Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / powerpc / kernel / ptrace.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
41 #include <asm/tm.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45
46 /*
47 * The parameter save area on the stack is used to store arguments being passed
48 * to callee function and is located at fixed offset from stack pointer.
49 */
50 #ifdef CONFIG_PPC32
51 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
52 #else /* CONFIG_PPC32 */
53 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
54 #endif
55
56 struct pt_regs_offset {
57 const char *name;
58 int offset;
59 };
60
61 #define STR(s) #s /* convert to string */
62 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
63 #define GPR_OFFSET_NAME(num) \
64 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
65 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
66 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67
68 #define TVSO(f) (offsetof(struct thread_vr_state, f))
69 #define TFSO(f) (offsetof(struct thread_fp_state, f))
70 #define TSO(f) (offsetof(struct thread_struct, f))
71
72 static const struct pt_regs_offset regoffset_table[] = {
73 GPR_OFFSET_NAME(0),
74 GPR_OFFSET_NAME(1),
75 GPR_OFFSET_NAME(2),
76 GPR_OFFSET_NAME(3),
77 GPR_OFFSET_NAME(4),
78 GPR_OFFSET_NAME(5),
79 GPR_OFFSET_NAME(6),
80 GPR_OFFSET_NAME(7),
81 GPR_OFFSET_NAME(8),
82 GPR_OFFSET_NAME(9),
83 GPR_OFFSET_NAME(10),
84 GPR_OFFSET_NAME(11),
85 GPR_OFFSET_NAME(12),
86 GPR_OFFSET_NAME(13),
87 GPR_OFFSET_NAME(14),
88 GPR_OFFSET_NAME(15),
89 GPR_OFFSET_NAME(16),
90 GPR_OFFSET_NAME(17),
91 GPR_OFFSET_NAME(18),
92 GPR_OFFSET_NAME(19),
93 GPR_OFFSET_NAME(20),
94 GPR_OFFSET_NAME(21),
95 GPR_OFFSET_NAME(22),
96 GPR_OFFSET_NAME(23),
97 GPR_OFFSET_NAME(24),
98 GPR_OFFSET_NAME(25),
99 GPR_OFFSET_NAME(26),
100 GPR_OFFSET_NAME(27),
101 GPR_OFFSET_NAME(28),
102 GPR_OFFSET_NAME(29),
103 GPR_OFFSET_NAME(30),
104 GPR_OFFSET_NAME(31),
105 REG_OFFSET_NAME(nip),
106 REG_OFFSET_NAME(msr),
107 REG_OFFSET_NAME(ctr),
108 REG_OFFSET_NAME(link),
109 REG_OFFSET_NAME(xer),
110 REG_OFFSET_NAME(ccr),
111 #ifdef CONFIG_PPC64
112 REG_OFFSET_NAME(softe),
113 #else
114 REG_OFFSET_NAME(mq),
115 #endif
116 REG_OFFSET_NAME(trap),
117 REG_OFFSET_NAME(dar),
118 REG_OFFSET_NAME(dsisr),
119 REG_OFFSET_END,
120 };
121
122 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
123 static void flush_tmregs_to_thread(struct task_struct *tsk)
124 {
125 /*
126 * If task is not current, it will have been flushed already to
127 * it's thread_struct during __switch_to().
128 *
129 * A reclaim flushes ALL the state.
130 */
131
132 if (tsk == current && MSR_TM_SUSPENDED(mfmsr()))
133 tm_reclaim_current(TM_CAUSE_SIGNAL);
134
135 }
136 #else
137 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
138 #endif
139
140 /**
141 * regs_query_register_offset() - query register offset from its name
142 * @name: the name of a register
143 *
144 * regs_query_register_offset() returns the offset of a register in struct
145 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
146 */
147 int regs_query_register_offset(const char *name)
148 {
149 const struct pt_regs_offset *roff;
150 for (roff = regoffset_table; roff->name != NULL; roff++)
151 if (!strcmp(roff->name, name))
152 return roff->offset;
153 return -EINVAL;
154 }
155
156 /**
157 * regs_query_register_name() - query register name from its offset
158 * @offset: the offset of a register in struct pt_regs.
159 *
160 * regs_query_register_name() returns the name of a register from its
161 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
162 */
163 const char *regs_query_register_name(unsigned int offset)
164 {
165 const struct pt_regs_offset *roff;
166 for (roff = regoffset_table; roff->name != NULL; roff++)
167 if (roff->offset == offset)
168 return roff->name;
169 return NULL;
170 }
171
172 /*
173 * does not yet catch signals sent when the child dies.
174 * in exit.c or in signal.c.
175 */
176
177 /*
178 * Set of msr bits that gdb can change on behalf of a process.
179 */
180 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
181 #define MSR_DEBUGCHANGE 0
182 #else
183 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
184 #endif
185
186 /*
187 * Max register writeable via put_reg
188 */
189 #ifdef CONFIG_PPC32
190 #define PT_MAX_PUT_REG PT_MQ
191 #else
192 #define PT_MAX_PUT_REG PT_CCR
193 #endif
194
195 static unsigned long get_user_msr(struct task_struct *task)
196 {
197 return task->thread.regs->msr | task->thread.fpexc_mode;
198 }
199
200 static int set_user_msr(struct task_struct *task, unsigned long msr)
201 {
202 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
203 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
204 return 0;
205 }
206
207 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
208 static unsigned long get_user_ckpt_msr(struct task_struct *task)
209 {
210 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
211 }
212
213 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
214 {
215 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
216 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
217 return 0;
218 }
219
220 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
221 {
222 task->thread.ckpt_regs.trap = trap & 0xfff0;
223 return 0;
224 }
225 #endif
226
227 #ifdef CONFIG_PPC64
228 static int get_user_dscr(struct task_struct *task, unsigned long *data)
229 {
230 *data = task->thread.dscr;
231 return 0;
232 }
233
234 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
235 {
236 task->thread.dscr = dscr;
237 task->thread.dscr_inherit = 1;
238 return 0;
239 }
240 #else
241 static int get_user_dscr(struct task_struct *task, unsigned long *data)
242 {
243 return -EIO;
244 }
245
246 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
247 {
248 return -EIO;
249 }
250 #endif
251
252 /*
253 * We prevent mucking around with the reserved area of trap
254 * which are used internally by the kernel.
255 */
256 static int set_user_trap(struct task_struct *task, unsigned long trap)
257 {
258 task->thread.regs->trap = trap & 0xfff0;
259 return 0;
260 }
261
262 /*
263 * Get contents of register REGNO in task TASK.
264 */
265 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
266 {
267 if ((task->thread.regs == NULL) || !data)
268 return -EIO;
269
270 if (regno == PT_MSR) {
271 *data = get_user_msr(task);
272 return 0;
273 }
274
275 if (regno == PT_DSCR)
276 return get_user_dscr(task, data);
277
278 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
279 *data = ((unsigned long *)task->thread.regs)[regno];
280 return 0;
281 }
282
283 return -EIO;
284 }
285
286 /*
287 * Write contents of register REGNO in task TASK.
288 */
289 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
290 {
291 if (task->thread.regs == NULL)
292 return -EIO;
293
294 if (regno == PT_MSR)
295 return set_user_msr(task, data);
296 if (regno == PT_TRAP)
297 return set_user_trap(task, data);
298 if (regno == PT_DSCR)
299 return set_user_dscr(task, data);
300
301 if (regno <= PT_MAX_PUT_REG) {
302 ((unsigned long *)task->thread.regs)[regno] = data;
303 return 0;
304 }
305 return -EIO;
306 }
307
308 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
309 unsigned int pos, unsigned int count,
310 void *kbuf, void __user *ubuf)
311 {
312 int i, ret;
313
314 if (target->thread.regs == NULL)
315 return -EIO;
316
317 if (!FULL_REGS(target->thread.regs)) {
318 /* We have a partial register set. Fill 14-31 with bogus values */
319 for (i = 14; i < 32; i++)
320 target->thread.regs->gpr[i] = NV_REG_POISON;
321 }
322
323 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
324 target->thread.regs,
325 0, offsetof(struct pt_regs, msr));
326 if (!ret) {
327 unsigned long msr = get_user_msr(target);
328 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
329 offsetof(struct pt_regs, msr),
330 offsetof(struct pt_regs, msr) +
331 sizeof(msr));
332 }
333
334 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
335 offsetof(struct pt_regs, msr) + sizeof(long));
336
337 if (!ret)
338 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
339 &target->thread.regs->orig_gpr3,
340 offsetof(struct pt_regs, orig_gpr3),
341 sizeof(struct pt_regs));
342 if (!ret)
343 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
344 sizeof(struct pt_regs), -1);
345
346 return ret;
347 }
348
349 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
350 unsigned int pos, unsigned int count,
351 const void *kbuf, const void __user *ubuf)
352 {
353 unsigned long reg;
354 int ret;
355
356 if (target->thread.regs == NULL)
357 return -EIO;
358
359 CHECK_FULL_REGS(target->thread.regs);
360
361 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
362 target->thread.regs,
363 0, PT_MSR * sizeof(reg));
364
365 if (!ret && count > 0) {
366 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
367 PT_MSR * sizeof(reg),
368 (PT_MSR + 1) * sizeof(reg));
369 if (!ret)
370 ret = set_user_msr(target, reg);
371 }
372
373 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
374 offsetof(struct pt_regs, msr) + sizeof(long));
375
376 if (!ret)
377 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
378 &target->thread.regs->orig_gpr3,
379 PT_ORIG_R3 * sizeof(reg),
380 (PT_MAX_PUT_REG + 1) * sizeof(reg));
381
382 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
383 ret = user_regset_copyin_ignore(
384 &pos, &count, &kbuf, &ubuf,
385 (PT_MAX_PUT_REG + 1) * sizeof(reg),
386 PT_TRAP * sizeof(reg));
387
388 if (!ret && count > 0) {
389 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
390 PT_TRAP * sizeof(reg),
391 (PT_TRAP + 1) * sizeof(reg));
392 if (!ret)
393 ret = set_user_trap(target, reg);
394 }
395
396 if (!ret)
397 ret = user_regset_copyin_ignore(
398 &pos, &count, &kbuf, &ubuf,
399 (PT_TRAP + 1) * sizeof(reg), -1);
400
401 return ret;
402 }
403
404 /*
405 * When the transaction is active, 'transact_fp' holds the current running
406 * value of all FPR registers and 'fp_state' holds the last checkpointed
407 * value of all FPR registers for the current transaction. When transaction
408 * is not active 'fp_state' holds the current running state of all the FPR
409 * registers. So this function which returns the current running values of
410 * all the FPR registers, needs to know whether any transaction is active
411 * or not.
412 *
413 * Userspace interface buffer layout:
414 *
415 * struct data {
416 * u64 fpr[32];
417 * u64 fpscr;
418 * };
419 *
420 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
421 * which determines the final code in this function. All the combinations of
422 * these two config options are possible except the one below as transactional
423 * memory config pulls in CONFIG_VSX automatically.
424 *
425 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
426 */
427 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
428 unsigned int pos, unsigned int count,
429 void *kbuf, void __user *ubuf)
430 {
431 #ifdef CONFIG_VSX
432 u64 buf[33];
433 int i;
434 #endif
435 flush_fp_to_thread(target);
436
437 #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
438 /* copy to local buffer then write that out */
439 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
440 flush_altivec_to_thread(target);
441 flush_tmregs_to_thread(target);
442 for (i = 0; i < 32 ; i++)
443 buf[i] = target->thread.TS_TRANS_FPR(i);
444 buf[32] = target->thread.transact_fp.fpscr;
445 } else {
446 for (i = 0; i < 32 ; i++)
447 buf[i] = target->thread.TS_FPR(i);
448 buf[32] = target->thread.fp_state.fpscr;
449 }
450 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
451 #endif
452
453 #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
454 /* copy to local buffer then write that out */
455 for (i = 0; i < 32 ; i++)
456 buf[i] = target->thread.TS_FPR(i);
457 buf[32] = target->thread.fp_state.fpscr;
458 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
459 #endif
460
461 #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
462 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
463 offsetof(struct thread_fp_state, fpr[32]));
464
465 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
466 &target->thread.fp_state, 0, -1);
467 #endif
468 }
469
470 /*
471 * When the transaction is active, 'transact_fp' holds the current running
472 * value of all FPR registers and 'fp_state' holds the last checkpointed
473 * value of all FPR registers for the current transaction. When transaction
474 * is not active 'fp_state' holds the current running state of all the FPR
475 * registers. So this function which setss the current running values of
476 * all the FPR registers, needs to know whether any transaction is active
477 * or not.
478 *
479 * Userspace interface buffer layout:
480 *
481 * struct data {
482 * u64 fpr[32];
483 * u64 fpscr;
484 * };
485 *
486 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
487 * which determines the final code in this function. All the combinations of
488 * these two config options are possible except the one below as transactional
489 * memory config pulls in CONFIG_VSX automatically.
490 *
491 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
492 */
493 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
494 unsigned int pos, unsigned int count,
495 const void *kbuf, const void __user *ubuf)
496 {
497 #ifdef CONFIG_VSX
498 u64 buf[33];
499 int i;
500 #endif
501 flush_fp_to_thread(target);
502
503 #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
504 /* copy to local buffer then write that out */
505 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
506 if (i)
507 return i;
508
509 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
510 flush_altivec_to_thread(target);
511 flush_tmregs_to_thread(target);
512 for (i = 0; i < 32 ; i++)
513 target->thread.TS_TRANS_FPR(i) = buf[i];
514 target->thread.transact_fp.fpscr = buf[32];
515 } else {
516 for (i = 0; i < 32 ; i++)
517 target->thread.TS_FPR(i) = buf[i];
518 target->thread.fp_state.fpscr = buf[32];
519 }
520 return 0;
521 #endif
522
523 #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
524 /* copy to local buffer then write that out */
525 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
526 if (i)
527 return i;
528 for (i = 0; i < 32 ; i++)
529 target->thread.TS_FPR(i) = buf[i];
530 target->thread.fp_state.fpscr = buf[32];
531 return 0;
532 #endif
533
534 #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
535 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
536 offsetof(struct thread_fp_state, fpr[32]));
537
538 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
539 &target->thread.fp_state, 0, -1);
540 #endif
541 }
542
543 #ifdef CONFIG_ALTIVEC
544 /*
545 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
546 * The transfer totals 34 quadword. Quadwords 0-31 contain the
547 * corresponding vector registers. Quadword 32 contains the vscr as the
548 * last word (offset 12) within that quadword. Quadword 33 contains the
549 * vrsave as the first word (offset 0) within the quadword.
550 *
551 * This definition of the VMX state is compatible with the current PPC32
552 * ptrace interface. This allows signal handling and ptrace to use the
553 * same structures. This also simplifies the implementation of a bi-arch
554 * (combined (32- and 64-bit) gdb.
555 */
556
557 static int vr_active(struct task_struct *target,
558 const struct user_regset *regset)
559 {
560 flush_altivec_to_thread(target);
561 return target->thread.used_vr ? regset->n : 0;
562 }
563
564 /*
565 * When the transaction is active, 'transact_vr' holds the current running
566 * value of all the VMX registers and 'vr_state' holds the last checkpointed
567 * value of all the VMX registers for the current transaction to fall back
568 * on in case it aborts. When transaction is not active 'vr_state' holds
569 * the current running state of all the VMX registers. So this function which
570 * gets the current running values of all the VMX registers, needs to know
571 * whether any transaction is active or not.
572 *
573 * Userspace interface buffer layout:
574 *
575 * struct data {
576 * vector128 vr[32];
577 * vector128 vscr;
578 * vector128 vrsave;
579 * };
580 */
581 static int vr_get(struct task_struct *target, const struct user_regset *regset,
582 unsigned int pos, unsigned int count,
583 void *kbuf, void __user *ubuf)
584 {
585 struct thread_vr_state *addr;
586 int ret;
587
588 flush_altivec_to_thread(target);
589
590 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
591 offsetof(struct thread_vr_state, vr[32]));
592
593 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
594 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
595 flush_fp_to_thread(target);
596 flush_tmregs_to_thread(target);
597 addr = &target->thread.transact_vr;
598 } else {
599 addr = &target->thread.vr_state;
600 }
601 #else
602 addr = &target->thread.vr_state;
603 #endif
604 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
605 addr, 0,
606 33 * sizeof(vector128));
607 if (!ret) {
608 /*
609 * Copy out only the low-order word of vrsave.
610 */
611 union {
612 elf_vrreg_t reg;
613 u32 word;
614 } vrsave;
615 memset(&vrsave, 0, sizeof(vrsave));
616
617 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
618 if (MSR_TM_ACTIVE(target->thread.regs->msr))
619 vrsave.word = target->thread.transact_vrsave;
620 else
621 vrsave.word = target->thread.vrsave;
622 #else
623 vrsave.word = target->thread.vrsave;
624 #endif
625
626 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
627 33 * sizeof(vector128), -1);
628 }
629
630 return ret;
631 }
632
633 /*
634 * When the transaction is active, 'transact_vr' holds the current running
635 * value of all the VMX registers and 'vr_state' holds the last checkpointed
636 * value of all the VMX registers for the current transaction to fall back
637 * on in case it aborts. When transaction is not active 'vr_state' holds
638 * the current running state of all the VMX registers. So this function which
639 * sets the current running values of all the VMX registers, needs to know
640 * whether any transaction is active or not.
641 *
642 * Userspace interface buffer layout:
643 *
644 * struct data {
645 * vector128 vr[32];
646 * vector128 vscr;
647 * vector128 vrsave;
648 * };
649 */
650 static int vr_set(struct task_struct *target, const struct user_regset *regset,
651 unsigned int pos, unsigned int count,
652 const void *kbuf, const void __user *ubuf)
653 {
654 struct thread_vr_state *addr;
655 int ret;
656
657 flush_altivec_to_thread(target);
658
659 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
660 offsetof(struct thread_vr_state, vr[32]));
661
662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
663 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
664 flush_fp_to_thread(target);
665 flush_tmregs_to_thread(target);
666 addr = &target->thread.transact_vr;
667 } else {
668 addr = &target->thread.vr_state;
669 }
670 #else
671 addr = &target->thread.vr_state;
672 #endif
673 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
674 addr, 0,
675 33 * sizeof(vector128));
676 if (!ret && count > 0) {
677 /*
678 * We use only the first word of vrsave.
679 */
680 union {
681 elf_vrreg_t reg;
682 u32 word;
683 } vrsave;
684 memset(&vrsave, 0, sizeof(vrsave));
685
686 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
687 if (MSR_TM_ACTIVE(target->thread.regs->msr))
688 vrsave.word = target->thread.transact_vrsave;
689 else
690 vrsave.word = target->thread.vrsave;
691 #else
692 vrsave.word = target->thread.vrsave;
693 #endif
694 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
695 33 * sizeof(vector128), -1);
696 if (!ret) {
697
698 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
699 if (MSR_TM_ACTIVE(target->thread.regs->msr))
700 target->thread.transact_vrsave = vrsave.word;
701 else
702 target->thread.vrsave = vrsave.word;
703 #else
704 target->thread.vrsave = vrsave.word;
705 #endif
706 }
707 }
708
709 return ret;
710 }
711 #endif /* CONFIG_ALTIVEC */
712
713 #ifdef CONFIG_VSX
714 /*
715 * Currently to set and and get all the vsx state, you need to call
716 * the fp and VMX calls as well. This only get/sets the lower 32
717 * 128bit VSX registers.
718 */
719
720 static int vsr_active(struct task_struct *target,
721 const struct user_regset *regset)
722 {
723 flush_vsx_to_thread(target);
724 return target->thread.used_vsr ? regset->n : 0;
725 }
726
727 /*
728 * When the transaction is active, 'transact_fp' holds the current running
729 * value of all FPR registers and 'fp_state' holds the last checkpointed
730 * value of all FPR registers for the current transaction. When transaction
731 * is not active 'fp_state' holds the current running state of all the FPR
732 * registers. So this function which returns the current running values of
733 * all the FPR registers, needs to know whether any transaction is active
734 * or not.
735 *
736 * Userspace interface buffer layout:
737 *
738 * struct data {
739 * u64 vsx[32];
740 * };
741 */
742 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
743 unsigned int pos, unsigned int count,
744 void *kbuf, void __user *ubuf)
745 {
746 u64 buf[32];
747 int ret, i;
748
749 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
750 flush_fp_to_thread(target);
751 flush_altivec_to_thread(target);
752 flush_tmregs_to_thread(target);
753 #endif
754 flush_vsx_to_thread(target);
755
756 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
757 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
758 for (i = 0; i < 32 ; i++)
759 buf[i] = target->thread.
760 transact_fp.fpr[i][TS_VSRLOWOFFSET];
761 } else {
762 for (i = 0; i < 32 ; i++)
763 buf[i] = target->thread.
764 fp_state.fpr[i][TS_VSRLOWOFFSET];
765 }
766 #else
767 for (i = 0; i < 32 ; i++)
768 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
769 #endif
770 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
771 buf, 0, 32 * sizeof(double));
772
773 return ret;
774 }
775
776 /*
777 * When the transaction is active, 'transact_fp' holds the current running
778 * value of all FPR registers and 'fp_state' holds the last checkpointed
779 * value of all FPR registers for the current transaction. When transaction
780 * is not active 'fp_state' holds the current running state of all the FPR
781 * registers. So this function which sets the current running values of all
782 * the FPR registers, needs to know whether any transaction is active or not.
783 *
784 * Userspace interface buffer layout:
785 *
786 * struct data {
787 * u64 vsx[32];
788 * };
789 */
790 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
791 unsigned int pos, unsigned int count,
792 const void *kbuf, const void __user *ubuf)
793 {
794 u64 buf[32];
795 int ret,i;
796
797 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
798 flush_fp_to_thread(target);
799 flush_altivec_to_thread(target);
800 flush_tmregs_to_thread(target);
801 #endif
802 flush_vsx_to_thread(target);
803
804 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
805 buf, 0, 32 * sizeof(double));
806
807 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
808 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
809 for (i = 0; i < 32 ; i++)
810 target->thread.transact_fp.
811 fpr[i][TS_VSRLOWOFFSET] = buf[i];
812 } else {
813 for (i = 0; i < 32 ; i++)
814 target->thread.fp_state.
815 fpr[i][TS_VSRLOWOFFSET] = buf[i];
816 }
817 #else
818 for (i = 0; i < 32 ; i++)
819 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
820 #endif
821
822
823 return ret;
824 }
825 #endif /* CONFIG_VSX */
826
827 #ifdef CONFIG_SPE
828
829 /*
830 * For get_evrregs/set_evrregs functions 'data' has the following layout:
831 *
832 * struct {
833 * u32 evr[32];
834 * u64 acc;
835 * u32 spefscr;
836 * }
837 */
838
839 static int evr_active(struct task_struct *target,
840 const struct user_regset *regset)
841 {
842 flush_spe_to_thread(target);
843 return target->thread.used_spe ? regset->n : 0;
844 }
845
846 static int evr_get(struct task_struct *target, const struct user_regset *regset,
847 unsigned int pos, unsigned int count,
848 void *kbuf, void __user *ubuf)
849 {
850 int ret;
851
852 flush_spe_to_thread(target);
853
854 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
855 &target->thread.evr,
856 0, sizeof(target->thread.evr));
857
858 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
859 offsetof(struct thread_struct, spefscr));
860
861 if (!ret)
862 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
863 &target->thread.acc,
864 sizeof(target->thread.evr), -1);
865
866 return ret;
867 }
868
869 static int evr_set(struct task_struct *target, const struct user_regset *regset,
870 unsigned int pos, unsigned int count,
871 const void *kbuf, const void __user *ubuf)
872 {
873 int ret;
874
875 flush_spe_to_thread(target);
876
877 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
878 &target->thread.evr,
879 0, sizeof(target->thread.evr));
880
881 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
882 offsetof(struct thread_struct, spefscr));
883
884 if (!ret)
885 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
886 &target->thread.acc,
887 sizeof(target->thread.evr), -1);
888
889 return ret;
890 }
891 #endif /* CONFIG_SPE */
892
893 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
894 /**
895 * tm_cgpr_active - get active number of registers in CGPR
896 * @target: The target task.
897 * @regset: The user regset structure.
898 *
899 * This function checks for the active number of available
900 * regisers in transaction checkpointed GPR category.
901 */
902 static int tm_cgpr_active(struct task_struct *target,
903 const struct user_regset *regset)
904 {
905 if (!cpu_has_feature(CPU_FTR_TM))
906 return -ENODEV;
907
908 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
909 return 0;
910
911 return regset->n;
912 }
913
914 /**
915 * tm_cgpr_get - get CGPR registers
916 * @target: The target task.
917 * @regset: The user regset structure.
918 * @pos: The buffer position.
919 * @count: Number of bytes to copy.
920 * @kbuf: Kernel buffer to copy from.
921 * @ubuf: User buffer to copy into.
922 *
923 * This function gets transaction checkpointed GPR registers.
924 *
925 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
926 * GPR register values for the current transaction to fall back on if it
927 * aborts in between. This function gets those checkpointed GPR registers.
928 * The userspace interface buffer layout is as follows.
929 *
930 * struct data {
931 * struct pt_regs ckpt_regs;
932 * };
933 */
934 static int tm_cgpr_get(struct task_struct *target,
935 const struct user_regset *regset,
936 unsigned int pos, unsigned int count,
937 void *kbuf, void __user *ubuf)
938 {
939 int ret;
940
941 if (!cpu_has_feature(CPU_FTR_TM))
942 return -ENODEV;
943
944 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
945 return -ENODATA;
946
947 flush_fp_to_thread(target);
948 flush_altivec_to_thread(target);
949 flush_tmregs_to_thread(target);
950
951 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
952 &target->thread.ckpt_regs,
953 0, offsetof(struct pt_regs, msr));
954 if (!ret) {
955 unsigned long msr = get_user_ckpt_msr(target);
956
957 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
958 offsetof(struct pt_regs, msr),
959 offsetof(struct pt_regs, msr) +
960 sizeof(msr));
961 }
962
963 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
964 offsetof(struct pt_regs, msr) + sizeof(long));
965
966 if (!ret)
967 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
968 &target->thread.ckpt_regs.orig_gpr3,
969 offsetof(struct pt_regs, orig_gpr3),
970 sizeof(struct pt_regs));
971 if (!ret)
972 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
973 sizeof(struct pt_regs), -1);
974
975 return ret;
976 }
977
978 /*
979 * tm_cgpr_set - set the CGPR registers
980 * @target: The target task.
981 * @regset: The user regset structure.
982 * @pos: The buffer position.
983 * @count: Number of bytes to copy.
984 * @kbuf: Kernel buffer to copy into.
985 * @ubuf: User buffer to copy from.
986 *
987 * This function sets in transaction checkpointed GPR registers.
988 *
989 * When the transaction is active, 'ckpt_regs' holds the checkpointed
990 * GPR register values for the current transaction to fall back on if it
991 * aborts in between. This function sets those checkpointed GPR registers.
992 * The userspace interface buffer layout is as follows.
993 *
994 * struct data {
995 * struct pt_regs ckpt_regs;
996 * };
997 */
998 static int tm_cgpr_set(struct task_struct *target,
999 const struct user_regset *regset,
1000 unsigned int pos, unsigned int count,
1001 const void *kbuf, const void __user *ubuf)
1002 {
1003 unsigned long reg;
1004 int ret;
1005
1006 if (!cpu_has_feature(CPU_FTR_TM))
1007 return -ENODEV;
1008
1009 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1010 return -ENODATA;
1011
1012 flush_fp_to_thread(target);
1013 flush_altivec_to_thread(target);
1014 flush_tmregs_to_thread(target);
1015
1016 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1017 &target->thread.ckpt_regs,
1018 0, PT_MSR * sizeof(reg));
1019
1020 if (!ret && count > 0) {
1021 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
1022 PT_MSR * sizeof(reg),
1023 (PT_MSR + 1) * sizeof(reg));
1024 if (!ret)
1025 ret = set_user_ckpt_msr(target, reg);
1026 }
1027
1028 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
1029 offsetof(struct pt_regs, msr) + sizeof(long));
1030
1031 if (!ret)
1032 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1033 &target->thread.ckpt_regs.orig_gpr3,
1034 PT_ORIG_R3 * sizeof(reg),
1035 (PT_MAX_PUT_REG + 1) * sizeof(reg));
1036
1037 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
1038 ret = user_regset_copyin_ignore(
1039 &pos, &count, &kbuf, &ubuf,
1040 (PT_MAX_PUT_REG + 1) * sizeof(reg),
1041 PT_TRAP * sizeof(reg));
1042
1043 if (!ret && count > 0) {
1044 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
1045 PT_TRAP * sizeof(reg),
1046 (PT_TRAP + 1) * sizeof(reg));
1047 if (!ret)
1048 ret = set_user_ckpt_trap(target, reg);
1049 }
1050
1051 if (!ret)
1052 ret = user_regset_copyin_ignore(
1053 &pos, &count, &kbuf, &ubuf,
1054 (PT_TRAP + 1) * sizeof(reg), -1);
1055
1056 return ret;
1057 }
1058
1059 /**
1060 * tm_cfpr_active - get active number of registers in CFPR
1061 * @target: The target task.
1062 * @regset: The user regset structure.
1063 *
1064 * This function checks for the active number of available
1065 * regisers in transaction checkpointed FPR category.
1066 */
1067 static int tm_cfpr_active(struct task_struct *target,
1068 const struct user_regset *regset)
1069 {
1070 if (!cpu_has_feature(CPU_FTR_TM))
1071 return -ENODEV;
1072
1073 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1074 return 0;
1075
1076 return regset->n;
1077 }
1078
1079 /**
1080 * tm_cfpr_get - get CFPR registers
1081 * @target: The target task.
1082 * @regset: The user regset structure.
1083 * @pos: The buffer position.
1084 * @count: Number of bytes to copy.
1085 * @kbuf: Kernel buffer to copy from.
1086 * @ubuf: User buffer to copy into.
1087 *
1088 * This function gets in transaction checkpointed FPR registers.
1089 *
1090 * When the transaction is active 'fp_state' holds the checkpointed
1091 * values for the current transaction to fall back on if it aborts
1092 * in between. This function gets those checkpointed FPR registers.
1093 * The userspace interface buffer layout is as follows.
1094 *
1095 * struct data {
1096 * u64 fpr[32];
1097 * u64 fpscr;
1098 *};
1099 */
1100 static int tm_cfpr_get(struct task_struct *target,
1101 const struct user_regset *regset,
1102 unsigned int pos, unsigned int count,
1103 void *kbuf, void __user *ubuf)
1104 {
1105 u64 buf[33];
1106 int i;
1107
1108 if (!cpu_has_feature(CPU_FTR_TM))
1109 return -ENODEV;
1110
1111 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1112 return -ENODATA;
1113
1114 flush_fp_to_thread(target);
1115 flush_altivec_to_thread(target);
1116 flush_tmregs_to_thread(target);
1117
1118 /* copy to local buffer then write that out */
1119 for (i = 0; i < 32 ; i++)
1120 buf[i] = target->thread.TS_FPR(i);
1121 buf[32] = target->thread.fp_state.fpscr;
1122 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1123 }
1124
1125 /**
1126 * tm_cfpr_set - set CFPR registers
1127 * @target: The target task.
1128 * @regset: The user regset structure.
1129 * @pos: The buffer position.
1130 * @count: Number of bytes to copy.
1131 * @kbuf: Kernel buffer to copy into.
1132 * @ubuf: User buffer to copy from.
1133 *
1134 * This function sets in transaction checkpointed FPR registers.
1135 *
1136 * When the transaction is active 'fp_state' holds the checkpointed
1137 * FPR register values for the current transaction to fall back on
1138 * if it aborts in between. This function sets these checkpointed
1139 * FPR registers. The userspace interface buffer layout is as follows.
1140 *
1141 * struct data {
1142 * u64 fpr[32];
1143 * u64 fpscr;
1144 *};
1145 */
1146 static int tm_cfpr_set(struct task_struct *target,
1147 const struct user_regset *regset,
1148 unsigned int pos, unsigned int count,
1149 const void *kbuf, const void __user *ubuf)
1150 {
1151 u64 buf[33];
1152 int i;
1153
1154 if (!cpu_has_feature(CPU_FTR_TM))
1155 return -ENODEV;
1156
1157 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1158 return -ENODATA;
1159
1160 flush_fp_to_thread(target);
1161 flush_altivec_to_thread(target);
1162 flush_tmregs_to_thread(target);
1163
1164 /* copy to local buffer then write that out */
1165 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1166 if (i)
1167 return i;
1168 for (i = 0; i < 32 ; i++)
1169 target->thread.TS_FPR(i) = buf[i];
1170 target->thread.fp_state.fpscr = buf[32];
1171 return 0;
1172 }
1173
1174 /**
1175 * tm_cvmx_active - get active number of registers in CVMX
1176 * @target: The target task.
1177 * @regset: The user regset structure.
1178 *
1179 * This function checks for the active number of available
1180 * regisers in checkpointed VMX category.
1181 */
1182 static int tm_cvmx_active(struct task_struct *target,
1183 const struct user_regset *regset)
1184 {
1185 if (!cpu_has_feature(CPU_FTR_TM))
1186 return -ENODEV;
1187
1188 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1189 return 0;
1190
1191 return regset->n;
1192 }
1193
1194 /**
1195 * tm_cvmx_get - get CMVX registers
1196 * @target: The target task.
1197 * @regset: The user regset structure.
1198 * @pos: The buffer position.
1199 * @count: Number of bytes to copy.
1200 * @kbuf: Kernel buffer to copy from.
1201 * @ubuf: User buffer to copy into.
1202 *
1203 * This function gets in transaction checkpointed VMX registers.
1204 *
1205 * When the transaction is active 'vr_state' and 'vr_save' hold
1206 * the checkpointed values for the current transaction to fall
1207 * back on if it aborts in between. The userspace interface buffer
1208 * layout is as follows.
1209 *
1210 * struct data {
1211 * vector128 vr[32];
1212 * vector128 vscr;
1213 * vector128 vrsave;
1214 *};
1215 */
1216 static int tm_cvmx_get(struct task_struct *target,
1217 const struct user_regset *regset,
1218 unsigned int pos, unsigned int count,
1219 void *kbuf, void __user *ubuf)
1220 {
1221 int ret;
1222
1223 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1224
1225 if (!cpu_has_feature(CPU_FTR_TM))
1226 return -ENODEV;
1227
1228 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1229 return -ENODATA;
1230
1231 /* Flush the state */
1232 flush_fp_to_thread(target);
1233 flush_altivec_to_thread(target);
1234 flush_tmregs_to_thread(target);
1235
1236 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1237 &target->thread.vr_state, 0,
1238 33 * sizeof(vector128));
1239 if (!ret) {
1240 /*
1241 * Copy out only the low-order word of vrsave.
1242 */
1243 union {
1244 elf_vrreg_t reg;
1245 u32 word;
1246 } vrsave;
1247 memset(&vrsave, 0, sizeof(vrsave));
1248 vrsave.word = target->thread.vrsave;
1249 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1250 33 * sizeof(vector128), -1);
1251 }
1252
1253 return ret;
1254 }
1255
1256 /**
1257 * tm_cvmx_set - set CMVX registers
1258 * @target: The target task.
1259 * @regset: The user regset structure.
1260 * @pos: The buffer position.
1261 * @count: Number of bytes to copy.
1262 * @kbuf: Kernel buffer to copy into.
1263 * @ubuf: User buffer to copy from.
1264 *
1265 * This function sets in transaction checkpointed VMX registers.
1266 *
1267 * When the transaction is active 'vr_state' and 'vr_save' hold
1268 * the checkpointed values for the current transaction to fall
1269 * back on if it aborts in between. The userspace interface buffer
1270 * layout is as follows.
1271 *
1272 * struct data {
1273 * vector128 vr[32];
1274 * vector128 vscr;
1275 * vector128 vrsave;
1276 *};
1277 */
1278 static int tm_cvmx_set(struct task_struct *target,
1279 const struct user_regset *regset,
1280 unsigned int pos, unsigned int count,
1281 const void *kbuf, const void __user *ubuf)
1282 {
1283 int ret;
1284
1285 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1286
1287 if (!cpu_has_feature(CPU_FTR_TM))
1288 return -ENODEV;
1289
1290 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1291 return -ENODATA;
1292
1293 flush_fp_to_thread(target);
1294 flush_altivec_to_thread(target);
1295 flush_tmregs_to_thread(target);
1296
1297 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1298 &target->thread.vr_state, 0,
1299 33 * sizeof(vector128));
1300 if (!ret && count > 0) {
1301 /*
1302 * We use only the low-order word of vrsave.
1303 */
1304 union {
1305 elf_vrreg_t reg;
1306 u32 word;
1307 } vrsave;
1308 memset(&vrsave, 0, sizeof(vrsave));
1309 vrsave.word = target->thread.vrsave;
1310 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1311 33 * sizeof(vector128), -1);
1312 if (!ret)
1313 target->thread.vrsave = vrsave.word;
1314 }
1315
1316 return ret;
1317 }
1318
1319 /**
1320 * tm_cvsx_active - get active number of registers in CVSX
1321 * @target: The target task.
1322 * @regset: The user regset structure.
1323 *
1324 * This function checks for the active number of available
1325 * regisers in transaction checkpointed VSX category.
1326 */
1327 static int tm_cvsx_active(struct task_struct *target,
1328 const struct user_regset *regset)
1329 {
1330 if (!cpu_has_feature(CPU_FTR_TM))
1331 return -ENODEV;
1332
1333 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1334 return 0;
1335
1336 flush_vsx_to_thread(target);
1337 return target->thread.used_vsr ? regset->n : 0;
1338 }
1339
1340 /**
1341 * tm_cvsx_get - get CVSX registers
1342 * @target: The target task.
1343 * @regset: The user regset structure.
1344 * @pos: The buffer position.
1345 * @count: Number of bytes to copy.
1346 * @kbuf: Kernel buffer to copy from.
1347 * @ubuf: User buffer to copy into.
1348 *
1349 * This function gets in transaction checkpointed VSX registers.
1350 *
1351 * When the transaction is active 'fp_state' holds the checkpointed
1352 * values for the current transaction to fall back on if it aborts
1353 * in between. This function gets those checkpointed VSX registers.
1354 * The userspace interface buffer layout is as follows.
1355 *
1356 * struct data {
1357 * u64 vsx[32];
1358 *};
1359 */
1360 static int tm_cvsx_get(struct task_struct *target,
1361 const struct user_regset *regset,
1362 unsigned int pos, unsigned int count,
1363 void *kbuf, void __user *ubuf)
1364 {
1365 u64 buf[32];
1366 int ret, i;
1367
1368 if (!cpu_has_feature(CPU_FTR_TM))
1369 return -ENODEV;
1370
1371 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1372 return -ENODATA;
1373
1374 /* Flush the state */
1375 flush_fp_to_thread(target);
1376 flush_altivec_to_thread(target);
1377 flush_tmregs_to_thread(target);
1378 flush_vsx_to_thread(target);
1379
1380 for (i = 0; i < 32 ; i++)
1381 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
1382 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1383 buf, 0, 32 * sizeof(double));
1384
1385 return ret;
1386 }
1387
1388 /**
1389 * tm_cvsx_set - set CFPR registers
1390 * @target: The target task.
1391 * @regset: The user regset structure.
1392 * @pos: The buffer position.
1393 * @count: Number of bytes to copy.
1394 * @kbuf: Kernel buffer to copy into.
1395 * @ubuf: User buffer to copy from.
1396 *
1397 * This function sets in transaction checkpointed VSX registers.
1398 *
1399 * When the transaction is active 'fp_state' holds the checkpointed
1400 * VSX register values for the current transaction to fall back on
1401 * if it aborts in between. This function sets these checkpointed
1402 * FPR registers. The userspace interface buffer layout is as follows.
1403 *
1404 * struct data {
1405 * u64 vsx[32];
1406 *};
1407 */
1408 static int tm_cvsx_set(struct task_struct *target,
1409 const struct user_regset *regset,
1410 unsigned int pos, unsigned int count,
1411 const void *kbuf, const void __user *ubuf)
1412 {
1413 u64 buf[32];
1414 int ret, i;
1415
1416 if (!cpu_has_feature(CPU_FTR_TM))
1417 return -ENODEV;
1418
1419 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1420 return -ENODATA;
1421
1422 /* Flush the state */
1423 flush_fp_to_thread(target);
1424 flush_altivec_to_thread(target);
1425 flush_tmregs_to_thread(target);
1426 flush_vsx_to_thread(target);
1427
1428 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1429 buf, 0, 32 * sizeof(double));
1430 for (i = 0; i < 32 ; i++)
1431 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1432
1433 return ret;
1434 }
1435
1436 /**
1437 * tm_spr_active - get active number of registers in TM SPR
1438 * @target: The target task.
1439 * @regset: The user regset structure.
1440 *
1441 * This function checks the active number of available
1442 * regisers in the transactional memory SPR category.
1443 */
1444 static int tm_spr_active(struct task_struct *target,
1445 const struct user_regset *regset)
1446 {
1447 if (!cpu_has_feature(CPU_FTR_TM))
1448 return -ENODEV;
1449
1450 return regset->n;
1451 }
1452
1453 /**
1454 * tm_spr_get - get the TM related SPR registers
1455 * @target: The target task.
1456 * @regset: The user regset structure.
1457 * @pos: The buffer position.
1458 * @count: Number of bytes to copy.
1459 * @kbuf: Kernel buffer to copy from.
1460 * @ubuf: User buffer to copy into.
1461 *
1462 * This function gets transactional memory related SPR registers.
1463 * The userspace interface buffer layout is as follows.
1464 *
1465 * struct {
1466 * u64 tm_tfhar;
1467 * u64 tm_texasr;
1468 * u64 tm_tfiar;
1469 * };
1470 */
1471 static int tm_spr_get(struct task_struct *target,
1472 const struct user_regset *regset,
1473 unsigned int pos, unsigned int count,
1474 void *kbuf, void __user *ubuf)
1475 {
1476 int ret;
1477
1478 /* Build tests */
1479 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1480 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1481 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1482
1483 if (!cpu_has_feature(CPU_FTR_TM))
1484 return -ENODEV;
1485
1486 /* Flush the states */
1487 flush_fp_to_thread(target);
1488 flush_altivec_to_thread(target);
1489 flush_tmregs_to_thread(target);
1490
1491 /* TFHAR register */
1492 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1493 &target->thread.tm_tfhar, 0, sizeof(u64));
1494
1495 /* TEXASR register */
1496 if (!ret)
1497 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1498 &target->thread.tm_texasr, sizeof(u64),
1499 2 * sizeof(u64));
1500
1501 /* TFIAR register */
1502 if (!ret)
1503 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1504 &target->thread.tm_tfiar,
1505 2 * sizeof(u64), 3 * sizeof(u64));
1506 return ret;
1507 }
1508
1509 /**
1510 * tm_spr_set - set the TM related SPR registers
1511 * @target: The target task.
1512 * @regset: The user regset structure.
1513 * @pos: The buffer position.
1514 * @count: Number of bytes to copy.
1515 * @kbuf: Kernel buffer to copy into.
1516 * @ubuf: User buffer to copy from.
1517 *
1518 * This function sets transactional memory related SPR registers.
1519 * The userspace interface buffer layout is as follows.
1520 *
1521 * struct {
1522 * u64 tm_tfhar;
1523 * u64 tm_texasr;
1524 * u64 tm_tfiar;
1525 * };
1526 */
1527 static int tm_spr_set(struct task_struct *target,
1528 const struct user_regset *regset,
1529 unsigned int pos, unsigned int count,
1530 const void *kbuf, const void __user *ubuf)
1531 {
1532 int ret;
1533
1534 /* Build tests */
1535 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1536 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1537 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1538
1539 if (!cpu_has_feature(CPU_FTR_TM))
1540 return -ENODEV;
1541
1542 /* Flush the states */
1543 flush_fp_to_thread(target);
1544 flush_altivec_to_thread(target);
1545 flush_tmregs_to_thread(target);
1546
1547 /* TFHAR register */
1548 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1549 &target->thread.tm_tfhar, 0, sizeof(u64));
1550
1551 /* TEXASR register */
1552 if (!ret)
1553 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1554 &target->thread.tm_texasr, sizeof(u64),
1555 2 * sizeof(u64));
1556
1557 /* TFIAR register */
1558 if (!ret)
1559 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1560 &target->thread.tm_tfiar,
1561 2 * sizeof(u64), 3 * sizeof(u64));
1562 return ret;
1563 }
1564
1565 static int tm_tar_active(struct task_struct *target,
1566 const struct user_regset *regset)
1567 {
1568 if (!cpu_has_feature(CPU_FTR_TM))
1569 return -ENODEV;
1570
1571 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1572 return regset->n;
1573
1574 return 0;
1575 }
1576
1577 static int tm_tar_get(struct task_struct *target,
1578 const struct user_regset *regset,
1579 unsigned int pos, unsigned int count,
1580 void *kbuf, void __user *ubuf)
1581 {
1582 int ret;
1583
1584 if (!cpu_has_feature(CPU_FTR_TM))
1585 return -ENODEV;
1586
1587 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1588 return -ENODATA;
1589
1590 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1591 &target->thread.tm_tar, 0, sizeof(u64));
1592 return ret;
1593 }
1594
1595 static int tm_tar_set(struct task_struct *target,
1596 const struct user_regset *regset,
1597 unsigned int pos, unsigned int count,
1598 const void *kbuf, const void __user *ubuf)
1599 {
1600 int ret;
1601
1602 if (!cpu_has_feature(CPU_FTR_TM))
1603 return -ENODEV;
1604
1605 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1606 return -ENODATA;
1607
1608 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1609 &target->thread.tm_tar, 0, sizeof(u64));
1610 return ret;
1611 }
1612
1613 static int tm_ppr_active(struct task_struct *target,
1614 const struct user_regset *regset)
1615 {
1616 if (!cpu_has_feature(CPU_FTR_TM))
1617 return -ENODEV;
1618
1619 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1620 return regset->n;
1621
1622 return 0;
1623 }
1624
1625
1626 static int tm_ppr_get(struct task_struct *target,
1627 const struct user_regset *regset,
1628 unsigned int pos, unsigned int count,
1629 void *kbuf, void __user *ubuf)
1630 {
1631 int ret;
1632
1633 if (!cpu_has_feature(CPU_FTR_TM))
1634 return -ENODEV;
1635
1636 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1637 return -ENODATA;
1638
1639 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1640 &target->thread.tm_ppr, 0, sizeof(u64));
1641 return ret;
1642 }
1643
1644 static int tm_ppr_set(struct task_struct *target,
1645 const struct user_regset *regset,
1646 unsigned int pos, unsigned int count,
1647 const void *kbuf, const void __user *ubuf)
1648 {
1649 int ret;
1650
1651 if (!cpu_has_feature(CPU_FTR_TM))
1652 return -ENODEV;
1653
1654 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1655 return -ENODATA;
1656
1657 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1658 &target->thread.tm_ppr, 0, sizeof(u64));
1659 return ret;
1660 }
1661
1662 static int tm_dscr_active(struct task_struct *target,
1663 const struct user_regset *regset)
1664 {
1665 if (!cpu_has_feature(CPU_FTR_TM))
1666 return -ENODEV;
1667
1668 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1669 return regset->n;
1670
1671 return 0;
1672 }
1673
1674 static int tm_dscr_get(struct task_struct *target,
1675 const struct user_regset *regset,
1676 unsigned int pos, unsigned int count,
1677 void *kbuf, void __user *ubuf)
1678 {
1679 int ret;
1680
1681 if (!cpu_has_feature(CPU_FTR_TM))
1682 return -ENODEV;
1683
1684 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1685 return -ENODATA;
1686
1687 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1688 &target->thread.tm_dscr, 0, sizeof(u64));
1689 return ret;
1690 }
1691
1692 static int tm_dscr_set(struct task_struct *target,
1693 const struct user_regset *regset,
1694 unsigned int pos, unsigned int count,
1695 const void *kbuf, const void __user *ubuf)
1696 {
1697 int ret;
1698
1699 if (!cpu_has_feature(CPU_FTR_TM))
1700 return -ENODEV;
1701
1702 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1703 return -ENODATA;
1704
1705 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1706 &target->thread.tm_dscr, 0, sizeof(u64));
1707 return ret;
1708 }
1709 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1710
1711 #ifdef CONFIG_PPC64
1712 static int ppr_get(struct task_struct *target,
1713 const struct user_regset *regset,
1714 unsigned int pos, unsigned int count,
1715 void *kbuf, void __user *ubuf)
1716 {
1717 int ret;
1718
1719 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1720 &target->thread.ppr, 0, sizeof(u64));
1721 return ret;
1722 }
1723
1724 static int ppr_set(struct task_struct *target,
1725 const struct user_regset *regset,
1726 unsigned int pos, unsigned int count,
1727 const void *kbuf, const void __user *ubuf)
1728 {
1729 int ret;
1730
1731 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1732 &target->thread.ppr, 0, sizeof(u64));
1733 return ret;
1734 }
1735
1736 static int dscr_get(struct task_struct *target,
1737 const struct user_regset *regset,
1738 unsigned int pos, unsigned int count,
1739 void *kbuf, void __user *ubuf)
1740 {
1741 int ret;
1742
1743 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1744 &target->thread.dscr, 0, sizeof(u64));
1745 return ret;
1746 }
1747 static int dscr_set(struct task_struct *target,
1748 const struct user_regset *regset,
1749 unsigned int pos, unsigned int count,
1750 const void *kbuf, const void __user *ubuf)
1751 {
1752 int ret;
1753
1754 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1755 &target->thread.dscr, 0, sizeof(u64));
1756 return ret;
1757 }
1758 #endif
1759 #ifdef CONFIG_PPC_BOOK3S_64
1760 static int tar_get(struct task_struct *target,
1761 const struct user_regset *regset,
1762 unsigned int pos, unsigned int count,
1763 void *kbuf, void __user *ubuf)
1764 {
1765 int ret;
1766
1767 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1768 &target->thread.tar, 0, sizeof(u64));
1769 return ret;
1770 }
1771 static int tar_set(struct task_struct *target,
1772 const struct user_regset *regset,
1773 unsigned int pos, unsigned int count,
1774 const void *kbuf, const void __user *ubuf)
1775 {
1776 int ret;
1777
1778 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1779 &target->thread.tar, 0, sizeof(u64));
1780 return ret;
1781 }
1782
1783 static int ebb_active(struct task_struct *target,
1784 const struct user_regset *regset)
1785 {
1786 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1787 return -ENODEV;
1788
1789 if (target->thread.used_ebb)
1790 return regset->n;
1791
1792 return 0;
1793 }
1794
1795 static int ebb_get(struct task_struct *target,
1796 const struct user_regset *regset,
1797 unsigned int pos, unsigned int count,
1798 void *kbuf, void __user *ubuf)
1799 {
1800 /* Build tests */
1801 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1802 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1803
1804 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1805 return -ENODEV;
1806
1807 if (!target->thread.used_ebb)
1808 return -ENODATA;
1809
1810 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1811 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1812 }
1813
1814 static int ebb_set(struct task_struct *target,
1815 const struct user_regset *regset,
1816 unsigned int pos, unsigned int count,
1817 const void *kbuf, const void __user *ubuf)
1818 {
1819 int ret = 0;
1820
1821 /* Build tests */
1822 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1823 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1824
1825 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1826 return -ENODEV;
1827
1828 if (target->thread.used_ebb)
1829 return -ENODATA;
1830
1831 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1832 &target->thread.ebbrr, 0, sizeof(unsigned long));
1833
1834 if (!ret)
1835 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1836 &target->thread.ebbhr, sizeof(unsigned long),
1837 2 * sizeof(unsigned long));
1838
1839 if (!ret)
1840 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1841 &target->thread.bescr,
1842 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1843
1844 return ret;
1845 }
1846 static int pmu_active(struct task_struct *target,
1847 const struct user_regset *regset)
1848 {
1849 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1850 return -ENODEV;
1851
1852 return regset->n;
1853 }
1854
1855 static int pmu_get(struct task_struct *target,
1856 const struct user_regset *regset,
1857 unsigned int pos, unsigned int count,
1858 void *kbuf, void __user *ubuf)
1859 {
1860 /* Build tests */
1861 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1862 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1863 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1864 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1865
1866 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1867 return -ENODEV;
1868
1869 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1870 &target->thread.siar, 0,
1871 5 * sizeof(unsigned long));
1872 }
1873
1874 static int pmu_set(struct task_struct *target,
1875 const struct user_regset *regset,
1876 unsigned int pos, unsigned int count,
1877 const void *kbuf, const void __user *ubuf)
1878 {
1879 int ret = 0;
1880
1881 /* Build tests */
1882 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1883 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1884 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1885 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1886
1887 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1888 return -ENODEV;
1889
1890 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1891 &target->thread.siar, 0,
1892 sizeof(unsigned long));
1893
1894 if (!ret)
1895 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1896 &target->thread.sdar, sizeof(unsigned long),
1897 2 * sizeof(unsigned long));
1898
1899 if (!ret)
1900 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1901 &target->thread.sier, 2 * sizeof(unsigned long),
1902 3 * sizeof(unsigned long));
1903
1904 if (!ret)
1905 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1906 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1907 4 * sizeof(unsigned long));
1908
1909 if (!ret)
1910 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1911 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1912 5 * sizeof(unsigned long));
1913 return ret;
1914 }
1915 #endif
1916 /*
1917 * These are our native regset flavors.
1918 */
1919 enum powerpc_regset {
1920 REGSET_GPR,
1921 REGSET_FPR,
1922 #ifdef CONFIG_ALTIVEC
1923 REGSET_VMX,
1924 #endif
1925 #ifdef CONFIG_VSX
1926 REGSET_VSX,
1927 #endif
1928 #ifdef CONFIG_SPE
1929 REGSET_SPE,
1930 #endif
1931 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1932 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1933 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1934 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1935 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1936 REGSET_TM_SPR, /* TM specific SPR registers */
1937 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1938 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1939 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1940 #endif
1941 #ifdef CONFIG_PPC64
1942 REGSET_PPR, /* PPR register */
1943 REGSET_DSCR, /* DSCR register */
1944 #endif
1945 #ifdef CONFIG_PPC_BOOK3S_64
1946 REGSET_TAR, /* TAR register */
1947 REGSET_EBB, /* EBB registers */
1948 REGSET_PMR, /* Performance Monitor Registers */
1949 #endif
1950 };
1951
1952 static const struct user_regset native_regsets[] = {
1953 [REGSET_GPR] = {
1954 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1955 .size = sizeof(long), .align = sizeof(long),
1956 .get = gpr_get, .set = gpr_set
1957 },
1958 [REGSET_FPR] = {
1959 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1960 .size = sizeof(double), .align = sizeof(double),
1961 .get = fpr_get, .set = fpr_set
1962 },
1963 #ifdef CONFIG_ALTIVEC
1964 [REGSET_VMX] = {
1965 .core_note_type = NT_PPC_VMX, .n = 34,
1966 .size = sizeof(vector128), .align = sizeof(vector128),
1967 .active = vr_active, .get = vr_get, .set = vr_set
1968 },
1969 #endif
1970 #ifdef CONFIG_VSX
1971 [REGSET_VSX] = {
1972 .core_note_type = NT_PPC_VSX, .n = 32,
1973 .size = sizeof(double), .align = sizeof(double),
1974 .active = vsr_active, .get = vsr_get, .set = vsr_set
1975 },
1976 #endif
1977 #ifdef CONFIG_SPE
1978 [REGSET_SPE] = {
1979 .core_note_type = NT_PPC_SPE, .n = 35,
1980 .size = sizeof(u32), .align = sizeof(u32),
1981 .active = evr_active, .get = evr_get, .set = evr_set
1982 },
1983 #endif
1984 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1985 [REGSET_TM_CGPR] = {
1986 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1987 .size = sizeof(long), .align = sizeof(long),
1988 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1989 },
1990 [REGSET_TM_CFPR] = {
1991 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1992 .size = sizeof(double), .align = sizeof(double),
1993 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1994 },
1995 [REGSET_TM_CVMX] = {
1996 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1997 .size = sizeof(vector128), .align = sizeof(vector128),
1998 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1999 },
2000 [REGSET_TM_CVSX] = {
2001 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2002 .size = sizeof(double), .align = sizeof(double),
2003 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2004 },
2005 [REGSET_TM_SPR] = {
2006 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2007 .size = sizeof(u64), .align = sizeof(u64),
2008 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2009 },
2010 [REGSET_TM_CTAR] = {
2011 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2012 .size = sizeof(u64), .align = sizeof(u64),
2013 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2014 },
2015 [REGSET_TM_CPPR] = {
2016 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2017 .size = sizeof(u64), .align = sizeof(u64),
2018 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2019 },
2020 [REGSET_TM_CDSCR] = {
2021 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2022 .size = sizeof(u64), .align = sizeof(u64),
2023 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2024 },
2025 #endif
2026 #ifdef CONFIG_PPC64
2027 [REGSET_PPR] = {
2028 .core_note_type = NT_PPC_PPR, .n = 1,
2029 .size = sizeof(u64), .align = sizeof(u64),
2030 .get = ppr_get, .set = ppr_set
2031 },
2032 [REGSET_DSCR] = {
2033 .core_note_type = NT_PPC_DSCR, .n = 1,
2034 .size = sizeof(u64), .align = sizeof(u64),
2035 .get = dscr_get, .set = dscr_set
2036 },
2037 #endif
2038 #ifdef CONFIG_PPC_BOOK3S_64
2039 [REGSET_TAR] = {
2040 .core_note_type = NT_PPC_TAR, .n = 1,
2041 .size = sizeof(u64), .align = sizeof(u64),
2042 .get = tar_get, .set = tar_set
2043 },
2044 [REGSET_EBB] = {
2045 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2046 .size = sizeof(u64), .align = sizeof(u64),
2047 .active = ebb_active, .get = ebb_get, .set = ebb_set
2048 },
2049 [REGSET_PMR] = {
2050 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
2051 .size = sizeof(u64), .align = sizeof(u64),
2052 .active = pmu_active, .get = pmu_get, .set = pmu_set
2053 },
2054 #endif
2055 };
2056
2057 static const struct user_regset_view user_ppc_native_view = {
2058 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
2059 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2060 };
2061
2062 #ifdef CONFIG_PPC64
2063 #include <linux/compat.h>
2064
2065 static int gpr32_get_common(struct task_struct *target,
2066 const struct user_regset *regset,
2067 unsigned int pos, unsigned int count,
2068 void *kbuf, void __user *ubuf, bool tm_active)
2069 {
2070 const unsigned long *regs = &target->thread.regs->gpr[0];
2071 const unsigned long *ckpt_regs;
2072 compat_ulong_t *k = kbuf;
2073 compat_ulong_t __user *u = ubuf;
2074 compat_ulong_t reg;
2075 int i;
2076
2077 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2078 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
2079 #endif
2080 if (tm_active) {
2081 regs = ckpt_regs;
2082 } else {
2083 if (target->thread.regs == NULL)
2084 return -EIO;
2085
2086 if (!FULL_REGS(target->thread.regs)) {
2087 /*
2088 * We have a partial register set.
2089 * Fill 14-31 with bogus values.
2090 */
2091 for (i = 14; i < 32; i++)
2092 target->thread.regs->gpr[i] = NV_REG_POISON;
2093 }
2094 }
2095
2096 pos /= sizeof(reg);
2097 count /= sizeof(reg);
2098
2099 if (kbuf)
2100 for (; count > 0 && pos < PT_MSR; --count)
2101 *k++ = regs[pos++];
2102 else
2103 for (; count > 0 && pos < PT_MSR; --count)
2104 if (__put_user((compat_ulong_t) regs[pos++], u++))
2105 return -EFAULT;
2106
2107 if (count > 0 && pos == PT_MSR) {
2108 reg = get_user_msr(target);
2109 if (kbuf)
2110 *k++ = reg;
2111 else if (__put_user(reg, u++))
2112 return -EFAULT;
2113 ++pos;
2114 --count;
2115 }
2116
2117 if (kbuf)
2118 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2119 *k++ = regs[pos++];
2120 else
2121 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2122 if (__put_user((compat_ulong_t) regs[pos++], u++))
2123 return -EFAULT;
2124
2125 kbuf = k;
2126 ubuf = u;
2127 pos *= sizeof(reg);
2128 count *= sizeof(reg);
2129 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
2130 PT_REGS_COUNT * sizeof(reg), -1);
2131 }
2132
2133 static int gpr32_set_common(struct task_struct *target,
2134 const struct user_regset *regset,
2135 unsigned int pos, unsigned int count,
2136 const void *kbuf, const void __user *ubuf, bool tm_active)
2137 {
2138 unsigned long *regs = &target->thread.regs->gpr[0];
2139 unsigned long *ckpt_regs;
2140 const compat_ulong_t *k = kbuf;
2141 const compat_ulong_t __user *u = ubuf;
2142 compat_ulong_t reg;
2143
2144 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2145 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
2146 #endif
2147
2148 if (tm_active) {
2149 regs = ckpt_regs;
2150 } else {
2151 regs = &target->thread.regs->gpr[0];
2152
2153 if (target->thread.regs == NULL)
2154 return -EIO;
2155
2156 CHECK_FULL_REGS(target->thread.regs);
2157 }
2158
2159 pos /= sizeof(reg);
2160 count /= sizeof(reg);
2161
2162 if (kbuf)
2163 for (; count > 0 && pos < PT_MSR; --count)
2164 regs[pos++] = *k++;
2165 else
2166 for (; count > 0 && pos < PT_MSR; --count) {
2167 if (__get_user(reg, u++))
2168 return -EFAULT;
2169 regs[pos++] = reg;
2170 }
2171
2172
2173 if (count > 0 && pos == PT_MSR) {
2174 if (kbuf)
2175 reg = *k++;
2176 else if (__get_user(reg, u++))
2177 return -EFAULT;
2178 set_user_msr(target, reg);
2179 ++pos;
2180 --count;
2181 }
2182
2183 if (kbuf) {
2184 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2185 regs[pos++] = *k++;
2186 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2187 ++k;
2188 } else {
2189 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2190 if (__get_user(reg, u++))
2191 return -EFAULT;
2192 regs[pos++] = reg;
2193 }
2194 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2195 if (__get_user(reg, u++))
2196 return -EFAULT;
2197 }
2198
2199 if (count > 0 && pos == PT_TRAP) {
2200 if (kbuf)
2201 reg = *k++;
2202 else if (__get_user(reg, u++))
2203 return -EFAULT;
2204 set_user_trap(target, reg);
2205 ++pos;
2206 --count;
2207 }
2208
2209 kbuf = k;
2210 ubuf = u;
2211 pos *= sizeof(reg);
2212 count *= sizeof(reg);
2213 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2214 (PT_TRAP + 1) * sizeof(reg), -1);
2215 }
2216
2217 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2218 static int tm_cgpr32_get(struct task_struct *target,
2219 const struct user_regset *regset,
2220 unsigned int pos, unsigned int count,
2221 void *kbuf, void __user *ubuf)
2222 {
2223 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 1);
2224 }
2225
2226 static int tm_cgpr32_set(struct task_struct *target,
2227 const struct user_regset *regset,
2228 unsigned int pos, unsigned int count,
2229 const void *kbuf, const void __user *ubuf)
2230 {
2231 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 1);
2232 }
2233 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2234
2235 static int gpr32_get(struct task_struct *target,
2236 const struct user_regset *regset,
2237 unsigned int pos, unsigned int count,
2238 void *kbuf, void __user *ubuf)
2239 {
2240 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0);
2241 }
2242
2243 static int gpr32_set(struct task_struct *target,
2244 const struct user_regset *regset,
2245 unsigned int pos, unsigned int count,
2246 const void *kbuf, const void __user *ubuf)
2247 {
2248 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0);
2249 }
2250
2251 /*
2252 * These are the regset flavors matching the CONFIG_PPC32 native set.
2253 */
2254 static const struct user_regset compat_regsets[] = {
2255 [REGSET_GPR] = {
2256 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2257 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2258 .get = gpr32_get, .set = gpr32_set
2259 },
2260 [REGSET_FPR] = {
2261 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2262 .size = sizeof(double), .align = sizeof(double),
2263 .get = fpr_get, .set = fpr_set
2264 },
2265 #ifdef CONFIG_ALTIVEC
2266 [REGSET_VMX] = {
2267 .core_note_type = NT_PPC_VMX, .n = 34,
2268 .size = sizeof(vector128), .align = sizeof(vector128),
2269 .active = vr_active, .get = vr_get, .set = vr_set
2270 },
2271 #endif
2272 #ifdef CONFIG_SPE
2273 [REGSET_SPE] = {
2274 .core_note_type = NT_PPC_SPE, .n = 35,
2275 .size = sizeof(u32), .align = sizeof(u32),
2276 .active = evr_active, .get = evr_get, .set = evr_set
2277 },
2278 #endif
2279 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2280 [REGSET_TM_CGPR] = {
2281 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2282 .size = sizeof(long), .align = sizeof(long),
2283 .active = tm_cgpr_active,
2284 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2285 },
2286 [REGSET_TM_CFPR] = {
2287 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2288 .size = sizeof(double), .align = sizeof(double),
2289 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2290 },
2291 [REGSET_TM_CVMX] = {
2292 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2293 .size = sizeof(vector128), .align = sizeof(vector128),
2294 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2295 },
2296 [REGSET_TM_CVSX] = {
2297 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2298 .size = sizeof(double), .align = sizeof(double),
2299 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2300 },
2301 [REGSET_TM_SPR] = {
2302 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2303 .size = sizeof(u64), .align = sizeof(u64),
2304 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2305 },
2306 [REGSET_TM_CTAR] = {
2307 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2308 .size = sizeof(u64), .align = sizeof(u64),
2309 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2310 },
2311 [REGSET_TM_CPPR] = {
2312 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2313 .size = sizeof(u64), .align = sizeof(u64),
2314 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2315 },
2316 [REGSET_TM_CDSCR] = {
2317 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2318 .size = sizeof(u64), .align = sizeof(u64),
2319 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2320 },
2321 #endif
2322 #ifdef CONFIG_PPC64
2323 [REGSET_PPR] = {
2324 .core_note_type = NT_PPC_PPR, .n = 1,
2325 .size = sizeof(u64), .align = sizeof(u64),
2326 .get = ppr_get, .set = ppr_set
2327 },
2328 [REGSET_DSCR] = {
2329 .core_note_type = NT_PPC_DSCR, .n = 1,
2330 .size = sizeof(u64), .align = sizeof(u64),
2331 .get = dscr_get, .set = dscr_set
2332 },
2333 #endif
2334 #ifdef CONFIG_PPC_BOOK3S_64
2335 [REGSET_TAR] = {
2336 .core_note_type = NT_PPC_TAR, .n = 1,
2337 .size = sizeof(u64), .align = sizeof(u64),
2338 .get = tar_get, .set = tar_set
2339 },
2340 [REGSET_EBB] = {
2341 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2342 .size = sizeof(u64), .align = sizeof(u64),
2343 .active = ebb_active, .get = ebb_get, .set = ebb_set
2344 },
2345 #endif
2346 };
2347
2348 static const struct user_regset_view user_ppc_compat_view = {
2349 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2350 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2351 };
2352 #endif /* CONFIG_PPC64 */
2353
2354 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2355 {
2356 #ifdef CONFIG_PPC64
2357 if (test_tsk_thread_flag(task, TIF_32BIT))
2358 return &user_ppc_compat_view;
2359 #endif
2360 return &user_ppc_native_view;
2361 }
2362
2363
2364 void user_enable_single_step(struct task_struct *task)
2365 {
2366 struct pt_regs *regs = task->thread.regs;
2367
2368 if (regs != NULL) {
2369 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2370 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2371 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2372 regs->msr |= MSR_DE;
2373 #else
2374 regs->msr &= ~MSR_BE;
2375 regs->msr |= MSR_SE;
2376 #endif
2377 }
2378 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2379 }
2380
2381 void user_enable_block_step(struct task_struct *task)
2382 {
2383 struct pt_regs *regs = task->thread.regs;
2384
2385 if (regs != NULL) {
2386 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2387 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2388 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2389 regs->msr |= MSR_DE;
2390 #else
2391 regs->msr &= ~MSR_SE;
2392 regs->msr |= MSR_BE;
2393 #endif
2394 }
2395 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2396 }
2397
2398 void user_disable_single_step(struct task_struct *task)
2399 {
2400 struct pt_regs *regs = task->thread.regs;
2401
2402 if (regs != NULL) {
2403 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2404 /*
2405 * The logic to disable single stepping should be as
2406 * simple as turning off the Instruction Complete flag.
2407 * And, after doing so, if all debug flags are off, turn
2408 * off DBCR0(IDM) and MSR(DE) .... Torez
2409 */
2410 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2411 /*
2412 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2413 */
2414 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2415 task->thread.debug.dbcr1)) {
2416 /*
2417 * All debug events were off.....
2418 */
2419 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2420 regs->msr &= ~MSR_DE;
2421 }
2422 #else
2423 regs->msr &= ~(MSR_SE | MSR_BE);
2424 #endif
2425 }
2426 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2427 }
2428
2429 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2430 void ptrace_triggered(struct perf_event *bp,
2431 struct perf_sample_data *data, struct pt_regs *regs)
2432 {
2433 struct perf_event_attr attr;
2434
2435 /*
2436 * Disable the breakpoint request here since ptrace has defined a
2437 * one-shot behaviour for breakpoint exceptions in PPC64.
2438 * The SIGTRAP signal is generated automatically for us in do_dabr().
2439 * We don't have to do anything about that here
2440 */
2441 attr = bp->attr;
2442 attr.disabled = true;
2443 modify_user_hw_breakpoint(bp, &attr);
2444 }
2445 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2446
2447 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2448 unsigned long data)
2449 {
2450 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2451 int ret;
2452 struct thread_struct *thread = &(task->thread);
2453 struct perf_event *bp;
2454 struct perf_event_attr attr;
2455 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2456 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2457 struct arch_hw_breakpoint hw_brk;
2458 #endif
2459
2460 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2461 * For embedded processors we support one DAC and no IAC's at the
2462 * moment.
2463 */
2464 if (addr > 0)
2465 return -EINVAL;
2466
2467 /* The bottom 3 bits in dabr are flags */
2468 if ((data & ~0x7UL) >= TASK_SIZE)
2469 return -EIO;
2470
2471 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2472 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2473 * It was assumed, on previous implementations, that 3 bits were
2474 * passed together with the data address, fitting the design of the
2475 * DABR register, as follows:
2476 *
2477 * bit 0: Read flag
2478 * bit 1: Write flag
2479 * bit 2: Breakpoint translation
2480 *
2481 * Thus, we use them here as so.
2482 */
2483
2484 /* Ensure breakpoint translation bit is set */
2485 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2486 return -EIO;
2487 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2488 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2489 hw_brk.len = 8;
2490 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2491 bp = thread->ptrace_bps[0];
2492 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2493 if (bp) {
2494 unregister_hw_breakpoint(bp);
2495 thread->ptrace_bps[0] = NULL;
2496 }
2497 return 0;
2498 }
2499 if (bp) {
2500 attr = bp->attr;
2501 attr.bp_addr = hw_brk.address;
2502 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2503
2504 /* Enable breakpoint */
2505 attr.disabled = false;
2506
2507 ret = modify_user_hw_breakpoint(bp, &attr);
2508 if (ret) {
2509 return ret;
2510 }
2511 thread->ptrace_bps[0] = bp;
2512 thread->hw_brk = hw_brk;
2513 return 0;
2514 }
2515
2516 /* Create a new breakpoint request if one doesn't exist already */
2517 hw_breakpoint_init(&attr);
2518 attr.bp_addr = hw_brk.address;
2519 arch_bp_generic_fields(hw_brk.type,
2520 &attr.bp_type);
2521
2522 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2523 ptrace_triggered, NULL, task);
2524 if (IS_ERR(bp)) {
2525 thread->ptrace_bps[0] = NULL;
2526 return PTR_ERR(bp);
2527 }
2528
2529 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2530 task->thread.hw_brk = hw_brk;
2531 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2532 /* As described above, it was assumed 3 bits were passed with the data
2533 * address, but we will assume only the mode bits will be passed
2534 * as to not cause alignment restrictions for DAC-based processors.
2535 */
2536
2537 /* DAC's hold the whole address without any mode flags */
2538 task->thread.debug.dac1 = data & ~0x3UL;
2539
2540 if (task->thread.debug.dac1 == 0) {
2541 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2542 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2543 task->thread.debug.dbcr1)) {
2544 task->thread.regs->msr &= ~MSR_DE;
2545 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2546 }
2547 return 0;
2548 }
2549
2550 /* Read or Write bits must be set */
2551
2552 if (!(data & 0x3UL))
2553 return -EINVAL;
2554
2555 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2556 register */
2557 task->thread.debug.dbcr0 |= DBCR0_IDM;
2558
2559 /* Check for write and read flags and set DBCR0
2560 accordingly */
2561 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2562 if (data & 0x1UL)
2563 dbcr_dac(task) |= DBCR_DAC1R;
2564 if (data & 0x2UL)
2565 dbcr_dac(task) |= DBCR_DAC1W;
2566 task->thread.regs->msr |= MSR_DE;
2567 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2568 return 0;
2569 }
2570
2571 /*
2572 * Called by kernel/ptrace.c when detaching..
2573 *
2574 * Make sure single step bits etc are not set.
2575 */
2576 void ptrace_disable(struct task_struct *child)
2577 {
2578 /* make sure the single step bit is not set. */
2579 user_disable_single_step(child);
2580 }
2581
2582 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2583 static long set_instruction_bp(struct task_struct *child,
2584 struct ppc_hw_breakpoint *bp_info)
2585 {
2586 int slot;
2587 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2588 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2589 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2590 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2591
2592 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2593 slot2_in_use = 1;
2594 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2595 slot4_in_use = 1;
2596
2597 if (bp_info->addr >= TASK_SIZE)
2598 return -EIO;
2599
2600 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2601
2602 /* Make sure range is valid. */
2603 if (bp_info->addr2 >= TASK_SIZE)
2604 return -EIO;
2605
2606 /* We need a pair of IAC regsisters */
2607 if ((!slot1_in_use) && (!slot2_in_use)) {
2608 slot = 1;
2609 child->thread.debug.iac1 = bp_info->addr;
2610 child->thread.debug.iac2 = bp_info->addr2;
2611 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2612 if (bp_info->addr_mode ==
2613 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2614 dbcr_iac_range(child) |= DBCR_IAC12X;
2615 else
2616 dbcr_iac_range(child) |= DBCR_IAC12I;
2617 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2618 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2619 slot = 3;
2620 child->thread.debug.iac3 = bp_info->addr;
2621 child->thread.debug.iac4 = bp_info->addr2;
2622 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2623 if (bp_info->addr_mode ==
2624 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2625 dbcr_iac_range(child) |= DBCR_IAC34X;
2626 else
2627 dbcr_iac_range(child) |= DBCR_IAC34I;
2628 #endif
2629 } else
2630 return -ENOSPC;
2631 } else {
2632 /* We only need one. If possible leave a pair free in
2633 * case a range is needed later
2634 */
2635 if (!slot1_in_use) {
2636 /*
2637 * Don't use iac1 if iac1-iac2 are free and either
2638 * iac3 or iac4 (but not both) are free
2639 */
2640 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2641 slot = 1;
2642 child->thread.debug.iac1 = bp_info->addr;
2643 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2644 goto out;
2645 }
2646 }
2647 if (!slot2_in_use) {
2648 slot = 2;
2649 child->thread.debug.iac2 = bp_info->addr;
2650 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2651 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2652 } else if (!slot3_in_use) {
2653 slot = 3;
2654 child->thread.debug.iac3 = bp_info->addr;
2655 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2656 } else if (!slot4_in_use) {
2657 slot = 4;
2658 child->thread.debug.iac4 = bp_info->addr;
2659 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2660 #endif
2661 } else
2662 return -ENOSPC;
2663 }
2664 out:
2665 child->thread.debug.dbcr0 |= DBCR0_IDM;
2666 child->thread.regs->msr |= MSR_DE;
2667
2668 return slot;
2669 }
2670
2671 static int del_instruction_bp(struct task_struct *child, int slot)
2672 {
2673 switch (slot) {
2674 case 1:
2675 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2676 return -ENOENT;
2677
2678 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2679 /* address range - clear slots 1 & 2 */
2680 child->thread.debug.iac2 = 0;
2681 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2682 }
2683 child->thread.debug.iac1 = 0;
2684 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2685 break;
2686 case 2:
2687 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2688 return -ENOENT;
2689
2690 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2691 /* used in a range */
2692 return -EINVAL;
2693 child->thread.debug.iac2 = 0;
2694 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2695 break;
2696 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2697 case 3:
2698 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2699 return -ENOENT;
2700
2701 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2702 /* address range - clear slots 3 & 4 */
2703 child->thread.debug.iac4 = 0;
2704 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2705 }
2706 child->thread.debug.iac3 = 0;
2707 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2708 break;
2709 case 4:
2710 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2711 return -ENOENT;
2712
2713 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2714 /* Used in a range */
2715 return -EINVAL;
2716 child->thread.debug.iac4 = 0;
2717 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2718 break;
2719 #endif
2720 default:
2721 return -EINVAL;
2722 }
2723 return 0;
2724 }
2725
2726 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2727 {
2728 int byte_enable =
2729 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2730 & 0xf;
2731 int condition_mode =
2732 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2733 int slot;
2734
2735 if (byte_enable && (condition_mode == 0))
2736 return -EINVAL;
2737
2738 if (bp_info->addr >= TASK_SIZE)
2739 return -EIO;
2740
2741 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2742 slot = 1;
2743 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2744 dbcr_dac(child) |= DBCR_DAC1R;
2745 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2746 dbcr_dac(child) |= DBCR_DAC1W;
2747 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2748 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2749 if (byte_enable) {
2750 child->thread.debug.dvc1 =
2751 (unsigned long)bp_info->condition_value;
2752 child->thread.debug.dbcr2 |=
2753 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2754 (condition_mode << DBCR2_DVC1M_SHIFT));
2755 }
2756 #endif
2757 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2758 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2759 /* Both dac1 and dac2 are part of a range */
2760 return -ENOSPC;
2761 #endif
2762 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2763 slot = 2;
2764 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2765 dbcr_dac(child) |= DBCR_DAC2R;
2766 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2767 dbcr_dac(child) |= DBCR_DAC2W;
2768 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2769 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2770 if (byte_enable) {
2771 child->thread.debug.dvc2 =
2772 (unsigned long)bp_info->condition_value;
2773 child->thread.debug.dbcr2 |=
2774 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2775 (condition_mode << DBCR2_DVC2M_SHIFT));
2776 }
2777 #endif
2778 } else
2779 return -ENOSPC;
2780 child->thread.debug.dbcr0 |= DBCR0_IDM;
2781 child->thread.regs->msr |= MSR_DE;
2782
2783 return slot + 4;
2784 }
2785
2786 static int del_dac(struct task_struct *child, int slot)
2787 {
2788 if (slot == 1) {
2789 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2790 return -ENOENT;
2791
2792 child->thread.debug.dac1 = 0;
2793 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2794 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2795 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2796 child->thread.debug.dac2 = 0;
2797 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2798 }
2799 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2800 #endif
2801 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2802 child->thread.debug.dvc1 = 0;
2803 #endif
2804 } else if (slot == 2) {
2805 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2806 return -ENOENT;
2807
2808 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2809 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2810 /* Part of a range */
2811 return -EINVAL;
2812 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2813 #endif
2814 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2815 child->thread.debug.dvc2 = 0;
2816 #endif
2817 child->thread.debug.dac2 = 0;
2818 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2819 } else
2820 return -EINVAL;
2821
2822 return 0;
2823 }
2824 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2825
2826 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2827 static int set_dac_range(struct task_struct *child,
2828 struct ppc_hw_breakpoint *bp_info)
2829 {
2830 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2831
2832 /* We don't allow range watchpoints to be used with DVC */
2833 if (bp_info->condition_mode)
2834 return -EINVAL;
2835
2836 /*
2837 * Best effort to verify the address range. The user/supervisor bits
2838 * prevent trapping in kernel space, but let's fail on an obvious bad
2839 * range. The simple test on the mask is not fool-proof, and any
2840 * exclusive range will spill over into kernel space.
2841 */
2842 if (bp_info->addr >= TASK_SIZE)
2843 return -EIO;
2844 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2845 /*
2846 * dac2 is a bitmask. Don't allow a mask that makes a
2847 * kernel space address from a valid dac1 value
2848 */
2849 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2850 return -EIO;
2851 } else {
2852 /*
2853 * For range breakpoints, addr2 must also be a valid address
2854 */
2855 if (bp_info->addr2 >= TASK_SIZE)
2856 return -EIO;
2857 }
2858
2859 if (child->thread.debug.dbcr0 &
2860 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2861 return -ENOSPC;
2862
2863 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2864 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2865 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2866 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2867 child->thread.debug.dac1 = bp_info->addr;
2868 child->thread.debug.dac2 = bp_info->addr2;
2869 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2870 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2871 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2872 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2873 else /* PPC_BREAKPOINT_MODE_MASK */
2874 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2875 child->thread.regs->msr |= MSR_DE;
2876
2877 return 5;
2878 }
2879 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2880
2881 static long ppc_set_hwdebug(struct task_struct *child,
2882 struct ppc_hw_breakpoint *bp_info)
2883 {
2884 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2885 int len = 0;
2886 struct thread_struct *thread = &(child->thread);
2887 struct perf_event *bp;
2888 struct perf_event_attr attr;
2889 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2890 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2891 struct arch_hw_breakpoint brk;
2892 #endif
2893
2894 if (bp_info->version != 1)
2895 return -ENOTSUPP;
2896 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2897 /*
2898 * Check for invalid flags and combinations
2899 */
2900 if ((bp_info->trigger_type == 0) ||
2901 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2902 PPC_BREAKPOINT_TRIGGER_RW)) ||
2903 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2904 (bp_info->condition_mode &
2905 ~(PPC_BREAKPOINT_CONDITION_MODE |
2906 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2907 return -EINVAL;
2908 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2909 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2910 return -EINVAL;
2911 #endif
2912
2913 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2914 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2915 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2916 return -EINVAL;
2917 return set_instruction_bp(child, bp_info);
2918 }
2919 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2920 return set_dac(child, bp_info);
2921
2922 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2923 return set_dac_range(child, bp_info);
2924 #else
2925 return -EINVAL;
2926 #endif
2927 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2928 /*
2929 * We only support one data breakpoint
2930 */
2931 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2932 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2933 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2934 return -EINVAL;
2935
2936 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2937 return -EIO;
2938
2939 brk.address = bp_info->addr & ~7UL;
2940 brk.type = HW_BRK_TYPE_TRANSLATE;
2941 brk.len = 8;
2942 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2943 brk.type |= HW_BRK_TYPE_READ;
2944 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2945 brk.type |= HW_BRK_TYPE_WRITE;
2946 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2947 /*
2948 * Check if the request is for 'range' breakpoints. We can
2949 * support it if range < 8 bytes.
2950 */
2951 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2952 len = bp_info->addr2 - bp_info->addr;
2953 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2954 len = 1;
2955 else
2956 return -EINVAL;
2957 bp = thread->ptrace_bps[0];
2958 if (bp)
2959 return -ENOSPC;
2960
2961 /* Create a new breakpoint request if one doesn't exist already */
2962 hw_breakpoint_init(&attr);
2963 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2964 attr.bp_len = len;
2965 arch_bp_generic_fields(brk.type, &attr.bp_type);
2966
2967 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2968 ptrace_triggered, NULL, child);
2969 if (IS_ERR(bp)) {
2970 thread->ptrace_bps[0] = NULL;
2971 return PTR_ERR(bp);
2972 }
2973
2974 return 1;
2975 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2976
2977 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2978 return -EINVAL;
2979
2980 if (child->thread.hw_brk.address)
2981 return -ENOSPC;
2982
2983 child->thread.hw_brk = brk;
2984
2985 return 1;
2986 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2987 }
2988
2989 static long ppc_del_hwdebug(struct task_struct *child, long data)
2990 {
2991 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2992 int ret = 0;
2993 struct thread_struct *thread = &(child->thread);
2994 struct perf_event *bp;
2995 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2996 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2997 int rc;
2998
2999 if (data <= 4)
3000 rc = del_instruction_bp(child, (int)data);
3001 else
3002 rc = del_dac(child, (int)data - 4);
3003
3004 if (!rc) {
3005 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
3006 child->thread.debug.dbcr1)) {
3007 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
3008 child->thread.regs->msr &= ~MSR_DE;
3009 }
3010 }
3011 return rc;
3012 #else
3013 if (data != 1)
3014 return -EINVAL;
3015
3016 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3017 bp = thread->ptrace_bps[0];
3018 if (bp) {
3019 unregister_hw_breakpoint(bp);
3020 thread->ptrace_bps[0] = NULL;
3021 } else
3022 ret = -ENOENT;
3023 return ret;
3024 #else /* CONFIG_HAVE_HW_BREAKPOINT */
3025 if (child->thread.hw_brk.address == 0)
3026 return -ENOENT;
3027
3028 child->thread.hw_brk.address = 0;
3029 child->thread.hw_brk.type = 0;
3030 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3031
3032 return 0;
3033 #endif
3034 }
3035
3036 long arch_ptrace(struct task_struct *child, long request,
3037 unsigned long addr, unsigned long data)
3038 {
3039 int ret = -EPERM;
3040 void __user *datavp = (void __user *) data;
3041 unsigned long __user *datalp = datavp;
3042
3043 switch (request) {
3044 /* read the word at location addr in the USER area. */
3045 case PTRACE_PEEKUSR: {
3046 unsigned long index, tmp;
3047
3048 ret = -EIO;
3049 /* convert to index and check */
3050 #ifdef CONFIG_PPC32
3051 index = addr >> 2;
3052 if ((addr & 3) || (index > PT_FPSCR)
3053 || (child->thread.regs == NULL))
3054 #else
3055 index = addr >> 3;
3056 if ((addr & 7) || (index > PT_FPSCR))
3057 #endif
3058 break;
3059
3060 CHECK_FULL_REGS(child->thread.regs);
3061 if (index < PT_FPR0) {
3062 ret = ptrace_get_reg(child, (int) index, &tmp);
3063 if (ret)
3064 break;
3065 } else {
3066 unsigned int fpidx = index - PT_FPR0;
3067
3068 flush_fp_to_thread(child);
3069 if (fpidx < (PT_FPSCR - PT_FPR0))
3070 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
3071 sizeof(long));
3072 else
3073 tmp = child->thread.fp_state.fpscr;
3074 }
3075 ret = put_user(tmp, datalp);
3076 break;
3077 }
3078
3079 /* write the word at location addr in the USER area */
3080 case PTRACE_POKEUSR: {
3081 unsigned long index;
3082
3083 ret = -EIO;
3084 /* convert to index and check */
3085 #ifdef CONFIG_PPC32
3086 index = addr >> 2;
3087 if ((addr & 3) || (index > PT_FPSCR)
3088 || (child->thread.regs == NULL))
3089 #else
3090 index = addr >> 3;
3091 if ((addr & 7) || (index > PT_FPSCR))
3092 #endif
3093 break;
3094
3095 CHECK_FULL_REGS(child->thread.regs);
3096 if (index < PT_FPR0) {
3097 ret = ptrace_put_reg(child, index, data);
3098 } else {
3099 unsigned int fpidx = index - PT_FPR0;
3100
3101 flush_fp_to_thread(child);
3102 if (fpidx < (PT_FPSCR - PT_FPR0))
3103 memcpy(&child->thread.TS_FPR(fpidx), &data,
3104 sizeof(long));
3105 else
3106 child->thread.fp_state.fpscr = data;
3107 ret = 0;
3108 }
3109 break;
3110 }
3111
3112 case PPC_PTRACE_GETHWDBGINFO: {
3113 struct ppc_debug_info dbginfo;
3114
3115 dbginfo.version = 1;
3116 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3117 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
3118 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
3119 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
3120 dbginfo.data_bp_alignment = 4;
3121 dbginfo.sizeof_condition = 4;
3122 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
3123 PPC_DEBUG_FEATURE_INSN_BP_MASK;
3124 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3125 dbginfo.features |=
3126 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
3127 PPC_DEBUG_FEATURE_DATA_BP_MASK;
3128 #endif
3129 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3130 dbginfo.num_instruction_bps = 0;
3131 dbginfo.num_data_bps = 1;
3132 dbginfo.num_condition_regs = 0;
3133 #ifdef CONFIG_PPC64
3134 dbginfo.data_bp_alignment = 8;
3135 #else
3136 dbginfo.data_bp_alignment = 4;
3137 #endif
3138 dbginfo.sizeof_condition = 0;
3139 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3140 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3141 if (cpu_has_feature(CPU_FTR_DAWR))
3142 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3143 #else
3144 dbginfo.features = 0;
3145 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3146 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3147
3148 if (!access_ok(VERIFY_WRITE, datavp,
3149 sizeof(struct ppc_debug_info)))
3150 return -EFAULT;
3151 ret = __copy_to_user(datavp, &dbginfo,
3152 sizeof(struct ppc_debug_info)) ?
3153 -EFAULT : 0;
3154 break;
3155 }
3156
3157 case PPC_PTRACE_SETHWDEBUG: {
3158 struct ppc_hw_breakpoint bp_info;
3159
3160 if (!access_ok(VERIFY_READ, datavp,
3161 sizeof(struct ppc_hw_breakpoint)))
3162 return -EFAULT;
3163 ret = __copy_from_user(&bp_info, datavp,
3164 sizeof(struct ppc_hw_breakpoint)) ?
3165 -EFAULT : 0;
3166 if (!ret)
3167 ret = ppc_set_hwdebug(child, &bp_info);
3168 break;
3169 }
3170
3171 case PPC_PTRACE_DELHWDEBUG: {
3172 ret = ppc_del_hwdebug(child, data);
3173 break;
3174 }
3175
3176 case PTRACE_GET_DEBUGREG: {
3177 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3178 unsigned long dabr_fake;
3179 #endif
3180 ret = -EINVAL;
3181 /* We only support one DABR and no IABRS at the moment */
3182 if (addr > 0)
3183 break;
3184 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3185 ret = put_user(child->thread.debug.dac1, datalp);
3186 #else
3187 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3188 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3189 ret = put_user(dabr_fake, datalp);
3190 #endif
3191 break;
3192 }
3193
3194 case PTRACE_SET_DEBUGREG:
3195 ret = ptrace_set_debugreg(child, addr, data);
3196 break;
3197
3198 #ifdef CONFIG_PPC64
3199 case PTRACE_GETREGS64:
3200 #endif
3201 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3202 return copy_regset_to_user(child, &user_ppc_native_view,
3203 REGSET_GPR,
3204 0, sizeof(struct pt_regs),
3205 datavp);
3206
3207 #ifdef CONFIG_PPC64
3208 case PTRACE_SETREGS64:
3209 #endif
3210 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3211 return copy_regset_from_user(child, &user_ppc_native_view,
3212 REGSET_GPR,
3213 0, sizeof(struct pt_regs),
3214 datavp);
3215
3216 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3217 return copy_regset_to_user(child, &user_ppc_native_view,
3218 REGSET_FPR,
3219 0, sizeof(elf_fpregset_t),
3220 datavp);
3221
3222 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3223 return copy_regset_from_user(child, &user_ppc_native_view,
3224 REGSET_FPR,
3225 0, sizeof(elf_fpregset_t),
3226 datavp);
3227
3228 #ifdef CONFIG_ALTIVEC
3229 case PTRACE_GETVRREGS:
3230 return copy_regset_to_user(child, &user_ppc_native_view,
3231 REGSET_VMX,
3232 0, (33 * sizeof(vector128) +
3233 sizeof(u32)),
3234 datavp);
3235
3236 case PTRACE_SETVRREGS:
3237 return copy_regset_from_user(child, &user_ppc_native_view,
3238 REGSET_VMX,
3239 0, (33 * sizeof(vector128) +
3240 sizeof(u32)),
3241 datavp);
3242 #endif
3243 #ifdef CONFIG_VSX
3244 case PTRACE_GETVSRREGS:
3245 return copy_regset_to_user(child, &user_ppc_native_view,
3246 REGSET_VSX,
3247 0, 32 * sizeof(double),
3248 datavp);
3249
3250 case PTRACE_SETVSRREGS:
3251 return copy_regset_from_user(child, &user_ppc_native_view,
3252 REGSET_VSX,
3253 0, 32 * sizeof(double),
3254 datavp);
3255 #endif
3256 #ifdef CONFIG_SPE
3257 case PTRACE_GETEVRREGS:
3258 /* Get the child spe register state. */
3259 return copy_regset_to_user(child, &user_ppc_native_view,
3260 REGSET_SPE, 0, 35 * sizeof(u32),
3261 datavp);
3262
3263 case PTRACE_SETEVRREGS:
3264 /* Set the child spe register state. */
3265 return copy_regset_from_user(child, &user_ppc_native_view,
3266 REGSET_SPE, 0, 35 * sizeof(u32),
3267 datavp);
3268 #endif
3269
3270 default:
3271 ret = ptrace_request(child, request, addr, data);
3272 break;
3273 }
3274 return ret;
3275 }
3276
3277 #ifdef CONFIG_SECCOMP
3278 static int do_seccomp(struct pt_regs *regs)
3279 {
3280 if (!test_thread_flag(TIF_SECCOMP))
3281 return 0;
3282
3283 /*
3284 * The ABI we present to seccomp tracers is that r3 contains
3285 * the syscall return value and orig_gpr3 contains the first
3286 * syscall parameter. This is different to the ptrace ABI where
3287 * both r3 and orig_gpr3 contain the first syscall parameter.
3288 */
3289 regs->gpr[3] = -ENOSYS;
3290
3291 /*
3292 * We use the __ version here because we have already checked
3293 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3294 * have already loaded -ENOSYS into r3, or seccomp has put
3295 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3296 */
3297 if (__secure_computing(NULL))
3298 return -1;
3299
3300 /*
3301 * The syscall was allowed by seccomp, restore the register
3302 * state to what audit expects.
3303 * Note that we use orig_gpr3, which means a seccomp tracer can
3304 * modify the first syscall parameter (in orig_gpr3) and also
3305 * allow the syscall to proceed.
3306 */
3307 regs->gpr[3] = regs->orig_gpr3;
3308
3309 return 0;
3310 }
3311 #else
3312 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3313 #endif /* CONFIG_SECCOMP */
3314
3315 /**
3316 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3317 * @regs: the pt_regs of the task to trace (current)
3318 *
3319 * Performs various types of tracing on syscall entry. This includes seccomp,
3320 * ptrace, syscall tracepoints and audit.
3321 *
3322 * The pt_regs are potentially visible to userspace via ptrace, so their
3323 * contents is ABI.
3324 *
3325 * One or more of the tracers may modify the contents of pt_regs, in particular
3326 * to modify arguments or even the syscall number itself.
3327 *
3328 * It's also possible that a tracer can choose to reject the system call. In
3329 * that case this function will return an illegal syscall number, and will put
3330 * an appropriate return value in regs->r3.
3331 *
3332 * Return: the (possibly changed) syscall number.
3333 */
3334 long do_syscall_trace_enter(struct pt_regs *regs)
3335 {
3336 user_exit();
3337
3338 /*
3339 * The tracer may decide to abort the syscall, if so tracehook
3340 * will return !0. Note that the tracer may also just change
3341 * regs->gpr[0] to an invalid syscall number, that is handled
3342 * below on the exit path.
3343 */
3344 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3345 tracehook_report_syscall_entry(regs))
3346 goto skip;
3347
3348 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3349 if (do_seccomp(regs))
3350 return -1;
3351
3352 /* Avoid trace and audit when syscall is invalid. */
3353 if (regs->gpr[0] >= NR_syscalls)
3354 goto skip;
3355
3356 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3357 trace_sys_enter(regs, regs->gpr[0]);
3358
3359 #ifdef CONFIG_PPC64
3360 if (!is_32bit_task())
3361 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3362 regs->gpr[5], regs->gpr[6]);
3363 else
3364 #endif
3365 audit_syscall_entry(regs->gpr[0],
3366 regs->gpr[3] & 0xffffffff,
3367 regs->gpr[4] & 0xffffffff,
3368 regs->gpr[5] & 0xffffffff,
3369 regs->gpr[6] & 0xffffffff);
3370
3371 /* Return the possibly modified but valid syscall number */
3372 return regs->gpr[0];
3373
3374 skip:
3375 /*
3376 * If we are aborting explicitly, or if the syscall number is
3377 * now invalid, set the return value to -ENOSYS.
3378 */
3379 regs->gpr[3] = -ENOSYS;
3380 return -1;
3381 }
3382
3383 void do_syscall_trace_leave(struct pt_regs *regs)
3384 {
3385 int step;
3386
3387 audit_syscall_exit(regs);
3388
3389 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3390 trace_sys_exit(regs, regs->result);
3391
3392 step = test_thread_flag(TIF_SINGLESTEP);
3393 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3394 tracehook_report_syscall_exit(regs, step);
3395
3396 user_enter();
3397 }
This page took 0.161636 seconds and 5 git commands to generate.