2d37a46195e2cceb702efaf5b63003ddcd24a4e5
[deliverable/linux.git] / arch / s390 / kvm / gaccess.h
1 /*
2 * access guest memory
3 *
4 * Copyright IBM Corp. 2008, 2014
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): Carsten Otte <cotte@de.ibm.com>
11 */
12
13 #ifndef __KVM_S390_GACCESS_H
14 #define __KVM_S390_GACCESS_H
15
16 #include <linux/compiler.h>
17 #include <linux/kvm_host.h>
18 #include <linux/uaccess.h>
19 #include <linux/ptrace.h>
20 #include "kvm-s390.h"
21
22 /**
23 * kvm_s390_real_to_abs - convert guest real address to guest absolute address
24 * @vcpu - guest virtual cpu
25 * @gra - guest real address
26 *
27 * Returns the guest absolute address that corresponds to the passed guest real
28 * address @gra of a virtual guest cpu by applying its prefix.
29 */
30 static inline unsigned long kvm_s390_real_to_abs(struct kvm_vcpu *vcpu,
31 unsigned long gra)
32 {
33 unsigned long prefix = kvm_s390_get_prefix(vcpu);
34
35 if (gra < 2 * PAGE_SIZE)
36 gra += prefix;
37 else if (gra >= prefix && gra < prefix + 2 * PAGE_SIZE)
38 gra -= prefix;
39 return gra;
40 }
41
42 /**
43 * kvm_s390_logical_to_effective - convert guest logical to effective address
44 * @vcpu: guest virtual cpu
45 * @ga: guest logical address
46 *
47 * Convert a guest vcpu logical address to a guest vcpu effective address by
48 * applying the rules of the vcpu's addressing mode defined by PSW bits 31
49 * and 32 (extendended/basic addressing mode).
50 *
51 * Depending on the vcpu's addressing mode the upper 40 bits (24 bit addressing
52 * mode), 33 bits (31 bit addressing mode) or no bits (64 bit addressing mode)
53 * of @ga will be zeroed and the remaining bits will be returned.
54 */
55 static inline unsigned long kvm_s390_logical_to_effective(struct kvm_vcpu *vcpu,
56 unsigned long ga)
57 {
58 psw_t *psw = &vcpu->arch.sie_block->gpsw;
59
60 if (psw_bits(*psw).eaba == PSW_AMODE_64BIT)
61 return ga;
62 if (psw_bits(*psw).eaba == PSW_AMODE_31BIT)
63 return ga & ((1UL << 31) - 1);
64 return ga & ((1UL << 24) - 1);
65 }
66
67 /*
68 * put_guest_lc, read_guest_lc and write_guest_lc are guest access functions
69 * which shall only be used to access the lowcore of a vcpu.
70 * These functions should be used for e.g. interrupt handlers where no
71 * guest memory access protection facilities, like key or low address
72 * protection, are applicable.
73 * At a later point guest vcpu lowcore access should happen via pinned
74 * prefix pages, so that these pages can be accessed directly via the
75 * kernel mapping. All of these *_lc functions can be removed then.
76 */
77
78 /**
79 * put_guest_lc - write a simple variable to a guest vcpu's lowcore
80 * @vcpu: virtual cpu
81 * @x: value to copy to guest
82 * @gra: vcpu's destination guest real address
83 *
84 * Copies a simple value from kernel space to a guest vcpu's lowcore.
85 * The size of the variable may be 1, 2, 4 or 8 bytes. The destination
86 * must be located in the vcpu's lowcore. Otherwise the result is undefined.
87 *
88 * Returns zero on success or -EFAULT on error.
89 *
90 * Note: an error indicates that either the kernel is out of memory or
91 * the guest memory mapping is broken. In any case the best solution
92 * would be to terminate the guest.
93 * It is wrong to inject a guest exception.
94 */
95 #define put_guest_lc(vcpu, x, gra) \
96 ({ \
97 struct kvm_vcpu *__vcpu = (vcpu); \
98 __typeof__(*(gra)) __x = (x); \
99 unsigned long __gpa; \
100 \
101 __gpa = (unsigned long)(gra); \
102 __gpa += kvm_s390_get_prefix(__vcpu); \
103 kvm_write_guest(__vcpu->kvm, __gpa, &__x, sizeof(__x)); \
104 })
105
106 /**
107 * write_guest_lc - copy data from kernel space to guest vcpu's lowcore
108 * @vcpu: virtual cpu
109 * @gra: vcpu's source guest real address
110 * @data: source address in kernel space
111 * @len: number of bytes to copy
112 *
113 * Copy data from kernel space to guest vcpu's lowcore. The entire range must
114 * be located within the vcpu's lowcore, otherwise the result is undefined.
115 *
116 * Returns zero on success or -EFAULT on error.
117 *
118 * Note: an error indicates that either the kernel is out of memory or
119 * the guest memory mapping is broken. In any case the best solution
120 * would be to terminate the guest.
121 * It is wrong to inject a guest exception.
122 */
123 static inline __must_check
124 int write_guest_lc(struct kvm_vcpu *vcpu, unsigned long gra, void *data,
125 unsigned long len)
126 {
127 unsigned long gpa = gra + kvm_s390_get_prefix(vcpu);
128
129 return kvm_write_guest(vcpu->kvm, gpa, data, len);
130 }
131
132 /**
133 * read_guest_lc - copy data from guest vcpu's lowcore to kernel space
134 * @vcpu: virtual cpu
135 * @gra: vcpu's source guest real address
136 * @data: destination address in kernel space
137 * @len: number of bytes to copy
138 *
139 * Copy data from guest vcpu's lowcore to kernel space. The entire range must
140 * be located within the vcpu's lowcore, otherwise the result is undefined.
141 *
142 * Returns zero on success or -EFAULT on error.
143 *
144 * Note: an error indicates that either the kernel is out of memory or
145 * the guest memory mapping is broken. In any case the best solution
146 * would be to terminate the guest.
147 * It is wrong to inject a guest exception.
148 */
149 static inline __must_check
150 int read_guest_lc(struct kvm_vcpu *vcpu, unsigned long gra, void *data,
151 unsigned long len)
152 {
153 unsigned long gpa = gra + kvm_s390_get_prefix(vcpu);
154
155 return kvm_read_guest(vcpu->kvm, gpa, data, len);
156 }
157
158 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva,
159 unsigned long *gpa, int write);
160
161 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, void *data,
162 unsigned long len, int write);
163
164 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
165 void *data, unsigned long len, int write);
166
167 /**
168 * write_guest - copy data from kernel space to guest space
169 * @vcpu: virtual cpu
170 * @ga: guest address
171 * @data: source address in kernel space
172 * @len: number of bytes to copy
173 *
174 * Copy @len bytes from @data (kernel space) to @ga (guest address).
175 * In order to copy data to guest space the PSW of the vcpu is inspected:
176 * If DAT is off data will be copied to guest real or absolute memory.
177 * If DAT is on data will be copied to the address space as specified by
178 * the address space bits of the PSW:
179 * Primary, secondory or home space (access register mode is currently not
180 * implemented).
181 * The addressing mode of the PSW is also inspected, so that address wrap
182 * around is taken into account for 24-, 31- and 64-bit addressing mode,
183 * if the to be copied data crosses page boundaries in guest address space.
184 * In addition also low address and DAT protection are inspected before
185 * copying any data (key protection is currently not implemented).
186 *
187 * This function modifies the 'struct kvm_s390_pgm_info pgm' member of @vcpu.
188 * In case of an access exception (e.g. protection exception) pgm will contain
189 * all data necessary so that a subsequent call to 'kvm_s390_inject_prog_vcpu()'
190 * will inject a correct exception into the guest.
191 * If no access exception happened, the contents of pgm are undefined when
192 * this function returns.
193 *
194 * Returns: - zero on success
195 * - a negative value if e.g. the guest mapping is broken or in
196 * case of out-of-memory. In this case the contents of pgm are
197 * undefined. Also parts of @data may have been copied to guest
198 * space.
199 * - a positive value if an access exception happened. In this case
200 * the returned value is the program interruption code and the
201 * contents of pgm may be used to inject an exception into the
202 * guest. No data has been copied to guest space.
203 *
204 * Note: in case an access exception is recognized no data has been copied to
205 * guest space (this is also true, if the to be copied data would cross
206 * one or more page boundaries in guest space).
207 * Therefore this function may be used for nullifying and suppressing
208 * instruction emulation.
209 * It may also be used for terminating instructions, if it is undefined
210 * if data has been changed in guest space in case of an exception.
211 */
212 static inline __must_check
213 int write_guest(struct kvm_vcpu *vcpu, unsigned long ga, void *data,
214 unsigned long len)
215 {
216 return access_guest(vcpu, ga, data, len, 1);
217 }
218
219 /**
220 * read_guest - copy data from guest space to kernel space
221 * @vcpu: virtual cpu
222 * @ga: guest address
223 * @data: destination address in kernel space
224 * @len: number of bytes to copy
225 *
226 * Copy @len bytes from @ga (guest address) to @data (kernel space).
227 *
228 * The behaviour of read_guest is identical to write_guest, except that
229 * data will be copied from guest space to kernel space.
230 */
231 static inline __must_check
232 int read_guest(struct kvm_vcpu *vcpu, unsigned long ga, void *data,
233 unsigned long len)
234 {
235 return access_guest(vcpu, ga, data, len, 0);
236 }
237
238 /**
239 * write_guest_abs - copy data from kernel space to guest space absolute
240 * @vcpu: virtual cpu
241 * @gpa: guest physical (absolute) address
242 * @data: source address in kernel space
243 * @len: number of bytes to copy
244 *
245 * Copy @len bytes from @data (kernel space) to @gpa (guest absolute address).
246 * It is up to the caller to ensure that the entire guest memory range is
247 * valid memory before calling this function.
248 * Guest low address and key protection are not checked.
249 *
250 * Returns zero on success or -EFAULT on error.
251 *
252 * If an error occurs data may have been copied partially to guest memory.
253 */
254 static inline __must_check
255 int write_guest_abs(struct kvm_vcpu *vcpu, unsigned long gpa, void *data,
256 unsigned long len)
257 {
258 return kvm_write_guest(vcpu->kvm, gpa, data, len);
259 }
260
261 /**
262 * read_guest_abs - copy data from guest space absolute to kernel space
263 * @vcpu: virtual cpu
264 * @gpa: guest physical (absolute) address
265 * @data: destination address in kernel space
266 * @len: number of bytes to copy
267 *
268 * Copy @len bytes from @gpa (guest absolute address) to @data (kernel space).
269 * It is up to the caller to ensure that the entire guest memory range is
270 * valid memory before calling this function.
271 * Guest key protection is not checked.
272 *
273 * Returns zero on success or -EFAULT on error.
274 *
275 * If an error occurs data may have been copied partially to kernel space.
276 */
277 static inline __must_check
278 int read_guest_abs(struct kvm_vcpu *vcpu, unsigned long gpa, void *data,
279 unsigned long len)
280 {
281 return kvm_read_guest(vcpu->kvm, gpa, data, len);
282 }
283
284 /**
285 * write_guest_real - copy data from kernel space to guest space real
286 * @vcpu: virtual cpu
287 * @gra: guest real address
288 * @data: source address in kernel space
289 * @len: number of bytes to copy
290 *
291 * Copy @len bytes from @data (kernel space) to @gra (guest real address).
292 * It is up to the caller to ensure that the entire guest memory range is
293 * valid memory before calling this function.
294 * Guest low address and key protection are not checked.
295 *
296 * Returns zero on success or -EFAULT on error.
297 *
298 * If an error occurs data may have been copied partially to guest memory.
299 */
300 static inline __must_check
301 int write_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, void *data,
302 unsigned long len)
303 {
304 return access_guest_real(vcpu, gra, data, len, 1);
305 }
306
307 /**
308 * read_guest_real - copy data from guest space real to kernel space
309 * @vcpu: virtual cpu
310 * @gra: guest real address
311 * @data: destination address in kernel space
312 * @len: number of bytes to copy
313 *
314 * Copy @len bytes from @gra (guest real address) to @data (kernel space).
315 * It is up to the caller to ensure that the entire guest memory range is
316 * valid memory before calling this function.
317 * Guest key protection is not checked.
318 *
319 * Returns zero on success or -EFAULT on error.
320 *
321 * If an error occurs data may have been copied partially to kernel space.
322 */
323 static inline __must_check
324 int read_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, void *data,
325 unsigned long len)
326 {
327 return access_guest_real(vcpu, gra, data, len, 0);
328 }
329
330 int ipte_lock_held(struct kvm_vcpu *vcpu);
331 int kvm_s390_check_low_addr_protection(struct kvm_vcpu *vcpu, unsigned long ga);
332
333 #endif /* __KVM_S390_GACCESS_H */
This page took 0.050293 seconds and 4 git commands to generate.