Merge tag 'kvm-s390-master-4.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <asm/dbell.h>
54 #include <linux/gfp.h>
55 #include <linux/vmalloc.h>
56 #include <linux/highmem.h>
57 #include <linux/hugetlb.h>
58 #include <linux/module.h>
59
60 #include "book3s.h"
61
62 #define CREATE_TRACE_POINTS
63 #include "trace_hv.h"
64
65 /* #define EXIT_DEBUG */
66 /* #define EXIT_DEBUG_SIMPLE */
67 /* #define EXIT_DEBUG_INT */
68
69 /* Used to indicate that a guest page fault needs to be handled */
70 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
71
72 /* Used as a "null" value for timebase values */
73 #define TB_NIL (~(u64)0)
74
75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
76
77 static int dynamic_mt_modes = 6;
78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 static int target_smt_mode;
81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
83
84 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
86
87 static bool kvmppc_ipi_thread(int cpu)
88 {
89 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
90 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
91 preempt_disable();
92 if (cpu_first_thread_sibling(cpu) ==
93 cpu_first_thread_sibling(smp_processor_id())) {
94 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
95 msg |= cpu_thread_in_core(cpu);
96 smp_mb();
97 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
98 preempt_enable();
99 return true;
100 }
101 preempt_enable();
102 }
103
104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
105 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
106 xics_wake_cpu(cpu);
107 return true;
108 }
109 #endif
110
111 return false;
112 }
113
114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
115 {
116 int cpu;
117 wait_queue_head_t *wqp;
118
119 wqp = kvm_arch_vcpu_wq(vcpu);
120 if (waitqueue_active(wqp)) {
121 wake_up_interruptible(wqp);
122 ++vcpu->stat.halt_wakeup;
123 }
124
125 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
126 return;
127
128 /* CPU points to the first thread of the core */
129 cpu = vcpu->cpu;
130 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
131 smp_send_reschedule(cpu);
132 }
133
134 /*
135 * We use the vcpu_load/put functions to measure stolen time.
136 * Stolen time is counted as time when either the vcpu is able to
137 * run as part of a virtual core, but the task running the vcore
138 * is preempted or sleeping, or when the vcpu needs something done
139 * in the kernel by the task running the vcpu, but that task is
140 * preempted or sleeping. Those two things have to be counted
141 * separately, since one of the vcpu tasks will take on the job
142 * of running the core, and the other vcpu tasks in the vcore will
143 * sleep waiting for it to do that, but that sleep shouldn't count
144 * as stolen time.
145 *
146 * Hence we accumulate stolen time when the vcpu can run as part of
147 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148 * needs its task to do other things in the kernel (for example,
149 * service a page fault) in busy_stolen. We don't accumulate
150 * stolen time for a vcore when it is inactive, or for a vcpu
151 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
152 * a misnomer; it means that the vcpu task is not executing in
153 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154 * the kernel. We don't have any way of dividing up that time
155 * between time that the vcpu is genuinely stopped, time that
156 * the task is actively working on behalf of the vcpu, and time
157 * that the task is preempted, so we don't count any of it as
158 * stolen.
159 *
160 * Updates to busy_stolen are protected by arch.tbacct_lock;
161 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162 * lock. The stolen times are measured in units of timebase ticks.
163 * (Note that the != TB_NIL checks below are purely defensive;
164 * they should never fail.)
165 */
166
167 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
168 {
169 unsigned long flags;
170
171 spin_lock_irqsave(&vc->stoltb_lock, flags);
172 vc->preempt_tb = mftb();
173 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
174 }
175
176 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
177 {
178 unsigned long flags;
179
180 spin_lock_irqsave(&vc->stoltb_lock, flags);
181 if (vc->preempt_tb != TB_NIL) {
182 vc->stolen_tb += mftb() - vc->preempt_tb;
183 vc->preempt_tb = TB_NIL;
184 }
185 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
186 }
187
188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
189 {
190 struct kvmppc_vcore *vc = vcpu->arch.vcore;
191 unsigned long flags;
192
193 /*
194 * We can test vc->runner without taking the vcore lock,
195 * because only this task ever sets vc->runner to this
196 * vcpu, and once it is set to this vcpu, only this task
197 * ever sets it to NULL.
198 */
199 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
200 kvmppc_core_end_stolen(vc);
201
202 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
203 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
204 vcpu->arch.busy_preempt != TB_NIL) {
205 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
206 vcpu->arch.busy_preempt = TB_NIL;
207 }
208 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
209 }
210
211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
212 {
213 struct kvmppc_vcore *vc = vcpu->arch.vcore;
214 unsigned long flags;
215
216 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
217 kvmppc_core_start_stolen(vc);
218
219 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
220 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
221 vcpu->arch.busy_preempt = mftb();
222 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
223 }
224
225 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
226 {
227 /*
228 * Check for illegal transactional state bit combination
229 * and if we find it, force the TS field to a safe state.
230 */
231 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
232 msr &= ~MSR_TS_MASK;
233 vcpu->arch.shregs.msr = msr;
234 kvmppc_end_cede(vcpu);
235 }
236
237 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
238 {
239 vcpu->arch.pvr = pvr;
240 }
241
242 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
243 {
244 unsigned long pcr = 0;
245 struct kvmppc_vcore *vc = vcpu->arch.vcore;
246
247 if (arch_compat) {
248 switch (arch_compat) {
249 case PVR_ARCH_205:
250 /*
251 * If an arch bit is set in PCR, all the defined
252 * higher-order arch bits also have to be set.
253 */
254 pcr = PCR_ARCH_206 | PCR_ARCH_205;
255 break;
256 case PVR_ARCH_206:
257 case PVR_ARCH_206p:
258 pcr = PCR_ARCH_206;
259 break;
260 case PVR_ARCH_207:
261 break;
262 default:
263 return -EINVAL;
264 }
265
266 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
267 /* POWER7 can't emulate POWER8 */
268 if (!(pcr & PCR_ARCH_206))
269 return -EINVAL;
270 pcr &= ~PCR_ARCH_206;
271 }
272 }
273
274 spin_lock(&vc->lock);
275 vc->arch_compat = arch_compat;
276 vc->pcr = pcr;
277 spin_unlock(&vc->lock);
278
279 return 0;
280 }
281
282 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
283 {
284 int r;
285
286 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
287 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
288 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
289 for (r = 0; r < 16; ++r)
290 pr_err("r%2d = %.16lx r%d = %.16lx\n",
291 r, kvmppc_get_gpr(vcpu, r),
292 r+16, kvmppc_get_gpr(vcpu, r+16));
293 pr_err("ctr = %.16lx lr = %.16lx\n",
294 vcpu->arch.ctr, vcpu->arch.lr);
295 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
296 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
297 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
298 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
299 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
300 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
301 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
302 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
303 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
304 pr_err("fault dar = %.16lx dsisr = %.8x\n",
305 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
306 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
307 for (r = 0; r < vcpu->arch.slb_max; ++r)
308 pr_err(" ESID = %.16llx VSID = %.16llx\n",
309 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
310 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
311 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
312 vcpu->arch.last_inst);
313 }
314
315 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
316 {
317 struct kvm_vcpu *ret;
318
319 mutex_lock(&kvm->lock);
320 ret = kvm_get_vcpu_by_id(kvm, id);
321 mutex_unlock(&kvm->lock);
322 return ret;
323 }
324
325 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
326 {
327 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
328 vpa->yield_count = cpu_to_be32(1);
329 }
330
331 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
332 unsigned long addr, unsigned long len)
333 {
334 /* check address is cacheline aligned */
335 if (addr & (L1_CACHE_BYTES - 1))
336 return -EINVAL;
337 spin_lock(&vcpu->arch.vpa_update_lock);
338 if (v->next_gpa != addr || v->len != len) {
339 v->next_gpa = addr;
340 v->len = addr ? len : 0;
341 v->update_pending = 1;
342 }
343 spin_unlock(&vcpu->arch.vpa_update_lock);
344 return 0;
345 }
346
347 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
348 struct reg_vpa {
349 u32 dummy;
350 union {
351 __be16 hword;
352 __be32 word;
353 } length;
354 };
355
356 static int vpa_is_registered(struct kvmppc_vpa *vpap)
357 {
358 if (vpap->update_pending)
359 return vpap->next_gpa != 0;
360 return vpap->pinned_addr != NULL;
361 }
362
363 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
364 unsigned long flags,
365 unsigned long vcpuid, unsigned long vpa)
366 {
367 struct kvm *kvm = vcpu->kvm;
368 unsigned long len, nb;
369 void *va;
370 struct kvm_vcpu *tvcpu;
371 int err;
372 int subfunc;
373 struct kvmppc_vpa *vpap;
374
375 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
376 if (!tvcpu)
377 return H_PARAMETER;
378
379 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
380 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
381 subfunc == H_VPA_REG_SLB) {
382 /* Registering new area - address must be cache-line aligned */
383 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
384 return H_PARAMETER;
385
386 /* convert logical addr to kernel addr and read length */
387 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
388 if (va == NULL)
389 return H_PARAMETER;
390 if (subfunc == H_VPA_REG_VPA)
391 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
392 else
393 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
394 kvmppc_unpin_guest_page(kvm, va, vpa, false);
395
396 /* Check length */
397 if (len > nb || len < sizeof(struct reg_vpa))
398 return H_PARAMETER;
399 } else {
400 vpa = 0;
401 len = 0;
402 }
403
404 err = H_PARAMETER;
405 vpap = NULL;
406 spin_lock(&tvcpu->arch.vpa_update_lock);
407
408 switch (subfunc) {
409 case H_VPA_REG_VPA: /* register VPA */
410 if (len < sizeof(struct lppaca))
411 break;
412 vpap = &tvcpu->arch.vpa;
413 err = 0;
414 break;
415
416 case H_VPA_REG_DTL: /* register DTL */
417 if (len < sizeof(struct dtl_entry))
418 break;
419 len -= len % sizeof(struct dtl_entry);
420
421 /* Check that they have previously registered a VPA */
422 err = H_RESOURCE;
423 if (!vpa_is_registered(&tvcpu->arch.vpa))
424 break;
425
426 vpap = &tvcpu->arch.dtl;
427 err = 0;
428 break;
429
430 case H_VPA_REG_SLB: /* register SLB shadow buffer */
431 /* Check that they have previously registered a VPA */
432 err = H_RESOURCE;
433 if (!vpa_is_registered(&tvcpu->arch.vpa))
434 break;
435
436 vpap = &tvcpu->arch.slb_shadow;
437 err = 0;
438 break;
439
440 case H_VPA_DEREG_VPA: /* deregister VPA */
441 /* Check they don't still have a DTL or SLB buf registered */
442 err = H_RESOURCE;
443 if (vpa_is_registered(&tvcpu->arch.dtl) ||
444 vpa_is_registered(&tvcpu->arch.slb_shadow))
445 break;
446
447 vpap = &tvcpu->arch.vpa;
448 err = 0;
449 break;
450
451 case H_VPA_DEREG_DTL: /* deregister DTL */
452 vpap = &tvcpu->arch.dtl;
453 err = 0;
454 break;
455
456 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
457 vpap = &tvcpu->arch.slb_shadow;
458 err = 0;
459 break;
460 }
461
462 if (vpap) {
463 vpap->next_gpa = vpa;
464 vpap->len = len;
465 vpap->update_pending = 1;
466 }
467
468 spin_unlock(&tvcpu->arch.vpa_update_lock);
469
470 return err;
471 }
472
473 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
474 {
475 struct kvm *kvm = vcpu->kvm;
476 void *va;
477 unsigned long nb;
478 unsigned long gpa;
479
480 /*
481 * We need to pin the page pointed to by vpap->next_gpa,
482 * but we can't call kvmppc_pin_guest_page under the lock
483 * as it does get_user_pages() and down_read(). So we
484 * have to drop the lock, pin the page, then get the lock
485 * again and check that a new area didn't get registered
486 * in the meantime.
487 */
488 for (;;) {
489 gpa = vpap->next_gpa;
490 spin_unlock(&vcpu->arch.vpa_update_lock);
491 va = NULL;
492 nb = 0;
493 if (gpa)
494 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
495 spin_lock(&vcpu->arch.vpa_update_lock);
496 if (gpa == vpap->next_gpa)
497 break;
498 /* sigh... unpin that one and try again */
499 if (va)
500 kvmppc_unpin_guest_page(kvm, va, gpa, false);
501 }
502
503 vpap->update_pending = 0;
504 if (va && nb < vpap->len) {
505 /*
506 * If it's now too short, it must be that userspace
507 * has changed the mappings underlying guest memory,
508 * so unregister the region.
509 */
510 kvmppc_unpin_guest_page(kvm, va, gpa, false);
511 va = NULL;
512 }
513 if (vpap->pinned_addr)
514 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
515 vpap->dirty);
516 vpap->gpa = gpa;
517 vpap->pinned_addr = va;
518 vpap->dirty = false;
519 if (va)
520 vpap->pinned_end = va + vpap->len;
521 }
522
523 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
524 {
525 if (!(vcpu->arch.vpa.update_pending ||
526 vcpu->arch.slb_shadow.update_pending ||
527 vcpu->arch.dtl.update_pending))
528 return;
529
530 spin_lock(&vcpu->arch.vpa_update_lock);
531 if (vcpu->arch.vpa.update_pending) {
532 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
533 if (vcpu->arch.vpa.pinned_addr)
534 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
535 }
536 if (vcpu->arch.dtl.update_pending) {
537 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
538 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
539 vcpu->arch.dtl_index = 0;
540 }
541 if (vcpu->arch.slb_shadow.update_pending)
542 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
543 spin_unlock(&vcpu->arch.vpa_update_lock);
544 }
545
546 /*
547 * Return the accumulated stolen time for the vcore up until `now'.
548 * The caller should hold the vcore lock.
549 */
550 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
551 {
552 u64 p;
553 unsigned long flags;
554
555 spin_lock_irqsave(&vc->stoltb_lock, flags);
556 p = vc->stolen_tb;
557 if (vc->vcore_state != VCORE_INACTIVE &&
558 vc->preempt_tb != TB_NIL)
559 p += now - vc->preempt_tb;
560 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
561 return p;
562 }
563
564 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
565 struct kvmppc_vcore *vc)
566 {
567 struct dtl_entry *dt;
568 struct lppaca *vpa;
569 unsigned long stolen;
570 unsigned long core_stolen;
571 u64 now;
572
573 dt = vcpu->arch.dtl_ptr;
574 vpa = vcpu->arch.vpa.pinned_addr;
575 now = mftb();
576 core_stolen = vcore_stolen_time(vc, now);
577 stolen = core_stolen - vcpu->arch.stolen_logged;
578 vcpu->arch.stolen_logged = core_stolen;
579 spin_lock_irq(&vcpu->arch.tbacct_lock);
580 stolen += vcpu->arch.busy_stolen;
581 vcpu->arch.busy_stolen = 0;
582 spin_unlock_irq(&vcpu->arch.tbacct_lock);
583 if (!dt || !vpa)
584 return;
585 memset(dt, 0, sizeof(struct dtl_entry));
586 dt->dispatch_reason = 7;
587 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
588 dt->timebase = cpu_to_be64(now + vc->tb_offset);
589 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
590 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
591 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
592 ++dt;
593 if (dt == vcpu->arch.dtl.pinned_end)
594 dt = vcpu->arch.dtl.pinned_addr;
595 vcpu->arch.dtl_ptr = dt;
596 /* order writing *dt vs. writing vpa->dtl_idx */
597 smp_wmb();
598 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
599 vcpu->arch.dtl.dirty = true;
600 }
601
602 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
603 {
604 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
605 return true;
606 if ((!vcpu->arch.vcore->arch_compat) &&
607 cpu_has_feature(CPU_FTR_ARCH_207S))
608 return true;
609 return false;
610 }
611
612 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
613 unsigned long resource, unsigned long value1,
614 unsigned long value2)
615 {
616 switch (resource) {
617 case H_SET_MODE_RESOURCE_SET_CIABR:
618 if (!kvmppc_power8_compatible(vcpu))
619 return H_P2;
620 if (value2)
621 return H_P4;
622 if (mflags)
623 return H_UNSUPPORTED_FLAG_START;
624 /* Guests can't breakpoint the hypervisor */
625 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
626 return H_P3;
627 vcpu->arch.ciabr = value1;
628 return H_SUCCESS;
629 case H_SET_MODE_RESOURCE_SET_DAWR:
630 if (!kvmppc_power8_compatible(vcpu))
631 return H_P2;
632 if (mflags)
633 return H_UNSUPPORTED_FLAG_START;
634 if (value2 & DABRX_HYP)
635 return H_P4;
636 vcpu->arch.dawr = value1;
637 vcpu->arch.dawrx = value2;
638 return H_SUCCESS;
639 default:
640 return H_TOO_HARD;
641 }
642 }
643
644 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
645 {
646 struct kvmppc_vcore *vcore = target->arch.vcore;
647
648 /*
649 * We expect to have been called by the real mode handler
650 * (kvmppc_rm_h_confer()) which would have directly returned
651 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
652 * have useful work to do and should not confer) so we don't
653 * recheck that here.
654 */
655
656 spin_lock(&vcore->lock);
657 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
658 vcore->vcore_state != VCORE_INACTIVE &&
659 vcore->runner)
660 target = vcore->runner;
661 spin_unlock(&vcore->lock);
662
663 return kvm_vcpu_yield_to(target);
664 }
665
666 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
667 {
668 int yield_count = 0;
669 struct lppaca *lppaca;
670
671 spin_lock(&vcpu->arch.vpa_update_lock);
672 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
673 if (lppaca)
674 yield_count = be32_to_cpu(lppaca->yield_count);
675 spin_unlock(&vcpu->arch.vpa_update_lock);
676 return yield_count;
677 }
678
679 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
680 {
681 unsigned long req = kvmppc_get_gpr(vcpu, 3);
682 unsigned long target, ret = H_SUCCESS;
683 int yield_count;
684 struct kvm_vcpu *tvcpu;
685 int idx, rc;
686
687 if (req <= MAX_HCALL_OPCODE &&
688 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
689 return RESUME_HOST;
690
691 switch (req) {
692 case H_CEDE:
693 break;
694 case H_PROD:
695 target = kvmppc_get_gpr(vcpu, 4);
696 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
697 if (!tvcpu) {
698 ret = H_PARAMETER;
699 break;
700 }
701 tvcpu->arch.prodded = 1;
702 smp_mb();
703 if (vcpu->arch.ceded) {
704 if (waitqueue_active(&vcpu->wq)) {
705 wake_up_interruptible(&vcpu->wq);
706 vcpu->stat.halt_wakeup++;
707 }
708 }
709 break;
710 case H_CONFER:
711 target = kvmppc_get_gpr(vcpu, 4);
712 if (target == -1)
713 break;
714 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
715 if (!tvcpu) {
716 ret = H_PARAMETER;
717 break;
718 }
719 yield_count = kvmppc_get_gpr(vcpu, 5);
720 if (kvmppc_get_yield_count(tvcpu) != yield_count)
721 break;
722 kvm_arch_vcpu_yield_to(tvcpu);
723 break;
724 case H_REGISTER_VPA:
725 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
726 kvmppc_get_gpr(vcpu, 5),
727 kvmppc_get_gpr(vcpu, 6));
728 break;
729 case H_RTAS:
730 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
731 return RESUME_HOST;
732
733 idx = srcu_read_lock(&vcpu->kvm->srcu);
734 rc = kvmppc_rtas_hcall(vcpu);
735 srcu_read_unlock(&vcpu->kvm->srcu, idx);
736
737 if (rc == -ENOENT)
738 return RESUME_HOST;
739 else if (rc == 0)
740 break;
741
742 /* Send the error out to userspace via KVM_RUN */
743 return rc;
744 case H_LOGICAL_CI_LOAD:
745 ret = kvmppc_h_logical_ci_load(vcpu);
746 if (ret == H_TOO_HARD)
747 return RESUME_HOST;
748 break;
749 case H_LOGICAL_CI_STORE:
750 ret = kvmppc_h_logical_ci_store(vcpu);
751 if (ret == H_TOO_HARD)
752 return RESUME_HOST;
753 break;
754 case H_SET_MODE:
755 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
756 kvmppc_get_gpr(vcpu, 5),
757 kvmppc_get_gpr(vcpu, 6),
758 kvmppc_get_gpr(vcpu, 7));
759 if (ret == H_TOO_HARD)
760 return RESUME_HOST;
761 break;
762 case H_XIRR:
763 case H_CPPR:
764 case H_EOI:
765 case H_IPI:
766 case H_IPOLL:
767 case H_XIRR_X:
768 if (kvmppc_xics_enabled(vcpu)) {
769 ret = kvmppc_xics_hcall(vcpu, req);
770 break;
771 } /* fallthrough */
772 default:
773 return RESUME_HOST;
774 }
775 kvmppc_set_gpr(vcpu, 3, ret);
776 vcpu->arch.hcall_needed = 0;
777 return RESUME_GUEST;
778 }
779
780 static int kvmppc_hcall_impl_hv(unsigned long cmd)
781 {
782 switch (cmd) {
783 case H_CEDE:
784 case H_PROD:
785 case H_CONFER:
786 case H_REGISTER_VPA:
787 case H_SET_MODE:
788 case H_LOGICAL_CI_LOAD:
789 case H_LOGICAL_CI_STORE:
790 #ifdef CONFIG_KVM_XICS
791 case H_XIRR:
792 case H_CPPR:
793 case H_EOI:
794 case H_IPI:
795 case H_IPOLL:
796 case H_XIRR_X:
797 #endif
798 return 1;
799 }
800
801 /* See if it's in the real-mode table */
802 return kvmppc_hcall_impl_hv_realmode(cmd);
803 }
804
805 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
806 struct kvm_vcpu *vcpu)
807 {
808 u32 last_inst;
809
810 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
811 EMULATE_DONE) {
812 /*
813 * Fetch failed, so return to guest and
814 * try executing it again.
815 */
816 return RESUME_GUEST;
817 }
818
819 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
820 run->exit_reason = KVM_EXIT_DEBUG;
821 run->debug.arch.address = kvmppc_get_pc(vcpu);
822 return RESUME_HOST;
823 } else {
824 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
825 return RESUME_GUEST;
826 }
827 }
828
829 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
830 struct task_struct *tsk)
831 {
832 int r = RESUME_HOST;
833
834 vcpu->stat.sum_exits++;
835
836 /*
837 * This can happen if an interrupt occurs in the last stages
838 * of guest entry or the first stages of guest exit (i.e. after
839 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
840 * and before setting it to KVM_GUEST_MODE_HOST_HV).
841 * That can happen due to a bug, or due to a machine check
842 * occurring at just the wrong time.
843 */
844 if (vcpu->arch.shregs.msr & MSR_HV) {
845 printk(KERN_EMERG "KVM trap in HV mode!\n");
846 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
847 vcpu->arch.trap, kvmppc_get_pc(vcpu),
848 vcpu->arch.shregs.msr);
849 kvmppc_dump_regs(vcpu);
850 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
851 run->hw.hardware_exit_reason = vcpu->arch.trap;
852 return RESUME_HOST;
853 }
854 run->exit_reason = KVM_EXIT_UNKNOWN;
855 run->ready_for_interrupt_injection = 1;
856 switch (vcpu->arch.trap) {
857 /* We're good on these - the host merely wanted to get our attention */
858 case BOOK3S_INTERRUPT_HV_DECREMENTER:
859 vcpu->stat.dec_exits++;
860 r = RESUME_GUEST;
861 break;
862 case BOOK3S_INTERRUPT_EXTERNAL:
863 case BOOK3S_INTERRUPT_H_DOORBELL:
864 vcpu->stat.ext_intr_exits++;
865 r = RESUME_GUEST;
866 break;
867 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
868 case BOOK3S_INTERRUPT_HMI:
869 case BOOK3S_INTERRUPT_PERFMON:
870 r = RESUME_GUEST;
871 break;
872 case BOOK3S_INTERRUPT_MACHINE_CHECK:
873 /*
874 * Deliver a machine check interrupt to the guest.
875 * We have to do this, even if the host has handled the
876 * machine check, because machine checks use SRR0/1 and
877 * the interrupt might have trashed guest state in them.
878 */
879 kvmppc_book3s_queue_irqprio(vcpu,
880 BOOK3S_INTERRUPT_MACHINE_CHECK);
881 r = RESUME_GUEST;
882 break;
883 case BOOK3S_INTERRUPT_PROGRAM:
884 {
885 ulong flags;
886 /*
887 * Normally program interrupts are delivered directly
888 * to the guest by the hardware, but we can get here
889 * as a result of a hypervisor emulation interrupt
890 * (e40) getting turned into a 700 by BML RTAS.
891 */
892 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
893 kvmppc_core_queue_program(vcpu, flags);
894 r = RESUME_GUEST;
895 break;
896 }
897 case BOOK3S_INTERRUPT_SYSCALL:
898 {
899 /* hcall - punt to userspace */
900 int i;
901
902 /* hypercall with MSR_PR has already been handled in rmode,
903 * and never reaches here.
904 */
905
906 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
907 for (i = 0; i < 9; ++i)
908 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
909 run->exit_reason = KVM_EXIT_PAPR_HCALL;
910 vcpu->arch.hcall_needed = 1;
911 r = RESUME_HOST;
912 break;
913 }
914 /*
915 * We get these next two if the guest accesses a page which it thinks
916 * it has mapped but which is not actually present, either because
917 * it is for an emulated I/O device or because the corresonding
918 * host page has been paged out. Any other HDSI/HISI interrupts
919 * have been handled already.
920 */
921 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
922 r = RESUME_PAGE_FAULT;
923 break;
924 case BOOK3S_INTERRUPT_H_INST_STORAGE:
925 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
926 vcpu->arch.fault_dsisr = 0;
927 r = RESUME_PAGE_FAULT;
928 break;
929 /*
930 * This occurs if the guest executes an illegal instruction.
931 * If the guest debug is disabled, generate a program interrupt
932 * to the guest. If guest debug is enabled, we need to check
933 * whether the instruction is a software breakpoint instruction.
934 * Accordingly return to Guest or Host.
935 */
936 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
937 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
938 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
939 swab32(vcpu->arch.emul_inst) :
940 vcpu->arch.emul_inst;
941 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
942 r = kvmppc_emulate_debug_inst(run, vcpu);
943 } else {
944 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
945 r = RESUME_GUEST;
946 }
947 break;
948 /*
949 * This occurs if the guest (kernel or userspace), does something that
950 * is prohibited by HFSCR. We just generate a program interrupt to
951 * the guest.
952 */
953 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
954 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
955 r = RESUME_GUEST;
956 break;
957 default:
958 kvmppc_dump_regs(vcpu);
959 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
960 vcpu->arch.trap, kvmppc_get_pc(vcpu),
961 vcpu->arch.shregs.msr);
962 run->hw.hardware_exit_reason = vcpu->arch.trap;
963 r = RESUME_HOST;
964 break;
965 }
966
967 return r;
968 }
969
970 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
971 struct kvm_sregs *sregs)
972 {
973 int i;
974
975 memset(sregs, 0, sizeof(struct kvm_sregs));
976 sregs->pvr = vcpu->arch.pvr;
977 for (i = 0; i < vcpu->arch.slb_max; i++) {
978 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
979 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
980 }
981
982 return 0;
983 }
984
985 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
986 struct kvm_sregs *sregs)
987 {
988 int i, j;
989
990 /* Only accept the same PVR as the host's, since we can't spoof it */
991 if (sregs->pvr != vcpu->arch.pvr)
992 return -EINVAL;
993
994 j = 0;
995 for (i = 0; i < vcpu->arch.slb_nr; i++) {
996 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
997 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
998 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
999 ++j;
1000 }
1001 }
1002 vcpu->arch.slb_max = j;
1003
1004 return 0;
1005 }
1006
1007 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1008 bool preserve_top32)
1009 {
1010 struct kvm *kvm = vcpu->kvm;
1011 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1012 u64 mask;
1013
1014 mutex_lock(&kvm->lock);
1015 spin_lock(&vc->lock);
1016 /*
1017 * If ILE (interrupt little-endian) has changed, update the
1018 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1019 */
1020 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1021 struct kvm_vcpu *vcpu;
1022 int i;
1023
1024 kvm_for_each_vcpu(i, vcpu, kvm) {
1025 if (vcpu->arch.vcore != vc)
1026 continue;
1027 if (new_lpcr & LPCR_ILE)
1028 vcpu->arch.intr_msr |= MSR_LE;
1029 else
1030 vcpu->arch.intr_msr &= ~MSR_LE;
1031 }
1032 }
1033
1034 /*
1035 * Userspace can only modify DPFD (default prefetch depth),
1036 * ILE (interrupt little-endian) and TC (translation control).
1037 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1038 */
1039 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1040 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1041 mask |= LPCR_AIL;
1042
1043 /* Broken 32-bit version of LPCR must not clear top bits */
1044 if (preserve_top32)
1045 mask &= 0xFFFFFFFF;
1046 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1047 spin_unlock(&vc->lock);
1048 mutex_unlock(&kvm->lock);
1049 }
1050
1051 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1052 union kvmppc_one_reg *val)
1053 {
1054 int r = 0;
1055 long int i;
1056
1057 switch (id) {
1058 case KVM_REG_PPC_DEBUG_INST:
1059 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1060 break;
1061 case KVM_REG_PPC_HIOR:
1062 *val = get_reg_val(id, 0);
1063 break;
1064 case KVM_REG_PPC_DABR:
1065 *val = get_reg_val(id, vcpu->arch.dabr);
1066 break;
1067 case KVM_REG_PPC_DABRX:
1068 *val = get_reg_val(id, vcpu->arch.dabrx);
1069 break;
1070 case KVM_REG_PPC_DSCR:
1071 *val = get_reg_val(id, vcpu->arch.dscr);
1072 break;
1073 case KVM_REG_PPC_PURR:
1074 *val = get_reg_val(id, vcpu->arch.purr);
1075 break;
1076 case KVM_REG_PPC_SPURR:
1077 *val = get_reg_val(id, vcpu->arch.spurr);
1078 break;
1079 case KVM_REG_PPC_AMR:
1080 *val = get_reg_val(id, vcpu->arch.amr);
1081 break;
1082 case KVM_REG_PPC_UAMOR:
1083 *val = get_reg_val(id, vcpu->arch.uamor);
1084 break;
1085 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1086 i = id - KVM_REG_PPC_MMCR0;
1087 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1088 break;
1089 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1090 i = id - KVM_REG_PPC_PMC1;
1091 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1092 break;
1093 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1094 i = id - KVM_REG_PPC_SPMC1;
1095 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1096 break;
1097 case KVM_REG_PPC_SIAR:
1098 *val = get_reg_val(id, vcpu->arch.siar);
1099 break;
1100 case KVM_REG_PPC_SDAR:
1101 *val = get_reg_val(id, vcpu->arch.sdar);
1102 break;
1103 case KVM_REG_PPC_SIER:
1104 *val = get_reg_val(id, vcpu->arch.sier);
1105 break;
1106 case KVM_REG_PPC_IAMR:
1107 *val = get_reg_val(id, vcpu->arch.iamr);
1108 break;
1109 case KVM_REG_PPC_PSPB:
1110 *val = get_reg_val(id, vcpu->arch.pspb);
1111 break;
1112 case KVM_REG_PPC_DPDES:
1113 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1114 break;
1115 case KVM_REG_PPC_DAWR:
1116 *val = get_reg_val(id, vcpu->arch.dawr);
1117 break;
1118 case KVM_REG_PPC_DAWRX:
1119 *val = get_reg_val(id, vcpu->arch.dawrx);
1120 break;
1121 case KVM_REG_PPC_CIABR:
1122 *val = get_reg_val(id, vcpu->arch.ciabr);
1123 break;
1124 case KVM_REG_PPC_CSIGR:
1125 *val = get_reg_val(id, vcpu->arch.csigr);
1126 break;
1127 case KVM_REG_PPC_TACR:
1128 *val = get_reg_val(id, vcpu->arch.tacr);
1129 break;
1130 case KVM_REG_PPC_TCSCR:
1131 *val = get_reg_val(id, vcpu->arch.tcscr);
1132 break;
1133 case KVM_REG_PPC_PID:
1134 *val = get_reg_val(id, vcpu->arch.pid);
1135 break;
1136 case KVM_REG_PPC_ACOP:
1137 *val = get_reg_val(id, vcpu->arch.acop);
1138 break;
1139 case KVM_REG_PPC_WORT:
1140 *val = get_reg_val(id, vcpu->arch.wort);
1141 break;
1142 case KVM_REG_PPC_VPA_ADDR:
1143 spin_lock(&vcpu->arch.vpa_update_lock);
1144 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1145 spin_unlock(&vcpu->arch.vpa_update_lock);
1146 break;
1147 case KVM_REG_PPC_VPA_SLB:
1148 spin_lock(&vcpu->arch.vpa_update_lock);
1149 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1150 val->vpaval.length = vcpu->arch.slb_shadow.len;
1151 spin_unlock(&vcpu->arch.vpa_update_lock);
1152 break;
1153 case KVM_REG_PPC_VPA_DTL:
1154 spin_lock(&vcpu->arch.vpa_update_lock);
1155 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1156 val->vpaval.length = vcpu->arch.dtl.len;
1157 spin_unlock(&vcpu->arch.vpa_update_lock);
1158 break;
1159 case KVM_REG_PPC_TB_OFFSET:
1160 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1161 break;
1162 case KVM_REG_PPC_LPCR:
1163 case KVM_REG_PPC_LPCR_64:
1164 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1165 break;
1166 case KVM_REG_PPC_PPR:
1167 *val = get_reg_val(id, vcpu->arch.ppr);
1168 break;
1169 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1170 case KVM_REG_PPC_TFHAR:
1171 *val = get_reg_val(id, vcpu->arch.tfhar);
1172 break;
1173 case KVM_REG_PPC_TFIAR:
1174 *val = get_reg_val(id, vcpu->arch.tfiar);
1175 break;
1176 case KVM_REG_PPC_TEXASR:
1177 *val = get_reg_val(id, vcpu->arch.texasr);
1178 break;
1179 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1180 i = id - KVM_REG_PPC_TM_GPR0;
1181 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1182 break;
1183 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1184 {
1185 int j;
1186 i = id - KVM_REG_PPC_TM_VSR0;
1187 if (i < 32)
1188 for (j = 0; j < TS_FPRWIDTH; j++)
1189 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1190 else {
1191 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1192 val->vval = vcpu->arch.vr_tm.vr[i-32];
1193 else
1194 r = -ENXIO;
1195 }
1196 break;
1197 }
1198 case KVM_REG_PPC_TM_CR:
1199 *val = get_reg_val(id, vcpu->arch.cr_tm);
1200 break;
1201 case KVM_REG_PPC_TM_LR:
1202 *val = get_reg_val(id, vcpu->arch.lr_tm);
1203 break;
1204 case KVM_REG_PPC_TM_CTR:
1205 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1206 break;
1207 case KVM_REG_PPC_TM_FPSCR:
1208 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1209 break;
1210 case KVM_REG_PPC_TM_AMR:
1211 *val = get_reg_val(id, vcpu->arch.amr_tm);
1212 break;
1213 case KVM_REG_PPC_TM_PPR:
1214 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1215 break;
1216 case KVM_REG_PPC_TM_VRSAVE:
1217 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1218 break;
1219 case KVM_REG_PPC_TM_VSCR:
1220 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1221 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1222 else
1223 r = -ENXIO;
1224 break;
1225 case KVM_REG_PPC_TM_DSCR:
1226 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1227 break;
1228 case KVM_REG_PPC_TM_TAR:
1229 *val = get_reg_val(id, vcpu->arch.tar_tm);
1230 break;
1231 #endif
1232 case KVM_REG_PPC_ARCH_COMPAT:
1233 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1234 break;
1235 default:
1236 r = -EINVAL;
1237 break;
1238 }
1239
1240 return r;
1241 }
1242
1243 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1244 union kvmppc_one_reg *val)
1245 {
1246 int r = 0;
1247 long int i;
1248 unsigned long addr, len;
1249
1250 switch (id) {
1251 case KVM_REG_PPC_HIOR:
1252 /* Only allow this to be set to zero */
1253 if (set_reg_val(id, *val))
1254 r = -EINVAL;
1255 break;
1256 case KVM_REG_PPC_DABR:
1257 vcpu->arch.dabr = set_reg_val(id, *val);
1258 break;
1259 case KVM_REG_PPC_DABRX:
1260 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1261 break;
1262 case KVM_REG_PPC_DSCR:
1263 vcpu->arch.dscr = set_reg_val(id, *val);
1264 break;
1265 case KVM_REG_PPC_PURR:
1266 vcpu->arch.purr = set_reg_val(id, *val);
1267 break;
1268 case KVM_REG_PPC_SPURR:
1269 vcpu->arch.spurr = set_reg_val(id, *val);
1270 break;
1271 case KVM_REG_PPC_AMR:
1272 vcpu->arch.amr = set_reg_val(id, *val);
1273 break;
1274 case KVM_REG_PPC_UAMOR:
1275 vcpu->arch.uamor = set_reg_val(id, *val);
1276 break;
1277 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1278 i = id - KVM_REG_PPC_MMCR0;
1279 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1280 break;
1281 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1282 i = id - KVM_REG_PPC_PMC1;
1283 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1284 break;
1285 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1286 i = id - KVM_REG_PPC_SPMC1;
1287 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1288 break;
1289 case KVM_REG_PPC_SIAR:
1290 vcpu->arch.siar = set_reg_val(id, *val);
1291 break;
1292 case KVM_REG_PPC_SDAR:
1293 vcpu->arch.sdar = set_reg_val(id, *val);
1294 break;
1295 case KVM_REG_PPC_SIER:
1296 vcpu->arch.sier = set_reg_val(id, *val);
1297 break;
1298 case KVM_REG_PPC_IAMR:
1299 vcpu->arch.iamr = set_reg_val(id, *val);
1300 break;
1301 case KVM_REG_PPC_PSPB:
1302 vcpu->arch.pspb = set_reg_val(id, *val);
1303 break;
1304 case KVM_REG_PPC_DPDES:
1305 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1306 break;
1307 case KVM_REG_PPC_DAWR:
1308 vcpu->arch.dawr = set_reg_val(id, *val);
1309 break;
1310 case KVM_REG_PPC_DAWRX:
1311 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1312 break;
1313 case KVM_REG_PPC_CIABR:
1314 vcpu->arch.ciabr = set_reg_val(id, *val);
1315 /* Don't allow setting breakpoints in hypervisor code */
1316 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1317 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1318 break;
1319 case KVM_REG_PPC_CSIGR:
1320 vcpu->arch.csigr = set_reg_val(id, *val);
1321 break;
1322 case KVM_REG_PPC_TACR:
1323 vcpu->arch.tacr = set_reg_val(id, *val);
1324 break;
1325 case KVM_REG_PPC_TCSCR:
1326 vcpu->arch.tcscr = set_reg_val(id, *val);
1327 break;
1328 case KVM_REG_PPC_PID:
1329 vcpu->arch.pid = set_reg_val(id, *val);
1330 break;
1331 case KVM_REG_PPC_ACOP:
1332 vcpu->arch.acop = set_reg_val(id, *val);
1333 break;
1334 case KVM_REG_PPC_WORT:
1335 vcpu->arch.wort = set_reg_val(id, *val);
1336 break;
1337 case KVM_REG_PPC_VPA_ADDR:
1338 addr = set_reg_val(id, *val);
1339 r = -EINVAL;
1340 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1341 vcpu->arch.dtl.next_gpa))
1342 break;
1343 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1344 break;
1345 case KVM_REG_PPC_VPA_SLB:
1346 addr = val->vpaval.addr;
1347 len = val->vpaval.length;
1348 r = -EINVAL;
1349 if (addr && !vcpu->arch.vpa.next_gpa)
1350 break;
1351 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1352 break;
1353 case KVM_REG_PPC_VPA_DTL:
1354 addr = val->vpaval.addr;
1355 len = val->vpaval.length;
1356 r = -EINVAL;
1357 if (addr && (len < sizeof(struct dtl_entry) ||
1358 !vcpu->arch.vpa.next_gpa))
1359 break;
1360 len -= len % sizeof(struct dtl_entry);
1361 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1362 break;
1363 case KVM_REG_PPC_TB_OFFSET:
1364 /* round up to multiple of 2^24 */
1365 vcpu->arch.vcore->tb_offset =
1366 ALIGN(set_reg_val(id, *val), 1UL << 24);
1367 break;
1368 case KVM_REG_PPC_LPCR:
1369 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1370 break;
1371 case KVM_REG_PPC_LPCR_64:
1372 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1373 break;
1374 case KVM_REG_PPC_PPR:
1375 vcpu->arch.ppr = set_reg_val(id, *val);
1376 break;
1377 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1378 case KVM_REG_PPC_TFHAR:
1379 vcpu->arch.tfhar = set_reg_val(id, *val);
1380 break;
1381 case KVM_REG_PPC_TFIAR:
1382 vcpu->arch.tfiar = set_reg_val(id, *val);
1383 break;
1384 case KVM_REG_PPC_TEXASR:
1385 vcpu->arch.texasr = set_reg_val(id, *val);
1386 break;
1387 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1388 i = id - KVM_REG_PPC_TM_GPR0;
1389 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1390 break;
1391 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1392 {
1393 int j;
1394 i = id - KVM_REG_PPC_TM_VSR0;
1395 if (i < 32)
1396 for (j = 0; j < TS_FPRWIDTH; j++)
1397 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1398 else
1399 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1400 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1401 else
1402 r = -ENXIO;
1403 break;
1404 }
1405 case KVM_REG_PPC_TM_CR:
1406 vcpu->arch.cr_tm = set_reg_val(id, *val);
1407 break;
1408 case KVM_REG_PPC_TM_LR:
1409 vcpu->arch.lr_tm = set_reg_val(id, *val);
1410 break;
1411 case KVM_REG_PPC_TM_CTR:
1412 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1413 break;
1414 case KVM_REG_PPC_TM_FPSCR:
1415 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1416 break;
1417 case KVM_REG_PPC_TM_AMR:
1418 vcpu->arch.amr_tm = set_reg_val(id, *val);
1419 break;
1420 case KVM_REG_PPC_TM_PPR:
1421 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1422 break;
1423 case KVM_REG_PPC_TM_VRSAVE:
1424 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1425 break;
1426 case KVM_REG_PPC_TM_VSCR:
1427 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1428 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1429 else
1430 r = - ENXIO;
1431 break;
1432 case KVM_REG_PPC_TM_DSCR:
1433 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1434 break;
1435 case KVM_REG_PPC_TM_TAR:
1436 vcpu->arch.tar_tm = set_reg_val(id, *val);
1437 break;
1438 #endif
1439 case KVM_REG_PPC_ARCH_COMPAT:
1440 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1441 break;
1442 default:
1443 r = -EINVAL;
1444 break;
1445 }
1446
1447 return r;
1448 }
1449
1450 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1451 {
1452 struct kvmppc_vcore *vcore;
1453
1454 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1455
1456 if (vcore == NULL)
1457 return NULL;
1458
1459 INIT_LIST_HEAD(&vcore->runnable_threads);
1460 spin_lock_init(&vcore->lock);
1461 spin_lock_init(&vcore->stoltb_lock);
1462 init_waitqueue_head(&vcore->wq);
1463 vcore->preempt_tb = TB_NIL;
1464 vcore->lpcr = kvm->arch.lpcr;
1465 vcore->first_vcpuid = core * threads_per_subcore;
1466 vcore->kvm = kvm;
1467 INIT_LIST_HEAD(&vcore->preempt_list);
1468
1469 return vcore;
1470 }
1471
1472 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1473 static struct debugfs_timings_element {
1474 const char *name;
1475 size_t offset;
1476 } timings[] = {
1477 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1478 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1479 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1480 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1481 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1482 };
1483
1484 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1485
1486 struct debugfs_timings_state {
1487 struct kvm_vcpu *vcpu;
1488 unsigned int buflen;
1489 char buf[N_TIMINGS * 100];
1490 };
1491
1492 static int debugfs_timings_open(struct inode *inode, struct file *file)
1493 {
1494 struct kvm_vcpu *vcpu = inode->i_private;
1495 struct debugfs_timings_state *p;
1496
1497 p = kzalloc(sizeof(*p), GFP_KERNEL);
1498 if (!p)
1499 return -ENOMEM;
1500
1501 kvm_get_kvm(vcpu->kvm);
1502 p->vcpu = vcpu;
1503 file->private_data = p;
1504
1505 return nonseekable_open(inode, file);
1506 }
1507
1508 static int debugfs_timings_release(struct inode *inode, struct file *file)
1509 {
1510 struct debugfs_timings_state *p = file->private_data;
1511
1512 kvm_put_kvm(p->vcpu->kvm);
1513 kfree(p);
1514 return 0;
1515 }
1516
1517 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1518 size_t len, loff_t *ppos)
1519 {
1520 struct debugfs_timings_state *p = file->private_data;
1521 struct kvm_vcpu *vcpu = p->vcpu;
1522 char *s, *buf_end;
1523 struct kvmhv_tb_accumulator tb;
1524 u64 count;
1525 loff_t pos;
1526 ssize_t n;
1527 int i, loops;
1528 bool ok;
1529
1530 if (!p->buflen) {
1531 s = p->buf;
1532 buf_end = s + sizeof(p->buf);
1533 for (i = 0; i < N_TIMINGS; ++i) {
1534 struct kvmhv_tb_accumulator *acc;
1535
1536 acc = (struct kvmhv_tb_accumulator *)
1537 ((unsigned long)vcpu + timings[i].offset);
1538 ok = false;
1539 for (loops = 0; loops < 1000; ++loops) {
1540 count = acc->seqcount;
1541 if (!(count & 1)) {
1542 smp_rmb();
1543 tb = *acc;
1544 smp_rmb();
1545 if (count == acc->seqcount) {
1546 ok = true;
1547 break;
1548 }
1549 }
1550 udelay(1);
1551 }
1552 if (!ok)
1553 snprintf(s, buf_end - s, "%s: stuck\n",
1554 timings[i].name);
1555 else
1556 snprintf(s, buf_end - s,
1557 "%s: %llu %llu %llu %llu\n",
1558 timings[i].name, count / 2,
1559 tb_to_ns(tb.tb_total),
1560 tb_to_ns(tb.tb_min),
1561 tb_to_ns(tb.tb_max));
1562 s += strlen(s);
1563 }
1564 p->buflen = s - p->buf;
1565 }
1566
1567 pos = *ppos;
1568 if (pos >= p->buflen)
1569 return 0;
1570 if (len > p->buflen - pos)
1571 len = p->buflen - pos;
1572 n = copy_to_user(buf, p->buf + pos, len);
1573 if (n) {
1574 if (n == len)
1575 return -EFAULT;
1576 len -= n;
1577 }
1578 *ppos = pos + len;
1579 return len;
1580 }
1581
1582 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1583 size_t len, loff_t *ppos)
1584 {
1585 return -EACCES;
1586 }
1587
1588 static const struct file_operations debugfs_timings_ops = {
1589 .owner = THIS_MODULE,
1590 .open = debugfs_timings_open,
1591 .release = debugfs_timings_release,
1592 .read = debugfs_timings_read,
1593 .write = debugfs_timings_write,
1594 .llseek = generic_file_llseek,
1595 };
1596
1597 /* Create a debugfs directory for the vcpu */
1598 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1599 {
1600 char buf[16];
1601 struct kvm *kvm = vcpu->kvm;
1602
1603 snprintf(buf, sizeof(buf), "vcpu%u", id);
1604 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1605 return;
1606 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1607 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1608 return;
1609 vcpu->arch.debugfs_timings =
1610 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1611 vcpu, &debugfs_timings_ops);
1612 }
1613
1614 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1615 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1616 {
1617 }
1618 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1619
1620 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1621 unsigned int id)
1622 {
1623 struct kvm_vcpu *vcpu;
1624 int err = -EINVAL;
1625 int core;
1626 struct kvmppc_vcore *vcore;
1627
1628 core = id / threads_per_subcore;
1629 if (core >= KVM_MAX_VCORES)
1630 goto out;
1631
1632 err = -ENOMEM;
1633 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1634 if (!vcpu)
1635 goto out;
1636
1637 err = kvm_vcpu_init(vcpu, kvm, id);
1638 if (err)
1639 goto free_vcpu;
1640
1641 vcpu->arch.shared = &vcpu->arch.shregs;
1642 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1643 /*
1644 * The shared struct is never shared on HV,
1645 * so we can always use host endianness
1646 */
1647 #ifdef __BIG_ENDIAN__
1648 vcpu->arch.shared_big_endian = true;
1649 #else
1650 vcpu->arch.shared_big_endian = false;
1651 #endif
1652 #endif
1653 vcpu->arch.mmcr[0] = MMCR0_FC;
1654 vcpu->arch.ctrl = CTRL_RUNLATCH;
1655 /* default to host PVR, since we can't spoof it */
1656 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1657 spin_lock_init(&vcpu->arch.vpa_update_lock);
1658 spin_lock_init(&vcpu->arch.tbacct_lock);
1659 vcpu->arch.busy_preempt = TB_NIL;
1660 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1661
1662 kvmppc_mmu_book3s_hv_init(vcpu);
1663
1664 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1665
1666 init_waitqueue_head(&vcpu->arch.cpu_run);
1667
1668 mutex_lock(&kvm->lock);
1669 vcore = kvm->arch.vcores[core];
1670 if (!vcore) {
1671 vcore = kvmppc_vcore_create(kvm, core);
1672 kvm->arch.vcores[core] = vcore;
1673 kvm->arch.online_vcores++;
1674 }
1675 mutex_unlock(&kvm->lock);
1676
1677 if (!vcore)
1678 goto free_vcpu;
1679
1680 spin_lock(&vcore->lock);
1681 ++vcore->num_threads;
1682 spin_unlock(&vcore->lock);
1683 vcpu->arch.vcore = vcore;
1684 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1685 vcpu->arch.thread_cpu = -1;
1686
1687 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1688 kvmppc_sanity_check(vcpu);
1689
1690 debugfs_vcpu_init(vcpu, id);
1691
1692 return vcpu;
1693
1694 free_vcpu:
1695 kmem_cache_free(kvm_vcpu_cache, vcpu);
1696 out:
1697 return ERR_PTR(err);
1698 }
1699
1700 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1701 {
1702 if (vpa->pinned_addr)
1703 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1704 vpa->dirty);
1705 }
1706
1707 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1708 {
1709 spin_lock(&vcpu->arch.vpa_update_lock);
1710 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1711 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1712 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1713 spin_unlock(&vcpu->arch.vpa_update_lock);
1714 kvm_vcpu_uninit(vcpu);
1715 kmem_cache_free(kvm_vcpu_cache, vcpu);
1716 }
1717
1718 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1719 {
1720 /* Indicate we want to get back into the guest */
1721 return 1;
1722 }
1723
1724 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1725 {
1726 unsigned long dec_nsec, now;
1727
1728 now = get_tb();
1729 if (now > vcpu->arch.dec_expires) {
1730 /* decrementer has already gone negative */
1731 kvmppc_core_queue_dec(vcpu);
1732 kvmppc_core_prepare_to_enter(vcpu);
1733 return;
1734 }
1735 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1736 / tb_ticks_per_sec;
1737 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1738 HRTIMER_MODE_REL);
1739 vcpu->arch.timer_running = 1;
1740 }
1741
1742 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1743 {
1744 vcpu->arch.ceded = 0;
1745 if (vcpu->arch.timer_running) {
1746 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1747 vcpu->arch.timer_running = 0;
1748 }
1749 }
1750
1751 extern void __kvmppc_vcore_entry(void);
1752
1753 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1754 struct kvm_vcpu *vcpu)
1755 {
1756 u64 now;
1757
1758 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1759 return;
1760 spin_lock_irq(&vcpu->arch.tbacct_lock);
1761 now = mftb();
1762 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1763 vcpu->arch.stolen_logged;
1764 vcpu->arch.busy_preempt = now;
1765 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1766 spin_unlock_irq(&vcpu->arch.tbacct_lock);
1767 --vc->n_runnable;
1768 list_del(&vcpu->arch.run_list);
1769 }
1770
1771 static int kvmppc_grab_hwthread(int cpu)
1772 {
1773 struct paca_struct *tpaca;
1774 long timeout = 10000;
1775
1776 tpaca = &paca[cpu];
1777
1778 /* Ensure the thread won't go into the kernel if it wakes */
1779 tpaca->kvm_hstate.kvm_vcpu = NULL;
1780 tpaca->kvm_hstate.kvm_vcore = NULL;
1781 tpaca->kvm_hstate.napping = 0;
1782 smp_wmb();
1783 tpaca->kvm_hstate.hwthread_req = 1;
1784
1785 /*
1786 * If the thread is already executing in the kernel (e.g. handling
1787 * a stray interrupt), wait for it to get back to nap mode.
1788 * The smp_mb() is to ensure that our setting of hwthread_req
1789 * is visible before we look at hwthread_state, so if this
1790 * races with the code at system_reset_pSeries and the thread
1791 * misses our setting of hwthread_req, we are sure to see its
1792 * setting of hwthread_state, and vice versa.
1793 */
1794 smp_mb();
1795 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1796 if (--timeout <= 0) {
1797 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1798 return -EBUSY;
1799 }
1800 udelay(1);
1801 }
1802 return 0;
1803 }
1804
1805 static void kvmppc_release_hwthread(int cpu)
1806 {
1807 struct paca_struct *tpaca;
1808
1809 tpaca = &paca[cpu];
1810 tpaca->kvm_hstate.hwthread_req = 0;
1811 tpaca->kvm_hstate.kvm_vcpu = NULL;
1812 tpaca->kvm_hstate.kvm_vcore = NULL;
1813 tpaca->kvm_hstate.kvm_split_mode = NULL;
1814 }
1815
1816 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1817 {
1818 int cpu;
1819 struct paca_struct *tpaca;
1820 struct kvmppc_vcore *mvc = vc->master_vcore;
1821
1822 cpu = vc->pcpu;
1823 if (vcpu) {
1824 if (vcpu->arch.timer_running) {
1825 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1826 vcpu->arch.timer_running = 0;
1827 }
1828 cpu += vcpu->arch.ptid;
1829 vcpu->cpu = mvc->pcpu;
1830 vcpu->arch.thread_cpu = cpu;
1831 }
1832 tpaca = &paca[cpu];
1833 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1834 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1835 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1836 smp_wmb();
1837 tpaca->kvm_hstate.kvm_vcore = mvc;
1838 if (cpu != smp_processor_id())
1839 kvmppc_ipi_thread(cpu);
1840 }
1841
1842 static void kvmppc_wait_for_nap(void)
1843 {
1844 int cpu = smp_processor_id();
1845 int i, loops;
1846
1847 for (loops = 0; loops < 1000000; ++loops) {
1848 /*
1849 * Check if all threads are finished.
1850 * We set the vcore pointer when starting a thread
1851 * and the thread clears it when finished, so we look
1852 * for any threads that still have a non-NULL vcore ptr.
1853 */
1854 for (i = 1; i < threads_per_subcore; ++i)
1855 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1856 break;
1857 if (i == threads_per_subcore) {
1858 HMT_medium();
1859 return;
1860 }
1861 HMT_low();
1862 }
1863 HMT_medium();
1864 for (i = 1; i < threads_per_subcore; ++i)
1865 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1866 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1867 }
1868
1869 /*
1870 * Check that we are on thread 0 and that any other threads in
1871 * this core are off-line. Then grab the threads so they can't
1872 * enter the kernel.
1873 */
1874 static int on_primary_thread(void)
1875 {
1876 int cpu = smp_processor_id();
1877 int thr;
1878
1879 /* Are we on a primary subcore? */
1880 if (cpu_thread_in_subcore(cpu))
1881 return 0;
1882
1883 thr = 0;
1884 while (++thr < threads_per_subcore)
1885 if (cpu_online(cpu + thr))
1886 return 0;
1887
1888 /* Grab all hw threads so they can't go into the kernel */
1889 for (thr = 1; thr < threads_per_subcore; ++thr) {
1890 if (kvmppc_grab_hwthread(cpu + thr)) {
1891 /* Couldn't grab one; let the others go */
1892 do {
1893 kvmppc_release_hwthread(cpu + thr);
1894 } while (--thr > 0);
1895 return 0;
1896 }
1897 }
1898 return 1;
1899 }
1900
1901 /*
1902 * A list of virtual cores for each physical CPU.
1903 * These are vcores that could run but their runner VCPU tasks are
1904 * (or may be) preempted.
1905 */
1906 struct preempted_vcore_list {
1907 struct list_head list;
1908 spinlock_t lock;
1909 };
1910
1911 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1912
1913 static void init_vcore_lists(void)
1914 {
1915 int cpu;
1916
1917 for_each_possible_cpu(cpu) {
1918 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1919 spin_lock_init(&lp->lock);
1920 INIT_LIST_HEAD(&lp->list);
1921 }
1922 }
1923
1924 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1925 {
1926 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1927
1928 vc->vcore_state = VCORE_PREEMPT;
1929 vc->pcpu = smp_processor_id();
1930 if (vc->num_threads < threads_per_subcore) {
1931 spin_lock(&lp->lock);
1932 list_add_tail(&vc->preempt_list, &lp->list);
1933 spin_unlock(&lp->lock);
1934 }
1935
1936 /* Start accumulating stolen time */
1937 kvmppc_core_start_stolen(vc);
1938 }
1939
1940 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1941 {
1942 struct preempted_vcore_list *lp;
1943
1944 kvmppc_core_end_stolen(vc);
1945 if (!list_empty(&vc->preempt_list)) {
1946 lp = &per_cpu(preempted_vcores, vc->pcpu);
1947 spin_lock(&lp->lock);
1948 list_del_init(&vc->preempt_list);
1949 spin_unlock(&lp->lock);
1950 }
1951 vc->vcore_state = VCORE_INACTIVE;
1952 }
1953
1954 /*
1955 * This stores information about the virtual cores currently
1956 * assigned to a physical core.
1957 */
1958 struct core_info {
1959 int n_subcores;
1960 int max_subcore_threads;
1961 int total_threads;
1962 int subcore_threads[MAX_SUBCORES];
1963 struct kvm *subcore_vm[MAX_SUBCORES];
1964 struct list_head vcs[MAX_SUBCORES];
1965 };
1966
1967 /*
1968 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1969 * respectively in 2-way micro-threading (split-core) mode.
1970 */
1971 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
1972
1973 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
1974 {
1975 int sub;
1976
1977 memset(cip, 0, sizeof(*cip));
1978 cip->n_subcores = 1;
1979 cip->max_subcore_threads = vc->num_threads;
1980 cip->total_threads = vc->num_threads;
1981 cip->subcore_threads[0] = vc->num_threads;
1982 cip->subcore_vm[0] = vc->kvm;
1983 for (sub = 0; sub < MAX_SUBCORES; ++sub)
1984 INIT_LIST_HEAD(&cip->vcs[sub]);
1985 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
1986 }
1987
1988 static bool subcore_config_ok(int n_subcores, int n_threads)
1989 {
1990 /* Can only dynamically split if unsplit to begin with */
1991 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
1992 return false;
1993 if (n_subcores > MAX_SUBCORES)
1994 return false;
1995 if (n_subcores > 1) {
1996 if (!(dynamic_mt_modes & 2))
1997 n_subcores = 4;
1998 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
1999 return false;
2000 }
2001
2002 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2003 }
2004
2005 static void init_master_vcore(struct kvmppc_vcore *vc)
2006 {
2007 vc->master_vcore = vc;
2008 vc->entry_exit_map = 0;
2009 vc->in_guest = 0;
2010 vc->napping_threads = 0;
2011 vc->conferring_threads = 0;
2012 }
2013
2014 /*
2015 * See if the existing subcores can be split into 3 (or fewer) subcores
2016 * of at most two threads each, so we can fit in another vcore. This
2017 * assumes there are at most two subcores and at most 6 threads in total.
2018 */
2019 static bool can_split_piggybacked_subcores(struct core_info *cip)
2020 {
2021 int sub, new_sub;
2022 int large_sub = -1;
2023 int thr;
2024 int n_subcores = cip->n_subcores;
2025 struct kvmppc_vcore *vc, *vcnext;
2026 struct kvmppc_vcore *master_vc = NULL;
2027
2028 for (sub = 0; sub < cip->n_subcores; ++sub) {
2029 if (cip->subcore_threads[sub] <= 2)
2030 continue;
2031 if (large_sub >= 0)
2032 return false;
2033 large_sub = sub;
2034 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2035 preempt_list);
2036 if (vc->num_threads > 2)
2037 return false;
2038 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2039 }
2040 if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2041 return false;
2042
2043 /*
2044 * Seems feasible, so go through and move vcores to new subcores.
2045 * Note that when we have two or more vcores in one subcore,
2046 * all those vcores must have only one thread each.
2047 */
2048 new_sub = cip->n_subcores;
2049 thr = 0;
2050 sub = large_sub;
2051 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2052 if (thr >= 2) {
2053 list_del(&vc->preempt_list);
2054 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2055 /* vc->num_threads must be 1 */
2056 if (++cip->subcore_threads[new_sub] == 1) {
2057 cip->subcore_vm[new_sub] = vc->kvm;
2058 init_master_vcore(vc);
2059 master_vc = vc;
2060 ++cip->n_subcores;
2061 } else {
2062 vc->master_vcore = master_vc;
2063 ++new_sub;
2064 }
2065 }
2066 thr += vc->num_threads;
2067 }
2068 cip->subcore_threads[large_sub] = 2;
2069 cip->max_subcore_threads = 2;
2070
2071 return true;
2072 }
2073
2074 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2075 {
2076 int n_threads = vc->num_threads;
2077 int sub;
2078
2079 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2080 return false;
2081
2082 if (n_threads < cip->max_subcore_threads)
2083 n_threads = cip->max_subcore_threads;
2084 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2085 cip->max_subcore_threads = n_threads;
2086 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2087 vc->num_threads <= 2) {
2088 /*
2089 * We may be able to fit another subcore in by
2090 * splitting an existing subcore with 3 or 4
2091 * threads into two 2-thread subcores, or one
2092 * with 5 or 6 threads into three subcores.
2093 * We can only do this if those subcores have
2094 * piggybacked virtual cores.
2095 */
2096 if (!can_split_piggybacked_subcores(cip))
2097 return false;
2098 } else {
2099 return false;
2100 }
2101
2102 sub = cip->n_subcores;
2103 ++cip->n_subcores;
2104 cip->total_threads += vc->num_threads;
2105 cip->subcore_threads[sub] = vc->num_threads;
2106 cip->subcore_vm[sub] = vc->kvm;
2107 init_master_vcore(vc);
2108 list_del(&vc->preempt_list);
2109 list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2110
2111 return true;
2112 }
2113
2114 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2115 struct core_info *cip, int sub)
2116 {
2117 struct kvmppc_vcore *vc;
2118 int n_thr;
2119
2120 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2121 preempt_list);
2122
2123 /* require same VM and same per-core reg values */
2124 if (pvc->kvm != vc->kvm ||
2125 pvc->tb_offset != vc->tb_offset ||
2126 pvc->pcr != vc->pcr ||
2127 pvc->lpcr != vc->lpcr)
2128 return false;
2129
2130 /* P8 guest with > 1 thread per core would see wrong TIR value */
2131 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2132 (vc->num_threads > 1 || pvc->num_threads > 1))
2133 return false;
2134
2135 n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2136 if (n_thr > cip->max_subcore_threads) {
2137 if (!subcore_config_ok(cip->n_subcores, n_thr))
2138 return false;
2139 cip->max_subcore_threads = n_thr;
2140 }
2141
2142 cip->total_threads += pvc->num_threads;
2143 cip->subcore_threads[sub] = n_thr;
2144 pvc->master_vcore = vc;
2145 list_del(&pvc->preempt_list);
2146 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2147
2148 return true;
2149 }
2150
2151 /*
2152 * Work out whether it is possible to piggyback the execution of
2153 * vcore *pvc onto the execution of the other vcores described in *cip.
2154 */
2155 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2156 int target_threads)
2157 {
2158 int sub;
2159
2160 if (cip->total_threads + pvc->num_threads > target_threads)
2161 return false;
2162 for (sub = 0; sub < cip->n_subcores; ++sub)
2163 if (cip->subcore_threads[sub] &&
2164 can_piggyback_subcore(pvc, cip, sub))
2165 return true;
2166
2167 if (can_dynamic_split(pvc, cip))
2168 return true;
2169
2170 return false;
2171 }
2172
2173 static void prepare_threads(struct kvmppc_vcore *vc)
2174 {
2175 struct kvm_vcpu *vcpu, *vnext;
2176
2177 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2178 arch.run_list) {
2179 if (signal_pending(vcpu->arch.run_task))
2180 vcpu->arch.ret = -EINTR;
2181 else if (vcpu->arch.vpa.update_pending ||
2182 vcpu->arch.slb_shadow.update_pending ||
2183 vcpu->arch.dtl.update_pending)
2184 vcpu->arch.ret = RESUME_GUEST;
2185 else
2186 continue;
2187 kvmppc_remove_runnable(vc, vcpu);
2188 wake_up(&vcpu->arch.cpu_run);
2189 }
2190 }
2191
2192 static void collect_piggybacks(struct core_info *cip, int target_threads)
2193 {
2194 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2195 struct kvmppc_vcore *pvc, *vcnext;
2196
2197 spin_lock(&lp->lock);
2198 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2199 if (!spin_trylock(&pvc->lock))
2200 continue;
2201 prepare_threads(pvc);
2202 if (!pvc->n_runnable) {
2203 list_del_init(&pvc->preempt_list);
2204 if (pvc->runner == NULL) {
2205 pvc->vcore_state = VCORE_INACTIVE;
2206 kvmppc_core_end_stolen(pvc);
2207 }
2208 spin_unlock(&pvc->lock);
2209 continue;
2210 }
2211 if (!can_piggyback(pvc, cip, target_threads)) {
2212 spin_unlock(&pvc->lock);
2213 continue;
2214 }
2215 kvmppc_core_end_stolen(pvc);
2216 pvc->vcore_state = VCORE_PIGGYBACK;
2217 if (cip->total_threads >= target_threads)
2218 break;
2219 }
2220 spin_unlock(&lp->lock);
2221 }
2222
2223 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2224 {
2225 int still_running = 0;
2226 u64 now;
2227 long ret;
2228 struct kvm_vcpu *vcpu, *vnext;
2229
2230 spin_lock(&vc->lock);
2231 now = get_tb();
2232 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2233 arch.run_list) {
2234 /* cancel pending dec exception if dec is positive */
2235 if (now < vcpu->arch.dec_expires &&
2236 kvmppc_core_pending_dec(vcpu))
2237 kvmppc_core_dequeue_dec(vcpu);
2238
2239 trace_kvm_guest_exit(vcpu);
2240
2241 ret = RESUME_GUEST;
2242 if (vcpu->arch.trap)
2243 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2244 vcpu->arch.run_task);
2245
2246 vcpu->arch.ret = ret;
2247 vcpu->arch.trap = 0;
2248
2249 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2250 if (vcpu->arch.pending_exceptions)
2251 kvmppc_core_prepare_to_enter(vcpu);
2252 if (vcpu->arch.ceded)
2253 kvmppc_set_timer(vcpu);
2254 else
2255 ++still_running;
2256 } else {
2257 kvmppc_remove_runnable(vc, vcpu);
2258 wake_up(&vcpu->arch.cpu_run);
2259 }
2260 }
2261 list_del_init(&vc->preempt_list);
2262 if (!is_master) {
2263 if (still_running > 0) {
2264 kvmppc_vcore_preempt(vc);
2265 } else if (vc->runner) {
2266 vc->vcore_state = VCORE_PREEMPT;
2267 kvmppc_core_start_stolen(vc);
2268 } else {
2269 vc->vcore_state = VCORE_INACTIVE;
2270 }
2271 if (vc->n_runnable > 0 && vc->runner == NULL) {
2272 /* make sure there's a candidate runner awake */
2273 vcpu = list_first_entry(&vc->runnable_threads,
2274 struct kvm_vcpu, arch.run_list);
2275 wake_up(&vcpu->arch.cpu_run);
2276 }
2277 }
2278 spin_unlock(&vc->lock);
2279 }
2280
2281 /*
2282 * Run a set of guest threads on a physical core.
2283 * Called with vc->lock held.
2284 */
2285 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2286 {
2287 struct kvm_vcpu *vcpu, *vnext;
2288 int i;
2289 int srcu_idx;
2290 struct core_info core_info;
2291 struct kvmppc_vcore *pvc, *vcnext;
2292 struct kvm_split_mode split_info, *sip;
2293 int split, subcore_size, active;
2294 int sub;
2295 bool thr0_done;
2296 unsigned long cmd_bit, stat_bit;
2297 int pcpu, thr;
2298 int target_threads;
2299
2300 /*
2301 * Remove from the list any threads that have a signal pending
2302 * or need a VPA update done
2303 */
2304 prepare_threads(vc);
2305
2306 /* if the runner is no longer runnable, let the caller pick a new one */
2307 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2308 return;
2309
2310 /*
2311 * Initialize *vc.
2312 */
2313 init_master_vcore(vc);
2314 vc->preempt_tb = TB_NIL;
2315
2316 /*
2317 * Make sure we are running on primary threads, and that secondary
2318 * threads are offline. Also check if the number of threads in this
2319 * guest are greater than the current system threads per guest.
2320 */
2321 if ((threads_per_core > 1) &&
2322 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2323 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2324 arch.run_list) {
2325 vcpu->arch.ret = -EBUSY;
2326 kvmppc_remove_runnable(vc, vcpu);
2327 wake_up(&vcpu->arch.cpu_run);
2328 }
2329 goto out;
2330 }
2331
2332 /*
2333 * See if we could run any other vcores on the physical core
2334 * along with this one.
2335 */
2336 init_core_info(&core_info, vc);
2337 pcpu = smp_processor_id();
2338 target_threads = threads_per_subcore;
2339 if (target_smt_mode && target_smt_mode < target_threads)
2340 target_threads = target_smt_mode;
2341 if (vc->num_threads < target_threads)
2342 collect_piggybacks(&core_info, target_threads);
2343
2344 /* Decide on micro-threading (split-core) mode */
2345 subcore_size = threads_per_subcore;
2346 cmd_bit = stat_bit = 0;
2347 split = core_info.n_subcores;
2348 sip = NULL;
2349 if (split > 1) {
2350 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2351 if (split == 2 && (dynamic_mt_modes & 2)) {
2352 cmd_bit = HID0_POWER8_1TO2LPAR;
2353 stat_bit = HID0_POWER8_2LPARMODE;
2354 } else {
2355 split = 4;
2356 cmd_bit = HID0_POWER8_1TO4LPAR;
2357 stat_bit = HID0_POWER8_4LPARMODE;
2358 }
2359 subcore_size = MAX_SMT_THREADS / split;
2360 sip = &split_info;
2361 memset(&split_info, 0, sizeof(split_info));
2362 split_info.rpr = mfspr(SPRN_RPR);
2363 split_info.pmmar = mfspr(SPRN_PMMAR);
2364 split_info.ldbar = mfspr(SPRN_LDBAR);
2365 split_info.subcore_size = subcore_size;
2366 for (sub = 0; sub < core_info.n_subcores; ++sub)
2367 split_info.master_vcs[sub] =
2368 list_first_entry(&core_info.vcs[sub],
2369 struct kvmppc_vcore, preempt_list);
2370 /* order writes to split_info before kvm_split_mode pointer */
2371 smp_wmb();
2372 }
2373 pcpu = smp_processor_id();
2374 for (thr = 0; thr < threads_per_subcore; ++thr)
2375 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2376
2377 /* Initiate micro-threading (split-core) if required */
2378 if (cmd_bit) {
2379 unsigned long hid0 = mfspr(SPRN_HID0);
2380
2381 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2382 mb();
2383 mtspr(SPRN_HID0, hid0);
2384 isync();
2385 for (;;) {
2386 hid0 = mfspr(SPRN_HID0);
2387 if (hid0 & stat_bit)
2388 break;
2389 cpu_relax();
2390 }
2391 }
2392
2393 /* Start all the threads */
2394 active = 0;
2395 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2396 thr = subcore_thread_map[sub];
2397 thr0_done = false;
2398 active |= 1 << thr;
2399 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2400 pvc->pcpu = pcpu + thr;
2401 list_for_each_entry(vcpu, &pvc->runnable_threads,
2402 arch.run_list) {
2403 kvmppc_start_thread(vcpu, pvc);
2404 kvmppc_create_dtl_entry(vcpu, pvc);
2405 trace_kvm_guest_enter(vcpu);
2406 if (!vcpu->arch.ptid)
2407 thr0_done = true;
2408 active |= 1 << (thr + vcpu->arch.ptid);
2409 }
2410 /*
2411 * We need to start the first thread of each subcore
2412 * even if it doesn't have a vcpu.
2413 */
2414 if (pvc->master_vcore == pvc && !thr0_done)
2415 kvmppc_start_thread(NULL, pvc);
2416 thr += pvc->num_threads;
2417 }
2418 }
2419
2420 /*
2421 * Ensure that split_info.do_nap is set after setting
2422 * the vcore pointer in the PACA of the secondaries.
2423 */
2424 smp_mb();
2425 if (cmd_bit)
2426 split_info.do_nap = 1; /* ask secondaries to nap when done */
2427
2428 /*
2429 * When doing micro-threading, poke the inactive threads as well.
2430 * This gets them to the nap instruction after kvm_do_nap,
2431 * which reduces the time taken to unsplit later.
2432 */
2433 if (split > 1)
2434 for (thr = 1; thr < threads_per_subcore; ++thr)
2435 if (!(active & (1 << thr)))
2436 kvmppc_ipi_thread(pcpu + thr);
2437
2438 vc->vcore_state = VCORE_RUNNING;
2439 preempt_disable();
2440
2441 trace_kvmppc_run_core(vc, 0);
2442
2443 for (sub = 0; sub < core_info.n_subcores; ++sub)
2444 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2445 spin_unlock(&pvc->lock);
2446
2447 kvm_guest_enter();
2448
2449 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2450
2451 __kvmppc_vcore_entry();
2452
2453 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2454
2455 spin_lock(&vc->lock);
2456 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2457 vc->vcore_state = VCORE_EXITING;
2458
2459 /* wait for secondary threads to finish writing their state to memory */
2460 kvmppc_wait_for_nap();
2461
2462 /* Return to whole-core mode if we split the core earlier */
2463 if (split > 1) {
2464 unsigned long hid0 = mfspr(SPRN_HID0);
2465 unsigned long loops = 0;
2466
2467 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2468 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2469 mb();
2470 mtspr(SPRN_HID0, hid0);
2471 isync();
2472 for (;;) {
2473 hid0 = mfspr(SPRN_HID0);
2474 if (!(hid0 & stat_bit))
2475 break;
2476 cpu_relax();
2477 ++loops;
2478 }
2479 split_info.do_nap = 0;
2480 }
2481
2482 /* Let secondaries go back to the offline loop */
2483 for (i = 0; i < threads_per_subcore; ++i) {
2484 kvmppc_release_hwthread(pcpu + i);
2485 if (sip && sip->napped[i])
2486 kvmppc_ipi_thread(pcpu + i);
2487 }
2488
2489 spin_unlock(&vc->lock);
2490
2491 /* make sure updates to secondary vcpu structs are visible now */
2492 smp_mb();
2493 kvm_guest_exit();
2494
2495 for (sub = 0; sub < core_info.n_subcores; ++sub)
2496 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2497 preempt_list)
2498 post_guest_process(pvc, pvc == vc);
2499
2500 spin_lock(&vc->lock);
2501 preempt_enable();
2502
2503 out:
2504 vc->vcore_state = VCORE_INACTIVE;
2505 trace_kvmppc_run_core(vc, 1);
2506 }
2507
2508 /*
2509 * Wait for some other vcpu thread to execute us, and
2510 * wake us up when we need to handle something in the host.
2511 */
2512 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2513 struct kvm_vcpu *vcpu, int wait_state)
2514 {
2515 DEFINE_WAIT(wait);
2516
2517 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2518 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2519 spin_unlock(&vc->lock);
2520 schedule();
2521 spin_lock(&vc->lock);
2522 }
2523 finish_wait(&vcpu->arch.cpu_run, &wait);
2524 }
2525
2526 /*
2527 * All the vcpus in this vcore are idle, so wait for a decrementer
2528 * or external interrupt to one of the vcpus. vc->lock is held.
2529 */
2530 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2531 {
2532 struct kvm_vcpu *vcpu;
2533 int do_sleep = 1;
2534
2535 DEFINE_WAIT(wait);
2536
2537 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2538
2539 /*
2540 * Check one last time for pending exceptions and ceded state after
2541 * we put ourselves on the wait queue
2542 */
2543 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2544 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2545 do_sleep = 0;
2546 break;
2547 }
2548 }
2549
2550 if (!do_sleep) {
2551 finish_wait(&vc->wq, &wait);
2552 return;
2553 }
2554
2555 vc->vcore_state = VCORE_SLEEPING;
2556 trace_kvmppc_vcore_blocked(vc, 0);
2557 spin_unlock(&vc->lock);
2558 schedule();
2559 finish_wait(&vc->wq, &wait);
2560 spin_lock(&vc->lock);
2561 vc->vcore_state = VCORE_INACTIVE;
2562 trace_kvmppc_vcore_blocked(vc, 1);
2563 }
2564
2565 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2566 {
2567 int n_ceded;
2568 struct kvmppc_vcore *vc;
2569 struct kvm_vcpu *v, *vn;
2570
2571 trace_kvmppc_run_vcpu_enter(vcpu);
2572
2573 kvm_run->exit_reason = 0;
2574 vcpu->arch.ret = RESUME_GUEST;
2575 vcpu->arch.trap = 0;
2576 kvmppc_update_vpas(vcpu);
2577
2578 /*
2579 * Synchronize with other threads in this virtual core
2580 */
2581 vc = vcpu->arch.vcore;
2582 spin_lock(&vc->lock);
2583 vcpu->arch.ceded = 0;
2584 vcpu->arch.run_task = current;
2585 vcpu->arch.kvm_run = kvm_run;
2586 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2587 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2588 vcpu->arch.busy_preempt = TB_NIL;
2589 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2590 ++vc->n_runnable;
2591
2592 /*
2593 * This happens the first time this is called for a vcpu.
2594 * If the vcore is already running, we may be able to start
2595 * this thread straight away and have it join in.
2596 */
2597 if (!signal_pending(current)) {
2598 if (vc->vcore_state == VCORE_PIGGYBACK) {
2599 struct kvmppc_vcore *mvc = vc->master_vcore;
2600 if (spin_trylock(&mvc->lock)) {
2601 if (mvc->vcore_state == VCORE_RUNNING &&
2602 !VCORE_IS_EXITING(mvc)) {
2603 kvmppc_create_dtl_entry(vcpu, vc);
2604 kvmppc_start_thread(vcpu, vc);
2605 trace_kvm_guest_enter(vcpu);
2606 }
2607 spin_unlock(&mvc->lock);
2608 }
2609 } else if (vc->vcore_state == VCORE_RUNNING &&
2610 !VCORE_IS_EXITING(vc)) {
2611 kvmppc_create_dtl_entry(vcpu, vc);
2612 kvmppc_start_thread(vcpu, vc);
2613 trace_kvm_guest_enter(vcpu);
2614 } else if (vc->vcore_state == VCORE_SLEEPING) {
2615 wake_up(&vc->wq);
2616 }
2617
2618 }
2619
2620 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2621 !signal_pending(current)) {
2622 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2623 kvmppc_vcore_end_preempt(vc);
2624
2625 if (vc->vcore_state != VCORE_INACTIVE) {
2626 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2627 continue;
2628 }
2629 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2630 arch.run_list) {
2631 kvmppc_core_prepare_to_enter(v);
2632 if (signal_pending(v->arch.run_task)) {
2633 kvmppc_remove_runnable(vc, v);
2634 v->stat.signal_exits++;
2635 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2636 v->arch.ret = -EINTR;
2637 wake_up(&v->arch.cpu_run);
2638 }
2639 }
2640 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2641 break;
2642 n_ceded = 0;
2643 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2644 if (!v->arch.pending_exceptions)
2645 n_ceded += v->arch.ceded;
2646 else
2647 v->arch.ceded = 0;
2648 }
2649 vc->runner = vcpu;
2650 if (n_ceded == vc->n_runnable) {
2651 kvmppc_vcore_blocked(vc);
2652 } else if (need_resched()) {
2653 kvmppc_vcore_preempt(vc);
2654 /* Let something else run */
2655 cond_resched_lock(&vc->lock);
2656 if (vc->vcore_state == VCORE_PREEMPT)
2657 kvmppc_vcore_end_preempt(vc);
2658 } else {
2659 kvmppc_run_core(vc);
2660 }
2661 vc->runner = NULL;
2662 }
2663
2664 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2665 (vc->vcore_state == VCORE_RUNNING ||
2666 vc->vcore_state == VCORE_EXITING ||
2667 vc->vcore_state == VCORE_PIGGYBACK))
2668 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2669
2670 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2671 kvmppc_vcore_end_preempt(vc);
2672
2673 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2674 kvmppc_remove_runnable(vc, vcpu);
2675 vcpu->stat.signal_exits++;
2676 kvm_run->exit_reason = KVM_EXIT_INTR;
2677 vcpu->arch.ret = -EINTR;
2678 }
2679
2680 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2681 /* Wake up some vcpu to run the core */
2682 v = list_first_entry(&vc->runnable_threads,
2683 struct kvm_vcpu, arch.run_list);
2684 wake_up(&v->arch.cpu_run);
2685 }
2686
2687 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2688 spin_unlock(&vc->lock);
2689 return vcpu->arch.ret;
2690 }
2691
2692 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2693 {
2694 int r;
2695 int srcu_idx;
2696
2697 if (!vcpu->arch.sane) {
2698 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2699 return -EINVAL;
2700 }
2701
2702 kvmppc_core_prepare_to_enter(vcpu);
2703
2704 /* No need to go into the guest when all we'll do is come back out */
2705 if (signal_pending(current)) {
2706 run->exit_reason = KVM_EXIT_INTR;
2707 return -EINTR;
2708 }
2709
2710 atomic_inc(&vcpu->kvm->arch.vcpus_running);
2711 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2712 smp_mb();
2713
2714 /* On the first time here, set up HTAB and VRMA */
2715 if (!vcpu->kvm->arch.hpte_setup_done) {
2716 r = kvmppc_hv_setup_htab_rma(vcpu);
2717 if (r)
2718 goto out;
2719 }
2720
2721 flush_fp_to_thread(current);
2722 flush_altivec_to_thread(current);
2723 flush_vsx_to_thread(current);
2724 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2725 vcpu->arch.pgdir = current->mm->pgd;
2726 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2727
2728 do {
2729 r = kvmppc_run_vcpu(run, vcpu);
2730
2731 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2732 !(vcpu->arch.shregs.msr & MSR_PR)) {
2733 trace_kvm_hcall_enter(vcpu);
2734 r = kvmppc_pseries_do_hcall(vcpu);
2735 trace_kvm_hcall_exit(vcpu, r);
2736 kvmppc_core_prepare_to_enter(vcpu);
2737 } else if (r == RESUME_PAGE_FAULT) {
2738 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2739 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2740 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2741 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2742 }
2743 } while (is_kvmppc_resume_guest(r));
2744
2745 out:
2746 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2747 atomic_dec(&vcpu->kvm->arch.vcpus_running);
2748 return r;
2749 }
2750
2751 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2752 int linux_psize)
2753 {
2754 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2755
2756 if (!def->shift)
2757 return;
2758 (*sps)->page_shift = def->shift;
2759 (*sps)->slb_enc = def->sllp;
2760 (*sps)->enc[0].page_shift = def->shift;
2761 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2762 /*
2763 * Add 16MB MPSS support if host supports it
2764 */
2765 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2766 (*sps)->enc[1].page_shift = 24;
2767 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2768 }
2769 (*sps)++;
2770 }
2771
2772 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2773 struct kvm_ppc_smmu_info *info)
2774 {
2775 struct kvm_ppc_one_seg_page_size *sps;
2776
2777 info->flags = KVM_PPC_PAGE_SIZES_REAL;
2778 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2779 info->flags |= KVM_PPC_1T_SEGMENTS;
2780 info->slb_size = mmu_slb_size;
2781
2782 /* We only support these sizes for now, and no muti-size segments */
2783 sps = &info->sps[0];
2784 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2785 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2786 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2787
2788 return 0;
2789 }
2790
2791 /*
2792 * Get (and clear) the dirty memory log for a memory slot.
2793 */
2794 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2795 struct kvm_dirty_log *log)
2796 {
2797 struct kvm_memslots *slots;
2798 struct kvm_memory_slot *memslot;
2799 int r;
2800 unsigned long n;
2801
2802 mutex_lock(&kvm->slots_lock);
2803
2804 r = -EINVAL;
2805 if (log->slot >= KVM_USER_MEM_SLOTS)
2806 goto out;
2807
2808 slots = kvm_memslots(kvm);
2809 memslot = id_to_memslot(slots, log->slot);
2810 r = -ENOENT;
2811 if (!memslot->dirty_bitmap)
2812 goto out;
2813
2814 n = kvm_dirty_bitmap_bytes(memslot);
2815 memset(memslot->dirty_bitmap, 0, n);
2816
2817 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2818 if (r)
2819 goto out;
2820
2821 r = -EFAULT;
2822 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2823 goto out;
2824
2825 r = 0;
2826 out:
2827 mutex_unlock(&kvm->slots_lock);
2828 return r;
2829 }
2830
2831 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2832 struct kvm_memory_slot *dont)
2833 {
2834 if (!dont || free->arch.rmap != dont->arch.rmap) {
2835 vfree(free->arch.rmap);
2836 free->arch.rmap = NULL;
2837 }
2838 }
2839
2840 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2841 unsigned long npages)
2842 {
2843 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2844 if (!slot->arch.rmap)
2845 return -ENOMEM;
2846
2847 return 0;
2848 }
2849
2850 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2851 struct kvm_memory_slot *memslot,
2852 const struct kvm_userspace_memory_region *mem)
2853 {
2854 return 0;
2855 }
2856
2857 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2858 const struct kvm_userspace_memory_region *mem,
2859 const struct kvm_memory_slot *old,
2860 const struct kvm_memory_slot *new)
2861 {
2862 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2863 struct kvm_memslots *slots;
2864 struct kvm_memory_slot *memslot;
2865
2866 if (npages && old->npages) {
2867 /*
2868 * If modifying a memslot, reset all the rmap dirty bits.
2869 * If this is a new memslot, we don't need to do anything
2870 * since the rmap array starts out as all zeroes,
2871 * i.e. no pages are dirty.
2872 */
2873 slots = kvm_memslots(kvm);
2874 memslot = id_to_memslot(slots, mem->slot);
2875 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2876 }
2877 }
2878
2879 /*
2880 * Update LPCR values in kvm->arch and in vcores.
2881 * Caller must hold kvm->lock.
2882 */
2883 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2884 {
2885 long int i;
2886 u32 cores_done = 0;
2887
2888 if ((kvm->arch.lpcr & mask) == lpcr)
2889 return;
2890
2891 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2892
2893 for (i = 0; i < KVM_MAX_VCORES; ++i) {
2894 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2895 if (!vc)
2896 continue;
2897 spin_lock(&vc->lock);
2898 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2899 spin_unlock(&vc->lock);
2900 if (++cores_done >= kvm->arch.online_vcores)
2901 break;
2902 }
2903 }
2904
2905 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2906 {
2907 return;
2908 }
2909
2910 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2911 {
2912 int err = 0;
2913 struct kvm *kvm = vcpu->kvm;
2914 unsigned long hva;
2915 struct kvm_memory_slot *memslot;
2916 struct vm_area_struct *vma;
2917 unsigned long lpcr = 0, senc;
2918 unsigned long psize, porder;
2919 int srcu_idx;
2920
2921 mutex_lock(&kvm->lock);
2922 if (kvm->arch.hpte_setup_done)
2923 goto out; /* another vcpu beat us to it */
2924
2925 /* Allocate hashed page table (if not done already) and reset it */
2926 if (!kvm->arch.hpt_virt) {
2927 err = kvmppc_alloc_hpt(kvm, NULL);
2928 if (err) {
2929 pr_err("KVM: Couldn't alloc HPT\n");
2930 goto out;
2931 }
2932 }
2933
2934 /* Look up the memslot for guest physical address 0 */
2935 srcu_idx = srcu_read_lock(&kvm->srcu);
2936 memslot = gfn_to_memslot(kvm, 0);
2937
2938 /* We must have some memory at 0 by now */
2939 err = -EINVAL;
2940 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2941 goto out_srcu;
2942
2943 /* Look up the VMA for the start of this memory slot */
2944 hva = memslot->userspace_addr;
2945 down_read(&current->mm->mmap_sem);
2946 vma = find_vma(current->mm, hva);
2947 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2948 goto up_out;
2949
2950 psize = vma_kernel_pagesize(vma);
2951 porder = __ilog2(psize);
2952
2953 up_read(&current->mm->mmap_sem);
2954
2955 /* We can handle 4k, 64k or 16M pages in the VRMA */
2956 err = -EINVAL;
2957 if (!(psize == 0x1000 || psize == 0x10000 ||
2958 psize == 0x1000000))
2959 goto out_srcu;
2960
2961 /* Update VRMASD field in the LPCR */
2962 senc = slb_pgsize_encoding(psize);
2963 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2964 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2965 /* the -4 is to account for senc values starting at 0x10 */
2966 lpcr = senc << (LPCR_VRMASD_SH - 4);
2967
2968 /* Create HPTEs in the hash page table for the VRMA */
2969 kvmppc_map_vrma(vcpu, memslot, porder);
2970
2971 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2972
2973 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2974 smp_wmb();
2975 kvm->arch.hpte_setup_done = 1;
2976 err = 0;
2977 out_srcu:
2978 srcu_read_unlock(&kvm->srcu, srcu_idx);
2979 out:
2980 mutex_unlock(&kvm->lock);
2981 return err;
2982
2983 up_out:
2984 up_read(&current->mm->mmap_sem);
2985 goto out_srcu;
2986 }
2987
2988 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2989 {
2990 unsigned long lpcr, lpid;
2991 char buf[32];
2992
2993 /* Allocate the guest's logical partition ID */
2994
2995 lpid = kvmppc_alloc_lpid();
2996 if ((long)lpid < 0)
2997 return -ENOMEM;
2998 kvm->arch.lpid = lpid;
2999
3000 /*
3001 * Since we don't flush the TLB when tearing down a VM,
3002 * and this lpid might have previously been used,
3003 * make sure we flush on each core before running the new VM.
3004 */
3005 cpumask_setall(&kvm->arch.need_tlb_flush);
3006
3007 /* Start out with the default set of hcalls enabled */
3008 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3009 sizeof(kvm->arch.enabled_hcalls));
3010
3011 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3012
3013 /* Init LPCR for virtual RMA mode */
3014 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3015 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3016 lpcr &= LPCR_PECE | LPCR_LPES;
3017 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3018 LPCR_VPM0 | LPCR_VPM1;
3019 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3020 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3021 /* On POWER8 turn on online bit to enable PURR/SPURR */
3022 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3023 lpcr |= LPCR_ONL;
3024 kvm->arch.lpcr = lpcr;
3025
3026 /*
3027 * Track that we now have a HV mode VM active. This blocks secondary
3028 * CPU threads from coming online.
3029 */
3030 kvm_hv_vm_activated();
3031
3032 /*
3033 * Create a debugfs directory for the VM
3034 */
3035 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3036 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3037 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3038 kvmppc_mmu_debugfs_init(kvm);
3039
3040 return 0;
3041 }
3042
3043 static void kvmppc_free_vcores(struct kvm *kvm)
3044 {
3045 long int i;
3046
3047 for (i = 0; i < KVM_MAX_VCORES; ++i)
3048 kfree(kvm->arch.vcores[i]);
3049 kvm->arch.online_vcores = 0;
3050 }
3051
3052 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3053 {
3054 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3055
3056 kvm_hv_vm_deactivated();
3057
3058 kvmppc_free_vcores(kvm);
3059
3060 kvmppc_free_hpt(kvm);
3061 }
3062
3063 /* We don't need to emulate any privileged instructions or dcbz */
3064 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3065 unsigned int inst, int *advance)
3066 {
3067 return EMULATE_FAIL;
3068 }
3069
3070 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3071 ulong spr_val)
3072 {
3073 return EMULATE_FAIL;
3074 }
3075
3076 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3077 ulong *spr_val)
3078 {
3079 return EMULATE_FAIL;
3080 }
3081
3082 static int kvmppc_core_check_processor_compat_hv(void)
3083 {
3084 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3085 !cpu_has_feature(CPU_FTR_ARCH_206))
3086 return -EIO;
3087 return 0;
3088 }
3089
3090 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3091 unsigned int ioctl, unsigned long arg)
3092 {
3093 struct kvm *kvm __maybe_unused = filp->private_data;
3094 void __user *argp = (void __user *)arg;
3095 long r;
3096
3097 switch (ioctl) {
3098
3099 case KVM_PPC_ALLOCATE_HTAB: {
3100 u32 htab_order;
3101
3102 r = -EFAULT;
3103 if (get_user(htab_order, (u32 __user *)argp))
3104 break;
3105 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3106 if (r)
3107 break;
3108 r = -EFAULT;
3109 if (put_user(htab_order, (u32 __user *)argp))
3110 break;
3111 r = 0;
3112 break;
3113 }
3114
3115 case KVM_PPC_GET_HTAB_FD: {
3116 struct kvm_get_htab_fd ghf;
3117
3118 r = -EFAULT;
3119 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3120 break;
3121 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3122 break;
3123 }
3124
3125 default:
3126 r = -ENOTTY;
3127 }
3128
3129 return r;
3130 }
3131
3132 /*
3133 * List of hcall numbers to enable by default.
3134 * For compatibility with old userspace, we enable by default
3135 * all hcalls that were implemented before the hcall-enabling
3136 * facility was added. Note this list should not include H_RTAS.
3137 */
3138 static unsigned int default_hcall_list[] = {
3139 H_REMOVE,
3140 H_ENTER,
3141 H_READ,
3142 H_PROTECT,
3143 H_BULK_REMOVE,
3144 H_GET_TCE,
3145 H_PUT_TCE,
3146 H_SET_DABR,
3147 H_SET_XDABR,
3148 H_CEDE,
3149 H_PROD,
3150 H_CONFER,
3151 H_REGISTER_VPA,
3152 #ifdef CONFIG_KVM_XICS
3153 H_EOI,
3154 H_CPPR,
3155 H_IPI,
3156 H_IPOLL,
3157 H_XIRR,
3158 H_XIRR_X,
3159 #endif
3160 0
3161 };
3162
3163 static void init_default_hcalls(void)
3164 {
3165 int i;
3166 unsigned int hcall;
3167
3168 for (i = 0; default_hcall_list[i]; ++i) {
3169 hcall = default_hcall_list[i];
3170 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3171 __set_bit(hcall / 4, default_enabled_hcalls);
3172 }
3173 }
3174
3175 static struct kvmppc_ops kvm_ops_hv = {
3176 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3177 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3178 .get_one_reg = kvmppc_get_one_reg_hv,
3179 .set_one_reg = kvmppc_set_one_reg_hv,
3180 .vcpu_load = kvmppc_core_vcpu_load_hv,
3181 .vcpu_put = kvmppc_core_vcpu_put_hv,
3182 .set_msr = kvmppc_set_msr_hv,
3183 .vcpu_run = kvmppc_vcpu_run_hv,
3184 .vcpu_create = kvmppc_core_vcpu_create_hv,
3185 .vcpu_free = kvmppc_core_vcpu_free_hv,
3186 .check_requests = kvmppc_core_check_requests_hv,
3187 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3188 .flush_memslot = kvmppc_core_flush_memslot_hv,
3189 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3190 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3191 .unmap_hva = kvm_unmap_hva_hv,
3192 .unmap_hva_range = kvm_unmap_hva_range_hv,
3193 .age_hva = kvm_age_hva_hv,
3194 .test_age_hva = kvm_test_age_hva_hv,
3195 .set_spte_hva = kvm_set_spte_hva_hv,
3196 .mmu_destroy = kvmppc_mmu_destroy_hv,
3197 .free_memslot = kvmppc_core_free_memslot_hv,
3198 .create_memslot = kvmppc_core_create_memslot_hv,
3199 .init_vm = kvmppc_core_init_vm_hv,
3200 .destroy_vm = kvmppc_core_destroy_vm_hv,
3201 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3202 .emulate_op = kvmppc_core_emulate_op_hv,
3203 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3204 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3205 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3206 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
3207 .hcall_implemented = kvmppc_hcall_impl_hv,
3208 };
3209
3210 static int kvmppc_book3s_init_hv(void)
3211 {
3212 int r;
3213 /*
3214 * FIXME!! Do we need to check on all cpus ?
3215 */
3216 r = kvmppc_core_check_processor_compat_hv();
3217 if (r < 0)
3218 return -ENODEV;
3219
3220 kvm_ops_hv.owner = THIS_MODULE;
3221 kvmppc_hv_ops = &kvm_ops_hv;
3222
3223 init_default_hcalls();
3224
3225 init_vcore_lists();
3226
3227 r = kvmppc_mmu_hv_init();
3228 return r;
3229 }
3230
3231 static void kvmppc_book3s_exit_hv(void)
3232 {
3233 kvmppc_hv_ops = NULL;
3234 }
3235
3236 module_init(kvmppc_book3s_init_hv);
3237 module_exit(kvmppc_book3s_exit_hv);
3238 MODULE_LICENSE("GPL");
3239 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3240 MODULE_ALIAS("devname:kvm");
This page took 0.124337 seconds and 5 git commands to generate.