Merge remote-tracking branch 'ftrace/for-next'
[deliverable/linux.git] / arch / powerpc / sysdev / cpm1.c
1 /*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
5 *
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
9 *
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
22 */
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/slab.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/tlbflush.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44
45 #include <asm/fs_pd.h>
46
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50
51 #define CPM_MAP_SIZE (0x4000)
52
53 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56
57 static struct irq_domain *cpm_pic_host;
58
59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62
63 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65
66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69
70 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72
73 static void cpm_end_irq(struct irq_data *d)
74 {
75 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76
77 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79
80 static struct irq_chip cpm_pic = {
81 .name = "CPM PIC",
82 .irq_mask = cpm_mask_irq,
83 .irq_unmask = cpm_unmask_irq,
84 .irq_eoi = cpm_end_irq,
85 };
86
87 int cpm_get_irq(void)
88 {
89 int cpm_vec;
90
91 /* Get the vector by setting the ACK bit and then reading
92 * the register.
93 */
94 out_be16(&cpic_reg->cpic_civr, 1);
95 cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 cpm_vec >>= 11;
97
98 return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100
101 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102 irq_hw_number_t hw)
103 {
104 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106 irq_set_status_flags(virq, IRQ_LEVEL);
107 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 return 0;
109 }
110
111 /* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts. All we have to do is ACK it
113 * and return. This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
115 */
116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117 {
118 return IRQ_HANDLED;
119 }
120
121 static struct irqaction cpm_error_irqaction = {
122 .handler = cpm_error_interrupt,
123 .flags = IRQF_NO_THREAD,
124 .name = "error",
125 };
126
127 static const struct irq_domain_ops cpm_pic_host_ops = {
128 .map = cpm_pic_host_map,
129 };
130
131 unsigned int cpm_pic_init(void)
132 {
133 struct device_node *np = NULL;
134 struct resource res;
135 unsigned int sirq = NO_IRQ, hwirq, eirq;
136 int ret;
137
138 pr_debug("cpm_pic_init\n");
139
140 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
141 if (np == NULL)
142 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
143 if (np == NULL) {
144 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
145 return sirq;
146 }
147
148 ret = of_address_to_resource(np, 0, &res);
149 if (ret)
150 goto end;
151
152 cpic_reg = ioremap(res.start, resource_size(&res));
153 if (cpic_reg == NULL)
154 goto end;
155
156 sirq = irq_of_parse_and_map(np, 0);
157 if (sirq == NO_IRQ)
158 goto end;
159
160 /* Initialize the CPM interrupt controller. */
161 hwirq = (unsigned int)virq_to_hw(sirq);
162 out_be32(&cpic_reg->cpic_cicr,
163 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
164 ((hwirq/2) << 13) | CICR_HP_MASK);
165
166 out_be32(&cpic_reg->cpic_cimr, 0);
167
168 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
169 if (cpm_pic_host == NULL) {
170 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
171 sirq = NO_IRQ;
172 goto end;
173 }
174
175 /* Install our own error handler. */
176 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
177 if (np == NULL)
178 np = of_find_node_by_type(NULL, "cpm");
179 if (np == NULL) {
180 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
181 goto end;
182 }
183
184 eirq = irq_of_parse_and_map(np, 0);
185 if (eirq == NO_IRQ)
186 goto end;
187
188 if (setup_irq(eirq, &cpm_error_irqaction))
189 printk(KERN_ERR "Could not allocate CPM error IRQ!");
190
191 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
192
193 end:
194 of_node_put(np);
195 return sirq;
196 }
197
198 void __init cpm_reset(void)
199 {
200 sysconf8xx_t __iomem *siu_conf;
201
202 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
203 if (!mpc8xx_immr) {
204 printk(KERN_CRIT "Could not map IMMR\n");
205 return;
206 }
207
208 cpmp = &mpc8xx_immr->im_cpm;
209
210 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
211 /* Perform a reset.
212 */
213 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
214
215 /* Wait for it.
216 */
217 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218 #endif
219
220 #ifdef CONFIG_UCODE_PATCH
221 cpm_load_patch(cpmp);
222 #endif
223
224 /* Set SDMA Bus Request priority 5.
225 * On 860T, this also enables FEC priority 6. I am not sure
226 * this is what we really want for some applications, but the
227 * manual recommends it.
228 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
229 */
230 siu_conf = immr_map(im_siu_conf);
231 if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
232 out_be32(&siu_conf->sc_sdcr, 0x40);
233 else
234 out_be32(&siu_conf->sc_sdcr, 1);
235 immr_unmap(siu_conf);
236
237 cpm_muram_init();
238 }
239
240 static DEFINE_SPINLOCK(cmd_lock);
241
242 #define MAX_CR_CMD_LOOPS 10000
243
244 int cpm_command(u32 command, u8 opcode)
245 {
246 int i, ret;
247 unsigned long flags;
248
249 if (command & 0xffffff0f)
250 return -EINVAL;
251
252 spin_lock_irqsave(&cmd_lock, flags);
253
254 ret = 0;
255 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
256 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
257 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
258 goto out;
259
260 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
261 ret = -EIO;
262 out:
263 spin_unlock_irqrestore(&cmd_lock, flags);
264 return ret;
265 }
266 EXPORT_SYMBOL(cpm_command);
267
268 /* Set a baud rate generator. This needs lots of work. There are
269 * four BRGs, any of which can be wired to any channel.
270 * The internal baud rate clock is the system clock divided by 16.
271 * This assumes the baudrate is 16x oversampled by the uart.
272 */
273 #define BRG_INT_CLK (get_brgfreq())
274 #define BRG_UART_CLK (BRG_INT_CLK/16)
275 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
276
277 void
278 cpm_setbrg(uint brg, uint rate)
279 {
280 u32 __iomem *bp;
281
282 /* This is good enough to get SMCs running.....
283 */
284 bp = &cpmp->cp_brgc1;
285 bp += brg;
286 /* The BRG has a 12-bit counter. For really slow baud rates (or
287 * really fast processors), we may have to further divide by 16.
288 */
289 if (((BRG_UART_CLK / rate) - 1) < 4096)
290 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
291 else
292 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
293 CPM_BRG_EN | CPM_BRG_DIV16);
294 }
295
296 struct cpm_ioport16 {
297 __be16 dir, par, odr_sor, dat, intr;
298 __be16 res[3];
299 };
300
301 struct cpm_ioport32b {
302 __be32 dir, par, odr, dat;
303 };
304
305 struct cpm_ioport32e {
306 __be32 dir, par, sor, odr, dat;
307 };
308
309 static void cpm1_set_pin32(int port, int pin, int flags)
310 {
311 struct cpm_ioport32e __iomem *iop;
312 pin = 1 << (31 - pin);
313
314 if (port == CPM_PORTB)
315 iop = (struct cpm_ioport32e __iomem *)
316 &mpc8xx_immr->im_cpm.cp_pbdir;
317 else
318 iop = (struct cpm_ioport32e __iomem *)
319 &mpc8xx_immr->im_cpm.cp_pedir;
320
321 if (flags & CPM_PIN_OUTPUT)
322 setbits32(&iop->dir, pin);
323 else
324 clrbits32(&iop->dir, pin);
325
326 if (!(flags & CPM_PIN_GPIO))
327 setbits32(&iop->par, pin);
328 else
329 clrbits32(&iop->par, pin);
330
331 if (port == CPM_PORTB) {
332 if (flags & CPM_PIN_OPENDRAIN)
333 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
334 else
335 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
336 }
337
338 if (port == CPM_PORTE) {
339 if (flags & CPM_PIN_SECONDARY)
340 setbits32(&iop->sor, pin);
341 else
342 clrbits32(&iop->sor, pin);
343
344 if (flags & CPM_PIN_OPENDRAIN)
345 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
346 else
347 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
348 }
349 }
350
351 static void cpm1_set_pin16(int port, int pin, int flags)
352 {
353 struct cpm_ioport16 __iomem *iop =
354 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
355
356 pin = 1 << (15 - pin);
357
358 if (port != 0)
359 iop += port - 1;
360
361 if (flags & CPM_PIN_OUTPUT)
362 setbits16(&iop->dir, pin);
363 else
364 clrbits16(&iop->dir, pin);
365
366 if (!(flags & CPM_PIN_GPIO))
367 setbits16(&iop->par, pin);
368 else
369 clrbits16(&iop->par, pin);
370
371 if (port == CPM_PORTA) {
372 if (flags & CPM_PIN_OPENDRAIN)
373 setbits16(&iop->odr_sor, pin);
374 else
375 clrbits16(&iop->odr_sor, pin);
376 }
377 if (port == CPM_PORTC) {
378 if (flags & CPM_PIN_SECONDARY)
379 setbits16(&iop->odr_sor, pin);
380 else
381 clrbits16(&iop->odr_sor, pin);
382 }
383 }
384
385 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
386 {
387 if (port == CPM_PORTB || port == CPM_PORTE)
388 cpm1_set_pin32(port, pin, flags);
389 else
390 cpm1_set_pin16(port, pin, flags);
391 }
392
393 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
394 {
395 int shift;
396 int i, bits = 0;
397 u32 __iomem *reg;
398 u32 mask = 7;
399
400 u8 clk_map[][3] = {
401 {CPM_CLK_SCC1, CPM_BRG1, 0},
402 {CPM_CLK_SCC1, CPM_BRG2, 1},
403 {CPM_CLK_SCC1, CPM_BRG3, 2},
404 {CPM_CLK_SCC1, CPM_BRG4, 3},
405 {CPM_CLK_SCC1, CPM_CLK1, 4},
406 {CPM_CLK_SCC1, CPM_CLK2, 5},
407 {CPM_CLK_SCC1, CPM_CLK3, 6},
408 {CPM_CLK_SCC1, CPM_CLK4, 7},
409
410 {CPM_CLK_SCC2, CPM_BRG1, 0},
411 {CPM_CLK_SCC2, CPM_BRG2, 1},
412 {CPM_CLK_SCC2, CPM_BRG3, 2},
413 {CPM_CLK_SCC2, CPM_BRG4, 3},
414 {CPM_CLK_SCC2, CPM_CLK1, 4},
415 {CPM_CLK_SCC2, CPM_CLK2, 5},
416 {CPM_CLK_SCC2, CPM_CLK3, 6},
417 {CPM_CLK_SCC2, CPM_CLK4, 7},
418
419 {CPM_CLK_SCC3, CPM_BRG1, 0},
420 {CPM_CLK_SCC3, CPM_BRG2, 1},
421 {CPM_CLK_SCC3, CPM_BRG3, 2},
422 {CPM_CLK_SCC3, CPM_BRG4, 3},
423 {CPM_CLK_SCC3, CPM_CLK5, 4},
424 {CPM_CLK_SCC3, CPM_CLK6, 5},
425 {CPM_CLK_SCC3, CPM_CLK7, 6},
426 {CPM_CLK_SCC3, CPM_CLK8, 7},
427
428 {CPM_CLK_SCC4, CPM_BRG1, 0},
429 {CPM_CLK_SCC4, CPM_BRG2, 1},
430 {CPM_CLK_SCC4, CPM_BRG3, 2},
431 {CPM_CLK_SCC4, CPM_BRG4, 3},
432 {CPM_CLK_SCC4, CPM_CLK5, 4},
433 {CPM_CLK_SCC4, CPM_CLK6, 5},
434 {CPM_CLK_SCC4, CPM_CLK7, 6},
435 {CPM_CLK_SCC4, CPM_CLK8, 7},
436
437 {CPM_CLK_SMC1, CPM_BRG1, 0},
438 {CPM_CLK_SMC1, CPM_BRG2, 1},
439 {CPM_CLK_SMC1, CPM_BRG3, 2},
440 {CPM_CLK_SMC1, CPM_BRG4, 3},
441 {CPM_CLK_SMC1, CPM_CLK1, 4},
442 {CPM_CLK_SMC1, CPM_CLK2, 5},
443 {CPM_CLK_SMC1, CPM_CLK3, 6},
444 {CPM_CLK_SMC1, CPM_CLK4, 7},
445
446 {CPM_CLK_SMC2, CPM_BRG1, 0},
447 {CPM_CLK_SMC2, CPM_BRG2, 1},
448 {CPM_CLK_SMC2, CPM_BRG3, 2},
449 {CPM_CLK_SMC2, CPM_BRG4, 3},
450 {CPM_CLK_SMC2, CPM_CLK5, 4},
451 {CPM_CLK_SMC2, CPM_CLK6, 5},
452 {CPM_CLK_SMC2, CPM_CLK7, 6},
453 {CPM_CLK_SMC2, CPM_CLK8, 7},
454 };
455
456 switch (target) {
457 case CPM_CLK_SCC1:
458 reg = &mpc8xx_immr->im_cpm.cp_sicr;
459 shift = 0;
460 break;
461
462 case CPM_CLK_SCC2:
463 reg = &mpc8xx_immr->im_cpm.cp_sicr;
464 shift = 8;
465 break;
466
467 case CPM_CLK_SCC3:
468 reg = &mpc8xx_immr->im_cpm.cp_sicr;
469 shift = 16;
470 break;
471
472 case CPM_CLK_SCC4:
473 reg = &mpc8xx_immr->im_cpm.cp_sicr;
474 shift = 24;
475 break;
476
477 case CPM_CLK_SMC1:
478 reg = &mpc8xx_immr->im_cpm.cp_simode;
479 shift = 12;
480 break;
481
482 case CPM_CLK_SMC2:
483 reg = &mpc8xx_immr->im_cpm.cp_simode;
484 shift = 28;
485 break;
486
487 default:
488 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
489 return -EINVAL;
490 }
491
492 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
493 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
494 bits = clk_map[i][2];
495 break;
496 }
497 }
498
499 if (i == ARRAY_SIZE(clk_map)) {
500 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
501 return -EINVAL;
502 }
503
504 bits <<= shift;
505 mask <<= shift;
506
507 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
508 if (mode == CPM_CLK_RTX) {
509 bits |= bits << 3;
510 mask |= mask << 3;
511 } else if (mode == CPM_CLK_RX) {
512 bits <<= 3;
513 mask <<= 3;
514 }
515 }
516
517 out_be32(reg, (in_be32(reg) & ~mask) | bits);
518
519 return 0;
520 }
521
522 /*
523 * GPIO LIB API implementation
524 */
525 #ifdef CONFIG_8xx_GPIO
526
527 struct cpm1_gpio16_chip {
528 struct of_mm_gpio_chip mm_gc;
529 spinlock_t lock;
530
531 /* shadowed data register to clear/set bits safely */
532 u16 cpdata;
533 };
534
535 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
536 {
537 struct cpm1_gpio16_chip *cpm1_gc =
538 container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
539 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
540
541 cpm1_gc->cpdata = in_be16(&iop->dat);
542 }
543
544 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
545 {
546 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
547 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
548 u16 pin_mask;
549
550 pin_mask = 1 << (15 - gpio);
551
552 return !!(in_be16(&iop->dat) & pin_mask);
553 }
554
555 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
556 int value)
557 {
558 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
559 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
560
561 if (value)
562 cpm1_gc->cpdata |= pin_mask;
563 else
564 cpm1_gc->cpdata &= ~pin_mask;
565
566 out_be16(&iop->dat, cpm1_gc->cpdata);
567 }
568
569 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
570 {
571 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
572 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
573 unsigned long flags;
574 u16 pin_mask = 1 << (15 - gpio);
575
576 spin_lock_irqsave(&cpm1_gc->lock, flags);
577
578 __cpm1_gpio16_set(mm_gc, pin_mask, value);
579
580 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
581 }
582
583 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
584 {
585 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
586 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
587 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
588 unsigned long flags;
589 u16 pin_mask = 1 << (15 - gpio);
590
591 spin_lock_irqsave(&cpm1_gc->lock, flags);
592
593 setbits16(&iop->dir, pin_mask);
594 __cpm1_gpio16_set(mm_gc, pin_mask, val);
595
596 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
597
598 return 0;
599 }
600
601 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
602 {
603 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
604 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
605 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
606 unsigned long flags;
607 u16 pin_mask = 1 << (15 - gpio);
608
609 spin_lock_irqsave(&cpm1_gc->lock, flags);
610
611 clrbits16(&iop->dir, pin_mask);
612
613 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
614
615 return 0;
616 }
617
618 int cpm1_gpiochip_add16(struct device_node *np)
619 {
620 struct cpm1_gpio16_chip *cpm1_gc;
621 struct of_mm_gpio_chip *mm_gc;
622 struct gpio_chip *gc;
623
624 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
625 if (!cpm1_gc)
626 return -ENOMEM;
627
628 spin_lock_init(&cpm1_gc->lock);
629
630 mm_gc = &cpm1_gc->mm_gc;
631 gc = &mm_gc->gc;
632
633 mm_gc->save_regs = cpm1_gpio16_save_regs;
634 gc->ngpio = 16;
635 gc->direction_input = cpm1_gpio16_dir_in;
636 gc->direction_output = cpm1_gpio16_dir_out;
637 gc->get = cpm1_gpio16_get;
638 gc->set = cpm1_gpio16_set;
639
640 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
641 }
642
643 struct cpm1_gpio32_chip {
644 struct of_mm_gpio_chip mm_gc;
645 spinlock_t lock;
646
647 /* shadowed data register to clear/set bits safely */
648 u32 cpdata;
649 };
650
651 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
652 {
653 struct cpm1_gpio32_chip *cpm1_gc =
654 container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
655 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
656
657 cpm1_gc->cpdata = in_be32(&iop->dat);
658 }
659
660 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
661 {
662 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
663 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
664 u32 pin_mask;
665
666 pin_mask = 1 << (31 - gpio);
667
668 return !!(in_be32(&iop->dat) & pin_mask);
669 }
670
671 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
672 int value)
673 {
674 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
675 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
676
677 if (value)
678 cpm1_gc->cpdata |= pin_mask;
679 else
680 cpm1_gc->cpdata &= ~pin_mask;
681
682 out_be32(&iop->dat, cpm1_gc->cpdata);
683 }
684
685 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
686 {
687 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
688 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
689 unsigned long flags;
690 u32 pin_mask = 1 << (31 - gpio);
691
692 spin_lock_irqsave(&cpm1_gc->lock, flags);
693
694 __cpm1_gpio32_set(mm_gc, pin_mask, value);
695
696 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
697 }
698
699 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
700 {
701 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
702 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
703 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
704 unsigned long flags;
705 u32 pin_mask = 1 << (31 - gpio);
706
707 spin_lock_irqsave(&cpm1_gc->lock, flags);
708
709 setbits32(&iop->dir, pin_mask);
710 __cpm1_gpio32_set(mm_gc, pin_mask, val);
711
712 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
713
714 return 0;
715 }
716
717 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
718 {
719 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
720 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
721 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
722 unsigned long flags;
723 u32 pin_mask = 1 << (31 - gpio);
724
725 spin_lock_irqsave(&cpm1_gc->lock, flags);
726
727 clrbits32(&iop->dir, pin_mask);
728
729 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
730
731 return 0;
732 }
733
734 int cpm1_gpiochip_add32(struct device_node *np)
735 {
736 struct cpm1_gpio32_chip *cpm1_gc;
737 struct of_mm_gpio_chip *mm_gc;
738 struct gpio_chip *gc;
739
740 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
741 if (!cpm1_gc)
742 return -ENOMEM;
743
744 spin_lock_init(&cpm1_gc->lock);
745
746 mm_gc = &cpm1_gc->mm_gc;
747 gc = &mm_gc->gc;
748
749 mm_gc->save_regs = cpm1_gpio32_save_regs;
750 gc->ngpio = 32;
751 gc->direction_input = cpm1_gpio32_dir_in;
752 gc->direction_output = cpm1_gpio32_dir_out;
753 gc->get = cpm1_gpio32_get;
754 gc->set = cpm1_gpio32_set;
755
756 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
757 }
758
759 static int cpm_init_par_io(void)
760 {
761 struct device_node *np;
762
763 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
764 cpm1_gpiochip_add16(np);
765
766 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
767 cpm1_gpiochip_add32(np);
768
769 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
770 cpm1_gpiochip_add16(np);
771
772 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
773 cpm1_gpiochip_add16(np);
774
775 /* Port E uses CPM2 layout */
776 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
777 cpm2_gpiochip_add32(np);
778 return 0;
779 }
780 arch_initcall(cpm_init_par_io);
781
782 #endif /* CONFIG_8xx_GPIO */
This page took 0.068646 seconds and 5 git commands to generate.