Merge remote-tracking branch 'kvm/linux-next'
[deliverable/linux.git] / arch / s390 / kvm / guestdbg.c
1 /*
2 * kvm guest debug support
3 *
4 * Copyright IBM Corp. 2014
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
11 */
12 #include <linux/kvm_host.h>
13 #include <linux/errno.h>
14 #include "kvm-s390.h"
15 #include "gaccess.h"
16
17 /*
18 * Extends the address range given by *start and *stop to include the address
19 * range starting with estart and the length len. Takes care of overflowing
20 * intervals and tries to minimize the overall interval size.
21 */
22 static void extend_address_range(u64 *start, u64 *stop, u64 estart, int len)
23 {
24 u64 estop;
25
26 if (len > 0)
27 len--;
28 else
29 len = 0;
30
31 estop = estart + len;
32
33 /* 0-0 range represents "not set" */
34 if ((*start == 0) && (*stop == 0)) {
35 *start = estart;
36 *stop = estop;
37 } else if (*start <= *stop) {
38 /* increase the existing range */
39 if (estart < *start)
40 *start = estart;
41 if (estop > *stop)
42 *stop = estop;
43 } else {
44 /* "overflowing" interval, whereby *stop > *start */
45 if (estart <= *stop) {
46 if (estop > *stop)
47 *stop = estop;
48 } else if (estop > *start) {
49 if (estart < *start)
50 *start = estart;
51 }
52 /* minimize the range */
53 else if ((estop - *stop) < (*start - estart))
54 *stop = estop;
55 else
56 *start = estart;
57 }
58 }
59
60 #define MAX_INST_SIZE 6
61
62 static void enable_all_hw_bp(struct kvm_vcpu *vcpu)
63 {
64 unsigned long start, len;
65 u64 *cr9 = &vcpu->arch.sie_block->gcr[9];
66 u64 *cr10 = &vcpu->arch.sie_block->gcr[10];
67 u64 *cr11 = &vcpu->arch.sie_block->gcr[11];
68 int i;
69
70 if (vcpu->arch.guestdbg.nr_hw_bp <= 0 ||
71 vcpu->arch.guestdbg.hw_bp_info == NULL)
72 return;
73
74 /*
75 * If the guest is not interested in branching events, we can safely
76 * limit them to the PER address range.
77 */
78 if (!(*cr9 & PER_EVENT_BRANCH))
79 *cr9 |= PER_CONTROL_BRANCH_ADDRESS;
80 *cr9 |= PER_EVENT_IFETCH | PER_EVENT_BRANCH;
81
82 for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) {
83 start = vcpu->arch.guestdbg.hw_bp_info[i].addr;
84 len = vcpu->arch.guestdbg.hw_bp_info[i].len;
85
86 /*
87 * The instruction in front of the desired bp has to
88 * report instruction-fetching events
89 */
90 if (start < MAX_INST_SIZE) {
91 len += start;
92 start = 0;
93 } else {
94 start -= MAX_INST_SIZE;
95 len += MAX_INST_SIZE;
96 }
97
98 extend_address_range(cr10, cr11, start, len);
99 }
100 }
101
102 static void enable_all_hw_wp(struct kvm_vcpu *vcpu)
103 {
104 unsigned long start, len;
105 u64 *cr9 = &vcpu->arch.sie_block->gcr[9];
106 u64 *cr10 = &vcpu->arch.sie_block->gcr[10];
107 u64 *cr11 = &vcpu->arch.sie_block->gcr[11];
108 int i;
109
110 if (vcpu->arch.guestdbg.nr_hw_wp <= 0 ||
111 vcpu->arch.guestdbg.hw_wp_info == NULL)
112 return;
113
114 /* if host uses storage alternation for special address
115 * spaces, enable all events and give all to the guest */
116 if (*cr9 & PER_EVENT_STORE && *cr9 & PER_CONTROL_ALTERATION) {
117 *cr9 &= ~PER_CONTROL_ALTERATION;
118 *cr10 = 0;
119 *cr11 = -1UL;
120 } else {
121 *cr9 &= ~PER_CONTROL_ALTERATION;
122 *cr9 |= PER_EVENT_STORE;
123
124 for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
125 start = vcpu->arch.guestdbg.hw_wp_info[i].addr;
126 len = vcpu->arch.guestdbg.hw_wp_info[i].len;
127
128 extend_address_range(cr10, cr11, start, len);
129 }
130 }
131 }
132
133 void kvm_s390_backup_guest_per_regs(struct kvm_vcpu *vcpu)
134 {
135 vcpu->arch.guestdbg.cr0 = vcpu->arch.sie_block->gcr[0];
136 vcpu->arch.guestdbg.cr9 = vcpu->arch.sie_block->gcr[9];
137 vcpu->arch.guestdbg.cr10 = vcpu->arch.sie_block->gcr[10];
138 vcpu->arch.guestdbg.cr11 = vcpu->arch.sie_block->gcr[11];
139 }
140
141 void kvm_s390_restore_guest_per_regs(struct kvm_vcpu *vcpu)
142 {
143 vcpu->arch.sie_block->gcr[0] = vcpu->arch.guestdbg.cr0;
144 vcpu->arch.sie_block->gcr[9] = vcpu->arch.guestdbg.cr9;
145 vcpu->arch.sie_block->gcr[10] = vcpu->arch.guestdbg.cr10;
146 vcpu->arch.sie_block->gcr[11] = vcpu->arch.guestdbg.cr11;
147 }
148
149 void kvm_s390_patch_guest_per_regs(struct kvm_vcpu *vcpu)
150 {
151 /*
152 * TODO: if guest psw has per enabled, otherwise 0s!
153 * This reduces the amount of reported events.
154 * Need to intercept all psw changes!
155 */
156
157 if (guestdbg_sstep_enabled(vcpu)) {
158 /* disable timer (clock-comparator) interrupts */
159 vcpu->arch.sie_block->gcr[0] &= ~0x800ul;
160 vcpu->arch.sie_block->gcr[9] |= PER_EVENT_IFETCH;
161 vcpu->arch.sie_block->gcr[10] = 0;
162 vcpu->arch.sie_block->gcr[11] = -1UL;
163 }
164
165 if (guestdbg_hw_bp_enabled(vcpu)) {
166 enable_all_hw_bp(vcpu);
167 enable_all_hw_wp(vcpu);
168 }
169
170 /* TODO: Instruction-fetching-nullification not allowed for now */
171 if (vcpu->arch.sie_block->gcr[9] & PER_EVENT_NULLIFICATION)
172 vcpu->arch.sie_block->gcr[9] &= ~PER_EVENT_NULLIFICATION;
173 }
174
175 #define MAX_WP_SIZE 100
176
177 static int __import_wp_info(struct kvm_vcpu *vcpu,
178 struct kvm_hw_breakpoint *bp_data,
179 struct kvm_hw_wp_info_arch *wp_info)
180 {
181 int ret = 0;
182 wp_info->len = bp_data->len;
183 wp_info->addr = bp_data->addr;
184 wp_info->phys_addr = bp_data->phys_addr;
185 wp_info->old_data = NULL;
186
187 if (wp_info->len < 0 || wp_info->len > MAX_WP_SIZE)
188 return -EINVAL;
189
190 wp_info->old_data = kmalloc(bp_data->len, GFP_KERNEL);
191 if (!wp_info->old_data)
192 return -ENOMEM;
193 /* try to backup the original value */
194 ret = read_guest_abs(vcpu, wp_info->phys_addr, wp_info->old_data,
195 wp_info->len);
196 if (ret) {
197 kfree(wp_info->old_data);
198 wp_info->old_data = NULL;
199 }
200
201 return ret;
202 }
203
204 #define MAX_BP_COUNT 50
205
206 int kvm_s390_import_bp_data(struct kvm_vcpu *vcpu,
207 struct kvm_guest_debug *dbg)
208 {
209 int ret = 0, nr_wp = 0, nr_bp = 0, i;
210 struct kvm_hw_breakpoint *bp_data = NULL;
211 struct kvm_hw_wp_info_arch *wp_info = NULL;
212 struct kvm_hw_bp_info_arch *bp_info = NULL;
213
214 if (dbg->arch.nr_hw_bp <= 0 || !dbg->arch.hw_bp)
215 return 0;
216 else if (dbg->arch.nr_hw_bp > MAX_BP_COUNT)
217 return -EINVAL;
218
219 bp_data = memdup_user(dbg->arch.hw_bp,
220 sizeof(*bp_data) * dbg->arch.nr_hw_bp);
221 if (IS_ERR(bp_data))
222 return PTR_ERR(bp_data);
223
224 for (i = 0; i < dbg->arch.nr_hw_bp; i++) {
225 switch (bp_data[i].type) {
226 case KVM_HW_WP_WRITE:
227 nr_wp++;
228 break;
229 case KVM_HW_BP:
230 nr_bp++;
231 break;
232 default:
233 break;
234 }
235 }
236
237 if (nr_wp > 0) {
238 wp_info = kmalloc_array(nr_wp,
239 sizeof(*wp_info),
240 GFP_KERNEL);
241 if (!wp_info) {
242 ret = -ENOMEM;
243 goto error;
244 }
245 }
246 if (nr_bp > 0) {
247 bp_info = kmalloc_array(nr_bp,
248 sizeof(*bp_info),
249 GFP_KERNEL);
250 if (!bp_info) {
251 ret = -ENOMEM;
252 goto error;
253 }
254 }
255
256 for (nr_wp = 0, nr_bp = 0, i = 0; i < dbg->arch.nr_hw_bp; i++) {
257 switch (bp_data[i].type) {
258 case KVM_HW_WP_WRITE:
259 ret = __import_wp_info(vcpu, &bp_data[i],
260 &wp_info[nr_wp]);
261 if (ret)
262 goto error;
263 nr_wp++;
264 break;
265 case KVM_HW_BP:
266 bp_info[nr_bp].len = bp_data[i].len;
267 bp_info[nr_bp].addr = bp_data[i].addr;
268 nr_bp++;
269 break;
270 }
271 }
272
273 vcpu->arch.guestdbg.nr_hw_bp = nr_bp;
274 vcpu->arch.guestdbg.hw_bp_info = bp_info;
275 vcpu->arch.guestdbg.nr_hw_wp = nr_wp;
276 vcpu->arch.guestdbg.hw_wp_info = wp_info;
277 return 0;
278 error:
279 kfree(bp_data);
280 kfree(wp_info);
281 kfree(bp_info);
282 return ret;
283 }
284
285 void kvm_s390_clear_bp_data(struct kvm_vcpu *vcpu)
286 {
287 int i;
288 struct kvm_hw_wp_info_arch *hw_wp_info = NULL;
289
290 for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
291 hw_wp_info = &vcpu->arch.guestdbg.hw_wp_info[i];
292 kfree(hw_wp_info->old_data);
293 hw_wp_info->old_data = NULL;
294 }
295 kfree(vcpu->arch.guestdbg.hw_wp_info);
296 vcpu->arch.guestdbg.hw_wp_info = NULL;
297
298 kfree(vcpu->arch.guestdbg.hw_bp_info);
299 vcpu->arch.guestdbg.hw_bp_info = NULL;
300
301 vcpu->arch.guestdbg.nr_hw_wp = 0;
302 vcpu->arch.guestdbg.nr_hw_bp = 0;
303 }
304
305 static inline int in_addr_range(u64 addr, u64 a, u64 b)
306 {
307 if (a <= b)
308 return (addr >= a) && (addr <= b);
309 else
310 /* "overflowing" interval */
311 return (addr <= a) && (addr >= b);
312 }
313
314 #define end_of_range(bp_info) (bp_info->addr + bp_info->len - 1)
315
316 static struct kvm_hw_bp_info_arch *find_hw_bp(struct kvm_vcpu *vcpu,
317 unsigned long addr)
318 {
319 struct kvm_hw_bp_info_arch *bp_info = vcpu->arch.guestdbg.hw_bp_info;
320 int i;
321
322 if (vcpu->arch.guestdbg.nr_hw_bp == 0)
323 return NULL;
324
325 for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) {
326 /* addr is directly the start or in the range of a bp */
327 if (addr == bp_info->addr)
328 goto found;
329 if (bp_info->len > 0 &&
330 in_addr_range(addr, bp_info->addr, end_of_range(bp_info)))
331 goto found;
332
333 bp_info++;
334 }
335
336 return NULL;
337 found:
338 return bp_info;
339 }
340
341 static struct kvm_hw_wp_info_arch *any_wp_changed(struct kvm_vcpu *vcpu)
342 {
343 int i;
344 struct kvm_hw_wp_info_arch *wp_info = NULL;
345 void *temp = NULL;
346
347 if (vcpu->arch.guestdbg.nr_hw_wp == 0)
348 return NULL;
349
350 for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
351 wp_info = &vcpu->arch.guestdbg.hw_wp_info[i];
352 if (!wp_info || !wp_info->old_data || wp_info->len <= 0)
353 continue;
354
355 temp = kmalloc(wp_info->len, GFP_KERNEL);
356 if (!temp)
357 continue;
358
359 /* refetch the wp data and compare it to the old value */
360 if (!read_guest_abs(vcpu, wp_info->phys_addr, temp,
361 wp_info->len)) {
362 if (memcmp(temp, wp_info->old_data, wp_info->len)) {
363 kfree(temp);
364 return wp_info;
365 }
366 }
367 kfree(temp);
368 temp = NULL;
369 }
370
371 return NULL;
372 }
373
374 void kvm_s390_prepare_debug_exit(struct kvm_vcpu *vcpu)
375 {
376 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
377 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
378 }
379
380 #define PER_CODE_MASK (PER_EVENT_MASK >> 24)
381 #define PER_CODE_BRANCH (PER_EVENT_BRANCH >> 24)
382 #define PER_CODE_IFETCH (PER_EVENT_IFETCH >> 24)
383 #define PER_CODE_STORE (PER_EVENT_STORE >> 24)
384 #define PER_CODE_STORE_REAL (PER_EVENT_STORE_REAL >> 24)
385
386 #define per_bp_event(code) \
387 (code & (PER_CODE_IFETCH | PER_CODE_BRANCH))
388 #define per_write_wp_event(code) \
389 (code & (PER_CODE_STORE | PER_CODE_STORE_REAL))
390
391 static int debug_exit_required(struct kvm_vcpu *vcpu)
392 {
393 u8 perc = vcpu->arch.sie_block->perc;
394 struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
395 struct kvm_hw_wp_info_arch *wp_info = NULL;
396 struct kvm_hw_bp_info_arch *bp_info = NULL;
397 unsigned long addr = vcpu->arch.sie_block->gpsw.addr;
398 unsigned long peraddr = vcpu->arch.sie_block->peraddr;
399
400 if (guestdbg_hw_bp_enabled(vcpu)) {
401 if (per_write_wp_event(perc) &&
402 vcpu->arch.guestdbg.nr_hw_wp > 0) {
403 wp_info = any_wp_changed(vcpu);
404 if (wp_info) {
405 debug_exit->addr = wp_info->addr;
406 debug_exit->type = KVM_HW_WP_WRITE;
407 goto exit_required;
408 }
409 }
410 if (per_bp_event(perc) &&
411 vcpu->arch.guestdbg.nr_hw_bp > 0) {
412 bp_info = find_hw_bp(vcpu, addr);
413 /* remove duplicate events if PC==PER address */
414 if (bp_info && (addr != peraddr)) {
415 debug_exit->addr = addr;
416 debug_exit->type = KVM_HW_BP;
417 vcpu->arch.guestdbg.last_bp = addr;
418 goto exit_required;
419 }
420 /* breakpoint missed */
421 bp_info = find_hw_bp(vcpu, peraddr);
422 if (bp_info && vcpu->arch.guestdbg.last_bp != peraddr) {
423 debug_exit->addr = peraddr;
424 debug_exit->type = KVM_HW_BP;
425 goto exit_required;
426 }
427 }
428 }
429 if (guestdbg_sstep_enabled(vcpu) && per_bp_event(perc)) {
430 debug_exit->addr = addr;
431 debug_exit->type = KVM_SINGLESTEP;
432 goto exit_required;
433 }
434
435 return 0;
436 exit_required:
437 return 1;
438 }
439
440 #define guest_per_enabled(vcpu) \
441 (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER)
442
443 int kvm_s390_handle_per_ifetch_icpt(struct kvm_vcpu *vcpu)
444 {
445 const u8 ilen = kvm_s390_get_ilen(vcpu);
446 struct kvm_s390_pgm_info pgm_info = {
447 .code = PGM_PER,
448 .per_code = PER_CODE_IFETCH,
449 .per_address = __rewind_psw(vcpu->arch.sie_block->gpsw, ilen),
450 };
451
452 /*
453 * The PSW points to the next instruction, therefore the intercepted
454 * instruction generated a PER i-fetch event. PER address therefore
455 * points at the previous PSW address (could be an EXECUTE function).
456 */
457 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
458 }
459
460 static void filter_guest_per_event(struct kvm_vcpu *vcpu)
461 {
462 const u8 perc = vcpu->arch.sie_block->perc;
463 u64 peraddr = vcpu->arch.sie_block->peraddr;
464 u64 addr = vcpu->arch.sie_block->gpsw.addr;
465 u64 cr9 = vcpu->arch.sie_block->gcr[9];
466 u64 cr10 = vcpu->arch.sie_block->gcr[10];
467 u64 cr11 = vcpu->arch.sie_block->gcr[11];
468 /* filter all events, demanded by the guest */
469 u8 guest_perc = perc & (cr9 >> 24) & PER_CODE_MASK;
470
471 if (!guest_per_enabled(vcpu))
472 guest_perc = 0;
473
474 /* filter "successful-branching" events */
475 if (guest_perc & PER_CODE_BRANCH &&
476 cr9 & PER_CONTROL_BRANCH_ADDRESS &&
477 !in_addr_range(addr, cr10, cr11))
478 guest_perc &= ~PER_CODE_BRANCH;
479
480 /* filter "instruction-fetching" events */
481 if (guest_perc & PER_CODE_IFETCH &&
482 !in_addr_range(peraddr, cr10, cr11))
483 guest_perc &= ~PER_CODE_IFETCH;
484
485 /* All other PER events will be given to the guest */
486 /* TODO: Check altered address/address space */
487
488 vcpu->arch.sie_block->perc = guest_perc;
489
490 if (!guest_perc)
491 vcpu->arch.sie_block->iprcc &= ~PGM_PER;
492 }
493
494 #define pssec(vcpu) (vcpu->arch.sie_block->gcr[1] & _ASCE_SPACE_SWITCH)
495 #define hssec(vcpu) (vcpu->arch.sie_block->gcr[13] & _ASCE_SPACE_SWITCH)
496 #define old_ssec(vcpu) ((vcpu->arch.sie_block->tecmc >> 31) & 0x1)
497 #define old_as_is_home(vcpu) !(vcpu->arch.sie_block->tecmc & 0xffff)
498
499 void kvm_s390_handle_per_event(struct kvm_vcpu *vcpu)
500 {
501 int new_as;
502
503 if (debug_exit_required(vcpu))
504 vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
505
506 filter_guest_per_event(vcpu);
507
508 /*
509 * Only RP, SAC, SACF, PT, PTI, PR, PC instructions can trigger
510 * a space-switch event. PER events enforce space-switch events
511 * for these instructions. So if no PER event for the guest is left,
512 * we might have to filter the space-switch element out, too.
513 */
514 if (vcpu->arch.sie_block->iprcc == PGM_SPACE_SWITCH) {
515 vcpu->arch.sie_block->iprcc = 0;
516 new_as = psw_bits(vcpu->arch.sie_block->gpsw).as;
517
518 /*
519 * If the AS changed from / to home, we had RP, SAC or SACF
520 * instruction. Check primary and home space-switch-event
521 * controls. (theoretically home -> home produced no event)
522 */
523 if (((new_as == PSW_AS_HOME) ^ old_as_is_home(vcpu)) &&
524 (pssec(vcpu) || hssec(vcpu)))
525 vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH;
526
527 /*
528 * PT, PTI, PR, PC instruction operate on primary AS only. Check
529 * if the primary-space-switch-event control was or got set.
530 */
531 if (new_as == PSW_AS_PRIMARY && !old_as_is_home(vcpu) &&
532 (pssec(vcpu) || old_ssec(vcpu)))
533 vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH;
534 }
535 }
This page took 0.06682 seconds and 5 git commands to generate.