42b1d12ebb106119de9113c9e2eb3526b088315f
[deliverable/linux.git] / arch / s390 / kernel / smp.c
1 /*
2 * arch/s390/kernel/smp.c
3 *
4 * Copyright IBM Corp. 1999,2007
5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 * Heiko Carstens (heiko.carstens@de.ibm.com)
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * We work with logical cpu numbering everywhere we can. The only
14 * functions using the real cpu address (got from STAP) are the sigp
15 * functions. For all other functions we use the identity mapping.
16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17 * used e.g. to find the idle task belonging to a logical cpu. Every array
18 * in the kernel is sorted by the logical cpu number and not by the physical
19 * one which is causing all the confusion with __cpu_logical_map and
20 * cpu_number_map in other architectures.
21 */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/cpu.h>
47 #include "entry.h"
48
49 /*
50 * An array with a pointer the lowcore of every CPU.
51 */
52 struct _lowcore *lowcore_ptr[NR_CPUS];
53 EXPORT_SYMBOL(lowcore_ptr);
54
55 cpumask_t cpu_online_map = CPU_MASK_NONE;
56 EXPORT_SYMBOL(cpu_online_map);
57
58 cpumask_t cpu_possible_map = CPU_MASK_ALL;
59 EXPORT_SYMBOL(cpu_possible_map);
60
61 static struct task_struct *current_set[NR_CPUS];
62
63 static u8 smp_cpu_type;
64 static int smp_use_sigp_detection;
65
66 enum s390_cpu_state {
67 CPU_STATE_STANDBY,
68 CPU_STATE_CONFIGURED,
69 };
70
71 DEFINE_MUTEX(smp_cpu_state_mutex);
72 int smp_cpu_polarization[NR_CPUS];
73 static int smp_cpu_state[NR_CPUS];
74 static int cpu_management;
75
76 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77
78 static void smp_ext_bitcall(int, ec_bit_sig);
79
80 /*
81 * Structure and data for __smp_call_function_map(). This is designed to
82 * minimise static memory requirements. It also looks cleaner.
83 */
84 static DEFINE_SPINLOCK(call_lock);
85
86 struct call_data_struct {
87 void (*func) (void *info);
88 void *info;
89 cpumask_t started;
90 cpumask_t finished;
91 int wait;
92 };
93
94 static struct call_data_struct *call_data;
95
96 /*
97 * 'Call function' interrupt callback
98 */
99 static void do_call_function(void)
100 {
101 void (*func) (void *info) = call_data->func;
102 void *info = call_data->info;
103 int wait = call_data->wait;
104
105 cpu_set(smp_processor_id(), call_data->started);
106 (*func)(info);
107 if (wait)
108 cpu_set(smp_processor_id(), call_data->finished);;
109 }
110
111 static void __smp_call_function_map(void (*func) (void *info), void *info,
112 int nonatomic, int wait, cpumask_t map)
113 {
114 struct call_data_struct data;
115 int cpu, local = 0;
116
117 /*
118 * Can deadlock when interrupts are disabled or if in wrong context.
119 */
120 WARN_ON(irqs_disabled() || in_irq());
121
122 /*
123 * Check for local function call. We have to have the same call order
124 * as in on_each_cpu() because of machine_restart_smp().
125 */
126 if (cpu_isset(smp_processor_id(), map)) {
127 local = 1;
128 cpu_clear(smp_processor_id(), map);
129 }
130
131 cpus_and(map, map, cpu_online_map);
132 if (cpus_empty(map))
133 goto out;
134
135 data.func = func;
136 data.info = info;
137 data.started = CPU_MASK_NONE;
138 data.wait = wait;
139 if (wait)
140 data.finished = CPU_MASK_NONE;
141
142 call_data = &data;
143
144 for_each_cpu_mask(cpu, map)
145 smp_ext_bitcall(cpu, ec_call_function);
146
147 /* Wait for response */
148 while (!cpus_equal(map, data.started))
149 cpu_relax();
150 if (wait)
151 while (!cpus_equal(map, data.finished))
152 cpu_relax();
153 out:
154 if (local) {
155 local_irq_disable();
156 func(info);
157 local_irq_enable();
158 }
159 }
160
161 /*
162 * smp_call_function:
163 * @func: the function to run; this must be fast and non-blocking
164 * @info: an arbitrary pointer to pass to the function
165 * @nonatomic: unused
166 * @wait: if true, wait (atomically) until function has completed on other CPUs
167 *
168 * Run a function on all other CPUs.
169 *
170 * You must not call this function with disabled interrupts, from a
171 * hardware interrupt handler or from a bottom half.
172 */
173 int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
174 int wait)
175 {
176 cpumask_t map;
177
178 spin_lock(&call_lock);
179 map = cpu_online_map;
180 cpu_clear(smp_processor_id(), map);
181 __smp_call_function_map(func, info, nonatomic, wait, map);
182 spin_unlock(&call_lock);
183 return 0;
184 }
185 EXPORT_SYMBOL(smp_call_function);
186
187 /*
188 * smp_call_function_single:
189 * @cpu: the CPU where func should run
190 * @func: the function to run; this must be fast and non-blocking
191 * @info: an arbitrary pointer to pass to the function
192 * @nonatomic: unused
193 * @wait: if true, wait (atomically) until function has completed on other CPUs
194 *
195 * Run a function on one processor.
196 *
197 * You must not call this function with disabled interrupts, from a
198 * hardware interrupt handler or from a bottom half.
199 */
200 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
201 int nonatomic, int wait)
202 {
203 spin_lock(&call_lock);
204 __smp_call_function_map(func, info, nonatomic, wait,
205 cpumask_of_cpu(cpu));
206 spin_unlock(&call_lock);
207 return 0;
208 }
209 EXPORT_SYMBOL(smp_call_function_single);
210
211 /**
212 * smp_call_function_mask(): Run a function on a set of other CPUs.
213 * @mask: The set of cpus to run on. Must not include the current cpu.
214 * @func: The function to run. This must be fast and non-blocking.
215 * @info: An arbitrary pointer to pass to the function.
216 * @wait: If true, wait (atomically) until function has completed on other CPUs.
217 *
218 * Returns 0 on success, else a negative status code.
219 *
220 * If @wait is true, then returns once @func has returned; otherwise
221 * it returns just before the target cpu calls @func.
222 *
223 * You must not call this function with disabled interrupts or from a
224 * hardware interrupt handler or from a bottom half handler.
225 */
226 int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
227 int wait)
228 {
229 spin_lock(&call_lock);
230 cpu_clear(smp_processor_id(), mask);
231 __smp_call_function_map(func, info, 0, wait, mask);
232 spin_unlock(&call_lock);
233 return 0;
234 }
235 EXPORT_SYMBOL(smp_call_function_mask);
236
237 void smp_send_stop(void)
238 {
239 int cpu, rc;
240
241 /* Disable all interrupts/machine checks */
242 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
243
244 /* write magic number to zero page (absolute 0) */
245 lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
246
247 /* stop all processors */
248 for_each_online_cpu(cpu) {
249 if (cpu == smp_processor_id())
250 continue;
251 do {
252 rc = signal_processor(cpu, sigp_stop);
253 } while (rc == sigp_busy);
254
255 while (!smp_cpu_not_running(cpu))
256 cpu_relax();
257 }
258 }
259
260 /*
261 * This is the main routine where commands issued by other
262 * cpus are handled.
263 */
264
265 static void do_ext_call_interrupt(__u16 code)
266 {
267 unsigned long bits;
268
269 /*
270 * handle bit signal external calls
271 *
272 * For the ec_schedule signal we have to do nothing. All the work
273 * is done automatically when we return from the interrupt.
274 */
275 bits = xchg(&S390_lowcore.ext_call_fast, 0);
276
277 if (test_bit(ec_call_function, &bits))
278 do_call_function();
279 }
280
281 /*
282 * Send an external call sigp to another cpu and return without waiting
283 * for its completion.
284 */
285 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
286 {
287 /*
288 * Set signaling bit in lowcore of target cpu and kick it
289 */
290 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
291 while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
292 udelay(10);
293 }
294
295 #ifndef CONFIG_64BIT
296 /*
297 * this function sends a 'purge tlb' signal to another CPU.
298 */
299 static void smp_ptlb_callback(void *info)
300 {
301 __tlb_flush_local();
302 }
303
304 void smp_ptlb_all(void)
305 {
306 on_each_cpu(smp_ptlb_callback, NULL, 0, 1);
307 }
308 EXPORT_SYMBOL(smp_ptlb_all);
309 #endif /* ! CONFIG_64BIT */
310
311 /*
312 * this function sends a 'reschedule' IPI to another CPU.
313 * it goes straight through and wastes no time serializing
314 * anything. Worst case is that we lose a reschedule ...
315 */
316 void smp_send_reschedule(int cpu)
317 {
318 smp_ext_bitcall(cpu, ec_schedule);
319 }
320
321 /*
322 * parameter area for the set/clear control bit callbacks
323 */
324 struct ec_creg_mask_parms {
325 unsigned long orvals[16];
326 unsigned long andvals[16];
327 };
328
329 /*
330 * callback for setting/clearing control bits
331 */
332 static void smp_ctl_bit_callback(void *info)
333 {
334 struct ec_creg_mask_parms *pp = info;
335 unsigned long cregs[16];
336 int i;
337
338 __ctl_store(cregs, 0, 15);
339 for (i = 0; i <= 15; i++)
340 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
341 __ctl_load(cregs, 0, 15);
342 }
343
344 /*
345 * Set a bit in a control register of all cpus
346 */
347 void smp_ctl_set_bit(int cr, int bit)
348 {
349 struct ec_creg_mask_parms parms;
350
351 memset(&parms.orvals, 0, sizeof(parms.orvals));
352 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
353 parms.orvals[cr] = 1 << bit;
354 on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
355 }
356 EXPORT_SYMBOL(smp_ctl_set_bit);
357
358 /*
359 * Clear a bit in a control register of all cpus
360 */
361 void smp_ctl_clear_bit(int cr, int bit)
362 {
363 struct ec_creg_mask_parms parms;
364
365 memset(&parms.orvals, 0, sizeof(parms.orvals));
366 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
367 parms.andvals[cr] = ~(1L << bit);
368 on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
369 }
370 EXPORT_SYMBOL(smp_ctl_clear_bit);
371
372 /*
373 * In early ipl state a temp. logically cpu number is needed, so the sigp
374 * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
375 * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
376 */
377 #define CPU_INIT_NO 1
378
379 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
380
381 /*
382 * zfcpdump_prefix_array holds prefix registers for the following scenario:
383 * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
384 * save its prefix registers, since they get lost, when switching from 31 bit
385 * to 64 bit.
386 */
387 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
388 __attribute__((__section__(".data")));
389
390 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
391 {
392 if (ipl_info.type != IPL_TYPE_FCP_DUMP)
393 return;
394 if (cpu >= NR_CPUS) {
395 printk(KERN_WARNING "Registers for cpu %i not saved since dump "
396 "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
397 return;
398 }
399 zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
400 __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
401 while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
402 sigp_busy)
403 cpu_relax();
404 memcpy(zfcpdump_save_areas[cpu],
405 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
406 SAVE_AREA_SIZE);
407 #ifdef CONFIG_64BIT
408 /* copy original prefix register */
409 zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
410 #endif
411 }
412
413 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
414 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
415
416 #else
417
418 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
419
420 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
421
422 static int cpu_stopped(int cpu)
423 {
424 __u32 status;
425
426 /* Check for stopped state */
427 if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
428 sigp_status_stored) {
429 if (status & 0x40)
430 return 1;
431 }
432 return 0;
433 }
434
435 static int cpu_known(int cpu_id)
436 {
437 int cpu;
438
439 for_each_present_cpu(cpu) {
440 if (__cpu_logical_map[cpu] == cpu_id)
441 return 1;
442 }
443 return 0;
444 }
445
446 static int smp_rescan_cpus_sigp(cpumask_t avail)
447 {
448 int cpu_id, logical_cpu;
449
450 logical_cpu = first_cpu(avail);
451 if (logical_cpu == NR_CPUS)
452 return 0;
453 for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
454 if (cpu_known(cpu_id))
455 continue;
456 __cpu_logical_map[logical_cpu] = cpu_id;
457 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
458 if (!cpu_stopped(logical_cpu))
459 continue;
460 cpu_set(logical_cpu, cpu_present_map);
461 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
462 logical_cpu = next_cpu(logical_cpu, avail);
463 if (logical_cpu == NR_CPUS)
464 break;
465 }
466 return 0;
467 }
468
469 static int smp_rescan_cpus_sclp(cpumask_t avail)
470 {
471 struct sclp_cpu_info *info;
472 int cpu_id, logical_cpu, cpu;
473 int rc;
474
475 logical_cpu = first_cpu(avail);
476 if (logical_cpu == NR_CPUS)
477 return 0;
478 info = kmalloc(sizeof(*info), GFP_KERNEL);
479 if (!info)
480 return -ENOMEM;
481 rc = sclp_get_cpu_info(info);
482 if (rc)
483 goto out;
484 for (cpu = 0; cpu < info->combined; cpu++) {
485 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
486 continue;
487 cpu_id = info->cpu[cpu].address;
488 if (cpu_known(cpu_id))
489 continue;
490 __cpu_logical_map[logical_cpu] = cpu_id;
491 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
492 cpu_set(logical_cpu, cpu_present_map);
493 if (cpu >= info->configured)
494 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
495 else
496 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
497 logical_cpu = next_cpu(logical_cpu, avail);
498 if (logical_cpu == NR_CPUS)
499 break;
500 }
501 out:
502 kfree(info);
503 return rc;
504 }
505
506 static int __smp_rescan_cpus(void)
507 {
508 cpumask_t avail;
509
510 cpus_xor(avail, cpu_possible_map, cpu_present_map);
511 if (smp_use_sigp_detection)
512 return smp_rescan_cpus_sigp(avail);
513 else
514 return smp_rescan_cpus_sclp(avail);
515 }
516
517 static void __init smp_detect_cpus(void)
518 {
519 unsigned int cpu, c_cpus, s_cpus;
520 struct sclp_cpu_info *info;
521 u16 boot_cpu_addr, cpu_addr;
522
523 c_cpus = 1;
524 s_cpus = 0;
525 boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
526 info = kmalloc(sizeof(*info), GFP_KERNEL);
527 if (!info)
528 panic("smp_detect_cpus failed to allocate memory\n");
529 /* Use sigp detection algorithm if sclp doesn't work. */
530 if (sclp_get_cpu_info(info)) {
531 smp_use_sigp_detection = 1;
532 for (cpu = 0; cpu <= 65535; cpu++) {
533 if (cpu == boot_cpu_addr)
534 continue;
535 __cpu_logical_map[CPU_INIT_NO] = cpu;
536 if (!cpu_stopped(CPU_INIT_NO))
537 continue;
538 smp_get_save_area(c_cpus, cpu);
539 c_cpus++;
540 }
541 goto out;
542 }
543
544 if (info->has_cpu_type) {
545 for (cpu = 0; cpu < info->combined; cpu++) {
546 if (info->cpu[cpu].address == boot_cpu_addr) {
547 smp_cpu_type = info->cpu[cpu].type;
548 break;
549 }
550 }
551 }
552
553 for (cpu = 0; cpu < info->combined; cpu++) {
554 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
555 continue;
556 cpu_addr = info->cpu[cpu].address;
557 if (cpu_addr == boot_cpu_addr)
558 continue;
559 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
560 if (!cpu_stopped(CPU_INIT_NO)) {
561 s_cpus++;
562 continue;
563 }
564 smp_get_save_area(c_cpus, cpu_addr);
565 c_cpus++;
566 }
567 out:
568 kfree(info);
569 printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
570 get_online_cpus();
571 __smp_rescan_cpus();
572 put_online_cpus();
573 }
574
575 /*
576 * Activate a secondary processor.
577 */
578 int __cpuinit start_secondary(void *cpuvoid)
579 {
580 /* Setup the cpu */
581 cpu_init();
582 preempt_disable();
583 /* Enable TOD clock interrupts on the secondary cpu. */
584 init_cpu_timer();
585 #ifdef CONFIG_VIRT_TIMER
586 /* Enable cpu timer interrupts on the secondary cpu. */
587 init_cpu_vtimer();
588 #endif
589 /* Enable pfault pseudo page faults on this cpu. */
590 pfault_init();
591
592 /* Mark this cpu as online */
593 spin_lock(&call_lock);
594 cpu_set(smp_processor_id(), cpu_online_map);
595 spin_unlock(&call_lock);
596 /* Switch on interrupts */
597 local_irq_enable();
598 /* Print info about this processor */
599 print_cpu_info(&S390_lowcore.cpu_data);
600 /* cpu_idle will call schedule for us */
601 cpu_idle();
602 return 0;
603 }
604
605 static void __init smp_create_idle(unsigned int cpu)
606 {
607 struct task_struct *p;
608
609 /*
610 * don't care about the psw and regs settings since we'll never
611 * reschedule the forked task.
612 */
613 p = fork_idle(cpu);
614 if (IS_ERR(p))
615 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
616 current_set[cpu] = p;
617 spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
618 }
619
620 static int __cpuinit smp_alloc_lowcore(int cpu)
621 {
622 unsigned long async_stack, panic_stack;
623 struct _lowcore *lowcore;
624 int lc_order;
625
626 lc_order = sizeof(long) == 8 ? 1 : 0;
627 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
628 if (!lowcore)
629 return -ENOMEM;
630 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
631 panic_stack = __get_free_page(GFP_KERNEL);
632 if (!panic_stack || !async_stack)
633 goto out;
634 memcpy(lowcore, &S390_lowcore, 512);
635 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
636 lowcore->async_stack = async_stack + ASYNC_SIZE;
637 lowcore->panic_stack = panic_stack + PAGE_SIZE;
638
639 #ifndef CONFIG_64BIT
640 if (MACHINE_HAS_IEEE) {
641 unsigned long save_area;
642
643 save_area = get_zeroed_page(GFP_KERNEL);
644 if (!save_area)
645 goto out_save_area;
646 lowcore->extended_save_area_addr = (u32) save_area;
647 }
648 #endif
649 lowcore_ptr[cpu] = lowcore;
650 return 0;
651
652 #ifndef CONFIG_64BIT
653 out_save_area:
654 free_page(panic_stack);
655 #endif
656 out:
657 free_pages(async_stack, ASYNC_ORDER);
658 free_pages((unsigned long) lowcore, lc_order);
659 return -ENOMEM;
660 }
661
662 #ifdef CONFIG_HOTPLUG_CPU
663 static void smp_free_lowcore(int cpu)
664 {
665 struct _lowcore *lowcore;
666 int lc_order;
667
668 lc_order = sizeof(long) == 8 ? 1 : 0;
669 lowcore = lowcore_ptr[cpu];
670 #ifndef CONFIG_64BIT
671 if (MACHINE_HAS_IEEE)
672 free_page((unsigned long) lowcore->extended_save_area_addr);
673 #endif
674 free_page(lowcore->panic_stack - PAGE_SIZE);
675 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
676 free_pages((unsigned long) lowcore, lc_order);
677 lowcore_ptr[cpu] = NULL;
678 }
679 #endif /* CONFIG_HOTPLUG_CPU */
680
681 /* Upping and downing of CPUs */
682 int __cpuinit __cpu_up(unsigned int cpu)
683 {
684 struct task_struct *idle;
685 struct _lowcore *cpu_lowcore;
686 struct stack_frame *sf;
687 sigp_ccode ccode;
688
689 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
690 return -EIO;
691 if (smp_alloc_lowcore(cpu))
692 return -ENOMEM;
693
694 ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
695 cpu, sigp_set_prefix);
696 if (ccode) {
697 printk("sigp_set_prefix failed for cpu %d "
698 "with condition code %d\n",
699 (int) cpu, (int) ccode);
700 return -EIO;
701 }
702
703 idle = current_set[cpu];
704 cpu_lowcore = lowcore_ptr[cpu];
705 cpu_lowcore->kernel_stack = (unsigned long)
706 task_stack_page(idle) + THREAD_SIZE;
707 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
708 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
709 - sizeof(struct pt_regs)
710 - sizeof(struct stack_frame));
711 memset(sf, 0, sizeof(struct stack_frame));
712 sf->gprs[9] = (unsigned long) sf;
713 cpu_lowcore->save_area[15] = (unsigned long) sf;
714 __ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15);
715 asm volatile(
716 " stam 0,15,0(%0)"
717 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
718 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
719 cpu_lowcore->current_task = (unsigned long) idle;
720 cpu_lowcore->cpu_data.cpu_nr = cpu;
721 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
722 cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
723 eieio();
724
725 while (signal_processor(cpu, sigp_restart) == sigp_busy)
726 udelay(10);
727
728 while (!cpu_online(cpu))
729 cpu_relax();
730 return 0;
731 }
732
733 static int __init setup_possible_cpus(char *s)
734 {
735 int pcpus, cpu;
736
737 pcpus = simple_strtoul(s, NULL, 0);
738 cpu_possible_map = cpumask_of_cpu(0);
739 for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
740 cpu_set(cpu, cpu_possible_map);
741 return 0;
742 }
743 early_param("possible_cpus", setup_possible_cpus);
744
745 #ifdef CONFIG_HOTPLUG_CPU
746
747 int __cpu_disable(void)
748 {
749 struct ec_creg_mask_parms cr_parms;
750 int cpu = smp_processor_id();
751
752 cpu_clear(cpu, cpu_online_map);
753
754 /* Disable pfault pseudo page faults on this cpu. */
755 pfault_fini();
756
757 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
758 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
759
760 /* disable all external interrupts */
761 cr_parms.orvals[0] = 0;
762 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
763 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
764 /* disable all I/O interrupts */
765 cr_parms.orvals[6] = 0;
766 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
767 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
768 /* disable most machine checks */
769 cr_parms.orvals[14] = 0;
770 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
771 1 << 25 | 1 << 24);
772
773 smp_ctl_bit_callback(&cr_parms);
774
775 return 0;
776 }
777
778 void __cpu_die(unsigned int cpu)
779 {
780 /* Wait until target cpu is down */
781 while (!smp_cpu_not_running(cpu))
782 cpu_relax();
783 smp_free_lowcore(cpu);
784 printk(KERN_INFO "Processor %d spun down\n", cpu);
785 }
786
787 void cpu_die(void)
788 {
789 idle_task_exit();
790 signal_processor(smp_processor_id(), sigp_stop);
791 BUG();
792 for (;;);
793 }
794
795 #endif /* CONFIG_HOTPLUG_CPU */
796
797 void __init smp_prepare_cpus(unsigned int max_cpus)
798 {
799 #ifndef CONFIG_64BIT
800 unsigned long save_area = 0;
801 #endif
802 unsigned long async_stack, panic_stack;
803 struct _lowcore *lowcore;
804 unsigned int cpu;
805 int lc_order;
806
807 smp_detect_cpus();
808
809 /* request the 0x1201 emergency signal external interrupt */
810 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
811 panic("Couldn't request external interrupt 0x1201");
812 print_cpu_info(&S390_lowcore.cpu_data);
813
814 /* Reallocate current lowcore, but keep its contents. */
815 lc_order = sizeof(long) == 8 ? 1 : 0;
816 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
817 panic_stack = __get_free_page(GFP_KERNEL);
818 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
819 #ifndef CONFIG_64BIT
820 if (MACHINE_HAS_IEEE)
821 save_area = get_zeroed_page(GFP_KERNEL);
822 #endif
823 local_irq_disable();
824 local_mcck_disable();
825 lowcore_ptr[smp_processor_id()] = lowcore;
826 *lowcore = S390_lowcore;
827 lowcore->panic_stack = panic_stack + PAGE_SIZE;
828 lowcore->async_stack = async_stack + ASYNC_SIZE;
829 #ifndef CONFIG_64BIT
830 if (MACHINE_HAS_IEEE)
831 lowcore->extended_save_area_addr = (u32) save_area;
832 #endif
833 set_prefix((u32)(unsigned long) lowcore);
834 local_mcck_enable();
835 local_irq_enable();
836 for_each_possible_cpu(cpu)
837 if (cpu != smp_processor_id())
838 smp_create_idle(cpu);
839 }
840
841 void __init smp_prepare_boot_cpu(void)
842 {
843 BUG_ON(smp_processor_id() != 0);
844
845 current_thread_info()->cpu = 0;
846 cpu_set(0, cpu_present_map);
847 cpu_set(0, cpu_online_map);
848 S390_lowcore.percpu_offset = __per_cpu_offset[0];
849 current_set[0] = current;
850 smp_cpu_state[0] = CPU_STATE_CONFIGURED;
851 smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
852 spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
853 }
854
855 void __init smp_cpus_done(unsigned int max_cpus)
856 {
857 }
858
859 /*
860 * the frequency of the profiling timer can be changed
861 * by writing a multiplier value into /proc/profile.
862 *
863 * usually you want to run this on all CPUs ;)
864 */
865 int setup_profiling_timer(unsigned int multiplier)
866 {
867 return 0;
868 }
869
870 #ifdef CONFIG_HOTPLUG_CPU
871 static ssize_t cpu_configure_show(struct sys_device *dev, char *buf)
872 {
873 ssize_t count;
874
875 mutex_lock(&smp_cpu_state_mutex);
876 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
877 mutex_unlock(&smp_cpu_state_mutex);
878 return count;
879 }
880
881 static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf,
882 size_t count)
883 {
884 int cpu = dev->id;
885 int val, rc;
886 char delim;
887
888 if (sscanf(buf, "%d %c", &val, &delim) != 1)
889 return -EINVAL;
890 if (val != 0 && val != 1)
891 return -EINVAL;
892
893 get_online_cpus();
894 mutex_lock(&smp_cpu_state_mutex);
895 rc = -EBUSY;
896 if (cpu_online(cpu))
897 goto out;
898 rc = 0;
899 switch (val) {
900 case 0:
901 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
902 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
903 if (!rc) {
904 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
905 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
906 }
907 }
908 break;
909 case 1:
910 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
911 rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
912 if (!rc) {
913 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
914 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
915 }
916 }
917 break;
918 default:
919 break;
920 }
921 out:
922 mutex_unlock(&smp_cpu_state_mutex);
923 put_online_cpus();
924 return rc ? rc : count;
925 }
926 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
927 #endif /* CONFIG_HOTPLUG_CPU */
928
929 static ssize_t cpu_polarization_show(struct sys_device *dev, char *buf)
930 {
931 int cpu = dev->id;
932 ssize_t count;
933
934 mutex_lock(&smp_cpu_state_mutex);
935 switch (smp_cpu_polarization[cpu]) {
936 case POLARIZATION_HRZ:
937 count = sprintf(buf, "horizontal\n");
938 break;
939 case POLARIZATION_VL:
940 count = sprintf(buf, "vertical:low\n");
941 break;
942 case POLARIZATION_VM:
943 count = sprintf(buf, "vertical:medium\n");
944 break;
945 case POLARIZATION_VH:
946 count = sprintf(buf, "vertical:high\n");
947 break;
948 default:
949 count = sprintf(buf, "unknown\n");
950 break;
951 }
952 mutex_unlock(&smp_cpu_state_mutex);
953 return count;
954 }
955 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
956
957 static ssize_t show_cpu_address(struct sys_device *dev, char *buf)
958 {
959 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
960 }
961 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
962
963
964 static struct attribute *cpu_common_attrs[] = {
965 #ifdef CONFIG_HOTPLUG_CPU
966 &attr_configure.attr,
967 #endif
968 &attr_address.attr,
969 &attr_polarization.attr,
970 NULL,
971 };
972
973 static struct attribute_group cpu_common_attr_group = {
974 .attrs = cpu_common_attrs,
975 };
976
977 static ssize_t show_capability(struct sys_device *dev, char *buf)
978 {
979 unsigned int capability;
980 int rc;
981
982 rc = get_cpu_capability(&capability);
983 if (rc)
984 return rc;
985 return sprintf(buf, "%u\n", capability);
986 }
987 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
988
989 static ssize_t show_idle_count(struct sys_device *dev, char *buf)
990 {
991 struct s390_idle_data *idle;
992 unsigned long long idle_count;
993
994 idle = &per_cpu(s390_idle, dev->id);
995 spin_lock_irq(&idle->lock);
996 idle_count = idle->idle_count;
997 spin_unlock_irq(&idle->lock);
998 return sprintf(buf, "%llu\n", idle_count);
999 }
1000 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
1001
1002 static ssize_t show_idle_time(struct sys_device *dev, char *buf)
1003 {
1004 struct s390_idle_data *idle;
1005 unsigned long long new_time;
1006
1007 idle = &per_cpu(s390_idle, dev->id);
1008 spin_lock_irq(&idle->lock);
1009 if (idle->in_idle) {
1010 new_time = get_clock();
1011 idle->idle_time += new_time - idle->idle_enter;
1012 idle->idle_enter = new_time;
1013 }
1014 new_time = idle->idle_time;
1015 spin_unlock_irq(&idle->lock);
1016 return sprintf(buf, "%llu\n", new_time >> 12);
1017 }
1018 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1019
1020 static struct attribute *cpu_online_attrs[] = {
1021 &attr_capability.attr,
1022 &attr_idle_count.attr,
1023 &attr_idle_time_us.attr,
1024 NULL,
1025 };
1026
1027 static struct attribute_group cpu_online_attr_group = {
1028 .attrs = cpu_online_attrs,
1029 };
1030
1031 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1032 unsigned long action, void *hcpu)
1033 {
1034 unsigned int cpu = (unsigned int)(long)hcpu;
1035 struct cpu *c = &per_cpu(cpu_devices, cpu);
1036 struct sys_device *s = &c->sysdev;
1037 struct s390_idle_data *idle;
1038
1039 switch (action) {
1040 case CPU_ONLINE:
1041 case CPU_ONLINE_FROZEN:
1042 idle = &per_cpu(s390_idle, cpu);
1043 spin_lock_irq(&idle->lock);
1044 idle->idle_enter = 0;
1045 idle->idle_time = 0;
1046 idle->idle_count = 0;
1047 spin_unlock_irq(&idle->lock);
1048 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
1049 return NOTIFY_BAD;
1050 break;
1051 case CPU_DEAD:
1052 case CPU_DEAD_FROZEN:
1053 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1054 break;
1055 }
1056 return NOTIFY_OK;
1057 }
1058
1059 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1060 .notifier_call = smp_cpu_notify,
1061 };
1062
1063 static int __devinit smp_add_present_cpu(int cpu)
1064 {
1065 struct cpu *c = &per_cpu(cpu_devices, cpu);
1066 struct sys_device *s = &c->sysdev;
1067 int rc;
1068
1069 c->hotpluggable = 1;
1070 rc = register_cpu(c, cpu);
1071 if (rc)
1072 goto out;
1073 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1074 if (rc)
1075 goto out_cpu;
1076 if (!cpu_online(cpu))
1077 goto out;
1078 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1079 if (!rc)
1080 return 0;
1081 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1082 out_cpu:
1083 #ifdef CONFIG_HOTPLUG_CPU
1084 unregister_cpu(c);
1085 #endif
1086 out:
1087 return rc;
1088 }
1089
1090 #ifdef CONFIG_HOTPLUG_CPU
1091
1092 int __ref smp_rescan_cpus(void)
1093 {
1094 cpumask_t newcpus;
1095 int cpu;
1096 int rc;
1097
1098 get_online_cpus();
1099 mutex_lock(&smp_cpu_state_mutex);
1100 newcpus = cpu_present_map;
1101 rc = __smp_rescan_cpus();
1102 if (rc)
1103 goto out;
1104 cpus_andnot(newcpus, cpu_present_map, newcpus);
1105 for_each_cpu_mask(cpu, newcpus) {
1106 rc = smp_add_present_cpu(cpu);
1107 if (rc)
1108 cpu_clear(cpu, cpu_present_map);
1109 }
1110 rc = 0;
1111 out:
1112 mutex_unlock(&smp_cpu_state_mutex);
1113 put_online_cpus();
1114 if (!cpus_empty(newcpus))
1115 topology_schedule_update();
1116 return rc;
1117 }
1118
1119 static ssize_t __ref rescan_store(struct sys_device *dev, const char *buf,
1120 size_t count)
1121 {
1122 int rc;
1123
1124 rc = smp_rescan_cpus();
1125 return rc ? rc : count;
1126 }
1127 static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
1128 #endif /* CONFIG_HOTPLUG_CPU */
1129
1130 static ssize_t dispatching_show(struct sys_device *dev, char *buf)
1131 {
1132 ssize_t count;
1133
1134 mutex_lock(&smp_cpu_state_mutex);
1135 count = sprintf(buf, "%d\n", cpu_management);
1136 mutex_unlock(&smp_cpu_state_mutex);
1137 return count;
1138 }
1139
1140 static ssize_t dispatching_store(struct sys_device *dev, const char *buf,
1141 size_t count)
1142 {
1143 int val, rc;
1144 char delim;
1145
1146 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1147 return -EINVAL;
1148 if (val != 0 && val != 1)
1149 return -EINVAL;
1150 rc = 0;
1151 get_online_cpus();
1152 mutex_lock(&smp_cpu_state_mutex);
1153 if (cpu_management == val)
1154 goto out;
1155 rc = topology_set_cpu_management(val);
1156 if (!rc)
1157 cpu_management = val;
1158 out:
1159 mutex_unlock(&smp_cpu_state_mutex);
1160 put_online_cpus();
1161 return rc ? rc : count;
1162 }
1163 static SYSDEV_ATTR(dispatching, 0644, dispatching_show, dispatching_store);
1164
1165 static int __init topology_init(void)
1166 {
1167 int cpu;
1168 int rc;
1169
1170 register_cpu_notifier(&smp_cpu_nb);
1171
1172 #ifdef CONFIG_HOTPLUG_CPU
1173 rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1174 &attr_rescan.attr);
1175 if (rc)
1176 return rc;
1177 #endif
1178 rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1179 &attr_dispatching.attr);
1180 if (rc)
1181 return rc;
1182 for_each_present_cpu(cpu) {
1183 rc = smp_add_present_cpu(cpu);
1184 if (rc)
1185 return rc;
1186 }
1187 return 0;
1188 }
1189 subsys_initcall(topology_init);
This page took 0.053247 seconds and 4 git commands to generate.