ACPI / util: cast data to u64 before shifting to fix sign extension
[deliverable/linux.git] / arch / s390 / kernel / smp.c
1 /*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999, 2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/switch_to.h>
38 #include <asm/facility.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/tlbflush.h>
43 #include <asm/vtimer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/vdso.h>
47 #include <asm/debug.h>
48 #include <asm/os_info.h>
49 #include <asm/sigp.h>
50 #include <asm/idle.h>
51 #include "entry.h"
52
53 enum {
54 ec_schedule = 0,
55 ec_call_function_single,
56 ec_stop_cpu,
57 };
58
59 enum {
60 CPU_STATE_STANDBY,
61 CPU_STATE_CONFIGURED,
62 };
63
64 static DEFINE_PER_CPU(struct cpu *, cpu_device);
65
66 struct pcpu {
67 struct lowcore *lowcore; /* lowcore page(s) for the cpu */
68 unsigned long ec_mask; /* bit mask for ec_xxx functions */
69 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
70 signed char state; /* physical cpu state */
71 signed char polarization; /* physical polarization */
72 u16 address; /* physical cpu address */
73 };
74
75 static u8 boot_core_type;
76 static struct pcpu pcpu_devices[NR_CPUS];
77
78 unsigned int smp_cpu_mt_shift;
79 EXPORT_SYMBOL(smp_cpu_mt_shift);
80
81 unsigned int smp_cpu_mtid;
82 EXPORT_SYMBOL(smp_cpu_mtid);
83
84 #ifdef CONFIG_CRASH_DUMP
85 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
86 #endif
87
88 static unsigned int smp_max_threads __initdata = -1U;
89
90 static int __init early_nosmt(char *s)
91 {
92 smp_max_threads = 1;
93 return 0;
94 }
95 early_param("nosmt", early_nosmt);
96
97 static int __init early_smt(char *s)
98 {
99 get_option(&s, &smp_max_threads);
100 return 0;
101 }
102 early_param("smt", early_smt);
103
104 /*
105 * The smp_cpu_state_mutex must be held when changing the state or polarization
106 * member of a pcpu data structure within the pcpu_devices arreay.
107 */
108 DEFINE_MUTEX(smp_cpu_state_mutex);
109
110 /*
111 * Signal processor helper functions.
112 */
113 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
114 {
115 int cc;
116
117 while (1) {
118 cc = __pcpu_sigp(addr, order, parm, NULL);
119 if (cc != SIGP_CC_BUSY)
120 return cc;
121 cpu_relax();
122 }
123 }
124
125 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
126 {
127 int cc, retry;
128
129 for (retry = 0; ; retry++) {
130 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
131 if (cc != SIGP_CC_BUSY)
132 break;
133 if (retry >= 3)
134 udelay(10);
135 }
136 return cc;
137 }
138
139 static inline int pcpu_stopped(struct pcpu *pcpu)
140 {
141 u32 uninitialized_var(status);
142
143 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
144 0, &status) != SIGP_CC_STATUS_STORED)
145 return 0;
146 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
147 }
148
149 static inline int pcpu_running(struct pcpu *pcpu)
150 {
151 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
152 0, NULL) != SIGP_CC_STATUS_STORED)
153 return 1;
154 /* Status stored condition code is equivalent to cpu not running. */
155 return 0;
156 }
157
158 /*
159 * Find struct pcpu by cpu address.
160 */
161 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
162 {
163 int cpu;
164
165 for_each_cpu(cpu, mask)
166 if (pcpu_devices[cpu].address == address)
167 return pcpu_devices + cpu;
168 return NULL;
169 }
170
171 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
172 {
173 int order;
174
175 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
176 return;
177 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
178 pcpu->ec_clk = get_tod_clock_fast();
179 pcpu_sigp_retry(pcpu, order, 0);
180 }
181
182 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
183 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
184
185 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
186 {
187 unsigned long async_stack, panic_stack;
188 struct lowcore *lc;
189
190 if (pcpu != &pcpu_devices[0]) {
191 pcpu->lowcore = (struct lowcore *)
192 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
193 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
194 panic_stack = __get_free_page(GFP_KERNEL);
195 if (!pcpu->lowcore || !panic_stack || !async_stack)
196 goto out;
197 } else {
198 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
199 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
200 }
201 lc = pcpu->lowcore;
202 memcpy(lc, &S390_lowcore, 512);
203 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
205 lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
206 lc->cpu_nr = cpu;
207 lc->spinlock_lockval = arch_spin_lockval(cpu);
208 if (MACHINE_HAS_VX)
209 lc->vector_save_area_addr =
210 (unsigned long) &lc->vector_save_area;
211 if (vdso_alloc_per_cpu(lc))
212 goto out;
213 lowcore_ptr[cpu] = lc;
214 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
215 return 0;
216 out:
217 if (pcpu != &pcpu_devices[0]) {
218 free_page(panic_stack);
219 free_pages(async_stack, ASYNC_ORDER);
220 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
221 }
222 return -ENOMEM;
223 }
224
225 #ifdef CONFIG_HOTPLUG_CPU
226
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
230 lowcore_ptr[pcpu - pcpu_devices] = NULL;
231 vdso_free_per_cpu(pcpu->lowcore);
232 if (pcpu == &pcpu_devices[0])
233 return;
234 free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
235 free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
236 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
237 }
238
239 #endif /* CONFIG_HOTPLUG_CPU */
240
241 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
242 {
243 struct lowcore *lc = pcpu->lowcore;
244
245 if (MACHINE_HAS_TLB_LC)
246 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
247 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
248 atomic_inc(&init_mm.context.attach_count);
249 lc->cpu_nr = cpu;
250 lc->spinlock_lockval = arch_spin_lockval(cpu);
251 lc->percpu_offset = __per_cpu_offset[cpu];
252 lc->kernel_asce = S390_lowcore.kernel_asce;
253 lc->machine_flags = S390_lowcore.machine_flags;
254 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
255 __ctl_store(lc->cregs_save_area, 0, 15);
256 save_access_regs((unsigned int *) lc->access_regs_save_area);
257 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
258 MAX_FACILITY_BIT/8);
259 }
260
261 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
262 {
263 struct lowcore *lc = pcpu->lowcore;
264 struct thread_info *ti = task_thread_info(tsk);
265
266 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
267 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
268 lc->thread_info = (unsigned long) task_thread_info(tsk);
269 lc->current_task = (unsigned long) tsk;
270 lc->lpp = LPP_MAGIC;
271 lc->current_pid = tsk->pid;
272 lc->user_timer = ti->user_timer;
273 lc->system_timer = ti->system_timer;
274 lc->steal_timer = 0;
275 }
276
277 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
278 {
279 struct lowcore *lc = pcpu->lowcore;
280
281 lc->restart_stack = lc->kernel_stack;
282 lc->restart_fn = (unsigned long) func;
283 lc->restart_data = (unsigned long) data;
284 lc->restart_source = -1UL;
285 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
286 }
287
288 /*
289 * Call function via PSW restart on pcpu and stop the current cpu.
290 */
291 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
292 void *data, unsigned long stack)
293 {
294 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
295 unsigned long source_cpu = stap();
296
297 __load_psw_mask(PSW_KERNEL_BITS);
298 if (pcpu->address == source_cpu)
299 func(data); /* should not return */
300 /* Stop target cpu (if func returns this stops the current cpu). */
301 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
302 /* Restart func on the target cpu and stop the current cpu. */
303 mem_assign_absolute(lc->restart_stack, stack);
304 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
305 mem_assign_absolute(lc->restart_data, (unsigned long) data);
306 mem_assign_absolute(lc->restart_source, source_cpu);
307 asm volatile(
308 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
309 " brc 2,0b # busy, try again\n"
310 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
311 " brc 2,1b # busy, try again\n"
312 : : "d" (pcpu->address), "d" (source_cpu),
313 "K" (SIGP_RESTART), "K" (SIGP_STOP)
314 : "0", "1", "cc");
315 for (;;) ;
316 }
317
318 /*
319 * Enable additional logical cpus for multi-threading.
320 */
321 static int pcpu_set_smt(unsigned int mtid)
322 {
323 register unsigned long reg1 asm ("1") = (unsigned long) mtid;
324 int cc;
325
326 if (smp_cpu_mtid == mtid)
327 return 0;
328 asm volatile(
329 " sigp %1,0,%2 # sigp set multi-threading\n"
330 " ipm %0\n"
331 " srl %0,28\n"
332 : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
333 : "cc");
334 if (cc == 0) {
335 smp_cpu_mtid = mtid;
336 smp_cpu_mt_shift = 0;
337 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
338 smp_cpu_mt_shift++;
339 pcpu_devices[0].address = stap();
340 }
341 return cc;
342 }
343
344 /*
345 * Call function on an online CPU.
346 */
347 void smp_call_online_cpu(void (*func)(void *), void *data)
348 {
349 struct pcpu *pcpu;
350
351 /* Use the current cpu if it is online. */
352 pcpu = pcpu_find_address(cpu_online_mask, stap());
353 if (!pcpu)
354 /* Use the first online cpu. */
355 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
356 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
357 }
358
359 /*
360 * Call function on the ipl CPU.
361 */
362 void smp_call_ipl_cpu(void (*func)(void *), void *data)
363 {
364 pcpu_delegate(&pcpu_devices[0], func, data,
365 pcpu_devices->lowcore->panic_stack -
366 PANIC_FRAME_OFFSET + PAGE_SIZE);
367 }
368
369 int smp_find_processor_id(u16 address)
370 {
371 int cpu;
372
373 for_each_present_cpu(cpu)
374 if (pcpu_devices[cpu].address == address)
375 return cpu;
376 return -1;
377 }
378
379 int smp_vcpu_scheduled(int cpu)
380 {
381 return pcpu_running(pcpu_devices + cpu);
382 }
383
384 void smp_yield_cpu(int cpu)
385 {
386 if (MACHINE_HAS_DIAG9C) {
387 diag_stat_inc_norecursion(DIAG_STAT_X09C);
388 asm volatile("diag %0,0,0x9c"
389 : : "d" (pcpu_devices[cpu].address));
390 } else if (MACHINE_HAS_DIAG44) {
391 diag_stat_inc_norecursion(DIAG_STAT_X044);
392 asm volatile("diag 0,0,0x44");
393 }
394 }
395
396 /*
397 * Send cpus emergency shutdown signal. This gives the cpus the
398 * opportunity to complete outstanding interrupts.
399 */
400 static void smp_emergency_stop(cpumask_t *cpumask)
401 {
402 u64 end;
403 int cpu;
404
405 end = get_tod_clock() + (1000000UL << 12);
406 for_each_cpu(cpu, cpumask) {
407 struct pcpu *pcpu = pcpu_devices + cpu;
408 set_bit(ec_stop_cpu, &pcpu->ec_mask);
409 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
410 0, NULL) == SIGP_CC_BUSY &&
411 get_tod_clock() < end)
412 cpu_relax();
413 }
414 while (get_tod_clock() < end) {
415 for_each_cpu(cpu, cpumask)
416 if (pcpu_stopped(pcpu_devices + cpu))
417 cpumask_clear_cpu(cpu, cpumask);
418 if (cpumask_empty(cpumask))
419 break;
420 cpu_relax();
421 }
422 }
423
424 /*
425 * Stop all cpus but the current one.
426 */
427 void smp_send_stop(void)
428 {
429 cpumask_t cpumask;
430 int cpu;
431
432 /* Disable all interrupts/machine checks */
433 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
434 trace_hardirqs_off();
435
436 debug_set_critical();
437 cpumask_copy(&cpumask, cpu_online_mask);
438 cpumask_clear_cpu(smp_processor_id(), &cpumask);
439
440 if (oops_in_progress)
441 smp_emergency_stop(&cpumask);
442
443 /* stop all processors */
444 for_each_cpu(cpu, &cpumask) {
445 struct pcpu *pcpu = pcpu_devices + cpu;
446 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
447 while (!pcpu_stopped(pcpu))
448 cpu_relax();
449 }
450 }
451
452 /*
453 * This is the main routine where commands issued by other
454 * cpus are handled.
455 */
456 static void smp_handle_ext_call(void)
457 {
458 unsigned long bits;
459
460 /* handle bit signal external calls */
461 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
462 if (test_bit(ec_stop_cpu, &bits))
463 smp_stop_cpu();
464 if (test_bit(ec_schedule, &bits))
465 scheduler_ipi();
466 if (test_bit(ec_call_function_single, &bits))
467 generic_smp_call_function_single_interrupt();
468 }
469
470 static void do_ext_call_interrupt(struct ext_code ext_code,
471 unsigned int param32, unsigned long param64)
472 {
473 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
474 smp_handle_ext_call();
475 }
476
477 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
478 {
479 int cpu;
480
481 for_each_cpu(cpu, mask)
482 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
483 }
484
485 void arch_send_call_function_single_ipi(int cpu)
486 {
487 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
488 }
489
490 /*
491 * this function sends a 'reschedule' IPI to another CPU.
492 * it goes straight through and wastes no time serializing
493 * anything. Worst case is that we lose a reschedule ...
494 */
495 void smp_send_reschedule(int cpu)
496 {
497 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
498 }
499
500 /*
501 * parameter area for the set/clear control bit callbacks
502 */
503 struct ec_creg_mask_parms {
504 unsigned long orval;
505 unsigned long andval;
506 int cr;
507 };
508
509 /*
510 * callback for setting/clearing control bits
511 */
512 static void smp_ctl_bit_callback(void *info)
513 {
514 struct ec_creg_mask_parms *pp = info;
515 unsigned long cregs[16];
516
517 __ctl_store(cregs, 0, 15);
518 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
519 __ctl_load(cregs, 0, 15);
520 }
521
522 /*
523 * Set a bit in a control register of all cpus
524 */
525 void smp_ctl_set_bit(int cr, int bit)
526 {
527 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
528
529 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
530 }
531 EXPORT_SYMBOL(smp_ctl_set_bit);
532
533 /*
534 * Clear a bit in a control register of all cpus
535 */
536 void smp_ctl_clear_bit(int cr, int bit)
537 {
538 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
539
540 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
541 }
542 EXPORT_SYMBOL(smp_ctl_clear_bit);
543
544 #ifdef CONFIG_CRASH_DUMP
545
546 int smp_store_status(int cpu)
547 {
548 struct pcpu *pcpu = pcpu_devices + cpu;
549 unsigned long pa;
550
551 pa = __pa(&pcpu->lowcore->floating_pt_save_area);
552 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
553 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
554 return -EIO;
555 if (!MACHINE_HAS_VX)
556 return 0;
557 pa = __pa(pcpu->lowcore->vector_save_area_addr);
558 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
559 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
560 return -EIO;
561 return 0;
562 }
563
564 /*
565 * Collect CPU state of the previous, crashed system.
566 * There are four cases:
567 * 1) standard zfcp dump
568 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
569 * The state for all CPUs except the boot CPU needs to be collected
570 * with sigp stop-and-store-status. The boot CPU state is located in
571 * the absolute lowcore of the memory stored in the HSA. The zcore code
572 * will copy the boot CPU state from the HSA.
573 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
574 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
575 * The state for all CPUs except the boot CPU needs to be collected
576 * with sigp stop-and-store-status. The firmware or the boot-loader
577 * stored the registers of the boot CPU in the absolute lowcore in the
578 * memory of the old system.
579 * 3) kdump and the old kernel did not store the CPU state,
580 * or stand-alone kdump for DASD
581 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
582 * The state for all CPUs except the boot CPU needs to be collected
583 * with sigp stop-and-store-status. The kexec code or the boot-loader
584 * stored the registers of the boot CPU in the memory of the old system.
585 * 4) kdump and the old kernel stored the CPU state
586 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
587 * This case does not exist for s390 anymore, setup_arch explicitly
588 * deactivates the elfcorehdr= kernel parameter
589 */
590 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
591 bool is_boot_cpu, unsigned long page)
592 {
593 __vector128 *vxrs = (__vector128 *) page;
594
595 if (is_boot_cpu)
596 vxrs = boot_cpu_vector_save_area;
597 else
598 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
599 save_area_add_vxrs(sa, vxrs);
600 }
601
602 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
603 bool is_boot_cpu, unsigned long page)
604 {
605 void *regs = (void *) page;
606
607 if (is_boot_cpu)
608 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
609 else
610 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
611 save_area_add_regs(sa, regs);
612 }
613
614 void __init smp_save_dump_cpus(void)
615 {
616 int addr, boot_cpu_addr, max_cpu_addr;
617 struct save_area *sa;
618 unsigned long page;
619 bool is_boot_cpu;
620
621 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
622 /* No previous system present, normal boot. */
623 return;
624 /* Allocate a page as dumping area for the store status sigps */
625 page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
626 /* Set multi-threading state to the previous system. */
627 pcpu_set_smt(sclp.mtid_prev);
628 boot_cpu_addr = stap();
629 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
630 for (addr = 0; addr <= max_cpu_addr; addr++) {
631 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
632 SIGP_CC_NOT_OPERATIONAL)
633 continue;
634 is_boot_cpu = (addr == boot_cpu_addr);
635 /* Allocate save area */
636 sa = save_area_alloc(is_boot_cpu);
637 if (!sa)
638 panic("could not allocate memory for save area\n");
639 if (MACHINE_HAS_VX)
640 /* Get the vector registers */
641 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
642 /*
643 * For a zfcp dump OLDMEM_BASE == NULL and the registers
644 * of the boot CPU are stored in the HSA. To retrieve
645 * these registers an SCLP request is required which is
646 * done by drivers/s390/char/zcore.c:init_cpu_info()
647 */
648 if (!is_boot_cpu || OLDMEM_BASE)
649 /* Get the CPU registers */
650 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
651 }
652 memblock_free(page, PAGE_SIZE);
653 diag308_reset();
654 pcpu_set_smt(0);
655 }
656 #endif /* CONFIG_CRASH_DUMP */
657
658 void smp_cpu_set_polarization(int cpu, int val)
659 {
660 pcpu_devices[cpu].polarization = val;
661 }
662
663 int smp_cpu_get_polarization(int cpu)
664 {
665 return pcpu_devices[cpu].polarization;
666 }
667
668 static struct sclp_core_info *smp_get_core_info(void)
669 {
670 static int use_sigp_detection;
671 struct sclp_core_info *info;
672 int address;
673
674 info = kzalloc(sizeof(*info), GFP_KERNEL);
675 if (info && (use_sigp_detection || sclp_get_core_info(info))) {
676 use_sigp_detection = 1;
677 for (address = 0;
678 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
679 address += (1U << smp_cpu_mt_shift)) {
680 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
681 SIGP_CC_NOT_OPERATIONAL)
682 continue;
683 info->core[info->configured].core_id =
684 address >> smp_cpu_mt_shift;
685 info->configured++;
686 }
687 info->combined = info->configured;
688 }
689 return info;
690 }
691
692 static int smp_add_present_cpu(int cpu);
693
694 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
695 {
696 struct pcpu *pcpu;
697 cpumask_t avail;
698 int cpu, nr, i, j;
699 u16 address;
700
701 nr = 0;
702 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
703 cpu = cpumask_first(&avail);
704 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
705 if (sclp.has_core_type && info->core[i].type != boot_core_type)
706 continue;
707 address = info->core[i].core_id << smp_cpu_mt_shift;
708 for (j = 0; j <= smp_cpu_mtid; j++) {
709 if (pcpu_find_address(cpu_present_mask, address + j))
710 continue;
711 pcpu = pcpu_devices + cpu;
712 pcpu->address = address + j;
713 pcpu->state =
714 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
715 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
716 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
717 set_cpu_present(cpu, true);
718 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
719 set_cpu_present(cpu, false);
720 else
721 nr++;
722 cpu = cpumask_next(cpu, &avail);
723 if (cpu >= nr_cpu_ids)
724 break;
725 }
726 }
727 return nr;
728 }
729
730 static void __init smp_detect_cpus(void)
731 {
732 unsigned int cpu, mtid, c_cpus, s_cpus;
733 struct sclp_core_info *info;
734 u16 address;
735
736 /* Get CPU information */
737 info = smp_get_core_info();
738 if (!info)
739 panic("smp_detect_cpus failed to allocate memory\n");
740
741 /* Find boot CPU type */
742 if (sclp.has_core_type) {
743 address = stap();
744 for (cpu = 0; cpu < info->combined; cpu++)
745 if (info->core[cpu].core_id == address) {
746 /* The boot cpu dictates the cpu type. */
747 boot_core_type = info->core[cpu].type;
748 break;
749 }
750 if (cpu >= info->combined)
751 panic("Could not find boot CPU type");
752 }
753
754 /* Set multi-threading state for the current system */
755 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
756 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
757 pcpu_set_smt(mtid);
758
759 /* Print number of CPUs */
760 c_cpus = s_cpus = 0;
761 for (cpu = 0; cpu < info->combined; cpu++) {
762 if (sclp.has_core_type &&
763 info->core[cpu].type != boot_core_type)
764 continue;
765 if (cpu < info->configured)
766 c_cpus += smp_cpu_mtid + 1;
767 else
768 s_cpus += smp_cpu_mtid + 1;
769 }
770 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
771
772 /* Add CPUs present at boot */
773 get_online_cpus();
774 __smp_rescan_cpus(info, 0);
775 put_online_cpus();
776 kfree(info);
777 }
778
779 /*
780 * Activate a secondary processor.
781 */
782 static void smp_start_secondary(void *cpuvoid)
783 {
784 S390_lowcore.last_update_clock = get_tod_clock();
785 S390_lowcore.restart_stack = (unsigned long) restart_stack;
786 S390_lowcore.restart_fn = (unsigned long) do_restart;
787 S390_lowcore.restart_data = 0;
788 S390_lowcore.restart_source = -1UL;
789 restore_access_regs(S390_lowcore.access_regs_save_area);
790 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
791 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
792 cpu_init();
793 preempt_disable();
794 init_cpu_timer();
795 vtime_init();
796 pfault_init();
797 notify_cpu_starting(smp_processor_id());
798 set_cpu_online(smp_processor_id(), true);
799 inc_irq_stat(CPU_RST);
800 local_irq_enable();
801 cpu_startup_entry(CPUHP_ONLINE);
802 }
803
804 /* Upping and downing of CPUs */
805 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
806 {
807 struct pcpu *pcpu;
808 int base, i, rc;
809
810 pcpu = pcpu_devices + cpu;
811 if (pcpu->state != CPU_STATE_CONFIGURED)
812 return -EIO;
813 base = cpu - (cpu % (smp_cpu_mtid + 1));
814 for (i = 0; i <= smp_cpu_mtid; i++) {
815 if (base + i < nr_cpu_ids)
816 if (cpu_online(base + i))
817 break;
818 }
819 /*
820 * If this is the first CPU of the core to get online
821 * do an initial CPU reset.
822 */
823 if (i > smp_cpu_mtid &&
824 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
825 SIGP_CC_ORDER_CODE_ACCEPTED)
826 return -EIO;
827
828 rc = pcpu_alloc_lowcore(pcpu, cpu);
829 if (rc)
830 return rc;
831 pcpu_prepare_secondary(pcpu, cpu);
832 pcpu_attach_task(pcpu, tidle);
833 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
834 /* Wait until cpu puts itself in the online & active maps */
835 while (!cpu_online(cpu) || !cpu_active(cpu))
836 cpu_relax();
837 return 0;
838 }
839
840 static unsigned int setup_possible_cpus __initdata;
841
842 static int __init _setup_possible_cpus(char *s)
843 {
844 get_option(&s, &setup_possible_cpus);
845 return 0;
846 }
847 early_param("possible_cpus", _setup_possible_cpus);
848
849 #ifdef CONFIG_HOTPLUG_CPU
850
851 int __cpu_disable(void)
852 {
853 unsigned long cregs[16];
854
855 /* Handle possible pending IPIs */
856 smp_handle_ext_call();
857 set_cpu_online(smp_processor_id(), false);
858 /* Disable pseudo page faults on this cpu. */
859 pfault_fini();
860 /* Disable interrupt sources via control register. */
861 __ctl_store(cregs, 0, 15);
862 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
863 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
864 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
865 __ctl_load(cregs, 0, 15);
866 clear_cpu_flag(CIF_NOHZ_DELAY);
867 return 0;
868 }
869
870 void __cpu_die(unsigned int cpu)
871 {
872 struct pcpu *pcpu;
873
874 /* Wait until target cpu is down */
875 pcpu = pcpu_devices + cpu;
876 while (!pcpu_stopped(pcpu))
877 cpu_relax();
878 pcpu_free_lowcore(pcpu);
879 atomic_dec(&init_mm.context.attach_count);
880 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
881 if (MACHINE_HAS_TLB_LC)
882 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
883 }
884
885 void __noreturn cpu_die(void)
886 {
887 idle_task_exit();
888 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
889 for (;;) ;
890 }
891
892 #endif /* CONFIG_HOTPLUG_CPU */
893
894 void __init smp_fill_possible_mask(void)
895 {
896 unsigned int possible, sclp_max, cpu;
897
898 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
899 sclp_max = min(smp_max_threads, sclp_max);
900 sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
901 possible = setup_possible_cpus ?: nr_cpu_ids;
902 possible = min(possible, sclp_max);
903 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
904 set_cpu_possible(cpu, true);
905 }
906
907 void __init smp_prepare_cpus(unsigned int max_cpus)
908 {
909 /* request the 0x1201 emergency signal external interrupt */
910 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
911 panic("Couldn't request external interrupt 0x1201");
912 /* request the 0x1202 external call external interrupt */
913 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
914 panic("Couldn't request external interrupt 0x1202");
915 smp_detect_cpus();
916 }
917
918 void __init smp_prepare_boot_cpu(void)
919 {
920 struct pcpu *pcpu = pcpu_devices;
921
922 pcpu->state = CPU_STATE_CONFIGURED;
923 pcpu->address = stap();
924 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
925 S390_lowcore.percpu_offset = __per_cpu_offset[0];
926 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
927 set_cpu_present(0, true);
928 set_cpu_online(0, true);
929 }
930
931 void __init smp_cpus_done(unsigned int max_cpus)
932 {
933 }
934
935 void __init smp_setup_processor_id(void)
936 {
937 S390_lowcore.cpu_nr = 0;
938 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
939 }
940
941 /*
942 * the frequency of the profiling timer can be changed
943 * by writing a multiplier value into /proc/profile.
944 *
945 * usually you want to run this on all CPUs ;)
946 */
947 int setup_profiling_timer(unsigned int multiplier)
948 {
949 return 0;
950 }
951
952 #ifdef CONFIG_HOTPLUG_CPU
953 static ssize_t cpu_configure_show(struct device *dev,
954 struct device_attribute *attr, char *buf)
955 {
956 ssize_t count;
957
958 mutex_lock(&smp_cpu_state_mutex);
959 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
960 mutex_unlock(&smp_cpu_state_mutex);
961 return count;
962 }
963
964 static ssize_t cpu_configure_store(struct device *dev,
965 struct device_attribute *attr,
966 const char *buf, size_t count)
967 {
968 struct pcpu *pcpu;
969 int cpu, val, rc, i;
970 char delim;
971
972 if (sscanf(buf, "%d %c", &val, &delim) != 1)
973 return -EINVAL;
974 if (val != 0 && val != 1)
975 return -EINVAL;
976 get_online_cpus();
977 mutex_lock(&smp_cpu_state_mutex);
978 rc = -EBUSY;
979 /* disallow configuration changes of online cpus and cpu 0 */
980 cpu = dev->id;
981 cpu -= cpu % (smp_cpu_mtid + 1);
982 if (cpu == 0)
983 goto out;
984 for (i = 0; i <= smp_cpu_mtid; i++)
985 if (cpu_online(cpu + i))
986 goto out;
987 pcpu = pcpu_devices + cpu;
988 rc = 0;
989 switch (val) {
990 case 0:
991 if (pcpu->state != CPU_STATE_CONFIGURED)
992 break;
993 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
994 if (rc)
995 break;
996 for (i = 0; i <= smp_cpu_mtid; i++) {
997 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
998 continue;
999 pcpu[i].state = CPU_STATE_STANDBY;
1000 smp_cpu_set_polarization(cpu + i,
1001 POLARIZATION_UNKNOWN);
1002 }
1003 topology_expect_change();
1004 break;
1005 case 1:
1006 if (pcpu->state != CPU_STATE_STANDBY)
1007 break;
1008 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1009 if (rc)
1010 break;
1011 for (i = 0; i <= smp_cpu_mtid; i++) {
1012 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1013 continue;
1014 pcpu[i].state = CPU_STATE_CONFIGURED;
1015 smp_cpu_set_polarization(cpu + i,
1016 POLARIZATION_UNKNOWN);
1017 }
1018 topology_expect_change();
1019 break;
1020 default:
1021 break;
1022 }
1023 out:
1024 mutex_unlock(&smp_cpu_state_mutex);
1025 put_online_cpus();
1026 return rc ? rc : count;
1027 }
1028 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1029 #endif /* CONFIG_HOTPLUG_CPU */
1030
1031 static ssize_t show_cpu_address(struct device *dev,
1032 struct device_attribute *attr, char *buf)
1033 {
1034 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1035 }
1036 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1037
1038 static struct attribute *cpu_common_attrs[] = {
1039 #ifdef CONFIG_HOTPLUG_CPU
1040 &dev_attr_configure.attr,
1041 #endif
1042 &dev_attr_address.attr,
1043 NULL,
1044 };
1045
1046 static struct attribute_group cpu_common_attr_group = {
1047 .attrs = cpu_common_attrs,
1048 };
1049
1050 static struct attribute *cpu_online_attrs[] = {
1051 &dev_attr_idle_count.attr,
1052 &dev_attr_idle_time_us.attr,
1053 NULL,
1054 };
1055
1056 static struct attribute_group cpu_online_attr_group = {
1057 .attrs = cpu_online_attrs,
1058 };
1059
1060 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1061 void *hcpu)
1062 {
1063 unsigned int cpu = (unsigned int)(long)hcpu;
1064 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1065 int err = 0;
1066
1067 switch (action & ~CPU_TASKS_FROZEN) {
1068 case CPU_ONLINE:
1069 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1070 break;
1071 case CPU_DEAD:
1072 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1073 break;
1074 }
1075 return notifier_from_errno(err);
1076 }
1077
1078 static int smp_add_present_cpu(int cpu)
1079 {
1080 struct device *s;
1081 struct cpu *c;
1082 int rc;
1083
1084 c = kzalloc(sizeof(*c), GFP_KERNEL);
1085 if (!c)
1086 return -ENOMEM;
1087 per_cpu(cpu_device, cpu) = c;
1088 s = &c->dev;
1089 c->hotpluggable = 1;
1090 rc = register_cpu(c, cpu);
1091 if (rc)
1092 goto out;
1093 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1094 if (rc)
1095 goto out_cpu;
1096 if (cpu_online(cpu)) {
1097 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1098 if (rc)
1099 goto out_online;
1100 }
1101 rc = topology_cpu_init(c);
1102 if (rc)
1103 goto out_topology;
1104 return 0;
1105
1106 out_topology:
1107 if (cpu_online(cpu))
1108 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1109 out_online:
1110 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1111 out_cpu:
1112 #ifdef CONFIG_HOTPLUG_CPU
1113 unregister_cpu(c);
1114 #endif
1115 out:
1116 return rc;
1117 }
1118
1119 #ifdef CONFIG_HOTPLUG_CPU
1120
1121 int __ref smp_rescan_cpus(void)
1122 {
1123 struct sclp_core_info *info;
1124 int nr;
1125
1126 info = smp_get_core_info();
1127 if (!info)
1128 return -ENOMEM;
1129 get_online_cpus();
1130 mutex_lock(&smp_cpu_state_mutex);
1131 nr = __smp_rescan_cpus(info, 1);
1132 mutex_unlock(&smp_cpu_state_mutex);
1133 put_online_cpus();
1134 kfree(info);
1135 if (nr)
1136 topology_schedule_update();
1137 return 0;
1138 }
1139
1140 static ssize_t __ref rescan_store(struct device *dev,
1141 struct device_attribute *attr,
1142 const char *buf,
1143 size_t count)
1144 {
1145 int rc;
1146
1147 rc = smp_rescan_cpus();
1148 return rc ? rc : count;
1149 }
1150 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1151 #endif /* CONFIG_HOTPLUG_CPU */
1152
1153 static int __init s390_smp_init(void)
1154 {
1155 int cpu, rc = 0;
1156
1157 #ifdef CONFIG_HOTPLUG_CPU
1158 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1159 if (rc)
1160 return rc;
1161 #endif
1162 cpu_notifier_register_begin();
1163 for_each_present_cpu(cpu) {
1164 rc = smp_add_present_cpu(cpu);
1165 if (rc)
1166 goto out;
1167 }
1168
1169 __hotcpu_notifier(smp_cpu_notify, 0);
1170
1171 out:
1172 cpu_notifier_register_done();
1173 return rc;
1174 }
1175 subsys_initcall(s390_smp_init);
This page took 0.095381 seconds and 5 git commands to generate.