lightnvm: NVM should depend on HAS_DMA
[deliverable/linux.git] / arch / s390 / kvm / kvm-s390.c
1 /*
2 * hosting zSeries kernel virtual machines
3 *
4 * Copyright IBM Corp. 2008, 2009
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): Carsten Otte <cotte@de.ibm.com>
11 * Christian Borntraeger <borntraeger@de.ibm.com>
12 * Heiko Carstens <heiko.carstens@de.ibm.com>
13 * Christian Ehrhardt <ehrhardt@de.ibm.com>
14 * Jason J. Herne <jjherne@us.ibm.com>
15 */
16
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/mman.h>
25 #include <linux/module.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bitmap.h>
31 #include <asm/asm-offsets.h>
32 #include <asm/lowcore.h>
33 #include <asm/stp.h>
34 #include <asm/pgtable.h>
35 #include <asm/gmap.h>
36 #include <asm/nmi.h>
37 #include <asm/switch_to.h>
38 #include <asm/isc.h>
39 #include <asm/sclp.h>
40 #include <asm/cpacf.h>
41 #include <asm/timex.h>
42 #include "kvm-s390.h"
43 #include "gaccess.h"
44
45 #define KMSG_COMPONENT "kvm-s390"
46 #undef pr_fmt
47 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51 #include "trace-s390.h"
52
53 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
54 #define LOCAL_IRQS 32
55 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
56 (KVM_MAX_VCPUS + LOCAL_IRQS))
57
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59
60 struct kvm_stats_debugfs_item debugfs_entries[] = {
61 { "userspace_handled", VCPU_STAT(exit_userspace) },
62 { "exit_null", VCPU_STAT(exit_null) },
63 { "exit_validity", VCPU_STAT(exit_validity) },
64 { "exit_stop_request", VCPU_STAT(exit_stop_request) },
65 { "exit_external_request", VCPU_STAT(exit_external_request) },
66 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 { "exit_instruction", VCPU_STAT(exit_instruction) },
68 { "exit_pei", VCPU_STAT(exit_pei) },
69 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
70 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
71 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
76 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
77 { "instruction_lctl", VCPU_STAT(instruction_lctl) },
78 { "instruction_stctl", VCPU_STAT(instruction_stctl) },
79 { "instruction_stctg", VCPU_STAT(instruction_stctg) },
80 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
81 { "deliver_external_call", VCPU_STAT(deliver_external_call) },
82 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
83 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
84 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
85 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
86 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
87 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
88 { "exit_wait_state", VCPU_STAT(exit_wait_state) },
89 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
90 { "instruction_stidp", VCPU_STAT(instruction_stidp) },
91 { "instruction_spx", VCPU_STAT(instruction_spx) },
92 { "instruction_stpx", VCPU_STAT(instruction_stpx) },
93 { "instruction_stap", VCPU_STAT(instruction_stap) },
94 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
95 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
96 { "instruction_stsch", VCPU_STAT(instruction_stsch) },
97 { "instruction_chsc", VCPU_STAT(instruction_chsc) },
98 { "instruction_essa", VCPU_STAT(instruction_essa) },
99 { "instruction_stsi", VCPU_STAT(instruction_stsi) },
100 { "instruction_stfl", VCPU_STAT(instruction_stfl) },
101 { "instruction_tprot", VCPU_STAT(instruction_tprot) },
102 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
103 { "instruction_sie", VCPU_STAT(instruction_sie) },
104 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
105 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
106 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
107 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
108 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
109 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
110 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
111 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
112 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
113 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
114 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
115 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
116 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
117 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
118 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
119 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
120 { "diagnose_10", VCPU_STAT(diagnose_10) },
121 { "diagnose_44", VCPU_STAT(diagnose_44) },
122 { "diagnose_9c", VCPU_STAT(diagnose_9c) },
123 { "diagnose_258", VCPU_STAT(diagnose_258) },
124 { "diagnose_308", VCPU_STAT(diagnose_308) },
125 { "diagnose_500", VCPU_STAT(diagnose_500) },
126 { NULL }
127 };
128
129 /* allow nested virtualization in KVM (if enabled by user space) */
130 static int nested;
131 module_param(nested, int, S_IRUGO);
132 MODULE_PARM_DESC(nested, "Nested virtualization support");
133
134 /* upper facilities limit for kvm */
135 unsigned long kvm_s390_fac_list_mask[16] = {
136 0xffe6000000000000UL,
137 0x005e000000000000UL,
138 };
139
140 unsigned long kvm_s390_fac_list_mask_size(void)
141 {
142 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
143 return ARRAY_SIZE(kvm_s390_fac_list_mask);
144 }
145
146 /* available cpu features supported by kvm */
147 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
148 /* available subfunctions indicated via query / "test bit" */
149 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
150
151 static struct gmap_notifier gmap_notifier;
152 static struct gmap_notifier vsie_gmap_notifier;
153 debug_info_t *kvm_s390_dbf;
154
155 /* Section: not file related */
156 int kvm_arch_hardware_enable(void)
157 {
158 /* every s390 is virtualization enabled ;-) */
159 return 0;
160 }
161
162 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
163 unsigned long end);
164
165 /*
166 * This callback is executed during stop_machine(). All CPUs are therefore
167 * temporarily stopped. In order not to change guest behavior, we have to
168 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
169 * so a CPU won't be stopped while calculating with the epoch.
170 */
171 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
172 void *v)
173 {
174 struct kvm *kvm;
175 struct kvm_vcpu *vcpu;
176 int i;
177 unsigned long long *delta = v;
178
179 list_for_each_entry(kvm, &vm_list, vm_list) {
180 kvm->arch.epoch -= *delta;
181 kvm_for_each_vcpu(i, vcpu, kvm) {
182 vcpu->arch.sie_block->epoch -= *delta;
183 if (vcpu->arch.cputm_enabled)
184 vcpu->arch.cputm_start += *delta;
185 if (vcpu->arch.vsie_block)
186 vcpu->arch.vsie_block->epoch -= *delta;
187 }
188 }
189 return NOTIFY_OK;
190 }
191
192 static struct notifier_block kvm_clock_notifier = {
193 .notifier_call = kvm_clock_sync,
194 };
195
196 int kvm_arch_hardware_setup(void)
197 {
198 gmap_notifier.notifier_call = kvm_gmap_notifier;
199 gmap_register_pte_notifier(&gmap_notifier);
200 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
201 gmap_register_pte_notifier(&vsie_gmap_notifier);
202 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
203 &kvm_clock_notifier);
204 return 0;
205 }
206
207 void kvm_arch_hardware_unsetup(void)
208 {
209 gmap_unregister_pte_notifier(&gmap_notifier);
210 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
211 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
212 &kvm_clock_notifier);
213 }
214
215 static void allow_cpu_feat(unsigned long nr)
216 {
217 set_bit_inv(nr, kvm_s390_available_cpu_feat);
218 }
219
220 static inline int plo_test_bit(unsigned char nr)
221 {
222 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
223 int cc = 3; /* subfunction not available */
224
225 asm volatile(
226 /* Parameter registers are ignored for "test bit" */
227 " plo 0,0,0,0(0)\n"
228 " ipm %0\n"
229 " srl %0,28\n"
230 : "=d" (cc)
231 : "d" (r0)
232 : "cc");
233 return cc == 0;
234 }
235
236 static void kvm_s390_cpu_feat_init(void)
237 {
238 int i;
239
240 for (i = 0; i < 256; ++i) {
241 if (plo_test_bit(i))
242 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
243 }
244
245 if (test_facility(28)) /* TOD-clock steering */
246 ptff(kvm_s390_available_subfunc.ptff,
247 sizeof(kvm_s390_available_subfunc.ptff),
248 PTFF_QAF);
249
250 if (test_facility(17)) { /* MSA */
251 __cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
252 __cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
253 __cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
254 __cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
255 __cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
256 }
257 if (test_facility(76)) /* MSA3 */
258 __cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
259 if (test_facility(77)) { /* MSA4 */
260 __cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
261 __cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
262 __cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
263 __cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
264 }
265 if (test_facility(57)) /* MSA5 */
266 __cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);
267
268 if (MACHINE_HAS_ESOP)
269 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
270 /*
271 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
272 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
273 */
274 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
275 !test_facility(3) || !nested)
276 return;
277 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
278 if (sclp.has_64bscao)
279 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
280 if (sclp.has_siif)
281 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
282 if (sclp.has_gpere)
283 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
284 if (sclp.has_gsls)
285 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
286 if (sclp.has_ib)
287 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
288 if (sclp.has_cei)
289 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
290 if (sclp.has_ibs)
291 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
292 /*
293 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
294 * all skey handling functions read/set the skey from the PGSTE
295 * instead of the real storage key.
296 *
297 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
298 * pages being detected as preserved although they are resident.
299 *
300 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
301 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
302 *
303 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
304 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
305 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
306 *
307 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
308 * cannot easily shadow the SCA because of the ipte lock.
309 */
310 }
311
312 int kvm_arch_init(void *opaque)
313 {
314 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
315 if (!kvm_s390_dbf)
316 return -ENOMEM;
317
318 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
319 debug_unregister(kvm_s390_dbf);
320 return -ENOMEM;
321 }
322
323 kvm_s390_cpu_feat_init();
324
325 /* Register floating interrupt controller interface. */
326 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
327 }
328
329 void kvm_arch_exit(void)
330 {
331 debug_unregister(kvm_s390_dbf);
332 }
333
334 /* Section: device related */
335 long kvm_arch_dev_ioctl(struct file *filp,
336 unsigned int ioctl, unsigned long arg)
337 {
338 if (ioctl == KVM_S390_ENABLE_SIE)
339 return s390_enable_sie();
340 return -EINVAL;
341 }
342
343 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
344 {
345 int r;
346
347 switch (ext) {
348 case KVM_CAP_S390_PSW:
349 case KVM_CAP_S390_GMAP:
350 case KVM_CAP_SYNC_MMU:
351 #ifdef CONFIG_KVM_S390_UCONTROL
352 case KVM_CAP_S390_UCONTROL:
353 #endif
354 case KVM_CAP_ASYNC_PF:
355 case KVM_CAP_SYNC_REGS:
356 case KVM_CAP_ONE_REG:
357 case KVM_CAP_ENABLE_CAP:
358 case KVM_CAP_S390_CSS_SUPPORT:
359 case KVM_CAP_IOEVENTFD:
360 case KVM_CAP_DEVICE_CTRL:
361 case KVM_CAP_ENABLE_CAP_VM:
362 case KVM_CAP_S390_IRQCHIP:
363 case KVM_CAP_VM_ATTRIBUTES:
364 case KVM_CAP_MP_STATE:
365 case KVM_CAP_S390_INJECT_IRQ:
366 case KVM_CAP_S390_USER_SIGP:
367 case KVM_CAP_S390_USER_STSI:
368 case KVM_CAP_S390_SKEYS:
369 case KVM_CAP_S390_IRQ_STATE:
370 case KVM_CAP_S390_USER_INSTR0:
371 r = 1;
372 break;
373 case KVM_CAP_S390_MEM_OP:
374 r = MEM_OP_MAX_SIZE;
375 break;
376 case KVM_CAP_NR_VCPUS:
377 case KVM_CAP_MAX_VCPUS:
378 r = KVM_S390_BSCA_CPU_SLOTS;
379 if (sclp.has_esca && sclp.has_64bscao)
380 r = KVM_S390_ESCA_CPU_SLOTS;
381 break;
382 case KVM_CAP_NR_MEMSLOTS:
383 r = KVM_USER_MEM_SLOTS;
384 break;
385 case KVM_CAP_S390_COW:
386 r = MACHINE_HAS_ESOP;
387 break;
388 case KVM_CAP_S390_VECTOR_REGISTERS:
389 r = MACHINE_HAS_VX;
390 break;
391 case KVM_CAP_S390_RI:
392 r = test_facility(64);
393 break;
394 default:
395 r = 0;
396 }
397 return r;
398 }
399
400 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
401 struct kvm_memory_slot *memslot)
402 {
403 gfn_t cur_gfn, last_gfn;
404 unsigned long address;
405 struct gmap *gmap = kvm->arch.gmap;
406
407 /* Loop over all guest pages */
408 last_gfn = memslot->base_gfn + memslot->npages;
409 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
410 address = gfn_to_hva_memslot(memslot, cur_gfn);
411
412 if (test_and_clear_guest_dirty(gmap->mm, address))
413 mark_page_dirty(kvm, cur_gfn);
414 if (fatal_signal_pending(current))
415 return;
416 cond_resched();
417 }
418 }
419
420 /* Section: vm related */
421 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
422
423 /*
424 * Get (and clear) the dirty memory log for a memory slot.
425 */
426 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
427 struct kvm_dirty_log *log)
428 {
429 int r;
430 unsigned long n;
431 struct kvm_memslots *slots;
432 struct kvm_memory_slot *memslot;
433 int is_dirty = 0;
434
435 mutex_lock(&kvm->slots_lock);
436
437 r = -EINVAL;
438 if (log->slot >= KVM_USER_MEM_SLOTS)
439 goto out;
440
441 slots = kvm_memslots(kvm);
442 memslot = id_to_memslot(slots, log->slot);
443 r = -ENOENT;
444 if (!memslot->dirty_bitmap)
445 goto out;
446
447 kvm_s390_sync_dirty_log(kvm, memslot);
448 r = kvm_get_dirty_log(kvm, log, &is_dirty);
449 if (r)
450 goto out;
451
452 /* Clear the dirty log */
453 if (is_dirty) {
454 n = kvm_dirty_bitmap_bytes(memslot);
455 memset(memslot->dirty_bitmap, 0, n);
456 }
457 r = 0;
458 out:
459 mutex_unlock(&kvm->slots_lock);
460 return r;
461 }
462
463 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
464 {
465 unsigned int i;
466 struct kvm_vcpu *vcpu;
467
468 kvm_for_each_vcpu(i, vcpu, kvm) {
469 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
470 }
471 }
472
473 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
474 {
475 int r;
476
477 if (cap->flags)
478 return -EINVAL;
479
480 switch (cap->cap) {
481 case KVM_CAP_S390_IRQCHIP:
482 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
483 kvm->arch.use_irqchip = 1;
484 r = 0;
485 break;
486 case KVM_CAP_S390_USER_SIGP:
487 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
488 kvm->arch.user_sigp = 1;
489 r = 0;
490 break;
491 case KVM_CAP_S390_VECTOR_REGISTERS:
492 mutex_lock(&kvm->lock);
493 if (kvm->created_vcpus) {
494 r = -EBUSY;
495 } else if (MACHINE_HAS_VX) {
496 set_kvm_facility(kvm->arch.model.fac_mask, 129);
497 set_kvm_facility(kvm->arch.model.fac_list, 129);
498 r = 0;
499 } else
500 r = -EINVAL;
501 mutex_unlock(&kvm->lock);
502 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
503 r ? "(not available)" : "(success)");
504 break;
505 case KVM_CAP_S390_RI:
506 r = -EINVAL;
507 mutex_lock(&kvm->lock);
508 if (kvm->created_vcpus) {
509 r = -EBUSY;
510 } else if (test_facility(64)) {
511 set_kvm_facility(kvm->arch.model.fac_mask, 64);
512 set_kvm_facility(kvm->arch.model.fac_list, 64);
513 r = 0;
514 }
515 mutex_unlock(&kvm->lock);
516 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
517 r ? "(not available)" : "(success)");
518 break;
519 case KVM_CAP_S390_USER_STSI:
520 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
521 kvm->arch.user_stsi = 1;
522 r = 0;
523 break;
524 case KVM_CAP_S390_USER_INSTR0:
525 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
526 kvm->arch.user_instr0 = 1;
527 icpt_operexc_on_all_vcpus(kvm);
528 r = 0;
529 break;
530 default:
531 r = -EINVAL;
532 break;
533 }
534 return r;
535 }
536
537 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
538 {
539 int ret;
540
541 switch (attr->attr) {
542 case KVM_S390_VM_MEM_LIMIT_SIZE:
543 ret = 0;
544 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
545 kvm->arch.mem_limit);
546 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
547 ret = -EFAULT;
548 break;
549 default:
550 ret = -ENXIO;
551 break;
552 }
553 return ret;
554 }
555
556 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
557 {
558 int ret;
559 unsigned int idx;
560 switch (attr->attr) {
561 case KVM_S390_VM_MEM_ENABLE_CMMA:
562 ret = -ENXIO;
563 if (!sclp.has_cmma)
564 break;
565
566 ret = -EBUSY;
567 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
568 mutex_lock(&kvm->lock);
569 if (!kvm->created_vcpus) {
570 kvm->arch.use_cmma = 1;
571 ret = 0;
572 }
573 mutex_unlock(&kvm->lock);
574 break;
575 case KVM_S390_VM_MEM_CLR_CMMA:
576 ret = -ENXIO;
577 if (!sclp.has_cmma)
578 break;
579 ret = -EINVAL;
580 if (!kvm->arch.use_cmma)
581 break;
582
583 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
584 mutex_lock(&kvm->lock);
585 idx = srcu_read_lock(&kvm->srcu);
586 s390_reset_cmma(kvm->arch.gmap->mm);
587 srcu_read_unlock(&kvm->srcu, idx);
588 mutex_unlock(&kvm->lock);
589 ret = 0;
590 break;
591 case KVM_S390_VM_MEM_LIMIT_SIZE: {
592 unsigned long new_limit;
593
594 if (kvm_is_ucontrol(kvm))
595 return -EINVAL;
596
597 if (get_user(new_limit, (u64 __user *)attr->addr))
598 return -EFAULT;
599
600 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
601 new_limit > kvm->arch.mem_limit)
602 return -E2BIG;
603
604 if (!new_limit)
605 return -EINVAL;
606
607 /* gmap_create takes last usable address */
608 if (new_limit != KVM_S390_NO_MEM_LIMIT)
609 new_limit -= 1;
610
611 ret = -EBUSY;
612 mutex_lock(&kvm->lock);
613 if (!kvm->created_vcpus) {
614 /* gmap_create will round the limit up */
615 struct gmap *new = gmap_create(current->mm, new_limit);
616
617 if (!new) {
618 ret = -ENOMEM;
619 } else {
620 gmap_remove(kvm->arch.gmap);
621 new->private = kvm;
622 kvm->arch.gmap = new;
623 ret = 0;
624 }
625 }
626 mutex_unlock(&kvm->lock);
627 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
628 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
629 (void *) kvm->arch.gmap->asce);
630 break;
631 }
632 default:
633 ret = -ENXIO;
634 break;
635 }
636 return ret;
637 }
638
639 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
640
641 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
642 {
643 struct kvm_vcpu *vcpu;
644 int i;
645
646 if (!test_kvm_facility(kvm, 76))
647 return -EINVAL;
648
649 mutex_lock(&kvm->lock);
650 switch (attr->attr) {
651 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
652 get_random_bytes(
653 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
654 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
655 kvm->arch.crypto.aes_kw = 1;
656 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
657 break;
658 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
659 get_random_bytes(
660 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
661 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
662 kvm->arch.crypto.dea_kw = 1;
663 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
664 break;
665 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
666 kvm->arch.crypto.aes_kw = 0;
667 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
668 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
669 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
670 break;
671 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
672 kvm->arch.crypto.dea_kw = 0;
673 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
674 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
675 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
676 break;
677 default:
678 mutex_unlock(&kvm->lock);
679 return -ENXIO;
680 }
681
682 kvm_for_each_vcpu(i, vcpu, kvm) {
683 kvm_s390_vcpu_crypto_setup(vcpu);
684 exit_sie(vcpu);
685 }
686 mutex_unlock(&kvm->lock);
687 return 0;
688 }
689
690 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
691 {
692 u8 gtod_high;
693
694 if (copy_from_user(&gtod_high, (void __user *)attr->addr,
695 sizeof(gtod_high)))
696 return -EFAULT;
697
698 if (gtod_high != 0)
699 return -EINVAL;
700 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
701
702 return 0;
703 }
704
705 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
706 {
707 u64 gtod;
708
709 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
710 return -EFAULT;
711
712 kvm_s390_set_tod_clock(kvm, gtod);
713 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
714 return 0;
715 }
716
717 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
718 {
719 int ret;
720
721 if (attr->flags)
722 return -EINVAL;
723
724 switch (attr->attr) {
725 case KVM_S390_VM_TOD_HIGH:
726 ret = kvm_s390_set_tod_high(kvm, attr);
727 break;
728 case KVM_S390_VM_TOD_LOW:
729 ret = kvm_s390_set_tod_low(kvm, attr);
730 break;
731 default:
732 ret = -ENXIO;
733 break;
734 }
735 return ret;
736 }
737
738 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
739 {
740 u8 gtod_high = 0;
741
742 if (copy_to_user((void __user *)attr->addr, &gtod_high,
743 sizeof(gtod_high)))
744 return -EFAULT;
745 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
746
747 return 0;
748 }
749
750 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
751 {
752 u64 gtod;
753
754 gtod = kvm_s390_get_tod_clock_fast(kvm);
755 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
756 return -EFAULT;
757 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
758
759 return 0;
760 }
761
762 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
763 {
764 int ret;
765
766 if (attr->flags)
767 return -EINVAL;
768
769 switch (attr->attr) {
770 case KVM_S390_VM_TOD_HIGH:
771 ret = kvm_s390_get_tod_high(kvm, attr);
772 break;
773 case KVM_S390_VM_TOD_LOW:
774 ret = kvm_s390_get_tod_low(kvm, attr);
775 break;
776 default:
777 ret = -ENXIO;
778 break;
779 }
780 return ret;
781 }
782
783 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
784 {
785 struct kvm_s390_vm_cpu_processor *proc;
786 u16 lowest_ibc, unblocked_ibc;
787 int ret = 0;
788
789 mutex_lock(&kvm->lock);
790 if (kvm->created_vcpus) {
791 ret = -EBUSY;
792 goto out;
793 }
794 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
795 if (!proc) {
796 ret = -ENOMEM;
797 goto out;
798 }
799 if (!copy_from_user(proc, (void __user *)attr->addr,
800 sizeof(*proc))) {
801 kvm->arch.model.cpuid = proc->cpuid;
802 lowest_ibc = sclp.ibc >> 16 & 0xfff;
803 unblocked_ibc = sclp.ibc & 0xfff;
804 if (lowest_ibc && proc->ibc) {
805 if (proc->ibc > unblocked_ibc)
806 kvm->arch.model.ibc = unblocked_ibc;
807 else if (proc->ibc < lowest_ibc)
808 kvm->arch.model.ibc = lowest_ibc;
809 else
810 kvm->arch.model.ibc = proc->ibc;
811 }
812 memcpy(kvm->arch.model.fac_list, proc->fac_list,
813 S390_ARCH_FAC_LIST_SIZE_BYTE);
814 } else
815 ret = -EFAULT;
816 kfree(proc);
817 out:
818 mutex_unlock(&kvm->lock);
819 return ret;
820 }
821
822 static int kvm_s390_set_processor_feat(struct kvm *kvm,
823 struct kvm_device_attr *attr)
824 {
825 struct kvm_s390_vm_cpu_feat data;
826 int ret = -EBUSY;
827
828 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
829 return -EFAULT;
830 if (!bitmap_subset((unsigned long *) data.feat,
831 kvm_s390_available_cpu_feat,
832 KVM_S390_VM_CPU_FEAT_NR_BITS))
833 return -EINVAL;
834
835 mutex_lock(&kvm->lock);
836 if (!atomic_read(&kvm->online_vcpus)) {
837 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
838 KVM_S390_VM_CPU_FEAT_NR_BITS);
839 ret = 0;
840 }
841 mutex_unlock(&kvm->lock);
842 return ret;
843 }
844
845 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
846 struct kvm_device_attr *attr)
847 {
848 /*
849 * Once supported by kernel + hw, we have to store the subfunctions
850 * in kvm->arch and remember that user space configured them.
851 */
852 return -ENXIO;
853 }
854
855 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
856 {
857 int ret = -ENXIO;
858
859 switch (attr->attr) {
860 case KVM_S390_VM_CPU_PROCESSOR:
861 ret = kvm_s390_set_processor(kvm, attr);
862 break;
863 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
864 ret = kvm_s390_set_processor_feat(kvm, attr);
865 break;
866 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
867 ret = kvm_s390_set_processor_subfunc(kvm, attr);
868 break;
869 }
870 return ret;
871 }
872
873 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
874 {
875 struct kvm_s390_vm_cpu_processor *proc;
876 int ret = 0;
877
878 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
879 if (!proc) {
880 ret = -ENOMEM;
881 goto out;
882 }
883 proc->cpuid = kvm->arch.model.cpuid;
884 proc->ibc = kvm->arch.model.ibc;
885 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
886 S390_ARCH_FAC_LIST_SIZE_BYTE);
887 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
888 ret = -EFAULT;
889 kfree(proc);
890 out:
891 return ret;
892 }
893
894 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
895 {
896 struct kvm_s390_vm_cpu_machine *mach;
897 int ret = 0;
898
899 mach = kzalloc(sizeof(*mach), GFP_KERNEL);
900 if (!mach) {
901 ret = -ENOMEM;
902 goto out;
903 }
904 get_cpu_id((struct cpuid *) &mach->cpuid);
905 mach->ibc = sclp.ibc;
906 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
907 S390_ARCH_FAC_LIST_SIZE_BYTE);
908 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
909 S390_ARCH_FAC_LIST_SIZE_BYTE);
910 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
911 ret = -EFAULT;
912 kfree(mach);
913 out:
914 return ret;
915 }
916
917 static int kvm_s390_get_processor_feat(struct kvm *kvm,
918 struct kvm_device_attr *attr)
919 {
920 struct kvm_s390_vm_cpu_feat data;
921
922 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
923 KVM_S390_VM_CPU_FEAT_NR_BITS);
924 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
925 return -EFAULT;
926 return 0;
927 }
928
929 static int kvm_s390_get_machine_feat(struct kvm *kvm,
930 struct kvm_device_attr *attr)
931 {
932 struct kvm_s390_vm_cpu_feat data;
933
934 bitmap_copy((unsigned long *) data.feat,
935 kvm_s390_available_cpu_feat,
936 KVM_S390_VM_CPU_FEAT_NR_BITS);
937 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
938 return -EFAULT;
939 return 0;
940 }
941
942 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
943 struct kvm_device_attr *attr)
944 {
945 /*
946 * Once we can actually configure subfunctions (kernel + hw support),
947 * we have to check if they were already set by user space, if so copy
948 * them from kvm->arch.
949 */
950 return -ENXIO;
951 }
952
953 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
954 struct kvm_device_attr *attr)
955 {
956 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
957 sizeof(struct kvm_s390_vm_cpu_subfunc)))
958 return -EFAULT;
959 return 0;
960 }
961 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
962 {
963 int ret = -ENXIO;
964
965 switch (attr->attr) {
966 case KVM_S390_VM_CPU_PROCESSOR:
967 ret = kvm_s390_get_processor(kvm, attr);
968 break;
969 case KVM_S390_VM_CPU_MACHINE:
970 ret = kvm_s390_get_machine(kvm, attr);
971 break;
972 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
973 ret = kvm_s390_get_processor_feat(kvm, attr);
974 break;
975 case KVM_S390_VM_CPU_MACHINE_FEAT:
976 ret = kvm_s390_get_machine_feat(kvm, attr);
977 break;
978 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
979 ret = kvm_s390_get_processor_subfunc(kvm, attr);
980 break;
981 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
982 ret = kvm_s390_get_machine_subfunc(kvm, attr);
983 break;
984 }
985 return ret;
986 }
987
988 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
989 {
990 int ret;
991
992 switch (attr->group) {
993 case KVM_S390_VM_MEM_CTRL:
994 ret = kvm_s390_set_mem_control(kvm, attr);
995 break;
996 case KVM_S390_VM_TOD:
997 ret = kvm_s390_set_tod(kvm, attr);
998 break;
999 case KVM_S390_VM_CPU_MODEL:
1000 ret = kvm_s390_set_cpu_model(kvm, attr);
1001 break;
1002 case KVM_S390_VM_CRYPTO:
1003 ret = kvm_s390_vm_set_crypto(kvm, attr);
1004 break;
1005 default:
1006 ret = -ENXIO;
1007 break;
1008 }
1009
1010 return ret;
1011 }
1012
1013 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1014 {
1015 int ret;
1016
1017 switch (attr->group) {
1018 case KVM_S390_VM_MEM_CTRL:
1019 ret = kvm_s390_get_mem_control(kvm, attr);
1020 break;
1021 case KVM_S390_VM_TOD:
1022 ret = kvm_s390_get_tod(kvm, attr);
1023 break;
1024 case KVM_S390_VM_CPU_MODEL:
1025 ret = kvm_s390_get_cpu_model(kvm, attr);
1026 break;
1027 default:
1028 ret = -ENXIO;
1029 break;
1030 }
1031
1032 return ret;
1033 }
1034
1035 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1036 {
1037 int ret;
1038
1039 switch (attr->group) {
1040 case KVM_S390_VM_MEM_CTRL:
1041 switch (attr->attr) {
1042 case KVM_S390_VM_MEM_ENABLE_CMMA:
1043 case KVM_S390_VM_MEM_CLR_CMMA:
1044 ret = sclp.has_cmma ? 0 : -ENXIO;
1045 break;
1046 case KVM_S390_VM_MEM_LIMIT_SIZE:
1047 ret = 0;
1048 break;
1049 default:
1050 ret = -ENXIO;
1051 break;
1052 }
1053 break;
1054 case KVM_S390_VM_TOD:
1055 switch (attr->attr) {
1056 case KVM_S390_VM_TOD_LOW:
1057 case KVM_S390_VM_TOD_HIGH:
1058 ret = 0;
1059 break;
1060 default:
1061 ret = -ENXIO;
1062 break;
1063 }
1064 break;
1065 case KVM_S390_VM_CPU_MODEL:
1066 switch (attr->attr) {
1067 case KVM_S390_VM_CPU_PROCESSOR:
1068 case KVM_S390_VM_CPU_MACHINE:
1069 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1070 case KVM_S390_VM_CPU_MACHINE_FEAT:
1071 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1072 ret = 0;
1073 break;
1074 /* configuring subfunctions is not supported yet */
1075 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1076 default:
1077 ret = -ENXIO;
1078 break;
1079 }
1080 break;
1081 case KVM_S390_VM_CRYPTO:
1082 switch (attr->attr) {
1083 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1084 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1085 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1086 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1087 ret = 0;
1088 break;
1089 default:
1090 ret = -ENXIO;
1091 break;
1092 }
1093 break;
1094 default:
1095 ret = -ENXIO;
1096 break;
1097 }
1098
1099 return ret;
1100 }
1101
1102 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1103 {
1104 uint8_t *keys;
1105 uint64_t hva;
1106 int i, r = 0;
1107
1108 if (args->flags != 0)
1109 return -EINVAL;
1110
1111 /* Is this guest using storage keys? */
1112 if (!mm_use_skey(current->mm))
1113 return KVM_S390_GET_SKEYS_NONE;
1114
1115 /* Enforce sane limit on memory allocation */
1116 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1117 return -EINVAL;
1118
1119 keys = kmalloc_array(args->count, sizeof(uint8_t),
1120 GFP_KERNEL | __GFP_NOWARN);
1121 if (!keys)
1122 keys = vmalloc(sizeof(uint8_t) * args->count);
1123 if (!keys)
1124 return -ENOMEM;
1125
1126 down_read(&current->mm->mmap_sem);
1127 for (i = 0; i < args->count; i++) {
1128 hva = gfn_to_hva(kvm, args->start_gfn + i);
1129 if (kvm_is_error_hva(hva)) {
1130 r = -EFAULT;
1131 break;
1132 }
1133
1134 r = get_guest_storage_key(current->mm, hva, &keys[i]);
1135 if (r)
1136 break;
1137 }
1138 up_read(&current->mm->mmap_sem);
1139
1140 if (!r) {
1141 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
1142 sizeof(uint8_t) * args->count);
1143 if (r)
1144 r = -EFAULT;
1145 }
1146
1147 kvfree(keys);
1148 return r;
1149 }
1150
1151 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1152 {
1153 uint8_t *keys;
1154 uint64_t hva;
1155 int i, r = 0;
1156
1157 if (args->flags != 0)
1158 return -EINVAL;
1159
1160 /* Enforce sane limit on memory allocation */
1161 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1162 return -EINVAL;
1163
1164 keys = kmalloc_array(args->count, sizeof(uint8_t),
1165 GFP_KERNEL | __GFP_NOWARN);
1166 if (!keys)
1167 keys = vmalloc(sizeof(uint8_t) * args->count);
1168 if (!keys)
1169 return -ENOMEM;
1170
1171 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
1172 sizeof(uint8_t) * args->count);
1173 if (r) {
1174 r = -EFAULT;
1175 goto out;
1176 }
1177
1178 /* Enable storage key handling for the guest */
1179 r = s390_enable_skey();
1180 if (r)
1181 goto out;
1182
1183 down_read(&current->mm->mmap_sem);
1184 for (i = 0; i < args->count; i++) {
1185 hva = gfn_to_hva(kvm, args->start_gfn + i);
1186 if (kvm_is_error_hva(hva)) {
1187 r = -EFAULT;
1188 break;
1189 }
1190
1191 /* Lowest order bit is reserved */
1192 if (keys[i] & 0x01) {
1193 r = -EINVAL;
1194 break;
1195 }
1196
1197 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1198 if (r)
1199 break;
1200 }
1201 up_read(&current->mm->mmap_sem);
1202 out:
1203 kvfree(keys);
1204 return r;
1205 }
1206
1207 long kvm_arch_vm_ioctl(struct file *filp,
1208 unsigned int ioctl, unsigned long arg)
1209 {
1210 struct kvm *kvm = filp->private_data;
1211 void __user *argp = (void __user *)arg;
1212 struct kvm_device_attr attr;
1213 int r;
1214
1215 switch (ioctl) {
1216 case KVM_S390_INTERRUPT: {
1217 struct kvm_s390_interrupt s390int;
1218
1219 r = -EFAULT;
1220 if (copy_from_user(&s390int, argp, sizeof(s390int)))
1221 break;
1222 r = kvm_s390_inject_vm(kvm, &s390int);
1223 break;
1224 }
1225 case KVM_ENABLE_CAP: {
1226 struct kvm_enable_cap cap;
1227 r = -EFAULT;
1228 if (copy_from_user(&cap, argp, sizeof(cap)))
1229 break;
1230 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1231 break;
1232 }
1233 case KVM_CREATE_IRQCHIP: {
1234 struct kvm_irq_routing_entry routing;
1235
1236 r = -EINVAL;
1237 if (kvm->arch.use_irqchip) {
1238 /* Set up dummy routing. */
1239 memset(&routing, 0, sizeof(routing));
1240 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1241 }
1242 break;
1243 }
1244 case KVM_SET_DEVICE_ATTR: {
1245 r = -EFAULT;
1246 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1247 break;
1248 r = kvm_s390_vm_set_attr(kvm, &attr);
1249 break;
1250 }
1251 case KVM_GET_DEVICE_ATTR: {
1252 r = -EFAULT;
1253 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1254 break;
1255 r = kvm_s390_vm_get_attr(kvm, &attr);
1256 break;
1257 }
1258 case KVM_HAS_DEVICE_ATTR: {
1259 r = -EFAULT;
1260 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1261 break;
1262 r = kvm_s390_vm_has_attr(kvm, &attr);
1263 break;
1264 }
1265 case KVM_S390_GET_SKEYS: {
1266 struct kvm_s390_skeys args;
1267
1268 r = -EFAULT;
1269 if (copy_from_user(&args, argp,
1270 sizeof(struct kvm_s390_skeys)))
1271 break;
1272 r = kvm_s390_get_skeys(kvm, &args);
1273 break;
1274 }
1275 case KVM_S390_SET_SKEYS: {
1276 struct kvm_s390_skeys args;
1277
1278 r = -EFAULT;
1279 if (copy_from_user(&args, argp,
1280 sizeof(struct kvm_s390_skeys)))
1281 break;
1282 r = kvm_s390_set_skeys(kvm, &args);
1283 break;
1284 }
1285 default:
1286 r = -ENOTTY;
1287 }
1288
1289 return r;
1290 }
1291
1292 static int kvm_s390_query_ap_config(u8 *config)
1293 {
1294 u32 fcn_code = 0x04000000UL;
1295 u32 cc = 0;
1296
1297 memset(config, 0, 128);
1298 asm volatile(
1299 "lgr 0,%1\n"
1300 "lgr 2,%2\n"
1301 ".long 0xb2af0000\n" /* PQAP(QCI) */
1302 "0: ipm %0\n"
1303 "srl %0,28\n"
1304 "1:\n"
1305 EX_TABLE(0b, 1b)
1306 : "+r" (cc)
1307 : "r" (fcn_code), "r" (config)
1308 : "cc", "0", "2", "memory"
1309 );
1310
1311 return cc;
1312 }
1313
1314 static int kvm_s390_apxa_installed(void)
1315 {
1316 u8 config[128];
1317 int cc;
1318
1319 if (test_facility(12)) {
1320 cc = kvm_s390_query_ap_config(config);
1321
1322 if (cc)
1323 pr_err("PQAP(QCI) failed with cc=%d", cc);
1324 else
1325 return config[0] & 0x40;
1326 }
1327
1328 return 0;
1329 }
1330
1331 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1332 {
1333 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1334
1335 if (kvm_s390_apxa_installed())
1336 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1337 else
1338 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1339 }
1340
1341 static u64 kvm_s390_get_initial_cpuid(void)
1342 {
1343 struct cpuid cpuid;
1344
1345 get_cpu_id(&cpuid);
1346 cpuid.version = 0xff;
1347 return *((u64 *) &cpuid);
1348 }
1349
1350 static void kvm_s390_crypto_init(struct kvm *kvm)
1351 {
1352 if (!test_kvm_facility(kvm, 76))
1353 return;
1354
1355 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1356 kvm_s390_set_crycb_format(kvm);
1357
1358 /* Enable AES/DEA protected key functions by default */
1359 kvm->arch.crypto.aes_kw = 1;
1360 kvm->arch.crypto.dea_kw = 1;
1361 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1362 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1363 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1364 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1365 }
1366
1367 static void sca_dispose(struct kvm *kvm)
1368 {
1369 if (kvm->arch.use_esca)
1370 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1371 else
1372 free_page((unsigned long)(kvm->arch.sca));
1373 kvm->arch.sca = NULL;
1374 }
1375
1376 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1377 {
1378 gfp_t alloc_flags = GFP_KERNEL;
1379 int i, rc;
1380 char debug_name[16];
1381 static unsigned long sca_offset;
1382
1383 rc = -EINVAL;
1384 #ifdef CONFIG_KVM_S390_UCONTROL
1385 if (type & ~KVM_VM_S390_UCONTROL)
1386 goto out_err;
1387 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1388 goto out_err;
1389 #else
1390 if (type)
1391 goto out_err;
1392 #endif
1393
1394 rc = s390_enable_sie();
1395 if (rc)
1396 goto out_err;
1397
1398 rc = -ENOMEM;
1399
1400 ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);
1401
1402 kvm->arch.use_esca = 0; /* start with basic SCA */
1403 if (!sclp.has_64bscao)
1404 alloc_flags |= GFP_DMA;
1405 rwlock_init(&kvm->arch.sca_lock);
1406 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1407 if (!kvm->arch.sca)
1408 goto out_err;
1409 spin_lock(&kvm_lock);
1410 sca_offset += 16;
1411 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1412 sca_offset = 0;
1413 kvm->arch.sca = (struct bsca_block *)
1414 ((char *) kvm->arch.sca + sca_offset);
1415 spin_unlock(&kvm_lock);
1416
1417 sprintf(debug_name, "kvm-%u", current->pid);
1418
1419 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1420 if (!kvm->arch.dbf)
1421 goto out_err;
1422
1423 kvm->arch.sie_page2 =
1424 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1425 if (!kvm->arch.sie_page2)
1426 goto out_err;
1427
1428 /* Populate the facility mask initially. */
1429 memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1430 S390_ARCH_FAC_LIST_SIZE_BYTE);
1431 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1432 if (i < kvm_s390_fac_list_mask_size())
1433 kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1434 else
1435 kvm->arch.model.fac_mask[i] = 0UL;
1436 }
1437
1438 /* Populate the facility list initially. */
1439 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
1440 memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1441 S390_ARCH_FAC_LIST_SIZE_BYTE);
1442
1443 set_kvm_facility(kvm->arch.model.fac_mask, 74);
1444 set_kvm_facility(kvm->arch.model.fac_list, 74);
1445
1446 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1447 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1448
1449 kvm_s390_crypto_init(kvm);
1450
1451 spin_lock_init(&kvm->arch.float_int.lock);
1452 for (i = 0; i < FIRQ_LIST_COUNT; i++)
1453 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1454 init_waitqueue_head(&kvm->arch.ipte_wq);
1455 mutex_init(&kvm->arch.ipte_mutex);
1456
1457 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1458 VM_EVENT(kvm, 3, "vm created with type %lu", type);
1459
1460 if (type & KVM_VM_S390_UCONTROL) {
1461 kvm->arch.gmap = NULL;
1462 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1463 } else {
1464 if (sclp.hamax == U64_MAX)
1465 kvm->arch.mem_limit = TASK_MAX_SIZE;
1466 else
1467 kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
1468 sclp.hamax + 1);
1469 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1470 if (!kvm->arch.gmap)
1471 goto out_err;
1472 kvm->arch.gmap->private = kvm;
1473 kvm->arch.gmap->pfault_enabled = 0;
1474 }
1475
1476 kvm->arch.css_support = 0;
1477 kvm->arch.use_irqchip = 0;
1478 kvm->arch.epoch = 0;
1479
1480 spin_lock_init(&kvm->arch.start_stop_lock);
1481 kvm_s390_vsie_init(kvm);
1482 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1483
1484 return 0;
1485 out_err:
1486 free_page((unsigned long)kvm->arch.sie_page2);
1487 debug_unregister(kvm->arch.dbf);
1488 sca_dispose(kvm);
1489 KVM_EVENT(3, "creation of vm failed: %d", rc);
1490 return rc;
1491 }
1492
1493 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1494 {
1495 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1496 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1497 kvm_s390_clear_local_irqs(vcpu);
1498 kvm_clear_async_pf_completion_queue(vcpu);
1499 if (!kvm_is_ucontrol(vcpu->kvm))
1500 sca_del_vcpu(vcpu);
1501
1502 if (kvm_is_ucontrol(vcpu->kvm))
1503 gmap_remove(vcpu->arch.gmap);
1504
1505 if (vcpu->kvm->arch.use_cmma)
1506 kvm_s390_vcpu_unsetup_cmma(vcpu);
1507 free_page((unsigned long)(vcpu->arch.sie_block));
1508
1509 kvm_vcpu_uninit(vcpu);
1510 kmem_cache_free(kvm_vcpu_cache, vcpu);
1511 }
1512
1513 static void kvm_free_vcpus(struct kvm *kvm)
1514 {
1515 unsigned int i;
1516 struct kvm_vcpu *vcpu;
1517
1518 kvm_for_each_vcpu(i, vcpu, kvm)
1519 kvm_arch_vcpu_destroy(vcpu);
1520
1521 mutex_lock(&kvm->lock);
1522 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
1523 kvm->vcpus[i] = NULL;
1524
1525 atomic_set(&kvm->online_vcpus, 0);
1526 mutex_unlock(&kvm->lock);
1527 }
1528
1529 void kvm_arch_destroy_vm(struct kvm *kvm)
1530 {
1531 kvm_free_vcpus(kvm);
1532 sca_dispose(kvm);
1533 debug_unregister(kvm->arch.dbf);
1534 free_page((unsigned long)kvm->arch.sie_page2);
1535 if (!kvm_is_ucontrol(kvm))
1536 gmap_remove(kvm->arch.gmap);
1537 kvm_s390_destroy_adapters(kvm);
1538 kvm_s390_clear_float_irqs(kvm);
1539 kvm_s390_vsie_destroy(kvm);
1540 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1541 }
1542
1543 /* Section: vcpu related */
1544 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
1545 {
1546 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1547 if (!vcpu->arch.gmap)
1548 return -ENOMEM;
1549 vcpu->arch.gmap->private = vcpu->kvm;
1550
1551 return 0;
1552 }
1553
1554 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
1555 {
1556 read_lock(&vcpu->kvm->arch.sca_lock);
1557 if (vcpu->kvm->arch.use_esca) {
1558 struct esca_block *sca = vcpu->kvm->arch.sca;
1559
1560 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1561 sca->cpu[vcpu->vcpu_id].sda = 0;
1562 } else {
1563 struct bsca_block *sca = vcpu->kvm->arch.sca;
1564
1565 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1566 sca->cpu[vcpu->vcpu_id].sda = 0;
1567 }
1568 read_unlock(&vcpu->kvm->arch.sca_lock);
1569 }
1570
1571 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1572 {
1573 read_lock(&vcpu->kvm->arch.sca_lock);
1574 if (vcpu->kvm->arch.use_esca) {
1575 struct esca_block *sca = vcpu->kvm->arch.sca;
1576
1577 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1578 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1579 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1580 vcpu->arch.sie_block->ecb2 |= 0x04U;
1581 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1582 } else {
1583 struct bsca_block *sca = vcpu->kvm->arch.sca;
1584
1585 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1586 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1587 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1588 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1589 }
1590 read_unlock(&vcpu->kvm->arch.sca_lock);
1591 }
1592
1593 /* Basic SCA to Extended SCA data copy routines */
1594 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
1595 {
1596 d->sda = s->sda;
1597 d->sigp_ctrl.c = s->sigp_ctrl.c;
1598 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
1599 }
1600
1601 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
1602 {
1603 int i;
1604
1605 d->ipte_control = s->ipte_control;
1606 d->mcn[0] = s->mcn;
1607 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
1608 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
1609 }
1610
1611 static int sca_switch_to_extended(struct kvm *kvm)
1612 {
1613 struct bsca_block *old_sca = kvm->arch.sca;
1614 struct esca_block *new_sca;
1615 struct kvm_vcpu *vcpu;
1616 unsigned int vcpu_idx;
1617 u32 scaol, scaoh;
1618
1619 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
1620 if (!new_sca)
1621 return -ENOMEM;
1622
1623 scaoh = (u32)((u64)(new_sca) >> 32);
1624 scaol = (u32)(u64)(new_sca) & ~0x3fU;
1625
1626 kvm_s390_vcpu_block_all(kvm);
1627 write_lock(&kvm->arch.sca_lock);
1628
1629 sca_copy_b_to_e(new_sca, old_sca);
1630
1631 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
1632 vcpu->arch.sie_block->scaoh = scaoh;
1633 vcpu->arch.sie_block->scaol = scaol;
1634 vcpu->arch.sie_block->ecb2 |= 0x04U;
1635 }
1636 kvm->arch.sca = new_sca;
1637 kvm->arch.use_esca = 1;
1638
1639 write_unlock(&kvm->arch.sca_lock);
1640 kvm_s390_vcpu_unblock_all(kvm);
1641
1642 free_page((unsigned long)old_sca);
1643
1644 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
1645 old_sca, kvm->arch.sca);
1646 return 0;
1647 }
1648
1649 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
1650 {
1651 int rc;
1652
1653 if (id < KVM_S390_BSCA_CPU_SLOTS)
1654 return true;
1655 if (!sclp.has_esca || !sclp.has_64bscao)
1656 return false;
1657
1658 mutex_lock(&kvm->lock);
1659 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
1660 mutex_unlock(&kvm->lock);
1661
1662 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1663 }
1664
1665 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1666 {
1667 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1668 kvm_clear_async_pf_completion_queue(vcpu);
1669 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
1670 KVM_SYNC_GPRS |
1671 KVM_SYNC_ACRS |
1672 KVM_SYNC_CRS |
1673 KVM_SYNC_ARCH0 |
1674 KVM_SYNC_PFAULT;
1675 kvm_s390_set_prefix(vcpu, 0);
1676 if (test_kvm_facility(vcpu->kvm, 64))
1677 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1678 /* fprs can be synchronized via vrs, even if the guest has no vx. With
1679 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
1680 */
1681 if (MACHINE_HAS_VX)
1682 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1683 else
1684 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1685
1686 if (kvm_is_ucontrol(vcpu->kvm))
1687 return __kvm_ucontrol_vcpu_init(vcpu);
1688
1689 return 0;
1690 }
1691
1692 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1693 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1694 {
1695 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1696 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1697 vcpu->arch.cputm_start = get_tod_clock_fast();
1698 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1699 }
1700
1701 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1702 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1703 {
1704 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1705 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1706 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
1707 vcpu->arch.cputm_start = 0;
1708 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1709 }
1710
1711 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1712 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1713 {
1714 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
1715 vcpu->arch.cputm_enabled = true;
1716 __start_cpu_timer_accounting(vcpu);
1717 }
1718
1719 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1720 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1721 {
1722 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
1723 __stop_cpu_timer_accounting(vcpu);
1724 vcpu->arch.cputm_enabled = false;
1725 }
1726
1727 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1728 {
1729 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1730 __enable_cpu_timer_accounting(vcpu);
1731 preempt_enable();
1732 }
1733
1734 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1735 {
1736 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1737 __disable_cpu_timer_accounting(vcpu);
1738 preempt_enable();
1739 }
1740
1741 /* set the cpu timer - may only be called from the VCPU thread itself */
1742 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
1743 {
1744 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1745 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1746 if (vcpu->arch.cputm_enabled)
1747 vcpu->arch.cputm_start = get_tod_clock_fast();
1748 vcpu->arch.sie_block->cputm = cputm;
1749 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1750 preempt_enable();
1751 }
1752
1753 /* update and get the cpu timer - can also be called from other VCPU threads */
1754 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
1755 {
1756 unsigned int seq;
1757 __u64 value;
1758
1759 if (unlikely(!vcpu->arch.cputm_enabled))
1760 return vcpu->arch.sie_block->cputm;
1761
1762 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1763 do {
1764 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
1765 /*
1766 * If the writer would ever execute a read in the critical
1767 * section, e.g. in irq context, we have a deadlock.
1768 */
1769 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
1770 value = vcpu->arch.sie_block->cputm;
1771 /* if cputm_start is 0, accounting is being started/stopped */
1772 if (likely(vcpu->arch.cputm_start))
1773 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
1774 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
1775 preempt_enable();
1776 return value;
1777 }
1778
1779 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1780 {
1781 /* Save host register state */
1782 save_fpu_regs();
1783 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
1784 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1785
1786 if (MACHINE_HAS_VX)
1787 current->thread.fpu.regs = vcpu->run->s.regs.vrs;
1788 else
1789 current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1790 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1791 if (test_fp_ctl(current->thread.fpu.fpc))
1792 /* User space provided an invalid FPC, let's clear it */
1793 current->thread.fpu.fpc = 0;
1794
1795 save_access_regs(vcpu->arch.host_acrs);
1796 restore_access_regs(vcpu->run->s.regs.acrs);
1797 gmap_enable(vcpu->arch.enabled_gmap);
1798 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1799 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1800 __start_cpu_timer_accounting(vcpu);
1801 vcpu->cpu = cpu;
1802 }
1803
1804 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1805 {
1806 vcpu->cpu = -1;
1807 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1808 __stop_cpu_timer_accounting(vcpu);
1809 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1810 vcpu->arch.enabled_gmap = gmap_get_enabled();
1811 gmap_disable(vcpu->arch.enabled_gmap);
1812
1813 /* Save guest register state */
1814 save_fpu_regs();
1815 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1816
1817 /* Restore host register state */
1818 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
1819 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1820
1821 save_access_regs(vcpu->run->s.regs.acrs);
1822 restore_access_regs(vcpu->arch.host_acrs);
1823 }
1824
1825 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
1826 {
1827 /* this equals initial cpu reset in pop, but we don't switch to ESA */
1828 vcpu->arch.sie_block->gpsw.mask = 0UL;
1829 vcpu->arch.sie_block->gpsw.addr = 0UL;
1830 kvm_s390_set_prefix(vcpu, 0);
1831 kvm_s390_set_cpu_timer(vcpu, 0);
1832 vcpu->arch.sie_block->ckc = 0UL;
1833 vcpu->arch.sie_block->todpr = 0;
1834 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
1835 vcpu->arch.sie_block->gcr[0] = 0xE0UL;
1836 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1837 /* make sure the new fpc will be lazily loaded */
1838 save_fpu_regs();
1839 current->thread.fpu.fpc = 0;
1840 vcpu->arch.sie_block->gbea = 1;
1841 vcpu->arch.sie_block->pp = 0;
1842 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1843 kvm_clear_async_pf_completion_queue(vcpu);
1844 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
1845 kvm_s390_vcpu_stop(vcpu);
1846 kvm_s390_clear_local_irqs(vcpu);
1847 }
1848
1849 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1850 {
1851 mutex_lock(&vcpu->kvm->lock);
1852 preempt_disable();
1853 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1854 preempt_enable();
1855 mutex_unlock(&vcpu->kvm->lock);
1856 if (!kvm_is_ucontrol(vcpu->kvm)) {
1857 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1858 sca_add_vcpu(vcpu);
1859 }
1860 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
1861 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1862 /* make vcpu_load load the right gmap on the first trigger */
1863 vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1864 }
1865
1866 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
1867 {
1868 if (!test_kvm_facility(vcpu->kvm, 76))
1869 return;
1870
1871 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
1872
1873 if (vcpu->kvm->arch.crypto.aes_kw)
1874 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
1875 if (vcpu->kvm->arch.crypto.dea_kw)
1876 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
1877
1878 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
1879 }
1880
1881 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
1882 {
1883 free_page(vcpu->arch.sie_block->cbrlo);
1884 vcpu->arch.sie_block->cbrlo = 0;
1885 }
1886
1887 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
1888 {
1889 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
1890 if (!vcpu->arch.sie_block->cbrlo)
1891 return -ENOMEM;
1892
1893 vcpu->arch.sie_block->ecb2 |= 0x80;
1894 vcpu->arch.sie_block->ecb2 &= ~0x08;
1895 return 0;
1896 }
1897
1898 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
1899 {
1900 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
1901
1902 vcpu->arch.sie_block->ibc = model->ibc;
1903 if (test_kvm_facility(vcpu->kvm, 7))
1904 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1905 }
1906
1907 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1908 {
1909 int rc = 0;
1910
1911 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
1912 CPUSTAT_SM |
1913 CPUSTAT_STOPPED);
1914
1915 if (test_kvm_facility(vcpu->kvm, 78))
1916 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1917 else if (test_kvm_facility(vcpu->kvm, 8))
1918 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1919
1920 kvm_s390_vcpu_setup_model(vcpu);
1921
1922 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
1923 if (MACHINE_HAS_ESOP)
1924 vcpu->arch.sie_block->ecb |= 0x02;
1925 if (test_kvm_facility(vcpu->kvm, 9))
1926 vcpu->arch.sie_block->ecb |= 0x04;
1927 if (test_kvm_facility(vcpu->kvm, 73))
1928 vcpu->arch.sie_block->ecb |= 0x10;
1929
1930 if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1931 vcpu->arch.sie_block->ecb2 |= 0x08;
1932 vcpu->arch.sie_block->eca = 0x1002000U;
1933 if (sclp.has_cei)
1934 vcpu->arch.sie_block->eca |= 0x80000000U;
1935 if (sclp.has_ib)
1936 vcpu->arch.sie_block->eca |= 0x40000000U;
1937 if (sclp.has_siif)
1938 vcpu->arch.sie_block->eca |= 1;
1939 if (sclp.has_sigpif)
1940 vcpu->arch.sie_block->eca |= 0x10000000U;
1941 if (test_kvm_facility(vcpu->kvm, 64))
1942 vcpu->arch.sie_block->ecb3 |= 0x01;
1943 if (test_kvm_facility(vcpu->kvm, 129)) {
1944 vcpu->arch.sie_block->eca |= 0x00020000;
1945 vcpu->arch.sie_block->ecd |= 0x20000000;
1946 }
1947 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1948 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1949
1950 if (vcpu->kvm->arch.use_cmma) {
1951 rc = kvm_s390_vcpu_setup_cmma(vcpu);
1952 if (rc)
1953 return rc;
1954 }
1955 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1956 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1957
1958 kvm_s390_vcpu_crypto_setup(vcpu);
1959
1960 return rc;
1961 }
1962
1963 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1964 unsigned int id)
1965 {
1966 struct kvm_vcpu *vcpu;
1967 struct sie_page *sie_page;
1968 int rc = -EINVAL;
1969
1970 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1971 goto out;
1972
1973 rc = -ENOMEM;
1974
1975 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1976 if (!vcpu)
1977 goto out;
1978
1979 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
1980 if (!sie_page)
1981 goto out_free_cpu;
1982
1983 vcpu->arch.sie_block = &sie_page->sie_block;
1984 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1985
1986 /* the real guest size will always be smaller than msl */
1987 vcpu->arch.sie_block->mso = 0;
1988 vcpu->arch.sie_block->msl = sclp.hamax;
1989
1990 vcpu->arch.sie_block->icpua = id;
1991 spin_lock_init(&vcpu->arch.local_int.lock);
1992 vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1993 vcpu->arch.local_int.wq = &vcpu->wq;
1994 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1995 seqcount_init(&vcpu->arch.cputm_seqcount);
1996
1997 rc = kvm_vcpu_init(vcpu, kvm, id);
1998 if (rc)
1999 goto out_free_sie_block;
2000 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2001 vcpu->arch.sie_block);
2002 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2003
2004 return vcpu;
2005 out_free_sie_block:
2006 free_page((unsigned long)(vcpu->arch.sie_block));
2007 out_free_cpu:
2008 kmem_cache_free(kvm_vcpu_cache, vcpu);
2009 out:
2010 return ERR_PTR(rc);
2011 }
2012
2013 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
2014 {
2015 return kvm_s390_vcpu_has_irq(vcpu, 0);
2016 }
2017
2018 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2019 {
2020 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2021 exit_sie(vcpu);
2022 }
2023
2024 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2025 {
2026 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2027 }
2028
2029 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
2030 {
2031 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2032 exit_sie(vcpu);
2033 }
2034
2035 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
2036 {
2037 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2038 }
2039
2040 /*
2041 * Kick a guest cpu out of SIE and wait until SIE is not running.
2042 * If the CPU is not running (e.g. waiting as idle) the function will
2043 * return immediately. */
2044 void exit_sie(struct kvm_vcpu *vcpu)
2045 {
2046 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2047 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
2048 cpu_relax();
2049 }
2050
2051 /* Kick a guest cpu out of SIE to process a request synchronously */
2052 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2053 {
2054 kvm_make_request(req, vcpu);
2055 kvm_s390_vcpu_request(vcpu);
2056 }
2057
2058 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
2059 unsigned long end)
2060 {
2061 struct kvm *kvm = gmap->private;
2062 struct kvm_vcpu *vcpu;
2063 unsigned long prefix;
2064 int i;
2065
2066 if (gmap_is_shadow(gmap))
2067 return;
2068 if (start >= 1UL << 31)
2069 /* We are only interested in prefix pages */
2070 return;
2071 kvm_for_each_vcpu(i, vcpu, kvm) {
2072 /* match against both prefix pages */
2073 prefix = kvm_s390_get_prefix(vcpu);
2074 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
2075 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
2076 start, end);
2077 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2078 }
2079 }
2080 }
2081
2082 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
2083 {
2084 /* kvm common code refers to this, but never calls it */
2085 BUG();
2086 return 0;
2087 }
2088
2089 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
2090 struct kvm_one_reg *reg)
2091 {
2092 int r = -EINVAL;
2093
2094 switch (reg->id) {
2095 case KVM_REG_S390_TODPR:
2096 r = put_user(vcpu->arch.sie_block->todpr,
2097 (u32 __user *)reg->addr);
2098 break;
2099 case KVM_REG_S390_EPOCHDIFF:
2100 r = put_user(vcpu->arch.sie_block->epoch,
2101 (u64 __user *)reg->addr);
2102 break;
2103 case KVM_REG_S390_CPU_TIMER:
2104 r = put_user(kvm_s390_get_cpu_timer(vcpu),
2105 (u64 __user *)reg->addr);
2106 break;
2107 case KVM_REG_S390_CLOCK_COMP:
2108 r = put_user(vcpu->arch.sie_block->ckc,
2109 (u64 __user *)reg->addr);
2110 break;
2111 case KVM_REG_S390_PFTOKEN:
2112 r = put_user(vcpu->arch.pfault_token,
2113 (u64 __user *)reg->addr);
2114 break;
2115 case KVM_REG_S390_PFCOMPARE:
2116 r = put_user(vcpu->arch.pfault_compare,
2117 (u64 __user *)reg->addr);
2118 break;
2119 case KVM_REG_S390_PFSELECT:
2120 r = put_user(vcpu->arch.pfault_select,
2121 (u64 __user *)reg->addr);
2122 break;
2123 case KVM_REG_S390_PP:
2124 r = put_user(vcpu->arch.sie_block->pp,
2125 (u64 __user *)reg->addr);
2126 break;
2127 case KVM_REG_S390_GBEA:
2128 r = put_user(vcpu->arch.sie_block->gbea,
2129 (u64 __user *)reg->addr);
2130 break;
2131 default:
2132 break;
2133 }
2134
2135 return r;
2136 }
2137
2138 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
2139 struct kvm_one_reg *reg)
2140 {
2141 int r = -EINVAL;
2142 __u64 val;
2143
2144 switch (reg->id) {
2145 case KVM_REG_S390_TODPR:
2146 r = get_user(vcpu->arch.sie_block->todpr,
2147 (u32 __user *)reg->addr);
2148 break;
2149 case KVM_REG_S390_EPOCHDIFF:
2150 r = get_user(vcpu->arch.sie_block->epoch,
2151 (u64 __user *)reg->addr);
2152 break;
2153 case KVM_REG_S390_CPU_TIMER:
2154 r = get_user(val, (u64 __user *)reg->addr);
2155 if (!r)
2156 kvm_s390_set_cpu_timer(vcpu, val);
2157 break;
2158 case KVM_REG_S390_CLOCK_COMP:
2159 r = get_user(vcpu->arch.sie_block->ckc,
2160 (u64 __user *)reg->addr);
2161 break;
2162 case KVM_REG_S390_PFTOKEN:
2163 r = get_user(vcpu->arch.pfault_token,
2164 (u64 __user *)reg->addr);
2165 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2166 kvm_clear_async_pf_completion_queue(vcpu);
2167 break;
2168 case KVM_REG_S390_PFCOMPARE:
2169 r = get_user(vcpu->arch.pfault_compare,
2170 (u64 __user *)reg->addr);
2171 break;
2172 case KVM_REG_S390_PFSELECT:
2173 r = get_user(vcpu->arch.pfault_select,
2174 (u64 __user *)reg->addr);
2175 break;
2176 case KVM_REG_S390_PP:
2177 r = get_user(vcpu->arch.sie_block->pp,
2178 (u64 __user *)reg->addr);
2179 break;
2180 case KVM_REG_S390_GBEA:
2181 r = get_user(vcpu->arch.sie_block->gbea,
2182 (u64 __user *)reg->addr);
2183 break;
2184 default:
2185 break;
2186 }
2187
2188 return r;
2189 }
2190
2191 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
2192 {
2193 kvm_s390_vcpu_initial_reset(vcpu);
2194 return 0;
2195 }
2196
2197 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2198 {
2199 memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2200 return 0;
2201 }
2202
2203 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2204 {
2205 memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2206 return 0;
2207 }
2208
2209 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2210 struct kvm_sregs *sregs)
2211 {
2212 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2213 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2214 restore_access_regs(vcpu->run->s.regs.acrs);
2215 return 0;
2216 }
2217
2218 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2219 struct kvm_sregs *sregs)
2220 {
2221 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2222 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
2223 return 0;
2224 }
2225
2226 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2227 {
2228 /* make sure the new values will be lazily loaded */
2229 save_fpu_regs();
2230 if (test_fp_ctl(fpu->fpc))
2231 return -EINVAL;
2232 current->thread.fpu.fpc = fpu->fpc;
2233 if (MACHINE_HAS_VX)
2234 convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
2235 else
2236 memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2237 return 0;
2238 }
2239
2240 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2241 {
2242 /* make sure we have the latest values */
2243 save_fpu_regs();
2244 if (MACHINE_HAS_VX)
2245 convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
2246 else
2247 memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
2248 fpu->fpc = current->thread.fpu.fpc;
2249 return 0;
2250 }
2251
2252 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
2253 {
2254 int rc = 0;
2255
2256 if (!is_vcpu_stopped(vcpu))
2257 rc = -EBUSY;
2258 else {
2259 vcpu->run->psw_mask = psw.mask;
2260 vcpu->run->psw_addr = psw.addr;
2261 }
2262 return rc;
2263 }
2264
2265 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2266 struct kvm_translation *tr)
2267 {
2268 return -EINVAL; /* not implemented yet */
2269 }
2270
2271 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
2272 KVM_GUESTDBG_USE_HW_BP | \
2273 KVM_GUESTDBG_ENABLE)
2274
2275 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
2276 struct kvm_guest_debug *dbg)
2277 {
2278 int rc = 0;
2279
2280 vcpu->guest_debug = 0;
2281 kvm_s390_clear_bp_data(vcpu);
2282
2283 if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2284 return -EINVAL;
2285 if (!sclp.has_gpere)
2286 return -EINVAL;
2287
2288 if (dbg->control & KVM_GUESTDBG_ENABLE) {
2289 vcpu->guest_debug = dbg->control;
2290 /* enforce guest PER */
2291 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2292
2293 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
2294 rc = kvm_s390_import_bp_data(vcpu, dbg);
2295 } else {
2296 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2297 vcpu->arch.guestdbg.last_bp = 0;
2298 }
2299
2300 if (rc) {
2301 vcpu->guest_debug = 0;
2302 kvm_s390_clear_bp_data(vcpu);
2303 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2304 }
2305
2306 return rc;
2307 }
2308
2309 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2310 struct kvm_mp_state *mp_state)
2311 {
2312 /* CHECK_STOP and LOAD are not supported yet */
2313 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
2314 KVM_MP_STATE_OPERATING;
2315 }
2316
2317 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2318 struct kvm_mp_state *mp_state)
2319 {
2320 int rc = 0;
2321
2322 /* user space knows about this interface - let it control the state */
2323 vcpu->kvm->arch.user_cpu_state_ctrl = 1;
2324
2325 switch (mp_state->mp_state) {
2326 case KVM_MP_STATE_STOPPED:
2327 kvm_s390_vcpu_stop(vcpu);
2328 break;
2329 case KVM_MP_STATE_OPERATING:
2330 kvm_s390_vcpu_start(vcpu);
2331 break;
2332 case KVM_MP_STATE_LOAD:
2333 case KVM_MP_STATE_CHECK_STOP:
2334 /* fall through - CHECK_STOP and LOAD are not supported yet */
2335 default:
2336 rc = -ENXIO;
2337 }
2338
2339 return rc;
2340 }
2341
2342 static bool ibs_enabled(struct kvm_vcpu *vcpu)
2343 {
2344 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
2345 }
2346
2347 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
2348 {
2349 retry:
2350 kvm_s390_vcpu_request_handled(vcpu);
2351 if (!vcpu->requests)
2352 return 0;
2353 /*
2354 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2355 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2356 * This ensures that the ipte instruction for this request has
2357 * already finished. We might race against a second unmapper that
2358 * wants to set the blocking bit. Lets just retry the request loop.
2359 */
2360 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2361 int rc;
2362 rc = gmap_mprotect_notify(vcpu->arch.gmap,
2363 kvm_s390_get_prefix(vcpu),
2364 PAGE_SIZE * 2, PROT_WRITE);
2365 if (rc) {
2366 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2367 return rc;
2368 }
2369 goto retry;
2370 }
2371
2372 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2373 vcpu->arch.sie_block->ihcpu = 0xffff;
2374 goto retry;
2375 }
2376
2377 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
2378 if (!ibs_enabled(vcpu)) {
2379 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2380 atomic_or(CPUSTAT_IBS,
2381 &vcpu->arch.sie_block->cpuflags);
2382 }
2383 goto retry;
2384 }
2385
2386 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
2387 if (ibs_enabled(vcpu)) {
2388 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2389 atomic_andnot(CPUSTAT_IBS,
2390 &vcpu->arch.sie_block->cpuflags);
2391 }
2392 goto retry;
2393 }
2394
2395 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
2396 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2397 goto retry;
2398 }
2399
2400 /* nothing to do, just clear the request */
2401 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
2402
2403 return 0;
2404 }
2405
2406 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
2407 {
2408 struct kvm_vcpu *vcpu;
2409 int i;
2410
2411 mutex_lock(&kvm->lock);
2412 preempt_disable();
2413 kvm->arch.epoch = tod - get_tod_clock();
2414 kvm_s390_vcpu_block_all(kvm);
2415 kvm_for_each_vcpu(i, vcpu, kvm)
2416 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
2417 kvm_s390_vcpu_unblock_all(kvm);
2418 preempt_enable();
2419 mutex_unlock(&kvm->lock);
2420 }
2421
2422 /**
2423 * kvm_arch_fault_in_page - fault-in guest page if necessary
2424 * @vcpu: The corresponding virtual cpu
2425 * @gpa: Guest physical address
2426 * @writable: Whether the page should be writable or not
2427 *
2428 * Make sure that a guest page has been faulted-in on the host.
2429 *
2430 * Return: Zero on success, negative error code otherwise.
2431 */
2432 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2433 {
2434 return gmap_fault(vcpu->arch.gmap, gpa,
2435 writable ? FAULT_FLAG_WRITE : 0);
2436 }
2437
2438 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
2439 unsigned long token)
2440 {
2441 struct kvm_s390_interrupt inti;
2442 struct kvm_s390_irq irq;
2443
2444 if (start_token) {
2445 irq.u.ext.ext_params2 = token;
2446 irq.type = KVM_S390_INT_PFAULT_INIT;
2447 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2448 } else {
2449 inti.type = KVM_S390_INT_PFAULT_DONE;
2450 inti.parm64 = token;
2451 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
2452 }
2453 }
2454
2455 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2456 struct kvm_async_pf *work)
2457 {
2458 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
2459 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
2460 }
2461
2462 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2463 struct kvm_async_pf *work)
2464 {
2465 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
2466 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
2467 }
2468
2469 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2470 struct kvm_async_pf *work)
2471 {
2472 /* s390 will always inject the page directly */
2473 }
2474
2475 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
2476 {
2477 /*
2478 * s390 will always inject the page directly,
2479 * but we still want check_async_completion to cleanup
2480 */
2481 return true;
2482 }
2483
2484 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
2485 {
2486 hva_t hva;
2487 struct kvm_arch_async_pf arch;
2488 int rc;
2489
2490 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2491 return 0;
2492 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
2493 vcpu->arch.pfault_compare)
2494 return 0;
2495 if (psw_extint_disabled(vcpu))
2496 return 0;
2497 if (kvm_s390_vcpu_has_irq(vcpu, 0))
2498 return 0;
2499 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
2500 return 0;
2501 if (!vcpu->arch.gmap->pfault_enabled)
2502 return 0;
2503
2504 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
2505 hva += current->thread.gmap_addr & ~PAGE_MASK;
2506 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2507 return 0;
2508
2509 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
2510 return rc;
2511 }
2512
2513 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2514 {
2515 int rc, cpuflags;
2516
2517 /*
2518 * On s390 notifications for arriving pages will be delivered directly
2519 * to the guest but the house keeping for completed pfaults is
2520 * handled outside the worker.
2521 */
2522 kvm_check_async_pf_completion(vcpu);
2523
2524 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
2525 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2526
2527 if (need_resched())
2528 schedule();
2529
2530 if (test_cpu_flag(CIF_MCCK_PENDING))
2531 s390_handle_mcck();
2532
2533 if (!kvm_is_ucontrol(vcpu->kvm)) {
2534 rc = kvm_s390_deliver_pending_interrupts(vcpu);
2535 if (rc)
2536 return rc;
2537 }
2538
2539 rc = kvm_s390_handle_requests(vcpu);
2540 if (rc)
2541 return rc;
2542
2543 if (guestdbg_enabled(vcpu)) {
2544 kvm_s390_backup_guest_per_regs(vcpu);
2545 kvm_s390_patch_guest_per_regs(vcpu);
2546 }
2547
2548 vcpu->arch.sie_block->icptcode = 0;
2549 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
2550 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
2551 trace_kvm_s390_sie_enter(vcpu, cpuflags);
2552
2553 return 0;
2554 }
2555
2556 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
2557 {
2558 struct kvm_s390_pgm_info pgm_info = {
2559 .code = PGM_ADDRESSING,
2560 };
2561 u8 opcode, ilen;
2562 int rc;
2563
2564 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
2565 trace_kvm_s390_sie_fault(vcpu);
2566
2567 /*
2568 * We want to inject an addressing exception, which is defined as a
2569 * suppressing or terminating exception. However, since we came here
2570 * by a DAT access exception, the PSW still points to the faulting
2571 * instruction since DAT exceptions are nullifying. So we've got
2572 * to look up the current opcode to get the length of the instruction
2573 * to be able to forward the PSW.
2574 */
2575 rc = read_guest_instr(vcpu, &opcode, 1);
2576 ilen = insn_length(opcode);
2577 if (rc < 0) {
2578 return rc;
2579 } else if (rc) {
2580 /* Instruction-Fetching Exceptions - we can't detect the ilen.
2581 * Forward by arbitrary ilc, injection will take care of
2582 * nullification if necessary.
2583 */
2584 pgm_info = vcpu->arch.pgm;
2585 ilen = 4;
2586 }
2587 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
2588 kvm_s390_forward_psw(vcpu, ilen);
2589 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2590 }
2591
2592 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
2593 {
2594 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
2595 vcpu->arch.sie_block->icptcode);
2596 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
2597
2598 if (guestdbg_enabled(vcpu))
2599 kvm_s390_restore_guest_per_regs(vcpu);
2600
2601 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
2602 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2603
2604 if (vcpu->arch.sie_block->icptcode > 0) {
2605 int rc = kvm_handle_sie_intercept(vcpu);
2606
2607 if (rc != -EOPNOTSUPP)
2608 return rc;
2609 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
2610 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
2611 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
2612 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
2613 return -EREMOTE;
2614 } else if (exit_reason != -EFAULT) {
2615 vcpu->stat.exit_null++;
2616 return 0;
2617 } else if (kvm_is_ucontrol(vcpu->kvm)) {
2618 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
2619 vcpu->run->s390_ucontrol.trans_exc_code =
2620 current->thread.gmap_addr;
2621 vcpu->run->s390_ucontrol.pgm_code = 0x10;
2622 return -EREMOTE;
2623 } else if (current->thread.gmap_pfault) {
2624 trace_kvm_s390_major_guest_pfault(vcpu);
2625 current->thread.gmap_pfault = 0;
2626 if (kvm_arch_setup_async_pf(vcpu))
2627 return 0;
2628 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2629 }
2630 return vcpu_post_run_fault_in_sie(vcpu);
2631 }
2632
2633 static int __vcpu_run(struct kvm_vcpu *vcpu)
2634 {
2635 int rc, exit_reason;
2636
2637 /*
2638 * We try to hold kvm->srcu during most of vcpu_run (except when run-
2639 * ning the guest), so that memslots (and other stuff) are protected
2640 */
2641 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2642
2643 do {
2644 rc = vcpu_pre_run(vcpu);
2645 if (rc)
2646 break;
2647
2648 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2649 /*
2650 * As PF_VCPU will be used in fault handler, between
2651 * guest_enter and guest_exit should be no uaccess.
2652 */
2653 local_irq_disable();
2654 guest_enter_irqoff();
2655 __disable_cpu_timer_accounting(vcpu);
2656 local_irq_enable();
2657 exit_reason = sie64a(vcpu->arch.sie_block,
2658 vcpu->run->s.regs.gprs);
2659 local_irq_disable();
2660 __enable_cpu_timer_accounting(vcpu);
2661 guest_exit_irqoff();
2662 local_irq_enable();
2663 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2664
2665 rc = vcpu_post_run(vcpu, exit_reason);
2666 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2667
2668 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2669 return rc;
2670 }
2671
2672 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2673 {
2674 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
2675 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
2676 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
2677 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
2678 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
2679 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2680 /* some control register changes require a tlb flush */
2681 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2682 }
2683 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2684 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2685 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
2686 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
2687 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
2688 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
2689 }
2690 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
2691 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
2692 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
2693 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2694 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2695 kvm_clear_async_pf_completion_queue(vcpu);
2696 }
2697 kvm_run->kvm_dirty_regs = 0;
2698 }
2699
2700 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2701 {
2702 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
2703 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
2704 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
2705 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2706 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2707 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
2708 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
2709 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
2710 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
2711 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
2712 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
2713 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2714 }
2715
2716 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2717 {
2718 int rc;
2719 sigset_t sigsaved;
2720
2721 if (guestdbg_exit_pending(vcpu)) {
2722 kvm_s390_prepare_debug_exit(vcpu);
2723 return 0;
2724 }
2725
2726 if (vcpu->sigset_active)
2727 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2728
2729 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
2730 kvm_s390_vcpu_start(vcpu);
2731 } else if (is_vcpu_stopped(vcpu)) {
2732 pr_err_ratelimited("can't run stopped vcpu %d\n",
2733 vcpu->vcpu_id);
2734 return -EINVAL;
2735 }
2736
2737 sync_regs(vcpu, kvm_run);
2738 enable_cpu_timer_accounting(vcpu);
2739
2740 might_fault();
2741 rc = __vcpu_run(vcpu);
2742
2743 if (signal_pending(current) && !rc) {
2744 kvm_run->exit_reason = KVM_EXIT_INTR;
2745 rc = -EINTR;
2746 }
2747
2748 if (guestdbg_exit_pending(vcpu) && !rc) {
2749 kvm_s390_prepare_debug_exit(vcpu);
2750 rc = 0;
2751 }
2752
2753 if (rc == -EREMOTE) {
2754 /* userspace support is needed, kvm_run has been prepared */
2755 rc = 0;
2756 }
2757
2758 disable_cpu_timer_accounting(vcpu);
2759 store_regs(vcpu, kvm_run);
2760
2761 if (vcpu->sigset_active)
2762 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2763
2764 vcpu->stat.exit_userspace++;
2765 return rc;
2766 }
2767
2768 /*
2769 * store status at address
2770 * we use have two special cases:
2771 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
2772 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
2773 */
2774 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2775 {
2776 unsigned char archmode = 1;
2777 freg_t fprs[NUM_FPRS];
2778 unsigned int px;
2779 u64 clkcomp, cputm;
2780 int rc;
2781
2782 px = kvm_s390_get_prefix(vcpu);
2783 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
2784 if (write_guest_abs(vcpu, 163, &archmode, 1))
2785 return -EFAULT;
2786 gpa = 0;
2787 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
2788 if (write_guest_real(vcpu, 163, &archmode, 1))
2789 return -EFAULT;
2790 gpa = px;
2791 } else
2792 gpa -= __LC_FPREGS_SAVE_AREA;
2793
2794 /* manually convert vector registers if necessary */
2795 if (MACHINE_HAS_VX) {
2796 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2797 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2798 fprs, 128);
2799 } else {
2800 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2801 vcpu->run->s.regs.fprs, 128);
2802 }
2803 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2804 vcpu->run->s.regs.gprs, 128);
2805 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2806 &vcpu->arch.sie_block->gpsw, 16);
2807 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2808 &px, 4);
2809 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2810 &vcpu->run->s.regs.fpc, 4);
2811 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2812 &vcpu->arch.sie_block->todpr, 4);
2813 cputm = kvm_s390_get_cpu_timer(vcpu);
2814 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2815 &cputm, 8);
2816 clkcomp = vcpu->arch.sie_block->ckc >> 8;
2817 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2818 &clkcomp, 8);
2819 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2820 &vcpu->run->s.regs.acrs, 64);
2821 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2822 &vcpu->arch.sie_block->gcr, 128);
2823 return rc ? -EFAULT : 0;
2824 }
2825
2826 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
2827 {
2828 /*
2829 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2830 * copying in vcpu load/put. Lets update our copies before we save
2831 * it into the save area
2832 */
2833 save_fpu_regs();
2834 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2835 save_access_regs(vcpu->run->s.regs.acrs);
2836
2837 return kvm_s390_store_status_unloaded(vcpu, addr);
2838 }
2839
2840 /*
2841 * store additional status at address
2842 */
2843 int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
2844 unsigned long gpa)
2845 {
2846 /* Only bits 0-53 are used for address formation */
2847 if (!(gpa & ~0x3ff))
2848 return 0;
2849
2850 return write_guest_abs(vcpu, gpa & ~0x3ff,
2851 (void *)&vcpu->run->s.regs.vrs, 512);
2852 }
2853
2854 int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
2855 {
2856 if (!test_kvm_facility(vcpu->kvm, 129))
2857 return 0;
2858
2859 /*
2860 * The guest VXRS are in the host VXRs due to the lazy
2861 * copying in vcpu load/put. We can simply call save_fpu_regs()
2862 * to save the current register state because we are in the
2863 * middle of a load/put cycle.
2864 *
2865 * Let's update our copies before we save it into the save area.
2866 */
2867 save_fpu_regs();
2868
2869 return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
2870 }
2871
2872 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2873 {
2874 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2875 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2876 }
2877
2878 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
2879 {
2880 unsigned int i;
2881 struct kvm_vcpu *vcpu;
2882
2883 kvm_for_each_vcpu(i, vcpu, kvm) {
2884 __disable_ibs_on_vcpu(vcpu);
2885 }
2886 }
2887
2888 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2889 {
2890 if (!sclp.has_ibs)
2891 return;
2892 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2893 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2894 }
2895
2896 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
2897 {
2898 int i, online_vcpus, started_vcpus = 0;
2899
2900 if (!is_vcpu_stopped(vcpu))
2901 return;
2902
2903 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2904 /* Only one cpu at a time may enter/leave the STOPPED state. */
2905 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2906 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2907
2908 for (i = 0; i < online_vcpus; i++) {
2909 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
2910 started_vcpus++;
2911 }
2912
2913 if (started_vcpus == 0) {
2914 /* we're the only active VCPU -> speed it up */
2915 __enable_ibs_on_vcpu(vcpu);
2916 } else if (started_vcpus == 1) {
2917 /*
2918 * As we are starting a second VCPU, we have to disable
2919 * the IBS facility on all VCPUs to remove potentially
2920 * oustanding ENABLE requests.
2921 */
2922 __disable_ibs_on_all_vcpus(vcpu->kvm);
2923 }
2924
2925 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2926 /*
2927 * Another VCPU might have used IBS while we were offline.
2928 * Let's play safe and flush the VCPU at startup.
2929 */
2930 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2931 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2932 return;
2933 }
2934
2935 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
2936 {
2937 int i, online_vcpus, started_vcpus = 0;
2938 struct kvm_vcpu *started_vcpu = NULL;
2939
2940 if (is_vcpu_stopped(vcpu))
2941 return;
2942
2943 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2944 /* Only one cpu at a time may enter/leave the STOPPED state. */
2945 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2946 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2947
2948 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2949 kvm_s390_clear_stop_irq(vcpu);
2950
2951 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2952 __disable_ibs_on_vcpu(vcpu);
2953
2954 for (i = 0; i < online_vcpus; i++) {
2955 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
2956 started_vcpus++;
2957 started_vcpu = vcpu->kvm->vcpus[i];
2958 }
2959 }
2960
2961 if (started_vcpus == 1) {
2962 /*
2963 * As we only have one VCPU left, we want to enable the
2964 * IBS facility for that VCPU to speed it up.
2965 */
2966 __enable_ibs_on_vcpu(started_vcpu);
2967 }
2968
2969 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2970 return;
2971 }
2972
2973 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
2974 struct kvm_enable_cap *cap)
2975 {
2976 int r;
2977
2978 if (cap->flags)
2979 return -EINVAL;
2980
2981 switch (cap->cap) {
2982 case KVM_CAP_S390_CSS_SUPPORT:
2983 if (!vcpu->kvm->arch.css_support) {
2984 vcpu->kvm->arch.css_support = 1;
2985 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2986 trace_kvm_s390_enable_css(vcpu->kvm);
2987 }
2988 r = 0;
2989 break;
2990 default:
2991 r = -EINVAL;
2992 break;
2993 }
2994 return r;
2995 }
2996
2997 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
2998 struct kvm_s390_mem_op *mop)
2999 {
3000 void __user *uaddr = (void __user *)mop->buf;
3001 void *tmpbuf = NULL;
3002 int r, srcu_idx;
3003 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
3004 | KVM_S390_MEMOP_F_CHECK_ONLY;
3005
3006 if (mop->flags & ~supported_flags)
3007 return -EINVAL;
3008
3009 if (mop->size > MEM_OP_MAX_SIZE)
3010 return -E2BIG;
3011
3012 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
3013 tmpbuf = vmalloc(mop->size);
3014 if (!tmpbuf)
3015 return -ENOMEM;
3016 }
3017
3018 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3019
3020 switch (mop->op) {
3021 case KVM_S390_MEMOP_LOGICAL_READ:
3022 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3023 r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3024 mop->size, GACC_FETCH);
3025 break;
3026 }
3027 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3028 if (r == 0) {
3029 if (copy_to_user(uaddr, tmpbuf, mop->size))
3030 r = -EFAULT;
3031 }
3032 break;
3033 case KVM_S390_MEMOP_LOGICAL_WRITE:
3034 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3035 r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3036 mop->size, GACC_STORE);
3037 break;
3038 }
3039 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
3040 r = -EFAULT;
3041 break;
3042 }
3043 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3044 break;
3045 default:
3046 r = -EINVAL;
3047 }
3048
3049 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3050
3051 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
3052 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
3053
3054 vfree(tmpbuf);
3055 return r;
3056 }
3057
3058 long kvm_arch_vcpu_ioctl(struct file *filp,
3059 unsigned int ioctl, unsigned long arg)
3060 {
3061 struct kvm_vcpu *vcpu = filp->private_data;
3062 void __user *argp = (void __user *)arg;
3063 int idx;
3064 long r;
3065
3066 switch (ioctl) {
3067 case KVM_S390_IRQ: {
3068 struct kvm_s390_irq s390irq;
3069
3070 r = -EFAULT;
3071 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
3072 break;
3073 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3074 break;
3075 }
3076 case KVM_S390_INTERRUPT: {
3077 struct kvm_s390_interrupt s390int;
3078 struct kvm_s390_irq s390irq;
3079
3080 r = -EFAULT;
3081 if (copy_from_user(&s390int, argp, sizeof(s390int)))
3082 break;
3083 if (s390int_to_s390irq(&s390int, &s390irq))
3084 return -EINVAL;
3085 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3086 break;
3087 }
3088 case KVM_S390_STORE_STATUS:
3089 idx = srcu_read_lock(&vcpu->kvm->srcu);
3090 r = kvm_s390_vcpu_store_status(vcpu, arg);
3091 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3092 break;
3093 case KVM_S390_SET_INITIAL_PSW: {
3094 psw_t psw;
3095
3096 r = -EFAULT;
3097 if (copy_from_user(&psw, argp, sizeof(psw)))
3098 break;
3099 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
3100 break;
3101 }
3102 case KVM_S390_INITIAL_RESET:
3103 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
3104 break;
3105 case KVM_SET_ONE_REG:
3106 case KVM_GET_ONE_REG: {
3107 struct kvm_one_reg reg;
3108 r = -EFAULT;
3109 if (copy_from_user(&reg, argp, sizeof(reg)))
3110 break;
3111 if (ioctl == KVM_SET_ONE_REG)
3112 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
3113 else
3114 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
3115 break;
3116 }
3117 #ifdef CONFIG_KVM_S390_UCONTROL
3118 case KVM_S390_UCAS_MAP: {
3119 struct kvm_s390_ucas_mapping ucasmap;
3120
3121 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3122 r = -EFAULT;
3123 break;
3124 }
3125
3126 if (!kvm_is_ucontrol(vcpu->kvm)) {
3127 r = -EINVAL;
3128 break;
3129 }
3130
3131 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
3132 ucasmap.vcpu_addr, ucasmap.length);
3133 break;
3134 }
3135 case KVM_S390_UCAS_UNMAP: {
3136 struct kvm_s390_ucas_mapping ucasmap;
3137
3138 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3139 r = -EFAULT;
3140 break;
3141 }
3142
3143 if (!kvm_is_ucontrol(vcpu->kvm)) {
3144 r = -EINVAL;
3145 break;
3146 }
3147
3148 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
3149 ucasmap.length);
3150 break;
3151 }
3152 #endif
3153 case KVM_S390_VCPU_FAULT: {
3154 r = gmap_fault(vcpu->arch.gmap, arg, 0);
3155 break;
3156 }
3157 case KVM_ENABLE_CAP:
3158 {
3159 struct kvm_enable_cap cap;
3160 r = -EFAULT;
3161 if (copy_from_user(&cap, argp, sizeof(cap)))
3162 break;
3163 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3164 break;
3165 }
3166 case KVM_S390_MEM_OP: {
3167 struct kvm_s390_mem_op mem_op;
3168
3169 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3170 r = kvm_s390_guest_mem_op(vcpu, &mem_op);
3171 else
3172 r = -EFAULT;
3173 break;
3174 }
3175 case KVM_S390_SET_IRQ_STATE: {
3176 struct kvm_s390_irq_state irq_state;
3177
3178 r = -EFAULT;
3179 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3180 break;
3181 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
3182 irq_state.len == 0 ||
3183 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
3184 r = -EINVAL;
3185 break;
3186 }
3187 r = kvm_s390_set_irq_state(vcpu,
3188 (void __user *) irq_state.buf,
3189 irq_state.len);
3190 break;
3191 }
3192 case KVM_S390_GET_IRQ_STATE: {
3193 struct kvm_s390_irq_state irq_state;
3194
3195 r = -EFAULT;
3196 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3197 break;
3198 if (irq_state.len == 0) {
3199 r = -EINVAL;
3200 break;
3201 }
3202 r = kvm_s390_get_irq_state(vcpu,
3203 (__u8 __user *) irq_state.buf,
3204 irq_state.len);
3205 break;
3206 }
3207 default:
3208 r = -ENOTTY;
3209 }
3210 return r;
3211 }
3212
3213 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3214 {
3215 #ifdef CONFIG_KVM_S390_UCONTROL
3216 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
3217 && (kvm_is_ucontrol(vcpu->kvm))) {
3218 vmf->page = virt_to_page(vcpu->arch.sie_block);
3219 get_page(vmf->page);
3220 return 0;
3221 }
3222 #endif
3223 return VM_FAULT_SIGBUS;
3224 }
3225
3226 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
3227 unsigned long npages)
3228 {
3229 return 0;
3230 }
3231
3232 /* Section: memory related */
3233 int kvm_arch_prepare_memory_region(struct kvm *kvm,
3234 struct kvm_memory_slot *memslot,
3235 const struct kvm_userspace_memory_region *mem,
3236 enum kvm_mr_change change)
3237 {
3238 /* A few sanity checks. We can have memory slots which have to be
3239 located/ended at a segment boundary (1MB). The memory in userland is
3240 ok to be fragmented into various different vmas. It is okay to mmap()
3241 and munmap() stuff in this slot after doing this call at any time */
3242
3243 if (mem->userspace_addr & 0xffffful)
3244 return -EINVAL;
3245
3246 if (mem->memory_size & 0xffffful)
3247 return -EINVAL;
3248
3249 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
3250 return -EINVAL;
3251
3252 return 0;
3253 }
3254
3255 void kvm_arch_commit_memory_region(struct kvm *kvm,
3256 const struct kvm_userspace_memory_region *mem,
3257 const struct kvm_memory_slot *old,
3258 const struct kvm_memory_slot *new,
3259 enum kvm_mr_change change)
3260 {
3261 int rc;
3262
3263 /* If the basics of the memslot do not change, we do not want
3264 * to update the gmap. Every update causes several unnecessary
3265 * segment translation exceptions. This is usually handled just
3266 * fine by the normal fault handler + gmap, but it will also
3267 * cause faults on the prefix page of running guest CPUs.
3268 */
3269 if (old->userspace_addr == mem->userspace_addr &&
3270 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
3271 old->npages * PAGE_SIZE == mem->memory_size)
3272 return;
3273
3274 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
3275 mem->guest_phys_addr, mem->memory_size);
3276 if (rc)
3277 pr_warn("failed to commit memory region\n");
3278 return;
3279 }
3280
3281 static inline unsigned long nonhyp_mask(int i)
3282 {
3283 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
3284
3285 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
3286 }
3287
3288 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
3289 {
3290 vcpu->valid_wakeup = false;
3291 }
3292
3293 static int __init kvm_s390_init(void)
3294 {
3295 int i;
3296
3297 if (!sclp.has_sief2) {
3298 pr_info("SIE not available\n");
3299 return -ENODEV;
3300 }
3301
3302 for (i = 0; i < 16; i++)
3303 kvm_s390_fac_list_mask[i] |=
3304 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);
3305
3306 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3307 }
3308
3309 static void __exit kvm_s390_exit(void)
3310 {
3311 kvm_exit();
3312 }
3313
3314 module_init(kvm_s390_init);
3315 module_exit(kvm_s390_exit);
3316
3317 /*
3318 * Enable autoloading of the kvm module.
3319 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
3320 * since x86 takes a different approach.
3321 */
3322 #include <linux/miscdevice.h>
3323 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3324 MODULE_ALIAS("devname:kvm");
This page took 0.101878 seconds and 5 git commands to generate.