridge(struct pci_bus *bus)
968 {
969 struct resource *res;
970 int i;
971
972 struct pci_dev *dev = bus->self;
973
974 pci_bus_for_each_resource(bus, res, i) {
975 if (!res || !res->flags)
976 continue;
977 if (i >= 3 && bus->self->transparent)
978 continue;
979
980 /* If we're going to reassign everything, we can
981 * shrink the P2P resource to have size as being
982 * of 0 in order to save space.
983 */
984 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
985 res->flags |= IORESOURCE_UNSET;
986 res->start = 0;
987 res->end = -1;
988 continue;
989 }
990
991 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
992
993 /* Try to detect uninitialized P2P bridge resources,
994 * and clear them out so they get re-assigned later
995 */
996 if (pcibios_uninitialized_bridge_resource(bus, res)) {
997 res->flags = 0;
998 pr_debug("PCI:%s (unassigned)\n", pci_name(dev));
999 }
1000 }
1001 }
1002
1003 void pcibios_setup_bus_self(struct pci_bus *bus)
1004 {
1005 struct pci_controller *phb;
1006
1007 /* Fix up the bus resources for P2P bridges */
1008 if (bus->self != NULL)
1009 pcibios_fixup_bridge(bus);
1010
1011 /* Platform specific bus fixups. This is currently only used
1012 * by fsl_pci and I'm hoping to get rid of it at some point
1013 */
1014 if (ppc_md.pcibios_fixup_bus)
1015 ppc_md.pcibios_fixup_bus(bus);
1016
1017 /* Setup bus DMA mappings */
1018 phb = pci_bus_to_host(bus);
1019 if (phb->controller_ops.dma_bus_setup)
1020 phb->controller_ops.dma_bus_setup(bus);
1021 }
1022
1023 static void pcibios_setup_device(struct pci_dev *dev)
1024 {
1025 struct pci_controller *phb;
1026 /* Fixup NUMA node as it may not be setup yet by the generic
1027 * code and is needed by the DMA init
1028 */
1029 set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1030
1031 /* Hook up default DMA ops */
1032 set_dma_ops(&dev->dev, pci_dma_ops);
1033 set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
1034
1035 /* Additional platform DMA/iommu setup */
1036 phb = pci_bus_to_host(dev->bus);
1037 if (phb->controller_ops.dma_dev_setup)
1038 phb->controller_ops.dma_dev_setup(dev);
1039
1040 /* Read default IRQs and fixup if necessary */
1041 pci_read_irq_line(dev);
1042 if (ppc_md.pci_irq_fixup)
1043 ppc_md.pci_irq_fixup(dev);
1044 }
1045
1046 int pcibios_add_device(struct pci_dev *dev)
1047 {
1048 /*
1049 * We can only call pcibios_setup_device() after bus setup is complete,
1050 * since some of the platform specific DMA setup code depends on it.
1051 */
1052 if (dev->bus->is_added)
1053 pcibios_setup_device(dev);
1054
1055 #ifdef CONFIG_PCI_IOV
1056 if (ppc_md.pcibios_fixup_sriov)
1057 ppc_md.pcibios_fixup_sriov(dev);
1058 #endif /* CONFIG_PCI_IOV */
1059
1060 return 0;
1061 }
1062
1063 void pcibios_setup_bus_devices(struct pci_bus *bus)
1064 {
1065 struct pci_dev *dev;
1066
1067 pr_debug("PCI: Fixup bus devices %d (%s)\n",
1068 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1069
1070 list_for_each_entry(dev, &bus->devices, bus_list) {
1071 /* Cardbus can call us to add new devices to a bus, so ignore
1072 * those who are already fully discovered
1073 */
1074 if (dev->is_added)
1075 continue;
1076
1077 pcibios_setup_device(dev);
1078 }
1079 }
1080
1081 void pcibios_set_master(struct pci_dev *dev)
1082 {
1083 /* No special bus mastering setup handling */
1084 }
1085
1086 void pcibios_fixup_bus(struct pci_bus *bus)
1087 {
1088 /* When called from the generic PCI probe, read PCI<->PCI bridge
1089 * bases. This is -not- called when generating the PCI tree from
1090 * the OF device-tree.
1091 */
1092 pci_read_bridge_bases(bus);
1093
1094 /* Now fixup the bus bus */
1095 pcibios_setup_bus_self(bus);
1096
1097 /* Now fixup devices on that bus */
1098 pcibios_setup_bus_devices(bus);
1099 }
1100 EXPORT_SYMBOL(pcibios_fixup_bus);
1101
1102 void pci_fixup_cardbus(struct pci_bus *bus)
1103 {
1104 /* Now fixup devices on that bus */
1105 pcibios_setup_bus_devices(bus);
1106 }
1107
1108
1109 static int skip_isa_ioresource_align(struct pci_dev *dev)
1110 {
1111 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1112 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1113 return 1;
1114 return 0;
1115 }
1116
1117 /*
1118 * We need to avoid collisions with `mirrored' VGA ports
1119 * and other strange ISA hardware, so we always want the
1120 * addresses to be allocated in the 0x000-0x0ff region
1121 * modulo 0x400.
1122 *
1123 * Why? Because some silly external IO cards only decode
1124 * the low 10 bits of the IO address. The 0x00-0xff region
1125 * is reserved for motherboard devices that decode all 16
1126 * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1127 * but we want to try to avoid allocating at 0x2900-0x2bff
1128 * which might have be mirrored at 0x0100-0x03ff..
1129 */
1130 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1131 resource_size_t size, resource_size_t align)
1132 {
1133 struct pci_dev *dev = data;
1134 resource_size_t start = res->start;
1135
1136 if (res->flags & IORESOURCE_IO) {
1137 if (skip_isa_ioresource_align(dev))
1138 return start;
1139 if (start & 0x300)
1140 start = (start + 0x3ff) & ~0x3ff;
1141 }
1142
1143 return start;
1144 }
1145 EXPORT_SYMBOL(pcibios_align_resource);
1146
1147 /*
1148 * Reparent resource children of pr that conflict with res
1149 * under res, and make res replace those children.
1150 */
1151 static int reparent_resources(struct resource *parent,
1152 struct resource *res)
1153 {
1154 struct resource *p, **pp;
1155 struct resource **firstpp = NULL;
1156
1157 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1158 if (p->end < res->start)
1159 continue;
1160 if (res->end < p->start)
1161 break;
1162 if (p->start < res->start || p->end > res->end)
1163 return -1; /* not completely contained */
1164 if (firstpp == NULL)
1165 firstpp = pp;
1166 }
1167 if (firstpp == NULL)
1168 return -1; /* didn't find any conflicting entries? */
1169 res->parent = parent;
1170 res->child = *firstpp;
1171 res->sibling = *pp;
1172 *firstpp = res;
1173 *pp = NULL;
1174 for (p = res->child; p != NULL; p = p->sibling) {
1175 p->parent = res;
1176 pr_debug("PCI: Reparented %s %pR under %s\n",
1177 p->name, p, res->name);
1178 }
1179 return 0;
1180 }
1181
1182 /*
1183 * Handle resources of PCI devices. If the world were perfect, we could
1184 * just allocate all the resource regions and do nothing more. It isn't.
1185 * On the other hand, we cannot just re-allocate all devices, as it would
1186 * require us to know lots of host bridge internals. So we attempt to
1187 * keep as much of the original configuration as possible, but tweak it
1188 * when it's found to be wrong.
1189 *
1190 * Known BIOS problems we have to work around:
1191 * - I/O or memory regions not configured
1192 * - regions configured, but not enabled in the command register
1193 * - bogus I/O addresses above 64K used
1194 * - expansion ROMs left enabled (this may sound harmless, but given
1195 * the fact the PCI specs explicitly allow address decoders to be
1196 * shared between expansion ROMs and other resource regions, it's
1197 * at least dangerous)
1198 *
1199 * Our solution:
1200 * (1) Allocate resources for all buses behind PCI-to-PCI bridges.
1201 * This gives us fixed barriers on where we can allocate.
1202 * (2) Allocate resources for all enabled devices. If there is
1203 * a collision, just mark the resource as unallocated. Also
1204 * disable expansion ROMs during this step.
1205 * (3) Try to allocate resources for disabled devices. If the
1206 * resources were assigned correctly, everything goes well,
1207 * if they weren't, they won't disturb allocation of other
1208 * resources.
1209 * (4) Assign new addresses to resources which were either
1210 * not configured at all or misconfigured. If explicitly
1211 * requested by the user, configure expansion ROM address
1212 * as well.
1213 */
1214
1215 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1216 {
1217 struct pci_bus *b;
1218 int i;
1219 struct resource *res, *pr;
1220
1221 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1222 pci_domain_nr(bus), bus->number);
1223
1224 pci_bus_for_each_resource(bus, res, i) {
1225 if (!res || !res->flags || res->start > res->end || res->parent)
1226 continue;
1227
1228 /* If the resource was left unset at this point, we clear it */
1229 if (res->flags & IORESOURCE_UNSET)
1230 goto clear_resource;
1231
1232 if (bus->parent == NULL)
1233 pr = (res->flags & IORESOURCE_IO) ?
1234 &ioport_resource : &iomem_resource;
1235 else {
1236 pr = pci_find_parent_resource(bus->self, res);
1237 if (pr == res) {
1238 /* this happens when the generic PCI
1239 * code (wrongly) decides that this
1240 * bridge is transparent -- paulus
1241 */
1242 continue;
1243 }
1244 }
1245
1246 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1247 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1248 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1249
1250 if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1251 struct pci_dev *dev = bus->self;
1252
1253 if (request_resource(pr, res) == 0)
1254 continue;
1255 /*
1256 * Must be a conflict with an existing entry.
1257 * Move that entry (or entries) under the
1258 * bridge resource and try again.
1259 */
1260 if (reparent_resources(pr, res) == 0)
1261 continue;
1262
1263 if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1264 pci_claim_bridge_resource(dev,
1265 i + PCI_BRIDGE_RESOURCES) == 0)
1266 continue;
1267 }
1268 pr_warning("PCI: Cannot allocate resource region "
1269 "%d of PCI bridge %d, will remap\n", i, bus->number);
1270 clear_resource:
1271 /* The resource might be figured out when doing
1272 * reassignment based on the resources required
1273 * by the downstream PCI devices. Here we set
1274 * the size of the resource to be 0 in order to
1275 * save more space.
1276 */
1277 res->start = 0;
1278 res->end = -1;
1279 res->flags = 0;
1280 }
1281
1282 list_for_each_entry(b, &bus->children, node)
1283 pcibios_allocate_bus_resources(b);
1284 }
1285
1286 static inline void alloc_resource(struct pci_dev *dev, int idx)
1287 {
1288 struct resource *pr, *r = &dev->resource[idx];
1289
1290 pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1291 pci_name(dev), idx, r);
1292
1293 pr = pci_find_parent_resource(dev, r);
1294 if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1295 request_resource(pr, r) < 0) {
1296 printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1297 " of device %s, will remap\n", idx, pci_name(dev));
1298 if (pr)
1299 pr_debug("PCI: parent is %p: %pR\n", pr, pr);
1300 /* We'll assign a new address later */
1301 r->flags |= IORESOURCE_UNSET;
1302 r->end -= r->start;
1303 r->start = 0;
1304 }
1305 }
1306
1307 static void __init pcibios_allocate_resources(int pass)
1308 {
1309 struct pci_dev *dev = NULL;
1310 int idx, disabled;
1311 u16 command;
1312 struct resource *r;
1313
1314 for_each_pci_dev(dev) {
1315 pci_read_config_word(dev, PCI_COMMAND, &command);
1316 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1317 r = &dev->resource[idx];
1318 if (r->parent) /* Already allocated */
1319 continue;
1320 if (!r->flags || (r->flags & IORESOURCE_UNSET))
1321 continue; /* Not assigned at all */
1322 /* We only allocate ROMs on pass 1 just in case they
1323 * have been screwed up by firmware
1324 */
1325 if (idx == PCI_ROM_RESOURCE )
1326 disabled = 1;
1327 if (r->flags & IORESOURCE_IO)
1328 disabled = !(command & PCI_COMMAND_IO);
1329 else
1330 disabled = !(command & PCI_COMMAND_MEMORY);
1331 if (pass == disabled)
1332 alloc_resource(dev, idx);
1333 }
1334 if (pass)
1335 continue;
1336 r = &dev->resource[PCI_ROM_RESOURCE];
1337 if (r->flags) {
1338 /* Turn the ROM off, leave the resource region,
1339 * but keep it unregistered.
1340 */
1341 u32 reg;
1342 pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1343 if (reg & PCI_ROM_ADDRESS_ENABLE) {
1344 pr_debug("PCI: Switching off ROM of %s\n",
1345 pci_name(dev));
1346 r->flags &= ~IORESOURCE_ROM_ENABLE;
1347 pci_write_config_dword(dev, dev->rom_base_reg,
1348 reg & ~PCI_ROM_ADDRESS_ENABLE);
1349 }
1350 }
1351 }
1352 }
1353
1354 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1355 {
1356 struct pci_controller *hose = pci_bus_to_host(bus);
1357 resource_size_t offset;
1358 struct resource *res, *pres;
1359 int i;
1360
1361 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1362
1363 /* Check for IO */
1364 if (!(hose->io_resource.flags & IORESOURCE_IO))
1365 goto no_io;
1366 offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1367 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1368 BUG_ON(res == NULL);
1369 res->name = "Legacy IO";
1370 res->flags = IORESOURCE_IO;
1371 res->start = offset;
1372 res->end = (offset + 0xfff) & 0xfffffffful;
1373 pr_debug("Candidate legacy IO: %pR\n", res);
1374 if (request_resource(&hose->io_resource, res)) {
1375 printk(KERN_DEBUG
1376 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1377 pci_domain_nr(bus), bus->number, res);
1378 kfree(res);
1379 }
1380
1381 no_io:
1382 /* Check for memory */
1383 for (i = 0; i < 3; i++) {
1384 pres = &hose->mem_resources[i];
1385 offset = hose->mem_offset[i];
1386 if (!(pres->flags & IORESOURCE_MEM))
1387 continue;
1388 pr_debug("hose mem res: %pR\n", pres);
1389 if ((pres->start - offset) <= 0xa0000 &&
1390 (pres->end - offset) >= 0xbffff)
1391 break;
1392 }
1393 if (i >= 3)
1394 return;
1395 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1396 BUG_ON(res == NULL);
1397 res->name = "Legacy VGA memory";
1398 res->flags = IORESOURCE_MEM;
1399 res->start = 0xa0000 + offset;
1400 res->end = 0xbffff + offset;
1401 pr_debug("Candidate VGA memory: %pR\n", res);
1402 if (request_resource(pres, res)) {
1403 printk(KERN_DEBUG
1404 "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1405 pci_domain_nr(bus), bus->number, res);
1406 kfree(res);
1407 }
1408 }
1409
1410 void __init pcibios_resource_survey(void)
1411 {
1412 struct pci_bus *b;
1413
1414 /* Allocate and assign resources */
1415 list_for_each_entry(b, &pci_root_buses, node)
1416 pcibios_allocate_bus_resources(b);
1417 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1418 pcibios_allocate_resources(0);
1419 pcibios_allocate_resources(1);
1420 }
1421
1422 /* Before we start assigning unassigned resource, we try to reserve
1423 * the low IO area and the VGA memory area if they intersect the
1424 * bus available resources to avoid allocating things on top of them
1425 */
1426 if (!pci_has_flag(PCI_PROBE_ONLY)) {
1427 list_for_each_entry(b, &pci_root_buses, node)
1428 pcibios_reserve_legacy_regions(b);
1429 }
1430
1431 /* Now, if the platform didn't decide to blindly trust the firmware,
1432 * we proceed to assigning things that were left unassigned
1433 */
1434 if (!pci_has_flag(PCI_PROBE_ONLY)) {
1435 pr_debug("PCI: Assigning unassigned resources...\n");
1436 pci_assign_unassigned_resources();
1437 }
1438
1439 /* Call machine dependent fixup */
1440 if (ppc_md.pcibios_fixup)
1441 ppc_md.pcibios_fixup();
1442 }
1443
1444 /* This is used by the PCI hotplug driver to allocate resource
1445 * of newly plugged busses. We can try to consolidate with the
1446 * rest of the code later, for now, keep it as-is as our main
1447 * resource allocation function doesn't deal with sub-trees yet.
1448 */
1449 void pcibios_claim_one_bus(struct pci_bus *bus)
1450 {
1451 struct pci_dev *dev;
1452 struct pci_bus *child_bus;
1453
1454 list_for_each_entry(dev, &bus->devices, bus_list) {
1455 int i;
1456
1457 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1458 struct resource *r = &dev->resource[i];
1459
1460 if (r->parent || !r->start || !r->flags)
1461 continue;
1462
1463 pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1464 pci_name(dev), i, r);
1465
1466 if (pci_claim_resource(dev, i) == 0)
1467 continue;
1468
1469 pci_claim_bridge_resource(dev, i);
1470 }
1471 }
1472
1473 list_for_each_entry(child_bus, &bus->children, node)
1474 pcibios_claim_one_bus(child_bus);
1475 }
1476 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1477
1478
1479 /* pcibios_finish_adding_to_bus
1480 *
1481 * This is to be called by the hotplug code after devices have been
1482 * added to a bus, this include calling it for a PHB that is just
1483 * being added
1484 */
1485 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1486 {
1487 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1488 pci_domain_nr(bus), bus->number);
1489
1490 /* Allocate bus and devices resources */
1491 pcibios_allocate_bus_resources(bus);
1492 pcibios_claim_one_bus(bus);
1493 if (!pci_has_flag(PCI_PROBE_ONLY)) {
1494 if (bus->self)
1495 pci_assign_unassigned_bridge_resources(bus->self);
1496 else
1497 pci_assign_unassigned_bus_resources(bus);
1498 }
1499
1500 /* Fixup EEH */
1501 eeh_add_device_tree_late(bus);
1502
1503 /* Add new devices to global lists. Register in proc, sysfs. */
1504 pci_bus_add_devices(bus);
1505
1506 /* sysfs files should only be added after devices are added */
1507 eeh_add_sysfs_files(bus);
1508 }
1509 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1510
1511 int pcibios_enable_device(struct pci_dev *dev, int mask)
1512 {
1513 struct pci_controller *phb = pci_bus_to_host(dev->bus);
1514
1515 if (phb->controller_ops.enable_device_hook)
1516 if (!phb->controller_ops.enable_device_hook(dev))
1517 return -EINVAL;
1518
1519 return pci_enable_resources(dev, mask);
1520 }
1521
1522 void pcibios_disable_device(struct pci_dev *dev)
1523 {
1524 struct pci_controller *phb = pci_bus_to_host(dev->bus);
1525
1526 if (phb->controller_ops.disable_device)
1527 phb->controller_ops.disable_device(dev);
1528 }
1529
1530 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1531 {
1532 return (unsigned long) hose->io_base_virt - _IO_BASE;
1533 }
1534
1535 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1536 struct list_head *resources)
1537 {
1538 struct resource *res;
1539 resource_size_t offset;
1540 int i;
1541
1542 /* Hookup PHB IO resource */
1543 res = &hose->io_resource;
1544
1545 if (!res->flags) {
1546 pr_debug("PCI: I/O resource not set for host"
1547 " bridge %s (domain %d)\n",
1548 hose->dn->full_name, hose->global_number);
1549 } else {
1550 offset = pcibios_io_space_offset(hose);
1551
1552 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n",
1553 res, (unsigned long long)offset);
1554 pci_add_resource_offset(resources, res, offset);
1555 }
1556
1557 /* Hookup PHB Memory resources */
1558 for (i = 0; i < 3; ++i) {
1559 res = &hose->mem_resources[i];
1560 if (!res->flags) {
1561 if (i == 0)
1562 printk(KERN_ERR "PCI: Memory resource 0 not set for "
1563 "host bridge %s (domain %d)\n",
1564 hose->dn->full_name, hose->global_number);
1565 continue;
1566 }
1567 offset = hose->mem_offset[i];
1568
1569
1570 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1571 res, (unsigned long long)offset);
1572
1573 pci_add_resource_offset(resources, res, offset);
1574 }
1575 }
1576
1577 /*
1578 * Null PCI config access functions, for the case when we can't
1579 * find a hose.
1580 */
1581 #define NULL_PCI_OP(rw, size, type) \
1582 static int \
1583 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \
1584 { \
1585 return PCIBIOS_DEVICE_NOT_FOUND; \
1586 }
1587
1588 static int
1589 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1590 int len, u32 *val)
1591 {
1592 return PCIBIOS_DEVICE_NOT_FOUND;
1593 }
1594
1595 static int
1596 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1597 int len, u32 val)
1598 {
1599 return PCIBIOS_DEVICE_NOT_FOUND;
1600 }
1601
1602 static struct pci_ops null_pci_ops =
1603 {
1604 .read = null_read_config,
1605 .write = null_write_config,
1606 };
1607
1608 /*
1609 * These functions are used early on before PCI scanning is done
1610 * and all of the pci_dev and pci_bus structures have been created.
1611 */
1612 static struct pci_bus *
1613 fake_pci_bus(struct pci_controller *hose, int busnr)
1614 {
1615 static struct pci_bus bus;
1616
1617 if (hose == NULL) {
1618 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1619 }
1620 bus.number = busnr;
1621 bus.sysdata = hose;
1622 bus.ops = hose? hose->ops: &null_pci_ops;
1623 return &bus;
1624 }
1625
1626 #define EARLY_PCI_OP(rw, size, type) \
1627 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \
1628 int devfn, int offset, type value) \
1629 { \
1630 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \
1631 devfn, offset, value); \
1632 }
1633
1634 EARLY_PCI_OP(read, byte, u8 *)
1635 EARLY_PCI_OP(read, word, u16 *)
1636 EARLY_PCI_OP(read, dword, u32 *)
1637 EARLY_PCI_OP(write, byte, u8)
1638 EARLY_PCI_OP(write, word, u16)
1639 EARLY_PCI_OP(write, dword, u32)
1640
1641 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1642 int cap)
1643 {
1644 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1645 }
1646
1647 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1648 {
1649 struct pci_controller *hose = bus->sysdata;
1650
1651 return of_node_get(hose->dn);
1652 }
1653
1654 /**
1655 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1656 * @hose: Pointer to the PCI host controller instance structure
1657 */
1658 void pcibios_scan_phb(struct pci_controller *hose)
1659 {
1660 LIST_HEAD(resources);
1661 struct pci_bus *bus;
1662 struct device_node *node = hose->dn;
1663 int mode;
1664
1665 pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node));
1666
1667 /* Get some IO space for the new PHB */
1668 pcibios_setup_phb_io_space(hose);
1669
1670 /* Wire up PHB bus resources */
1671 pcibios_setup_phb_resources(hose, &resources);
1672
1673 hose->busn.start = hose->first_busno;
1674 hose->busn.end = hose->last_busno;
1675 hose->busn.flags = IORESOURCE_BUS;
1676 pci_add_resource(&resources, &hose->busn);
1677
1678 /* Create an empty bus for the toplevel */
1679 bus = pci_create_root_bus(hose->parent, hose->first_busno,
1680 hose->ops, hose, &resources);
1681 if (bus == NULL) {
1682 pr_err("Failed to create bus for PCI domain %04x\n",
1683 hose->global_number);
1684 pci_free_resource_list(&resources);
1685 return;
1686 }
1687 hose->bus = bus;
1688
1689 /* Get probe mode and perform scan */
1690 mode = PCI_PROBE_NORMAL;
1691 if (node && hose->controller_ops.probe_mode)
1692 mode = hose->controller_ops.probe_mode(bus);
1693 pr_debug(" probe mode: %d\n", mode);
1694 if (mode == PCI_PROBE_DEVTREE)
1695 of_scan_bus(node, bus);
1696
1697 if (mode == PCI_PROBE_NORMAL) {
1698 pci_bus_update_busn_res_end(bus, 255);
1699 hose->last_busno = pci_scan_child_bus(bus);
1700 pci_bus_update_busn_res_end(bus, hose->last_busno);
1701 }
1702
1703 /* Platform gets a chance to do some global fixups before
1704 * we proceed to resource allocation
1705 */
1706 if (ppc_md.pcibios_fixup_phb)
1707 ppc_md.pcibios_fixup_phb(hose);
1708
1709 /* Configure PCI Express settings */
1710 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1711 struct pci_bus *child;
1712 list_for_each_entry(child, &bus->children, node)
1713 pcie_bus_configure_settings(child);
1714 }
1715 }
1716 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1717
1718 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1719 {
1720 int i, class = dev->class >> 8;
1721 /* When configured as agent, programing interface = 1 */
1722 int prog_if = dev->class & 0xf;
1723
1724 if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1725 class == PCI_CLASS_BRIDGE_OTHER) &&
1726 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1727 (prog_if == 0) &&
1728 (dev->bus->parent == NULL)) {
1729 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1730 dev->resource[i].start = 0;
1731 dev->resource[i].end = 0;
1732 dev->resource[i].flags = 0;
1733 }
1734 }
1735 }
1736 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1737 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1738
1739 static void fixup_vga(struct pci_dev *pdev)
1740 {
1741 u16 cmd;
1742
1743 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1744 if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device())
1745 vga_set_default_device(pdev);
1746
1747 }
1748 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID,
1749 PCI_CLASS_DISPLAY_VGA, 8, fixup_vga);
This page took 0.077055 seconds and 5 git commands to generate.